Merge tag 'pinctrl-v3.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[cascardo/linux.git] / drivers / dma / nbpfaxi.c
1 /*
2  * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
3  * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  */
9
10 #include <linux/bitmap.h>
11 #include <linux/bitops.h>
12 #include <linux/clk.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/log2.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_dma.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25
26 #include <dt-bindings/dma/nbpfaxi.h>
27
28 #include "dmaengine.h"
29
30 #define NBPF_REG_CHAN_OFFSET    0
31 #define NBPF_REG_CHAN_SIZE      0x40
32
33 /* Channel Current Transaction Byte register */
34 #define NBPF_CHAN_CUR_TR_BYTE   0x20
35
36 /* Channel Status register */
37 #define NBPF_CHAN_STAT  0x24
38 #define NBPF_CHAN_STAT_EN       1
39 #define NBPF_CHAN_STAT_TACT     4
40 #define NBPF_CHAN_STAT_ERR      0x10
41 #define NBPF_CHAN_STAT_END      0x20
42 #define NBPF_CHAN_STAT_TC       0x40
43 #define NBPF_CHAN_STAT_DER      0x400
44
45 /* Channel Control register */
46 #define NBPF_CHAN_CTRL  0x28
47 #define NBPF_CHAN_CTRL_SETEN    1
48 #define NBPF_CHAN_CTRL_CLREN    2
49 #define NBPF_CHAN_CTRL_STG      4
50 #define NBPF_CHAN_CTRL_SWRST    8
51 #define NBPF_CHAN_CTRL_CLRRQ    0x10
52 #define NBPF_CHAN_CTRL_CLREND   0x20
53 #define NBPF_CHAN_CTRL_CLRTC    0x40
54 #define NBPF_CHAN_CTRL_SETSUS   0x100
55 #define NBPF_CHAN_CTRL_CLRSUS   0x200
56
57 /* Channel Configuration register */
58 #define NBPF_CHAN_CFG   0x2c
59 #define NBPF_CHAN_CFG_SEL       7               /* terminal SELect: 0..7 */
60 #define NBPF_CHAN_CFG_REQD      8               /* REQuest Direction: DMAREQ is 0: input, 1: output */
61 #define NBPF_CHAN_CFG_LOEN      0x10            /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
62 #define NBPF_CHAN_CFG_HIEN      0x20            /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
63 #define NBPF_CHAN_CFG_LVL       0x40            /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
64 #define NBPF_CHAN_CFG_AM        0x700           /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
65 #define NBPF_CHAN_CFG_SDS       0xf000          /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
66 #define NBPF_CHAN_CFG_DDS       0xf0000         /* Destination Data Size: as above */
67 #define NBPF_CHAN_CFG_SAD       0x100000        /* Source ADdress counting: 0: increment, 1: fixed */
68 #define NBPF_CHAN_CFG_DAD       0x200000        /* Destination ADdress counting: 0: increment, 1: fixed */
69 #define NBPF_CHAN_CFG_TM        0x400000        /* Transfer Mode: 0: single, 1: block TM */
70 #define NBPF_CHAN_CFG_DEM       0x1000000       /* DMAEND interrupt Mask */
71 #define NBPF_CHAN_CFG_TCM       0x2000000       /* DMATCO interrupt Mask */
72 #define NBPF_CHAN_CFG_SBE       0x8000000       /* Sweep Buffer Enable */
73 #define NBPF_CHAN_CFG_RSEL      0x10000000      /* RM: Register Set sELect */
74 #define NBPF_CHAN_CFG_RSW       0x20000000      /* RM: Register Select sWitch */
75 #define NBPF_CHAN_CFG_REN       0x40000000      /* RM: Register Set Enable */
76 #define NBPF_CHAN_CFG_DMS       0x80000000      /* 0: register mode (RM), 1: link mode (LM) */
77
78 #define NBPF_CHAN_NXLA  0x38
79 #define NBPF_CHAN_CRLA  0x3c
80
81 /* Link Header field */
82 #define NBPF_HEADER_LV  1
83 #define NBPF_HEADER_LE  2
84 #define NBPF_HEADER_WBD 4
85 #define NBPF_HEADER_DIM 8
86
87 #define NBPF_CTRL       0x300
88 #define NBPF_CTRL_PR    1               /* 0: fixed priority, 1: round robin */
89 #define NBPF_CTRL_LVINT 2               /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
90
91 #define NBPF_DSTAT_ER   0x314
92 #define NBPF_DSTAT_END  0x318
93
94 #define NBPF_DMA_BUSWIDTHS \
95         (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
96          BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
97          BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
98          BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
99          BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
100
101 struct nbpf_config {
102         int num_channels;
103         int buffer_size;
104 };
105
106 /*
107  * We've got 3 types of objects, used to describe DMA transfers:
108  * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
109  *      in it, used to communicate with the user
110  * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
111  *      queuing, these must be DMAable, using either the streaming DMA API or
112  *      allocated from coherent memory - one per SG segment
113  * 3. one per SG segment descriptors, used to manage HW link descriptors from
114  *      (2). They do not have to be DMAable. They can either be (a) allocated
115  *      together with link descriptors as mixed (DMA / CPU) objects, or (b)
116  *      separately. Even if allocated separately it would be best to link them
117  *      to link descriptors once during channel resource allocation and always
118  *      use them as a single object.
119  * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
120  * treated as a single SG segment descriptor.
