x86/nmi: Fix use of unallocated cpumask_var_t
[cascardo/linux.git] / drivers / edac / edac_mc.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *      http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <asm/uaccess.h>
32 #include <asm/page.h>
33 #include <asm/edac.h>
34 #include "edac_core.h"
35 #include "edac_module.h"
36 #include <ras/ras_event.h>
37
38 /* lock to memory controller's control array */
39 static DEFINE_MUTEX(mem_ctls_mutex);
40 static LIST_HEAD(mc_devices);
41
42 /*
43  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
44  *      apei/ghes and i7core_edac to be used at the same time.
45  */
46 static void const *edac_mc_owner;
47
48 static struct bus_type mc_bus[EDAC_MAX_MCS];
49
50 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
51                                  unsigned len)
52 {
53         struct mem_ctl_info *mci = dimm->mci;
54         int i, n, count = 0;
55         char *p = buf;
56
57         for (i = 0; i < mci->n_layers; i++) {
58                 n = snprintf(p, len, "%s %d ",
59                               edac_layer_name[mci->layers[i].type],
60                               dimm->location[i]);
61                 p += n;
62                 len -= n;
63                 count += n;
64                 if (!len)
65                         break;
66         }
67
68         return count;
69 }
70
71 #ifdef CONFIG_EDAC_DEBUG
72
73 static void edac_mc_dump_channel(struct rank_info *chan)
74 {
75         edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
76         edac_dbg(4, "    channel = %p\n", chan);
77         edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
78         edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
79 }
80
81 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
82 {
83         char location[80];
84
85         edac_dimm_info_location(dimm, location, sizeof(location));
86
87         edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
88                  dimm->mci->csbased ? "rank" : "dimm",
89                  number, location, dimm->csrow, dimm->cschannel);
90         edac_dbg(4, "  dimm = %p\n", dimm);
91         edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
92         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
93         edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
94         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
95 }
96
97 static void edac_mc_dump_csrow(struct csrow_info *csrow)
98 {
99         edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
100         edac_dbg(4, "  csrow = %p\n", csrow);
101         edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
102         edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
103         edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
104         edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
105         edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
106         edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
107 }
108
109 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
110 {
111         edac_dbg(3, "\tmci = %p\n", mci);
112         edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
113         edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
114         edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
115         edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
116         edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
117                  mci->nr_csrows, mci->csrows);
118         edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
119                  mci->tot_dimms, mci->dimms);
120         edac_dbg(3, "\tdev = %p\n", mci->pdev);
121         edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
122                  mci->mod_name, mci->ctl_name);
123         edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
124 }
125
126 #endif                          /* CONFIG_EDAC_DEBUG */
127
128 /*
129  * keep those in sync with the enum mem_type
130  */
131 const char * const edac_mem_types[] = {
132         "Empty csrow",
133         "Reserved csrow type",
134         "Unknown csrow type",
135         "Fast page mode RAM",
136         "Extended data out RAM",
137         "Burst Extended data out RAM",
138         "Single data rate SDRAM",
139         "Registered single data rate SDRAM",
140         "Double data rate SDRAM",
141         "Registered Double data rate SDRAM",
142         "Rambus DRAM",
143         "Unbuffered DDR2 RAM",
144         "Fully buffered DDR2",
145         "Registered DDR2 RAM",
146         "Rambus XDR",
147         "Unbuffered DDR3 RAM",
148         "Registered DDR3 RAM",
149 };
150 EXPORT_SYMBOL_GPL(edac_mem_types);
151
152 /**
153  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
154  * @p:          pointer to a pointer with the memory offset to be used. At
155  *              return, this will be incremented to point to the next offset
156  * @size:       Size of the data structure to be reserved
157  * @n_elems:    Number of elements that should be reserved
158  *
159  * If 'size' is a constant, the compiler will optimize this whole function
160  * down to either a no-op or the addition of a constant to the value of '*p'.
161  *
162  * The 'p' pointer is absolutely needed to keep the proper advancing
163  * further in memory to the proper offsets when allocating the struct along
164  * with its embedded structs, as edac_device_alloc_ctl_info() does it
165  * above, for example.
166  *
167  * At return, the pointer 'p' will be incremented to be used on a next call
168  * to this function.
169  */
170 void *edac_align_ptr(void **p, unsigned size, int n_elems)
171 {
172         unsigned align, r;
173         void *ptr = *p;
174
175         *p += size * n_elems;
176
177         /*
178          * 'p' can possibly be an unaligned item X such that sizeof(X) is
179          * 'size'.  Adjust 'p' so that its alignment is at least as
180          * stringent as what the compiler would provide for X and return
181          * the aligned result.
182          * Here we assume that the alignment of a "long long" is the most
183          * stringent alignment that the compiler will ever provide by default.
184          * As far as I know, this is a reasonable assumption.
