Merge branch 'for-viro' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[cascardo/linux.git] / drivers / dma / imx-sdma.c
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/init.h>
21 #include <linux/iopoll.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/bitops.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/clk.h>
28 #include <linux/delay.h>
29 #include <linux/sched.h>
30 #include <linux/semaphore.h>
31 #include <linux/spinlock.h>
32 #include <linux/device.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/firmware.h>
35 #include <linux/slab.h>
36 #include <linux/platform_device.h>
37 #include <linux/dmaengine.h>
38 #include <linux/of.h>
39 #include <linux/of_address.h>
40 #include <linux/of_device.h>
41 #include <linux/of_dma.h>
42
43 #include <asm/irq.h>
44 #include <linux/platform_data/dma-imx-sdma.h>
45 #include <linux/platform_data/dma-imx.h>
46 #include <linux/regmap.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
49
50 #include "dmaengine.h"
51
52 /* SDMA registers */
53 #define SDMA_H_C0PTR            0x000
54 #define SDMA_H_INTR             0x004
55 #define SDMA_H_STATSTOP         0x008
56 #define SDMA_H_START            0x00c
57 #define SDMA_H_EVTOVR           0x010
58 #define SDMA_H_DSPOVR           0x014
59 #define SDMA_H_HOSTOVR          0x018
60 #define SDMA_H_EVTPEND          0x01c
61 #define SDMA_H_DSPENBL          0x020
62 #define SDMA_H_RESET            0x024
63 #define SDMA_H_EVTERR           0x028
64 #define SDMA_H_INTRMSK          0x02c
65 #define SDMA_H_PSW              0x030
66 #define SDMA_H_EVTERRDBG        0x034
67 #define SDMA_H_CONFIG           0x038
68 #define SDMA_ONCE_ENB           0x040
69 #define SDMA_ONCE_DATA          0x044
70 #define SDMA_ONCE_INSTR         0x048
71 #define SDMA_ONCE_STAT          0x04c
72 #define SDMA_ONCE_CMD           0x050
73 #define SDMA_EVT_MIRROR         0x054
74 #define SDMA_ILLINSTADDR        0x058
75 #define SDMA_CHN0ADDR           0x05c
76 #define SDMA_ONCE_RTB           0x060
77 #define SDMA_XTRIG_CONF1        0x070
78 #define SDMA_XTRIG_CONF2        0x074
79 #define SDMA_CHNENBL0_IMX35     0x200
80 #define SDMA_CHNENBL0_IMX31     0x080
81 #define SDMA_CHNPRI_0           0x100
82
83 /*
84  * Buffer descriptor status values.
85  */
86 #define BD_DONE  0x01
87 #define BD_WRAP  0x02
88 #define BD_CONT  0x04
89 #define BD_INTR  0x08
90 #define BD_RROR  0x10
91 #define BD_LAST  0x20
92 #define BD_EXTD  0x80
93
94 /*
95  * Data Node descriptor status values.
96  */
97 #define DND_END_OF_FRAME  0x80
98 #define DND_END_OF_XFER   0x40
99 #define DND_DONE          0x20
100 #define DND_UNUSED        0x01
101
102 /*
103  * IPCV2 descriptor status values.
104  */
105 #define BD_IPCV2_END_OF_FRAME  0x40
106
107 #define IPCV2_MAX_NODES        50
108 /*
109  * Error bit set in the CCB status field by the SDMA,
110  * in setbd routine, in case of a transfer error
111  */
112 #define DATA_ERROR  0x10000000
113
114 /*
115  * Buffer descriptor commands.
116  */
117 #define C0_ADDR             0x01
118 #define C0_LOAD             0x02
119 #define C0_DUMP             0x03
120 #define C0_SETCTX           0x07
121 #define C0_GETCTX           0x03
122 #define C0_SETDM            0x01
123 #define C0_SETPM            0x04
124 #define C0_GETDM            0x02
125 #define C0_GETPM            0x08
126 /*
127  * Change endianness indicator in the BD command field
128  */
129 #define CHANGE_ENDIANNESS   0x80
130
131 /*
132  *  p_2_p watermark_level description
133  *      Bits            Name                    Description
134  *      0-7             Lower WML               Lower watermark level
135  *      8               PS                      1: Pad Swallowing
136  *                                              0: No Pad Swallowing
137  *      9               PA                      1: Pad Adding
138  *                                              0: No Pad Adding
139  *      10              SPDIF                   If this bit is set both source
140  *                                              and destination are on SPBA
141  *      11              Source Bit(SP)          1: Source on SPBA
142  *                                              0: Source on AIPS
143  *      12              Destination Bit(DP)     1: Destination on SPBA
144  *                                              0: Destination on AIPS
145  *      13-15           ---------               MUST BE 0
146  *      16-23           Higher WML              HWML
147  *      24-27           N                       Total number of samples after
148  *                                              which Pad adding/Swallowing
149  *                                              must be done. It must be odd.
150  *      28              Lower WML Event(LWE)    SDMA events reg to check for
151  *                                              LWML event mask
152  *                                              0: LWE in EVENTS register
153  *                                              1: LWE in EVENTS2 register
154  *      29              Higher WML Event(HWE)   SDMA events reg to check for
155  *                                              HWML event mask
156  *                                              0: HWE in EVENTS register
157  *                                              1: HWE in EVENTS2 register
158  *      30              ---------               MUST BE 0
159  *      31              CONT                    1: Amount of samples to be
160  *                                              transferred is unknown and
161  *                                              script will keep on
162  *                                              transferring samples as long as
163  *                                              both events are detected and
164  *                                              script must be manually stopped
165  *                                              by the application
166  *                                              0: The amount of samples to be
167  *                                              transferred is equal to the
168  *                                              count field of mode word
169  */
170 #define SDMA_WATERMARK_LEVEL_LWML       0xFF
171 #define SDMA_WATERMARK_LEVEL_PS         BIT(8)
172 #define SDMA_WATERMARK_LEVEL_PA         BIT(9)
173 #define SDMA_WATERMARK_LEVEL_SPDIF      BIT(10)
174 #define SDMA_WATERMARK_LEVEL_SP         BIT(11)
175 #define SDMA_WATERMARK_LEVEL_DP         BIT(12)
176 #define SDMA_WATERMARK_LEVEL_HWML       (0xFF << 16)
177 #define SDMA_WATERMARK_LEVEL_LWE        BIT(28)
178 #define SDMA_WATERMARK_LEVEL_HWE        BIT(29)
179 #define SDMA_WATERMARK_LEVEL_CONT       BIT(31)
180
181 /*
182  * Mode/Count of data node descriptors - IPCv2
183  */
184 struct sdma_mode_count {
185         u32 count   : 16; /* size of the buffer pointed by this BD */
186         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
187         u32 command :  8; /* command mostlky used for channel 0 */
188 };
189
190 /*
191  * Buffer descriptor
192  */
193 struct sdma_buffer_descriptor {
194         struct sdma_mode_count  mode;
195         u32 buffer_addr;        /* address of the buffer described */
196         u32 ext_buffer_addr;    /* extended buffer address */
197 } __attribute__ ((packed));
198
199 /**
200  * struct sdma_channel_control - Channel control Block
201  *
202  * @current_bd_ptr      current buffer descriptor processed
203  * @base_bd_ptr         first element of buffer descriptor array
204  * @unused              padding. The SDMA engine expects an array of 128 byte
205  *                      control blocks
206  */
207 struct sdma_channel_control {
208         u32 current_bd_ptr;
209         u32 base_bd_ptr;
210         u32 unused[2];
211 } __attribute__ ((packed));
212
213 /**
214  * struct sdma_state_registers - SDMA context for a channel
215  *
216  * @pc:         program counter
217  * @t:          test bit: status of arithmetic & test instruction
218  * @rpc:        return program counter
219  * @sf:         source fault while loading data