121  */
122
123 struct nbpf_link_reg {
124         u32     header;
125         u32     src_addr;
126         u32     dst_addr;
127         u32     transaction_size;
128         u32     config;
129         u32     interval;
130         u32     extension;
131         u32     next;
132 } __packed;
133
134 struct nbpf_device;
135 struct nbpf_channel;
136 struct nbpf_desc;
137
138 struct nbpf_link_desc {
139         struct nbpf_link_reg *hwdesc;
140         dma_addr_t hwdesc_dma_addr;
141         struct nbpf_desc *desc;
142         struct list_head node;
143 };
144
145 /**
146  * struct nbpf_desc - DMA transfer descriptor
147  * @async_tx:   dmaengine object
148  * @user_wait:  waiting for a user ack
149  * @length:     total transfer length
150  * @sg:         list of hardware descriptors, represented by struct nbpf_link_desc
151  * @node:       member in channel descriptor lists
152  */
153 struct nbpf_desc {
154         struct dma_async_tx_descriptor async_tx;
155         bool user_wait;
156         size_t length;
157         struct nbpf_channel *chan;
158         struct list_head sg;
159         struct list_head node;
160 };
161
162 /* Take a wild guess: allocate 4 segments per descriptor */
163 #define NBPF_SEGMENTS_PER_DESC 4
164 #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) /   \
165         (sizeof(struct nbpf_desc) +                                     \
166          NBPF_SEGMENTS_PER_DESC *                                       \
167          (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
168 #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
169
170 struct nbpf_desc_page {
171         struct list_head node;
172         struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
173         struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
174         struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
175 };
176
177 /**
178  * struct nbpf_channel - one DMAC channel
179  * @dma_chan:   standard dmaengine channel object
180  * @base:       register address base
181  * @nbpf:       DMAC
182  * @name:       IRQ name
183  * @irq:        IRQ number
184  * @slave_addr: address for slave DMA
185  * @slave_width:slave data size in bytes
186  * @slave_burst:maximum slave burst size in bytes
187  * @terminal:   DMA terminal, assigned to this channel
188  * @dmarq_cfg:  DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
189  * @flags:      configuration flags from DT
190  * @lock:       protect descriptor lists
191  * @free_links: list of free link descriptors
192  * @free:       list of free descriptors
193  * @queued:     list of queued descriptors
194  * @active:     list of descriptors, scheduled for processing
195  * @done:       list of completed descriptors, waiting post-processing
196  * @desc_page:  list of additionally allocated descriptor pages - if any
197  */
198 struct nbpf_channel {
199         struct dma_chan dma_chan;
200         struct tasklet_struct tasklet;
201         void __iomem *base;
202         struct nbpf_device *nbpf;
203         char name[16];
204         int irq;
205         dma_addr_t slave_src_addr;
206         size_t slave_src_width;
207         size_t slave_src_burst;
208         dma_addr_t slave_dst_addr;
209         size_t slave_dst_width;
210         size_t slave_dst_burst;
211         unsigned int terminal;
212         u32 dmarq_cfg;
213         unsigned long flags;
214         spinlock_t lock;
215         struct list_head free_links;
216         struct list_head free;
217         struct list_head queued;
218         struct list_head active;
219         struct list_head done;
220         struct list_head desc_page;
221         struct nbpf_desc *running;
222         bool paused;
223 };
224
225 struct nbpf_device {
226         struct dma_device dma_dev;
227         void __iomem *base;
228         struct clk *clk;
229         const struct nbpf_config *config;
230         struct nbpf_channel chan[];
231 };
232
233 enum nbpf_model {
234         NBPF1B4,
235         NBPF1B8,
236         NBPF1B16,
237         NBPF4B4,
238         NBPF4B8,
239         NBPF4B16,
240         NBPF8B4,
241         NBPF8B8,
242         NBPF8B16,
243 };
244
245 static struct nbpf_config nbpf_cfg[] = {
246         [NBPF1B4] = {
247                 .num_channels = 1,
248                 .buffer_size = 4,
249         },
250         [NBPF1B8] = {
251                 .num_channels = 1,
252                 .buffer_size = 8,
253         },
254         [NBPF1B16] = {
255                 .num_channels = 1,
256                 .buffer_size = 16,
257         },
258         [NBPF4B4] = {
259                 .num_channels = 4,
260                 .buffer_size = 4,
261         },
262         [NBPF4B8] = {
263                 .num_channels = 4,
264                 .buffer_size = 8,
265         },
266         [NBPF4B16] = {
267                 .num_channels = 4,
268                 .buffer_size = 16,
269         },
270         [NBPF8B4] = {
271                 .num_channels = 8,
272                 .buffer_size = 4,
273         },
274         [NBPF8B8] = {
275                 .num_channels = 8,
276                 .buffer_size = 8,
277         },
278         [NBPF8B16] = {
279                 .num_channels = 8,
280                 .buffer_size = 16,
281         },
282 };
283
284 #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
285
286 /*
287  * dmaengine drivers seem to have a lot in common and instead of sharing more
288  * code, they reimplement those common algorithms independently. In this driver
289  * we try to separate the hardware-specific part from the (largely) generic
290  * part. This improves code readability and makes it possible in the future to
291  * reuse the generic code in form of a helper library. That generic code should
292  * be suitable for various DMA controllers, using transfer descriptors in RAM
293  * and pushing one SG list at a time to the DMA controller.
294  */
295
296 /*              Hardware-specific part          */
297
298 static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
299                                  unsigned int offset)
300 {
301         u32 data = ioread32(chan->base + offset);
302         dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
303                 __func__, chan->base, offset, data);
304         return data;
305 }
306
307 static inline void nbpf_chan_write(struct nbpf_channel *chan,
308                                    unsigned int offset, u32 data)
309 {
310         iowrite32(data, chan->base + offset);
311         dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
312                 __func__, chan->base, offset, data);
313 }
314
315 static inline u32 nbpf_read(struct nbpf_device *nbpf,
316                             unsigned int offset)
317 {
318         u32 data = ioread32(nbpf->base + offset);
319         dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
320                 __func__, nbpf->base, offset, data);
321         return data;
322 }
323
324 static inline void nbpf_write(struct nbpf_device *nbpf,
325                               unsigned int offset, u32 data)
326 {
327         iowrite32(data, nbpf->base + offset);
328         dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
329                 __func__, nbpf->base, offset, data);
330 }
331
332 static void nbpf_chan_halt(struct nbpf_channel *chan)
333 {
334         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
335 }
336
337 static bool nbpf_status_get(struct nbpf_channel *chan)
338 {
339         u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
340
341         return status & BIT(chan - chan->nbpf->chan);
342 }
343
344 static void nbpf_status_ack(struct nbpf_channel *chan)
345 {
346         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
347 }
348
349 static u32 nbpf_error_get(struct nbpf_device *nbpf)
350 {
351         return nbpf_read(nbpf, NBPF_DSTAT_ER);
352 }
353
354 static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
355 {
356         return nbpf->chan + __ffs(error);
357 }
358
359 static void nbpf_error_clear(struct nbpf_channel *chan)
360 {
361         u32 status;
362         int i;
363
364         /* Stop the channel, make sure DMA has been aborted */
365         nbpf_chan_halt(chan);
366
367         for (i = 1000; i; i--) {
368                 status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
369                 if (!(status & NBPF_CHAN_STAT_TACT))
370                         break;
371                 cpu_relax();
372         }
373
374         if (!i)
375                 dev_err(chan->dma_chan.device->dev,
376                         "%s(): abort timeout, channel status 0x%x\n", __func__, status);
377
378         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
379 }
380
381 static int nbpf_start(struct nbpf_desc *desc)
382 {
383         struct nbpf_channel *chan = desc->chan;
384         struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
385
386         nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
387         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
388         chan->paused = false;
389
390         /* Software trigger MEMCPY - only MEMCPY uses the block mode */
391         if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
392                 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
393
394         dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
395                 nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
396
397         return 0;
398 }
399
400 static void nbpf_chan_prepare(struct nbpf_channel *chan)
401 {
402         chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
403                 (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
404                 (chan->flags & NBPF_SLAVE_RQ_LEVEL ?