185          */
186         if (size > sizeof(long))
187                 align = sizeof(long long);
188         else if (size > sizeof(int))
189                 align = sizeof(long);
190         else if (size > sizeof(short))
191                 align = sizeof(int);
192         else if (size > sizeof(char))
193                 align = sizeof(short);
194         else
195                 return (char *)ptr;
196
197         r = (unsigned long)p % align;
198
199         if (r == 0)
200                 return (char *)ptr;
201
202         *p += align - r;
203
204         return (void *)(((unsigned long)ptr) + align - r);
205 }
206
207 static void _edac_mc_free(struct mem_ctl_info *mci)
208 {
209         int i, chn, row;
210         struct csrow_info *csr;
211         const unsigned int tot_dimms = mci->tot_dimms;
212         const unsigned int tot_channels = mci->num_cschannel;
213         const unsigned int tot_csrows = mci->nr_csrows;
214
215         if (mci->dimms) {
216                 for (i = 0; i < tot_dimms; i++)
217                         kfree(mci->dimms[i]);
218                 kfree(mci->dimms);
219         }
220         if (mci->csrows) {
221                 for (row = 0; row < tot_csrows; row++) {
222                         csr = mci->csrows[row];
223                         if (csr) {
224                                 if (csr->channels) {
225                                         for (chn = 0; chn < tot_channels; chn++)
226                                                 kfree(csr->channels[chn]);
227                                         kfree(csr->channels);
228                                 }
229                                 kfree(csr);
230                         }
231                 }
232                 kfree(mci->csrows);
233         }
234         kfree(mci);
235 }
236
237 /**
238  * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
239  * @mc_num:             Memory controller number
240  * @n_layers:           Number of MC hierarchy layers
241  * layers:              Describes each layer as seen by the Memory Controller
242  * @size_pvt:           size of private storage needed
243  *
244  *
245  * Everything is kmalloc'ed as one big chunk - more efficient.
246  * Only can be used if all structures have the same lifetime - otherwise
247  * you have to allocate and initialize your own structures.
248  *
249  * Use edac_mc_free() to free mc structures allocated by this function.
250  *
251  * NOTE: drivers handle multi-rank memories in different ways: in some
252  * drivers, one multi-rank memory stick is mapped as one entry, while, in
253  * others, a single multi-rank memory stick would be mapped into several
254  * entries. Currently, this function will allocate multiple struct dimm_info
255  * on such scenarios, as grouping the multiple ranks require drivers change.
256  *
257  * Returns:
258  *      On failure: NULL
259  *      On success: struct mem_ctl_info pointer
260  */
261 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
262                                    unsigned n_layers,
263                                    struct edac_mc_layer *layers,
264                                    unsigned sz_pvt)
265 {
266         struct mem_ctl_info *mci;
267         struct edac_mc_layer *layer;
268         struct csrow_info *csr;
269         struct rank_info *chan;
270         struct dimm_info *dimm;
271         u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
272         unsigned pos[EDAC_MAX_LAYERS];
273         unsigned size, tot_dimms = 1, count = 1;
274         unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
275         void *pvt, *p, *ptr = NULL;
276         int i, j, row, chn, n, len, off;
277         bool per_rank = false;
278
279         BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
280         /*
281          * Calculate the total amount of dimms and csrows/cschannels while
282          * in the old API emulation mode
283          */
284         for (i = 0; i < n_layers; i++) {
285                 tot_dimms *= layers[i].size;
286                 if (layers[i].is_virt_csrow)
287                         tot_csrows *= layers[i].size;
288                 else
289                         tot_channels *= layers[i].size;
290
291                 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
292                         per_rank = true;
293         }
294
295         /* Figure out the offsets of the various items from the start of an mc
296          * structure.  We want the alignment of each item to be at least as
297          * stringent as what the compiler would provide if we could simply
298          * hardcode everything into a single struct.
299          */
300         mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
301         layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
302         for (i = 0; i < n_layers; i++) {
303                 count *= layers[i].size;
304                 edac_dbg(4, "errcount layer %d size %d\n", i, count);
305                 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
306                 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
307                 tot_errcount += 2 * count;
308         }
309
310         edac_dbg(4, "allocating %d error counters\n", tot_errcount);
311         pvt = edac_align_ptr(&ptr, sz_pvt, 1);
312         size = ((unsigned long)pvt) + sz_pvt;
313
314         edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
315                  size,
316                  tot_dimms,
317                  per_rank ? "ranks" : "dimms",
318                  tot_csrows * tot_channels);
319
320         mci = kzalloc(size, GFP_KERNEL);
321         if (mci == NULL)
322                 return NULL;
323
324         /* Adjust pointers so they point within the memory we just allocated
325          * rather than an imaginary chunk of memory located at address 0.
