firewire: add CSR cmstr support
[cascardo/linux.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/pci_ids.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40
41 #include <asm/byteorder.h>
42 #include <asm/page.h>
43 #include <asm/system.h>
44
45 #ifdef CONFIG_PPC_PMAC
46 #include <asm/pmac_feature.h>
47 #endif
48
49 #include "core.h"
50 #include "ohci.h"
51
52 #define DESCRIPTOR_OUTPUT_MORE          0
53 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
54 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
55 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
56 #define DESCRIPTOR_STATUS               (1 << 11)
57 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
58 #define DESCRIPTOR_PING                 (1 << 7)
59 #define DESCRIPTOR_YY                   (1 << 6)
60 #define DESCRIPTOR_NO_IRQ               (0 << 4)
61 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
62 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
63 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
64 #define DESCRIPTOR_WAIT                 (3 << 0)
65
66 struct descriptor {
67         __le16 req_count;
68         __le16 control;
69         __le32 data_address;
70         __le32 branch_address;
71         __le16 res_count;
72         __le16 transfer_status;
73 } __attribute__((aligned(16)));
74
75 #define CONTROL_SET(regs)       (regs)
76 #define CONTROL_CLEAR(regs)     ((regs) + 4)
77 #define COMMAND_PTR(regs)       ((regs) + 12)
78 #define CONTEXT_MATCH(regs)     ((regs) + 16)
79
80 struct ar_buffer {
81         struct descriptor descriptor;
82         struct ar_buffer *next;
83         __le32 data[0];
84 };
85
86 struct ar_context {
87         struct fw_ohci *ohci;
88         struct ar_buffer *current_buffer;
89         struct ar_buffer *last_buffer;
90         void *pointer;
91         u32 regs;
92         struct tasklet_struct tasklet;
93 };
94
95 struct context;
96
97 typedef int (*descriptor_callback_t)(struct context *ctx,
98                                      struct descriptor *d,
99                                      struct descriptor *last);
100
101 /*
102  * A buffer that contains a block of DMA-able coherent memory used for
103  * storing a portion of a DMA descriptor program.
104  */
105 struct descriptor_buffer {
106         struct list_head list;
107         dma_addr_t buffer_bus;
108         size_t buffer_size;
109         size_t used;
110         struct descriptor buffer[0];
111 };
112
113 struct context {
114         struct fw_ohci *ohci;
115         u32 regs;
116         int total_allocation;
117
118         /*
119          * List of page-sized buffers for storing DMA descriptors.
120          * Head of list contains buffers in use and tail of list contains
121          * free buffers.
122          */
123         struct list_head buffer_list;
124
125         /*
126          * Pointer to a buffer inside buffer_list that contains the tail
127          * end of the current DMA program.
128          */
129         struct descriptor_buffer *buffer_tail;
130
131         /*
132          * The descriptor containing the branch address of the first
133          * descriptor that has not yet been filled by the device.
134          */
135         struct descriptor *last;
136
137         /*
138          * The last descriptor in the DMA program.  It contains the branch
139          * address that must be updated upon appending a new descriptor.
140          */
141         struct descriptor *prev;
142
143         descriptor_callback_t callback;
144
145         struct tasklet_struct tasklet;
146 };
147
148 #define IT_HEADER_SY(v)          ((v) <<  0)
149 #define IT_HEADER_TCODE(v)       ((v) <<  4)
150 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
151 #define IT_HEADER_TAG(v)         ((v) << 14)
152 #define IT_HEADER_SPEED(v)       ((v) << 16)
153 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154
155 struct iso_context {
156         struct fw_iso_context base;
157         struct context context;
158         int excess_bytes;
159         void *header;
160         size_t header_length;
161 };
162
163 #define CONFIG_ROM_SIZE 1024
164
165 struct fw_ohci {
166         struct fw_card card;
167
168         __iomem char *registers;
169         int node_id;
170         int generation;
171         int request_generation; /* for timestamping incoming requests */
172         unsigned quirks;
173         unsigned int pri_req_max;
174         u32 bus_time;
175         bool is_root;
176
177         /*
178          * Spinlock for accessing fw_ohci data.  Never call out of
179          * this driver with this lock held.
180          */
181         spinlock_t lock;
182
183         struct ar_context ar_request_ctx;
184         struct ar_context ar_response_ctx;
185         struct context at_request_ctx;
186         struct context at_response_ctx;
187
188         u32 it_context_mask;
189         struct iso_context *it_context_list;
190         u64 ir_context_channels;
191         u32 ir_context_mask;
192         struct iso_context *ir_context_list;
193
194         __be32    *config_rom;
195         dma_addr_t config_rom_bus;
196         __be32    *next_config_rom;
197         dma_addr_t next_config_rom_bus;
198         __be32     next_header;
199
200         __le32    *self_id_cpu;
201         dma_addr_t self_id_bus;
202         struct tasklet_struct bus_reset_tasklet;
203
204         u32 self_id_buffer[512];
205 };
206
207 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
208 {
209         return container_of(card, struct fw_ohci, card);
210 }
211
212 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
213 #define IR_CONTEXT_BUFFER_FILL          0x80000000
214 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
215 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
216 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
217 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
218
219 #define CONTEXT_RUN     0x8000
220 #define CONTEXT_WAKE    0x1000
221 #define CONTEXT_DEAD    0x0800
222 #define CONTEXT_ACTIVE  0x0400
223
224 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
225 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
226 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
227
228 #define OHCI1394_REGISTER_SIZE          0x800
229 #define OHCI_LOOP_COUNT                 500
230 #define OHCI1394_PCI_HCI_Control        0x40
231 #define SELF_ID_BUF_SIZE                0x800
232 #define OHCI_TCODE_PHY_PACKET           0x0e
233 #define OHCI_VERSION_1_1                0x010010
234
235 static char ohci_driver_name[] = KBUILD_MODNAME;
236
237 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
238 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
239
240 #define QUIRK_CYCLE_TIMER               1
241 #define QUIRK_RESET_PACKET              2
242 #define QUIRK_BE_HEADERS                4
243 #define QUIRK_NO_1394A                  8
244 #define QUIRK_NO_MSI                    16
245
246 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
247 static const struct {
248         unsigned short vendor, device, flags;
249 } ohci_quirks[] = {
250         {PCI_VENDOR_ID_TI,      PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
251                                                             QUIRK_RESET_PACKET |
252                                                             QUIRK_NO_1394A},
253         {PCI_VENDOR_ID_TI,      PCI_ANY_ID,     QUIRK_RESET_PACKET},
254         {PCI_VENDOR_ID_AL,      PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
255         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
256         {PCI_VENDOR_ID_NEC,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
257         {PCI_VENDOR_ID_VIA,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
258         {PCI_VENDOR_ID_APPLE,   PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
259 };
260
261 /* This overrides anything that was found in ohci_quirks[]. */
262 static int param_quirks;
263 module_param_named(quirks, param_quirks, int, 0644);
264 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
265         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
266         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
267         ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
268         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
269         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
270         ")");
271
272 #define OHCI_PARAM_DEBUG_AT_AR          1
273 #define OHCI_PARAM_DEBUG_SELFIDS        2
274 #define OHCI_PARAM_DEBUG_IRQS           4
275 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
276
277 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
278
279 static int param_debug;
280 module_param_named(debug, param_debug, int, 0644);
281 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
282         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
283         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
284         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
285         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
286         ", or a combination, or all = -1)");
287
288 static void log_irqs(u32 evt)
289 {
290         if (likely(!(param_debug &
291                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
292                 return;
293
294         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
295             !(evt & OHCI1394_busReset))
296                 return;
297
298         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
299             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
300             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
301             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
302             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
303             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
304             evt & OHCI1394_isochRx              ? " IR"                 : "",
305             evt & OHCI1394_isochTx              ? " IT"                 : "",
306             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
307             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
308             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
309             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
310             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
311             evt & OHCI1394_busReset             ? " busReset"           : "",
312             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
313                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
314                     OHCI1394_respTxComplete | OHCI1394_isochRx |
315                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
316                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
317                     OHCI1394_cycleInconsistent |
318                     OHCI1394_regAccessFail | OHCI1394_busReset)
319                                                 ? " ?"                  : "");
320 }
321
322 static const char *speed[] = {
323         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
324 };
325 static const char *power[] = {
326         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
327         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
328 };
329 static const char port[] = { '.', '-', 'p', 'c', };
330
331 static char _p(u32 *s, int shift)
332 {
333         return port[*s >> shift & 3];
334 }
335
336 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
337 {
338         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
339                 return;
340
341         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
342                   self_id_count, generation, node_id);
343
344         for (; self_id_count--; ++s)
345                 if ((*s & 1 << 23) == 0)
346                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
347                             "%s gc=%d %s %s%s%s\n",
348                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
349                             speed[*s >> 14 & 3], *s >> 16 & 63,
350                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
351                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
352                 else
353                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
354                             *s, *s >> 24 & 63,
355                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
356                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
357 }
358
359 static const char *evts[] = {
360         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
361         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
362         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
363         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
364         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
365         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
366         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
367         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
368         [0x10] = "-reserved-",          [0x11] = "ack_complete",
369         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
370         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
371         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
372         [0x18] = "-reserved-",          [0x19] = "-reserved-",
373         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
374         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
375         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
376         [0x20] = "pending/cancelled",
377 };
378 static const char *tcodes[] = {
379         [0x0] = "QW req",               [0x1] = "BW req",
380         [0x2] = "W resp",               [0x3] = "-reserved-",
381         [0x4] = "QR req",               [0x5] = "BR req",
382         [0x6] = "QR resp",              [0x7] = "BR resp",
383         [0x8] = "cycle start",          [0x9] = "Lk req",
384         [0xa] = "async stream packet",  [0xb] = "Lk resp",
385         [0xc] = "-reserved-",           [0xd] = "-reserved-",
386         [0xe] = "link internal",        [0xf] = "-reserved-",
387 };
388 static const char *phys[] = {
389         [0x0] = "phy config packet",    [0x1] = "link-on packet",
390         [0x2] = "self-id packet",       [0x3] = "-reserved-",
391 };
392
393 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
394 {
395         int tcode = header[0] >> 4 & 0xf;
396         char specific[12];
397
398         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
399                 return;
400
401         if (unlikely(evt >= ARRAY_SIZE(evts)))
402                         evt = 0x1f;
403
404         if (evt == OHCI1394_evt_bus_reset) {
405                 fw_notify("A%c evt_bus_reset, generation %d\n",
406                     dir, (header[2] >> 16) & 0xff);
407                 return;
408         }
409
410         if (header[0] == ~header[1]) {
411                 fw_notify("A%c %s, %s, %08x\n",
412                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
413                 return;
414         }
415
416         switch (tcode) {
417         case 0x0: case 0x6: case 0x8:
418                 snprintf(specific, sizeof(specific), " = %08x",
419                          be32_to_cpu((__force __be32)header[3]));
420                 break;
421         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
422                 snprintf(specific, sizeof(specific), " %x,%x",
423                          header[3] >> 16, header[3] & 0xffff);
424                 break;
425         default:
426                 specific[0] = '\0';
427         }
428
429         switch (tcode) {
430         case 0xe: case 0xa:
431                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
432                 break;
433         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
434                 fw_notify("A%c spd %x tl %02x, "
435                     "%04x -> %04x, %s, "
436                     "%s, %04x%08x%s\n",
437                     dir, speed, header[0] >> 10 & 0x3f,
438                     header[1] >> 16, header[0] >> 16, evts[evt],
439                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
440                 break;
441         default:
442                 fw_notify("A%c spd %x tl %02x, "
443                     "%04x -> %04x, %s, "
444                     "%s%s\n",
445                     dir, speed, header[0] >> 10 & 0x3f,
446                     header[1] >> 16, header[0] >> 16, evts[evt],
447                     tcodes[tcode], specific);
448         }
449 }
450
451 #else
452
453 #define param_debug 0
454 static inline void log_irqs(u32 evt) {}
455 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
456 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
457
458 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
459
460 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
461 {
462         writel(data, ohci->registers + offset);
463 }
464
465 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
466 {
467         return readl(ohci->registers + offset);
468 }
469
470 static inline void flush_writes(const struct fw_ohci *ohci)
471 {
472         /* Do a dummy read to flush writes. */
473         reg_read(ohci, OHCI1394_Version);
474 }
475
476 static int read_phy_reg(struct fw_ohci *ohci, int addr)
477 {
478         u32 val;
479         int i;
480
481         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
482         for (i = 0; i < 3 + 100; i++) {
483                 val = reg_read(ohci, OHCI1394_PhyControl);
484                 if (val & OHCI1394_PhyControl_ReadDone)
485                         return OHCI1394_PhyControl_ReadData(val);
486
487                 /*
488                  * Try a few times without waiting.  Sleeping is necessary
489                  * only when the link/PHY interface is busy.
