Merge branch 'topic/hsu' into for-linus
[cascardo/linux.git] / drivers / dma / ste_dma40.c
1 /*
2  * Copyright (C) Ericsson AB 2007-2008
3  * Copyright (C) ST-Ericsson SA 2008-2010
4  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6  * License terms: GNU General Public License (GPL) version 2
7  */
8
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/log2.h>
18 #include <linux/pm.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/err.h>
21 #include <linux/of.h>
22 #include <linux/of_dma.h>
23 #include <linux/amba/bus.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/platform_data/dma-ste-dma40.h>
26
27 #include "dmaengine.h"
28 #include "ste_dma40_ll.h"
29
30 #define D40_NAME "dma40"
31
32 #define D40_PHY_CHAN -1
33
34 /* For masking out/in 2 bit channel positions */
35 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
36 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
37
38 /* Maximum iterations taken before giving up suspending a channel */
39 #define D40_SUSPEND_MAX_IT 500
40
41 /* Milliseconds */
42 #define DMA40_AUTOSUSPEND_DELAY 100
43
44 /* Hardware requirement on LCLA alignment */
45 #define LCLA_ALIGNMENT 0x40000
46
47 /* Max number of links per event group */
48 #define D40_LCLA_LINK_PER_EVENT_GRP 128
49 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
50
51 /* Max number of logical channels per physical channel */
52 #define D40_MAX_LOG_CHAN_PER_PHY 32
53
54 /* Attempts before giving up to trying to get pages that are aligned */
55 #define MAX_LCLA_ALLOC_ATTEMPTS 256
56
57 /* Bit markings for allocation map */
58 #define D40_ALLOC_FREE          BIT(31)
59 #define D40_ALLOC_PHY           BIT(30)
60 #define D40_ALLOC_LOG_FREE      0
61
62 #define D40_MEMCPY_MAX_CHANS    8
63
64 /* Reserved event lines for memcpy only. */
65 #define DB8500_DMA_MEMCPY_EV_0  51
66 #define DB8500_DMA_MEMCPY_EV_1  56
67 #define DB8500_DMA_MEMCPY_EV_2  57
68 #define DB8500_DMA_MEMCPY_EV_3  58
69 #define DB8500_DMA_MEMCPY_EV_4  59
70 #define DB8500_DMA_MEMCPY_EV_5  60
71
72 static int dma40_memcpy_channels[] = {
73         DB8500_DMA_MEMCPY_EV_0,
74         DB8500_DMA_MEMCPY_EV_1,
75         DB8500_DMA_MEMCPY_EV_2,
76         DB8500_DMA_MEMCPY_EV_3,
77         DB8500_DMA_MEMCPY_EV_4,
78         DB8500_DMA_MEMCPY_EV_5,
79 };
80
81 /* Default configuration for physcial memcpy */
82 static struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
83         .mode = STEDMA40_MODE_PHYSICAL,
84         .dir = DMA_MEM_TO_MEM,
85
86         .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
87         .src_info.psize = STEDMA40_PSIZE_PHY_1,
88         .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
89
90         .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
91         .dst_info.psize = STEDMA40_PSIZE_PHY_1,
92         .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
93 };
94
95 /* Default configuration for logical memcpy */
96 static struct stedma40_chan_cfg dma40_memcpy_conf_log = {
97         .mode = STEDMA40_MODE_LOGICAL,
98         .dir = DMA_MEM_TO_MEM,
99
100         .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
101         .src_info.psize = STEDMA40_PSIZE_LOG_1,
102         .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
103
104         .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
105         .dst_info.psize = STEDMA40_PSIZE_LOG_1,
106         .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
107 };
108
109 /**
110  * enum 40_command - The different commands and/or statuses.
111  *
112  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
113  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
114  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
115  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
116  */
117 enum d40_command {
118         D40_DMA_STOP            = 0,
119         D40_DMA_RUN             = 1,
120         D40_DMA_SUSPEND_REQ     = 2,
121         D40_DMA_SUSPENDED       = 3
122 };
123
124 /*
125  * enum d40_events - The different Event Enables for the event lines.
126  *
127  * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
128  * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
129  * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
130  * @D40_ROUND_EVENTLINE: Status check for event line.
131  */
132
133 enum d40_events {
134         D40_DEACTIVATE_EVENTLINE        = 0,
135         D40_ACTIVATE_EVENTLINE          = 1,
136         D40_SUSPEND_REQ_EVENTLINE       = 2,
137         D40_ROUND_EVENTLINE             = 3
138 };
139
140 /*
141  * These are the registers that has to be saved and later restored
142  * when the DMA hw is powered off.
143  * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
144  */
145 static u32 d40_backup_regs[] = {
146         D40_DREG_LCPA,
147         D40_DREG_LCLA,
148         D40_DREG_PRMSE,
149         D40_DREG_PRMSO,
150         D40_DREG_PRMOE,
151         D40_DREG_PRMOO,
152 };
153
154 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
155
156 /*
157  * since 9540 and 8540 has the same HW revision
158  * use v4a for 9540 or ealier
159  * use v4b for 8540 or later
160  * HW revision:
161  * DB8500ed has revision 0
162  * DB8500v1 has revision 2
163  * DB8500v2 has revision 3
164  * AP9540v1 has revision 4
165  * DB8540v1 has revision 4
166  * TODO: Check if all these registers have to be saved/restored on dma40 v4a
167  */
168 static u32 d40_backup_regs_v4a[] = {
169         D40_DREG_PSEG1,
170         D40_DREG_PSEG2,
171         D40_DREG_PSEG3,
172         D40_DREG_PSEG4,
173         D40_DREG_PCEG1,
174         D40_DREG_PCEG2,
175         D40_DREG_PCEG3,
176         D40_DREG_PCEG4,
177         D40_DREG_RSEG1,
178         D40_DREG_RSEG2,
179         D40_DREG_RSEG3,
180         D40_DREG_RSEG4,
181         D40_DREG_RCEG1,
182         D40_DREG_RCEG2,
183         D40_DREG_RCEG3,
184         D40_DREG_RCEG4,
185 };
186
187 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
188
189 static u32 d40_backup_regs_v4b[] = {
190         D40_DREG_CPSEG1,
191         D40_DREG_CPSEG2,
192         D40_DREG_CPSEG3,
193         D40_DREG_CPSEG4,
194         D40_DREG_CPSEG5,
195         D40_DREG_CPCEG1,
196         D40_DREG_CPCEG2,
197         D40_DREG_CPCEG3,
198         D40_DREG_CPCEG4,
199         D40_DREG_CPCEG5,
200         D40_DREG_CRSEG1,
201         D40_DREG_CRSEG2,
202         D40_DREG_CRSEG3,
203         D40_DREG_CRSEG4,
204         D40_DREG_CRSEG5,
205         D40_DREG_CRCEG1,
206         D40_DREG_CRCEG2,
207         D40_DREG_CRCEG3,
208         D40_DREG_CRCEG4,
209         D40_DREG_CRCEG5,
210 };
211
212 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
213
214 static u32 d40_backup_regs_chan[] = {
215         D40_CHAN_REG_SSCFG,
216         D40_CHAN_REG_SSELT,
217         D40_CHAN_REG_SSPTR,
218         D40_CHAN_REG_SSLNK,
219         D40_CHAN_REG_SDCFG,
220         D40_CHAN_REG_SDELT,
221         D40_CHAN_REG_SDPTR,
222         D40_CHAN_REG_SDLNK,
223 };
224
225 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
226                              BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
227
228 /**
229  * struct d40_interrupt_lookup - lookup table for interrupt handler
230  *
231  * @src: Interrupt mask register.
232  * @clr: Interrupt clear register.
233  * @is_error: true if this is an error interrupt.
234  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
235  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
236  */
237 struct d40_interrupt_lookup {
238         u32 src;
239         u32 clr;
240         bool is_error;
241         int offset;
242 };
243
244
245 static struct d40_interrupt_lookup il_v4a[] = {
246         {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
247         {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
248         {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
249         {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
250         {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
251         {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
252         {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
253         {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
254         {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
255         {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
256 };
257
258 static struct d40_interrupt_lookup il_v4b[] = {
259         {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
260         {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
261         {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
262         {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
263         {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
264         {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
265         {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
266         {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
267         {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
268         {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
269         {D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
270         {D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
271 };
272
273 /**
274  * struct d40_reg_val - simple lookup struct
275  *
276  * @reg: The register.
277  * @val: The value that belongs to the register in reg.
278  */
279 struct d40_reg_val {
280         unsigned int reg;
281         unsigned int val;
282 };
283
284 static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
285         /* Clock every part of the DMA block from start */
286         { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
287
288         /* Interrupts on all logical channels */
289         { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
290         { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
291         { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
292         { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
293         { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
294         { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
295         { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
296         { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
297         { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
298         { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
299         { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
300         { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
301 };
302 static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
303         /* Clock every part of the DMA block from start */
304         { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
305
306         /* Interrupts on all logical channels */
307         { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
308         { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
309         { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
310         { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
311         { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
312         { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
313         { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
314         { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
315         { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
316         { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
317         { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
318         { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
319         { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
320         { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
321         { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
322 };
323
324 /**
325  * struct d40_lli_pool - Structure for keeping LLIs in memory
326  *
327  * @base: Pointer to memory area when the pre_alloc_lli's are not large
328  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
329  * pre_alloc_lli is used.
330  * @dma_addr: DMA address, if mapped
331  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
332  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
333  * one buffer to one buffer.
334  */
335 struct d40_lli_pool {
336         void    *base;
337         int      size;
338         dma_addr_t      dma_addr;
339         /* Space for dst and src, plus an extra for padding */
340         u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
341 };
342
343 /**
344  * struct d40_desc - A descriptor is one DMA job.
345  *
346  * @lli_phy: LLI settings for physical channel. Both src and dst=
347  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
348  * lli_len equals one.
349  * @lli_log: Same as above but for logical channels.
350  * @lli_pool: The pool with two entries pre-allocated.
351  * @lli_len: Number of llis of current descriptor.
352  * @lli_current: Number of transferred llis.
353  * @lcla_alloc: Number of LCLA entries allocated.
354  * @txd: DMA engine struct. Used for among other things for communication
355  * during a transfer.
356  * @node: List entry.
357  * @is_in_client_list: true if the client owns this descriptor.
358  * @cyclic: true if this is a cyclic job
359  *
360  * This descriptor is used for both logical and physical transfers.
361  */
362 struct d40_desc {
363         /* LLI physical */
364         struct d40_phy_lli_bidir         lli_phy;
365         /* LLI logical */
366         struct d40_log_lli_bidir         lli_log;
367
368         struct d40_lli_pool              lli_pool;
369         int                              lli_len;
370         int                              lli_current;
371         int                              lcla_alloc;
372
373         struct dma_async_tx_descriptor   txd;
374         struct list_head                 node;
375
376         bool                             is_in_client_list;
377         bool                             cyclic;
378 };
379
380 /**
381  * struct d40_lcla_pool - LCLA pool settings and data.
382  *
383  * @base: The virtual address of LCLA. 18 bit aligned.
384  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
385  * This pointer is only there for clean-up on error.
386  * @pages: The number of pages needed for all physical channels.
387  * Only used later for clean-up on error
388  * @lock: Lock to protect the content in this struct.
389  * @alloc_map: big map over which LCLA entry is own by which job.
390  */
391 struct d40_lcla_pool {
392         void            *base;
393         dma_addr_t      dma_addr;
394         void            *base_unaligned;
395         int              pages;
396         spinlock_t       lock;
397         struct d40_desc **alloc_map;
398 };
399
400 /**
401  * struct d40_phy_res - struct for handling eventlines mapped to physical
402  * channels.
403  *
404  * @lock: A lock protection this entity.
405  * @reserved: True if used by secure world or otherwise.
406  * @num: The physical channel number of this entity.
407  * @allocated_src: Bit mapped to show which src event line's are mapped to
408  * this physical channel. Can also be free or physically allocated.
409  * @allocated_dst: Same as for src but is dst.
410  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
411  * event line number.
412  * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
413  */
414 struct d40_phy_res {
415         spinlock_t lock;
416         bool       reserved;
417         int        num;
418         u32        allocated_src;
419         u32        allocated_dst;
420         bool       use_soft_lli;
421 };
422
423 struct d40_base;
424
425 /**
426  * struct d40_chan - Struct that describes a channel.
427  *
428  * @lock: A spinlock to protect this struct.
429  * @log_num: The logical number, if any of this channel.
430  * @pending_tx: The number of pending transfers. Used between interrupt handler
431  * and tasklet.
432  * @busy: Set to true when transfer is ongoing on this channel.
433  * @phy_chan: Pointer to physical channel which this instance runs on. If this
434  * point is NULL, then the channel is not allocated.
435  * @chan: DMA engine handle.
436  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
437  * transfer and call client callback.
438  * @client: Cliented owned descriptor list.
439  * @pending_queue: Submitted jobs, to be issued by issue_pending()
440  * @active: Active descriptor.
441  * @done: Completed jobs
442  * @queue: Queued jobs.
443  * @prepare_queue: Prepared jobs.
444  * @dma_cfg: The client configuration of this dma channel.
445  * @configured: whether the dma_cfg configuration is valid
446  * @base: Pointer to the device instance struct.
447  * @src_def_cfg: Default cfg register setting for src.
448  * @dst_def_cfg: Default cfg register setting for dst.
449  * @log_def: Default logical channel settings.
450  * @lcpa: Pointer to dst and src lcpa settings.
451  * @runtime_addr: runtime configured address.
452  * @runtime_direction: runtime configured direction.
453  *
454  * This struct can either "be" a logical or a physical channel.