326          */
327         layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
328         for (i = 0; i < n_layers; i++) {
329                 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
330                 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
331         }
332         pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
333
334         /* setup index and various internal pointers */
335         mci->mc_idx = mc_num;
336         mci->tot_dimms = tot_dimms;
337         mci->pvt_info = pvt;
338         mci->n_layers = n_layers;
339         mci->layers = layer;
340         memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
341         mci->nr_csrows = tot_csrows;
342         mci->num_cschannel = tot_channels;
343         mci->csbased = per_rank;
344
345         /*
346          * Alocate and fill the csrow/channels structs
347          */
348         mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
349         if (!mci->csrows)
350                 goto error;
351         for (row = 0; row < tot_csrows; row++) {
352                 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
353                 if (!csr)
354                         goto error;
355                 mci->csrows[row] = csr;
356                 csr->csrow_idx = row;
357                 csr->mci = mci;
358                 csr->nr_channels = tot_channels;
359                 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
360                                         GFP_KERNEL);
361                 if (!csr->channels)
362                         goto error;
363
364                 for (chn = 0; chn < tot_channels; chn++) {
365                         chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
366                         if (!chan)
367                                 goto error;
368                         csr->channels[chn] = chan;
369                         chan->chan_idx = chn;
370                         chan->csrow = csr;
371                 }
372         }
373
374         /*
375          * Allocate and fill the dimm structs
376          */
377         mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
378         if (!mci->dimms)
379                 goto error;
380
381         memset(&pos, 0, sizeof(pos));
382         row = 0;
383         chn = 0;
384         for (i = 0; i < tot_dimms; i++) {
385                 chan = mci->csrows[row]->channels[chn];
386                 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
387                 if (off < 0 || off >= tot_dimms) {
388                         edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
389                         goto error;
390                 }
391
392                 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
393                 if (!dimm)
394                         goto error;
395                 mci->dimms[off] = dimm;
396                 dimm->mci = mci;
397
398                 /*
399                  * Copy DIMM location and initialize it.
400                  */
401                 len = sizeof(dimm->label);
402                 p = dimm->label;
403                 n = snprintf(p, len, "mc#%u", mc_num);
404                 p += n;
405                 len -= n;
406                 for (j = 0; j < n_layers; j++) {
407                         n = snprintf(p, len, "%s#%u",
408                                      edac_layer_name[layers[j].type],
409                                      pos[j]);
410                         p += n;
411                         len -= n;
412                         dimm->location[j] = pos[j];
413
414                         if (len <= 0)
415                                 break;
416                 }
417
418                 /* Link it to the csrows old API data */
419                 chan->dimm = dimm;
420                 dimm->csrow = row;
421                 dimm->cschannel = chn;
422
423                 /* Increment csrow location */
424                 if (layers[0].is_virt_csrow) {
425                         chn++;
426                         if (chn == tot_channels) {
427                                 chn = 0;
428                                 row++;
429                         }
430                 } else {
431                         row++;
432                         if (row == tot_csrows) {
433                                 row = 0;
434                                 chn++;
435                         }
436                 }
437
438                 /* Increment dimm location */
439                 for (j = n_layers - 1; j >= 0; j--) {
440                         pos[j]++;
441                         if (pos[j] < layers[j].size)
442                                 break;
443                         pos[j] = 0;
444                 }
445         }
446
447         mci->op_state = OP_ALLOC;
448
449         return mci;
450
451 error:
452         _edac_mc_free(mci);
453
454         return NULL;
455 }
456 EXPORT_SYMBOL_GPL(edac_mc_alloc);
457
458 /**
459  * edac_mc_free
460  *      'Free' a previously allocated 'mci' structure
461  * @mci: pointer to a struct mem_ctl_info structure
462  */
463 void edac_mc_free(struct mem_ctl_info *mci)
464 {
465         edac_dbg(1, "\n");
466
467         /* If we're not yet registered with sysfs free only what was allocated
468          * in edac_mc_alloc().
469          */
470         if (!device_is_registered(&mci->dev)) {
471                 _edac_mc_free(mci);
472                 return;
473         }
474
475         /* the mci instance is freed here, when the sysfs object is dropped */
476         edac_unregister_sysfs(mci);
477 }
478 EXPORT_SYMBOL_GPL(edac_mc_free);
479
480
481 /**
482  * find_mci_by_dev
483  *
484  *      scan list of controllers looking for the one that manages
485  *      the 'dev' device
486  * @dev: pointer to a struct device related with the MCI
487  */
488 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
489 {
490         struct mem_ctl_info *mci;
