Merge branch 'topic/omap' into for-linus
[cascardo/linux.git] / drivers / dma / xgene-dma.c
1 /*
2  * Applied Micro X-Gene SoC DMA engine Driver
3  *
4  * Copyright (c) 2015, Applied Micro Circuits Corporation
5  * Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
6  *          Loc Ho <lho@apm.com>
7  *
8  * This program is free software; you can redistribute  it and/or modify it
9  * under  the terms of  the GNU General  Public License as published by the
10  * Free Software Foundation;  either version 2 of the  License, or (at your
11  * option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  *
21  * NOTE: PM support is currently not available.
22  */
23
24 #include <linux/acpi.h>
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dmapool.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/irq.h>
33 #include <linux/module.h>
34 #include <linux/of_device.h>
35
36 #include "dmaengine.h"
37
38 /* X-Gene DMA ring csr registers and bit definations */
39 #define XGENE_DMA_RING_CONFIG                   0x04
40 #define XGENE_DMA_RING_ENABLE                   BIT(31)
41 #define XGENE_DMA_RING_ID                       0x08
42 #define XGENE_DMA_RING_ID_SETUP(v)              ((v) | BIT(31))
43 #define XGENE_DMA_RING_ID_BUF                   0x0C
44 #define XGENE_DMA_RING_ID_BUF_SETUP(v)          (((v) << 9) | BIT(21))
45 #define XGENE_DMA_RING_THRESLD0_SET1            0x30
46 #define XGENE_DMA_RING_THRESLD0_SET1_VAL        0X64
47 #define XGENE_DMA_RING_THRESLD1_SET1            0x34
48 #define XGENE_DMA_RING_THRESLD1_SET1_VAL        0xC8
49 #define XGENE_DMA_RING_HYSTERESIS               0x68
50 #define XGENE_DMA_RING_HYSTERESIS_VAL           0xFFFFFFFF
51 #define XGENE_DMA_RING_STATE                    0x6C
52 #define XGENE_DMA_RING_STATE_WR_BASE            0x70
53 #define XGENE_DMA_RING_NE_INT_MODE              0x017C
54 #define XGENE_DMA_RING_NE_INT_MODE_SET(m, v)    \
55         ((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
56 #define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v)  \
57         ((m) &= (~BIT(31 - (v))))
58 #define XGENE_DMA_RING_CLKEN                    0xC208
59 #define XGENE_DMA_RING_SRST                     0xC200
60 #define XGENE_DMA_RING_MEM_RAM_SHUTDOWN         0xD070
61 #define XGENE_DMA_RING_BLK_MEM_RDY              0xD074
62 #define XGENE_DMA_RING_BLK_MEM_RDY_VAL          0xFFFFFFFF
63 #define XGENE_DMA_RING_ID_GET(owner, num)       (((owner) << 6) | (num))
64 #define XGENE_DMA_RING_DST_ID(v)                ((1 << 10) | (v))
65 #define XGENE_DMA_RING_CMD_OFFSET               0x2C
66 #define XGENE_DMA_RING_CMD_BASE_OFFSET(v)       ((v) << 6)
67 #define XGENE_DMA_RING_COHERENT_SET(m)          \
68         (((u32 *)(m))[2] |= BIT(4))
69 #define XGENE_DMA_RING_ADDRL_SET(m, v)          \
70         (((u32 *)(m))[2] |= (((v) >> 8) << 5))
71 #define XGENE_DMA_RING_ADDRH_SET(m, v)          \
72         (((u32 *)(m))[3] |= ((v) >> 35))
73 #define XGENE_DMA_RING_ACCEPTLERR_SET(m)        \
74         (((u32 *)(m))[3] |= BIT(19))
75 #define XGENE_DMA_RING_SIZE_SET(m, v)           \
76         (((u32 *)(m))[3] |= ((v) << 23))
77 #define XGENE_DMA_RING_RECOMBBUF_SET(m)         \
78         (((u32 *)(m))[3] |= BIT(27))
79 #define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m)     \
80         (((u32 *)(m))[3] |= (0x7 << 28))
81 #define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m)     \
82         (((u32 *)(m))[4] |= 0x3)
83 #define XGENE_DMA_RING_SELTHRSH_SET(m)          \
84         (((u32 *)(m))[4] |= BIT(3))
85 #define XGENE_DMA_RING_TYPE_SET(m, v)           \
86         (((u32 *)(m))[4] |= ((v) << 19))
87
88 /* X-Gene DMA device csr registers and bit definitions */
89 #define XGENE_DMA_IPBRR                         0x0
90 #define XGENE_DMA_DEV_ID_RD(v)                  ((v) & 0x00000FFF)
91 #define XGENE_DMA_BUS_ID_RD(v)                  (((v) >> 12) & 3)
92 #define XGENE_DMA_REV_NO_RD(v)                  (((v) >> 14) & 3)
93 #define XGENE_DMA_GCR                           0x10
94 #define XGENE_DMA_CH_SETUP(v)                   \
95         ((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
96 #define XGENE_DMA_ENABLE(v)                     ((v) |= BIT(31))
97 #define XGENE_DMA_DISABLE(v)                    ((v) &= ~BIT(31))
98 #define XGENE_DMA_RAID6_CONT                    0x14
99 #define XGENE_DMA_RAID6_MULTI_CTRL(v)           ((v) << 24)
100 #define XGENE_DMA_INT                           0x70
101 #define XGENE_DMA_INT_MASK                      0x74
102 #define XGENE_DMA_INT_ALL_MASK                  0xFFFFFFFF
103 #define XGENE_DMA_INT_ALL_UNMASK                0x0
104 #define XGENE_DMA_INT_MASK_SHIFT                0x14
105 #define XGENE_DMA_RING_INT0_MASK                0x90A0
106 #define XGENE_DMA_RING_INT1_MASK                0x90A8
107 #define XGENE_DMA_RING_INT2_MASK                0x90B0
108 #define XGENE_DMA_RING_INT3_MASK                0x90B8
109 #define XGENE_DMA_RING_INT4_MASK                0x90C0
110 #define XGENE_DMA_CFG_RING_WQ_ASSOC             0x90E0
111 #define XGENE_DMA_ASSOC_RING_MNGR1              0xFFFFFFFF
112 #define XGENE_DMA_MEM_RAM_SHUTDOWN              0xD070
113 #define XGENE_DMA_BLK_MEM_RDY                   0xD074
114 #define XGENE_DMA_BLK_MEM_RDY_VAL               0xFFFFFFFF
115 #define XGENE_DMA_RING_CMD_SM_OFFSET            0x8000
116
117 /* X-Gene SoC EFUSE csr register and bit defination */
118 #define XGENE_SOC_JTAG1_SHADOW                  0x18
119 #define XGENE_DMA_PQ_DISABLE_MASK               BIT(13)
120
121 /* X-Gene DMA Descriptor format */
122 #define XGENE_DMA_DESC_NV_BIT                   BIT_ULL(50)
123 #define XGENE_DMA_DESC_IN_BIT                   BIT_ULL(55)
124 #define XGENE_DMA_DESC_C_BIT                    BIT_ULL(63)
125 #define XGENE_DMA_DESC_DR_BIT                   BIT_ULL(61)
126 #define XGENE_DMA_DESC_ELERR_POS                46
127 #define XGENE_DMA_DESC_RTYPE_POS                56
128 #define XGENE_DMA_DESC_LERR_POS                 60
129 #define XGENE_DMA_DESC_BUFLEN_POS               48
130 #define XGENE_DMA_DESC_HOENQ_NUM_POS            48
131 #define XGENE_DMA_DESC_ELERR_RD(m)              \
132         (((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
133 #define XGENE_DMA_DESC_LERR_RD(m)               \
134         (((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
135 #define XGENE_DMA_DESC_STATUS(elerr, lerr)      \
136         (((elerr) << 4) | (lerr))
137
138 /* X-Gene DMA descriptor empty s/w signature */
139 #define XGENE_DMA_DESC_EMPTY_SIGNATURE          ~0ULL
140
141 /* X-Gene DMA configurable parameters defines */
142 #define XGENE_DMA_RING_NUM              512
143 #define XGENE_DMA_BUFNUM                0x0
144 #define XGENE_DMA_CPU_BUFNUM            0x18
145 #define XGENE_DMA_RING_OWNER_DMA        0x03
146 #define XGENE_DMA_RING_OWNER_CPU        0x0F
147 #define XGENE_DMA_RING_TYPE_REGULAR     0x01
148 #define XGENE_DMA_RING_WQ_DESC_SIZE     32      /* 32 Bytes */
149 #define XGENE_DMA_RING_NUM_CONFIG       5
150 #define XGENE_DMA_MAX_CHANNEL           4
151 #define XGENE_DMA_XOR_CHANNEL           0
152 #define XGENE_DMA_PQ_CHANNEL            1
153 #define XGENE_DMA_MAX_BYTE_CNT          0x4000  /* 16 KB */
154 #define XGENE_DMA_MAX_64B_DESC_BYTE_CNT 0x14000 /* 80 KB */
155 #define XGENE_DMA_MAX_XOR_SRC           5
156 #define XGENE_DMA_16K_BUFFER_LEN_CODE   0x0
157 #define XGENE_DMA_INVALID_LEN_CODE      0x7800000000000000ULL
158
159 /* X-Gene DMA descriptor error codes */
160 #define ERR_DESC_AXI                    0x01
161 #define ERR_BAD_DESC                    0x02
162 #define ERR_READ_DATA_AXI               0x03
163 #define ERR_WRITE_DATA_AXI              0x04
164 #define ERR_FBP_TIMEOUT                 0x05
165 #define ERR_ECC                         0x06
166 #define ERR_DIFF_SIZE                   0x08
167 #define ERR_SCT_GAT_LEN                 0x09