490                  */
491                 if (i >= 3)
492                         msleep(1);
493         }
494         fw_error("failed to read phy reg\n");
495
496         return -EBUSY;
497 }
498
499 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
500 {
501         int i;
502
503         reg_write(ohci, OHCI1394_PhyControl,
504                   OHCI1394_PhyControl_Write(addr, val));
505         for (i = 0; i < 3 + 100; i++) {
506                 val = reg_read(ohci, OHCI1394_PhyControl);
507                 if (!(val & OHCI1394_PhyControl_WritePending))
508                         return 0;
509
510                 if (i >= 3)
511                         msleep(1);
512         }
513         fw_error("failed to write phy reg\n");
514
515         return -EBUSY;
516 }
517
518 static int ohci_update_phy_reg(struct fw_card *card, int addr,
519                                int clear_bits, int set_bits)
520 {
521         struct fw_ohci *ohci = fw_ohci(card);
522         int ret;
523
524         ret = read_phy_reg(ohci, addr);
525         if (ret < 0)
526                 return ret;
527
528         /*
529          * The interrupt status bits are cleared by writing a one bit.
530          * Avoid clearing them unless explicitly requested in set_bits.
531          */
532         if (addr == 5)
533                 clear_bits |= PHY_INT_STATUS_BITS;
534
535         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
536 }
537
538 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
539 {
540         int ret;
541
542         ret = ohci_update_phy_reg(&ohci->card, 7, PHY_PAGE_SELECT, page << 5);
543         if (ret < 0)
544                 return ret;
545
546         return read_phy_reg(ohci, addr);
547 }
548
549 static int ar_context_add_page(struct ar_context *ctx)
550 {
551         struct device *dev = ctx->ohci->card.device;
552         struct ar_buffer *ab;
553         dma_addr_t uninitialized_var(ab_bus);
554         size_t offset;
555
556         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
557         if (ab == NULL)
558                 return -ENOMEM;
559
560         ab->next = NULL;
561         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
562         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
563                                                     DESCRIPTOR_STATUS |
564                                                     DESCRIPTOR_BRANCH_ALWAYS);
565         offset = offsetof(struct ar_buffer, data);
566         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
567         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
568         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
569         ab->descriptor.branch_address = 0;
570
571         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
572         ctx->last_buffer->next = ab;
573         ctx->last_buffer = ab;
574
575         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
576         flush_writes(ctx->ohci);
577
578         return 0;
579 }
580
581 static void ar_context_release(struct ar_context *ctx)
582 {
583         struct ar_buffer *ab, *ab_next;
584         size_t offset;
585         dma_addr_t ab_bus;
586
587         for (ab = ctx->current_buffer; ab; ab = ab_next) {
588                 ab_next = ab->next;
589                 offset = offsetof(struct ar_buffer, data);
590                 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
591                 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
592                                   ab, ab_bus);
593         }
594 }
595
596 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
597 #define cond_le32_to_cpu(v) \
598         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
599 #else
600 #define cond_le32_to_cpu(v) le32_to_cpu(v)
601 #endif
602
603 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
604 {
605         struct fw_ohci *ohci = ctx->ohci;
606         struct fw_packet p;
607         u32 status, length, tcode;
608         int evt;
609
610         p.header[0] = cond_le32_to_cpu(buffer[0]);
611         p.header[1] = cond_le32_to_cpu(buffer[1]);
612         p.header[2] = cond_le32_to_cpu(buffer[2]);
613
614         tcode = (p.header[0] >> 4) & 0x0f;
615         switch (tcode) {
616         case TCODE_WRITE_QUADLET_REQUEST:
617         case TCODE_READ_QUADLET_RESPONSE:
618                 p.header[3] = (__force __u32) buffer[3];
619                 p.header_length = 16;
620                 p.payload_length = 0;
621                 break;
622
623         case TCODE_READ_BLOCK_REQUEST :
624                 p.header[3] = cond_le32_to_cpu(buffer[3]);
625                 p.header_length = 16;
626                 p.payload_length = 0;
627                 break;
628
629         case TCODE_WRITE_BLOCK_REQUEST:
630         case TCODE_READ_BLOCK_RESPONSE:
631         case TCODE_LOCK_REQUEST:
632         case TCODE_LOCK_RESPONSE:
633                 p.header[3] = cond_le32_to_cpu(buffer[3]);
634                 p.header_length = 16;
635                 p.payload_length = p.header[3] >> 16;
636                 break;
637
638         case TCODE_WRITE_RESPONSE:
639         case TCODE_READ_QUADLET_REQUEST:
640         case OHCI_TCODE_PHY_PACKET:
641                 p.header_length = 12;
642                 p.payload_length = 0;
643                 break;
644
645         default:
646                 /* FIXME: Stop context, discard everything, and restart? */
647                 p.header_length = 0;
648                 p.payload_length = 0;
649         }
650
651         p.payload = (void *) buffer + p.header_length;
652
653         /* FIXME: What to do about evt_* errors? */
654         length = (p.header_length + p.payload_length + 3) / 4;
655         status = cond_le32_to_cpu(buffer[length]);
656         evt    = (status >> 16) & 0x1f;
657
658         p.ack        = evt - 16;
659         p.speed      = (status >> 21) & 0x7;
660         p.timestamp  = status & 0xffff;
661         p.generation = ohci->request_generation;
662
663         log_ar_at_event('R', p.speed, p.header, evt);
664
665         /*
666          * The OHCI bus reset handler synthesizes a phy packet with
667          * the new generation number when a bus reset happens (see
668          * section 8.4.2.3).  This helps us determine when a request
669          * was received and make sure we send the response in the same
670          * generation.  We only need this for requests; for responses
671          * we use the unique tlabel for finding the matching
672          * request.
673          *
674          * Alas some chips sometimes emit bus reset packets with a
675          * wrong generation.  We set the correct generation for these
676          * at a slightly incorrect time (in bus_reset_tasklet).
677          */
678         if (evt == OHCI1394_evt_bus_reset) {
679                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
680                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
681         } else if (ctx == &ohci->ar_request_ctx) {
682                 fw_core_handle_request(&ohci->card, &p);
683         } else {
684                 fw_core_handle_response(&ohci->card, &p);
685         }
686
687         return buffer + length + 1;
688 }
689
690 static void ar_context_tasklet(unsigned long data)
691 {
692         struct ar_context *ctx = (struct ar_context *)data;
693         struct fw_ohci *ohci = ctx->ohci;
694         struct ar_buffer *ab;
695         struct descriptor *d;
696         void *buffer, *end;
697
698         ab = ctx->current_buffer;
699         d = &ab->descriptor;
700
701         if (d->res_count == 0) {
702                 size_t size, rest, offset;
703                 dma_addr_t start_bus;
704                 void *start;
705
706                 /*
707                  * This descriptor is finished and we may have a
708                  * packet split across this and the next buffer. We
709                  * reuse the page for reassembling the split packet.
710                  */
711
712                 offset = offsetof(struct ar_buffer, data);
713                 start = buffer = ab;
714                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
715
716                 ab = ab->next;
717                 d = &ab->descriptor;
718                 size = buffer + PAGE_SIZE - ctx->pointer;
719                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
720                 memmove(buffer, ctx->pointer, size);
721                 memcpy(buffer + size, ab->data, rest);
722                 ctx->current_buffer = ab;
723                 ctx->pointer = (void *) ab->data + rest;
724                 end = buffer + size + rest;
725
726                 while (buffer < end)
727                         buffer = handle_ar_packet(ctx, buffer);
728
729                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
730                                   start, start_bus);
731                 ar_context_add_page(ctx);
732         } else {
733                 buffer = ctx->pointer;
734                 ctx->pointer = end =
735                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
736
737                 while (buffer < end)
738                         buffer = handle_ar_packet(ctx, buffer);
739         }
740 }
741
742 static int ar_context_init(struct ar_context *ctx,
743                            struct fw_ohci *ohci, u32 regs)
744 {
745         struct ar_buffer ab;
746
747         ctx->regs        = regs;
748         ctx->ohci        = ohci;
749         ctx->last_buffer = &ab;
750         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
751
752         ar_context_add_page(ctx);
753         ar_context_add_page(ctx);
754         ctx->current_buffer = ab.next;
755         ctx->pointer = ctx->current_buffer->data;
756
757         return 0;
758 }
759
760 static void ar_context_run(struct ar_context *ctx)
761 {
762         struct ar_buffer *ab = ctx->current_buffer;
763         dma_addr_t ab_bus;
764         size_t offset;
765
766         offset = offsetof(struct ar_buffer, data);
767         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
768
769         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
770         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
771         flush_writes(ctx->ohci);
772 }
773
774 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
775 {
776         int b, key;
777
778         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
779         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
780
781         /* figure out which descriptor the branch address goes in */
782         if (z == 2 && (b == 3 || key == 2))
783                 return d;
784         else
785                 return d + z - 1;
786 }
787
788 static void context_tasklet(unsigned long data)
789 {
790         struct context *ctx = (struct context *) data;
791         struct descriptor *d, *last;
792         u32 address;
793         int z;
794         struct descriptor_buffer *desc;
795
796         desc = list_entry(ctx->buffer_list.next,
797                         struct descriptor_buffer, list);
798         last = ctx->last;
799         while (last->branch_address != 0) {
800                 struct descriptor_buffer *old_desc = desc;
801                 address = le32_to_cpu(last->branch_address);
802                 z = address & 0xf;
803                 address &= ~0xf;
804
805                 /* If the branch address points to a buffer outside of the
806                  * current buffer, advance to the next buffer. */
807                 if (address < desc->buffer_bus ||
808                                 address >= desc->buffer_bus + desc->used)
809                         desc = list_entry(desc->list.next,
810                                         struct descriptor_buffer, list);
811                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
812                 last = find_branch_descriptor(d, z);
813
814                 if (!ctx->callback(ctx, d, last))
815                         break;
816
817                 if (old_desc != desc) {
818                         /* If we've advanced to the next buffer, move the
819                          * previous buffer to the free list. */
820                         unsigned long flags;
821                         old_desc->used = 0;
822                         spin_lock_irqsave(&ctx->ohci->lock, flags);
823                         list_move_tail(&old_desc->list, &ctx->buffer_list);
824                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
825                 }
826                 ctx->last = last;
827         }
828 }
829
830 /*
831  * Allocate a new buffer and add it to the list of free buffers for this
832  * context.  Must be called with ohci->lock held.