405                  NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
406                 chan->terminal;
407 }
408
409 static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
410 {
411         /* Don't output DMAACK */
412         chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
413         chan->terminal = 0;
414         chan->flags = 0;
415 }
416
417 static void nbpf_chan_configure(struct nbpf_channel *chan)
418 {
419         /*
420          * We assume, that only the link mode and DMA request line configuration
421          * have to be set in the configuration register manually. Dynamic
422          * per-transfer configuration will be loaded from transfer descriptors.
423          */
424         nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
425 }
426
427 static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size)
428 {
429         /* Maximum supported bursts depend on the buffer size */
430         return min_t(int, __ffs(size), ilog2(nbpf->config->buffer_size * 8));
431 }
432
433 static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
434                              enum dma_slave_buswidth width, u32 burst)
435 {
436         size_t size;
437
438         if (!burst)
439                 burst = 1;
440
441         switch (width) {
442         case DMA_SLAVE_BUSWIDTH_8_BYTES:
443                 size = 8 * burst;
444                 break;
445
446         case DMA_SLAVE_BUSWIDTH_4_BYTES:
447                 size = 4 * burst;
448                 break;
449
450         case DMA_SLAVE_BUSWIDTH_2_BYTES:
451                 size = 2 * burst;
452                 break;
453
454         default:
455                 pr_warn("%s(): invalid bus width %u\n", __func__, width);
456         case DMA_SLAVE_BUSWIDTH_1_BYTE:
457                 size = burst;
458         }
459
460         return nbpf_xfer_ds(nbpf, size);
461 }
462
463 /*
464  * We need a way to recognise slaves, whose data is sent "raw" over the bus,
465  * i.e. it isn't known in advance how many bytes will be received. Therefore
466  * the slave driver has to provide a "large enough" buffer and either read the
467  * buffer, when it is full, or detect, that some data has arrived, then wait for
468  * a timeout, if no more data arrives - receive what's already there. We want to
469  * handle such slaves in a special way to allow an optimised mode for other
470  * users, for whom the amount of data is known in advance. So far there's no way
471  * to recognise such slaves. We use a data-width check to distinguish between
472  * the SD host and the PL011 UART.
473  */
474
475 static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
476                          enum dma_transfer_direction direction,
477                          dma_addr_t src, dma_addr_t dst, size_t size, bool last)
478 {
479         struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
480         struct nbpf_desc *desc = ldesc->desc;
481         struct nbpf_channel *chan = desc->chan;
482         struct device *dev = chan->dma_chan.device->dev;
483         size_t mem_xfer, slave_xfer;
484         bool can_burst;
485
486         hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
487                 (last ? NBPF_HEADER_LE : 0);
488
489         hwdesc->src_addr = src;
490         hwdesc->dst_addr = dst;
491         hwdesc->transaction_size = size;
492
493         /*
494          * set config: SAD, DAD, DDS, SDS, etc.
495          * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
496          * but it is important to have transaction size a multiple of both
497          * receiver and transmitter transfer sizes. It is also possible to use
498          * different RAM and device transfer sizes, and it does work well with
499          * some devices, e.g. with V08R07S01E SD host controllers, which can use
500          * 128 byte transfers. But this doesn't work with other devices,
501          * especially when the transaction size is unknown. This is the case,
502          * e.g. with serial drivers like amba-pl011.c. For reception it sets up
503          * the transaction size of 4K and if fewer bytes are received, it
504          * pauses DMA and reads out data received via DMA as well as those left
505          * in the Rx FIFO. For this to work with the RAM side using burst
506          * transfers we enable the SBE bit and terminate the transfer in our
507          * DMA_PAUSE handler.
508          */
509         mem_xfer = nbpf_xfer_ds(chan->nbpf, size);
510
511         switch (direction) {
512         case DMA_DEV_TO_MEM:
513                 can_burst = chan->slave_src_width >= 3;
514                 slave_xfer = min(mem_xfer, can_burst ?
515                                  chan->slave_src_burst : chan->slave_src_width);
516                 /*
517                  * Is the slave narrower than 64 bits, i.e. isn't using the full
518                  * bus width and cannot use bursts?