168 #define ERR_CRC_ERR                     0x11
169 #define ERR_CHKSUM                      0x12
170 #define ERR_DIF                         0x13
171
172 /* X-Gene DMA error interrupt codes */
173 #define ERR_DIF_SIZE_INT                0x0
174 #define ERR_GS_ERR_INT                  0x1
175 #define ERR_FPB_TIMEO_INT               0x2
176 #define ERR_WFIFO_OVF_INT               0x3
177 #define ERR_RFIFO_OVF_INT               0x4
178 #define ERR_WR_TIMEO_INT                0x5
179 #define ERR_RD_TIMEO_INT                0x6
180 #define ERR_WR_ERR_INT                  0x7
181 #define ERR_RD_ERR_INT                  0x8
182 #define ERR_BAD_DESC_INT                0x9
183 #define ERR_DESC_DST_INT                0xA
184 #define ERR_DESC_SRC_INT                0xB
185
186 /* X-Gene DMA flyby operation code */
187 #define FLYBY_2SRC_XOR                  0x80
188 #define FLYBY_3SRC_XOR                  0x90
189 #define FLYBY_4SRC_XOR                  0xA0
190 #define FLYBY_5SRC_XOR                  0xB0
191
192 /* X-Gene DMA SW descriptor flags */
193 #define XGENE_DMA_FLAG_64B_DESC         BIT(0)
194
195 /* Define to dump X-Gene DMA descriptor */
196 #define XGENE_DMA_DESC_DUMP(desc, m)    \
197         print_hex_dump(KERN_ERR, (m),   \
198                         DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)
199
200 #define to_dma_desc_sw(tx)              \
201         container_of(tx, struct xgene_dma_desc_sw, tx)
202 #define to_dma_chan(dchan)              \
203         container_of(dchan, struct xgene_dma_chan, dma_chan)
204
205 #define chan_dbg(chan, fmt, arg...)     \
206         dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
207 #define chan_err(chan, fmt, arg...)     \
208         dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
209
210 struct xgene_dma_desc_hw {
211         __le64 m0;
212         __le64 m1;
213         __le64 m2;
214         __le64 m3;
215 };
216
217 enum xgene_dma_ring_cfgsize {
218         XGENE_DMA_RING_CFG_SIZE_512B,
219         XGENE_DMA_RING_CFG_SIZE_2KB,
220         XGENE_DMA_RING_CFG_SIZE_16KB,
221         XGENE_DMA_RING_CFG_SIZE_64KB,
222         XGENE_DMA_RING_CFG_SIZE_512KB,
223         XGENE_DMA_RING_CFG_SIZE_INVALID
224 };
225
226 struct xgene_dma_ring {
227         struct xgene_dma *pdma;
228         u8 buf_num;
229         u16 id;
230         u16 num;
231         u16 head;
232         u16 owner;
233         u16 slots;
234         u16 dst_ring_num;
235         u32 size;
236         void __iomem *cmd;
237         void __iomem *cmd_base;
238         dma_addr_t desc_paddr;
239         u32 state[XGENE_DMA_RING_NUM_CONFIG];
240         enum xgene_dma_ring_cfgsize cfgsize;
241         union {
242                 void *desc_vaddr;
243                 struct xgene_dma_desc_hw *desc_hw;
244         };
245 };
246
247 struct xgene_dma_desc_sw {
248         struct xgene_dma_desc_hw desc1;
249         struct xgene_dma_desc_hw desc2;
250         u32 flags;
251         struct list_head node;
252         struct list_head tx_list;
253         struct dma_async_tx_descriptor tx;
254 };
255
256 /**
257  * struct xgene_dma_chan - internal representation of an X-Gene DMA channel
258  * @dma_chan: dmaengine channel object member
259  * @pdma: X-Gene DMA device structure reference
260  * @dev: struct device reference for dma mapping api
261  * @id: raw id of this channel
262  * @rx_irq: channel IRQ
263  * @name: name of X-Gene DMA channel
264  * @lock: serializes enqueue/dequeue operations to the descriptor pool
265  * @pending: number of transaction request pushed to DMA controller for
266  *      execution, but still waiting for completion,
267  * @max_outstanding: max number of outstanding request we can push to channel
268  * @ld_pending: descriptors which are queued to run, but have not yet been
269  *      submitted to the hardware for execution
270  * @ld_running: descriptors which are currently being executing by the hardware
271  * @ld_completed: descriptors which have finished execution by the hardware.
272  *      These descriptors have already had their cleanup actions run. They
273  *      are waiting for the ACK bit to be set by the async tx API.
274  * @desc_pool: descriptor pool for DMA operations
275  * @tasklet: bottom half where all completed descriptors cleans
276  * @tx_ring: transmit ring descriptor that we use to prepare actual
277  *      descriptors for further executions
278  * @rx_ring: receive ring descriptor that we use to get completed DMA
279  *      descriptors during cleanup time
280  */
281 struct xgene_dma_chan {
282         struct dma_chan dma_chan;
283         struct xgene_dma *pdma;
284         struct device *dev;
285         int id;
286         int rx_irq;
287         char name[10];
288         spinlock_t lock;
289         int pending;
290         int max_outstanding;
291         struct list_head ld_pending;
292         struct list_head ld_running;
293         struct list_head ld_completed;
294         struct dma_pool *desc_pool;
295         struct tasklet_struct tasklet;
296         struct xgene_dma_ring tx_ring;
297         struct xgene_dma_ring rx_ring;
298 };
299
300 /**
301  * struct xgene_dma - internal representation of an X-Gene DMA device
302  * @err_irq: DMA error irq number
303  * @ring_num: start id number for DMA ring
304  * @csr_dma: base for DMA register access
305  * @csr_ring: base for DMA ring register access
306  * @csr_ring_cmd: base for DMA ring command register access
307  * @csr_efuse: base for efuse register access
308  * @dma_dev: embedded struct dma_device
309  * @chan: reference to X-Gene DMA channels
310  */
311 struct xgene_dma {
312         struct device *dev;
313         struct clk *clk;
314         int err_irq;
315         int ring_num;
316         void __iomem *csr_dma;
317         void __iomem *csr_ring;
318         void __iomem *csr_ring_cmd;
319         void __iomem *csr_efuse;
320         struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
321         struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
322 };
323
324 static const char * const xgene_dma_desc_err[] = {
325         [ERR_DESC_AXI] = "AXI error when reading src/dst link list",
326         [ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
327         [ERR_READ_DATA_AXI] = "AXI error when reading data",
328         [ERR_WRITE_DATA_AXI] = "AXI error when writing data",
329         [ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
330         [ERR_ECC] = "ECC double bit error",
331         [ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
332         [ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
333         [ERR_CRC_ERR] = "CRC error",
334         [ERR_CHKSUM] = "Checksum error",
335         [ERR_DIF] = "DIF error",
336 };
337
338 static const char * const xgene_dma_err[] = {
339         [ERR_DIF_SIZE_INT] = "DIF size error",
340         [ERR_GS_ERR_INT] = "Gather scatter not same size error",
341         [ERR_FPB_TIMEO_INT] = "Free pool time out error",
342         [ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
343         [ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
344         [ERR_WR_TIMEO_INT] = "Write time out error",
345         [ERR_RD_TIMEO_INT] = "Read time out error",
346         [ERR_WR_ERR_INT] = "HBF bus write error",
347         [ERR_RD_ERR_INT] = "HBF bus read error",
348         [ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
349         [ERR_DESC_DST_INT] = "HFB reading dst link address error",
350         [ERR_DESC_SRC_INT] = "HFB reading src link address error",
351 };
352
353 static bool is_pq_enabled(struct xgene_dma *pdma)
354 {
355         u32 val;
356
357         val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
358         return !(val & XGENE_DMA_PQ_DISABLE_MASK);
359 }
360
361 static u64 xgene_dma_encode_len(size_t len)
362 {
363         return (len < XGENE_DMA_MAX_BYTE_CNT) ?