455  */
456 struct d40_chan {
457         spinlock_t                       lock;
458         int                              log_num;
459         int                              pending_tx;
460         bool                             busy;
461         struct d40_phy_res              *phy_chan;
462         struct dma_chan                  chan;
463         struct tasklet_struct            tasklet;
464         struct list_head                 client;
465         struct list_head                 pending_queue;
466         struct list_head                 active;
467         struct list_head                 done;
468         struct list_head                 queue;
469         struct list_head                 prepare_queue;
470         struct stedma40_chan_cfg         dma_cfg;
471         bool                             configured;
472         struct d40_base                 *base;
473         /* Default register configurations */
474         u32                              src_def_cfg;
475         u32                              dst_def_cfg;
476         struct d40_def_lcsp              log_def;
477         struct d40_log_lli_full         *lcpa;
478         /* Runtime reconfiguration */
479         dma_addr_t                      runtime_addr;
480         enum dma_transfer_direction     runtime_direction;
481 };
482
483 /**
484  * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
485  * controller
486  *
487  * @backup: the pointer to the registers address array for backup
488  * @backup_size: the size of the registers address array for backup
489  * @realtime_en: the realtime enable register
490  * @realtime_clear: the realtime clear register
491  * @high_prio_en: the high priority enable register
492  * @high_prio_clear: the high priority clear register
493  * @interrupt_en: the interrupt enable register
494  * @interrupt_clear: the interrupt clear register
495  * @il: the pointer to struct d40_interrupt_lookup
496  * @il_size: the size of d40_interrupt_lookup array
497  * @init_reg: the pointer to the struct d40_reg_val
498  * @init_reg_size: the size of d40_reg_val array
499  */
500 struct d40_gen_dmac {
501         u32                             *backup;
502         u32                              backup_size;
503         u32                              realtime_en;
504         u32                              realtime_clear;
505         u32                              high_prio_en;
506         u32                              high_prio_clear;
507         u32                              interrupt_en;
508         u32                              interrupt_clear;
509         struct d40_interrupt_lookup     *il;
510         u32                              il_size;
511         struct d40_reg_val              *init_reg;
512         u32                              init_reg_size;
513 };
514
515 /**
516  * struct d40_base - The big global struct, one for each probe'd instance.
517  *
518  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
519  * @execmd_lock: Lock for execute command usage since several channels share
520  * the same physical register.
521  * @dev: The device structure.
522  * @virtbase: The virtual base address of the DMA's register.
523  * @rev: silicon revision detected.
524  * @clk: Pointer to the DMA clock structure.
525  * @phy_start: Physical memory start of the DMA registers.
526  * @phy_size: Size of the DMA register map.
527  * @irq: The IRQ number.
528  * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
529  * transfers).
530  * @num_phy_chans: The number of physical channels. Read from HW. This
531  * is the number of available channels for this driver, not counting "Secure
532  * mode" allocated physical channels.
533  * @num_log_chans: The number of logical channels. Calculated from
534  * num_phy_chans.
535  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
536  * @dma_slave: dma_device channels that can do only do slave transfers.
537  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
538  * @phy_chans: Room for all possible physical channels in system.
539  * @log_chans: Room for all possible logical channels in system.
540  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
541  * to log_chans entries.
542  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
543  * to phy_chans entries.
544  * @plat_data: Pointer to provided platform_data which is the driver
545  * configuration.
546  * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
547  * @phy_res: Vector containing all physical channels.
548  * @lcla_pool: lcla pool settings and data.
549  * @lcpa_base: The virtual mapped address of LCPA.
550  * @phy_lcpa: The physical address of the LCPA.
551  * @lcpa_size: The size of the LCPA area.
552  * @desc_slab: cache for descriptors.
553  * @reg_val_backup: Here the values of some hardware registers are stored
554  * before the DMA is powered off. They are restored when the power is back on.
555  * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
556  * later
557  * @reg_val_backup_chan: Backup data for standard channel parameter registers.
558  * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
559  * @gen_dmac: the struct for generic registers values to represent u8500/8540
560  * DMA controller
561  */
562 struct d40_base {
563         spinlock_t                       interrupt_lock;
564         spinlock_t                       execmd_lock;
565         struct device                    *dev;
566         void __iomem                     *virtbase;
567         u8                                rev:4;
568         struct clk                       *clk;
569         phys_addr_t                       phy_start;
570         resource_size_t                   phy_size;
571         int                               irq;
572         int                               num_memcpy_chans;
573         int                               num_phy_chans;
574         int                               num_log_chans;
575         struct device_dma_parameters      dma_parms;
576         struct dma_device                 dma_both;
577         struct dma_device                 dma_slave;
578         struct dma_device                 dma_memcpy;
579         struct d40_chan                  *phy_chans;
580         struct d40_chan                  *log_chans;
581         struct d40_chan                 **lookup_log_chans;
582         struct d40_chan                 **lookup_phy_chans;
583         struct stedma40_platform_data    *plat_data;
584         struct regulator                 *lcpa_regulator;
585         /* Physical half channels */
586         struct d40_phy_res               *phy_res;
587         struct d40_lcla_pool              lcla_pool;
588         void                             *lcpa_base;
589         dma_addr_t                        phy_lcpa;
590         resource_size_t                   lcpa_size;
591         struct kmem_cache                *desc_slab;
592         u32                               reg_val_backup[BACKUP_REGS_SZ];
593         u32                               reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
594         u32                              *reg_val_backup_chan;
595         u16                               gcc_pwr_off_mask;
596         struct d40_gen_dmac               gen_dmac;
597 };
598
599 static struct device *chan2dev(struct d40_chan *d40c)
600 {
601         return &d40c->chan.dev->device;
602 }
603
604 static bool chan_is_physical(struct d40_chan *chan)
605 {
606         return chan->log_num == D40_PHY_CHAN;
607 }
608
609 static bool chan_is_logical(struct d40_chan *chan)
610 {
611         return !chan_is_physical(chan);
612 }
613
614 static void __iomem *chan_base(struct d40_chan *chan)
615 {
616         return chan->base->virtbase + D40_DREG_PCBASE +
617                chan->phy_chan->num * D40_DREG_PCDELTA;
618 }
619
620 #define d40_err(dev, format, arg...)            \
621         dev_err(dev, "[%s] " format, __func__, ## arg)
622
623 #define chan_err(d40c, format, arg...)          \
624         d40_err(chan2dev(d40c), format, ## arg)
625
626 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
627                               int lli_len)
628 {
629         bool is_log = chan_is_logical(d40c);
630         u32 align;
631         void *base;
632
633         if (is_log)
634                 align = sizeof(struct d40_log_lli);
635         else
636                 align = sizeof(struct d40_phy_lli);
637
638         if (lli_len == 1) {
639                 base = d40d->lli_pool.pre_alloc_lli;
640                 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
641                 d40d->lli_pool.base = NULL;
642         } else {
643                 d40d->lli_pool.size = lli_len * 2 * align;
644
645                 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
646                 d40d->lli_pool.base = base;
647
648                 if (d40d->lli_pool.base == NULL)
649                         return -ENOMEM;
650         }
651
652         if (is_log) {
653                 d40d->lli_log.src = PTR_ALIGN(base, align);
654                 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
655
656                 d40d->lli_pool.dma_addr = 0;
657         } else {
658                 d40d->lli_phy.src = PTR_ALIGN(base, align);
659                 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
660
661                 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
662                                                          d40d->lli_phy.src,
663                                                          d40d->lli_pool.size,
664                                                          DMA_TO_DEVICE);
665
666                 if (dma_mapping_error(d40c->base->dev,
667                                       d40d->lli_pool.dma_addr)) {
668                         kfree(d40d->lli_pool.base);
669                         d40d->lli_pool.base = NULL;
670                         d40d->lli_pool.dma_addr = 0;
671                         return -ENOMEM;
672                 }
673         }
674
675         return 0;
676 }
677
678 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
679 {
680         if (d40d->lli_pool.dma_addr)
681                 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
682                                  d40d->lli_pool.size, DMA_TO_DEVICE);
683
684         kfree(d40d->lli_pool.base);
685         d40d->lli_pool.base = NULL;
686         d40d->lli_pool.size = 0;
687         d40d->lli_log.src = NULL;
688         d40d->lli_log.dst = NULL;
689         d40d->lli_phy.src = NULL;
690         d40d->lli_phy.dst = NULL;
691 }
692
693 static int d40_lcla_alloc_one(struct d40_chan *d40c,
694                               struct d40_desc *d40d)
695 {
696         unsigned long flags;
697         int i;
698         int ret = -EINVAL;
699
700         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
701
702         /*
703          * Allocate both src and dst at the same time, therefore the half
704          * start on 1 since 0 can't be used since zero is used as end marker.
705          */
706         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
707                 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
708
709                 if (!d40c->base->lcla_pool.alloc_map[idx]) {
710                         d40c->base->lcla_pool.alloc_map[idx] = d40d;
711                         d40d->lcla_alloc++;
712                         ret = i;
713                         break;
714                 }
715         }
716
717         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
718
719         return ret;
720 }
721
722 static int d40_lcla_free_all(struct d40_chan *d40c,
723                              struct d40_desc *d40d)
724 {
725         unsigned long flags;
726         int i;
727         int ret = -EINVAL;
728
729         if (chan_is_physical(d40c))
730                 return 0;
731
732         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
733
734         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
735                 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
736
737                 if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
738                         d40c->base->lcla_pool.alloc_map[idx] = NULL;
739                         d40d->lcla_alloc--;
740                         if (d40d->lcla_alloc == 0) {
741                                 ret = 0;
742                                 break;
743                         }
744                 }
745         }
746
747         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
748
749         return ret;
750
751 }
752
753 static void d40_desc_remove(struct d40_desc *d40d)
754 {
755         list_del(&d40d->node);
756 }
757
758 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
759 {
760         struct d40_desc *desc = NULL;
761
762         if (!list_empty(&d40c->client)) {
763                 struct d40_desc *d;
764                 struct d40_desc *_d;
765
766                 list_for_each_entry_safe(d, _d, &d40c->client, node) {
767                         if (async_tx_test_ack(&d->txd)) {
768                                 d40_desc_remove(d);
769                                 desc = d;
770                                 memset(desc, 0, sizeof(*desc));
771                                 break;
772                         }
773                 }
774         }
775
776         if (!desc)
777                 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
778
779         if (desc)
780                 INIT_LIST_HEAD(&desc->node);
781
782         return desc;
783 }
784
785 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
786 {
787
788         d40_pool_lli_free(d40c, d40d);
789         d40_lcla_free_all(d40c, d40d);
790         kmem_cache_free(d40c->base->desc_slab, d40d);
791 }
792
793 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
794 {
795         list_add_tail(&desc->node, &d40c->active);
796 }
797
798 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
799 {
800         struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
801         struct d40_phy_lli *lli_src = desc->lli_phy.src;
802         void __iomem *base = chan_base(chan);
803
804         writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
805         writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
806         writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
807         writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
808
809         writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
810         writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
811         writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
812         writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
813 }
814
815 static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
816 {
817         list_add_tail(&desc->node, &d40c->done);
818 }
819
820 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
821 {
822         struct d40_lcla_pool *pool = &chan->base->lcla_pool;
823         struct d40_log_lli_bidir *lli = &desc->lli_log;
824         int lli_current = desc->lli_current;
825         int lli_len = desc->lli_len;
826         bool cyclic = desc->cyclic;
827         int curr_lcla = -EINVAL;
828         int first_lcla = 0;
829         bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
830         bool linkback;
831
832         /*
833          * We may have partially running cyclic transfers, in case we did't get
834          * enough LCLA entries.
835          */
836         linkback = cyclic && lli_current == 0;
837
838         /*
839          * For linkback, we need one LCLA even with only one link, because we
840          * can't link back to the one in LCPA space
841          */
842         if (linkback || (lli_len - lli_current > 1)) {
843                 /*
844                  * If the channel is expected to use only soft_lli don't
845                  * allocate a lcla. This is to avoid a HW issue that exists
846                  * in some controller during a peripheral to memory transfer
847                  * that uses linked lists.
848                  */
849                 if (!(chan->phy_chan->use_soft_lli &&
850                         chan->dma_cfg.dir == DMA_DEV_TO_MEM))
851                         curr_lcla = d40_lcla_alloc_one(chan, desc);
852
853                 first_lcla = curr_lcla;
854         }
855
856         /*
857          * For linkback, we normally load the LCPA in the loop since we need to
858          * link it to the second LCLA and not the first.  However, if we
859          * couldn't even get a first LCLA, then we have to run in LCPA and
860          * reload manually.
861          */
862         if (!linkback || curr_lcla == -EINVAL) {
863                 unsigned int flags = 0;
864
865                 if (curr_lcla == -EINVAL)
866                         flags |= LLI_TERM_INT;
867
868                 d40_log_lli_lcpa_write(chan->lcpa,
869                                        &lli->dst[lli_current],
870                                        &lli->src[lli_current],
871                                        curr_lcla,
872                                        flags);
873                 lli_current++;
874         }
875
876         if (curr_lcla < 0)
877                 goto out;
878
879         for (; lli_current < lli_len; lli_current++) {
880                 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
881                                            8 * curr_lcla * 2;
882                 struct d40_log_lli *lcla = pool->base + lcla_offset;
883                 unsigned int flags = 0;
884                 int next_lcla;
885
886                 if (lli_current + 1 < lli_len)
887                         next_lcla = d40_lcla_alloc_one(chan, desc);
888                 else
889                         next_lcla = linkback ? first_lcla : -EINVAL;
890
891                 if (cyclic || next_lcla == -EINVAL)
892                         flags |= LLI_TERM_INT;
893
894                 if (linkback && curr_lcla == first_lcla) {
895                         /* First link goes in both LCPA and LCLA */
896                         d40_log_lli_lcpa_write(chan->lcpa,
897                                                &lli->dst[lli_current],
898                                                &lli->src[lli_current],
899                                                next_lcla, flags);
900                 }
901
902                 /*
903                  * One unused LCLA in the cyclic case if the very first
904                  * next_lcla fails...