220  * @spc:        loop start program counter
221  * @df:         destination fault while storing data
222  * @epc:        loop end program counter
223  * @lm:         loop mode
224  */
225 struct sdma_state_registers {
226         u32 pc     :14;
227         u32 unused1: 1;
228         u32 t      : 1;
229         u32 rpc    :14;
230         u32 unused0: 1;
231         u32 sf     : 1;
232         u32 spc    :14;
233         u32 unused2: 1;
234         u32 df     : 1;
235         u32 epc    :14;
236         u32 lm     : 2;
237 } __attribute__ ((packed));
238
239 /**
240  * struct sdma_context_data - sdma context specific to a channel
241  *
242  * @channel_state:      channel state bits
243  * @gReg:               general registers
244  * @mda:                burst dma destination address register
245  * @msa:                burst dma source address register
246  * @ms:                 burst dma status register
247  * @md:                 burst dma data register
248  * @pda:                peripheral dma destination address register
249  * @psa:                peripheral dma source address register
250  * @ps:                 peripheral dma status register
251  * @pd:                 peripheral dma data register
252  * @ca:                 CRC polynomial register
253  * @cs:                 CRC accumulator register
254  * @dda:                dedicated core destination address register
255  * @dsa:                dedicated core source address register
256  * @ds:                 dedicated core status register
257  * @dd:                 dedicated core data register
258  */
259 struct sdma_context_data {
260         struct sdma_state_registers  channel_state;
261         u32  gReg[8];
262         u32  mda;
263         u32  msa;
264         u32  ms;
265         u32  md;
266         u32  pda;
267         u32  psa;
268         u32  ps;
269         u32  pd;
270         u32  ca;
271         u32  cs;
272         u32  dda;
273         u32  dsa;
274         u32  ds;
275         u32  dd;
276         u32  scratch0;
277         u32  scratch1;
278         u32  scratch2;
279         u32  scratch3;
280         u32  scratch4;
281         u32  scratch5;
282         u32  scratch6;
283         u32  scratch7;
284 } __attribute__ ((packed));
285
286 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
287
288 struct sdma_engine;
289
290 /**
291  * struct sdma_channel - housekeeping for a SDMA channel
292  *
293  * @sdma                pointer to the SDMA engine for this channel
294  * @channel             the channel number, matches dmaengine chan_id + 1
295  * @direction           transfer type. Needed for setting SDMA script
296  * @peripheral_type     Peripheral type. Needed for setting SDMA script
297  * @event_id0           aka dma request line
298  * @event_id1           for channels that use 2 events
299  * @word_size           peripheral access size
300  * @buf_tail            ID of the buffer that was processed
301  * @num_bd              max NUM_BD. number of descriptors currently handling
302  */
303 struct sdma_channel {
304         struct sdma_engine              *sdma;
305         unsigned int                    channel;
306         enum dma_transfer_direction             direction;
307         enum sdma_peripheral_type       peripheral_type;
308         unsigned int                    event_id0;
309         unsigned int                    event_id1;
310         enum dma_slave_buswidth         word_size;
311         unsigned int                    buf_tail;
312         unsigned int                    num_bd;
313         unsigned int                    period_len;
314         struct sdma_buffer_descriptor   *bd;
315         dma_addr_t                      bd_phys;
316         unsigned int                    pc_from_device, pc_to_device;
317         unsigned int                    device_to_device;
318         unsigned long                   flags;
319         dma_addr_t                      per_address, per_address2;
320         unsigned long                   event_mask[2];
321         unsigned long                   watermark_level;
322         u32                             shp_addr, per_addr;
323         struct dma_chan                 chan;
324         spinlock_t                      lock;
325         struct dma_async_tx_descriptor  desc;
326         enum dma_status                 status;
327         unsigned int                    chn_count;
328         unsigned int                    chn_real_count;
329         struct tasklet_struct           tasklet;
330         struct imx_dma_data             data;
331 };
332
333 #define IMX_DMA_SG_LOOP         BIT(0)
334
335 #define MAX_DMA_CHANNELS 32
336 #define MXC_SDMA_DEFAULT_PRIORITY 1
337 #define MXC_SDMA_MIN_PRIORITY 1
338 #define MXC_SDMA_MAX_PRIORITY 7
339
340 #define SDMA_FIRMWARE_MAGIC 0x414d4453
341
342 /**
343  * struct sdma_firmware_header - Layout of the firmware image
344  *
345  * @magic               "SDMA"
346  * @version_major       increased whenever layout of struct sdma_script_start_addrs
347  *                      changes.
348  * @version_minor       firmware minor version (for binary compatible changes)
349  * @script_addrs_start  offset of struct sdma_script_start_addrs in this image
350  * @num_script_addrs    Number of script addresses in this image
351  * @ram_code_start      offset of SDMA ram image in this firmware image
352  * @ram_code_size       size of SDMA ram image
353  * @script_addrs        Stores the start address of the SDMA scripts
354  *                      (in SDMA memory space)
355  */
356 struct sdma_firmware_header {
357         u32     magic;
358         u32     version_major;
359         u32     version_minor;
360         u32     script_addrs_start;
361         u32     num_script_addrs;
362         u32     ram_code_start;
363         u32     ram_code_size;
364 };
365
366 struct sdma_driver_data {
367         int chnenbl0;
368         int num_events;
369         struct sdma_script_start_addrs  *script_addrs;
370 };
371
372 struct sdma_engine {
373         struct device                   *dev;
374         struct device_dma_parameters    dma_parms;
375         struct sdma_channel             channel[MAX_DMA_CHANNELS];
376         struct sdma_channel_control     *channel_control;
377         void __iomem                    *regs;
378         struct sdma_context_data        *context;
379         dma_addr_t                      context_phys;
380         struct dma_device               dma_device;
381         struct clk                      *clk_ipg;
382         struct clk                      *clk_ahb;
383         spinlock_t                      channel_0_lock;
384         u32                             script_number;
385         struct sdma_script_start_addrs  *script_addrs;
386         const struct sdma_driver_data   *drvdata;
387         u32                             spba_start_addr;
388         u32                             spba_end_addr;
389         unsigned int                    irq;
390 };
391
392 static struct sdma_driver_data sdma_imx31 = {
393         .chnenbl0 = SDMA_CHNENBL0_IMX31,
394         .num_events = 32,
395 };
396
397 static struct sdma_script_start_addrs sdma_script_imx25 = {
398         .ap_2_ap_addr = 729,
399         .uart_2_mcu_addr = 904,
400         .per_2_app_addr = 1255,
401         .mcu_2_app_addr = 834,
402         .uartsh_2_mcu_addr = 1120,
403         .per_2_shp_addr = 1329,
404         .mcu_2_shp_addr = 1048,
405         .ata_2_mcu_addr = 1560,
406         .mcu_2_ata_addr = 1479,
407         .app_2_per_addr = 1189,
408         .app_2_mcu_addr = 770,
409         .shp_2_per_addr = 1407,
410         .shp_2_mcu_addr = 979,
411 };
412
413 static struct sdma_driver_data sdma_imx25 = {
414         .chnenbl0 = SDMA_CHNENBL0_IMX35,
415         .num_events = 48,
416         .script_addrs = &sdma_script_imx25,
417 };
418
419 static struct sdma_driver_data sdma_imx35 = {
420         .chnenbl0 = SDMA_CHNENBL0_IMX35,
421         .num_events = 48,
422 };
423
424 static struct sdma_script_start_addrs sdma_script_imx51 = {
425         .ap_2_ap_addr = 642,