364                 ((u64)len << XGENE_DMA_DESC_BUFLEN_POS) :
365                 XGENE_DMA_16K_BUFFER_LEN_CODE;
366 }
367
368 static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
369 {
370         static u8 flyby_type[] = {
371                 FLYBY_2SRC_XOR, /* Dummy */
372                 FLYBY_2SRC_XOR, /* Dummy */
373                 FLYBY_2SRC_XOR,
374                 FLYBY_3SRC_XOR,
375                 FLYBY_4SRC_XOR,
376                 FLYBY_5SRC_XOR
377         };
378
379         return flyby_type[src_cnt];
380 }
381
382 static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len,
383                                      dma_addr_t *paddr)
384 {
385         size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
386                         *len : XGENE_DMA_MAX_BYTE_CNT;
387
388         *ext8 |= cpu_to_le64(*paddr);
389         *ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes));
390         *len -= nbytes;
391         *paddr += nbytes;
392 }
393
394 static void xgene_dma_invalidate_buffer(__le64 *ext8)
395 {
396         *ext8 |= cpu_to_le64(XGENE_DMA_INVALID_LEN_CODE);
397 }
398
399 static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx)
400 {
401         switch (idx) {
402         case 0:
403                 return &desc->m1;
404         case 1:
405                 return &desc->m0;
406         case 2:
407                 return &desc->m3;
408         case 3:
409                 return &desc->m2;
410         default:
411                 pr_err("Invalid dma descriptor index\n");
412         }
413
414         return NULL;
415 }
416
417 static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc,
418                                 u16 dst_ring_num)
419 {
420         desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT);
421         desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA <<
422                                 XGENE_DMA_DESC_RTYPE_POS);
423         desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT);
424         desc->m3 |= cpu_to_le64((u64)dst_ring_num <<
425                                 XGENE_DMA_DESC_HOENQ_NUM_POS);
426 }
427
428 static void xgene_dma_prep_cpy_desc(struct xgene_dma_chan *chan,
429                                     struct xgene_dma_desc_sw *desc_sw,
430                                     dma_addr_t dst, dma_addr_t src,
431                                     size_t len)
432 {
433         struct xgene_dma_desc_hw *desc1, *desc2;
434         int i;
435
436         /* Get 1st descriptor */
437         desc1 = &desc_sw->desc1;
438         xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
439
440         /* Set destination address */
441         desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
442         desc1->m3 |= cpu_to_le64(dst);
443
444         /* Set 1st source address */
445         xgene_dma_set_src_buffer(&desc1->m1, &len, &src);
446
447         if (!len)
448                 return;
449
450         /*
451          * We need to split this source buffer,
452          * and need to use 2nd descriptor
453          */
454         desc2 = &desc_sw->desc2;
455         desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
456
457         /* Set 2nd to 5th source address */
458         for (i = 0; i < 4 && len; i++)
459                 xgene_dma_set_src_buffer(xgene_dma_lookup_ext8(desc2, i),
460                                          &len, &src);
461
462         /* Invalidate unused source address field */
463         for (; i < 4; i++)
464                 xgene_dma_invalidate_buffer(xgene_dma_lookup_ext8(desc2, i));
465
466         /* Updated flag that we have prepared 64B descriptor */
467         desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
468 }
469
470 static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
471                                     struct xgene_dma_desc_sw *desc_sw,
472                                     dma_addr_t *dst, dma_addr_t *src,
473                                     u32 src_cnt, size_t *nbytes,
474                                     const u8 *scf)
475 {
476         struct xgene_dma_desc_hw *desc1, *desc2;
477         size_t len = *nbytes;
478         int i;
479
480         desc1 = &desc_sw->desc1;
481         desc2 = &desc_sw->desc2;
482
483         /* Initialize DMA descriptor */
484         xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
485
486         /* Set destination address */
487         desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
488         desc1->m3 |= cpu_to_le64(*dst);
489
490         /* We have multiple source addresses, so need to set NV bit*/
491         desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
492
493         /* Set flyby opcode */
494         desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt));
495
496         /* Set 1st to 5th source addresses */
497         for (i = 0; i < src_cnt; i++) {
498                 len = *nbytes;
499                 xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 :
500                                          xgene_dma_lookup_ext8(desc2, i - 1),
501                                          &len, &src[i]);
502                 desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8)));
503         }
504
505         /* Update meta data */
506         *nbytes = len;
507         *dst += XGENE_DMA_MAX_BYTE_CNT;
508
509         /* We need always 64B descriptor to perform xor or pq operations */
510         desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
511 }
512
513 static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
514 {
515         struct xgene_dma_desc_sw *desc;
516         struct xgene_dma_chan *chan;
517         dma_cookie_t cookie;
518
519         if (unlikely(!tx))
520                 return -EINVAL;
521
522         chan = to_dma_chan(tx->chan);
523         desc = to_dma_desc_sw(tx);
524
525         spin_lock_bh(&chan->lock);
526
527         cookie = dma_cookie_assign(tx);
528
529         /* Add this transaction list onto the tail of the pending queue */
530         list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
531
532         spin_unlock_bh(&chan->lock);
533
534         return cookie;
535 }
536
537 static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
538                                        struct xgene_dma_desc_sw *desc)
539 {
540         list_del(&desc->node);
541         chan_dbg(chan, "LD %p free\n", desc);
542         dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
543 }
544
545 static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
546                                  struct xgene_dma_chan *chan)
547 {
548         struct xgene_dma_desc_sw *desc;
549         dma_addr_t phys;
550
551         desc = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
552         if (!desc) {
553                 chan_err(chan, "Failed to allocate LDs\n");
554                 return NULL;
555         }
556
557         INIT_LIST_HEAD(&desc->tx_list);
558         desc->tx.phys = phys;
559         desc->tx.tx_submit = xgene_dma_tx_submit;
560         dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);
561
562         chan_dbg(chan, "LD %p allocated\n", desc);
563
564         return desc;
565 }
566
567 /**
568  * xgene_dma_clean_completed_descriptor - free all descriptors which
569  * has been completed and acked
570  * @chan: X-Gene DMA channel
571  *
572  * This function is used on all completed and acked descriptors.
573  */
574 static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
575 {
576         struct xgene_dma_desc_sw *desc, *_desc;
577
578         /* Run the callback for each descriptor, in order */
579         list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
580                 if (async_tx_test_ack(&desc->tx))
581                         xgene_dma_clean_descriptor(chan, desc);
582         }
583 }
584
585 /**
586  * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
587  * @chan: X-Gene DMA channel
588  * @desc: descriptor to cleanup and free
589  *
590  * This function is used on a descriptor which has been executed by the DMA
591  * controller. It will run any callbacks, submit any dependencies.
592  */
593 static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
594                                               struct xgene_dma_desc_sw *desc)
595 {
596         struct dma_async_tx_descriptor *tx = &desc->tx;
597
598         /*
599          * If this is not the last transaction in the group,
600          * then no need to complete cookie and run any callback as
601          * this is not the tx_descriptor which had been sent to caller
602          * of this DMA request
603          */
604
605         if (tx->cookie == 0)
606                 return;
607
608         dma_cookie_complete(tx);
609
610         /* Run the link descriptor callback function */
611         dmaengine_desc_get_callback_invoke(tx, NULL);
612
613         dma_descriptor_unmap(tx);
614
615         /* Run any dependencies */
616         dma_run_dependencies(tx);
617 }
618
619 /**
620  * xgene_dma_clean_running_descriptor - move the completed descriptor from
621  * ld_running to ld_completed
622  * @chan: X-Gene DMA channel
623  * @desc: the descriptor which is completed
624  *
625  * Free the descriptor directly if acked by async_tx api,
626  * else move it to queue ld_completed.