905                  */
906                 d40_log_lli_lcla_write(lcla,
907                                        &lli->dst[lli_current],
908                                        &lli->src[lli_current],
909                                        next_lcla, flags);
910
911                 /*
912                  * Cache maintenance is not needed if lcla is
913                  * mapped in esram
914                  */
915                 if (!use_esram_lcla) {
916                         dma_sync_single_range_for_device(chan->base->dev,
917                                                 pool->dma_addr, lcla_offset,
918                                                 2 * sizeof(struct d40_log_lli),
919                                                 DMA_TO_DEVICE);
920                 }
921                 curr_lcla = next_lcla;
922
923                 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
924                         lli_current++;
925                         break;
926                 }
927         }
928
929 out:
930         desc->lli_current = lli_current;
931 }
932
933 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
934 {
935         if (chan_is_physical(d40c)) {
936                 d40_phy_lli_load(d40c, d40d);
937                 d40d->lli_current = d40d->lli_len;
938         } else
939                 d40_log_lli_to_lcxa(d40c, d40d);
940 }
941
942 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
943 {
944         return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
945 }
946
947 /* remove desc from current queue and add it to the pending_queue */
948 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
949 {
950         d40_desc_remove(desc);
951         desc->is_in_client_list = false;
952         list_add_tail(&desc->node, &d40c->pending_queue);
953 }
954
955 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
956 {
957         return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
958                                         node);
959 }
960
961 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
962 {
963         return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
964 }
965
966 static struct d40_desc *d40_first_done(struct d40_chan *d40c)
967 {
968         return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
969 }
970
971 static int d40_psize_2_burst_size(bool is_log, int psize)
972 {
973         if (is_log) {
974                 if (psize == STEDMA40_PSIZE_LOG_1)
975                         return 1;
976         } else {
977                 if (psize == STEDMA40_PSIZE_PHY_1)
978                         return 1;
979         }
980
981         return 2 << psize;
982 }
983
984 /*
985  * The dma only supports transmitting packages up to
986  * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
987  *
988  * Calculate the total number of dma elements required to send the entire sg list.
989  */
990 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
991 {
992         int dmalen;
993         u32 max_w = max(data_width1, data_width2);
994         u32 min_w = min(data_width1, data_width2);
995         u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
996
997         if (seg_max > STEDMA40_MAX_SEG_SIZE)
998                 seg_max -= max_w;
999
1000         if (!IS_ALIGNED(size, max_w))
1001                 return -EINVAL;
1002
1003         if (size <= seg_max)
1004                 dmalen = 1;
1005         else {
1006                 dmalen = size / seg_max;
1007                 if (dmalen * seg_max < size)
1008                         dmalen++;
1009         }
1010         return dmalen;
1011 }
1012
1013 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1014                            u32 data_width1, u32 data_width2)
1015 {
1016         struct scatterlist *sg;
1017         int i;
1018         int len = 0;
1019         int ret;
1020
1021         for_each_sg(sgl, sg, sg_len, i) {
1022                 ret = d40_size_2_dmalen(sg_dma_len(sg),
1023                                         data_width1, data_width2);
1024                 if (ret < 0)
1025                         return ret;
1026                 len += ret;
1027         }
1028         return len;
1029 }
1030
1031 static int __d40_execute_command_phy(struct d40_chan *d40c,
1032                                      enum d40_command command)
1033 {
1034         u32 status;
1035         int i;
1036         void __iomem *active_reg;
1037         int ret = 0;
1038         unsigned long flags;
1039         u32 wmask;
1040
1041         if (command == D40_DMA_STOP) {
1042                 ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1043                 if (ret)
1044                         return ret;
1045         }
1046
1047         spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1048
1049         if (d40c->phy_chan->num % 2 == 0)
1050                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1051         else
1052                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1053
1054         if (command == D40_DMA_SUSPEND_REQ) {
1055                 status = (readl(active_reg) &
1056                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1057                         D40_CHAN_POS(d40c->phy_chan->num);
1058
1059                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1060                         goto done;
1061         }
1062
1063         wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1064         writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1065                active_reg);
1066
1067         if (command == D40_DMA_SUSPEND_REQ) {
1068
1069                 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1070                         status = (readl(active_reg) &
1071                                   D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1072                                 D40_CHAN_POS(d40c->phy_chan->num);
1073
1074                         cpu_relax();
1075                         /*
1076                          * Reduce the number of bus accesses while
1077                          * waiting for the DMA to suspend.
1078                          */
1079                         udelay(3);
1080
1081                         if (status == D40_DMA_STOP ||
1082                             status == D40_DMA_SUSPENDED)
1083                                 break;
1084                 }
1085
1086                 if (i == D40_SUSPEND_MAX_IT) {
1087                         chan_err(d40c,
1088                                 "unable to suspend the chl %d (log: %d) status %x\n",
1089                                 d40c->phy_chan->num, d40c->log_num,
1090                                 status);
1091                         dump_stack();
1092                         ret = -EBUSY;
1093                 }
1094
1095         }
1096 done:
1097         spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1098         return ret;
1099 }
1100
1101 static void d40_term_all(struct d40_chan *d40c)
1102 {
1103         struct d40_desc *d40d;
1104         struct d40_desc *_d;
1105
1106         /* Release completed descriptors */
1107         while ((d40d = d40_first_done(d40c))) {
1108                 d40_desc_remove(d40d);
1109                 d40_desc_free(d40c, d40d);
1110         }
1111
1112         /* Release active descriptors */
1113         while ((d40d = d40_first_active_get(d40c))) {
1114                 d40_desc_remove(d40d);
1115                 d40_desc_free(d40c, d40d);
1116         }
1117
1118         /* Release queued descriptors waiting for transfer */
1119         while ((d40d = d40_first_queued(d40c))) {
1120                 d40_desc_remove(d40d);
1121                 d40_desc_free(d40c, d40d);
1122         }
1123
1124         /* Release pending descriptors */
1125         while ((d40d = d40_first_pending(d40c))) {
1126                 d40_desc_remove(d40d);
1127                 d40_desc_free(d40c, d40d);
1128         }
1129
1130         /* Release client owned descriptors */
1131         if (!list_empty(&d40c->client))
1132                 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1133                         d40_desc_remove(d40d);
1134                         d40_desc_free(d40c, d40d);
1135                 }
1136
1137         /* Release descriptors in prepare queue */
1138         if (!list_empty(&d40c->prepare_queue))
1139                 list_for_each_entry_safe(d40d, _d,
1140                                          &d40c->prepare_queue, node) {
1141                         d40_desc_remove(d40d);
1142                         d40_desc_free(d40c, d40d);
1143                 }
1144
1145         d40c->pending_tx = 0;
1146 }
1147
1148 static void __d40_config_set_event(struct d40_chan *d40c,
1149                                    enum d40_events event_type, u32 event,
1150                                    int reg)
1151 {
1152         void __iomem *addr = chan_base(d40c) + reg;
1153         int tries;
1154         u32 status;
1155
1156         switch (event_type) {
1157
1158         case D40_DEACTIVATE_EVENTLINE:
1159
1160                 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1161                        | ~D40_EVENTLINE_MASK(event), addr);
1162                 break;
1163
1164         case D40_SUSPEND_REQ_EVENTLINE:
1165                 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1166                           D40_EVENTLINE_POS(event);
1167
1168                 if (status == D40_DEACTIVATE_EVENTLINE ||
1169                     status == D40_SUSPEND_REQ_EVENTLINE)
1170                         break;
1171
1172                 writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1173                        | ~D40_EVENTLINE_MASK(event), addr);
1174
1175                 for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1176
1177                         status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1178                                   D40_EVENTLINE_POS(event);
1179
1180                         cpu_relax();
1181                         /*
1182                          * Reduce the number of bus accesses while
1183                          * waiting for the DMA to suspend.
1184                          */
1185                         udelay(3);
1186
1187                         if (status == D40_DEACTIVATE_EVENTLINE)
1188                                 break;
1189                 }
1190
1191                 if (tries == D40_SUSPEND_MAX_IT) {
1192                         chan_err(d40c,
1193                                 "unable to stop the event_line chl %d (log: %d)"
1194                                 "status %x\n", d40c->phy_chan->num,
1195                                  d40c->log_num, status);
1196                 }
1197                 break;
1198
1199         case D40_ACTIVATE_EVENTLINE:
1200         /*
1201          * The hardware sometimes doesn't register the enable when src and dst
1202          * event lines are active on the same logical channel.  Retry to ensure
1203          * it does.  Usually only one retry is sufficient.
1204          */
1205                 tries = 100;
1206                 while (--tries) {
1207                         writel((D40_ACTIVATE_EVENTLINE <<
1208                                 D40_EVENTLINE_POS(event)) |
1209                                 ~D40_EVENTLINE_MASK(event), addr);
1210
1211                         if (readl(addr) & D40_EVENTLINE_MASK(event))
1212                                 break;
1213                 }
1214
1215                 if (tries != 99)
1216                         dev_dbg(chan2dev(d40c),
1217                                 "[%s] workaround enable S%cLNK (%d tries)\n",
1218                                 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1219                                 100 - tries);
1220
1221                 WARN_ON(!tries);
1222                 break;
1223
1224         case D40_ROUND_EVENTLINE:
1225                 BUG();
1226                 break;
1227
1228         }
1229 }
1230
1231 static void d40_config_set_event(struct d40_chan *d40c,
1232                                  enum d40_events event_type)
1233 {
1234         u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1235
1236         /* Enable event line connected to device (or memcpy) */
1237         if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1238             (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1239                 __d40_config_set_event(d40c, event_type, event,
1240                                        D40_CHAN_REG_SSLNK);
1241
1242         if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1243                 __d40_config_set_event(d40c, event_type, event,
1244                                        D40_CHAN_REG_SDLNK);
1245 }
1246
1247 static u32 d40_chan_has_events(struct d40_chan *d40c)
1248 {
1249         void __iomem *chanbase = chan_base(d40c);
1250         u32 val;
1251
1252         val = readl(chanbase + D40_CHAN_REG_SSLNK);
1253         val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1254
1255         return val;
1256 }
1257
1258 static int
1259 __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1260 {
1261         unsigned long flags;
1262         int ret = 0;
1263         u32 active_status;
1264         void __iomem *active_reg;
1265
1266         if (d40c->phy_chan->num % 2 == 0)
1267                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1268         else
1269                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1270
1271
1272         spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1273
1274         switch (command) {
1275         case D40_DMA_STOP:
1276         case D40_DMA_SUSPEND_REQ:
1277
1278                 active_status = (readl(active_reg) &
1279                                  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1280                                  D40_CHAN_POS(d40c->phy_chan->num);
1281
1282                 if (active_status == D40_DMA_RUN)
1283                         d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1284                 else
1285                         d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1286
1287                 if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1288                         ret = __d40_execute_command_phy(d40c, command);
1289
1290                 break;
1291
1292         case D40_DMA_RUN:
1293
1294                 d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1295                 ret = __d40_execute_command_phy(d40c, command);
1296                 break;
1297
1298         case D40_DMA_SUSPENDED:
1299                 BUG();
1300                 break;
1301         }
1302
1303         spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1304         return ret;
1305 }
1306
1307 static int d40_channel_execute_command(struct d40_chan *d40c,
1308                                        enum d40_command command)
1309 {
1310         if (chan_is_logical(d40c))
1311                 return __d40_execute_command_log(d40c, command);
1312         else
1313                 return __d40_execute_command_phy(d40c, command);
1314 }
1315
1316 static u32 d40_get_prmo(struct d40_chan *d40c)
1317 {
1318         static const unsigned int phy_map[] = {
1319                 [STEDMA40_PCHAN_BASIC_MODE]
1320                         = D40_DREG_PRMO_PCHAN_BASIC,
1321                 [STEDMA40_PCHAN_MODULO_MODE]
1322                         = D40_DREG_PRMO_PCHAN_MODULO,
1323                 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1324                         = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1325         };
1326         static const unsigned int log_map[] = {
1327                 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1328                         = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1329                 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1330                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1331                 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1332                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1333         };
1334
1335         if (chan_is_physical(d40c))
1336                 return phy_map[d40c->dma_cfg.mode_opt];
1337         else
1338                 return log_map[d40c->dma_cfg.mode_opt];
1339 }
1340
1341 static void d40_config_write(struct d40_chan *d40c)
1342 {
1343         u32 addr_base;
1344         u32 var;
1345
1346         /* Odd addresses are even addresses + 4 */
1347         addr_base = (d40c->phy_chan->num % 2) * 4;
1348         /* Setup channel mode to logical or physical */
1349         var = ((u32)(chan_is_logical(d40c)) + 1) <<
1350                 D40_CHAN_POS(d40c->phy_chan->num);
1351         writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1352
1353         /* Setup operational mode option register */
1354         var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1355
1356         writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1357
1358         if (chan_is_logical(d40c)) {
1359                 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1360                            & D40_SREG_ELEM_LOG_LIDX_MASK;
1361                 void __iomem *chanbase = chan_base(d40c);
1362
1363                 /* Set default config for CFG reg */
1364                 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1365                 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1366
1367                 /* Set LIDX for lcla */
1368                 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1369                 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1370
1371                 /* Clear LNK which will be used by d40_chan_has_events() */
1372                 writel(0, chanbase + D40_CHAN_REG_SSLNK);
1373                 writel(0, chanbase + D40_CHAN_REG_SDLNK);
1374         }
1375 }
1376
1377 static u32 d40_residue(struct d40_chan *d40c)
1378 {
1379         u32 num_elt;
1380
1381         if (chan_is_logical(d40c))
1382                 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1383                         >> D40_MEM_LCSP2_ECNT_POS;
1384         else {
1385                 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1386                 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1387                           >> D40_SREG_ELEM_PHY_ECNT_POS;
1388         }
1389
1390         return num_elt * d40c->dma_cfg.dst_info.data_width;
1391 }
1392
1393 static bool d40_tx_is_linked(struct d40_chan *d40c)
1394 {
1395         bool is_link;
1396
1397         if (chan_is_logical(d40c))
1398                 is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1399         else
1400                 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1401                           & D40_SREG_LNK_PHYS_LNK_MASK;
1402
1403         return is_link;
1404 }
1405
1406 static int d40_pause(struct dma_chan *chan)
1407 {
1408         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1409         int res = 0;
1410         unsigned long flags;
1411
1412         if (d40c->phy_chan == NULL) {
1413                 chan_err(d40c, "Channel is not allocated!\n");
1414                 return -EINVAL;
1415         }
1416
1417         if (!d40c->busy)
1418                 return 0;
1419
1420         spin_lock_irqsave(&d40c->lock, flags);
1421         pm_runtime_get_sync(d40c->base->dev);
1422
1423         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1424
1425         pm_runtime_mark_last_busy(d40c->base->dev);
1426         pm_runtime_put_autosuspend(d40c->base->dev);
1427         spin_unlock_irqrestore(&d40c->lock, flags);
1428         return res;
1429 }
1430
1431 static int d40_resume(struct dma_chan *chan)
1432 {
1433         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1434         int res = 0;
1435         unsigned long flags;
1436
1437         if (d40c->phy_chan == NULL) {
1438                 chan_err(d40c, "Channel is not allocated!\n");
1439                 return -EINVAL;
1440         }
1441
1442         if (!d40c->busy)
1443                 return 0;
1444
1445         spin_lock_irqsave(&d40c->lock, flags);
1446         pm_runtime_get_sync(d40c->base->dev);
1447
1448         /* If bytes left to transfer or linked tx resume job */
1449         if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1450                 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1451
1452         pm_runtime_mark_last_busy(d40c->base->dev);
1453         pm_runtime_put_autosuspend(d40c->base->dev);
1454         spin_unlock_irqrestore(&d40c->lock, flags);
1455         return res;
1456 }
1457
1458 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1459 {
1460         struct d40_chan *d40c = container_of(tx->chan,
1461                                              struct d40_chan,
1462                                              chan);
1463         struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1464         unsigned long flags;
1465         dma_cookie_t cookie;
1466
1467         spin_lock_irqsave(&d40c->lock, flags);
1468         cookie = dma_cookie_assign(tx);
1469         d40_desc_queue(d40c, d40d);
1470         spin_unlock_irqrestore(&d40c->lock, flags);
1471
1472         return cookie;
1473 }
1474
1475 static int d40_start(struct d40_chan *d40c)
1476 {
1477         return d40_channel_execute_command(d40c, D40_DMA_RUN);
1478 }
1479
1480 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1481 {
1482         struct d40_desc *d40d;
1483         int err;
1484
1485         /* Start queued jobs, if any */
1486         d40d = d40_first_queued(d40c);
1487
1488         if (d40d != NULL) {
1489                 if (!d40c->busy) {
1490                         d40c->busy = true;
1491                         pm_runtime_get_sync(d40c->base->dev);
1492                 }
1493
1494                 /* Remove from queue */
1495                 d40_desc_remove(d40d);
1496
1497                 /* Add to active queue */
1498                 d40_desc_submit(d40c, d40d);
1499
1500                 /* Initiate DMA job */
1501                 d40_desc_load(d40c, d40d);
1502
1503                 /* Start dma job */
1504                 err = d40_start(d40c);
1505
1506                 if (err)
1507                         return NULL;
1508         }
1509
1510         return d40d;
1511 }
1512
1513 /* called from interrupt context */
1514 static void dma_tc_handle(struct d40_chan *d40c)
1515 {
1516         struct d40_desc *d40d;
1517
1518         /* Get first active entry from list */
1519         d40d = d40_first_active_get(d40c);
1520
1521         if (d40d == NULL)
1522                 return;
1523
1524         if (d40d->cyclic) {
1525                 /*
1526                  * If this was a paritially loaded list, we need to reloaded
1527                  * it, and only when the list is completed.  We need to check
1528                  * for done because the interrupt will hit for every link, and
1529                  * not just the last one.