519                  */
520                 if (mem_xfer > chan->slave_src_burst && !can_burst)
521                         mem_xfer = chan->slave_src_burst;
522                 /* Device-to-RAM DMA is unreliable without REQD set */
523                 hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
524                         (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
525                         NBPF_CHAN_CFG_SBE;
526                 break;
527
528         case DMA_MEM_TO_DEV:
529                 slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
530                                  chan->slave_dst_burst : chan->slave_dst_width);
531                 hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
532                         (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
533                 break;
534
535         case DMA_MEM_TO_MEM:
536                 hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
537                         (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
538                         (NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
539                 break;
540
541         default:
542                 return -EINVAL;
543         }
544
545         hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
546                 NBPF_CHAN_CFG_DMS;
547
548         dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
549                 __func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
550                 hwdesc->config, size, &src, &dst);
551
552         dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
553                                    DMA_TO_DEVICE);
554
555         return 0;
556 }
557
558 static size_t nbpf_bytes_left(struct nbpf_channel *chan)
559 {
560         return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
561 }
562
563 static void nbpf_configure(struct nbpf_device *nbpf)
564 {
565         nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
566 }
567
568 static void nbpf_pause(struct nbpf_channel *chan)
569 {
570         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
571         /* See comment in nbpf_prep_one() */
572         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
573 }
574
575 /*              Generic part                    */
576
577 /* DMA ENGINE functions */
578 static void nbpf_issue_pending(struct dma_chan *dchan)
579 {
580         struct nbpf_channel *chan = nbpf_to_chan(dchan);
581         unsigned long flags;
582
583         dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
584
585         spin_lock_irqsave(&chan->lock, flags);
586         if (list_empty(&chan->queued))
587                 goto unlock;
588
589         list_splice_tail_init(&chan->queued, &chan->active);
590
591         if (!chan->running) {
592                 struct nbpf_desc *desc = list_first_entry(&chan->active,
593                                                 struct nbpf_desc, node);
594                 if (!nbpf_start(desc))
595                         chan->running = desc;
596         }
597
598 unlock:
599         spin_unlock_irqrestore(&chan->lock, flags);
600 }
601
602 static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
603                 dma_cookie_t cookie, struct dma_tx_state *state)
604 {
605         struct nbpf_channel *chan = nbpf_to_chan(dchan);
606         enum dma_status status = dma_cookie_status(dchan, cookie, state);
607
608         if (state) {
609                 dma_cookie_t running;
610                 unsigned long flags;
611
612                 spin_lock_irqsave(&chan->lock, flags);
613                 running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
614
615                 if (cookie == running) {
616                         state->residue = nbpf_bytes_left(chan);
617                         dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
618                                 state->residue);
619                 } else if (status == DMA_IN_PROGRESS) {
620                         struct nbpf_desc *desc;
621                         bool found = false;
622
623                         list_for_each_entry(desc, &chan->active, node)
624                                 if (desc->async_tx.cookie == cookie) {
625                                         found = true;
626                                         break;
627                                 }
628
629                         if (!found)
630                                 list_for_each_entry(desc, &chan->queued, node)
631                                         if (desc->async_tx.cookie == cookie) {
632                                                 found = true;
633                                                 break;
634
635                                         }
636
637                         state->residue = found ? desc->length : 0;
638                 }
639
640                 spin_unlock_irqrestore(&chan->lock, flags);
641         }
642
643         if (chan->paused)
644                 status = DMA_PAUSED;
645
646         return status;
647 }
648
649 static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
650 {
651         struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
652         struct nbpf_channel *chan = desc->chan;
653         unsigned long flags;
654         dma_cookie_t cookie;
655
656         spin_lock_irqsave(&chan->lock, flags);
657         cookie = dma_cookie_assign(tx);
658         list_add_tail(&desc->node, &chan->queued);
659         spin_unlock_irqrestore(&chan->lock, flags);
660
661         dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
662
663         return cookie;
664 }
665
666 static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
667 {
668         struct dma_chan *dchan = &chan->dma_chan;
669         struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
670         struct nbpf_link_desc *ldesc;
671         struct nbpf_link_reg *hwdesc;
672         struct nbpf_desc *desc;
673         LIST_HEAD(head);
674         LIST_HEAD(lhead);
675         int i;
676         struct device *dev = dchan->device->dev;
677
678         if (!dpage)
679                 return -ENOMEM;
680
681         dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
682                 __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
683
684         for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
685              i < ARRAY_SIZE(dpage->ldesc);
686              i++, ldesc++, hwdesc++) {
687                 ldesc->hwdesc = hwdesc;
688                 list_add_tail(&ldesc->node, &lhead);
689                 ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
690                                         hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
691
692                 dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
693                         hwdesc, &ldesc->hwdesc_dma_addr);
694         }
695
696         for (i = 0, desc = dpage->desc;
697              i < ARRAY_SIZE(dpage->desc);
698              i++, desc++) {
699                 dma_async_tx_descriptor_init(&desc->async_tx, dchan);
700                 desc->async_tx.tx_submit = nbpf_tx_submit;
701                 desc->chan = chan;
702                 INIT_LIST_HEAD(&desc->sg);
703                 list_add_tail(&desc->node, &head);
704         }
705
706         /*
707          * This function cannot be called from interrupt context, so, no need to
708          * save flags
709          */
710         spin_lock_irq(&chan->lock);
711         list_splice_tail(&lhead, &chan->free_links);
712         list_splice_tail(&head, &chan->free);
713         list_add(&dpage->node, &chan->desc_page);
714         spin_unlock_irq(&chan->lock);
715
716         return ARRAY_SIZE(dpage->desc);
717 }
718
719 static void nbpf_desc_put(struct nbpf_desc *desc)
720 {
721         struct nbpf_channel *chan = desc->chan;
722         struct nbpf_link_desc *ldesc, *tmp;
723         unsigned long flags;
724
725         spin_lock_irqsave(&chan->lock, flags);
726         list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
727                 list_move(&ldesc->node, &chan->free_links);
728
729         list_add(&desc->node, &chan->free);
730         spin_unlock_irqrestore(&chan->lock, flags);
731 }
732
733 static void nbpf_scan_acked(struct nbpf_channel *chan)
734 {
735         struct nbpf_desc *desc, *tmp;
736         unsigned long flags;
737         LIST_HEAD(head);
738
739         spin_lock_irqsave(&chan->lock, flags);
740         list_for_each_entry_safe(desc, tmp, &chan->done, node)
741                 if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
742                         list_move(&desc->node, &head);
743                         desc->user_wait = false;
744                 }
745         spin_unlock_irqrestore(&chan->lock, flags);
746
747         list_for_each_entry_safe(desc, tmp, &head, node) {
748                 list_del(&desc->node);
749                 nbpf_desc_put(desc);
750         }
751 }
752
753 /*
754  * We have to allocate descriptors with the channel lock dropped. This means,
755  * before we re-acquire the lock buffers can be taken already, so we have to
756  * re-check after re-acquiring the lock and possibly retry, if buffers are gone
757  * again.