627  */
628 static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
629                                                struct xgene_dma_desc_sw *desc)
630 {
631         /* Remove from the list of running transactions */
632         list_del(&desc->node);
633
634         /*
635          * the client is allowed to attach dependent operations
636          * until 'ack' is set
637          */
638         if (!async_tx_test_ack(&desc->tx)) {
639                 /*
640                  * Move this descriptor to the list of descriptors which is
641                  * completed, but still awaiting the 'ack' bit to be set.
642                  */
643                 list_add_tail(&desc->node, &chan->ld_completed);
644                 return;
645         }
646
647         chan_dbg(chan, "LD %p free\n", desc);
648         dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
649 }
650
651 static void xgene_chan_xfer_request(struct xgene_dma_chan *chan,
652                                     struct xgene_dma_desc_sw *desc_sw)
653 {
654         struct xgene_dma_ring *ring = &chan->tx_ring;
655         struct xgene_dma_desc_hw *desc_hw;
656
657         /* Get hw descriptor from DMA tx ring */
658         desc_hw = &ring->desc_hw[ring->head];
659
660         /*
661          * Increment the head count to point next
662          * descriptor for next time
663          */
664         if (++ring->head == ring->slots)
665                 ring->head = 0;
666
667         /* Copy prepared sw descriptor data to hw descriptor */
668         memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));
669
670         /*
671          * Check if we have prepared 64B descriptor,
672          * in this case we need one more hw descriptor
673          */
674         if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
675                 desc_hw = &ring->desc_hw[ring->head];
676
677                 if (++ring->head == ring->slots)
678                         ring->head = 0;
679
680                 memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
681         }
682
683         /* Increment the pending transaction count */
684         chan->pending += ((desc_sw->flags &
685                           XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
686
687         /* Notify the hw that we have descriptor ready for execution */
688         iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
689                   2 : 1, ring->cmd);
690 }
691
692 /**
693  * xgene_chan_xfer_ld_pending - push any pending transactions to hw
694  * @chan : X-Gene DMA channel
695  *
696  * LOCKING: must hold chan->lock
697  */
698 static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
699 {
700         struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
701
702         /*
703          * If the list of pending descriptors is empty, then we
704          * don't need to do any work at all
705          */
706         if (list_empty(&chan->ld_pending)) {
707                 chan_dbg(chan, "No pending LDs\n");
708                 return;
709         }
710
711         /*
712          * Move elements from the queue of pending transactions onto the list
713          * of running transactions and push it to hw for further executions
714          */
715         list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
716                 /*
717                  * Check if have pushed max number of transactions to hw
718                  * as capable, so let's stop here and will push remaining
719                  * elements from pening ld queue after completing some
720                  * descriptors that we have already pushed
721                  */
722                 if (chan->pending >= chan->max_outstanding)
723                         return;
724
725                 xgene_chan_xfer_request(chan, desc_sw);
726
727                 /*
728                  * Delete this element from ld pending queue and append it to
729                  * ld running queue
730                  */
731                 list_move_tail(&desc_sw->node, &chan->ld_running);
732         }
733 }
734
735 /**
736  * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
737  * and move them to ld_completed to free until flag 'ack' is set
738  * @chan: X-Gene DMA channel
739  *
740  * This function is used on descriptors which have been executed by the DMA
741  * controller. It will run any callbacks, submit any dependencies, then
742  * free these descriptors if flag 'ack' is set.
743  */
744 static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
745 {
746         struct xgene_dma_ring *ring = &chan->rx_ring;
747         struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
748         struct xgene_dma_desc_hw *desc_hw;
749         struct list_head ld_completed;
750         u8 status;
751
752         INIT_LIST_HEAD(&ld_completed);
753
754         spin_lock_bh(&chan->lock);
755
756         /* Clean already completed and acked descriptors */
757         xgene_dma_clean_completed_descriptor(chan);
758
759         /* Move all completed descriptors to ld completed queue, in order */
760         list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
761                 /* Get subsequent hw descriptor from DMA rx ring */
762                 desc_hw = &ring->desc_hw[ring->head];
763
764                 /* Check if this descriptor has been completed */
765                 if (unlikely(le64_to_cpu(desc_hw->m0) ==
766                              XGENE_DMA_DESC_EMPTY_SIGNATURE))
767                         break;
768
769                 if (++ring->head == ring->slots)
770                         ring->head = 0;
771
772                 /* Check if we have any error with DMA transactions */
773                 status = XGENE_DMA_DESC_STATUS(
774                                 XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
775                                                         desc_hw->m0)),
776                                 XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
777                                                        desc_hw->m0)));
778                 if (status) {
779                         /* Print the DMA error type */
780                         chan_err(chan, "%s\n", xgene_dma_desc_err[status]);
781
782                         /*
783                          * We have DMA transactions error here. Dump DMA Tx
784                          * and Rx descriptors for this request */
785                         XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
786                                             "X-Gene DMA TX DESC1: ");
787
788                         if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
789                                 XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
790                                                     "X-Gene DMA TX DESC2: ");
791
792                         XGENE_DMA_DESC_DUMP(desc_hw,
793                                             "X-Gene DMA RX ERR DESC: ");
794                 }
795
796                 /* Notify the hw about this completed descriptor */
797                 iowrite32(-1, ring->cmd);
798
799                 /* Mark this hw descriptor as processed */
800                 desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
801
802                 /*
803                  * Decrement the pending transaction count
804                  * as we have processed one
805                  */
806                 chan->pending -= ((desc_sw->flags &
807                                   XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
808
809                 /*
810                  * Delete this node from ld running queue and append it to
811                  * ld completed queue for further processing
812                  */
813                 list_move_tail(&desc_sw->node, &ld_completed);
814         }
815
816         /*
817          * Start any pending transactions automatically
818          * In the ideal case, we keep the DMA controller busy while we go
819          * ahead and free the descriptors below.
820          */
821         xgene_chan_xfer_ld_pending(chan);
822
823         spin_unlock_bh(&chan->lock);
824
825         /* Run the callback for each descriptor, in order */
826         list_for_each_entry_safe(desc_sw, _desc_sw, &ld_completed, node) {
827                 xgene_dma_run_tx_complete_actions(chan, desc_sw);
828                 xgene_dma_clean_running_descriptor(chan, desc_sw);
829         }
830 }
831
832 static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
833 {
834         struct xgene_dma_chan *chan = to_dma_chan(dchan);
835
836         /* Has this channel already been allocated? */
837         if (chan->desc_pool)
838                 return 1;
839
840         chan->desc_pool = dma_pool_create(chan->name, chan->dev,
841                                           sizeof(struct xgene_dma_desc_sw),
842                                           0, 0);
843         if (!chan->desc_pool) {
844                 chan_err(chan, "Failed to allocate descriptor pool\n");
845                 return -ENOMEM;
846         }
847
848         chan_dbg(chan, "Allocate descripto pool\n");
849
850         return 1;
851 }
852
853 /**
854  * xgene_dma_free_desc_list - Free all descriptors in a queue
855  * @chan: X-Gene DMA channel
856  * @list: the list to free
857  *
858  * LOCKING: must hold chan->lock
859  */
860 static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
861                                      struct list_head *list)
862 {
863         struct xgene_dma_desc_sw *desc, *_desc;
864
865         list_for_each_entry_safe(desc, _desc, list, node)
866                 xgene_dma_clean_descriptor(chan, desc);
867 }
868
869 static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
870 {
871         struct xgene_dma_chan *chan = to_dma_chan(dchan);
872
873         chan_dbg(chan, "Free all resources\n");
874
875         if (!chan->desc_pool)
876                 return;
877
878         /* Process all running descriptor */
879         xgene_dma_cleanup_descriptors(chan);
880
881         spin_lock_bh(&chan->lock);
882
883         /* Clean all link descriptor queues */
884         xgene_dma_free_desc_list(chan, &chan->ld_pending);