426         .uart_2_mcu_addr = 817,
427         .mcu_2_app_addr = 747,
428         .mcu_2_shp_addr = 961,
429         .ata_2_mcu_addr = 1473,
430         .mcu_2_ata_addr = 1392,
431         .app_2_per_addr = 1033,
432         .app_2_mcu_addr = 683,
433         .shp_2_per_addr = 1251,
434         .shp_2_mcu_addr = 892,
435 };
436
437 static struct sdma_driver_data sdma_imx51 = {
438         .chnenbl0 = SDMA_CHNENBL0_IMX35,
439         .num_events = 48,
440         .script_addrs = &sdma_script_imx51,
441 };
442
443 static struct sdma_script_start_addrs sdma_script_imx53 = {
444         .ap_2_ap_addr = 642,
445         .app_2_mcu_addr = 683,
446         .mcu_2_app_addr = 747,
447         .uart_2_mcu_addr = 817,
448         .shp_2_mcu_addr = 891,
449         .mcu_2_shp_addr = 960,
450         .uartsh_2_mcu_addr = 1032,
451         .spdif_2_mcu_addr = 1100,
452         .mcu_2_spdif_addr = 1134,
453         .firi_2_mcu_addr = 1193,
454         .mcu_2_firi_addr = 1290,
455 };
456
457 static struct sdma_driver_data sdma_imx53 = {
458         .chnenbl0 = SDMA_CHNENBL0_IMX35,
459         .num_events = 48,
460         .script_addrs = &sdma_script_imx53,
461 };
462
463 static struct sdma_script_start_addrs sdma_script_imx6q = {
464         .ap_2_ap_addr = 642,
465         .uart_2_mcu_addr = 817,
466         .mcu_2_app_addr = 747,
467         .per_2_per_addr = 6331,
468         .uartsh_2_mcu_addr = 1032,
469         .mcu_2_shp_addr = 960,
470         .app_2_mcu_addr = 683,
471         .shp_2_mcu_addr = 891,
472         .spdif_2_mcu_addr = 1100,
473         .mcu_2_spdif_addr = 1134,
474 };
475
476 static struct sdma_driver_data sdma_imx6q = {
477         .chnenbl0 = SDMA_CHNENBL0_IMX35,
478         .num_events = 48,
479         .script_addrs = &sdma_script_imx6q,
480 };
481
482 static const struct platform_device_id sdma_devtypes[] = {
483         {
484                 .name = "imx25-sdma",
485                 .driver_data = (unsigned long)&sdma_imx25,
486         }, {
487                 .name = "imx31-sdma",
488                 .driver_data = (unsigned long)&sdma_imx31,
489         }, {
490                 .name = "imx35-sdma",
491                 .driver_data = (unsigned long)&sdma_imx35,
492         }, {
493                 .name = "imx51-sdma",
494                 .driver_data = (unsigned long)&sdma_imx51,
495         }, {
496                 .name = "imx53-sdma",
497                 .driver_data = (unsigned long)&sdma_imx53,
498         }, {
499                 .name = "imx6q-sdma",
500                 .driver_data = (unsigned long)&sdma_imx6q,
501         }, {
502                 /* sentinel */
503         }
504 };
505 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
506
507 static const struct of_device_id sdma_dt_ids[] = {
508         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
509         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
510         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
511         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
512         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
513         { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
514         { /* sentinel */ }
515 };
516 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
517
518 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
519 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
520 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
521 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
522
523 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
524 {
525         u32 chnenbl0 = sdma->drvdata->chnenbl0;
526         return chnenbl0 + event * 4;
527 }
528
529 static int sdma_config_ownership(struct sdma_channel *sdmac,
530                 bool event_override, bool mcu_override, bool dsp_override)
531 {
532         struct sdma_engine *sdma = sdmac->sdma;
533         int channel = sdmac->channel;
534         unsigned long evt, mcu, dsp;
535
536         if (event_override && mcu_override && dsp_override)
537                 return -EINVAL;
538
539         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
540         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
541         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
542
543         if (dsp_override)
544                 __clear_bit(channel, &dsp);
545         else
546                 __set_bit(channel, &dsp);
547
548         if (event_override)
549                 __clear_bit(channel, &evt);
550         else
551                 __set_bit(channel, &evt);
552
553         if (mcu_override)
554                 __clear_bit(channel, &mcu);
555         else
556                 __set_bit(channel, &mcu);
557
558         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
559         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
560         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
561
562         return 0;
563 }
564
565 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
566 {
567         writel(BIT(channel), sdma->regs + SDMA_H_START);
568 }
569
570 /*
571  * sdma_run_channel0 - run a channel and wait till it's done
572  */
573 static int sdma_run_channel0(struct sdma_engine *sdma)
574 {
575         int ret;
576         u32 reg;
577
578         sdma_enable_channel(sdma, 0);
579
580         ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
581                                                 reg, !(reg & 1), 1, 500);
582         if (ret)
583                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
584
585         /* Set bits of CONFIG register with dynamic context switching */
586         if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
587                 writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
588
589         return ret;
590 }
591
592 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
593                 u32 address)
594 {
595         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
596         void *buf_virt;
597         dma_addr_t buf_phys;
598         int ret;
599         unsigned long flags;
600
601         buf_virt = dma_alloc_coherent(NULL,
602                         size,
603                         &buf_phys, GFP_KERNEL);
604         if (!buf_virt) {
605                 return -ENOMEM;
606         }
607
608         spin_lock_irqsave(&sdma->channel_0_lock, flags);
609
610         bd0->mode.command = C0_SETPM;
611         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
612         bd0->mode.count = size / 2;
613         bd0->buffer_addr = buf_phys;
614         bd0->ext_buffer_addr = address;
615
616         memcpy(buf_virt, buf, size);
617
618         ret = sdma_run_channel0(sdma);
619
620         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
621
622         dma_free_coherent(NULL, size, buf_virt, buf_phys);
623
624         return ret;
625 }
626
627 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
628 {
629         struct sdma_engine *sdma = sdmac->sdma;
630         int channel = sdmac->channel;
631         unsigned long val;
632         u32 chnenbl = chnenbl_ofs(sdma, event);
633
634         val = readl_relaxed(sdma->regs + chnenbl);
635         __set_bit(channel, &val);
636         writel_relaxed(val, sdma->regs + chnenbl);
637 }
638
639 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
640 {
641         struct sdma_engine *sdma = sdmac->sdma;
642         int channel = sdmac->channel;
643         u32 chnenbl = chnenbl_ofs(sdma, event);
644         unsigned long val;
645
646         val = readl_relaxed(sdma->regs + chnenbl);
647         __clear_bit(channel, &val);
648         writel_relaxed(val, sdma->regs + chnenbl);
649 }
650
651 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
652 {
653         if (sdmac->desc.callback)
654                 sdmac->desc.callback(sdmac->desc.callback_param);
655 }
656
657 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
658 {
659         struct sdma_buffer_descriptor *bd;
660
661         /*
662          * loop mode. Iterate over descriptors, re-setup them and
663          * call callback function.