833  */
834 static int context_add_buffer(struct context *ctx)
835 {
836         struct descriptor_buffer *desc;
837         dma_addr_t uninitialized_var(bus_addr);
838         int offset;
839
840         /*
841          * 16MB of descriptors should be far more than enough for any DMA
842          * program.  This will catch run-away userspace or DoS attacks.
843          */
844         if (ctx->total_allocation >= 16*1024*1024)
845                 return -ENOMEM;
846
847         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
848                         &bus_addr, GFP_ATOMIC);
849         if (!desc)
850                 return -ENOMEM;
851
852         offset = (void *)&desc->buffer - (void *)desc;
853         desc->buffer_size = PAGE_SIZE - offset;
854         desc->buffer_bus = bus_addr + offset;
855         desc->used = 0;
856
857         list_add_tail(&desc->list, &ctx->buffer_list);
858         ctx->total_allocation += PAGE_SIZE;
859
860         return 0;
861 }
862
863 static int context_init(struct context *ctx, struct fw_ohci *ohci,
864                         u32 regs, descriptor_callback_t callback)
865 {
866         ctx->ohci = ohci;
867         ctx->regs = regs;
868         ctx->total_allocation = 0;
869
870         INIT_LIST_HEAD(&ctx->buffer_list);
871         if (context_add_buffer(ctx) < 0)
872                 return -ENOMEM;
873
874         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
875                         struct descriptor_buffer, list);
876
877         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
878         ctx->callback = callback;
879
880         /*
881          * We put a dummy descriptor in the buffer that has a NULL
882          * branch address and looks like it's been sent.  That way we
883          * have a descriptor to append DMA programs to.
884          */
885         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
886         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
887         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
888         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
889         ctx->last = ctx->buffer_tail->buffer;
890         ctx->prev = ctx->buffer_tail->buffer;
891
892         return 0;
893 }
894
895 static void context_release(struct context *ctx)
896 {
897         struct fw_card *card = &ctx->ohci->card;
898         struct descriptor_buffer *desc, *tmp;
899
900         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
901                 dma_free_coherent(card->device, PAGE_SIZE, desc,
902                         desc->buffer_bus -
903                         ((void *)&desc->buffer - (void *)desc));
904 }
905
906 /* Must be called with ohci->lock held */
907 static struct descriptor *context_get_descriptors(struct context *ctx,
908                                                   int z, dma_addr_t *d_bus)
909 {
910         struct descriptor *d = NULL;
911         struct descriptor_buffer *desc = ctx->buffer_tail;
912
913         if (z * sizeof(*d) > desc->buffer_size)
914                 return NULL;
915
916         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
917                 /* No room for the descriptor in this buffer, so advance to the
918                  * next one. */
919
920                 if (desc->list.next == &ctx->buffer_list) {
921                         /* If there is no free buffer next in the list,
922                          * allocate one. */
923                         if (context_add_buffer(ctx) < 0)
924                                 return NULL;
925                 }
926                 desc = list_entry(desc->list.next,
927                                 struct descriptor_buffer, list);
928                 ctx->buffer_tail = desc;
929         }
930
931         d = desc->buffer + desc->used / sizeof(*d);
932         memset(d, 0, z * sizeof(*d));
933         *d_bus = desc->buffer_bus + desc->used;
934
935         return d;
936 }
937
938 static void context_run(struct context *ctx, u32 extra)
939 {
940         struct fw_ohci *ohci = ctx->ohci;
941
942         reg_write(ohci, COMMAND_PTR(ctx->regs),
943                   le32_to_cpu(ctx->last->branch_address));
944         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
945         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
946         flush_writes(ohci);
947 }
948
949 static void context_append(struct context *ctx,
950                            struct descriptor *d, int z, int extra)
951 {
952         dma_addr_t d_bus;
953         struct descriptor_buffer *desc = ctx->buffer_tail;
954
955         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
956
957         desc->used += (z + extra) * sizeof(*d);
958         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
959         ctx->prev = find_branch_descriptor(d, z);
960
961         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
962         flush_writes(ctx->ohci);
963 }
964
965 static void context_stop(struct context *ctx)
966 {
967         u32 reg;
968         int i;
969
970         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
971         flush_writes(ctx->ohci);
972
973         for (i = 0; i < 10; i++) {
974                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
975                 if ((reg & CONTEXT_ACTIVE) == 0)
976                         return;
977
978                 mdelay(1);
979         }
980         fw_error("Error: DMA context still active (0x%08x)\n", reg);
981 }
982
983 struct driver_data {
984         struct fw_packet *packet;
985 };
986
987 /*
988  * This function apppends a packet to the DMA queue for transmission.
989  * Must always be called with the ochi->lock held to ensure proper
990  * generation handling and locking around packet queue manipulation.
991  */
992 static int at_context_queue_packet(struct context *ctx,
993                                    struct fw_packet *packet)
994 {
995         struct fw_ohci *ohci = ctx->ohci;
996         dma_addr_t d_bus, uninitialized_var(payload_bus);
997         struct driver_data *driver_data;
998         struct descriptor *d, *last;
999         __le32 *header;
1000         int z, tcode;
1001         u32 reg;
1002
1003         d = context_get_descriptors(ctx, 4, &d_bus);
1004         if (d == NULL) {
1005                 packet->ack = RCODE_SEND_ERROR;
1006                 return -1;
1007         }
1008
1009         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1010         d[0].res_count = cpu_to_le16(packet->timestamp);
1011
1012         /*
1013          * The DMA format for asyncronous link packets is different
1014          * from the IEEE1394 layout, so shift the fields around
1015          * accordingly.  If header_length is 8, it's a PHY packet, to
1016          * which we need to prepend an extra quadlet.
1017          */
1018
1019         header = (__le32 *) &d[1];
1020         switch (packet->header_length) {
1021         case 16:
1022         case 12:
1023                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1024                                         (packet->speed << 16));
1025                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1026                                         (packet->header[0] & 0xffff0000));
1027                 header[2] = cpu_to_le32(packet->header[2]);
1028
1029                 tcode = (packet->header[0] >> 4) & 0x0f;
1030                 if (TCODE_IS_BLOCK_PACKET(tcode))
1031                         header[3] = cpu_to_le32(packet->header[3]);
1032                 else
1033                         header[3] = (__force __le32) packet->header[3];
1034
1035                 d[0].req_count = cpu_to_le16(packet->header_length);
1036                 break;
1037
1038         case 8:
1039                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1040                                         (packet->speed << 16));
1041                 header[1] = cpu_to_le32(packet->header[0]);
1042                 header[2] = cpu_to_le32(packet->header[1]);
1043                 d[0].req_count = cpu_to_le16(12);
1044                 break;
1045
1046         case 4:
1047                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1048                                         (packet->speed << 16));
1049                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1050                 d[0].req_count = cpu_to_le16(8);
1051                 break;
1052
1053         default:
1054                 /* BUG(); */
1055                 packet->ack = RCODE_SEND_ERROR;
1056                 return -1;
1057         }
1058
1059         driver_data = (struct driver_data *) &d[3];
1060         driver_data->packet = packet;
1061         packet->driver_data = driver_data;
1062
1063         if (packet->payload_length > 0) {
1064                 payload_bus =
1065                         dma_map_single(ohci->card.device, packet->payload,
1066                                        packet->payload_length, DMA_TO_DEVICE);
1067                 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1068                         packet->ack = RCODE_SEND_ERROR;
1069                         return -1;
1070                 }
1071                 packet->payload_bus     = payload_bus;
1072                 packet->payload_mapped  = true;
1073
1074                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1075                 d[2].data_address = cpu_to_le32(payload_bus);
1076                 last = &d[2];
1077                 z = 3;
1078         } else {
1079                 last = &d[0];
1080                 z = 2;
1081         }
1082
1083         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1084                                      DESCRIPTOR_IRQ_ALWAYS |
1085                                      DESCRIPTOR_BRANCH_ALWAYS);
1086
1087         /*
1088          * If the controller and packet generations don't match, we need to
1089          * bail out and try again.  If IntEvent.busReset is set, the AT context
1090          * is halted, so appending to the context and trying to run it is
1091          * futile.  Most controllers do the right thing and just flush the AT
1092          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1093          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1094          * up stalling out.  So we just bail out in software and try again
1095          * later, and everyone is happy.
1096          * FIXME: Document how the locking works.
1097          */
1098         if (ohci->generation != packet->generation ||
1099             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1100                 if (packet->payload_mapped)
1101                         dma_unmap_single(ohci->card.device, payload_bus,
1102                                          packet->payload_length, DMA_TO_DEVICE);
1103                 packet->ack = RCODE_GENERATION;
1104                 return -1;
1105         }
1106
1107         context_append(ctx, d, z, 4 - z);
1108
1109         /* If the context isn't already running, start it up. */
1110         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1111         if ((reg & CONTEXT_RUN) == 0)
1112                 context_run(ctx, 0);
1113
1114         return 0;
1115 }
1116
1117 static int handle_at_packet(struct context *context,
1118                             struct descriptor *d,
1119                             struct descriptor *last)
1120 {
1121         struct driver_data *driver_data;
1122         struct fw_packet *packet;
1123         struct fw_ohci *ohci = context->ohci;
1124         int evt;
1125
1126         if (last->transfer_status == 0)
1127                 /* This descriptor isn't done yet, stop iteration. */
1128                 return 0;
1129
1130         driver_data = (struct driver_data *) &d[3];
1131         packet = driver_data->packet;
1132         if (packet == NULL)
1133                 /* This packet was cancelled, just continue. */
1134                 return 1;
1135
1136         if (packet->payload_mapped)
1137                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1138                                  packet->payload_length, DMA_TO_DEVICE);
1139
1140         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1141         packet->timestamp = le16_to_cpu(last->res_count);
1142
1143         log_ar_at_event('T', packet->speed, packet->header, evt);
1144
1145         switch (evt) {
1146         case OHCI1394_evt_timeout:
1147                 /* Async response transmit timed out. */
1148                 packet->ack = RCODE_CANCELLED;
1149                 break;
1150
1151         case OHCI1394_evt_flushed:
1152                 /*
1153                  * The packet was flushed should give same error as
1154                  * when we try to use a stale generation count.
1155                  */
1156                 packet->ack = RCODE_GENERATION;
1157                 break;
1158
1159         case OHCI1394_evt_missing_ack:
1160                 /*
1161                  * Using a valid (current) generation count, but the
1162                  * node is not on the bus or not sending acks.