885         xgene_dma_free_desc_list(chan, &chan->ld_running);
886         xgene_dma_free_desc_list(chan, &chan->ld_completed);
887
888         spin_unlock_bh(&chan->lock);
889
890         /* Delete this channel DMA pool */
891         dma_pool_destroy(chan->desc_pool);
892         chan->desc_pool = NULL;
893 }
894
895 static struct dma_async_tx_descriptor *xgene_dma_prep_sg(
896         struct dma_chan *dchan, struct scatterlist *dst_sg,
897         u32 dst_nents, struct scatterlist *src_sg,
898         u32 src_nents, unsigned long flags)
899 {
900         struct xgene_dma_desc_sw *first = NULL, *new = NULL;
901         struct xgene_dma_chan *chan;
902         size_t dst_avail, src_avail;
903         dma_addr_t dst, src;
904         size_t len;
905
906         if (unlikely(!dchan))
907                 return NULL;
908
909         if (unlikely(!dst_nents || !src_nents))
910                 return NULL;
911
912         if (unlikely(!dst_sg || !src_sg))
913                 return NULL;
914
915         chan = to_dma_chan(dchan);
916
917         /* Get prepared for the loop */
918         dst_avail = sg_dma_len(dst_sg);
919         src_avail = sg_dma_len(src_sg);
920         dst_nents--;
921         src_nents--;
922
923         /* Run until we are out of scatterlist entries */
924         while (true) {
925                 /* Create the largest transaction possible */
926                 len = min_t(size_t, src_avail, dst_avail);
927                 len = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT);
928                 if (len == 0)
929                         goto fetch;
930
931                 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
932                 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
933
934                 /* Allocate the link descriptor from DMA pool */
935                 new = xgene_dma_alloc_descriptor(chan);
936                 if (!new)
937                         goto fail;
938
939                 /* Prepare DMA descriptor */
940                 xgene_dma_prep_cpy_desc(chan, new, dst, src, len);
941
942                 if (!first)
943                         first = new;
944
945                 new->tx.cookie = 0;
946                 async_tx_ack(&new->tx);
947
948                 /* update metadata */
949                 dst_avail -= len;
950                 src_avail -= len;
951
952                 /* Insert the link descriptor to the LD ring */
953                 list_add_tail(&new->node, &first->tx_list);
954
955 fetch:
956                 /* fetch the next dst scatterlist entry */
957                 if (dst_avail == 0) {
958                         /* no more entries: we're done */
959                         if (dst_nents == 0)
960                                 break;
961
962                         /* fetch the next entry: if there are no more: done */
963                         dst_sg = sg_next(dst_sg);
964                         if (!dst_sg)
965                                 break;
966
967                         dst_nents--;
968                         dst_avail = sg_dma_len(dst_sg);
969                 }
970
971                 /* fetch the next src scatterlist entry */
972                 if (src_avail == 0) {
973                         /* no more entries: we're done */
974                         if (src_nents == 0)
975                                 break;
976
977                         /* fetch the next entry: if there are no more: done */
978                         src_sg = sg_next(src_sg);
979                         if (!src_sg)
980                                 break;
981
982                         src_nents--;
983                         src_avail = sg_dma_len(src_sg);
984                 }
985         }
986
987         if (!new)
988                 return NULL;
989
990         new->tx.flags = flags; /* client is in control of this ack */
991         new->tx.cookie = -EBUSY;
992         list_splice(&first->tx_list, &new->tx_list);
993
994         return &new->tx;
995 fail:
996         if (!first)
997                 return NULL;
998
999         xgene_dma_free_desc_list(chan, &first->tx_list);
1000         return NULL;
1001 }
1002
1003 static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
1004         struct dma_chan *dchan, dma_addr_t dst, dma_addr_t *src,
1005         u32 src_cnt, size_t len, unsigned long flags)
1006 {
1007         struct xgene_dma_desc_sw *first = NULL, *new;
1008         struct xgene_dma_chan *chan;
1009         static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
1010                                 0x01, 0x01, 0x01, 0x01, 0x01};
1011
1012         if (unlikely(!dchan || !len))
1013                 return NULL;
1014
1015         chan = to_dma_chan(dchan);
1016
1017         do {
1018                 /* Allocate the link descriptor from DMA pool */
1019                 new = xgene_dma_alloc_descriptor(chan);
1020                 if (!new)
1021                         goto fail;
1022
1023                 /* Prepare xor DMA descriptor */
1024                 xgene_dma_prep_xor_desc(chan, new, &dst, src,
1025                                         src_cnt, &len, multi);
1026
1027                 if (!first)
1028                         first = new;
1029
1030                 new->tx.cookie = 0;
1031                 async_tx_ack(&new->tx);
1032
1033                 /* Insert the link descriptor to the LD ring */
1034                 list_add_tail(&new->node, &first->tx_list);
1035         } while (len);
1036
1037         new->tx.flags = flags; /* client is in control of this ack */
1038         new->tx.cookie = -EBUSY;
1039         list_splice(&first->tx_list, &new->tx_list);
1040
1041         return &new->tx;
1042
1043 fail:
1044         if (!first)
1045                 return NULL;
1046
1047         xgene_dma_free_desc_list(chan, &first->tx_list);
1048         return NULL;
1049 }
1050
1051 static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
1052         struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
1053         u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
1054 {
1055         struct xgene_dma_desc_sw *first = NULL, *new;
1056         struct xgene_dma_chan *chan;
1057         size_t _len = len;
1058         dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
1059         static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};
1060
1061         if (unlikely(!dchan || !len))
1062                 return NULL;
1063
1064         chan = to_dma_chan(dchan);
1065
1066         /*
1067          * Save source addresses on local variable, may be we have to
1068          * prepare two descriptor to generate P and Q if both enabled
1069          * in the flags by client
1070          */
1071         memcpy(_src, src, sizeof(*src) * src_cnt);
1072
1073         if (flags & DMA_PREP_PQ_DISABLE_P)
1074                 len = 0;
1075
1076         if (flags & DMA_PREP_PQ_DISABLE_Q)
1077                 _len = 0;
1078
1079         do {
1080                 /* Allocate the link descriptor from DMA pool */
1081                 new = xgene_dma_alloc_descriptor(chan);
1082                 if (!new)
1083                         goto fail;
1084
1085                 if (!first)
1086                         first = new;
1087
1088                 new->tx.cookie = 0;
1089                 async_tx_ack(&new->tx);
1090
1091                 /* Insert the link descriptor to the LD ring */
1092                 list_add_tail(&new->node, &first->tx_list);
1093
1094                 /*
1095                  * Prepare DMA descriptor to generate P,
1096                  * if DMA_PREP_PQ_DISABLE_P flag is not set
1097                  */
1098                 if (len) {
1099                         xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
1100                                                 src_cnt, &len, multi);
1101                         continue;
1102                 }
1103
1104                 /*
1105                  * Prepare DMA descriptor to generate Q,
1106                  * if DMA_PREP_PQ_DISABLE_Q flag is not set
1107                  */
1108                 if (_len) {
1109                         xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
1110                                                 src_cnt, &_len, scf);
1111                 }
1112         } while (len || _len);
1113
1114         new->tx.flags = flags; /* client is in control of this ack */
1115         new->tx.cookie = -EBUSY;
1116         list_splice(&first->tx_list, &new->tx_list);
1117
1118         return &new->tx;
1119
1120 fail:
1121         if (!first)
1122                 return NULL;
1123
1124         xgene_dma_free_desc_list(chan, &first->tx_list);
1125         return NULL;
1126 }
1127
1128 static void xgene_dma_issue_pending(struct dma_chan *dchan)
1129 {
1130         struct xgene_dma_chan *chan = to_dma_chan(dchan);
1131
1132         spin_lock_bh(&chan->lock);
1133         xgene_chan_xfer_ld_pending(chan);
1134         spin_unlock_bh(&chan->lock);
1135 }
1136
1137 static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
1138                                            dma_cookie_t cookie,
1139                                            struct dma_tx_state *txstate)
1140 {
1141         return dma_cookie_status(dchan, cookie, txstate);
1142 }
1143
1144 static void xgene_dma_tasklet_cb(unsigned long data)
1145 {
1146         struct xgene_dma_chan *chan = (struct xgene_dma_chan *)data;
1147
1148         /* Run all cleanup for descriptors which have been completed */
1149         xgene_dma_cleanup_descriptors(chan);
1150
1151         /* Re-enable DMA channel IRQ */
1152         enable_irq(chan->rx_irq);
1153 }
1154
1155 static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
1156 {
1157         struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;
1158
1159         BUG_ON(!chan);
1160
1161         /*
1162          * Disable DMA channel IRQ until we process completed
1163          * descriptors
1164          */
1165         disable_irq_nosync(chan->rx_irq);
1166
1167         /*
1168          * Schedule the tasklet to handle all cleanup of the current
1169          * transaction. It will start a new transaction if there is
1170          * one pending.