758  */
759 static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
760 {
761         struct nbpf_desc *desc = NULL;
762         struct nbpf_link_desc *ldesc, *prev = NULL;
763
764         nbpf_scan_acked(chan);
765
766         spin_lock_irq(&chan->lock);
767
768         do {
769                 int i = 0, ret;
770
771                 if (list_empty(&chan->free)) {
772                         /* No more free descriptors */
773                         spin_unlock_irq(&chan->lock);
774                         ret = nbpf_desc_page_alloc(chan);
775                         if (ret < 0)
776                                 return NULL;
777                         spin_lock_irq(&chan->lock);
778                         continue;
779                 }
780                 desc = list_first_entry(&chan->free, struct nbpf_desc, node);
781                 list_del(&desc->node);
782
783                 do {
784                         if (list_empty(&chan->free_links)) {
785                                 /* No more free link descriptors */
786                                 spin_unlock_irq(&chan->lock);
787                                 ret = nbpf_desc_page_alloc(chan);
788                                 if (ret < 0) {
789                                         nbpf_desc_put(desc);
790                                         return NULL;
791                                 }
792                                 spin_lock_irq(&chan->lock);
793                                 continue;
794                         }
795
796                         ldesc = list_first_entry(&chan->free_links,
797                                                  struct nbpf_link_desc, node);
798                         ldesc->desc = desc;
799                         if (prev)
800                                 prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
801
802                         prev = ldesc;
803                         list_move_tail(&ldesc->node, &desc->sg);
804
805                         i++;
806                 } while (i < len);
807         } while (!desc);
808
809         prev->hwdesc->next = 0;
810
811         spin_unlock_irq(&chan->lock);
812
813         return desc;
814 }
815
816 static void nbpf_chan_idle(struct nbpf_channel *chan)
817 {
818         struct nbpf_desc *desc, *tmp;
819         unsigned long flags;
820         LIST_HEAD(head);
821
822         spin_lock_irqsave(&chan->lock, flags);
823
824         list_splice_init(&chan->done, &head);
825         list_splice_init(&chan->active, &head);
826         list_splice_init(&chan->queued, &head);
827
828         chan->running = NULL;
829
830         spin_unlock_irqrestore(&chan->lock, flags);
831
832         list_for_each_entry_safe(desc, tmp, &head, node) {
833                 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
834                         __func__, desc, desc->async_tx.cookie);
835                 list_del(&desc->node);
836                 nbpf_desc_put(desc);
837         }
838 }
839
840 static int nbpf_control(struct dma_chan *dchan, enum dma_ctrl_cmd cmd,
841                         unsigned long arg)
842 {
843         struct nbpf_channel *chan = nbpf_to_chan(dchan);
844         struct dma_slave_config *config;
845
846         dev_dbg(dchan->device->dev, "Entry %s(%d)\n", __func__, cmd);
847
848         switch (cmd) {
849         case DMA_TERMINATE_ALL:
850                 dev_dbg(dchan->device->dev, "Terminating\n");
851                 nbpf_chan_halt(chan);
852                 nbpf_chan_idle(chan);
853                 break;
854
855         case DMA_SLAVE_CONFIG:
856                 if (!arg)
857                         return -EINVAL;
858                 config = (struct dma_slave_config *)arg;
859
860                 /*
861                  * We could check config->slave_id to match chan->terminal here,
862                  * but with DT they would be coming from the same source, so
863                  * such a check would be superflous
864                  */
865
866                 chan->slave_dst_addr = config->dst_addr;
867                 chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
868                                                        config->dst_addr_width, 1);
869                 chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
870                                                        config->dst_addr_width,
871                                                        config->dst_maxburst);
872                 chan->slave_src_addr = config->src_addr;
873                 chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
874                                                        config->src_addr_width, 1);
875                 chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
876                                                        config->src_addr_width,
877                                                        config->src_maxburst);
878                 break;
879
880         case DMA_PAUSE:
881                 chan->paused = true;
882                 nbpf_pause(chan);
883                 break;
884
885         default:
886                 return -ENXIO;
887         }
888
889         return 0;
890 }
891
892 static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
893                 struct scatterlist *src_sg, struct scatterlist *dst_sg,
894                 size_t len, enum dma_transfer_direction direction,
895                 unsigned long flags)
896 {
897         struct nbpf_link_desc *ldesc;
898         struct scatterlist *mem_sg;
899         struct nbpf_desc *desc;
900         bool inc_src, inc_dst;
901         size_t data_len = 0;
902         int i = 0;
903
904         switch (direction) {
905         case DMA_DEV_TO_MEM:
906                 mem_sg = dst_sg;
907                 inc_src = false;
908                 inc_dst = true;
909                 break;
910
911         case DMA_MEM_TO_DEV:
912                 mem_sg = src_sg;
913                 inc_src = true;
914                 inc_dst = false;
915                 break;
916
917         default:
918         case DMA_MEM_TO_MEM:
919                 mem_sg = src_sg;
920                 inc_src = true;
921                 inc_dst = true;
922         }
923
924         desc = nbpf_desc_get(chan, len);
925         if (!desc)
926                 return NULL;
927
928         desc->async_tx.flags = flags;
929         desc->async_tx.cookie = -EBUSY;
930         desc->user_wait = false;
931
932         /*
933          * This is a private descriptor list, and we own the descriptor. No need
934          * to lock.