664          */
665         while (1) {
666                 bd = &sdmac->bd[sdmac->buf_tail];
667
668                 if (bd->mode.status & BD_DONE)
669                         break;
670
671                 if (bd->mode.status & BD_RROR)
672                         sdmac->status = DMA_ERROR;
673
674                 bd->mode.status |= BD_DONE;
675                 sdmac->buf_tail++;
676                 sdmac->buf_tail %= sdmac->num_bd;
677         }
678 }
679
680 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
681 {
682         struct sdma_buffer_descriptor *bd;
683         int i, error = 0;
684
685         sdmac->chn_real_count = 0;
686         /*
687          * non loop mode. Iterate over all descriptors, collect
688          * errors and call callback function
689          */
690         for (i = 0; i < sdmac->num_bd; i++) {
691                 bd = &sdmac->bd[i];
692
693                  if (bd->mode.status & (BD_DONE | BD_RROR))
694                         error = -EIO;
695                  sdmac->chn_real_count += bd->mode.count;
696         }
697
698         if (error)
699                 sdmac->status = DMA_ERROR;
700         else
701                 sdmac->status = DMA_COMPLETE;
702
703         dma_cookie_complete(&sdmac->desc);
704         if (sdmac->desc.callback)
705                 sdmac->desc.callback(sdmac->desc.callback_param);
706 }
707
708 static void sdma_tasklet(unsigned long data)
709 {
710         struct sdma_channel *sdmac = (struct sdma_channel *) data;
711
712         if (sdmac->flags & IMX_DMA_SG_LOOP)
713                 sdma_handle_channel_loop(sdmac);
714         else
715                 mxc_sdma_handle_channel_normal(sdmac);
716 }
717
718 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
719 {
720         struct sdma_engine *sdma = dev_id;
721         unsigned long stat;
722
723         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
724         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
725         /* channel 0 is special and not handled here, see run_channel0() */
726         stat &= ~1;
727
728         while (stat) {
729                 int channel = fls(stat) - 1;
730                 struct sdma_channel *sdmac = &sdma->channel[channel];
731
732                 if (sdmac->flags & IMX_DMA_SG_LOOP)
733                         sdma_update_channel_loop(sdmac);
734
735                 tasklet_schedule(&sdmac->tasklet);
736
737                 __clear_bit(channel, &stat);
738         }
739
740         return IRQ_HANDLED;
741 }
742
743 /*
744  * sets the pc of SDMA script according to the peripheral type
745  */
746 static void sdma_get_pc(struct sdma_channel *sdmac,
747                 enum sdma_peripheral_type peripheral_type)
748 {
749         struct sdma_engine *sdma = sdmac->sdma;
750         int per_2_emi = 0, emi_2_per = 0;
751         /*
752          * These are needed once we start to support transfers between
753          * two peripherals or memory-to-memory transfers
754          */
755         int per_2_per = 0;
756
757         sdmac->pc_from_device = 0;
758         sdmac->pc_to_device = 0;
759         sdmac->device_to_device = 0;
760
761         switch (peripheral_type) {
762         case IMX_DMATYPE_MEMORY:
763                 break;
764         case IMX_DMATYPE_DSP:
765                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
766                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
767                 break;
768         case IMX_DMATYPE_FIRI:
769                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
770                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
771                 break;
772         case IMX_DMATYPE_UART:
773                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
774                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
775                 break;
776         case IMX_DMATYPE_UART_SP:
777                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
778                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
779                 break;
780         case IMX_DMATYPE_ATA:
781                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
782                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
783                 break;
784         case IMX_DMATYPE_CSPI:
785         case IMX_DMATYPE_EXT:
786         case IMX_DMATYPE_SSI:
787         case IMX_DMATYPE_SAI:
788                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
789                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
790                 break;
791         case IMX_DMATYPE_SSI_DUAL:
792                 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
793                 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
794                 break;
795         case IMX_DMATYPE_SSI_SP:
796         case IMX_DMATYPE_MMC:
797         case IMX_DMATYPE_SDHC:
798         case IMX_DMATYPE_CSPI_SP:
799         case IMX_DMATYPE_ESAI:
800         case IMX_DMATYPE_MSHC_SP:
801                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
802                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
803                 break;
804         case IMX_DMATYPE_ASRC:
805                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
806                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
807                 per_2_per = sdma->script_addrs->per_2_per_addr;
808                 break;
809         case IMX_DMATYPE_ASRC_SP:
810                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
811                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
812                 per_2_per = sdma->script_addrs->per_2_per_addr;
813                 break;
814         case IMX_DMATYPE_MSHC:
815                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
816                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
817                 break;
818         case IMX_DMATYPE_CCM:
819                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
820                 break;
821         case IMX_DMATYPE_SPDIF:
822                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
823                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
824                 break;
825         case IMX_DMATYPE_IPU_MEMORY:
826                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
827                 break;
828         default:
829                 break;
830         }
831
832         sdmac->pc_from_device = per_2_emi;
833         sdmac->pc_to_device = emi_2_per;
834         sdmac->device_to_device = per_2_per;
835 }
836
837 static int sdma_load_context(struct sdma_channel *sdmac)
838 {
839         struct sdma_engine *sdma = sdmac->sdma;
840         int channel = sdmac->channel;
841         int load_address;
842         struct sdma_context_data *context = sdma->context;
843         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
844         int ret;
845         unsigned long flags;
846
847         if (sdmac->direction == DMA_DEV_TO_MEM)
848                 load_address = sdmac->pc_from_device;
849         else if (sdmac->direction == DMA_DEV_TO_DEV)
850                 load_address = sdmac->device_to_device;
851         else
852                 load_address = sdmac->pc_to_device;
853
854         if (load_address < 0)
855                 return load_address;
856
857         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
858         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
859         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
860         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
861         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
862         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
863
864         spin_lock_irqsave(&sdma->channel_0_lock, flags);
865
866         memset(context, 0, sizeof(*context));
867         context->channel_state.pc = load_address;
868
869         /* Send by context the event mask,base address for peripheral
870          * and watermark level
871          */
872         context->gReg[0] = sdmac->event_mask[1];
873         context->gReg[1] = sdmac->event_mask[0];
874         context->gReg[2] = sdmac->per_addr;
875         context->gReg[6] = sdmac->shp_addr;
876         context->gReg[7] = sdmac->watermark_level;
877
878         bd0->mode.command = C0_SETDM;
879         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
880         bd0->mode.count = sizeof(*context) / 4;
881         bd0->buffer_addr = sdma->context_phys;
882         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
883         ret = sdma_run_channel0(sdma);
884
885         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
886
887         return ret;
888 }
889
890 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
891 {
892         return container_of(chan, struct sdma_channel, chan);
893 }
894
895 static int sdma_disable_channel(struct dma_chan *chan)
896 {
897         struct sdma_channel *sdmac = to_sdma_chan(chan);
898         struct sdma_engine *sdma = sdmac->sdma;
899         int channel = sdmac->channel;
900
901         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
902         sdmac->status = DMA_ERROR;
903
904         return 0;
905 }
906
907 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
908 {
909         struct sdma_engine *sdma = sdmac->sdma;
910
911         int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
912         int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
913
914         set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
915         set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
916
917         if (sdmac->event_id0 > 31)
918                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
919
920         if (sdmac->event_id1 > 31)
921                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
922
923         /*
924          * If LWML(src_maxburst) > HWML(dst_maxburst), we need
925          * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
926          * r0(event_mask[1]) and r1(event_mask[0]).