491         struct list_head *item;
492
493         edac_dbg(3, "\n");
494
495         list_for_each(item, &mc_devices) {
496                 mci = list_entry(item, struct mem_ctl_info, link);
497
498                 if (mci->pdev == dev)
499                         return mci;
500         }
501
502         return NULL;
503 }
504 EXPORT_SYMBOL_GPL(find_mci_by_dev);
505
506 /*
507  * handler for EDAC to check if NMI type handler has asserted interrupt
508  */
509 static int edac_mc_assert_error_check_and_clear(void)
510 {
511         int old_state;
512
513         if (edac_op_state == EDAC_OPSTATE_POLL)
514                 return 1;
515
516         old_state = edac_err_assert;
517         edac_err_assert = 0;
518
519         return old_state;
520 }
521
522 /*
523  * edac_mc_workq_function
524  *      performs the operation scheduled by a workq request
525  */
526 static void edac_mc_workq_function(struct work_struct *work_req)
527 {
528         struct delayed_work *d_work = to_delayed_work(work_req);
529         struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
530
531         mutex_lock(&mem_ctls_mutex);
532
533         /* if this control struct has movd to offline state, we are done */
534         if (mci->op_state == OP_OFFLINE) {
535                 mutex_unlock(&mem_ctls_mutex);
536                 return;
537         }
538
539         /* Only poll controllers that are running polled and have a check */
540         if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
541                 mci->edac_check(mci);
542
543         mutex_unlock(&mem_ctls_mutex);
544
545         /* Reschedule */
546         queue_delayed_work(edac_workqueue, &mci->work,
547                         msecs_to_jiffies(edac_mc_get_poll_msec()));
548 }
549
550 /*
551  * edac_mc_workq_setup
552  *      initialize a workq item for this mci
553  *      passing in the new delay period in msec
554  *
555  *      locking model:
556  *
557  *              called with the mem_ctls_mutex held
558  */
559 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec,
560                                 bool init)
561 {
562         edac_dbg(0, "\n");
563
564         /* if this instance is not in the POLL state, then simply return */
565         if (mci->op_state != OP_RUNNING_POLL)
566                 return;
567
568         if (init)
569                 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
570
571         mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
572 }
573
574 /*
575  * edac_mc_workq_teardown
576  *      stop the workq processing on this mci
577  *
578  *      locking model:
579  *
580  *              called WITHOUT lock held
581  */
582 static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
583 {
584         int status;
585
586         if (mci->op_state != OP_RUNNING_POLL)
587                 return;
588
589         status = cancel_delayed_work(&mci->work);
590         if (status == 0) {
591                 edac_dbg(0, "not canceled, flush the queue\n");
592
593                 /* workq instance might be running, wait for it */
594                 flush_workqueue(edac_workqueue);
595         }
596 }
597
598 /*
599  * edac_mc_reset_delay_period(unsigned long value)
600  *
601  *      user space has updated our poll period value, need to
602  *      reset our workq delays
603  */
604 void edac_mc_reset_delay_period(unsigned long value)
605 {
606         struct mem_ctl_info *mci;
607         struct list_head *item;
608
609         mutex_lock(&mem_ctls_mutex);
610
611         list_for_each(item, &mc_devices) {
612                 mci = list_entry(item, struct mem_ctl_info, link);
613
614                 edac_mc_workq_setup(mci, value, false);
615         }
616
617         mutex_unlock(&mem_ctls_mutex);
618 }
619
620
621
622 /* Return 0 on success, 1 on failure.
623  * Before calling this function, caller must
624  * assign a unique value to mci->mc_idx.
625  *
626  *      locking model:
627  *
628  *              called with the mem_ctls_mutex lock held
629  */
630 static int add_mc_to_global_list(struct mem_ctl_info *mci)
631 {
632         struct list_head *item, *insert_before;
633         struct mem_ctl_info *p;
634
635         insert_before = &mc_devices;
636
637         p = find_mci_by_dev(mci->pdev);
638         if (unlikely(p != NULL))
639                 goto fail0;
640
641         list_for_each(item, &mc_devices) {
642                 p = list_entry(item, struct mem_ctl_info, link);
643
644                 if (p->mc_idx >= mci->mc_idx) {
645                         if (unlikely(p->mc_idx == mci->mc_idx))
646                                 goto fail1;
647
648                         insert_before = item;
649                         break;
650                 }
651         }
652
653         list_add_tail_rcu(&mci->link, insert_before);
654         atomic_inc(&edac_handlers);
655         return 0;
656
657 fail0:
658         edac_printk(KERN_WARNING, EDAC_MC,
659                 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
660                 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
661         return 1;
662
663 fail1:
664         edac_printk(KERN_WARNING, EDAC_MC,
665                 "bug in low-level driver: attempt to assign\n"
666                 "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
667         return 1;
668 }
669
670 static int del_mc_from_global_list(struct mem_ctl_info *mci)
671 {
672         int handlers = atomic_dec_return(&edac_handlers);
673         list_del_rcu(&mci->link);
674
675         /* these are for safe removal of devices from global list while
676          * NMI handlers may be traversing list
677          */
678         synchronize_rcu();
679         INIT_LIST_HEAD(&mci->link);
680
681         return handlers;
682 }
683
684 /**
685  * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
686  *
687  * If found, return a pointer to the structure.
688  * Else return NULL.
689  *
690  * Caller must hold mem_ctls_mutex.