935          */
936         list_for_each_entry(ldesc, &desc->sg, node) {
937                 int ret = nbpf_prep_one(ldesc, direction,
938                                         sg_dma_address(src_sg),
939                                         sg_dma_address(dst_sg),
940                                         sg_dma_len(mem_sg),
941                                         i == len - 1);
942                 if (ret < 0) {
943                         nbpf_desc_put(desc);
944                         return NULL;
945                 }
946                 data_len += sg_dma_len(mem_sg);
947                 if (inc_src)
948                         src_sg = sg_next(src_sg);
949                 if (inc_dst)
950                         dst_sg = sg_next(dst_sg);
951                 mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
952                 i++;
953         }
954
955         desc->length = data_len;
956
957         /* The user has to return the descriptor to us ASAP via .tx_submit() */
958         return &desc->async_tx;
959 }
960
961 static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
962         struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
963         size_t len, unsigned long flags)
964 {
965         struct nbpf_channel *chan = nbpf_to_chan(dchan);
966         struct scatterlist dst_sg;
967         struct scatterlist src_sg;
968
969         sg_init_table(&dst_sg, 1);
970         sg_init_table(&src_sg, 1);
971
972         sg_dma_address(&dst_sg) = dst;
973         sg_dma_address(&src_sg) = src;
974
975         sg_dma_len(&dst_sg) = len;
976         sg_dma_len(&src_sg) = len;
977
978         dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
979                 __func__, len, &src, &dst);
980
981         return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
982                             DMA_MEM_TO_MEM, flags);
983 }
984
985 static struct dma_async_tx_descriptor *nbpf_prep_memcpy_sg(
986         struct dma_chan *dchan,
987         struct scatterlist *dst_sg, unsigned int dst_nents,
988         struct scatterlist *src_sg, unsigned int src_nents,
989         unsigned long flags)
990 {
991         struct nbpf_channel *chan = nbpf_to_chan(dchan);
992
993         if (dst_nents != src_nents)
994                 return NULL;
995
996         return nbpf_prep_sg(chan, src_sg, dst_sg, src_nents,
997                             DMA_MEM_TO_MEM, flags);
998 }
999
1000 static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
1001         struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
1002         enum dma_transfer_direction direction, unsigned long flags, void *context)
1003 {
1004         struct nbpf_channel *chan = nbpf_to_chan(dchan);
1005         struct scatterlist slave_sg;
1006
1007         dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1008
1009         sg_init_table(&slave_sg, 1);
1010
1011         switch (direction) {
1012         case DMA_MEM_TO_DEV:
1013                 sg_dma_address(&slave_sg) = chan->slave_dst_addr;
1014                 return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
1015                                     direction, flags);
1016
1017         case DMA_DEV_TO_MEM:
1018                 sg_dma_address(&slave_sg) = chan->slave_src_addr;
1019                 return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
1020                                     direction, flags);
1021
1022         default:
1023                 return NULL;
1024         }
1025 }
1026
1027 static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
1028 {
1029         struct nbpf_channel *chan = nbpf_to_chan(dchan);
1030         int ret;
1031
1032         INIT_LIST_HEAD(&chan->free);
1033         INIT_LIST_HEAD(&chan->free_links);
1034         INIT_LIST_HEAD(&chan->queued);
1035         INIT_LIST_HEAD(&chan->active);
1036         INIT_LIST_HEAD(&chan->done);
1037
1038         ret = nbpf_desc_page_alloc(chan);
1039         if (ret < 0)
1040                 return ret;
1041
1042         dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
1043                 chan->terminal);
1044
1045         nbpf_chan_configure(chan);
1046
1047         return ret;
1048 }
1049
1050 static void nbpf_free_chan_resources(struct dma_chan *dchan)
1051 {
1052         struct nbpf_channel *chan = nbpf_to_chan(dchan);
1053         struct nbpf_desc_page *dpage, *tmp;
1054
1055         dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1056
1057         nbpf_chan_halt(chan);
1058         nbpf_chan_idle(chan);
1059         /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1060         nbpf_chan_prepare_default(chan);
1061
1062         list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
1063                 struct nbpf_link_desc *ldesc;
1064                 int i;
1065                 list_del(&dpage->node);
1066                 for (i = 0, ldesc = dpage->ldesc;
1067                      i < ARRAY_SIZE(dpage->ldesc);
1068                      i++, ldesc++)
1069                         dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
1070                                          sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
1071                 free_page((unsigned long)dpage);
1072         }
1073 }
1074
1075 static int nbpf_slave_caps(struct dma_chan *dchan,
1076                            struct dma_slave_caps *caps)
1077 {
1078         caps->src_addr_widths = NBPF_DMA_BUSWIDTHS;
1079         caps->dstn_addr_widths = NBPF_DMA_BUSWIDTHS;
1080         caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1081         caps->cmd_pause = false;
1082         caps->cmd_terminate = true;
1083
1084         return 0;
1085 }
1086
1087 static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
1088                                       struct of_dma *ofdma)
1089 {
1090         struct nbpf_device *nbpf = ofdma->of_dma_data;
1091         struct dma_chan *dchan;
1092         struct nbpf_channel *chan;
1093
1094         if (dma_spec->args_count != 2)
1095                 return NULL;
1096
1097         dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
1098         if (!dchan)
1099                 return NULL;
1100
1101         dev_dbg(dchan->device->dev, "Entry %s(%s)\n", __func__,
1102                 dma_spec->np->name);
1103
1104         chan = nbpf_to_chan(dchan);
1105
1106         chan->terminal = dma_spec->args[0];
1107         chan->flags = dma_spec->args[1];
1108
1109         nbpf_chan_prepare(chan);
1110         nbpf_chan_configure(chan);
1111
1112         return dchan;
1113 }
1114
1115 static void nbpf_chan_tasklet(unsigned long data)
1116 {
1117         struct nbpf_channel *chan = (struct nbpf_channel *)data;
1118         struct nbpf_desc *desc, *tmp;
1119         dma_async_tx_callback callback;
1120         void *param;
1121
1122         while (!list_empty(&chan->done)) {
1123                 bool found = false, must_put, recycling = false;
1124
1125                 spin_lock_irq(&chan->lock);
1126
1127                 list_for_each_entry_safe(desc, tmp, &chan->done, node) {
1128                         if (!desc->user_wait) {
1129                                 /* Newly completed descriptor, have to process */
1130                                 found = true;
1131                                 break;
1132                         } else if (async_tx_test_ack(&desc->async_tx)) {
1133                                 /*
1134                                  * This descriptor was waiting for a user ACK,
1135                                  * it can be recycled now.