1163                  */
1164                 packet->ack = RCODE_NO_ACK;
1165                 break;
1166
1167         case ACK_COMPLETE + 0x10:
1168         case ACK_PENDING + 0x10:
1169         case ACK_BUSY_X + 0x10:
1170         case ACK_BUSY_A + 0x10:
1171         case ACK_BUSY_B + 0x10:
1172         case ACK_DATA_ERROR + 0x10:
1173         case ACK_TYPE_ERROR + 0x10:
1174                 packet->ack = evt - 0x10;
1175                 break;
1176
1177         default:
1178                 packet->ack = RCODE_SEND_ERROR;
1179                 break;
1180         }
1181
1182         packet->callback(packet, &ohci->card, packet->ack);
1183
1184         return 1;
1185 }
1186
1187 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1188 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1189 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1190 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1191 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1192
1193 static void handle_local_rom(struct fw_ohci *ohci,
1194                              struct fw_packet *packet, u32 csr)
1195 {
1196         struct fw_packet response;
1197         int tcode, length, i;
1198
1199         tcode = HEADER_GET_TCODE(packet->header[0]);
1200         if (TCODE_IS_BLOCK_PACKET(tcode))
1201                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1202         else
1203                 length = 4;
1204
1205         i = csr - CSR_CONFIG_ROM;
1206         if (i + length > CONFIG_ROM_SIZE) {
1207                 fw_fill_response(&response, packet->header,
1208                                  RCODE_ADDRESS_ERROR, NULL, 0);
1209         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1210                 fw_fill_response(&response, packet->header,
1211                                  RCODE_TYPE_ERROR, NULL, 0);
1212         } else {
1213                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1214                                  (void *) ohci->config_rom + i, length);
1215         }
1216
1217         fw_core_handle_response(&ohci->card, &response);
1218 }
1219
1220 static void handle_local_lock(struct fw_ohci *ohci,
1221                               struct fw_packet *packet, u32 csr)
1222 {
1223         struct fw_packet response;
1224         int tcode, length, ext_tcode, sel;
1225         __be32 *payload, lock_old;
1226         u32 lock_arg, lock_data;
1227
1228         tcode = HEADER_GET_TCODE(packet->header[0]);
1229         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1230         payload = packet->payload;
1231         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1232
1233         if (tcode == TCODE_LOCK_REQUEST &&
1234             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1235                 lock_arg = be32_to_cpu(payload[0]);
1236                 lock_data = be32_to_cpu(payload[1]);
1237         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1238                 lock_arg = 0;
1239                 lock_data = 0;
1240         } else {
1241                 fw_fill_response(&response, packet->header,
1242                                  RCODE_TYPE_ERROR, NULL, 0);
1243                 goto out;
1244         }
1245
1246         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1247         reg_write(ohci, OHCI1394_CSRData, lock_data);
1248         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1249         reg_write(ohci, OHCI1394_CSRControl, sel);
1250
1251         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1252                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1253         else
1254                 fw_notify("swap not done yet\n");
1255
1256         fw_fill_response(&response, packet->header,
1257                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1258  out:
1259         fw_core_handle_response(&ohci->card, &response);
1260 }
1261
1262 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1263 {
1264         u64 offset;
1265         u32 csr;
1266
1267         if (ctx == &ctx->ohci->at_request_ctx) {
1268                 packet->ack = ACK_PENDING;
1269                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1270         }
1271
1272         offset =
1273                 ((unsigned long long)
1274                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1275                 packet->header[2];
1276         csr = offset - CSR_REGISTER_BASE;
1277
1278         /* Handle config rom reads. */
1279         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1280                 handle_local_rom(ctx->ohci, packet, csr);
1281         else switch (csr) {
1282         case CSR_BUS_MANAGER_ID:
1283         case CSR_BANDWIDTH_AVAILABLE:
1284         case CSR_CHANNELS_AVAILABLE_HI:
1285         case CSR_CHANNELS_AVAILABLE_LO:
1286                 handle_local_lock(ctx->ohci, packet, csr);
1287                 break;
1288         default:
1289                 if (ctx == &ctx->ohci->at_request_ctx)
1290                         fw_core_handle_request(&ctx->ohci->card, packet);
1291                 else
1292                         fw_core_handle_response(&ctx->ohci->card, packet);
1293                 break;
1294         }
1295
1296         if (ctx == &ctx->ohci->at_response_ctx) {
1297                 packet->ack = ACK_COMPLETE;
1298                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1299         }
1300 }
1301
1302 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1303 {
1304         unsigned long flags;
1305         int ret;
1306
1307         spin_lock_irqsave(&ctx->ohci->lock, flags);
1308
1309         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1310             ctx->ohci->generation == packet->generation) {
1311                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1312                 handle_local_request(ctx, packet);
1313                 return;
1314         }
1315
1316         ret = at_context_queue_packet(ctx, packet);
1317         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1318
1319         if (ret < 0)
1320                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1321
1322 }
1323
1324 static u32 cycle_timer_ticks(u32 cycle_timer)
1325 {
1326         u32 ticks;
1327
1328         ticks = cycle_timer & 0xfff;
1329         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1330         ticks += (3072 * 8000) * (cycle_timer >> 25);
1331
1332         return ticks;
1333 }
1334
1335 /*
1336  * Some controllers exhibit one or more of the following bugs when updating the
1337  * iso cycle timer register:
1338  *  - When the lowest six bits are wrapping around to zero, a read that happens
1339  *    at the same time will return garbage in the lowest ten bits.
1340  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1341  *    not incremented for about 60 ns.
1342  *  - Occasionally, the entire register reads zero.
1343  *
1344  * To catch these, we read the register three times and ensure that the
1345  * difference between each two consecutive reads is approximately the same, i.e.
1346  * less than twice the other.  Furthermore, any negative difference indicates an
1347  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1348  * execute, so we have enough precision to compute the ratio of the differences.)
1349  */
1350 static u32 get_cycle_time(struct fw_ohci *ohci)
1351 {
1352         u32 c0, c1, c2;
1353         u32 t0, t1, t2;
1354         s32 diff01, diff12;
1355         int i;
1356
1357         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1358
1359         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1360                 i = 0;
1361                 c1 = c2;
1362                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1363                 do {
1364                         c0 = c1;
1365                         c1 = c2;
1366                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1367                         t0 = cycle_timer_ticks(c0);
1368                         t1 = cycle_timer_ticks(c1);
1369                         t2 = cycle_timer_ticks(c2);
1370                         diff01 = t1 - t0;
1371                         diff12 = t2 - t1;
1372                 } while ((diff01 <= 0 || diff12 <= 0 ||
1373                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1374                          && i++ < 20);
1375         }
1376
1377         return c2;
1378 }
1379
1380 /*
1381  * This function has to be called at least every 64 seconds.  The bus_time
1382  * field stores not only the upper 25 bits of the BUS_TIME register but also
1383  * the most significant bit of the cycle timer in bit 6 so that we can detect
1384  * changes in this bit.
1385  */
1386 static u32 update_bus_time(struct fw_ohci *ohci)
1387 {
1388         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1389
1390         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1391                 ohci->bus_time += 0x40;
1392
1393         return ohci->bus_time | cycle_time_seconds;
1394 }
1395
1396 static void bus_reset_tasklet(unsigned long data)
1397 {
1398         struct fw_ohci *ohci = (struct fw_ohci *)data;
1399         int self_id_count, i, j, reg;
1400         int generation, new_generation;
1401         unsigned long flags;
1402         void *free_rom = NULL;
1403         dma_addr_t free_rom_bus = 0;
1404         bool is_new_root;
1405
1406         reg = reg_read(ohci, OHCI1394_NodeID);
1407         if (!(reg & OHCI1394_NodeID_idValid)) {
1408                 fw_notify("node ID not valid, new bus reset in progress\n");
1409                 return;
1410         }
1411         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1412                 fw_notify("malconfigured bus\n");
1413                 return;
1414         }
1415         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1416                                OHCI1394_NodeID_nodeNumber);
1417
1418         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1419         if (!(ohci->is_root && is_new_root))
1420                 reg_write(ohci, OHCI1394_LinkControlSet,
1421                           OHCI1394_LinkControl_cycleMaster);
1422         ohci->is_root = is_new_root;
1423
1424         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1425         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1426                 fw_notify("inconsistent self IDs\n");
1427                 return;
1428         }
1429         /*
1430          * The count in the SelfIDCount register is the number of
1431          * bytes in the self ID receive buffer.  Since we also receive
1432          * the inverted quadlets and a header quadlet, we shift one
1433          * bit extra to get the actual number of self IDs.
1434          */
1435         self_id_count = (reg >> 3) & 0xff;
1436         if (self_id_count == 0 || self_id_count > 252) {
1437                 fw_notify("inconsistent self IDs\n");
1438                 return;
1439         }
1440         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1441         rmb();
1442
1443         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1444                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1445                         fw_notify("inconsistent self IDs\n");
1446                         return;
1447                 }
1448                 ohci->self_id_buffer[j] =
1449                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1450         }
1451         rmb();
1452
1453         /*
1454          * Check the consistency of the self IDs we just read.  The
1455          * problem we face is that a new bus reset can start while we
1456          * read out the self IDs from the DMA buffer. If this happens,
1457          * the DMA buffer will be overwritten with new self IDs and we
1458          * will read out inconsistent data.  The OHCI specification
1459          * (section 11.2) recommends a technique similar to
1460          * linux/seqlock.h, where we remember the generation of the
1461          * self IDs in the buffer before reading them out and compare
1462          * it to the current generation after reading them out.  If
1463          * the two generations match we know we have a consistent set
1464          * of self IDs.
1465          */
1466
1467         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1468         if (new_generation != generation) {
1469                 fw_notify("recursive bus reset detected, "
1470                           "discarding self ids\n");
1471                 return;
1472         }
1473
1474         /* FIXME: Document how the locking works. */
1475         spin_lock_irqsave(&ohci->lock, flags);
1476
1477         ohci->generation = generation;
1478         context_stop(&ohci->at_request_ctx);
1479         context_stop(&ohci->at_response_ctx);
1480         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1481
1482         if (ohci->quirks & QUIRK_RESET_PACKET)
1483                 ohci->request_generation = generation;
1484
1485         /*
1486          * This next bit is unrelated to the AT context stuff but we
1487          * have to do it under the spinlock also.  If a new config rom
1488          * was set up before this reset, the old one is now no longer
1489          * in use and we can free it. Update the config rom pointers
1490          * to point to the current config rom and clear the
1491          * next_config_rom pointer so a new udpate can take place.
1492          */
1493
1494         if (ohci->next_config_rom != NULL) {
1495                 if (ohci->next_config_rom != ohci->config_rom) {
1496                         free_rom      = ohci->config_rom;
1497                         free_rom_bus  = ohci->config_rom_bus;
1498                 }
1499                 ohci->config_rom      = ohci->next_config_rom;
1500                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1501                 ohci->next_config_rom = NULL;
1502
1503                 /*
1504                  * Restore config_rom image and manually update
1505                  * config_rom registers.  Writing the header quadlet
1506                  * will indicate that the config rom is ready, so we
1507                  * do that last.