691  */
692 struct mem_ctl_info *edac_mc_find(int idx)
693 {
694         struct list_head *item;
695         struct mem_ctl_info *mci;
696
697         list_for_each(item, &mc_devices) {
698                 mci = list_entry(item, struct mem_ctl_info, link);
699
700                 if (mci->mc_idx >= idx) {
701                         if (mci->mc_idx == idx)
702                                 return mci;
703
704                         break;
705                 }
706         }
707
708         return NULL;
709 }
710 EXPORT_SYMBOL(edac_mc_find);
711
712 /**
713  * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
714  *                 create sysfs entries associated with mci structure
715  * @mci: pointer to the mci structure to be added to the list
716  *
717  * Return:
718  *      0       Success
719  *      !0      Failure
720  */
721
722 /* FIXME - should a warning be printed if no error detection? correction? */
723 int edac_mc_add_mc(struct mem_ctl_info *mci)
724 {
725         int ret = -EINVAL;
726         edac_dbg(0, "\n");
727
728         if (mci->mc_idx >= EDAC_MAX_MCS) {
729                 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
730                 return -ENODEV;
731         }
732
733 #ifdef CONFIG_EDAC_DEBUG
734         if (edac_debug_level >= 3)
735                 edac_mc_dump_mci(mci);
736
737         if (edac_debug_level >= 4) {
738                 int i;
739
740                 for (i = 0; i < mci->nr_csrows; i++) {
741                         struct csrow_info *csrow = mci->csrows[i];
742                         u32 nr_pages = 0;
743                         int j;
744
745                         for (j = 0; j < csrow->nr_channels; j++)
746                                 nr_pages += csrow->channels[j]->dimm->nr_pages;
747                         if (!nr_pages)
748                                 continue;
749                         edac_mc_dump_csrow(csrow);
750                         for (j = 0; j < csrow->nr_channels; j++)
751                                 if (csrow->channels[j]->dimm->nr_pages)
752                                         edac_mc_dump_channel(csrow->channels[j]);
753                 }
754                 for (i = 0; i < mci->tot_dimms; i++)
755                         if (mci->dimms[i]->nr_pages)
756                                 edac_mc_dump_dimm(mci->dimms[i], i);
757         }
758 #endif
759         mutex_lock(&mem_ctls_mutex);
760
761         if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
762                 ret = -EPERM;
763                 goto fail0;
764         }
765
766         if (add_mc_to_global_list(mci))
767                 goto fail0;
768
769         /* set load time so that error rate can be tracked */
770         mci->start_time = jiffies;
771
772         mci->bus = &mc_bus[mci->mc_idx];
773
774         if (edac_create_sysfs_mci_device(mci)) {
775                 edac_mc_printk(mci, KERN_WARNING,
776                         "failed to create sysfs device\n");
777                 goto fail1;
778         }
779
780         /* If there IS a check routine, then we are running POLLED */
781         if (mci->edac_check != NULL) {
782                 /* This instance is NOW RUNNING */
783                 mci->op_state = OP_RUNNING_POLL;
784
785                 edac_mc_workq_setup(mci, edac_mc_get_poll_msec(), true);
786         } else {
787                 mci->op_state = OP_RUNNING_INTERRUPT;
788         }
789
790         /* Report action taken */
791         edac_mc_printk(mci, KERN_INFO,
792                 "Giving out device to module %s controller %s: DEV %s (%s)\n",
793                 mci->mod_name, mci->ctl_name, mci->dev_name,
794                 edac_op_state_to_string(mci->op_state));
795
796         edac_mc_owner = mci->mod_name;
797
798         mutex_unlock(&mem_ctls_mutex);
799         return 0;
800
801 fail1:
802         del_mc_from_global_list(mci);
803
804 fail0:
805         mutex_unlock(&mem_ctls_mutex);
806         return ret;
807 }
808 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
809
810 /**
811  * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
812  *                 remove mci structure from global list
813  * @pdev: Pointer to 'struct device' representing mci structure to remove.
814  *
815  * Return pointer to removed mci structure, or NULL if device not found.
816  */
817 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
818 {
819         struct mem_ctl_info *mci;
820
821         edac_dbg(0, "\n");
822
823         mutex_lock(&mem_ctls_mutex);
824
825         /* find the requested mci struct in the global list */
826         mci = find_mci_by_dev(dev);
827         if (mci == NULL) {
828                 mutex_unlock(&mem_ctls_mutex);
829                 return NULL;
830         }
831
832         if (!del_mc_from_global_list(mci))
833                 edac_mc_owner = NULL;
834         mutex_unlock(&mem_ctls_mutex);
835
836         /* flush workq processes */
837         edac_mc_workq_teardown(mci);
838
839         /* marking MCI offline */
840         mci->op_state = OP_OFFLINE;
841
842         /* remove from sysfs */
843         edac_remove_sysfs_mci_device(mci);
844
845         edac_printk(KERN_INFO, EDAC_MC,
846                 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
847                 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
848
849         return mci;
850 }
851 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
852
853 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
854                                 u32 size)
855 {
856         struct page *pg;
857         void *virt_addr;
858         unsigned long flags = 0;
859
860         edac_dbg(3, "\n");
861
862         /* ECC error page was not in our memory. Ignore it. */
863         if (!pfn_valid(page))
864                 return;
865
866         /* Find the actual page structure then map it and fix */
867         pg = pfn_to_page(page);
868
869         if (PageHighMem(pg))
870                 local_irq_save(flags);
871
872         virt_addr = kmap_atomic(pg);
873
874         /* Perform architecture specific atomic scrub operation */
875         atomic_scrub(virt_addr + offset, size);