927          */
928         if (lwml > hwml) {
929                 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
930                                                 SDMA_WATERMARK_LEVEL_HWML);
931                 sdmac->watermark_level |= hwml;
932                 sdmac->watermark_level |= lwml << 16;
933                 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
934         }
935
936         if (sdmac->per_address2 >= sdma->spba_start_addr &&
937                         sdmac->per_address2 <= sdma->spba_end_addr)
938                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
939
940         if (sdmac->per_address >= sdma->spba_start_addr &&
941                         sdmac->per_address <= sdma->spba_end_addr)
942                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
943
944         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
945 }
946
947 static int sdma_config_channel(struct dma_chan *chan)
948 {
949         struct sdma_channel *sdmac = to_sdma_chan(chan);
950         int ret;
951
952         sdma_disable_channel(chan);
953
954         sdmac->event_mask[0] = 0;
955         sdmac->event_mask[1] = 0;
956         sdmac->shp_addr = 0;
957         sdmac->per_addr = 0;
958
959         if (sdmac->event_id0) {
960                 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
961                         return -EINVAL;
962                 sdma_event_enable(sdmac, sdmac->event_id0);
963         }
964
965         if (sdmac->event_id1) {
966                 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
967                         return -EINVAL;
968                 sdma_event_enable(sdmac, sdmac->event_id1);
969         }
970
971         switch (sdmac->peripheral_type) {
972         case IMX_DMATYPE_DSP:
973                 sdma_config_ownership(sdmac, false, true, true);
974                 break;
975         case IMX_DMATYPE_MEMORY:
976                 sdma_config_ownership(sdmac, false, true, false);
977                 break;
978         default:
979                 sdma_config_ownership(sdmac, true, true, false);
980                 break;
981         }
982
983         sdma_get_pc(sdmac, sdmac->peripheral_type);
984
985         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
986                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
987                 /* Handle multiple event channels differently */
988                 if (sdmac->event_id1) {
989                         if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
990                             sdmac->peripheral_type == IMX_DMATYPE_ASRC)
991                                 sdma_set_watermarklevel_for_p2p(sdmac);
992                 } else
993                         __set_bit(sdmac->event_id0, sdmac->event_mask);
994
995                 /* Address */
996                 sdmac->shp_addr = sdmac->per_address;
997                 sdmac->per_addr = sdmac->per_address2;
998         } else {
999                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1000         }
1001
1002         ret = sdma_load_context(sdmac);
1003
1004         return ret;
1005 }
1006
1007 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1008                 unsigned int priority)
1009 {
1010         struct sdma_engine *sdma = sdmac->sdma;
1011         int channel = sdmac->channel;
1012
1013         if (priority < MXC_SDMA_MIN_PRIORITY
1014             || priority > MXC_SDMA_MAX_PRIORITY) {
1015                 return -EINVAL;
1016         }
1017
1018         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1019
1020         return 0;
1021 }
1022
1023 static int sdma_request_channel(struct sdma_channel *sdmac)
1024 {
1025         struct sdma_engine *sdma = sdmac->sdma;
1026         int channel = sdmac->channel;
1027         int ret = -EBUSY;
1028
1029         sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
1030                                         GFP_KERNEL);
1031         if (!sdmac->bd) {
1032                 ret = -ENOMEM;
1033                 goto out;
1034         }
1035
1036         sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
1037         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1038
1039         sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
1040         return 0;
1041 out:
1042
1043         return ret;
1044 }
1045
1046 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
1047 {
1048         unsigned long flags;
1049         struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
1050         dma_cookie_t cookie;
1051
1052         spin_lock_irqsave(&sdmac->lock, flags);
1053
1054         cookie = dma_cookie_assign(tx);
1055
1056         spin_unlock_irqrestore(&sdmac->lock, flags);
1057
1058         return cookie;
1059 }
1060
1061 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1062 {
1063         struct sdma_channel *sdmac = to_sdma_chan(chan);
1064         struct imx_dma_data *data = chan->private;
1065         int prio, ret;
1066
1067         if (!data)
1068                 return -EINVAL;
1069
1070         switch (data->priority) {
1071         case DMA_PRIO_HIGH:
1072                 prio = 3;
1073                 break;
1074         case DMA_PRIO_MEDIUM:
1075                 prio = 2;
1076                 break;
1077         case DMA_PRIO_LOW:
1078         default:
1079                 prio = 1;
1080                 break;
1081         }
1082
1083         sdmac->peripheral_type = data->peripheral_type;
1084         sdmac->event_id0 = data->dma_request;
1085         sdmac->event_id1 = data->dma_request2;
1086
1087         ret = clk_enable(sdmac->sdma->clk_ipg);
1088         if (ret)
1089                 return ret;
1090         ret = clk_enable(sdmac->sdma->clk_ahb);
1091         if (ret)
1092                 goto disable_clk_ipg;
1093
1094         ret = sdma_request_channel(sdmac);
1095         if (ret)
1096                 goto disable_clk_ahb;
1097
1098         ret = sdma_set_channel_priority(sdmac, prio);
1099         if (ret)
1100                 goto disable_clk_ahb;
1101
1102         dma_async_tx_descriptor_init(&sdmac->desc, chan);
1103         sdmac->desc.tx_submit = sdma_tx_submit;
1104         /* txd.flags will be overwritten in prep funcs */
1105         sdmac->desc.flags = DMA_CTRL_ACK;
1106
1107         return 0;
1108
1109 disable_clk_ahb:
1110         clk_disable(sdmac->sdma->clk_ahb);
1111 disable_clk_ipg:
1112         clk_disable(sdmac->sdma->clk_ipg);
1113         return ret;
1114 }
1115
1116 static void sdma_free_chan_resources(struct dma_chan *chan)
1117 {
1118         struct sdma_channel *sdmac = to_sdma_chan(chan);
1119         struct sdma_engine *sdma = sdmac->sdma;
1120
1121         sdma_disable_channel(chan);
1122
1123         if (sdmac->event_id0)
1124                 sdma_event_disable(sdmac, sdmac->event_id0);
1125         if (sdmac->event_id1)
1126                 sdma_event_disable(sdmac, sdmac->event_id1);
1127
1128         sdmac->event_id0 = 0;
1129         sdmac->event_id1 = 0;
1130
1131         sdma_set_channel_priority(sdmac, 0);
1132
1133         dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1134
1135         clk_disable(sdma->clk_ipg);
1136         clk_disable(sdma->clk_ahb);
1137 }
1138
1139 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1140                 struct dma_chan *chan, struct scatterlist *sgl,
1141                 unsigned int sg_len, enum dma_transfer_direction direction,
1142                 unsigned long flags, void *context)
1143 {
1144         struct sdma_channel *sdmac = to_sdma_chan(chan);
1145         struct sdma_engine *sdma = sdmac->sdma;
1146         int ret, i, count;
1147         int channel = sdmac->channel;
1148         struct scatterlist *sg;
1149
1150         if (sdmac->status == DMA_IN_PROGRESS)
1151                 return NULL;
1152         sdmac->status = DMA_IN_PROGRESS;
1153
1154         sdmac->flags = 0;
1155
1156         sdmac->buf_tail = 0;
1157
1158         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1159                         sg_len, channel);
1160
1161         sdmac->direction = direction;
1162         ret = sdma_load_context(sdmac);
1163         if (ret)
1164                 goto err_out;
1165
1166         if (sg_len > NUM_BD) {
1167                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1168                                 channel, sg_len, NUM_BD);
1169                 ret = -EINVAL;
1170                 goto err_out;
1171         }
1172
1173         sdmac->chn_count = 0;
1174         for_each_sg(sgl, sg, sg_len, i) {
1175                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1176                 int param;
1177
1178                 bd->buffer_addr = sg->dma_address;
1179