1530                  */
1531                 if (d40d->lli_current < d40d->lli_len
1532                     && !d40_tx_is_linked(d40c)
1533                     && !d40_residue(d40c)) {
1534                         d40_lcla_free_all(d40c, d40d);
1535                         d40_desc_load(d40c, d40d);
1536                         (void) d40_start(d40c);
1537
1538                         if (d40d->lli_current == d40d->lli_len)
1539                                 d40d->lli_current = 0;
1540                 }
1541         } else {
1542                 d40_lcla_free_all(d40c, d40d);
1543
1544                 if (d40d->lli_current < d40d->lli_len) {
1545                         d40_desc_load(d40c, d40d);
1546                         /* Start dma job */
1547                         (void) d40_start(d40c);
1548                         return;
1549                 }
1550
1551                 if (d40_queue_start(d40c) == NULL) {
1552                         d40c->busy = false;
1553
1554                         pm_runtime_mark_last_busy(d40c->base->dev);
1555                         pm_runtime_put_autosuspend(d40c->base->dev);
1556                 }
1557
1558                 d40_desc_remove(d40d);
1559                 d40_desc_done(d40c, d40d);
1560         }
1561
1562         d40c->pending_tx++;
1563         tasklet_schedule(&d40c->tasklet);
1564
1565 }
1566
1567 static void dma_tasklet(unsigned long data)
1568 {
1569         struct d40_chan *d40c = (struct d40_chan *) data;
1570         struct d40_desc *d40d;
1571         unsigned long flags;
1572         bool callback_active;
1573         struct dmaengine_desc_callback cb;
1574
1575         spin_lock_irqsave(&d40c->lock, flags);
1576
1577         /* Get first entry from the done list */
1578         d40d = d40_first_done(d40c);
1579         if (d40d == NULL) {
1580                 /* Check if we have reached here for cyclic job */
1581                 d40d = d40_first_active_get(d40c);
1582                 if (d40d == NULL || !d40d->cyclic)
1583                         goto err;
1584         }
1585
1586         if (!d40d->cyclic)
1587                 dma_cookie_complete(&d40d->txd);
1588
1589         /*
1590          * If terminating a channel pending_tx is set to zero.
1591          * This prevents any finished active jobs to return to the client.
1592          */
1593         if (d40c->pending_tx == 0) {
1594                 spin_unlock_irqrestore(&d40c->lock, flags);
1595                 return;
1596         }
1597
1598         /* Callback to client */
1599         callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1600         dmaengine_desc_get_callback(&d40d->txd, &cb);
1601
1602         if (!d40d->cyclic) {
1603                 if (async_tx_test_ack(&d40d->txd)) {
1604                         d40_desc_remove(d40d);
1605                         d40_desc_free(d40c, d40d);
1606                 } else if (!d40d->is_in_client_list) {
1607                         d40_desc_remove(d40d);
1608                         d40_lcla_free_all(d40c, d40d);
1609                         list_add_tail(&d40d->node, &d40c->client);
1610                         d40d->is_in_client_list = true;
1611                 }
1612         }
1613
1614         d40c->pending_tx--;
1615
1616         if (d40c->pending_tx)
1617                 tasklet_schedule(&d40c->tasklet);
1618
1619         spin_unlock_irqrestore(&d40c->lock, flags);
1620
1621         if (callback_active)
1622                 dmaengine_desc_callback_invoke(&cb, NULL);
1623
1624         return;
1625
1626 err:
1627         /* Rescue manouver if receiving double interrupts */
1628         if (d40c->pending_tx > 0)
1629                 d40c->pending_tx--;
1630         spin_unlock_irqrestore(&d40c->lock, flags);
1631 }
1632
1633 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1634 {
1635         int i;
1636         u32 idx;
1637         u32 row;
1638         long chan = -1;
1639         struct d40_chan *d40c;
1640         unsigned long flags;
1641         struct d40_base *base = data;
1642         u32 regs[base->gen_dmac.il_size];
1643         struct d40_interrupt_lookup *il = base->gen_dmac.il;
1644         u32 il_size = base->gen_dmac.il_size;
1645
1646         spin_lock_irqsave(&base->interrupt_lock, flags);
1647
1648         /* Read interrupt status of both logical and physical channels */
1649         for (i = 0; i < il_size; i++)
1650                 regs[i] = readl(base->virtbase + il[i].src);
1651
1652         for (;;) {
1653
1654                 chan = find_next_bit((unsigned long *)regs,
1655                                      BITS_PER_LONG * il_size, chan + 1);
1656
1657                 /* No more set bits found? */
1658                 if (chan == BITS_PER_LONG * il_size)
1659                         break;
1660
1661                 row = chan / BITS_PER_LONG;
1662                 idx = chan & (BITS_PER_LONG - 1);
1663
1664                 if (il[row].offset == D40_PHY_CHAN)
1665                         d40c = base->lookup_phy_chans[idx];
1666                 else
1667                         d40c = base->lookup_log_chans[il[row].offset + idx];
1668
1669                 if (!d40c) {
1670                         /*
1671                          * No error because this can happen if something else
1672                          * in the system is using the channel.
1673                          */
1674                         continue;
1675                 }
1676
1677                 /* ACK interrupt */
1678                 writel(BIT(idx), base->virtbase + il[row].clr);
1679
1680                 spin_lock(&d40c->lock);
1681
1682                 if (!il[row].is_error)
1683                         dma_tc_handle(d40c);
1684                 else
1685                         d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1686                                 chan, il[row].offset, idx);
1687
1688                 spin_unlock(&d40c->lock);
1689         }
1690
1691         spin_unlock_irqrestore(&base->interrupt_lock, flags);
1692
1693         return IRQ_HANDLED;
1694 }
1695
1696 static int d40_validate_conf(struct d40_chan *d40c,
1697                              struct stedma40_chan_cfg *conf)
1698 {
1699         int res = 0;
1700         bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1701
1702         if (!conf->dir) {
1703                 chan_err(d40c, "Invalid direction.\n");
1704                 res = -EINVAL;
1705         }
1706
1707         if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1708             (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1709             (conf->dev_type < 0)) {
1710                 chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1711                 res = -EINVAL;
1712         }
1713
1714         if (conf->dir == DMA_DEV_TO_DEV) {
1715                 /*
1716                  * DMAC HW supports it. Will be added to this driver,
1717                  * in case any dma client requires it.
1718                  */
1719                 chan_err(d40c, "periph to periph not supported\n");
1720                 res = -EINVAL;
1721         }
1722
1723         if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1724             conf->src_info.data_width !=
1725             d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1726             conf->dst_info.data_width) {
1727                 /*
1728                  * The DMAC hardware only supports
1729                  * src (burst x width) == dst (burst x width)
1730                  */
1731
1732                 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1733                 res = -EINVAL;
1734         }
1735
1736         return res;
1737 }
1738
1739 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1740                                bool is_src, int log_event_line, bool is_log,
1741                                bool *first_user)
1742 {
1743         unsigned long flags;
1744         spin_lock_irqsave(&phy->lock, flags);
1745
1746         *first_user = ((phy->allocated_src | phy->allocated_dst)
1747                         == D40_ALLOC_FREE);
1748
1749         if (!is_log) {
1750                 /* Physical interrupts are masked per physical full channel */
1751                 if (phy->allocated_src == D40_ALLOC_FREE &&
1752                     phy->allocated_dst == D40_ALLOC_FREE) {
1753                         phy->allocated_dst = D40_ALLOC_PHY;
1754                         phy->allocated_src = D40_ALLOC_PHY;
1755                         goto found;
1756                 } else
1757                         goto not_found;
1758         }
1759
1760         /* Logical channel */
1761         if (is_src) {
1762                 if (phy->allocated_src == D40_ALLOC_PHY)
1763                         goto not_found;
1764
1765                 if (phy->allocated_src == D40_ALLOC_FREE)
1766                         phy->allocated_src = D40_ALLOC_LOG_FREE;
1767
1768                 if (!(phy->allocated_src & BIT(log_event_line))) {
1769                         phy->allocated_src |= BIT(log_event_line);
1770                         goto found;
1771                 } else
1772                         goto not_found;
1773         } else {
1774                 if (phy->allocated_dst == D40_ALLOC_PHY)
1775                         goto not_found;
1776
1777                 if (phy->allocated_dst == D40_ALLOC_FREE)
1778                         phy->allocated_dst = D40_ALLOC_LOG_FREE;
1779
1780                 if (!(phy->allocated_dst & BIT(log_event_line))) {
1781                         phy->allocated_dst |= BIT(log_event_line);
1782                         goto found;
1783                 } else
1784                         goto not_found;
1785         }
1786
1787 not_found:
1788         spin_unlock_irqrestore(&phy->lock, flags);
1789         return false;
1790 found:
1791         spin_unlock_irqrestore(&phy->lock, flags);
1792         return true;
1793 }
1794
1795 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1796                                int log_event_line)
1797 {
1798         unsigned long flags;
1799         bool is_free = false;
1800
1801         spin_lock_irqsave(&phy->lock, flags);
1802         if (!log_event_line) {
1803                 phy->allocated_dst = D40_ALLOC_FREE;
1804                 phy->allocated_src = D40_ALLOC_FREE;
1805                 is_free = true;
1806                 goto out;
1807         }
1808
1809         /* Logical channel */
1810         if (is_src) {
1811                 phy->allocated_src &= ~BIT(log_event_line);
1812                 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1813                         phy->allocated_src = D40_ALLOC_FREE;
1814         } else {
1815                 phy->allocated_dst &= ~BIT(log_event_line);
1816                 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1817                         phy->allocated_dst = D40_ALLOC_FREE;
1818         }
1819
1820         is_free = ((phy->allocated_src | phy->allocated_dst) ==
1821                    D40_ALLOC_FREE);
1822
1823 out:
1824         spin_unlock_irqrestore(&phy->lock, flags);
1825
1826         return is_free;
1827 }
1828
1829 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1830 {
1831         int dev_type = d40c->dma_cfg.dev_type;
1832         int event_group;
1833         int event_line;
1834         struct d40_phy_res *phys;
1835         int i;
1836         int j;
1837         int log_num;
1838         int num_phy_chans;
1839         bool is_src;
1840         bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1841
1842         phys = d40c->base->phy_res;
1843         num_phy_chans = d40c->base->num_phy_chans;
1844
1845         if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1846                 log_num = 2 * dev_type;
1847                 is_src = true;
1848         } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1849                    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1850                 /* dst event lines are used for logical memcpy */
1851                 log_num = 2 * dev_type + 1;
1852                 is_src = false;
1853         } else
1854                 return -EINVAL;
1855
1856         event_group = D40_TYPE_TO_GROUP(dev_type);
1857         event_line = D40_TYPE_TO_EVENT(dev_type);
1858
1859         if (!is_log) {
1860                 if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1861                         /* Find physical half channel */
1862                         if (d40c->dma_cfg.use_fixed_channel) {
1863                                 i = d40c->dma_cfg.phy_channel;
1864                                 if (d40_alloc_mask_set(&phys[i], is_src,
1865                                                        0, is_log,
1866                                                        first_phy_user))
1867                                         goto found_phy;
1868                         } else {
1869                                 for (i = 0; i < num_phy_chans; i++) {
1870                                         if (d40_alloc_mask_set(&phys[i], is_src,
1871                                                        0, is_log,
1872                                                        first_phy_user))
1873                                                 goto found_phy;
1874                                 }
1875                         }
1876                 } else
1877                         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1878                                 int phy_num = j  + event_group * 2;
1879                                 for (i = phy_num; i < phy_num + 2; i++) {
1880                                         if (d40_alloc_mask_set(&phys[i],
1881                                                                is_src,
1882                                                                0,
1883                                                                is_log,
1884                                                                first_phy_user))
1885                                                 goto found_phy;
1886                                 }
1887                         }
1888                 return -EINVAL;
1889 found_phy:
1890                 d40c->phy_chan = &phys[i];
1891                 d40c->log_num = D40_PHY_CHAN;
1892                 goto out;
1893         }
1894         if (dev_type == -1)
1895                 return -EINVAL;
1896
1897         /* Find logical channel */
1898         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1899                 int phy_num = j + event_group * 2;
1900
1901                 if (d40c->dma_cfg.use_fixed_channel) {
1902                         i = d40c->dma_cfg.phy_channel;
1903
1904                         if ((i != phy_num) && (i != phy_num + 1)) {
1905                                 dev_err(chan2dev(d40c),
1906                                         "invalid fixed phy channel %d\n", i);
1907                                 return -EINVAL;
1908                         }
1909
1910                         if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1911                                                is_log, first_phy_user))
1912                                 goto found_log;
1913
1914                         dev_err(chan2dev(d40c),
1915                                 "could not allocate fixed phy channel %d\n", i);
1916                         return -EINVAL;
1917                 }
1918
1919                 /*
1920                  * Spread logical channels across all available physical rather
1921                  * than pack every logical channel at the first available phy
1922                  * channels.