1171          */
1172         tasklet_schedule(&chan->tasklet);
1173
1174         return IRQ_HANDLED;
1175 }
1176
1177 static irqreturn_t xgene_dma_err_isr(int irq, void *id)
1178 {
1179         struct xgene_dma *pdma = (struct xgene_dma *)id;
1180         unsigned long int_mask;
1181         u32 val, i;
1182
1183         val = ioread32(pdma->csr_dma + XGENE_DMA_INT);
1184
1185         /* Clear DMA interrupts */
1186         iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);
1187
1188         /* Print DMA error info */
1189         int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
1190         for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
1191                 dev_err(pdma->dev,
1192                         "Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);
1193
1194         return IRQ_HANDLED;
1195 }
1196
1197 static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
1198 {
1199         int i;
1200
1201         iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);
1202
1203         for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
1204                 iowrite32(ring->state[i], ring->pdma->csr_ring +
1205                           XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
1206 }
1207
1208 static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
1209 {
1210         memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
1211         xgene_dma_wr_ring_state(ring);
1212 }
1213
1214 static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
1215 {
1216         void *ring_cfg = ring->state;
1217         u64 addr = ring->desc_paddr;
1218         u32 i, val;
1219
1220         ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;
1221
1222         /* Clear DMA ring state */
1223         xgene_dma_clr_ring_state(ring);
1224
1225         /* Set DMA ring type */
1226         XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);
1227
1228         if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
1229                 /* Set recombination buffer and timeout */
1230                 XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
1231                 XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
1232                 XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
1233         }
1234
1235         /* Initialize DMA ring state */
1236         XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
1237         XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
1238         XGENE_DMA_RING_COHERENT_SET(ring_cfg);
1239         XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
1240         XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
1241         XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);
1242
1243         /* Write DMA ring configurations */
1244         xgene_dma_wr_ring_state(ring);
1245
1246         /* Set DMA ring id */
1247         iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
1248                   ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1249
1250         /* Set DMA ring buffer */
1251         iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
1252                   ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1253
1254         if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
1255                 return;
1256
1257         /* Set empty signature to DMA Rx ring descriptors */
1258         for (i = 0; i < ring->slots; i++) {
1259                 struct xgene_dma_desc_hw *desc;
1260
1261                 desc = &ring->desc_hw[i];
1262                 desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
1263         }
1264
1265         /* Enable DMA Rx ring interrupt */
1266         val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1267         XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
1268         iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1269 }
1270
1271 static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
1272 {
1273         u32 ring_id, val;
1274
1275         if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
1276                 /* Disable DMA Rx ring interrupt */
1277                 val = ioread32(ring->pdma->csr_ring +
1278                                XGENE_DMA_RING_NE_INT_MODE);
1279                 XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
1280                 iowrite32(val, ring->pdma->csr_ring +
1281                           XGENE_DMA_RING_NE_INT_MODE);
1282         }
1283
1284         /* Clear DMA ring state */
1285         ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
1286         iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1287
1288         iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1289         xgene_dma_clr_ring_state(ring);
1290 }
1291
1292 static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
1293 {
1294         ring->cmd_base = ring->pdma->csr_ring_cmd +
1295                                 XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
1296                                                           XGENE_DMA_RING_NUM));
1297
1298         ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
1299 }
1300
1301 static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
1302                                    enum xgene_dma_ring_cfgsize cfgsize)
1303 {
1304         int size;
1305
1306         switch (cfgsize) {
1307         case XGENE_DMA_RING_CFG_SIZE_512B:
1308                 size = 0x200;
1309                 break;
1310         case XGENE_DMA_RING_CFG_SIZE_2KB:
1311                 size = 0x800;
1312                 break;
1313         case XGENE_DMA_RING_CFG_SIZE_16KB:
1314                 size = 0x4000;
1315                 break;
1316         case XGENE_DMA_RING_CFG_SIZE_64KB:
1317                 size = 0x10000;
1318                 break;
1319         case XGENE_DMA_RING_CFG_SIZE_512KB:
1320                 size = 0x80000;
1321                 break;
1322         default:
1323                 chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
1324                 return -EINVAL;
1325         }
1326
1327         return size;
1328 }
1329
1330 static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
1331 {
1332         /* Clear DMA ring configurations */
1333         xgene_dma_clear_ring(ring);
1334
1335         /* De-allocate DMA ring descriptor */
1336         if (ring->desc_vaddr) {
1337                 dma_free_coherent(ring->pdma->dev, ring->size,
1338                                   ring->desc_vaddr, ring->desc_paddr);
1339                 ring->desc_vaddr = NULL;
1340         }
1341 }
1342
1343 static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
1344 {
1345         xgene_dma_delete_ring_one(&chan->rx_ring);
1346         xgene_dma_delete_ring_one(&chan->tx_ring);
1347 }
1348
1349 static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
1350                                      struct xgene_dma_ring *ring,
1351                                      enum xgene_dma_ring_cfgsize cfgsize)
1352 {
1353         int ret;
1354
1355         /* Setup DMA ring descriptor variables */
1356         ring->pdma = chan->pdma;
1357         ring->cfgsize = cfgsize;
1358         ring->num = chan->pdma->ring_num++;
1359         ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);
1360
1361         ret = xgene_dma_get_ring_size(chan, cfgsize);
1362         if (ret <= 0)
1363                 return ret;
1364         ring->size = ret;
1365
1366         /* Allocate memory for DMA ring descriptor */
1367         ring->desc_vaddr = dma_zalloc_coherent(chan->dev, ring->size,
1368                                                &ring->desc_paddr, GFP_KERNEL);
1369         if (!ring->desc_vaddr) {
1370                 chan_err(chan, "Failed to allocate ring desc\n");
1371                 return -ENOMEM;
1372         }
1373
1374         /* Configure and enable DMA ring */
1375         xgene_dma_set_ring_cmd(ring);
1376         xgene_dma_setup_ring(ring);
1377
1378         return 0;
1379 }
1380
1381 static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
1382 {
1383         struct xgene_dma_ring *rx_ring = &chan->rx_ring;
1384         struct xgene_dma_ring *tx_ring = &chan->tx_ring;
1385         int ret;
1386
1387         /* Create DMA Rx ring descriptor */
1388         rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
1389         rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;
1390
1391         ret = xgene_dma_create_ring_one(chan, rx_ring,
1392                                         XGENE_DMA_RING_CFG_SIZE_64KB);
1393         if (ret)
1394                 return ret;
1395
1396         chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
1397                  rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);
1398
1399         /* Create DMA Tx ring descriptor */
1400         tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
1401         tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;
1402
1403         ret = xgene_dma_create_ring_one(chan, tx_ring,
1404                                         XGENE_DMA_RING_CFG_SIZE_64KB);
1405         if (ret) {
1406                 xgene_dma_delete_ring_one(rx_ring);
1407                 return ret;
1408         }
1409
1410         tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);
1411
1412         chan_dbg(chan,
1413                  "Tx ring id 0x%X num %d desc 0x%p\n",
1414                  tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);
1415
1416         /* Set the max outstanding request possible to this channel */
1417         chan->max_outstanding = tx_ring->slots;
1418
1419         return ret;
1420 }
1421
1422 static int xgene_dma_init_rings(struct xgene_dma *pdma)
1423 {
1424         int ret, i, j;
1425
1426         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1427                 ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
1428                 if (ret) {
1429                         for (j = 0; j < i; j++)
1430                                 xgene_dma_delete_chan_rings(&pdma->chan[j]);
1431                         return ret;
1432                 }
1433         }
1434
1435         return ret;
1436 }
1437
1438 static void xgene_dma_enable(struct xgene_dma *pdma)
1439 {
1440         u32 val;
1441
1442         /* Configure and enable DMA engine */
1443         val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1444         XGENE_DMA_CH_SETUP(val);
1445         XGENE_DMA_ENABLE(val);
1446         iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1447 }
1448
1449 static void xgene_dma_disable(struct xgene_dma *pdma)
1450 {
1451         u32 val;
1452
1453         val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1454         XGENE_DMA_DISABLE(val);