1180                 count = sg_dma_len(sg);
1181
1182                 if (count > 0xffff) {
1183                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1184                                         channel, count, 0xffff);
1185                         ret = -EINVAL;
1186                         goto err_out;
1187                 }
1188
1189                 bd->mode.count = count;
1190                 sdmac->chn_count += count;
1191
1192                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1193                         ret =  -EINVAL;
1194                         goto err_out;
1195                 }
1196
1197                 switch (sdmac->word_size) {
1198                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1199                         bd->mode.command = 0;
1200                         if (count & 3 || sg->dma_address & 3)
1201                                 return NULL;
1202                         break;
1203                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1204                         bd->mode.command = 2;
1205                         if (count & 1 || sg->dma_address & 1)
1206                                 return NULL;
1207                         break;
1208                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1209                         bd->mode.command = 1;
1210                         break;
1211                 default:
1212                         return NULL;
1213                 }
1214
1215                 param = BD_DONE | BD_EXTD | BD_CONT;
1216
1217                 if (i + 1 == sg_len) {
1218                         param |= BD_INTR;
1219                         param |= BD_LAST;
1220                         param &= ~BD_CONT;
1221                 }
1222
1223                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1224                                 i, count, (u64)sg->dma_address,
1225                                 param & BD_WRAP ? "wrap" : "",
1226                                 param & BD_INTR ? " intr" : "");
1227
1228                 bd->mode.status = param;
1229         }
1230
1231         sdmac->num_bd = sg_len;
1232         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1233
1234         return &sdmac->desc;
1235 err_out:
1236         sdmac->status = DMA_ERROR;
1237         return NULL;
1238 }
1239
1240 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1241                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1242                 size_t period_len, enum dma_transfer_direction direction,
1243                 unsigned long flags)
1244 {
1245         struct sdma_channel *sdmac = to_sdma_chan(chan);
1246         struct sdma_engine *sdma = sdmac->sdma;
1247         int num_periods = buf_len / period_len;
1248         int channel = sdmac->channel;
1249         int ret, i = 0, buf = 0;
1250
1251         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1252
1253         if (sdmac->status == DMA_IN_PROGRESS)
1254                 return NULL;
1255
1256         sdmac->status = DMA_IN_PROGRESS;
1257
1258         sdmac->buf_tail = 0;
1259         sdmac->period_len = period_len;
1260
1261         sdmac->flags |= IMX_DMA_SG_LOOP;
1262         sdmac->direction = direction;
1263         ret = sdma_load_context(sdmac);
1264         if (ret)
1265                 goto err_out;
1266
1267         if (num_periods > NUM_BD) {
1268                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1269                                 channel, num_periods, NUM_BD);
1270                 goto err_out;
1271         }
1272
1273         if (period_len > 0xffff) {
1274                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1275                                 channel, period_len, 0xffff);
1276                 goto err_out;
1277         }
1278
1279         while (buf < buf_len) {
1280                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1281                 int param;
1282
1283                 bd->buffer_addr = dma_addr;
1284
1285                 bd->mode.count = period_len;
1286
1287                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1288                         goto err_out;
1289                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1290                         bd->mode.command = 0;
1291                 else
1292                         bd->mode.command = sdmac->word_size;
1293
1294                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1295                 if (i + 1 == num_periods)
1296                         param |= BD_WRAP;
1297
1298                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1299                                 i, period_len, (u64)dma_addr,
1300                                 param & BD_WRAP ? "wrap" : "",
1301                                 param & BD_INTR ? " intr" : "");
1302
1303                 bd->mode.status = param;
1304
1305                 dma_addr += period_len;
1306                 buf += period_len;
1307
1308                 i++;
1309         }
1310
1311         sdmac->num_bd = num_periods;
1312         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1313
1314         return &sdmac->desc;
1315 err_out:
1316         sdmac->status = DMA_ERROR;
1317         return NULL;
1318 }
1319
1320 static int sdma_config(struct dma_chan *chan,
1321                        struct dma_slave_config *dmaengine_cfg)
1322 {
1323         struct sdma_channel *sdmac = to_sdma_chan(chan);
1324
1325         if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1326                 sdmac->per_address = dmaengine_cfg->src_addr;
1327                 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1328                         dmaengine_cfg->src_addr_width;
1329                 sdmac->word_size = dmaengine_cfg->src_addr_width;
1330         } else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
1331                 sdmac->per_address2 = dmaengine_cfg->src_addr;
1332                 sdmac->per_address = dmaengine_cfg->dst_addr;
1333                 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1334                         SDMA_WATERMARK_LEVEL_LWML;
1335                 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1336                         SDMA_WATERMARK_LEVEL_HWML;
1337                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1338         } else {
1339                 sdmac->per_address = dmaengine_cfg->dst_addr;
1340                 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1341                         dmaengine_cfg->dst_addr_width;
1342                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1343         }
1344         sdmac->direction = dmaengine_cfg->direction;
1345         return sdma_config_channel(chan);
1346 }
1347
1348 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1349                                       dma_cookie_t cookie,
1350                                       struct dma_tx_state *txstate)
1351 {
1352         struct sdma_channel *sdmac = to_sdma_chan(chan);
1353         u32 residue;
1354
1355         if (sdmac->flags & IMX_DMA_SG_LOOP)
1356                 residue = (sdmac->num_bd - sdmac->buf_tail) * sdmac->period_len;
1357         else
1358                 residue = sdmac->chn_count - sdmac->chn_real_count;
1359
1360         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1361                          residue);
1362
1363         return sdmac->status;
1364 }
1365
1366 static void sdma_issue_pending(struct dma_chan *chan)
1367 {
1368         struct sdma_channel *sdmac = to_sdma_chan(chan);
1369         struct sdma_engine *sdma = sdmac->sdma;
1370
1371         if (sdmac->status == DMA_IN_PROGRESS)
1372                 sdma_enable_channel(sdma, sdmac->channel);
1373 }
1374
1375 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1376 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1377 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1378
1379 static void sdma_add_scripts(struct sdma_engine *sdma,
1380                 const struct sdma_script_start_addrs *addr)
1381 {
1382         s32 *addr_arr = (u32 *)addr;
1383         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1384         int i;
1385
1386         /* use the default firmware in ROM if missing external firmware */
1387         if (!sdma->script_number)
1388                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1389
1390         for (i = 0; i < sdma->script_number; i++)
1391                 if (addr_arr[i] > 0)
1392                         saddr_arr[i] = addr_arr[i];
1393 }
1394
1395 static void sdma_load_firmware(const struct firmware *fw, void *context)
1396 {
1397         struct sdma_engine *sdma = context;
1398         const struct sdma_firmware_header *header;