1923                  */
1924                 if (is_src) {
1925                         for (i = phy_num; i < phy_num + 2; i++) {
1926                                 if (d40_alloc_mask_set(&phys[i], is_src,
1927                                                        event_line, is_log,
1928                                                        first_phy_user))
1929                                         goto found_log;
1930                         }
1931                 } else {
1932                         for (i = phy_num + 1; i >= phy_num; i--) {
1933                                 if (d40_alloc_mask_set(&phys[i], is_src,
1934                                                        event_line, is_log,
1935                                                        first_phy_user))
1936                                         goto found_log;
1937                         }
1938                 }
1939         }
1940         return -EINVAL;
1941
1942 found_log:
1943         d40c->phy_chan = &phys[i];
1944         d40c->log_num = log_num;
1945 out:
1946
1947         if (is_log)
1948                 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1949         else
1950                 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1951
1952         return 0;
1953
1954 }
1955
1956 static int d40_config_memcpy(struct d40_chan *d40c)
1957 {
1958         dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1959
1960         if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1961                 d40c->dma_cfg = dma40_memcpy_conf_log;
1962                 d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1963
1964                 d40_log_cfg(&d40c->dma_cfg,
1965                             &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1966
1967         } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1968                    dma_has_cap(DMA_SLAVE, cap)) {
1969                 d40c->dma_cfg = dma40_memcpy_conf_phy;
1970
1971                 /* Generate interrrupt at end of transfer or relink. */
1972                 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
1973
1974                 /* Generate interrupt on error. */
1975                 d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1976                 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1977
1978         } else {
1979                 chan_err(d40c, "No memcpy\n");
1980                 return -EINVAL;
1981         }
1982
1983         return 0;
1984 }
1985
1986 static int d40_free_dma(struct d40_chan *d40c)
1987 {
1988
1989         int res = 0;
1990         u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1991         struct d40_phy_res *phy = d40c->phy_chan;
1992         bool is_src;
1993
1994         /* Terminate all queued and active transfers */
1995         d40_term_all(d40c);
1996
1997         if (phy == NULL) {
1998                 chan_err(d40c, "phy == null\n");
1999                 return -EINVAL;
2000         }
2001
2002         if (phy->allocated_src == D40_ALLOC_FREE &&
2003             phy->allocated_dst == D40_ALLOC_FREE) {
2004                 chan_err(d40c, "channel already free\n");
2005                 return -EINVAL;
2006         }
2007
2008         if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2009             d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2010                 is_src = false;
2011         else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2012                 is_src = true;
2013         else {
2014                 chan_err(d40c, "Unknown direction\n");
2015                 return -EINVAL;
2016         }
2017
2018         pm_runtime_get_sync(d40c->base->dev);
2019         res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2020         if (res) {
2021                 chan_err(d40c, "stop failed\n");
2022                 goto out;
2023         }
2024
2025         d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2026
2027         if (chan_is_logical(d40c))
2028                 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2029         else
2030                 d40c->base->lookup_phy_chans[phy->num] = NULL;
2031
2032         if (d40c->busy) {
2033                 pm_runtime_mark_last_busy(d40c->base->dev);
2034                 pm_runtime_put_autosuspend(d40c->base->dev);
2035         }
2036
2037         d40c->busy = false;
2038         d40c->phy_chan = NULL;
2039         d40c->configured = false;
2040 out:
2041
2042         pm_runtime_mark_last_busy(d40c->base->dev);
2043         pm_runtime_put_autosuspend(d40c->base->dev);
2044         return res;
2045 }
2046
2047 static bool d40_is_paused(struct d40_chan *d40c)
2048 {
2049         void __iomem *chanbase = chan_base(d40c);
2050         bool is_paused = false;
2051         unsigned long flags;
2052         void __iomem *active_reg;
2053         u32 status;
2054         u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2055
2056         spin_lock_irqsave(&d40c->lock, flags);
2057
2058         if (chan_is_physical(d40c)) {
2059                 if (d40c->phy_chan->num % 2 == 0)
2060                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2061                 else
2062                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2063
2064                 status = (readl(active_reg) &
2065                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2066                         D40_CHAN_POS(d40c->phy_chan->num);
2067                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2068                         is_paused = true;
2069
2070                 goto _exit;
2071         }
2072
2073         if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2074             d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2075                 status = readl(chanbase + D40_CHAN_REG_SDLNK);
2076         } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2077                 status = readl(chanbase + D40_CHAN_REG_SSLNK);
2078         } else {
2079                 chan_err(d40c, "Unknown direction\n");
2080                 goto _exit;
2081         }
2082
2083         status = (status & D40_EVENTLINE_MASK(event)) >>
2084                 D40_EVENTLINE_POS(event);
2085
2086         if (status != D40_DMA_RUN)
2087                 is_paused = true;
2088 _exit:
2089         spin_unlock_irqrestore(&d40c->lock, flags);
2090         return is_paused;
2091
2092 }
2093
2094 static u32 stedma40_residue(struct dma_chan *chan)
2095 {
2096         struct d40_chan *d40c =
2097                 container_of(chan, struct d40_chan, chan);
2098         u32 bytes_left;
2099         unsigned long flags;
2100
2101         spin_lock_irqsave(&d40c->lock, flags);
2102         bytes_left = d40_residue(d40c);
2103         spin_unlock_irqrestore(&d40c->lock, flags);
2104
2105         return bytes_left;
2106 }
2107
2108 static int
2109 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2110                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2111                 unsigned int sg_len, dma_addr_t src_dev_addr,
2112                 dma_addr_t dst_dev_addr)
2113 {
2114         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2115         struct stedma40_half_channel_info *src_info = &cfg->src_info;
2116         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2117         int ret;
2118
2119         ret = d40_log_sg_to_lli(sg_src, sg_len,
2120                                 src_dev_addr,
2121                                 desc->lli_log.src,
2122                                 chan->log_def.lcsp1,
2123                                 src_info->data_width,
2124                                 dst_info->data_width);
2125
2126         ret = d40_log_sg_to_lli(sg_dst, sg_len,
2127                                 dst_dev_addr,
2128                                 desc->lli_log.dst,
2129                                 chan->log_def.lcsp3,
2130                                 dst_info->data_width,
2131                                 src_info->data_width);
2132
2133         return ret < 0 ? ret : 0;
2134 }
2135
2136 static int
2137 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2138                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2139                 unsigned int sg_len, dma_addr_t src_dev_addr,
2140                 dma_addr_t dst_dev_addr)
2141 {
2142         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2143         struct stedma40_half_channel_info *src_info = &cfg->src_info;
2144         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2145         unsigned long flags = 0;
2146         int ret;
2147
2148         if (desc->cyclic)
2149                 flags |= LLI_CYCLIC | LLI_TERM_INT;
2150
2151         ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2152                                 desc->lli_phy.src,
2153                                 virt_to_phys(desc->lli_phy.src),
2154                                 chan->src_def_cfg,
2155                                 src_info, dst_info, flags);
2156
2157         ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2158                                 desc->lli_phy.dst,
2159                                 virt_to_phys(desc->lli_phy.dst),
2160                                 chan->dst_def_cfg,
2161                                 dst_info, src_info, flags);
2162
2163         dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2164                                    desc->lli_pool.size, DMA_TO_DEVICE);
2165
2166         return ret < 0 ? ret : 0;
2167 }
2168
2169 static struct d40_desc *
2170 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2171               unsigned int sg_len, unsigned long dma_flags)
2172 {
2173         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2174         struct d40_desc *desc;
2175         int ret;
2176
2177         desc = d40_desc_get(chan);
2178         if (!desc)
2179                 return NULL;
2180
2181         desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2182                                         cfg->dst_info.data_width);
2183         if (desc->lli_len < 0) {
2184                 chan_err(chan, "Unaligned size\n");
2185                 goto err;
2186         }
2187
2188         ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2189         if (ret < 0) {
2190                 chan_err(chan, "Could not allocate lli\n");
2191                 goto err;
2192         }
2193
2194         desc->lli_current = 0;
2195         desc->txd.flags = dma_flags;
2196         desc->txd.tx_submit = d40_tx_submit;
2197
2198         dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2199
2200         return desc;
2201
2202 err:
2203         d40_desc_free(chan, desc);
2204         return NULL;
2205 }
2206
2207 static struct dma_async_tx_descriptor *
2208 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2209             struct scatterlist *sg_dst, unsigned int sg_len,
2210             enum dma_transfer_direction direction, unsigned long dma_flags)
2211 {
2212         struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2213         dma_addr_t src_dev_addr = 0;
2214         dma_addr_t dst_dev_addr = 0;
2215         struct d40_desc *desc;
2216         unsigned long flags;
2217         int ret;
2218
2219         if (!chan->phy_chan) {
2220                 chan_err(chan, "Cannot prepare unallocated channel\n");
2221                 return NULL;
2222         }
2223
2224         spin_lock_irqsave(&chan->lock, flags);
2225
2226         desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2227         if (desc == NULL)
2228                 goto err;
2229
2230         if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2231                 desc->cyclic = true;
2232
2233         if (direction == DMA_DEV_TO_MEM)
2234                 src_dev_addr = chan->runtime_addr;
2235         else if (direction == DMA_MEM_TO_DEV)
2236                 dst_dev_addr = chan->runtime_addr;
2237
2238         if (chan_is_logical(chan))
2239                 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2240                                       sg_len, src_dev_addr, dst_dev_addr);
2241         else
2242                 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2243                                       sg_len, src_dev_addr, dst_dev_addr);
2244
2245         if (ret) {
2246                 chan_err(chan, "Failed to prepare %s sg job: %d\n",
2247                          chan_is_logical(chan) ? "log" : "phy", ret);
2248                 goto err;
2249         }
2250
2251         /*
2252          * add descriptor to the prepare queue in order to be able
2253          * to free them later in terminate_all
2254          */
2255         list_add_tail(&desc->node, &chan->prepare_queue);
2256
2257         spin_unlock_irqrestore(&chan->lock, flags);
2258
2259         return &desc->txd;
2260
2261 err:
2262         if (desc)
2263                 d40_desc_free(chan, desc);
2264         spin_unlock_irqrestore(&chan->lock, flags);
2265         return NULL;
2266 }
2267
2268 bool stedma40_filter(struct dma_chan *chan, void *data)
2269 {
2270         struct stedma40_chan_cfg *info = data;
2271         struct d40_chan *d40c =
2272                 container_of(chan, struct d40_chan, chan);
2273         int err;
2274
2275         if (data) {
2276                 err = d40_validate_conf(d40c, info);
2277                 if (!err)
2278                         d40c->dma_cfg = *info;
2279         } else
2280                 err = d40_config_memcpy(d40c);
2281
2282         if (!err)
2283                 d40c->configured = true;
2284
2285         return err == 0;
2286 }
2287 EXPORT_SYMBOL(stedma40_filter);
2288
2289 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2290 {
2291         bool realtime = d40c->dma_cfg.realtime;
2292         bool highprio = d40c->dma_cfg.high_priority;
2293         u32 rtreg;
2294         u32 event = D40_TYPE_TO_EVENT(dev_type);
2295         u32 group = D40_TYPE_TO_GROUP(dev_type);
2296         u32 bit = BIT(event);
2297         u32 prioreg;
2298         struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2299
2300         rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2301         /*
2302          * Due to a hardware bug, in some cases a logical channel triggered by
2303          * a high priority destination event line can generate extra packet
2304          * transactions.
2305          *
2306          * The workaround is to not set the high priority level for the
2307          * destination event lines that trigger logical channels.