1136                                  */
1137                                 list_del(&desc->node);
1138                                 spin_unlock_irq(&chan->lock);
1139                                 nbpf_desc_put(desc);
1140                                 recycling = true;
1141                                 break;
1142                         }
1143                 }
1144
1145                 if (recycling)
1146                         continue;
1147
1148                 if (!found) {
1149                         /* This can happen if TERMINATE_ALL has been called */
1150                         spin_unlock_irq(&chan->lock);
1151                         break;
1152                 }
1153
1154                 dma_cookie_complete(&desc->async_tx);
1155
1156                 /*
1157                  * With released lock we cannot dereference desc, maybe it's
1158                  * still on the "done" list
1159                  */
1160                 if (async_tx_test_ack(&desc->async_tx)) {
1161                         list_del(&desc->node);
1162                         must_put = true;
1163                 } else {
1164                         desc->user_wait = true;
1165                         must_put = false;
1166                 }
1167
1168                 callback = desc->async_tx.callback;
1169                 param = desc->async_tx.callback_param;
1170
1171                 /* ack and callback completed descriptor */
1172                 spin_unlock_irq(&chan->lock);
1173
1174                 if (callback)
1175                         callback(param);
1176
1177                 if (must_put)
1178                         nbpf_desc_put(desc);
1179         }
1180 }
1181
1182 static irqreturn_t nbpf_chan_irq(int irq, void *dev)
1183 {
1184         struct nbpf_channel *chan = dev;
1185         bool done = nbpf_status_get(chan);
1186         struct nbpf_desc *desc;
1187         irqreturn_t ret;
1188         bool bh = false;
1189
1190         if (!done)
1191                 return IRQ_NONE;
1192
1193         nbpf_status_ack(chan);
1194
1195         dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
1196
1197         spin_lock(&chan->lock);
1198         desc = chan->running;
1199         if (WARN_ON(!desc)) {
1200                 ret = IRQ_NONE;
1201                 goto unlock;
1202         } else {
1203                 ret = IRQ_HANDLED;
1204                 bh = true;
1205         }
1206
1207         list_move_tail(&desc->node, &chan->done);
1208         chan->running = NULL;
1209
1210         if (!list_empty(&chan->active)) {
1211                 desc = list_first_entry(&chan->active,
1212                                         struct nbpf_desc, node);
1213                 if (!nbpf_start(desc))
1214                         chan->running = desc;
1215         }
1216
1217 unlock:
1218         spin_unlock(&chan->lock);
1219
1220         if (bh)
1221                 tasklet_schedule(&chan->tasklet);
1222
1223         return ret;
1224 }
1225
1226 static irqreturn_t nbpf_err_irq(int irq, void *dev)
1227 {
1228         struct nbpf_device *nbpf = dev;
1229         u32 error = nbpf_error_get(nbpf);
1230
1231         dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
1232
1233         if (!error)
1234                 return IRQ_NONE;
1235
1236         do {
1237                 struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
1238                 /* On error: abort all queued transfers, no callback */
1239                 nbpf_error_clear(chan);
1240                 nbpf_chan_idle(chan);
1241                 error = nbpf_error_get(nbpf);
1242         } while (error);
1243
1244         return IRQ_HANDLED;
1245 }
1246
1247 static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
1248 {
1249         struct dma_device *dma_dev = &nbpf->dma_dev;
1250         struct nbpf_channel *chan = nbpf->chan + n;
1251         int ret;
1252
1253         chan->nbpf = nbpf;
1254         chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
1255         INIT_LIST_HEAD(&chan->desc_page);
1256         spin_lock_init(&chan->lock);
1257         chan->dma_chan.device = dma_dev;
1258         dma_cookie_init(&chan->dma_chan);
1259         nbpf_chan_prepare_default(chan);
1260
1261         dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
1262
1263         snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
1264
1265         tasklet_init(&chan->tasklet, nbpf_chan_tasklet, (unsigned long)chan);
1266         ret = devm_request_irq(dma_dev->dev, chan->irq,
1267                         nbpf_chan_irq, IRQF_SHARED,
1268                         chan->name, chan);
1269         if (ret < 0)
1270                 return ret;
1271
1272         /* Add the channel to DMA device channel list */
1273         list_add_tail(&chan->dma_chan.device_node,
1274                       &dma_dev->channels);
1275
1276         return 0;
1277 }
1278
1279 static const struct of_device_id nbpf_match[] = {
1280         {.compatible = "renesas,nbpfaxi64dmac1b4",      .data = &nbpf_cfg[NBPF1B4]},
1281         {.compatible = "renesas,nbpfaxi64dmac1b8",      .data = &nbpf_cfg[NBPF1B8]},
1282         {.compatible = "renesas,nbpfaxi64dmac1b16",     .data = &nbpf_cfg[NBPF1B16]},
1283         {.compatible = "renesas,nbpfaxi64dmac4b4",      .data = &nbpf_cfg[NBPF4B4]},
1284         {.compatible = "renesas,nbpfaxi64dmac4b8",      .data = &nbpf_cfg[NBPF4B8]},
1285         {.compatible = "renesas,nbpfaxi64dmac4b16",     .data = &nbpf_cfg[NBPF4B16]},
1286         {.compatible = "renesas,nbpfaxi64dmac8b4",      .data = &nbpf_cfg[NBPF8B4]},
1287         {.compatible = "renesas,nbpfaxi64dmac8b8",      .data = &nbpf_cfg[NBPF8B8]},
1288         {.compatible = "renesas,nbpfaxi64dmac8b16",     .data = &nbpf_cfg[NBPF8B16]},
1289         {}
1290 };
1291 MODULE_DEVICE_TABLE(of, nbpf_match);
1292
1293 static int nbpf_probe(struct platform_device *pdev)
1294 {
1295         struct device *dev = &pdev->dev;
1296         const struct of_device_id *of_id = of_match_device(nbpf_match, dev);
1297         struct device_node *np = dev->of_node;
1298         struct nbpf_device *nbpf;
1299         struct dma_device *dma_dev;
1300         struct resource *iomem, *irq_res;
1301         const struct nbpf_config *cfg;
1302         int num_channels;
1303         int ret, irq, eirq, i;
1304         int irqbuf[9] /* maximum 8 channels + error IRQ */;
1305         unsigned int irqs = 0;
1306
1307         BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
1308
1309         /* DT only */
1310         if (!np || !of_id || !of_id->data)
1311                 return -ENODEV;
1312
1313         cfg = of_id->data;
1314         num_channels = cfg->num_channels;
1315
1316         nbpf = devm_kzalloc(dev, sizeof(*nbpf) + num_channels *
1317                             sizeof(nbpf->chan[0]), GFP_KERNEL);
1318         if (!nbpf) {
1319                 dev_err(dev, "Memory allocation failed\n");
1320                 return -ENOMEM;
1321         }
1322         dma_dev = &nbpf->dma_dev;
1323         dma_dev->dev = dev;
1324
1325         iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1326         nbpf->base = devm_ioremap_resource(dev, iomem);
1327         if (IS_ERR(nbpf->base))
1328                 return PTR_ERR(nbpf->base);
1329