1508                  */
1509                 reg_write(ohci, OHCI1394_BusOptions,
1510                           be32_to_cpu(ohci->config_rom[2]));
1511                 ohci->config_rom[0] = ohci->next_header;
1512                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1513                           be32_to_cpu(ohci->next_header));
1514         }
1515
1516 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1517         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1518         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1519 #endif
1520
1521         spin_unlock_irqrestore(&ohci->lock, flags);
1522
1523         if (free_rom)
1524                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1525                                   free_rom, free_rom_bus);
1526
1527         log_selfids(ohci->node_id, generation,
1528                     self_id_count, ohci->self_id_buffer);
1529
1530         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1531                                  self_id_count, ohci->self_id_buffer);
1532 }
1533
1534 static irqreturn_t irq_handler(int irq, void *data)
1535 {
1536         struct fw_ohci *ohci = data;
1537         u32 event, iso_event;
1538         int i;
1539
1540         event = reg_read(ohci, OHCI1394_IntEventClear);
1541
1542         if (!event || !~event)
1543                 return IRQ_NONE;
1544
1545         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1546         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1547         log_irqs(event);
1548
1549         if (event & OHCI1394_selfIDComplete)
1550                 tasklet_schedule(&ohci->bus_reset_tasklet);
1551
1552         if (event & OHCI1394_RQPkt)
1553                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1554
1555         if (event & OHCI1394_RSPkt)
1556                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1557
1558         if (event & OHCI1394_reqTxComplete)
1559                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1560
1561         if (event & OHCI1394_respTxComplete)
1562                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1563
1564         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1565         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1566
1567         while (iso_event) {
1568                 i = ffs(iso_event) - 1;
1569                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1570                 iso_event &= ~(1 << i);
1571         }
1572
1573         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1574         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1575
1576         while (iso_event) {
1577                 i = ffs(iso_event) - 1;
1578                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1579                 iso_event &= ~(1 << i);
1580         }
1581
1582         if (unlikely(event & OHCI1394_regAccessFail))
1583                 fw_error("Register access failure - "
1584                          "please notify linux1394-devel@lists.sf.net\n");
1585
1586         if (unlikely(event & OHCI1394_postedWriteErr))
1587                 fw_error("PCI posted write error\n");
1588
1589         if (unlikely(event & OHCI1394_cycleTooLong)) {
1590                 if (printk_ratelimit())
1591                         fw_notify("isochronous cycle too long\n");
1592                 reg_write(ohci, OHCI1394_LinkControlSet,
1593                           OHCI1394_LinkControl_cycleMaster);
1594         }
1595
1596         if (unlikely(event & OHCI1394_cycleInconsistent)) {
1597                 /*
1598                  * We need to clear this event bit in order to make
1599                  * cycleMatch isochronous I/O work.  In theory we should
1600                  * stop active cycleMatch iso contexts now and restart
1601                  * them at least two cycles later.  (FIXME?)
1602                  */
1603                 if (printk_ratelimit())
1604                         fw_notify("isochronous cycle inconsistent\n");
1605         }
1606
1607         if (event & OHCI1394_cycle64Seconds) {
1608                 spin_lock(&ohci->lock);
1609                 update_bus_time(ohci);
1610                 spin_unlock(&ohci->lock);
1611         }
1612
1613         return IRQ_HANDLED;
1614 }
1615
1616 static int software_reset(struct fw_ohci *ohci)
1617 {
1618         int i;
1619
1620         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1621
1622         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1623                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1624                      OHCI1394_HCControl_softReset) == 0)
1625                         return 0;
1626                 msleep(1);
1627         }
1628
1629         return -EBUSY;
1630 }
1631
1632 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1633 {
1634         size_t size = length * 4;
1635
1636         memcpy(dest, src, size);
1637         if (size < CONFIG_ROM_SIZE)
1638                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1639 }
1640
1641 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1642 {
1643         bool enable_1394a;
1644         int ret, clear, set, offset;
1645
1646         /* Check if the driver should configure link and PHY. */
1647         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1648               OHCI1394_HCControl_programPhyEnable))
1649                 return 0;
1650
1651         /* Paranoia: check whether the PHY supports 1394a, too. */
1652         enable_1394a = false;
1653         ret = read_phy_reg(ohci, 2);
1654         if (ret < 0)
1655                 return ret;
1656         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1657                 ret = read_paged_phy_reg(ohci, 1, 8);
1658                 if (ret < 0)
1659                         return ret;
1660                 if (ret >= 1)
1661                         enable_1394a = true;
1662         }
1663
1664         if (ohci->quirks & QUIRK_NO_1394A)
1665                 enable_1394a = false;
1666
1667         /* Configure PHY and link consistently. */
1668         if (enable_1394a) {
1669                 clear = 0;
1670                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1671         } else {
1672                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1673                 set = 0;
1674         }
1675         ret = ohci_update_phy_reg(&ohci->card, 5, clear, set);
1676         if (ret < 0)
1677                 return ret;
1678
1679         if (enable_1394a)
1680                 offset = OHCI1394_HCControlSet;
1681         else
1682                 offset = OHCI1394_HCControlClear;
1683         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1684
1685         /* Clean up: configuration has been taken care of. */
1686         reg_write(ohci, OHCI1394_HCControlClear,
1687                   OHCI1394_HCControl_programPhyEnable);
1688
1689         return 0;
1690 }
1691
1692 static int ohci_enable(struct fw_card *card,
1693                        const __be32 *config_rom, size_t length)
1694 {
1695         struct fw_ohci *ohci = fw_ohci(card);
1696         struct pci_dev *dev = to_pci_dev(card->device);
1697         u32 lps, seconds, irqs;
1698         int i, ret;
1699
1700         if (software_reset(ohci)) {
1701                 fw_error("Failed to reset ohci card.\n");
1702                 return -EBUSY;
1703         }
1704
1705         /*
1706          * Now enable LPS, which we need in order to start accessing
1707          * most of the registers.  In fact, on some cards (ALI M5251),
1708          * accessing registers in the SClk domain without LPS enabled
1709          * will lock up the machine.  Wait 50msec to make sure we have
1710          * full link enabled.  However, with some cards (well, at least
1711          * a JMicron PCIe card), we have to try again sometimes.
1712          */
1713         reg_write(ohci, OHCI1394_HCControlSet,
1714                   OHCI1394_HCControl_LPS |
1715                   OHCI1394_HCControl_postedWriteEnable);
1716         flush_writes(ohci);
1717
1718         for (lps = 0, i = 0; !lps && i < 3; i++) {
1719                 msleep(50);
1720                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1721                       OHCI1394_HCControl_LPS;
1722         }
1723
1724         if (!lps) {
1725                 fw_error("Failed to set Link Power Status\n");
1726                 return -EIO;
1727         }
1728
1729         reg_write(ohci, OHCI1394_HCControlClear,
1730                   OHCI1394_HCControl_noByteSwapData);
1731
1732         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1733         reg_write(ohci, OHCI1394_LinkControlClear,
1734                   OHCI1394_LinkControl_rcvPhyPkt);
1735         reg_write(ohci, OHCI1394_LinkControlSet,
1736                   OHCI1394_LinkControl_rcvSelfID |
1737                   OHCI1394_LinkControl_cycleTimerEnable |
1738                   OHCI1394_LinkControl_cycleMaster);
1739
1740         reg_write(ohci, OHCI1394_ATRetries,
1741                   OHCI1394_MAX_AT_REQ_RETRIES |
1742                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1743                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
1744                   (200 << 16));
1745
1746         seconds = lower_32_bits(get_seconds());
1747         reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
1748         ohci->bus_time = seconds & ~0x3f;
1749
1750         /* Get implemented bits of the priority arbitration request counter. */
1751         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
1752         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
1753         reg_write(ohci, OHCI1394_FairnessControl, 0);
1754
1755         ar_context_run(&ohci->ar_request_ctx);
1756         ar_context_run(&ohci->ar_response_ctx);
1757
1758         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1759         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1760         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1761
1762         ret = configure_1394a_enhancements(ohci);
1763         if (ret < 0)
1764                 return ret;
1765
1766         /* Activate link_on bit and contender bit in our self ID packets.*/
1767         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
1768         if (ret < 0)
1769                 return ret;
1770
1771         /*
1772          * When the link is not yet enabled, the atomic config rom
1773          * update mechanism described below in ohci_set_config_rom()
1774          * is not active.  We have to update ConfigRomHeader and
1775          * BusOptions manually, and the write to ConfigROMmap takes
1776          * effect immediately.  We tie this to the enabling of the
1777          * link, so we have a valid config rom before enabling - the
1778          * OHCI requires that ConfigROMhdr and BusOptions have valid
1779          * values before enabling.
1780          *
1781          * However, when the ConfigROMmap is written, some controllers
1782          * always read back quadlets 0 and 2 from the config rom to
1783          * the ConfigRomHeader and BusOptions registers on bus reset.
1784          * They shouldn't do that in this initial case where the link
1785          * isn't enabled.  This means we have to use the same
1786          * workaround here, setting the bus header to 0 and then write
1787          * the right values in the bus reset tasklet.
1788          */
1789
1790         if (config_rom) {
1791                 ohci->next_config_rom =
1792                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1793                                            &ohci->next_config_rom_bus,
1794                                            GFP_KERNEL);
1795                 if (ohci->next_config_rom == NULL)
1796                         return -ENOMEM;
1797
1798                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1799         } else {
1800                 /*
1801                  * In the suspend case, config_rom is NULL, which
1802                  * means that we just reuse the old config rom.
1803                  */
1804                 ohci->next_config_rom = ohci->config_rom;
1805                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1806         }
1807
1808         ohci->next_header = ohci->next_config_rom[0];
1809         ohci->next_config_rom[0] = 0;
1810         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1811         reg_write(ohci, OHCI1394_BusOptions,
1812                   be32_to_cpu(ohci->next_config_rom[2]));
1813         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1814
1815         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1816
1817         if (!(ohci->quirks & QUIRK_NO_MSI))
1818                 pci_enable_msi(dev);
1819         if (request_irq(dev->irq, irq_handler,
1820                         pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
1821                         ohci_driver_name, ohci)) {
1822                 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
1823                 pci_disable_msi(dev);
1824                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1825                                   ohci->config_rom, ohci->config_rom_bus);
1826                 return -EIO;
1827         }
1828
1829         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1830                 OHCI1394_RQPkt | OHCI1394_RSPkt |
1831                 OHCI1394_isochTx | OHCI1394_isochRx |
1832                 OHCI1394_postedWriteErr |
1833                 OHCI1394_selfIDComplete |
1834                 OHCI1394_regAccessFail |
1835                 OHCI1394_cycle64Seconds |
1836                 OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
1837                 OHCI1394_masterIntEnable;
1838         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1839                 irqs |= OHCI1394_busReset;
1840         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
1841
1842         reg_write(ohci, OHCI1394_HCControlSet,
1843                   OHCI1394_HCControl_linkEnable |
1844                   OHCI1394_HCControl_BIBimageValid);
1845         flush_writes(ohci);
1846
1847         /*
1848          * We are ready to go, initiate bus reset to finish the
1849          * initialization.