2308          */
2309         if (!src && chan_is_logical(d40c))
2310                 highprio = false;
2311
2312         prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2313
2314         /* Destination event lines are stored in the upper halfword */
2315         if (!src)
2316                 bit <<= 16;
2317
2318         writel(bit, d40c->base->virtbase + prioreg + group * 4);
2319         writel(bit, d40c->base->virtbase + rtreg + group * 4);
2320 }
2321
2322 static void d40_set_prio_realtime(struct d40_chan *d40c)
2323 {
2324         if (d40c->base->rev < 3)
2325                 return;
2326
2327         if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2328             (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2329                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2330
2331         if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2332             (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2333                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2334 }
2335
2336 #define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2337 #define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2338 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2339 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2340 #define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2341
2342 static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2343                                   struct of_dma *ofdma)
2344 {
2345         struct stedma40_chan_cfg cfg;
2346         dma_cap_mask_t cap;
2347         u32 flags;
2348
2349         memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2350
2351         dma_cap_zero(cap);
2352         dma_cap_set(DMA_SLAVE, cap);
2353
2354         cfg.dev_type = dma_spec->args[0];
2355         flags = dma_spec->args[2];
2356
2357         switch (D40_DT_FLAGS_MODE(flags)) {
2358         case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2359         case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2360         }
2361
2362         switch (D40_DT_FLAGS_DIR(flags)) {
2363         case 0:
2364                 cfg.dir = DMA_MEM_TO_DEV;
2365                 cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2366                 break;
2367         case 1:
2368                 cfg.dir = DMA_DEV_TO_MEM;
2369                 cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2370                 break;
2371         }
2372
2373         if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2374                 cfg.phy_channel = dma_spec->args[1];
2375                 cfg.use_fixed_channel = true;
2376         }
2377
2378         if (D40_DT_FLAGS_HIGH_PRIO(flags))
2379                 cfg.high_priority = true;
2380
2381         return dma_request_channel(cap, stedma40_filter, &cfg);
2382 }
2383
2384 /* DMA ENGINE functions */
2385 static int d40_alloc_chan_resources(struct dma_chan *chan)
2386 {
2387         int err;
2388         unsigned long flags;
2389         struct d40_chan *d40c =
2390                 container_of(chan, struct d40_chan, chan);
2391         bool is_free_phy;
2392         spin_lock_irqsave(&d40c->lock, flags);
2393
2394         dma_cookie_init(chan);
2395
2396         /* If no dma configuration is set use default configuration (memcpy) */
2397         if (!d40c->configured) {
2398                 err = d40_config_memcpy(d40c);
2399                 if (err) {
2400                         chan_err(d40c, "Failed to configure memcpy channel\n");
2401                         goto fail;
2402                 }
2403         }
2404
2405         err = d40_allocate_channel(d40c, &is_free_phy);
2406         if (err) {
2407                 chan_err(d40c, "Failed to allocate channel\n");
2408                 d40c->configured = false;
2409                 goto fail;
2410         }
2411
2412         pm_runtime_get_sync(d40c->base->dev);
2413
2414         d40_set_prio_realtime(d40c);
2415
2416         if (chan_is_logical(d40c)) {
2417                 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2418                         d40c->lcpa = d40c->base->lcpa_base +
2419                                 d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2420                 else
2421                         d40c->lcpa = d40c->base->lcpa_base +
2422                                 d40c->dma_cfg.dev_type *
2423                                 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2424
2425                 /* Unmask the Global Interrupt Mask. */
2426                 d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2427                 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2428         }
2429
2430         dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2431                  chan_is_logical(d40c) ? "logical" : "physical",
2432                  d40c->phy_chan->num,
2433                  d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2434
2435
2436         /*
2437          * Only write channel configuration to the DMA if the physical
2438          * resource is free. In case of multiple logical channels
2439          * on the same physical resource, only the first write is necessary.
2440          */
2441         if (is_free_phy)
2442                 d40_config_write(d40c);
2443 fail:
2444         pm_runtime_mark_last_busy(d40c->base->dev);
2445         pm_runtime_put_autosuspend(d40c->base->dev);
2446         spin_unlock_irqrestore(&d40c->lock, flags);
2447         return err;
2448 }
2449
2450 static void d40_free_chan_resources(struct dma_chan *chan)
2451 {
2452         struct d40_chan *d40c =
2453                 container_of(chan, struct d40_chan, chan);
2454         int err;
2455         unsigned long flags;
2456
2457         if (d40c->phy_chan == NULL) {
2458                 chan_err(d40c, "Cannot free unallocated channel\n");
2459                 return;
2460         }
2461
2462         spin_lock_irqsave(&d40c->lock, flags);
2463
2464         err = d40_free_dma(d40c);
2465
2466         if (err)
2467                 chan_err(d40c, "Failed to free channel\n");
2468         spin_unlock_irqrestore(&d40c->lock, flags);
2469 }
2470
2471 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2472                                                        dma_addr_t dst,
2473                                                        dma_addr_t src,
2474                                                        size_t size,
2475                                                        unsigned long dma_flags)
2476 {
2477         struct scatterlist dst_sg;
2478         struct scatterlist src_sg;
2479
2480         sg_init_table(&dst_sg, 1);
2481         sg_init_table(&src_sg, 1);
2482
2483         sg_dma_address(&dst_sg) = dst;
2484         sg_dma_address(&src_sg) = src;
2485
2486         sg_dma_len(&dst_sg) = size;
2487         sg_dma_len(&src_sg) = size;
2488
2489         return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2490                            DMA_MEM_TO_MEM, dma_flags);
2491 }
2492
2493 static struct dma_async_tx_descriptor *
2494 d40_prep_memcpy_sg(struct dma_chan *chan,
2495                    struct scatterlist *dst_sg, unsigned int dst_nents,
2496                    struct scatterlist *src_sg, unsigned int src_nents,
2497                    unsigned long dma_flags)
2498 {
2499         if (dst_nents != src_nents)
2500                 return NULL;
2501
2502         return d40_prep_sg(chan, src_sg, dst_sg, src_nents,
2503                            DMA_MEM_TO_MEM, dma_flags);
2504 }
2505
2506 static struct dma_async_tx_descriptor *
2507 d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2508                   unsigned int sg_len, enum dma_transfer_direction direction,
2509                   unsigned long dma_flags, void *context)
2510 {
2511         if (!is_slave_direction(direction))
2512                 return NULL;
2513
2514         return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2515 }
2516
2517 static struct dma_async_tx_descriptor *
2518 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2519                      size_t buf_len, size_t period_len,
2520                      enum dma_transfer_direction direction, unsigned long flags)
2521 {
2522         unsigned int periods = buf_len / period_len;
2523         struct dma_async_tx_descriptor *txd;
2524         struct scatterlist *sg;
2525         int i;
2526
2527         sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2528         if (!sg)
2529                 return NULL;
2530
2531         for (i = 0; i < periods; i++) {
2532                 sg_dma_address(&sg[i]) = dma_addr;
2533                 sg_dma_len(&sg[i]) = period_len;
2534                 dma_addr += period_len;
2535         }
2536
2537         sg[periods].offset = 0;
2538         sg_dma_len(&sg[periods]) = 0;
2539         sg[periods].page_link =
2540                 ((unsigned long)sg | 0x01) & ~0x02;
2541
2542         txd = d40_prep_sg(chan, sg, sg, periods, direction,
2543                           DMA_PREP_INTERRUPT);
2544
2545         kfree(sg);
2546
2547         return txd;
2548 }
2549
2550 static enum dma_status d40_tx_status(struct dma_chan *chan,
2551                                      dma_cookie_t cookie,
2552                                      struct dma_tx_state *txstate)
2553 {
2554         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2555         enum dma_status ret;
2556
2557         if (d40c->phy_chan == NULL) {
2558                 chan_err(d40c, "Cannot read status of unallocated channel\n");
2559                 return -EINVAL;
2560         }
2561
2562         ret = dma_cookie_status(chan, cookie, txstate);
2563         if (ret != DMA_COMPLETE && txstate)
2564                 dma_set_residue(txstate, stedma40_residue(chan));
2565
2566         if (d40_is_paused(d40c))
2567                 ret = DMA_PAUSED;
2568
2569         return ret;
2570 }
2571
2572 static void d40_issue_pending(struct dma_chan *chan)
2573 {
2574         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2575         unsigned long flags;
2576
2577         if (d40c->phy_chan == NULL) {
2578                 chan_err(d40c, "Channel is not allocated!\n");
2579                 return;
2580         }
2581
2582         spin_lock_irqsave(&d40c->lock, flags);
2583
2584         list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2585
2586         /* Busy means that queued jobs are already being processed */
2587         if (!d40c->busy)
2588                 (void) d40_queue_start(d40c);
2589
2590         spin_unlock_irqrestore(&d40c->lock, flags);
2591 }
2592
2593 static int d40_terminate_all(struct dma_chan *chan)
2594 {
2595         unsigned long flags;
2596         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2597         int ret;
2598
2599         if (d40c->phy_chan == NULL) {
2600                 chan_err(d40c, "Channel is not allocated!\n");
2601                 return -EINVAL;
2602         }
2603
2604         spin_lock_irqsave(&d40c->lock, flags);
2605
2606         pm_runtime_get_sync(d40c->base->dev);
2607         ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2608         if (ret)
2609                 chan_err(d40c, "Failed to stop channel\n");
2610
2611         d40_term_all(d40c);
2612         pm_runtime_mark_last_busy(d40c->base->dev);
2613         pm_runtime_put_autosuspend(d40c->base->dev);
2614         if (d40c->busy) {
2615                 pm_runtime_mark_last_busy(d40c->base->dev);
2616                 pm_runtime_put_autosuspend(d40c->base->dev);
2617         }
2618         d40c->busy = false;
2619
2620         spin_unlock_irqrestore(&d40c->lock, flags);
2621         return 0;
2622 }
2623
2624 static int
2625 dma40_config_to_halfchannel(struct d40_chan *d40c,
2626                             struct stedma40_half_channel_info *info,
2627                             u32 maxburst)
2628 {
2629         int psize;
2630
2631         if (chan_is_logical(d40c)) {
2632                 if (maxburst >= 16)
2633                         psize = STEDMA40_PSIZE_LOG_16;
2634                 else if (maxburst >= 8)
2635                         psize = STEDMA40_PSIZE_LOG_8;
2636                 else if (maxburst >= 4)
2637                         psize = STEDMA40_PSIZE_LOG_4;
2638                 else
2639                         psize = STEDMA40_PSIZE_LOG_1;
2640         } else {
2641                 if (maxburst >= 16)
2642                         psize = STEDMA40_PSIZE_PHY_16;
2643                 else if (maxburst >= 8)
2644                         psize = STEDMA40_PSIZE_PHY_8;
2645                 else if (maxburst >= 4)
2646                         psize = STEDMA40_PSIZE_PHY_4;
2647                 else
2648                         psize = STEDMA40_PSIZE_PHY_1;
2649         }
2650
2651         info->psize = psize;
2652         info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2653
2654         return 0;
2655 }
2656
2657 /* Runtime reconfiguration extension */
2658 static int d40_set_runtime_config(struct dma_chan *chan,
2659                                   struct dma_slave_config *config)
2660 {
2661         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2662         struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2663         enum dma_slave_buswidth src_addr_width, dst_addr_width;
2664         dma_addr_t config_addr;
2665         u32 src_maxburst, dst_maxburst;
2666         int ret;
2667
2668         if (d40c->phy_chan == NULL) {
2669                 chan_err(d40c, "Channel is not allocated!\n");
2670                 return -EINVAL;
2671         }
2672
2673         src_addr_width = config->src_addr_width;
2674         src_maxburst = config->src_maxburst;
2675         dst_addr_width = config->dst_addr_width;
2676         dst_maxburst = config->dst_maxburst;
2677
2678         if (config->direction == DMA_DEV_TO_MEM) {
2679                 config_addr = config->src_addr;
2680
2681                 if (cfg->dir != DMA_DEV_TO_MEM)
2682                         dev_dbg(d40c->base->dev,
2683                                 "channel was not configured for peripheral "
2684                                 "to memory transfer (%d) overriding\n",
2685                                 cfg->dir);
2686                 cfg->dir = DMA_DEV_TO_MEM;
2687
2688                 /* Configure the memory side */
2689                 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2690                         dst_addr_width = src_addr_width;
2691                 if (dst_maxburst == 0)
2692                         dst_maxburst = src_maxburst;
2693
2694         } else if (config->direction == DMA_MEM_TO_DEV) {
2695                 config_addr = config->dst_addr;
2696
2697                 if (cfg->dir != DMA_MEM_TO_DEV)
2698                         dev_dbg(d40c->base->dev,
2699                                 "channel was not configured for memory "
2700                                 "to peripheral transfer (%d) overriding\n",
2701                                 cfg->dir);
2702                 cfg->dir = DMA_MEM_TO_DEV;
2703
2704                 /* Configure the memory side */
2705                 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2706                         src_addr_width = dst_addr_width;
2707                 if (src_maxburst == 0)
2708                         src_maxburst = dst_maxburst;
2709         } else {
2710                 dev_err(d40c->base->dev,
2711                         "unrecognized channel direction %d\n",
2712                         config->direction);
2713                 return -EINVAL;
2714         }
2715
2716         if (config_addr <= 0) {
2717                 dev_err(d40c->base->dev, "no address supplied\n");
2718                 return -EINVAL;
2719         }
2720
2721         if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2722                 dev_err(d40c->base->dev,
2723                         "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2724                         src_maxburst,
2725                         src_addr_width,
2726                         dst_maxburst,
2727                         dst_addr_width);
2728                 return -EINVAL;
2729         }
2730
2731         if (src_maxburst > 16) {
2732                 src_maxburst = 16;
2733                 dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2734         } else if (dst_maxburst > 16) {
2735                 dst_maxburst = 16;
2736                 src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2737         }
2738
2739         /* Only valid widths are; 1, 2, 4 and 8. */
2740         if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2741             src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2742             dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2743             dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2744             !is_power_of_2(src_addr_width) ||
2745             !is_power_of_2(dst_addr_width))
2746                 return -EINVAL;
2747
2748         cfg->src_info.data_width = src_addr_width;
2749         cfg->dst_info.data_width = dst_addr_width;
2750
2751         ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2752                                           src_maxburst);
2753         if (ret)
2754                 return ret;
2755
2756         ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2757                                           dst_maxburst);
2758         if (ret)
2759                 return ret;
2760
2761         /* Fill in register values */
2762         if (chan_is_logical(d40c))
2763                 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2764         else
2765                 d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2766
2767         /* These settings will take precedence later */
2768         d40c->runtime_addr = config_addr;
2769         d40c->runtime_direction = config->direction;
2770         dev_dbg(d40c->base->dev,
2771                 "configured channel %s for %s, data width %d/%d, "
2772                 "maxburst %d/%d elements, LE, no flow control\n",
2773                 dma_chan_name(chan),
2774                 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2775                 src_addr_width, dst_addr_width,
2776                 src_maxburst, dst_maxburst);
2777
2778         return 0;
2779 }
2780
2781 /* Initialization functions */
2782
2783 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2784                                  struct d40_chan *chans, int offset,
2785                                  int num_chans)
2786 {
2787         int i = 0;
2788         struct d40_chan *d40c;
2789
2790         INIT_LIST_HEAD(&dma->channels);
2791
2792         for (i = offset; i < offset + num_chans; i++) {
2793                 d40c = &chans[i];
2794                 d40c->base = base;
2795                 d40c->chan.device = dma;
2796
2797                 spin_lock_init(&d40c->lock);
2798
2799                 d40c->log_num = D40_PHY_CHAN;
2800
2801                 INIT_LIST_HEAD(&d40c->done);
2802                 INIT_LIST_HEAD(&d40c->active);
2803                 INIT_LIST_HEAD(&d40c->queue);
2804                 INIT_LIST_HEAD(&d40c->pending_queue);
2805                 INIT_LIST_HEAD(&d40c->client);
2806                 INIT_LIST_HEAD(&d40c->prepare_queue);
2807
2808                 tasklet_init(&d40c->tasklet, dma_tasklet,
2809                              (unsigned long) d40c);
2810
2811                 list_add_tail(&d40c->chan.device_node,
2812                               &dma->channels);
2813         }
2814 }
2815
2816 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2817 {
2818         if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2819                 dev->device_prep_slave_sg = d40_prep_slave_sg;
2820
2821         if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2822                 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2823
2824                 /*
2825                  * This controller can only access address at even
2826                  * 32bit boundaries, i.e. 2^2
2827                  */
2828                 dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2829         }
2830
2831         if (dma_has_cap(DMA_SG, dev->cap_mask))
2832                 dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2833
2834         if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2835                 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2836
2837         dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2838         dev->device_free_chan_resources = d40_free_chan_resources;
2839         dev->device_issue_pending = d40_issue_pending;
2840         dev->device_tx_status = d40_tx_status;
2841         dev->device_config = d40_set_runtime_config;
2842         dev->device_pause = d40_pause;
2843         dev->device_resume = d40_resume;
2844         dev->device_terminate_all = d40_terminate_all;
2845         dev->dev = base->dev;
2846 }
2847
2848 static int __init d40_dmaengine_init(struct d40_base *base,
2849                                      int num_reserved_chans)
2850 {
2851         int err ;
2852
2853         d40_chan_init(base, &base->dma_slave, base->log_chans,
2854                       0, base->num_log_chans);
2855
2856         dma_cap_zero(base->dma_slave.cap_mask);