1399         const struct sdma_script_start_addrs *addr;
1400         unsigned short *ram_code;
1401
1402         if (!fw) {
1403                 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1404                 /* In this case we just use the ROM firmware. */
1405                 return;
1406         }
1407
1408         if (fw->size < sizeof(*header))
1409                 goto err_firmware;
1410
1411         header = (struct sdma_firmware_header *)fw->data;
1412
1413         if (header->magic != SDMA_FIRMWARE_MAGIC)
1414                 goto err_firmware;
1415         if (header->ram_code_start + header->ram_code_size > fw->size)
1416                 goto err_firmware;
1417         switch (header->version_major) {
1418         case 1:
1419                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1420                 break;
1421         case 2:
1422                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1423                 break;
1424         case 3:
1425                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1426                 break;
1427         default:
1428                 dev_err(sdma->dev, "unknown firmware version\n");
1429                 goto err_firmware;
1430         }
1431
1432         addr = (void *)header + header->script_addrs_start;
1433         ram_code = (void *)header + header->ram_code_start;
1434
1435         clk_enable(sdma->clk_ipg);
1436         clk_enable(sdma->clk_ahb);
1437         /* download the RAM image for SDMA */
1438         sdma_load_script(sdma, ram_code,
1439                         header->ram_code_size,
1440                         addr->ram_code_start_addr);
1441         clk_disable(sdma->clk_ipg);
1442         clk_disable(sdma->clk_ahb);
1443
1444         sdma_add_scripts(sdma, addr);
1445
1446         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1447                         header->version_major,
1448                         header->version_minor);
1449
1450 err_firmware:
1451         release_firmware(fw);
1452 }
1453
1454 #define EVENT_REMAP_CELLS 3
1455
1456 static int sdma_event_remap(struct sdma_engine *sdma)
1457 {
1458         struct device_node *np = sdma->dev->of_node;
1459         struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1460         struct property *event_remap;
1461         struct regmap *gpr;
1462         char propname[] = "fsl,sdma-event-remap";
1463         u32 reg, val, shift, num_map, i;
1464         int ret = 0;
1465
1466         if (IS_ERR(np) || IS_ERR(gpr_np))
1467                 goto out;
1468
1469         event_remap = of_find_property(np, propname, NULL);
1470         num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1471         if (!num_map) {
1472                 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1473                 goto out;
1474         } else if (num_map % EVENT_REMAP_CELLS) {
1475                 dev_err(sdma->dev, "the property %s must modulo %d\n",
1476                                 propname, EVENT_REMAP_CELLS);
1477                 ret = -EINVAL;
1478                 goto out;
1479         }
1480
1481         gpr = syscon_node_to_regmap(gpr_np);
1482         if (IS_ERR(gpr)) {
1483                 dev_err(sdma->dev, "failed to get gpr regmap\n");
1484                 ret = PTR_ERR(gpr);
1485                 goto out;
1486         }
1487
1488         for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1489                 ret = of_property_read_u32_index(np, propname, i, &reg);
1490                 if (ret) {
1491                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1492                                         propname, i);
1493                         goto out;
1494                 }
1495
1496                 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1497                 if (ret) {
1498                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1499                                         propname, i + 1);
1500                         goto out;
1501                 }
1502
1503                 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1504                 if (ret) {
1505                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1506                                         propname, i + 2);
1507                         goto out;
1508                 }
1509
1510                 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1511         }
1512
1513 out:
1514         if (!IS_ERR(gpr_np))
1515                 of_node_put(gpr_np);
1516
1517         return ret;
1518 }
1519
1520 static int sdma_get_firmware(struct sdma_engine *sdma,
1521                 const char *fw_name)
1522 {
1523         int ret;
1524
1525         ret = request_firmware_nowait(THIS_MODULE,
1526                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1527                         GFP_KERNEL, sdma, sdma_load_firmware);
1528
1529         return ret;
1530 }
1531
1532 static int sdma_init(struct sdma_engine *sdma)
1533 {
1534         int i, ret;
1535         dma_addr_t ccb_phys;
1536
1537         ret = clk_enable(sdma->clk_ipg);
1538         if (ret)
1539                 return ret;
1540         ret = clk_enable(sdma->clk_ahb);
1541         if (ret)
1542                 goto disable_clk_ipg;
1543
1544         /* Be sure SDMA has not started yet */
1545         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1546
1547         sdma->channel_control = dma_alloc_coherent(NULL,
1548                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1549                         sizeof(struct sdma_context_data),
1550                         &ccb_phys, GFP_KERNEL);
1551
1552         if (!sdma->channel_control) {
1553                 ret = -ENOMEM;
1554                 goto err_dma_alloc;
1555         }
1556
1557         sdma->context = (void *)sdma->channel_control +
1558                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1559         sdma->context_phys = ccb_phys +
1560                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1561
1562         /* Zero-out the CCB structures array just allocated */
1563         memset(sdma->channel_control, 0,
1564                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1565
1566         /* disable all channels */
1567         for (i = 0; i < sdma->drvdata->num_events; i++)
1568                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1569
1570         /* All channels have priority 0 */
1571         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1572                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1573
1574         ret = sdma_request_channel(&sdma->channel[0]);
1575         if (ret)
1576                 goto err_dma_alloc;
1577
1578         sdma_config_ownership(&sdma->channel[0], false, true, false);
1579
1580         /* Set Command Channel (Channel Zero) */
1581         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1582
1583         /* Set bits of CONFIG register but with static context switching */
1584         /* FIXME: Check whether to set ACR bit depending on clock ratios */
1585         writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1586
1587         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1588
1589         /* Initializes channel's priorities */
1590         sdma_set_channel_priority(&sdma->channel[0], 7);
1591
1592         clk_disable(sdma->clk_ipg);
1593         clk_disable(sdma->clk_ahb);
1594
1595         return 0;
1596
1597 err_dma_alloc:
1598         clk_disable(sdma->clk_ahb);
1599 disable_clk_ipg:
1600         clk_disable(sdma->clk_ipg);
1601         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1602         return ret;
1603 }
1604
1605 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1606 {
1607         struct sdma_channel *sdmac = to_sdma_chan(chan);
1608         struct imx_dma_data *data = fn_param;
1609
1610         if (!imx_dma_is_general_purpose(chan))
1611                 return false;
1612
1613         sdmac->data = *data;
1614         chan->private = &sdmac->data;
1615
1616         return true;
1617 }
1618
1619 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1620                                    struct of_dma *ofdma)
1621 {
1622         struct sdma_engine *sdma = ofdma->of_dma_data;
1623         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1624         struct imx_dma_data data;
1625
1626         if (dma_spec->args_count != 3)
1627                 return NULL;
1628
1629         data.dma_request = dma_spec->args[0];
1630         data.peripheral_type = dma_spec->args[1];
1631         data.priority = dma_spec->args[2];
1632         /*
1633          * init dma_request2 to zero, which is not used by the dts.