876
877         /* Unmap and complete */
878         kunmap_atomic(virt_addr);
879
880         if (PageHighMem(pg))
881                 local_irq_restore(flags);
882 }
883
884 /* FIXME - should return -1 */
885 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
886 {
887         struct csrow_info **csrows = mci->csrows;
888         int row, i, j, n;
889
890         edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
891         row = -1;
892
893         for (i = 0; i < mci->nr_csrows; i++) {
894                 struct csrow_info *csrow = csrows[i];
895                 n = 0;
896                 for (j = 0; j < csrow->nr_channels; j++) {
897                         struct dimm_info *dimm = csrow->channels[j]->dimm;
898                         n += dimm->nr_pages;
899                 }
900                 if (n == 0)
901                         continue;
902
903                 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
904                          mci->mc_idx,
905                          csrow->first_page, page, csrow->last_page,
906                          csrow->page_mask);
907
908                 if ((page >= csrow->first_page) &&
909                     (page <= csrow->last_page) &&
910                     ((page & csrow->page_mask) ==
911                      (csrow->first_page & csrow->page_mask))) {
912                         row = i;
913                         break;
914                 }
915         }
916
917         if (row == -1)
918                 edac_mc_printk(mci, KERN_ERR,
919                         "could not look up page error address %lx\n",
920                         (unsigned long)page);
921
922         return row;
923 }
924 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
925
926 const char *edac_layer_name[] = {
927         [EDAC_MC_LAYER_BRANCH] = "branch",
928         [EDAC_MC_LAYER_CHANNEL] = "channel",
929         [EDAC_MC_LAYER_SLOT] = "slot",
930         [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
931         [EDAC_MC_LAYER_ALL_MEM] = "memory",
932 };
933 EXPORT_SYMBOL_GPL(edac_layer_name);
934
935 static void edac_inc_ce_error(struct mem_ctl_info *mci,
936                               bool enable_per_layer_report,
937                               const int pos[EDAC_MAX_LAYERS],
938                               const u16 count)
939 {
940         int i, index = 0;
941
942         mci->ce_mc += count;
943
944         if (!enable_per_layer_report) {
945                 mci->ce_noinfo_count += count;
946                 return;
947         }
948
949         for (i = 0; i < mci->n_layers; i++) {
950                 if (pos[i] < 0)
951                         break;
952                 index += pos[i];
953                 mci->ce_per_layer[i][index] += count;
954
955                 if (i < mci->n_layers - 1)
956                         index *= mci->layers[i + 1].size;
957         }
958 }
959
960 static void edac_inc_ue_error(struct mem_ctl_info *mci,
961                                     bool enable_per_layer_report,
962                                     const int pos[EDAC_MAX_LAYERS],
963                                     const u16 count)
964 {
965         int i, index = 0;
966
967         mci->ue_mc += count;
968
969         if (!enable_per_layer_report) {
970                 mci->ce_noinfo_count += count;
971                 return;
972         }
973
974         for (i = 0; i < mci->n_layers; i++) {
975                 if (pos[i] < 0)
976                         break;
977                 index += pos[i];
978                 mci->ue_per_layer[i][index] += count;
979
980                 if (i < mci->n_layers - 1)
981                         index *= mci->layers[i + 1].size;
982         }
983 }
984
985 static void edac_ce_error(struct mem_ctl_info *mci,
986                           const u16 error_count,
987                           const int pos[EDAC_MAX_LAYERS],
988                           const char *msg,
989                           const char *location,
990                           const char *label,
991                           const char *detail,
992                           const char *other_detail,
993                           const bool enable_per_layer_report,
994                           const unsigned long page_frame_number,
995                           const unsigned long offset_in_page,
996                           long grain)
997 {
998         unsigned long remapped_page;
999         char *msg_aux = "";
1000
1001         if (*msg)
1002                 msg_aux = " ";
1003
1004         if (edac_mc_get_log_ce()) {
1005                 if (other_detail && *other_detail)
1006                         edac_mc_printk(mci, KERN_WARNING,
1007                                        "%d CE %s%son %s (%s %s - %s)\n",
1008                                        error_count, msg, msg_aux, label,
1009                                        location, detail, other_detail);
1010                 else
1011                         edac_mc_printk(mci, KERN_WARNING,
1012                                        "%d CE %s%son %s (%s %s)\n",
1013                                        error_count, msg, msg_aux, label,
1014                                        location, detail);
1015         }
1016         edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
1017
1018         if (mci->scrub_mode == SCRUB_SW_SRC) {
1019                 /*
1020                         * Some memory controllers (called MCs below) can remap
1021                         * memory so that it is still available at a different
1022                         * address when PCI devices map into memory.
1023                         * MC's that can't do this, lose the memory where PCI
1024                         * devices are mapped. This mapping is MC-dependent
1025                         * and so we call back into the MC driver for it to
1026                         * map the MC page to a physical (CPU) page which can
1027                         * then be mapped to a virtual page - which can then
1028                         * be scrubbed.
1029                         */
1030                 remapped_page = mci->ctl_page_to_phys ?