2857         dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2858         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2859
2860         d40_ops_init(base, &base->dma_slave);
2861
2862         err = dma_async_device_register(&base->dma_slave);
2863
2864         if (err) {
2865                 d40_err(base->dev, "Failed to register slave channels\n");
2866                 goto failure1;
2867         }
2868
2869         d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2870                       base->num_log_chans, base->num_memcpy_chans);
2871
2872         dma_cap_zero(base->dma_memcpy.cap_mask);
2873         dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2874         dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2875
2876         d40_ops_init(base, &base->dma_memcpy);
2877
2878         err = dma_async_device_register(&base->dma_memcpy);
2879
2880         if (err) {
2881                 d40_err(base->dev,
2882                         "Failed to register memcpy only channels\n");
2883                 goto failure2;
2884         }
2885
2886         d40_chan_init(base, &base->dma_both, base->phy_chans,
2887                       0, num_reserved_chans);
2888
2889         dma_cap_zero(base->dma_both.cap_mask);
2890         dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2891         dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2892         dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2893         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2894
2895         d40_ops_init(base, &base->dma_both);
2896         err = dma_async_device_register(&base->dma_both);
2897
2898         if (err) {
2899                 d40_err(base->dev,
2900                         "Failed to register logical and physical capable channels\n");
2901                 goto failure3;
2902         }
2903         return 0;
2904 failure3:
2905         dma_async_device_unregister(&base->dma_memcpy);
2906 failure2:
2907         dma_async_device_unregister(&base->dma_slave);
2908 failure1:
2909         return err;
2910 }
2911
2912 /* Suspend resume functionality */
2913 #ifdef CONFIG_PM_SLEEP
2914 static int dma40_suspend(struct device *dev)
2915 {
2916         struct platform_device *pdev = to_platform_device(dev);
2917         struct d40_base *base = platform_get_drvdata(pdev);
2918         int ret;
2919
2920         ret = pm_runtime_force_suspend(dev);
2921         if (ret)
2922                 return ret;
2923
2924         if (base->lcpa_regulator)
2925                 ret = regulator_disable(base->lcpa_regulator);
2926         return ret;
2927 }
2928
2929 static int dma40_resume(struct device *dev)
2930 {
2931         struct platform_device *pdev = to_platform_device(dev);
2932         struct d40_base *base = platform_get_drvdata(pdev);
2933         int ret = 0;
2934
2935         if (base->lcpa_regulator) {
2936                 ret = regulator_enable(base->lcpa_regulator);
2937                 if (ret)
2938                         return ret;
2939         }
2940
2941         return pm_runtime_force_resume(dev);
2942 }
2943 #endif
2944
2945 #ifdef CONFIG_PM
2946 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2947                          u32 *regaddr, int num, bool save)
2948 {
2949         int i;
2950
2951         for (i = 0; i < num; i++) {
2952                 void __iomem *addr = baseaddr + regaddr[i];
2953
2954                 if (save)
2955                         backup[i] = readl_relaxed(addr);
2956                 else
2957                         writel_relaxed(backup[i], addr);
2958         }
2959 }
2960
2961 static void d40_save_restore_registers(struct d40_base *base, bool save)
2962 {
2963         int i;
2964
2965         /* Save/Restore channel specific registers */
2966         for (i = 0; i < base->num_phy_chans; i++) {
2967                 void __iomem *addr;
2968                 int idx;
2969
2970                 if (base->phy_res[i].reserved)
2971                         continue;
2972
2973                 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
2974                 idx = i * ARRAY_SIZE(d40_backup_regs_chan);
2975
2976                 dma40_backup(addr, &base->reg_val_backup_chan[idx],
2977                              d40_backup_regs_chan,
2978                              ARRAY_SIZE(d40_backup_regs_chan),
2979                              save);
2980         }
2981
2982         /* Save/Restore global registers */
2983         dma40_backup(base->virtbase, base->reg_val_backup,
2984                      d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
2985                      save);
2986
2987         /* Save/Restore registers only existing on dma40 v3 and later */
2988         if (base->gen_dmac.backup)
2989                 dma40_backup(base->virtbase, base->reg_val_backup_v4,
2990                              base->gen_dmac.backup,
2991                         base->gen_dmac.backup_size,
2992                         save);
2993 }
2994
2995 static int dma40_runtime_suspend(struct device *dev)
2996 {
2997         struct platform_device *pdev = to_platform_device(dev);
2998         struct d40_base *base = platform_get_drvdata(pdev);
2999
3000         d40_save_restore_registers(base, true);
3001
3002         /* Don't disable/enable clocks for v1 due to HW bugs */
3003         if (base->rev != 1)
3004                 writel_relaxed(base->gcc_pwr_off_mask,
3005                                base->virtbase + D40_DREG_GCC);
3006
3007         return 0;
3008 }
3009
3010 static int dma40_runtime_resume(struct device *dev)
3011 {
3012         struct platform_device *pdev = to_platform_device(dev);
3013         struct d40_base *base = platform_get_drvdata(pdev);
3014
3015         d40_save_restore_registers(base, false);
3016
3017         writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3018                        base->virtbase + D40_DREG_GCC);
3019         return 0;
3020 }
3021 #endif
3022
3023 static const struct dev_pm_ops dma40_pm_ops = {
3024         SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3025         SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3026                                 dma40_runtime_resume,
3027                                 NULL)
3028 };
3029
3030 /* Initialization functions. */
3031
3032 static int __init d40_phy_res_init(struct d40_base *base)
3033 {
3034         int i;
3035         int num_phy_chans_avail = 0;
3036         u32 val[2];
3037         int odd_even_bit = -2;
3038         int gcc = D40_DREG_GCC_ENA;
3039
3040         val[0] = readl(base->virtbase + D40_DREG_PRSME);
3041         val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3042
3043         for (i = 0; i < base->num_phy_chans; i++) {
3044                 base->phy_res[i].num = i;
3045                 odd_even_bit += 2 * ((i % 2) == 0);
3046                 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3047                         /* Mark security only channels as occupied */
3048                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3049                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3050                         base->phy_res[i].reserved = true;
3051                         gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3052                                                        D40_DREG_GCC_SRC);
3053                         gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3054                                                        D40_DREG_GCC_DST);
3055
3056
3057                 } else {
3058                         base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3059                         base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3060                         base->phy_res[i].reserved = false;
3061                         num_phy_chans_avail++;
3062                 }
3063                 spin_lock_init(&base->phy_res[i].lock);
3064         }
3065
3066         /* Mark disabled channels as occupied */
3067         for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3068                 int chan = base->plat_data->disabled_channels[i];
3069
3070                 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3071                 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3072                 base->phy_res[chan].reserved = true;
3073                 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3074                                                D40_DREG_GCC_SRC);
3075                 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3076                                                D40_DREG_GCC_DST);
3077                 num_phy_chans_avail--;
3078         }
3079
3080         /* Mark soft_lli channels */
3081         for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3082                 int chan = base->plat_data->soft_lli_chans[i];
3083
3084                 base->phy_res[chan].use_soft_lli = true;
3085         }
3086
3087         dev_info(base->dev, "%d of %d physical DMA channels available\n",
3088                  num_phy_chans_avail, base->num_phy_chans);
3089
3090         /* Verify settings extended vs standard */
3091         val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3092
3093         for (i = 0; i < base->num_phy_chans; i++) {
3094
3095                 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3096                     (val[0] & 0x3) != 1)
3097                         dev_info(base->dev,
3098                                  "[%s] INFO: channel %d is misconfigured (%d)\n",
3099                                  __func__, i, val[0] & 0x3);
3100
3101                 val[0] = val[0] >> 2;
3102         }
3103
3104         /*
3105          * To keep things simple, Enable all clocks initially.
3106          * The clocks will get managed later post channel allocation.
3107          * The clocks for the event lines on which reserved channels exists
3108          * are not managed here.
3109          */
3110         writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3111         base->gcc_pwr_off_mask = gcc;
3112
3113         return num_phy_chans_avail;
3114 }
3115
3116 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3117 {
3118         struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3119         struct clk *clk = NULL;
3120         void __iomem *virtbase = NULL;
3121         struct resource *res = NULL;
3122         struct d40_base *base = NULL;
3123         int num_log_chans = 0;
3124         int num_phy_chans;
3125         int num_memcpy_chans;
3126         int clk_ret = -EINVAL;
3127         int i;
3128         u32 pid;
3129         u32 cid;
3130         u8 rev;
3131
3132         clk = clk_get(&pdev->dev, NULL);
3133         if (IS_ERR(clk)) {
3134                 d40_err(&pdev->dev, "No matching clock found\n");
3135                 goto failure;
3136         }
3137
3138         clk_ret = clk_prepare_enable(clk);
3139         if (clk_ret) {
3140                 d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3141                 goto failure;
3142         }
3143
3144         /* Get IO for DMAC base address */
3145         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3146         if (!res)
3147                 goto failure;
3148
3149         if (request_mem_region(res->start, resource_size(res),
3150                                D40_NAME " I/O base") == NULL)
3151                 goto failure;
3152
3153         virtbase = ioremap(res->start, resource_size(res));
3154         if (!virtbase)
3155                 goto failure;
3156
3157         /* This is just a regular AMBA PrimeCell ID actually */
3158         for (pid = 0, i = 0; i < 4; i++)
3159                 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3160                         & 255) << (i * 8);
3161         for (cid = 0, i = 0; i < 4; i++)
3162                 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3163                         & 255) << (i * 8);
3164
3165         if (cid != AMBA_CID) {
3166                 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3167                 goto failure;
3168         }
3169         if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3170                 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3171                         AMBA_MANF_BITS(pid),
3172                         AMBA_VENDOR_ST);
3173                 goto failure;
3174         }
3175         /*
3176          * HW revision:
3177          * DB8500ed has revision 0
3178          * ? has revision 1
3179          * DB8500v1 has revision 2
3180          * DB8500v2 has revision 3
3181          * AP9540v1 has revision 4
3182          * DB8540v1 has revision 4
3183          */
3184         rev = AMBA_REV_BITS(pid);
3185         if (rev < 2) {
3186                 d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3187                 goto failure;
3188         }
3189
3190         /* The number of physical channels on this HW */
3191         if (plat_data->num_of_phy_chans)
3192                 num_phy_chans = plat_data->num_of_phy_chans;
3193         else
3194                 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3195
3196         /* The number of channels used for memcpy */
3197         if (plat_data->num_of_memcpy_chans)
3198                 num_memcpy_chans = plat_data->num_of_memcpy_chans;
3199         else
3200                 num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3201
3202         num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3203
3204         dev_info(&pdev->dev,
3205                  "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3206                  rev, &res->start, num_phy_chans, num_log_chans);
3207
3208         base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3209                        (num_phy_chans + num_log_chans + num_memcpy_chans) *
3210                        sizeof(struct d40_chan), GFP_KERNEL);
3211
3212         if (base == NULL)
3213                 goto failure;
3214
3215         base->rev = rev;
3216         base->clk = clk;
3217         base->num_memcpy_chans = num_memcpy_chans;
3218         base->num_phy_chans = num_phy_chans;
3219         base->num_log_chans = num_log_chans;
3220         base->phy_start = res->start;
3221         base->phy_size = resource_size(res);
3222         base->virtbase = virtbase;
3223         base->plat_data = plat_data;
3224         base->dev = &pdev->dev;
3225         base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3226         base->log_chans = &base->phy_chans[num_phy_chans];
3227
3228         if (base->plat_data->num_of_phy_chans == 14) {
3229                 base->gen_dmac.backup = d40_backup_regs_v4b;
3230                 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3231                 base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3232                 base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3233                 base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3234                 base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3235                 base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3236                 base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3237                 base->gen_dmac.il = il_v4b;
3238                 base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3239                 base->gen_dmac.init_reg = dma_init_reg_v4b;
3240                 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3241         } else {
3242                 if (base->rev >= 3) {
3243                         base->gen_dmac.backup = d40_backup_regs_v4a;
3244                         base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3245                 }
3246                 base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3247                 base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3248                 base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3249                 base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3250                 base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3251                 base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3252                 base->gen_dmac.il = il_v4a;
3253                 base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3254                 base->gen_dmac.init_reg = dma_init_reg_v4a;
3255                 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3256         }
3257
3258         base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
3259                                 GFP_KERNEL);
3260         if (!base->phy_res)
3261                 goto failure;
3262
3263         base->lookup_phy_chans = kzalloc(num_phy_chans *
3264                                          sizeof(struct d40_chan *),
3265                                          GFP_KERNEL);
3266         if (!base->lookup_phy_chans)
3267                 goto failure;
3268
3269         base->lookup_log_chans = kzalloc(num_log_chans *
3270                                          sizeof(struct d40_chan *),
3271                                          GFP_KERNEL);
3272         if (!base->lookup_log_chans)
3273                 goto failure;
3274
3275         base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
3276                                             sizeof(d40_backup_regs_chan),
3277                                             GFP_KERNEL);
3278         if (!base->reg_val_backup_chan)
3279                 goto failure;
3280
3281         base->lcla_pool.alloc_map =
3282                 kzalloc(num_phy_chans * sizeof(struct d40_desc *)
3283                         * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
3284         if (!base->lcla_pool.alloc_map)
3285                 goto failure;
3286
3287         base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3288                                             0, SLAB_HWCACHE_ALIGN,
3289                                             NULL);
3290         if (base->desc_slab == NULL)
3291                 goto failure;
3292
3293         return base;
3294
3295 failure:
3296         if (!clk_ret)
3297                 clk_disable_unprepare(clk);
3298         if (!IS_ERR(clk))
3299                 clk_put(clk);
3300         if (virtbase)
3301                 iounmap(virtbase);
3302         if (res)
3303                 release_mem_region(res->start,
3304                                    resource_size(res));
3305         if (virtbase)
3306                 iounmap(virtbase);
3307
3308         if (base) {
3309                 kfree(base->lcla_pool.alloc_map);
3310                 kfree(base->reg_val_backup_chan);
3311                 kfree(base->lookup_log_chans);
3312                 kfree(base->lookup_phy_chans);
3313                 kfree(base->phy_res);
3314                 kfree(base);
3315         }
3316
3317         return NULL;
3318 }
3319
3320 static void __init d40_hw_init(struct d40_base *base)
3321 {
3322
3323         int i;
3324         u32 prmseo[2] = {0, 0};
3325         u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3326         u32 pcmis = 0;
3327         u32 pcicr = 0;
3328         struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3329         u32 reg_size = base->gen_dmac.init_reg_size;
3330
3331         for (i = 0; i < reg_size; i++)
3332                 writel(dma_init_reg[i].val,
3333                        base->virtbase + dma_init_reg[i].reg);
3334
3335         /* Configure all our dma channels to default settings */
3336         for (i = 0; i < base->num_phy_chans; i++) {
3337
3338                 activeo[i % 2] = activeo[i % 2] << 2;
3339
3340                 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3341                     == D40_ALLOC_PHY) {
3342                         activeo[i % 2] |= 3;
3343                         continue;
3344                 }
3345
3346                 /* Enable interrupt # */
3347                 pcmis = (pcmis << 1) | 1;
3348
3349                 /* Clear interrupt # */
3350                 pcicr = (pcicr << 1) | 1;
3351
3352                 /* Set channel to physical mode */
3353                 prmseo[i % 2] = prmseo[i % 2] << 2;
3354                 prmseo[i % 2] |= 1;
3355
3356         }
3357
3358         writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3359         writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3360         writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3361         writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3362
3363         /* Write which interrupt to enable */
3364         writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3365
3366         /* Write which interrupt to clear */
3367         writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3368
3369         /* These are __initdata and cannot be accessed after init */
3370         base->gen_dmac.init_reg = NULL;
3371         base->gen_dmac.init_reg_size = 0;
3372 }
3373
3374 static int __init d40_lcla_allocate(struct d40_base *base)
3375 {
3376         struct d40_lcla_pool *pool = &base->lcla_pool;
3377         unsigned long *page_list;
3378         int i, j;
3379         int ret = 0;
3380
3381         /*
3382          * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3383          * To full fill this hardware requirement without wasting 256 kb
3384          * we allocate pages until we get an aligned one.