1850          */
1851
1852         fw_core_initiate_bus_reset(&ohci->card, 1);
1853
1854         return 0;
1855 }
1856
1857 static int ohci_set_config_rom(struct fw_card *card,
1858                                const __be32 *config_rom, size_t length)
1859 {
1860         struct fw_ohci *ohci;
1861         unsigned long flags;
1862         int ret = -EBUSY;
1863         __be32 *next_config_rom;
1864         dma_addr_t uninitialized_var(next_config_rom_bus);
1865
1866         ohci = fw_ohci(card);
1867
1868         /*
1869          * When the OHCI controller is enabled, the config rom update
1870          * mechanism is a bit tricky, but easy enough to use.  See
1871          * section 5.5.6 in the OHCI specification.
1872          *
1873          * The OHCI controller caches the new config rom address in a
1874          * shadow register (ConfigROMmapNext) and needs a bus reset
1875          * for the changes to take place.  When the bus reset is
1876          * detected, the controller loads the new values for the
1877          * ConfigRomHeader and BusOptions registers from the specified
1878          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1879          * shadow register. All automatically and atomically.
1880          *
1881          * Now, there's a twist to this story.  The automatic load of
1882          * ConfigRomHeader and BusOptions doesn't honor the
1883          * noByteSwapData bit, so with a be32 config rom, the
1884          * controller will load be32 values in to these registers
1885          * during the atomic update, even on litte endian
1886          * architectures.  The workaround we use is to put a 0 in the
1887          * header quadlet; 0 is endian agnostic and means that the
1888          * config rom isn't ready yet.  In the bus reset tasklet we
1889          * then set up the real values for the two registers.
1890          *
1891          * We use ohci->lock to avoid racing with the code that sets
1892          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1893          */
1894
1895         next_config_rom =
1896                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1897                                    &next_config_rom_bus, GFP_KERNEL);
1898         if (next_config_rom == NULL)
1899                 return -ENOMEM;
1900
1901         spin_lock_irqsave(&ohci->lock, flags);
1902
1903         if (ohci->next_config_rom == NULL) {
1904                 ohci->next_config_rom = next_config_rom;
1905                 ohci->next_config_rom_bus = next_config_rom_bus;
1906
1907                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1908
1909                 ohci->next_header = config_rom[0];
1910                 ohci->next_config_rom[0] = 0;
1911
1912                 reg_write(ohci, OHCI1394_ConfigROMmap,
1913                           ohci->next_config_rom_bus);
1914                 ret = 0;
1915         }
1916
1917         spin_unlock_irqrestore(&ohci->lock, flags);
1918
1919         /*
1920          * Now initiate a bus reset to have the changes take
1921          * effect. We clean up the old config rom memory and DMA
1922          * mappings in the bus reset tasklet, since the OHCI
1923          * controller could need to access it before the bus reset
1924          * takes effect.
1925          */
1926         if (ret == 0)
1927                 fw_core_initiate_bus_reset(&ohci->card, 1);
1928         else
1929                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1930                                   next_config_rom, next_config_rom_bus);
1931
1932         return ret;
1933 }
1934
1935 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1936 {
1937         struct fw_ohci *ohci = fw_ohci(card);
1938
1939         at_context_transmit(&ohci->at_request_ctx, packet);
1940 }
1941
1942 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1943 {
1944         struct fw_ohci *ohci = fw_ohci(card);
1945
1946         at_context_transmit(&ohci->at_response_ctx, packet);
1947 }
1948
1949 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1950 {
1951         struct fw_ohci *ohci = fw_ohci(card);
1952         struct context *ctx = &ohci->at_request_ctx;
1953         struct driver_data *driver_data = packet->driver_data;
1954         int ret = -ENOENT;
1955
1956         tasklet_disable(&ctx->tasklet);
1957
1958         if (packet->ack != 0)
1959                 goto out;
1960
1961         if (packet->payload_mapped)
1962                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1963                                  packet->payload_length, DMA_TO_DEVICE);
1964
1965         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1966         driver_data->packet = NULL;
1967         packet->ack = RCODE_CANCELLED;
1968         packet->callback(packet, &ohci->card, packet->ack);
1969         ret = 0;
1970  out:
1971         tasklet_enable(&ctx->tasklet);
1972
1973         return ret;
1974 }
1975
1976 static int ohci_enable_phys_dma(struct fw_card *card,
1977                                 int node_id, int generation)
1978 {
1979 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1980         return 0;
1981 #else
1982         struct fw_ohci *ohci = fw_ohci(card);
1983         unsigned long flags;
1984         int n, ret = 0;
1985
1986         /*
1987          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1988          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1989          */
1990
1991         spin_lock_irqsave(&ohci->lock, flags);
1992
1993         if (ohci->generation != generation) {
1994                 ret = -ESTALE;
1995                 goto out;
1996         }
1997
1998         /*
1999          * Note, if the node ID contains a non-local bus ID, physical DMA is
2000          * enabled for _all_ nodes on remote buses.
2001          */
2002
2003         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2004         if (n < 32)
2005                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2006         else
2007                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2008
2009         flush_writes(ohci);
2010  out:
2011         spin_unlock_irqrestore(&ohci->lock, flags);
2012
2013         return ret;
2014 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2015 }
2016
2017 static u32 ohci_read_csr_reg(struct fw_card *card, int csr_offset)
2018 {
2019         struct fw_ohci *ohci = fw_ohci(card);
2020         unsigned long flags;
2021         u32 value;
2022
2023         switch (csr_offset) {
2024         case CSR_STATE_CLEAR:
2025         case CSR_STATE_SET:
2026                 /* the controller driver handles only the cmstr bit */
2027                 if (ohci->is_root &&
2028                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2029                      OHCI1394_LinkControl_cycleMaster))
2030                         return CSR_STATE_BIT_CMSTR;
2031                 else
2032                         return 0;
2033
2034         case CSR_NODE_IDS:
2035                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2036
2037         case CSR_CYCLE_TIME:
2038                 return get_cycle_time(ohci);
2039
2040         case CSR_BUS_TIME:
2041                 /*
2042                  * We might be called just after the cycle timer has wrapped
2043                  * around but just before the cycle64Seconds handler, so we
2044                  * better check here, too, if the bus time needs to be updated.
2045                  */
2046                 spin_lock_irqsave(&ohci->lock, flags);
2047                 value = update_bus_time(ohci);
2048                 spin_unlock_irqrestore(&ohci->lock, flags);
2049                 return value;
2050
2051         case CSR_BUSY_TIMEOUT:
2052                 value = reg_read(ohci, OHCI1394_ATRetries);
2053                 return (value >> 4) & 0x0ffff00f;
2054
2055         case CSR_PRIORITY_BUDGET:
2056                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2057                         (ohci->pri_req_max << 8);
2058
2059         default:
2060                 WARN_ON(1);
2061                 return 0;
2062         }
2063 }
2064
2065 static void ohci_write_csr_reg(struct fw_card *card, int csr_offset, u32 value)
2066 {
2067         struct fw_ohci *ohci = fw_ohci(card);
2068         unsigned long flags;
2069
2070         switch (csr_offset) {
2071         case CSR_STATE_CLEAR:
2072                 /* the controller driver handles only the cmstr bit */
2073                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2074                         reg_write(ohci, OHCI1394_LinkControlClear,
2075                                   OHCI1394_LinkControl_cycleMaster);
2076                         flush_writes(ohci);
2077                 }
2078                 break;
2079
2080         case CSR_STATE_SET:
2081                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2082                         reg_write(ohci, OHCI1394_LinkControlSet,
2083                                   OHCI1394_LinkControl_cycleMaster);
2084                         flush_writes(ohci);
2085                 }
2086                 break;
2087
2088         case CSR_NODE_IDS:
2089                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2090                 flush_writes(ohci);
2091                 break;
2092
2093         case CSR_CYCLE_TIME:
2094                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2095                 reg_write(ohci, OHCI1394_IntEventSet,
2096                           OHCI1394_cycleInconsistent);
2097                 flush_writes(ohci);
2098                 break;
2099
2100         case CSR_BUS_TIME:
2101                 spin_lock_irqsave(&ohci->lock, flags);
2102                 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2103                 spin_unlock_irqrestore(&ohci->lock, flags);
2104                 break;
2105
2106         case CSR_BUSY_TIMEOUT:
2107                 value = (value & 0xf) | ((value & 0xf) << 4) |
2108                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2109                 reg_write(ohci, OHCI1394_ATRetries, value);
2110                 flush_writes(ohci);
2111                 break;
2112
2113         case CSR_PRIORITY_BUDGET:
2114                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2115                 flush_writes(ohci);
2116                 break;
2117
2118         default:
2119                 WARN_ON(1);
2120                 break;
2121         }
2122 }
2123
2124 static unsigned int ohci_get_features(struct fw_card *card)
2125 {
2126         struct fw_ohci *ohci = fw_ohci(card);
2127         unsigned int features = 0;
2128
2129         if (ohci->pri_req_max != 0)
2130                 features |= FEATURE_PRIORITY_BUDGET;
2131
2132         return features;
2133 }
2134
2135 static void copy_iso_headers(struct iso_context *ctx, void *p)
2136 {
2137         int i = ctx->header_length;
2138
2139         if (i + ctx->base.header_size > PAGE_SIZE)
2140                 return;
2141
2142         /*
2143          * The iso header is byteswapped to little endian by
2144          * the controller, but the remaining header quadlets
2145          * are big endian.  We want to present all the headers
2146          * as big endian, so we have to swap the first quadlet.