1330         nbpf->clk = devm_clk_get(dev, NULL);
1331         if (IS_ERR(nbpf->clk))
1332                 return PTR_ERR(nbpf->clk);
1333
1334         nbpf->config = cfg;
1335
1336         for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
1337                 irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1338                 if (!irq_res)
1339                         break;
1340
1341                 for (irq = irq_res->start; irq <= irq_res->end;
1342                      irq++, irqs++)
1343                         irqbuf[irqs] = irq;
1344         }
1345
1346         /*
1347          * 3 IRQ resource schemes are supported:
1348          * 1. 1 shared IRQ for error and all channels
1349          * 2. 2 IRQs: one for error and one shared for all channels
1350          * 3. 1 IRQ for error and an own IRQ for each channel
1351          */
1352         if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
1353                 return -ENXIO;
1354
1355         if (irqs == 1) {
1356                 eirq = irqbuf[0];
1357
1358                 for (i = 0; i <= num_channels; i++)
1359                         nbpf->chan[i].irq = irqbuf[0];
1360         } else {
1361                 eirq = platform_get_irq_byname(pdev, "error");
1362                 if (eirq < 0)
1363                         return eirq;
1364
1365                 if (irqs == num_channels + 1) {
1366                         struct nbpf_channel *chan;
1367
1368                         for (i = 0, chan = nbpf->chan; i <= num_channels;
1369                              i++, chan++) {
1370                                 /* Skip the error IRQ */
1371                                 if (irqbuf[i] == eirq)
1372                                         i++;
1373                                 chan->irq = irqbuf[i];
1374                         }
1375
1376                         if (chan != nbpf->chan + num_channels)
1377                                 return -EINVAL;
1378                 } else {
1379                         /* 2 IRQs and more than one channel */
1380                         if (irqbuf[0] == eirq)
1381                                 irq = irqbuf[1];
1382                         else
1383                                 irq = irqbuf[0];
1384
1385                         for (i = 0; i <= num_channels; i++)
1386                                 nbpf->chan[i].irq = irq;
1387                 }
1388         }
1389
1390         ret = devm_request_irq(dev, eirq, nbpf_err_irq,
1391                                IRQF_SHARED, "dma error", nbpf);
1392         if (ret < 0)
1393                 return ret;
1394
1395         INIT_LIST_HEAD(&dma_dev->channels);
1396
1397         /* Create DMA Channel */
1398         for (i = 0; i < num_channels; i++) {
1399                 ret = nbpf_chan_probe(nbpf, i);
1400                 if (ret < 0)
1401                         return ret;
1402         }
1403
1404         dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1405         dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1406         dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1407         dma_cap_set(DMA_SG, dma_dev->cap_mask);
1408
1409         /* Common and MEMCPY operations */
1410         dma_dev->device_alloc_chan_resources
1411                 = nbpf_alloc_chan_resources;
1412         dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
1413         dma_dev->device_prep_dma_sg = nbpf_prep_memcpy_sg;
1414         dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
1415         dma_dev->device_tx_status = nbpf_tx_status;
1416         dma_dev->device_issue_pending = nbpf_issue_pending;
1417         dma_dev->device_slave_caps = nbpf_slave_caps;
1418
1419         /*
1420          * If we drop support for unaligned MEMCPY buffer addresses and / or
1421          * lengths by setting
1422          * dma_dev->copy_align = 4;
1423          * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1424          * DMA_MEM_TO_MEM
1425          */
1426
1427         /* Compulsory for DMA_SLAVE fields */
1428         dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
1429         dma_dev->device_control = nbpf_control;
1430
1431         platform_set_drvdata(pdev, nbpf);
1432
1433         ret = clk_prepare_enable(nbpf->clk);
1434         if (ret < 0)
1435                 return ret;
1436
1437         nbpf_configure(nbpf);
1438
1439         ret = dma_async_device_register(dma_dev);
1440         if (ret < 0)
1441                 goto e_clk_off;
1442
1443         ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
1444         if (ret < 0)
1445                 goto e_dma_dev_unreg;
1446
1447         return 0;
1448
1449 e_dma_dev_unreg:
1450         dma_async_device_unregister(dma_dev);
1451 e_clk_off:
1452         clk_disable_unprepare(nbpf->clk);
1453
1454         return ret;
1455 }
1456
1457 static int nbpf_remove(struct platform_device *pdev)
1458 {
1459         struct nbpf_device *nbpf = platform_get_drvdata(pdev);
1460
1461         of_dma_controller_free(pdev->dev.of_node);
1462         dma_async_device_unregister(&nbpf->dma_dev);
1463         clk_disable_unprepare(nbpf->clk);
1464
1465         return 0;
1466 }
1467
1468 static struct platform_device_id nbpf_ids[] = {
1469         {"nbpfaxi64dmac1b4",    (kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
1470         {"nbpfaxi64dmac1b8",    (kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
1471         {"nbpfaxi64dmac1b16",   (kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
1472         {"nbpfaxi64dmac4b4",    (kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
1473         {"nbpfaxi64dmac4b8",    (kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
1474         {"nbpfaxi64dmac4b16",   (kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
1475         {"nbpfaxi64dmac8b4",    (kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
1476         {"nbpfaxi64dmac8b8",    (kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
1477         {"nbpfaxi64dmac8b16",   (kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
1478         {},
1479 };
1480 MODULE_DEVICE_TABLE(platform, nbpf_ids);
1481
1482 #ifdef CONFIG_PM
1483 static int nbpf_runtime_suspend(struct device *dev)
1484 {
1485         struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1486         clk_disable_unprepare(nbpf->clk);
1487         return 0;
1488 }
1489
1490 static int nbpf_runtime_resume(struct device *dev)
1491 {
1492         struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1493         return clk_prepare_enable(nbpf->clk);
1494 }
1495 #endif
1496
1497 static const struct dev_pm_ops nbpf_pm_ops = {
1498         SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
1499 };
1500
1501 static struct platform_driver nbpf_driver = {
1502         .driver = {
1503                 .owner = THIS_MODULE,
1504                 .name = "dma-nbpf",
1505                 .of_match_table = nbpf_match,
1506                 .pm = &nbpf_pm_ops,
1507         },
1508         .id_table = nbpf_ids,
1509         .probe = nbpf_probe,
1510         .remove = nbpf_remove,
1511 };
1512
1513 module_platform_driver(nbpf_driver);
1514
1515 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1516 MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1517 MODULE_LICENSE("GPL v2");