1455         iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1456 }
1457
1458 static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
1459 {
1460         /*
1461          * Mask DMA ring overflow, underflow and
1462          * AXI write/read error interrupts
1463          */
1464         iowrite32(XGENE_DMA_INT_ALL_MASK,
1465                   pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1466         iowrite32(XGENE_DMA_INT_ALL_MASK,
1467                   pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1468         iowrite32(XGENE_DMA_INT_ALL_MASK,
1469                   pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1470         iowrite32(XGENE_DMA_INT_ALL_MASK,
1471                   pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1472         iowrite32(XGENE_DMA_INT_ALL_MASK,
1473                   pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1474
1475         /* Mask DMA error interrupts */
1476         iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
1477 }
1478
1479 static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
1480 {
1481         /*
1482          * Unmask DMA ring overflow, underflow and
1483          * AXI write/read error interrupts
1484          */
1485         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1486                   pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1487         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1488                   pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1489         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1490                   pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1491         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1492                   pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1493         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1494                   pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1495
1496         /* Unmask DMA error interrupts */
1497         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1498                   pdma->csr_dma + XGENE_DMA_INT_MASK);
1499 }
1500
1501 static void xgene_dma_init_hw(struct xgene_dma *pdma)
1502 {
1503         u32 val;
1504
1505         /* Associate DMA ring to corresponding ring HW */
1506         iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
1507                   pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);
1508
1509         /* Configure RAID6 polynomial control setting */
1510         if (is_pq_enabled(pdma))
1511                 iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
1512                           pdma->csr_dma + XGENE_DMA_RAID6_CONT);
1513         else
1514                 dev_info(pdma->dev, "PQ is disabled in HW\n");
1515
1516         xgene_dma_enable(pdma);
1517         xgene_dma_unmask_interrupts(pdma);
1518
1519         /* Get DMA id and version info */
1520         val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);
1521
1522         /* DMA device info */
1523         dev_info(pdma->dev,
1524                  "X-Gene DMA v%d.%02d.%02d driver registered %d channels",
1525                  XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
1526                  XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
1527 }
1528
1529 static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
1530 {
1531         if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
1532             (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
1533                 return 0;
1534
1535         iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
1536         iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);
1537
1538         /* Bring up memory */
1539         iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1540
1541         /* Force a barrier */
1542         ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1543
1544         /* reset may take up to 1ms */
1545         usleep_range(1000, 1100);
1546
1547         if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
1548                 != XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
1549                 dev_err(pdma->dev,
1550                         "Failed to release ring mngr memory from shutdown\n");
1551                 return -ENODEV;
1552         }
1553
1554         /* program threshold set 1 and all hysteresis */
1555         iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
1556                   pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
1557         iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
1558                   pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
1559         iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
1560                   pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);
1561
1562         /* Enable QPcore and assign error queue */
1563         iowrite32(XGENE_DMA_RING_ENABLE,
1564                   pdma->csr_ring + XGENE_DMA_RING_CONFIG);
1565
1566         return 0;
1567 }
1568
1569 static int xgene_dma_init_mem(struct xgene_dma *pdma)
1570 {
1571         int ret;
1572
1573         ret = xgene_dma_init_ring_mngr(pdma);
1574         if (ret)
1575                 return ret;
1576
1577         /* Bring up memory */
1578         iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1579
1580         /* Force a barrier */
1581         ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1582
1583         /* reset may take up to 1ms */
1584         usleep_range(1000, 1100);
1585
1586         if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
1587                 != XGENE_DMA_BLK_MEM_RDY_VAL) {
1588                 dev_err(pdma->dev,
1589                         "Failed to release DMA memory from shutdown\n");
1590                 return -ENODEV;
1591         }
1592
1593         return 0;
1594 }
1595
1596 static int xgene_dma_request_irqs(struct xgene_dma *pdma)
1597 {
1598         struct xgene_dma_chan *chan;
1599         int ret, i, j;
1600
1601         /* Register DMA error irq */
1602         ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
1603                                0, "dma_error", pdma);
1604         if (ret) {
1605                 dev_err(pdma->dev,
1606                         "Failed to register error IRQ %d\n", pdma->err_irq);
1607                 return ret;
1608         }
1609
1610         /* Register DMA channel rx irq */
1611         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1612                 chan = &pdma->chan[i];
1613                 irq_set_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1614                 ret = devm_request_irq(chan->dev, chan->rx_irq,
1615                                        xgene_dma_chan_ring_isr,
1616                                        0, chan->name, chan);
1617                 if (ret) {
1618                         chan_err(chan, "Failed to register Rx IRQ %d\n",
1619                                  chan->rx_irq);
1620                         devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1621
1622                         for (j = 0; j < i; j++) {
1623                                 chan = &pdma->chan[i];
1624                                 irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1625                                 devm_free_irq(chan->dev, chan->rx_irq, chan);
1626                         }
1627
1628                         return ret;
1629                 }
1630         }
1631
1632         return 0;
1633 }
1634
1635 static void xgene_dma_free_irqs(struct xgene_dma *pdma)
1636 {
1637         struct xgene_dma_chan *chan;
1638         int i;
1639
1640         /* Free DMA device error irq */
1641         devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1642
1643         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1644                 chan = &pdma->chan[i];
1645                 irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1646                 devm_free_irq(chan->dev, chan->rx_irq, chan);
1647         }
1648 }
1649
1650 static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
1651                                struct dma_device *dma_dev)
1652 {
1653         /* Initialize DMA device capability mask */
1654         dma_cap_zero(dma_dev->cap_mask);
1655
1656         /* Set DMA device capability */
1657         dma_cap_set(DMA_SG, dma_dev->cap_mask);
1658
1659         /* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
1660          * and channel 1 supports XOR, PQ both. First thing here is we have
1661          * mechanism in hw to enable/disable PQ/XOR supports on channel 1,
1662          * we can make sure this by reading SoC Efuse register.
1663          * Second thing, we have hw errata that if we run channel 0 and
1664          * channel 1 simultaneously with executing XOR and PQ request,
1665          * suddenly DMA engine hangs, So here we enable XOR on channel 0 only
1666          * if XOR and PQ supports on channel 1 is disabled.
1667          */
1668         if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
1669             is_pq_enabled(chan->pdma)) {
1670                 dma_cap_set(DMA_PQ, dma_dev->cap_mask);
1671                 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1672         } else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
1673                    !is_pq_enabled(chan->pdma)) {
1674                 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1675         }
1676
1677         /* Set base and prep routines */
1678         dma_dev->dev = chan->dev;
1679         dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
1680         dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
1681         dma_dev->device_issue_pending = xgene_dma_issue_pending;
1682         dma_dev->device_tx_status = xgene_dma_tx_status;
1683         dma_dev->device_prep_dma_sg = xgene_dma_prep_sg;
1684
1685         if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1686                 dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
1687                 dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
1688                 dma_dev->xor_align = DMAENGINE_ALIGN_64_BYTES;
1689         }
1690
1691         if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1692                 dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
1693                 dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
1694                 dma_dev->pq_align = DMAENGINE_ALIGN_64_BYTES;
1695         }
1696 }
1697
1698 static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
1699 {
1700         struct xgene_dma_chan *chan = &pdma->chan[id];
1701         struct dma_device *dma_dev = &pdma->dma_dev[id];