2147          */
2148         if (ctx->base.header_size > 0)
2149                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2150         if (ctx->base.header_size > 4)
2151                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2152         if (ctx->base.header_size > 8)
2153                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2154         ctx->header_length += ctx->base.header_size;
2155 }
2156
2157 static int handle_ir_packet_per_buffer(struct context *context,
2158                                        struct descriptor *d,
2159                                        struct descriptor *last)
2160 {
2161         struct iso_context *ctx =
2162                 container_of(context, struct iso_context, context);
2163         struct descriptor *pd;
2164         __le32 *ir_header;
2165         void *p;
2166
2167         for (pd = d; pd <= last; pd++) {
2168                 if (pd->transfer_status)
2169                         break;
2170         }
2171         if (pd > last)
2172                 /* Descriptor(s) not done yet, stop iteration */
2173                 return 0;
2174
2175         p = last + 1;
2176         copy_iso_headers(ctx, p);
2177
2178         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2179                 ir_header = (__le32 *) p;
2180                 ctx->base.callback(&ctx->base,
2181                                    le32_to_cpu(ir_header[0]) & 0xffff,
2182                                    ctx->header_length, ctx->header,
2183                                    ctx->base.callback_data);
2184                 ctx->header_length = 0;
2185         }
2186
2187         return 1;
2188 }
2189
2190 static int handle_it_packet(struct context *context,
2191                             struct descriptor *d,
2192                             struct descriptor *last)
2193 {
2194         struct iso_context *ctx =
2195                 container_of(context, struct iso_context, context);
2196         int i;
2197         struct descriptor *pd;
2198
2199         for (pd = d; pd <= last; pd++)
2200                 if (pd->transfer_status)
2201                         break;
2202         if (pd > last)
2203                 /* Descriptor(s) not done yet, stop iteration */
2204                 return 0;
2205
2206         i = ctx->header_length;
2207         if (i + 4 < PAGE_SIZE) {
2208                 /* Present this value as big-endian to match the receive code */
2209                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2210                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2211                                 le16_to_cpu(pd->res_count));
2212                 ctx->header_length += 4;
2213         }
2214         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2215                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
2216                                    ctx->header_length, ctx->header,
2217                                    ctx->base.callback_data);
2218                 ctx->header_length = 0;
2219         }
2220         return 1;
2221 }
2222
2223 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2224                                 int type, int channel, size_t header_size)
2225 {
2226         struct fw_ohci *ohci = fw_ohci(card);
2227         struct iso_context *ctx, *list;
2228         descriptor_callback_t callback;
2229         u64 *channels, dont_care = ~0ULL;
2230         u32 *mask, regs;
2231         unsigned long flags;
2232         int index, ret = -ENOMEM;
2233
2234         if (type == FW_ISO_CONTEXT_TRANSMIT) {
2235                 channels = &dont_care;
2236                 mask = &ohci->it_context_mask;
2237                 list = ohci->it_context_list;
2238                 callback = handle_it_packet;
2239         } else {
2240                 channels = &ohci->ir_context_channels;
2241                 mask = &ohci->ir_context_mask;
2242                 list = ohci->ir_context_list;
2243                 callback = handle_ir_packet_per_buffer;
2244         }
2245
2246         spin_lock_irqsave(&ohci->lock, flags);
2247         index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2248         if (index >= 0) {
2249                 *channels &= ~(1ULL << channel);
2250                 *mask &= ~(1 << index);
2251         }
2252         spin_unlock_irqrestore(&ohci->lock, flags);
2253
2254         if (index < 0)
2255                 return ERR_PTR(-EBUSY);
2256
2257         if (type == FW_ISO_CONTEXT_TRANSMIT)
2258                 regs = OHCI1394_IsoXmitContextBase(index);
2259         else
2260                 regs = OHCI1394_IsoRcvContextBase(index);
2261
2262         ctx = &list[index];
2263         memset(ctx, 0, sizeof(*ctx));
2264         ctx->header_length = 0;
2265         ctx->header = (void *) __get_free_page(GFP_KERNEL);
2266         if (ctx->header == NULL)
2267                 goto out;
2268
2269         ret = context_init(&ctx->context, ohci, regs, callback);
2270         if (ret < 0)
2271                 goto out_with_header;
2272
2273         return &ctx->base;
2274
2275  out_with_header:
2276         free_page((unsigned long)ctx->header);
2277  out:
2278         spin_lock_irqsave(&ohci->lock, flags);
2279         *mask |= 1 << index;
2280         spin_unlock_irqrestore(&ohci->lock, flags);
2281
2282         return ERR_PTR(ret);
2283 }
2284
2285 static int ohci_start_iso(struct fw_iso_context *base,
2286                           s32 cycle, u32 sync, u32 tags)
2287 {
2288         struct iso_context *ctx = container_of(base, struct iso_context, base);
2289         struct fw_ohci *ohci = ctx->context.ohci;
2290         u32 control, match;
2291         int index;
2292
2293         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2294                 index = ctx - ohci->it_context_list;
2295                 match = 0;
2296                 if (cycle >= 0)
2297                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2298                                 (cycle & 0x7fff) << 16;
2299
2300                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2301                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2302                 context_run(&ctx->context, match);
2303         } else {
2304                 index = ctx - ohci->ir_context_list;
2305                 control = IR_CONTEXT_ISOCH_HEADER;
2306                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2307                 if (cycle >= 0) {
2308                         match |= (cycle & 0x07fff) << 12;
2309                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2310                 }
2311
2312                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2313                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2314                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2315                 context_run(&ctx->context, control);
2316         }
2317
2318         return 0;
2319 }
2320
2321 static int ohci_stop_iso(struct fw_iso_context *base)
2322 {
2323         struct fw_ohci *ohci = fw_ohci(base->card);
2324         struct iso_context *ctx = container_of(base, struct iso_context, base);
2325         int index;
2326
2327         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2328                 index = ctx - ohci->it_context_list;
2329                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2330         } else {
2331                 index = ctx - ohci->ir_context_list;
2332                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2333         }
2334         flush_writes(ohci);
2335         context_stop(&ctx->context);
2336
2337         return 0;
2338 }
2339
2340 static void ohci_free_iso_context(struct fw_iso_context *base)
2341 {
2342         struct fw_ohci *ohci = fw_ohci(base->card);
2343         struct iso_context *ctx = container_of(base, struct iso_context, base);
2344         unsigned long flags;
2345         int index;
2346
2347         ohci_stop_iso(base);
2348         context_release(&ctx->context);
2349         free_page((unsigned long)ctx->header);
2350
2351         spin_lock_irqsave(&ohci->lock, flags);
2352
2353         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2354                 index = ctx - ohci->it_context_list;
2355                 ohci->it_context_mask |= 1 << index;
2356         } else {
2357                 index = ctx - ohci->ir_context_list;
2358                 ohci->ir_context_mask |= 1 << index;
2359                 ohci->ir_context_channels |= 1ULL << base->channel;
2360         }
2361
2362         spin_unlock_irqrestore(&ohci->lock, flags);
2363 }
2364
2365 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2366                                    struct fw_iso_packet *packet,
2367                                    struct fw_iso_buffer *buffer,
2368                                    unsigned long payload)
2369 {
2370         struct iso_context *ctx = container_of(base, struct iso_context, base);
2371         struct descriptor *d, *last, *pd;
2372         struct fw_iso_packet *p;
2373         __le32 *header;
2374         dma_addr_t d_bus, page_bus;
2375         u32 z, header_z, payload_z, irq;
2376         u32 payload_index, payload_end_index, next_page_index;
2377         int page, end_page, i, length, offset;
2378
2379         p = packet;
2380         payload_index = payload;
2381
2382         if (p->skip)
2383                 z = 1;
2384         else
2385                 z = 2;
2386         if (p->header_length > 0)
2387                 z++;
2388
2389         /* Determine the first page the payload isn't contained in. */
2390         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2391         if (p->payload_length > 0)
2392                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2393         else
2394                 payload_z = 0;
2395
2396         z += payload_z;
2397
2398         /* Get header size in number of descriptors. */
2399         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2400
2401         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2402         if (d == NULL)
2403                 return -ENOMEM;
2404
2405         if (!p->skip) {
2406                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2407                 d[0].req_count = cpu_to_le16(8);
2408                 /*
2409                  * Link the skip address to this descriptor itself.  This causes
2410                  * a context to skip a cycle whenever lost cycles or FIFO
2411                  * overruns occur, without dropping the data.  The application
2412                  * should then decide whether this is an error condition or not.
2413                  * FIXME:  Make the context's cycle-lost behaviour configurable?
2414                  */
2415                 d[0].branch_address = cpu_to_le32(d_bus | z);
2416
2417                 header = (__le32 *) &d[1];
2418                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2419                                         IT_HEADER_TAG(p->tag) |
2420                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2421                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2422                                         IT_HEADER_SPEED(ctx->base.speed));
2423                 header[1] =
2424                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2425                                                           p->payload_length));
2426         }
2427
2428         if (p->header_length > 0) {
2429                 d[2].req_count    = cpu_to_le16(p->header_length);
2430                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2431                 memcpy(&d[z], p->header, p->header_length);
2432         }
2433
2434         pd = d + z - payload_z;
2435         payload_end_index = payload_index + p->payload_length;
2436         for (i = 0; i < payload_z; i++) {
2437                 page               = payload_index >> PAGE_SHIFT;
2438                 offset             = payload_index & ~PAGE_MASK;
2439                 next_page_index    = (page + 1) << PAGE_SHIFT;
2440                 length             =
2441                         min(next_page_index, payload_end_index) - payload_index;
2442                 pd[i].req_count    = cpu_to_le16(length);
2443
2444                 page_bus = page_private(buffer->pages[page]);
2445                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2446
2447                 payload_index += length;
2448         }
2449
2450         if (p->interrupt)
2451                 irq = DESCRIPTOR_IRQ_ALWAYS;
2452         else
2453                 irq = DESCRIPTOR_NO_IRQ;
2454
2455         last = z == 2 ? d : d + z - 1;
2456         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2457                                      DESCRIPTOR_STATUS |
2458                                      DESCRIPTOR_BRANCH_ALWAYS |
2459                                      irq);
2460
2461         context_append(&ctx->context, d, z, header_z);
2462
2463         return 0;
2464 }
2465
2466 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2467                                         struct fw_iso_packet *packet,
2468                                         struct fw_iso_buffer *buffer,
2469                                         unsigned long payload)
2470 {
2471         struct iso_context *ctx = container_of(base, struct iso_context, base);
2472         struct descriptor *d, *pd;
2473         struct fw_iso_packet *p = packet;
2474         dma_addr_t d_bus, page_bus;
2475         u32 z, header_z, rest;
2476         int i, j, length;
2477         int page, offset, packet_count, header_size, payload_per_buffer;
2478
2479         /*
2480          * The OHCI controller puts the isochronous header and trailer in the
2481          * buffer, so we need at least 8 bytes.