1031                         mci->ctl_page_to_phys(mci, page_frame_number) :
1032                         page_frame_number;
1033
1034                 edac_mc_scrub_block(remapped_page,
1035                                         offset_in_page, grain);
1036         }
1037 }
1038
1039 static void edac_ue_error(struct mem_ctl_info *mci,
1040                           const u16 error_count,
1041                           const int pos[EDAC_MAX_LAYERS],
1042                           const char *msg,
1043                           const char *location,
1044                           const char *label,
1045                           const char *detail,
1046                           const char *other_detail,
1047                           const bool enable_per_layer_report)
1048 {
1049         char *msg_aux = "";
1050
1051         if (*msg)
1052                 msg_aux = " ";
1053
1054         if (edac_mc_get_log_ue()) {
1055                 if (other_detail && *other_detail)
1056                         edac_mc_printk(mci, KERN_WARNING,
1057                                        "%d UE %s%son %s (%s %s - %s)\n",
1058                                        error_count, msg, msg_aux, label,
1059                                        location, detail, other_detail);
1060                 else
1061                         edac_mc_printk(mci, KERN_WARNING,
1062                                        "%d UE %s%son %s (%s %s)\n",
1063                                        error_count, msg, msg_aux, label,
1064                                        location, detail);
1065         }
1066
1067         if (edac_mc_get_panic_on_ue()) {
1068                 if (other_detail && *other_detail)
1069                         panic("UE %s%son %s (%s%s - %s)\n",
1070                               msg, msg_aux, label, location, detail, other_detail);
1071                 else
1072                         panic("UE %s%son %s (%s%s)\n",
1073                               msg, msg_aux, label, location, detail);
1074         }
1075
1076         edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1077 }
1078
1079 /**
1080  * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1081  *                            anything to discover the error location
1082  *
1083  * @type:               severity of the error (CE/UE/Fatal)
1084  * @mci:                a struct mem_ctl_info pointer
1085  * @e:                  error description
1086  *
1087  * This raw function is used internally by edac_mc_handle_error(). It should
1088  * only be called directly when the hardware error come directly from BIOS,
1089  * like in the case of APEI GHES driver.
1090  */
1091 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1092                               struct mem_ctl_info *mci,
1093                               struct edac_raw_error_desc *e)
1094 {
1095         char detail[80];
1096         int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1097
1098         /* Memory type dependent details about the error */
1099         if (type == HW_EVENT_ERR_CORRECTED) {
1100                 snprintf(detail, sizeof(detail),
1101                         "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1102                         e->page_frame_number, e->offset_in_page,
1103                         e->grain, e->syndrome);
1104                 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1105                               detail, e->other_detail, e->enable_per_layer_report,
1106                               e->page_frame_number, e->offset_in_page, e->grain);
1107         } else {
1108                 snprintf(detail, sizeof(detail),
1109                         "page:0x%lx offset:0x%lx grain:%ld",
1110                         e->page_frame_number, e->offset_in_page, e->grain);
1111
1112                 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1113                               detail, e->other_detail, e->enable_per_layer_report);
1114         }
1115
1116
1117 }
1118 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1119
1120 /**
1121  * edac_mc_handle_error - reports a memory event to userspace
1122  *
1123  * @type:               severity of the error (CE/UE/Fatal)
1124  * @mci:                a struct mem_ctl_info pointer
1125  * @error_count:        Number of errors of the same type
1126  * @page_frame_number:  mem page where the error occurred
1127  * @offset_in_page:     offset of the error inside the page
1128  * @syndrome:           ECC syndrome
1129  * @top_layer:          Memory layer[0] position
1130  * @mid_layer:          Memory layer[1] position
1131  * @low_layer:          Memory layer[2] position
1132  * @msg:                Message meaningful to the end users that
1133  *                      explains the event
1134  * @other_detail:       Technical details about the event that
1135  *                      may help hardware manufacturers and
1136  *                      EDAC developers to analyse the event
1137  */
1138 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1139                           struct mem_ctl_info *mci,
1140                           const u16 error_count,
1141                           const unsigned long page_frame_number,
1142                           const unsigned long offset_in_page,
1143                           const unsigned long syndrome,
1144                           const int top_layer,
1145                           const int mid_layer,
1146                           const int low_layer,
1147                           const char *msg,
1148                           const char *other_detail)
1149 {
1150         char *p;
1151         int row = -1, chan = -1;
1152         int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1153         int i, n_labels = 0;
1154         u8 grain_bits;
1155         struct edac_raw_error_desc *e = &mci->error_desc;
1156
1157         edac_dbg(3, "MC%d\n", mci->mc_idx);
1158
1159         /* Fills the error report buffer */
1160         memset(e, 0, sizeof (*e));
1161         e->error_count = error_count;
1162         e->top_layer = top_layer;
1163         e->mid_layer = mid_layer;
1164         e->low_layer = low_layer;
1165         e->page_frame_number = page_frame_number;
1166         e->offset_in_page = offset_in_page;
1167         e->syndrome = syndrome;
1168         e->msg = msg;
1169         e->other_detail = other_detail;
1170
1171         /*
1172          * Check if the event report is consistent and if the memory
1173          * location is known. If it is known, enable_per_layer_report will be
1174          * true, the DIMM(s) label info will be filled and the per-layer
1175          * error counters will be incremented.