1702         int ret;
1703
1704         chan->dma_chan.device = dma_dev;
1705
1706         spin_lock_init(&chan->lock);
1707         INIT_LIST_HEAD(&chan->ld_pending);
1708         INIT_LIST_HEAD(&chan->ld_running);
1709         INIT_LIST_HEAD(&chan->ld_completed);
1710         tasklet_init(&chan->tasklet, xgene_dma_tasklet_cb,
1711                      (unsigned long)chan);
1712
1713         chan->pending = 0;
1714         chan->desc_pool = NULL;
1715         dma_cookie_init(&chan->dma_chan);
1716
1717         /* Setup dma device capabilities and prep routines */
1718         xgene_dma_set_caps(chan, dma_dev);
1719
1720         /* Initialize DMA device list head */
1721         INIT_LIST_HEAD(&dma_dev->channels);
1722         list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);
1723
1724         /* Register with Linux async DMA framework*/
1725         ret = dma_async_device_register(dma_dev);
1726         if (ret) {
1727                 chan_err(chan, "Failed to register async device %d", ret);
1728                 tasklet_kill(&chan->tasklet);
1729
1730                 return ret;
1731         }
1732
1733         /* DMA capability info */
1734         dev_info(pdma->dev,
1735                  "%s: CAPABILITY ( %s%s%s)\n", dma_chan_name(&chan->dma_chan),
1736                  dma_has_cap(DMA_SG, dma_dev->cap_mask) ? "SGCPY " : "",
1737                  dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
1738                  dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");
1739
1740         return 0;
1741 }
1742
1743 static int xgene_dma_init_async(struct xgene_dma *pdma)
1744 {
1745         int ret, i, j;
1746
1747         for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
1748                 ret = xgene_dma_async_register(pdma, i);
1749                 if (ret) {
1750                         for (j = 0; j < i; j++) {
1751                                 dma_async_device_unregister(&pdma->dma_dev[j]);
1752                                 tasklet_kill(&pdma->chan[j].tasklet);
1753                         }
1754
1755                         return ret;
1756                 }
1757         }
1758
1759         return ret;
1760 }
1761
1762 static void xgene_dma_async_unregister(struct xgene_dma *pdma)
1763 {
1764         int i;
1765
1766         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1767                 dma_async_device_unregister(&pdma->dma_dev[i]);
1768 }
1769
1770 static void xgene_dma_init_channels(struct xgene_dma *pdma)
1771 {
1772         struct xgene_dma_chan *chan;
1773         int i;
1774
1775         pdma->ring_num = XGENE_DMA_RING_NUM;
1776
1777         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1778                 chan = &pdma->chan[i];
1779                 chan->dev = pdma->dev;
1780                 chan->pdma = pdma;
1781                 chan->id = i;
1782                 snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id);
1783         }
1784 }
1785
1786 static int xgene_dma_get_resources(struct platform_device *pdev,
1787                                    struct xgene_dma *pdma)
1788 {
1789         struct resource *res;
1790         int irq, i;
1791
1792         /* Get DMA csr region */
1793         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1794         if (!res) {
1795                 dev_err(&pdev->dev, "Failed to get csr region\n");
1796                 return -ENXIO;
1797         }
1798
1799         pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
1800                                      resource_size(res));
1801         if (!pdma->csr_dma) {
1802                 dev_err(&pdev->dev, "Failed to ioremap csr region");
1803                 return -ENOMEM;
1804         }
1805
1806         /* Get DMA ring csr region */
1807         res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1808         if (!res) {
1809                 dev_err(&pdev->dev, "Failed to get ring csr region\n");
1810                 return -ENXIO;
1811         }
1812
1813         pdma->csr_ring =  devm_ioremap(&pdev->dev, res->start,
1814                                        resource_size(res));
1815         if (!pdma->csr_ring) {
1816                 dev_err(&pdev->dev, "Failed to ioremap ring csr region");
1817                 return -ENOMEM;
1818         }
1819
1820         /* Get DMA ring cmd csr region */
1821         res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1822         if (!res) {
1823                 dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
1824                 return -ENXIO;
1825         }
1826
1827         pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
1828                                           resource_size(res));
1829         if (!pdma->csr_ring_cmd) {
1830                 dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
1831                 return -ENOMEM;
1832         }
1833
1834         pdma->csr_ring_cmd += XGENE_DMA_RING_CMD_SM_OFFSET;
1835
1836         /* Get efuse csr region */
1837         res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1838         if (!res) {
1839                 dev_err(&pdev->dev, "Failed to get efuse csr region\n");
1840                 return -ENXIO;
1841         }
1842
1843         pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
1844                                        resource_size(res));
1845         if (!pdma->csr_efuse) {
1846                 dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
1847                 return -ENOMEM;
1848         }
1849
1850         /* Get DMA error interrupt */
1851         irq = platform_get_irq(pdev, 0);
1852         if (irq <= 0) {
1853                 dev_err(&pdev->dev, "Failed to get Error IRQ\n");
1854                 return -ENXIO;
1855         }
1856
1857         pdma->err_irq = irq;
1858
1859         /* Get DMA Rx ring descriptor interrupts for all DMA channels */
1860         for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
1861                 irq = platform_get_irq(pdev, i);
1862                 if (irq <= 0) {
1863                         dev_err(&pdev->dev, "Failed to get Rx IRQ\n");
1864                         return -ENXIO;
1865                 }
1866
1867                 pdma->chan[i - 1].rx_irq = irq;
1868         }
1869
1870         return 0;
1871 }
1872
1873 static int xgene_dma_probe(struct platform_device *pdev)
1874 {
1875         struct xgene_dma *pdma;
1876         int ret, i;
1877
1878         pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
1879         if (!pdma)
1880                 return -ENOMEM;
1881
1882         pdma->dev = &pdev->dev;
1883         platform_set_drvdata(pdev, pdma);
1884
1885         ret = xgene_dma_get_resources(pdev, pdma);
1886         if (ret)
1887                 return ret;
1888
1889         pdma->clk = devm_clk_get(&pdev->dev, NULL);
1890         if (IS_ERR(pdma->clk) && !ACPI_COMPANION(&pdev->dev)) {
1891                 dev_err(&pdev->dev, "Failed to get clk\n");
1892                 return PTR_ERR(pdma->clk);
1893         }
1894
1895         /* Enable clk before accessing registers */
1896         if (!IS_ERR(pdma->clk)) {
1897                 ret = clk_prepare_enable(pdma->clk);
1898                 if (ret) {
1899                         dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
1900                         return ret;
1901                 }
1902         }
1903
1904         /* Remove DMA RAM out of shutdown */
1905         ret = xgene_dma_init_mem(pdma);
1906         if (ret)
1907                 goto err_clk_enable;
1908
1909         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
1910         if (ret) {
1911                 dev_err(&pdev->dev, "No usable DMA configuration\n");
1912                 goto err_dma_mask;
1913         }
1914
1915         /* Initialize DMA channels software state */
1916         xgene_dma_init_channels(pdma);
1917
1918         /* Configue DMA rings */
1919         ret = xgene_dma_init_rings(pdma);
1920         if (ret)
1921                 goto err_clk_enable;
1922
1923         ret = xgene_dma_request_irqs(pdma);
1924         if (ret)
1925                 goto err_request_irq;
1926
1927         /* Configure and enable DMA engine */
1928         xgene_dma_init_hw(pdma);
1929
1930         /* Register DMA device with linux async framework */
1931         ret = xgene_dma_init_async(pdma);
1932         if (ret)
1933                 goto err_async_init;
1934
1935         return 0;
1936
1937 err_async_init:
1938         xgene_dma_free_irqs(pdma);
1939
1940 err_request_irq:
1941         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1942                 xgene_dma_delete_chan_rings(&pdma->chan[i]);
1943
1944 err_dma_mask:
1945 err_clk_enable:
1946         if (!IS_ERR(pdma->clk))
1947                 clk_disable_unprepare(pdma->clk);
1948
1949         return ret;
1950 }
1951
1952 static int xgene_dma_remove(struct platform_device *pdev)
1953 {
1954         struct xgene_dma *pdma = platform_get_drvdata(pdev);
1955         struct xgene_dma_chan *chan;
1956         int i;
1957
1958         xgene_dma_async_unregister(pdma);
1959
1960         /* Mask interrupts and disable DMA engine */
1961         xgene_dma_mask_interrupts(pdma);
1962         xgene_dma_disable(pdma);
1963         xgene_dma_free_irqs(pdma);
1964
1965         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1966                 chan = &pdma->chan[i];
1967                 tasklet_kill(&chan->tasklet);
1968                 xgene_dma_delete_chan_rings(chan);
1969         }
1970
1971         if (!IS_ERR(pdma->clk))
1972                 clk_disable_unprepare(pdma->clk);
1973
1974         return 0;
1975 }
1976
1977 #ifdef CONFIG_ACPI
1978 static const struct acpi_device_id xgene_dma_acpi_match_ptr[] = {
1979         {"APMC0D43", 0},
1980         {},
1981 };
1982 MODULE_DEVICE_TABLE(acpi, xgene_dma_acpi_match_ptr);
1983 #endif
1984
1985 static const struct of_device_id xgene_dma_of_match_ptr[] = {
1986         {.compatible = "apm,xgene-storm-dma",},
1987         {},
1988 };
1989 MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);
1990
1991 static struct platform_driver xgene_dma_driver = {
1992         .probe = xgene_dma_probe,
1993         .remove = xgene_dma_remove,
1994         .driver = {
1995                 .name = "X-Gene-DMA",
1996                 .of_match_table = xgene_dma_of_match_ptr,
1997                 .acpi_match_table = ACPI_PTR(xgene_dma_acpi_match_ptr),
1998         },
1999 };
2000
2001 module_platform_driver(xgene_dma_driver);
2002
2003 MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
2004 MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
2005 MODULE_AUTHOR("Loc Ho <lho@apm.com>");
2006 MODULE_LICENSE("GPL");
2007 MODULE_VERSION("1.0");