2482          */
2483         packet_count = p->header_length / ctx->base.header_size;
2484         header_size  = max(ctx->base.header_size, (size_t)8);
2485
2486         /* Get header size in number of descriptors. */
2487         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2488         page     = payload >> PAGE_SHIFT;
2489         offset   = payload & ~PAGE_MASK;
2490         payload_per_buffer = p->payload_length / packet_count;
2491
2492         for (i = 0; i < packet_count; i++) {
2493                 /* d points to the header descriptor */
2494                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2495                 d = context_get_descriptors(&ctx->context,
2496                                 z + header_z, &d_bus);
2497                 if (d == NULL)
2498                         return -ENOMEM;
2499
2500                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2501                                               DESCRIPTOR_INPUT_MORE);
2502                 if (p->skip && i == 0)
2503                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2504                 d->req_count    = cpu_to_le16(header_size);
2505                 d->res_count    = d->req_count;
2506                 d->transfer_status = 0;
2507                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2508
2509                 rest = payload_per_buffer;
2510                 pd = d;
2511                 for (j = 1; j < z; j++) {
2512                         pd++;
2513                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2514                                                   DESCRIPTOR_INPUT_MORE);
2515
2516                         if (offset + rest < PAGE_SIZE)
2517                                 length = rest;
2518                         else
2519                                 length = PAGE_SIZE - offset;
2520                         pd->req_count = cpu_to_le16(length);
2521                         pd->res_count = pd->req_count;
2522                         pd->transfer_status = 0;
2523
2524                         page_bus = page_private(buffer->pages[page]);
2525                         pd->data_address = cpu_to_le32(page_bus + offset);
2526
2527                         offset = (offset + length) & ~PAGE_MASK;
2528                         rest -= length;
2529                         if (offset == 0)
2530                                 page++;
2531                 }
2532                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2533                                           DESCRIPTOR_INPUT_LAST |
2534                                           DESCRIPTOR_BRANCH_ALWAYS);
2535                 if (p->interrupt && i == packet_count - 1)
2536                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2537
2538                 context_append(&ctx->context, d, z, header_z);
2539         }
2540
2541         return 0;
2542 }
2543
2544 static int ohci_queue_iso(struct fw_iso_context *base,
2545                           struct fw_iso_packet *packet,
2546                           struct fw_iso_buffer *buffer,
2547                           unsigned long payload)
2548 {
2549         struct iso_context *ctx = container_of(base, struct iso_context, base);
2550         unsigned long flags;
2551         int ret;
2552
2553         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2554         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2555                 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2556         else
2557                 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2558                                                         buffer, payload);
2559         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2560
2561         return ret;
2562 }
2563
2564 static const struct fw_card_driver ohci_driver = {
2565         .enable                 = ohci_enable,
2566         .update_phy_reg         = ohci_update_phy_reg,
2567         .set_config_rom         = ohci_set_config_rom,
2568         .send_request           = ohci_send_request,
2569         .send_response          = ohci_send_response,
2570         .cancel_packet          = ohci_cancel_packet,
2571         .enable_phys_dma        = ohci_enable_phys_dma,
2572         .read_csr_reg           = ohci_read_csr_reg,
2573         .write_csr_reg          = ohci_write_csr_reg,
2574         .get_features           = ohci_get_features,
2575
2576         .allocate_iso_context   = ohci_allocate_iso_context,
2577         .free_iso_context       = ohci_free_iso_context,
2578         .queue_iso              = ohci_queue_iso,
2579         .start_iso              = ohci_start_iso,
2580         .stop_iso               = ohci_stop_iso,
2581 };
2582
2583 #ifdef CONFIG_PPC_PMAC
2584 static void pmac_ohci_on(struct pci_dev *dev)
2585 {
2586         if (machine_is(powermac)) {
2587                 struct device_node *ofn = pci_device_to_OF_node(dev);
2588
2589                 if (ofn) {
2590                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2591                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2592                 }
2593         }
2594 }
2595
2596 static void pmac_ohci_off(struct pci_dev *dev)
2597 {
2598         if (machine_is(powermac)) {
2599                 struct device_node *ofn = pci_device_to_OF_node(dev);
2600
2601                 if (ofn) {
2602                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2603                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2604                 }
2605         }
2606 }
2607 #else
2608 static inline void pmac_ohci_on(struct pci_dev *dev) {}
2609 static inline void pmac_ohci_off(struct pci_dev *dev) {}
2610 #endif /* CONFIG_PPC_PMAC */
2611
2612 static int __devinit pci_probe(struct pci_dev *dev,
2613                                const struct pci_device_id *ent)
2614 {
2615         struct fw_ohci *ohci;
2616         u32 bus_options, max_receive, link_speed, version, link_enh;
2617         u64 guid;
2618         int i, err, n_ir, n_it;
2619         size_t size;
2620
2621         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2622         if (ohci == NULL) {
2623                 err = -ENOMEM;
2624                 goto fail;
2625         }
2626
2627         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2628
2629         pmac_ohci_on(dev);
2630
2631         err = pci_enable_device(dev);
2632         if (err) {
2633                 fw_error("Failed to enable OHCI hardware\n");
2634                 goto fail_free;
2635         }
2636
2637         pci_set_master(dev);
2638         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2639         pci_set_drvdata(dev, ohci);
2640
2641         spin_lock_init(&ohci->lock);
2642
2643         tasklet_init(&ohci->bus_reset_tasklet,
2644                      bus_reset_tasklet, (unsigned long)ohci);
2645
2646         err = pci_request_region(dev, 0, ohci_driver_name);
2647         if (err) {
2648                 fw_error("MMIO resource unavailable\n");
2649                 goto fail_disable;
2650         }
2651
2652         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2653         if (ohci->registers == NULL) {
2654                 fw_error("Failed to remap registers\n");
2655                 err = -ENXIO;
2656                 goto fail_iomem;
2657         }
2658
2659         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2660                 if (ohci_quirks[i].vendor == dev->vendor &&
2661                     (ohci_quirks[i].device == dev->device ||
2662                      ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2663                         ohci->quirks = ohci_quirks[i].flags;
2664                         break;
2665                 }
2666         if (param_quirks)
2667                 ohci->quirks = param_quirks;
2668
2669         /* TI OHCI-Lynx and compatible: set recommended configuration bits. */
2670         if (dev->vendor == PCI_VENDOR_ID_TI) {
2671                 pci_read_config_dword(dev, PCI_CFG_TI_LinkEnh, &link_enh);
2672
2673                 /* adjust latency of ATx FIFO: use 1.7 KB threshold */
2674                 link_enh &= ~TI_LinkEnh_atx_thresh_mask;
2675                 link_enh |= TI_LinkEnh_atx_thresh_1_7K;
2676
2677                 /* use priority arbitration for asynchronous responses */
2678                 link_enh |= TI_LinkEnh_enab_unfair;
2679
2680                 /* required for aPhyEnhanceEnable to work */
2681                 link_enh |= TI_LinkEnh_enab_accel;
2682
2683                 pci_write_config_dword(dev, PCI_CFG_TI_LinkEnh, link_enh);
2684         }
2685
2686         ar_context_init(&ohci->ar_request_ctx, ohci,
2687                         OHCI1394_AsReqRcvContextControlSet);
2688
2689         ar_context_init(&ohci->ar_response_ctx, ohci,
2690                         OHCI1394_AsRspRcvContextControlSet);
2691
2692         context_init(&ohci->at_request_ctx, ohci,
2693                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2694
2695         context_init(&ohci->at_response_ctx, ohci,
2696                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2697
2698         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2699         ohci->ir_context_channels = ~0ULL;
2700         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2701         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2702         n_ir = hweight32(ohci->ir_context_mask);
2703         size = sizeof(struct iso_context) * n_ir;
2704         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2705
2706         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2707         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2708         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2709         n_it = hweight32(ohci->it_context_mask);
2710         size = sizeof(struct iso_context) * n_it;
2711         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2712
2713         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2714                 err = -ENOMEM;
2715                 goto fail_contexts;
2716         }
2717
2718         /* self-id dma buffer allocation */
2719         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2720                                                SELF_ID_BUF_SIZE,
2721                                                &ohci->self_id_bus,
2722                                                GFP_KERNEL);
2723         if (ohci->self_id_cpu == NULL) {
2724                 err = -ENOMEM;
2725                 goto fail_contexts;
2726         }
2727
2728         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2729         max_receive = (bus_options >> 12) & 0xf;
2730         link_speed = bus_options & 0x7;
2731         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2732                 reg_read(ohci, OHCI1394_GUIDLo);
2733
2734         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2735         if (err)
2736                 goto fail_self_id;
2737
2738         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2739         fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2740                   "%d IR + %d IT contexts, quirks 0x%x\n",
2741                   dev_name(&dev->dev), version >> 16, version & 0xff,
2742                   n_ir, n_it, ohci->quirks);
2743
2744         return 0;
2745
2746  fail_self_id:
2747         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2748                           ohci->self_id_cpu, ohci->self_id_bus);
2749  fail_contexts:
2750         kfree(ohci->ir_context_list);
2751         kfree(ohci->it_context_list);
2752         context_release(&ohci->at_response_ctx);
2753         context_release(&ohci->at_request_ctx);
2754         ar_context_release(&ohci->ar_response_ctx);
2755         ar_context_release(&ohci->ar_request_ctx);
2756         pci_iounmap(dev, ohci->registers);
2757  fail_iomem:
2758         pci_release_region(dev, 0);
2759  fail_disable:
2760         pci_disable_device(dev);
2761  fail_free:
2762         kfree(&ohci->card);
2763         pmac_ohci_off(dev);
2764  fail:
2765         if (err == -ENOMEM)
2766                 fw_error("Out of memory\n");
2767
2768         return err;
2769 }
2770
2771 static void pci_remove(struct pci_dev *dev)
2772 {
2773         struct fw_ohci *ohci;
2774
2775         ohci = pci_get_drvdata(dev);
2776         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2777         flush_writes(ohci);
2778         fw_core_remove_card(&ohci->card);
2779
2780         /*
2781          * FIXME: Fail all pending packets here, now that the upper
2782          * layers can't queue any more.
2783          */
2784
2785         software_reset(ohci);
2786         free_irq(dev->irq, ohci);
2787
2788         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2789                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2790                                   ohci->next_config_rom, ohci->next_config_rom_bus);
2791         if (ohci->config_rom)
2792                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2793                                   ohci->config_rom, ohci->config_rom_bus);
2794         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2795                           ohci->self_id_cpu, ohci->self_id_bus);
2796         ar_context_release(&ohci->ar_request_ctx);
2797         ar_context_release(&ohci->ar_response_ctx);
2798         context_release(&ohci->at_request_ctx);
2799         context_release(&ohci->at_response_ctx);
2800         kfree(ohci->it_context_list);
2801         kfree(ohci->ir_context_list);
2802         pci_disable_msi(dev);
2803         pci_iounmap(dev, ohci->registers);
2804         pci_release_region(dev, 0);
2805         pci_disable_device(dev);
2806         kfree(&ohci->card);
2807         pmac_ohci_off(dev);
2808
2809         fw_notify("Removed fw-ohci device.\n");
2810 }
2811
2812 #ifdef CONFIG_PM
2813 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2814 {
2815         struct fw_ohci *ohci = pci_get_drvdata(dev);
2816         int err;
2817
2818         software_reset(ohci);
2819         free_irq(dev->irq, ohci);
2820         pci_disable_msi(dev);
2821         err = pci_save_state(dev);
2822         if (err) {
2823                 fw_error("pci_save_state failed\n");
2824                 return err;
2825         }
2826         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2827         if (err)
2828                 fw_error("pci_set_power_state failed with %d\n", err);
2829         pmac_ohci_off(dev);
2830
2831         return 0;
2832 }
2833
2834 static int pci_resume(struct pci_dev *dev)
2835 {
2836         struct fw_ohci *ohci = pci_get_drvdata(dev);
2837         int err;
2838
2839         pmac_ohci_on(dev);
2840         pci_set_power_state(dev, PCI_D0);
2841         pci_restore_state(dev);
2842         err = pci_enable_device(dev);
2843         if (err) {
2844                 fw_error("pci_enable_device failed\n");
2845                 return err;
2846         }
2847
2848         return ohci_enable(&ohci->card, NULL, 0);
2849 }
2850 #endif
2851
2852 static const struct pci_device_id pci_table[] = {
2853         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2854         { }
2855 };
2856
2857 MODULE_DEVICE_TABLE(pci, pci_table);
2858
2859 static struct pci_driver fw_ohci_pci_driver = {
2860         .name           = ohci_driver_name,
2861         .id_table       = pci_table,
2862         .probe          = pci_probe,
2863         .remove         = pci_remove,
2864 #ifdef CONFIG_PM
2865         .resume         = pci_resume,
2866         .suspend        = pci_suspend,
2867 #endif
2868 };
2869
2870 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2871 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2872 MODULE_LICENSE("GPL");
2873
2874 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2875 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2876 MODULE_ALIAS("ohci1394");
2877 #endif
2878
2879 static int __init fw_ohci_init(void)
2880 {
2881         return pci_register_driver(&fw_ohci_pci_driver);
2882 }
2883
2884 static void __exit fw_ohci_cleanup(void)
2885 {
2886         pci_unregister_driver(&fw_ohci_pci_driver);
2887 }
2888
2889 module_init(fw_ohci_init);
2890 module_exit(fw_ohci_cleanup);