1176          */
1177         for (i = 0; i < mci->n_layers; i++) {
1178                 if (pos[i] >= (int)mci->layers[i].size) {
1179
1180                         edac_mc_printk(mci, KERN_ERR,
1181                                        "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1182                                        edac_layer_name[mci->layers[i].type],
1183                                        pos[i], mci->layers[i].size);
1184                         /*
1185                          * Instead of just returning it, let's use what's
1186                          * known about the error. The increment routines and
1187                          * the DIMM filter logic will do the right thing by
1188                          * pointing the likely damaged DIMMs.
1189                          */
1190                         pos[i] = -1;
1191                 }
1192                 if (pos[i] >= 0)
1193                         e->enable_per_layer_report = true;
1194         }
1195
1196         /*
1197          * Get the dimm label/grain that applies to the match criteria.
1198          * As the error algorithm may not be able to point to just one memory
1199          * stick, the logic here will get all possible labels that could
1200          * pottentially be affected by the error.
1201          * On FB-DIMM memory controllers, for uncorrected errors, it is common
1202          * to have only the MC channel and the MC dimm (also called "branch")
1203          * but the channel is not known, as the memory is arranged in pairs,
1204          * where each memory belongs to a separate channel within the same
1205          * branch.
1206          */
1207         p = e->label;
1208         *p = '\0';
1209
1210         for (i = 0; i < mci->tot_dimms; i++) {
1211                 struct dimm_info *dimm = mci->dimms[i];
1212
1213                 if (top_layer >= 0 && top_layer != dimm->location[0])
1214                         continue;
1215                 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1216                         continue;
1217                 if (low_layer >= 0 && low_layer != dimm->location[2])
1218                         continue;
1219
1220                 /* get the max grain, over the error match range */
1221                 if (dimm->grain > e->grain)
1222                         e->grain = dimm->grain;
1223
1224                 /*
1225                  * If the error is memory-controller wide, there's no need to
1226                  * seek for the affected DIMMs because the whole
1227                  * channel/memory controller/...  may be affected.
1228                  * Also, don't show errors for empty DIMM slots.
1229                  */
1230                 if (e->enable_per_layer_report && dimm->nr_pages) {
1231                         if (n_labels >= EDAC_MAX_LABELS) {
1232                                 e->enable_per_layer_report = false;
1233                                 break;
1234                         }
1235                         n_labels++;
1236                         if (p != e->label) {
1237                                 strcpy(p, OTHER_LABEL);
1238                                 p += strlen(OTHER_LABEL);
1239                         }
1240                         strcpy(p, dimm->label);
1241                         p += strlen(p);
1242                         *p = '\0';
1243
1244                         /*
1245                          * get csrow/channel of the DIMM, in order to allow
1246                          * incrementing the compat API counters
1247                          */
1248                         edac_dbg(4, "%s csrows map: (%d,%d)\n",
1249                                  mci->csbased ? "rank" : "dimm",
1250                                  dimm->csrow, dimm->cschannel);
1251                         if (row == -1)
1252                                 row = dimm->csrow;
1253                         else if (row >= 0 && row != dimm->csrow)
1254                                 row = -2;
1255
1256                         if (chan == -1)
1257                                 chan = dimm->cschannel;
1258                         else if (chan >= 0 && chan != dimm->cschannel)
1259                                 chan = -2;
1260                 }
1261         }
1262
1263         if (!e->enable_per_layer_report) {
1264                 strcpy(e->label, "any memory");
1265         } else {
1266                 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1267                 if (p == e->label)
1268                         strcpy(e->label, "unknown memory");
1269                 if (type == HW_EVENT_ERR_CORRECTED) {
1270                         if (row >= 0) {
1271                                 mci->csrows[row]->ce_count += error_count;
1272                                 if (chan >= 0)
1273                                         mci->csrows[row]->channels[chan]->ce_count += error_count;
1274                         }
1275                 } else
1276                         if (row >= 0)
1277                                 mci->csrows[row]->ue_count += error_count;
1278         }
1279
1280         /* Fill the RAM location data */
1281         p = e->location;
1282
1283         for (i = 0; i < mci->n_layers; i++) {
1284                 if (pos[i] < 0)
1285                         continue;
1286
1287                 p += sprintf(p, "%s:%d ",
1288                              edac_layer_name[mci->layers[i].type],
1289                              pos[i]);
1290         }
1291         if (p > e->location)
1292                 *(p - 1) = '\0';
1293
1294         /* Report the error via the trace interface */
1295         grain_bits = fls_long(e->grain) + 1;
1296         trace_mc_event(type, e->msg, e->label, e->error_count,
1297                        mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1298                        PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page,
1299                        grain_bits, e->syndrome, e->other_detail);
1300
1301         edac_raw_mc_handle_error(type, mci, e);
1302 }
1303 EXPORT_SYMBOL_GPL(edac_mc_handle_error);