3385          */
3386         page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
3387                             GFP_KERNEL);
3388
3389         if (!page_list) {
3390                 ret = -ENOMEM;
3391                 goto failure;
3392         }
3393
3394         /* Calculating how many pages that are required */
3395         base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3396
3397         for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3398                 page_list[i] = __get_free_pages(GFP_KERNEL,
3399                                                 base->lcla_pool.pages);
3400                 if (!page_list[i]) {
3401
3402                         d40_err(base->dev, "Failed to allocate %d pages.\n",
3403                                 base->lcla_pool.pages);
3404                         ret = -ENOMEM;
3405
3406                         for (j = 0; j < i; j++)
3407                                 free_pages(page_list[j], base->lcla_pool.pages);
3408                         goto failure;
3409                 }
3410
3411                 if ((virt_to_phys((void *)page_list[i]) &
3412                      (LCLA_ALIGNMENT - 1)) == 0)
3413                         break;
3414         }
3415
3416         for (j = 0; j < i; j++)
3417                 free_pages(page_list[j], base->lcla_pool.pages);
3418
3419         if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3420                 base->lcla_pool.base = (void *)page_list[i];
3421         } else {
3422                 /*
3423                  * After many attempts and no succees with finding the correct
3424                  * alignment, try with allocating a big buffer.
3425                  */
3426                 dev_warn(base->dev,
3427                          "[%s] Failed to get %d pages @ 18 bit align.\n",
3428                          __func__, base->lcla_pool.pages);
3429                 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3430                                                          base->num_phy_chans +
3431                                                          LCLA_ALIGNMENT,
3432                                                          GFP_KERNEL);
3433                 if (!base->lcla_pool.base_unaligned) {
3434                         ret = -ENOMEM;
3435                         goto failure;
3436                 }
3437
3438                 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3439                                                  LCLA_ALIGNMENT);
3440         }
3441
3442         pool->dma_addr = dma_map_single(base->dev, pool->base,
3443                                         SZ_1K * base->num_phy_chans,
3444                                         DMA_TO_DEVICE);
3445         if (dma_mapping_error(base->dev, pool->dma_addr)) {
3446                 pool->dma_addr = 0;
3447                 ret = -ENOMEM;
3448                 goto failure;
3449         }
3450
3451         writel(virt_to_phys(base->lcla_pool.base),
3452                base->virtbase + D40_DREG_LCLA);
3453 failure:
3454         kfree(page_list);
3455         return ret;
3456 }
3457
3458 static int __init d40_of_probe(struct platform_device *pdev,
3459                                struct device_node *np)
3460 {
3461         struct stedma40_platform_data *pdata;
3462         int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3463         const __be32 *list;
3464
3465         pdata = devm_kzalloc(&pdev->dev,
3466                              sizeof(struct stedma40_platform_data),
3467                              GFP_KERNEL);
3468         if (!pdata)
3469                 return -ENOMEM;
3470
3471         /* If absent this value will be obtained from h/w. */
3472         of_property_read_u32(np, "dma-channels", &num_phy);
3473         if (num_phy > 0)
3474                 pdata->num_of_phy_chans = num_phy;
3475
3476         list = of_get_property(np, "memcpy-channels", &num_memcpy);
3477         num_memcpy /= sizeof(*list);
3478
3479         if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3480                 d40_err(&pdev->dev,
3481                         "Invalid number of memcpy channels specified (%d)\n",
3482                         num_memcpy);
3483                 return -EINVAL;
3484         }
3485         pdata->num_of_memcpy_chans = num_memcpy;
3486
3487         of_property_read_u32_array(np, "memcpy-channels",
3488                                    dma40_memcpy_channels,
3489                                    num_memcpy);
3490
3491         list = of_get_property(np, "disabled-channels", &num_disabled);
3492         num_disabled /= sizeof(*list);
3493
3494         if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3495                 d40_err(&pdev->dev,
3496                         "Invalid number of disabled channels specified (%d)\n",
3497                         num_disabled);
3498                 return -EINVAL;
3499         }
3500
3501         of_property_read_u32_array(np, "disabled-channels",
3502                                    pdata->disabled_channels,
3503                                    num_disabled);
3504         pdata->disabled_channels[num_disabled] = -1;
3505
3506         pdev->dev.platform_data = pdata;
3507
3508         return 0;
3509 }
3510
3511 static int __init d40_probe(struct platform_device *pdev)
3512 {
3513         struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3514         struct device_node *np = pdev->dev.of_node;
3515         int ret = -ENOENT;
3516         struct d40_base *base;
3517         struct resource *res;
3518         int num_reserved_chans;
3519         u32 val;
3520
3521         if (!plat_data) {
3522                 if (np) {
3523                         if (d40_of_probe(pdev, np)) {
3524                                 ret = -ENOMEM;
3525                                 goto report_failure;
3526                         }
3527                 } else {
3528                         d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3529                         goto report_failure;
3530                 }
3531         }
3532
3533         base = d40_hw_detect_init(pdev);
3534         if (!base)
3535                 goto report_failure;
3536
3537         num_reserved_chans = d40_phy_res_init(base);
3538
3539         platform_set_drvdata(pdev, base);
3540
3541         spin_lock_init(&base->interrupt_lock);
3542         spin_lock_init(&base->execmd_lock);
3543
3544         /* Get IO for logical channel parameter address */
3545         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3546         if (!res) {
3547                 ret = -ENOENT;
3548                 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3549                 goto failure;
3550         }
3551         base->lcpa_size = resource_size(res);
3552         base->phy_lcpa = res->start;
3553
3554         if (request_mem_region(res->start, resource_size(res),
3555                                D40_NAME " I/O lcpa") == NULL) {
3556                 ret = -EBUSY;
3557                 d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3558                 goto failure;
3559         }
3560
3561         /* We make use of ESRAM memory for this. */
3562         val = readl(base->virtbase + D40_DREG_LCPA);
3563         if (res->start != val && val != 0) {
3564                 dev_warn(&pdev->dev,
3565                          "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3566                          __func__, val, &res->start);
3567         } else
3568                 writel(res->start, base->virtbase + D40_DREG_LCPA);
3569
3570         base->lcpa_base = ioremap(res->start, resource_size(res));
3571         if (!base->lcpa_base) {
3572                 ret = -ENOMEM;
3573                 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3574                 goto failure;
3575         }
3576         /* If lcla has to be located in ESRAM we don't need to allocate */
3577         if (base->plat_data->use_esram_lcla) {
3578                 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3579                                                         "lcla_esram");
3580                 if (!res) {
3581                         ret = -ENOENT;
3582                         d40_err(&pdev->dev,
3583                                 "No \"lcla_esram\" memory resource\n");
3584                         goto failure;
3585                 }
3586                 base->lcla_pool.base = ioremap(res->start,
3587                                                 resource_size(res));
3588                 if (!base->lcla_pool.base) {
3589                         ret = -ENOMEM;
3590                         d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3591                         goto failure;
3592                 }
3593                 writel(res->start, base->virtbase + D40_DREG_LCLA);
3594
3595         } else {
3596                 ret = d40_lcla_allocate(base);
3597                 if (ret) {
3598                         d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3599                         goto failure;
3600                 }
3601         }
3602
3603         spin_lock_init(&base->lcla_pool.lock);
3604
3605         base->irq = platform_get_irq(pdev, 0);
3606
3607         ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3608         if (ret) {
3609                 d40_err(&pdev->dev, "No IRQ defined\n");
3610                 goto failure;
3611         }
3612
3613         if (base->plat_data->use_esram_lcla) {
3614
3615                 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3616                 if (IS_ERR(base->lcpa_regulator)) {
3617                         d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3618                         ret = PTR_ERR(base->lcpa_regulator);
3619                         base->lcpa_regulator = NULL;
3620                         goto failure;
3621                 }
3622
3623                 ret = regulator_enable(base->lcpa_regulator);
3624                 if (ret) {
3625                         d40_err(&pdev->dev,
3626                                 "Failed to enable lcpa_regulator\n");
3627                         regulator_put(base->lcpa_regulator);
3628                         base->lcpa_regulator = NULL;
3629                         goto failure;
3630                 }
3631         }
3632
3633         writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3634
3635         pm_runtime_irq_safe(base->dev);
3636         pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3637         pm_runtime_use_autosuspend(base->dev);
3638         pm_runtime_mark_last_busy(base->dev);
3639         pm_runtime_set_active(base->dev);
3640         pm_runtime_enable(base->dev);
3641
3642         ret = d40_dmaengine_init(base, num_reserved_chans);
3643         if (ret)
3644                 goto failure;
3645
3646         base->dev->dma_parms = &base->dma_parms;
3647         ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3648         if (ret) {
3649                 d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3650                 goto failure;
3651         }
3652
3653         d40_hw_init(base);
3654
3655         if (np) {
3656                 ret = of_dma_controller_register(np, d40_xlate, NULL);
3657                 if (ret)
3658                         dev_err(&pdev->dev,
3659                                 "could not register of_dma_controller\n");
3660         }
3661
3662         dev_info(base->dev, "initialized\n");
3663         return 0;
3664
3665 failure:
3666         kmem_cache_destroy(base->desc_slab);
3667         if (base->virtbase)
3668                 iounmap(base->virtbase);
3669
3670         if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3671                 iounmap(base->lcla_pool.base);
3672                 base->lcla_pool.base = NULL;
3673         }
3674
3675         if (base->lcla_pool.dma_addr)
3676                 dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3677                                  SZ_1K * base->num_phy_chans,
3678                                  DMA_TO_DEVICE);
3679
3680         if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3681                 free_pages((unsigned long)base->lcla_pool.base,
3682                            base->lcla_pool.pages);
3683
3684         kfree(base->lcla_pool.base_unaligned);
3685
3686         if (base->phy_lcpa)
3687                 release_mem_region(base->phy_lcpa,
3688                                    base->lcpa_size);
3689         if (base->phy_start)
3690                 release_mem_region(base->phy_start,
3691                                    base->phy_size);
3692         if (base->clk) {
3693                 clk_disable_unprepare(base->clk);
3694                 clk_put(base->clk);
3695         }
3696
3697         if (base->lcpa_regulator) {
3698                 regulator_disable(base->lcpa_regulator);
3699                 regulator_put(base->lcpa_regulator);
3700         }
3701
3702         kfree(base->lcla_pool.alloc_map);
3703         kfree(base->lookup_log_chans);
3704         kfree(base->lookup_phy_chans);
3705         kfree(base->phy_res);
3706         kfree(base);
3707 report_failure:
3708         d40_err(&pdev->dev, "probe failed\n");
3709         return ret;
3710 }
3711
3712 static const struct of_device_id d40_match[] = {
3713         { .compatible = "stericsson,dma40", },
3714         {}
3715 };
3716
3717 static struct platform_driver d40_driver = {
3718         .driver = {
3719                 .name  = D40_NAME,
3720                 .pm = &dma40_pm_ops,
3721                 .of_match_table = d40_match,
3722         },
3723 };
3724
3725 static int __init stedma40_init(void)
3726 {
3727         return platform_driver_probe(&d40_driver, d40_probe);
3728 }
3729 subsys_initcall(stedma40_init);