1634          * For P2P, dma_request2 is init from dma_request_channel(),
1635          * chan->private will point to the imx_dma_data, and in
1636          * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1637          * be set to sdmac->event_id1.
1638          */
1639         data.dma_request2 = 0;
1640
1641         return dma_request_channel(mask, sdma_filter_fn, &data);
1642 }
1643
1644 static int sdma_probe(struct platform_device *pdev)
1645 {
1646         const struct of_device_id *of_id =
1647                         of_match_device(sdma_dt_ids, &pdev->dev);
1648         struct device_node *np = pdev->dev.of_node;
1649         struct device_node *spba_bus;
1650         const char *fw_name;
1651         int ret;
1652         int irq;
1653         struct resource *iores;
1654         struct resource spba_res;
1655         struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1656         int i;
1657         struct sdma_engine *sdma;
1658         s32 *saddr_arr;
1659         const struct sdma_driver_data *drvdata = NULL;
1660
1661         if (of_id)
1662                 drvdata = of_id->data;
1663         else if (pdev->id_entry)
1664                 drvdata = (void *)pdev->id_entry->driver_data;
1665
1666         if (!drvdata) {
1667                 dev_err(&pdev->dev, "unable to find driver data\n");
1668                 return -EINVAL;
1669         }
1670
1671         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1672         if (ret)
1673                 return ret;
1674
1675         sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1676         if (!sdma)
1677                 return -ENOMEM;
1678
1679         spin_lock_init(&sdma->channel_0_lock);
1680
1681         sdma->dev = &pdev->dev;
1682         sdma->drvdata = drvdata;
1683
1684         irq = platform_get_irq(pdev, 0);
1685         if (irq < 0)
1686                 return irq;
1687
1688         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1689         sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1690         if (IS_ERR(sdma->regs))
1691                 return PTR_ERR(sdma->regs);
1692
1693         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1694         if (IS_ERR(sdma->clk_ipg))
1695                 return PTR_ERR(sdma->clk_ipg);
1696
1697         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1698         if (IS_ERR(sdma->clk_ahb))
1699                 return PTR_ERR(sdma->clk_ahb);
1700
1701         clk_prepare(sdma->clk_ipg);
1702         clk_prepare(sdma->clk_ahb);
1703
1704         ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
1705                                sdma);
1706         if (ret)
1707                 return ret;
1708
1709         sdma->irq = irq;
1710
1711         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1712         if (!sdma->script_addrs)
1713                 return -ENOMEM;
1714
1715         /* initially no scripts available */
1716         saddr_arr = (s32 *)sdma->script_addrs;
1717         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1718                 saddr_arr[i] = -EINVAL;
1719
1720         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1721         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1722
1723         INIT_LIST_HEAD(&sdma->dma_device.channels);
1724         /* Initialize channel parameters */
1725         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1726                 struct sdma_channel *sdmac = &sdma->channel[i];
1727
1728                 sdmac->sdma = sdma;
1729                 spin_lock_init(&sdmac->lock);
1730
1731                 sdmac->chan.device = &sdma->dma_device;
1732                 dma_cookie_init(&sdmac->chan);
1733                 sdmac->channel = i;
1734
1735                 tasklet_init(&sdmac->tasklet, sdma_tasklet,
1736                              (unsigned long) sdmac);
1737                 /*
1738                  * Add the channel to the DMAC list. Do not add channel 0 though
1739                  * because we need it internally in the SDMA driver. This also means
1740                  * that channel 0 in dmaengine counting matches sdma channel 1.
1741                  */
1742                 if (i)
1743                         list_add_tail(&sdmac->chan.device_node,
1744                                         &sdma->dma_device.channels);
1745         }
1746
1747         ret = sdma_init(sdma);
1748         if (ret)
1749                 goto err_init;
1750
1751         ret = sdma_event_remap(sdma);
1752         if (ret)
1753                 goto err_init;
1754
1755         if (sdma->drvdata->script_addrs)
1756                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1757         if (pdata && pdata->script_addrs)
1758                 sdma_add_scripts(sdma, pdata->script_addrs);
1759
1760         if (pdata) {
1761                 ret = sdma_get_firmware(sdma, pdata->fw_name);
1762                 if (ret)
1763                         dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1764         } else {
1765                 /*
1766                  * Because that device tree does not encode ROM script address,
1767                  * the RAM script in firmware is mandatory for device tree
1768                  * probe, otherwise it fails.
1769                  */
1770                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1771                                               &fw_name);
1772                 if (ret)
1773                         dev_warn(&pdev->dev, "failed to get firmware name\n");
1774                 else {
1775                         ret = sdma_get_firmware(sdma, fw_name);
1776                         if (ret)
1777                                 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1778                 }
1779         }
1780
1781         sdma->dma_device.dev = &pdev->dev;
1782
1783         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1784         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1785         sdma->dma_device.device_tx_status = sdma_tx_status;
1786         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1787         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1788         sdma->dma_device.device_config = sdma_config;
1789         sdma->dma_device.device_terminate_all = sdma_disable_channel;
1790         sdma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1791         sdma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1792         sdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1793         sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1794         sdma->dma_device.device_issue_pending = sdma_issue_pending;
1795         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1796         dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1797
1798         platform_set_drvdata(pdev, sdma);
1799
1800         ret = dma_async_device_register(&sdma->dma_device);
1801         if (ret) {
1802                 dev_err(&pdev->dev, "unable to register\n");
1803                 goto err_init;
1804         }
1805
1806         if (np) {
1807                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
1808                 if (ret) {
1809                         dev_err(&pdev->dev, "failed to register controller\n");
1810                         goto err_register;
1811                 }
1812
1813                 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
1814                 ret = of_address_to_resource(spba_bus, 0, &spba_res);
1815                 if (!ret) {
1816                         sdma->spba_start_addr = spba_res.start;
1817                         sdma->spba_end_addr = spba_res.end;
1818                 }
1819                 of_node_put(spba_bus);
1820         }
1821
1822         return 0;
1823
1824 err_register:
1825         dma_async_device_unregister(&sdma->dma_device);
1826 err_init:
1827         kfree(sdma->script_addrs);
1828         return ret;
1829 }
1830
1831 static int sdma_remove(struct platform_device *pdev)
1832 {
1833         struct sdma_engine *sdma = platform_get_drvdata(pdev);
1834         int i;
1835
1836         devm_free_irq(&pdev->dev, sdma->irq, sdma);
1837         dma_async_device_unregister(&sdma->dma_device);
1838         kfree(sdma->script_addrs);
1839         /* Kill the tasklet */
1840         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1841                 struct sdma_channel *sdmac = &sdma->channel[i];
1842
1843                 tasklet_kill(&sdmac->tasklet);
1844         }
1845
1846         platform_set_drvdata(pdev, NULL);
1847         return 0;
1848 }
1849
1850 static struct platform_driver sdma_driver = {
1851         .driver         = {
1852                 .name   = "imx-sdma",
1853                 .of_match_table = sdma_dt_ids,
1854         },
1855         .id_table       = sdma_devtypes,
1856         .remove         = sdma_remove,
1857         .probe          = sdma_probe,
1858 };
1859
1860 module_platform_driver(sdma_driver);
1861
1862 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1863 MODULE_DESCRIPTION("i.MX SDMA driver");
1864 MODULE_LICENSE("GPL");