Merge branch 'for-4.5/for-jens' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / drivers / gpu / drm / amd / powerplay / hwmgr / ppatomctrl.c
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26
27 #include "ppatomctrl.h"
28 #include "atombios.h"
29 #include "cgs_common.h"
30 #include "pp_debug.h"
31 #include "ppevvmath.h"
32
33 #define MEM_ID_MASK           0xff000000
34 #define MEM_ID_SHIFT          24
35 #define CLOCK_RANGE_MASK      0x00ffffff
36 #define CLOCK_RANGE_SHIFT     0
37 #define LOW_NIBBLE_MASK       0xf
38 #define DATA_EQU_PREV         0
39 #define DATA_FROM_TABLE       4
40
41 union voltage_object_info {
42         struct _ATOM_VOLTAGE_OBJECT_INFO v1;
43         struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
44         struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
45 };
46
47 static int atomctrl_retrieve_ac_timing(
48                 uint8_t index,
49                 ATOM_INIT_REG_BLOCK *reg_block,
50                 pp_atomctrl_mc_reg_table *table)
51 {
52         uint32_t i, j;
53         uint8_t tmem_id;
54         ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
55                 ((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
56
57         uint8_t num_ranges = 0;
58
59         while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
60                         num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
61                 tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
62
63                 if (index == tmem_id) {
64                         table->mc_reg_table_entry[num_ranges].mclk_max =
65                                 (uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
66                                                 CLOCK_RANGE_SHIFT);
67
68                         for (i = 0, j = 1; i < table->last; i++) {
69                                 if ((table->mc_reg_address[i].uc_pre_reg_data &
70                                                         LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
71                                         table->mc_reg_table_entry[num_ranges].mc_data[i] =
72                                                 (uint32_t)*((uint32_t *)reg_data + j);
73                                         j++;
74                                 } else if ((table->mc_reg_address[i].uc_pre_reg_data &
75                                                         LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
76                                         table->mc_reg_table_entry[num_ranges].mc_data[i] =
77                                                 table->mc_reg_table_entry[num_ranges].mc_data[i-1];
78                                 }
79                         }
80                         num_ranges++;
81                 }
82
83                 reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
84                         ((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
85         }
86
87         PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
88                         "Invalid VramInfo table.", return -1);
89         table->num_entries = num_ranges;
90
91         return 0;
92 }
93
94 /**
95  * Get memory clock AC timing registers index from VBIOS table
96  * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
97  * @param    reg_block the address ATOM_INIT_REG_BLOCK
98  * @param    table the address of MCRegTable
99  * @return   0
100  */
101 static int atomctrl_set_mc_reg_address_table(
102                 ATOM_INIT_REG_BLOCK *reg_block,
103                 pp_atomctrl_mc_reg_table *table)
104 {
105         uint8_t i = 0;
106         uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
107                         / sizeof(ATOM_INIT_REG_INDEX_FORMAT));
108         ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
109
110         num_entries--;        /* subtract 1 data end mark entry */
111
112         PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
113                         "Invalid VramInfo table.", return -1);
114
115         /* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
116         while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
117                         (i < num_entries)) {
118                 table->mc_reg_address[i].s1 =
119                         (uint16_t)(le16_to_cpu(format->usRegIndex));
120                 table->mc_reg_address[i].uc_pre_reg_data =
121                         format->ucPreRegDataLength;
122
123                 i++;
124                 format = (ATOM_INIT_REG_INDEX_FORMAT *)
125                         ((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
126         }
127
128         table->last = i;
129         return 0;
130 }
131
132
133 int atomctrl_initialize_mc_reg_table(
134                 struct pp_hwmgr *hwmgr,
135                 uint8_t module_index,
136                 pp_atomctrl_mc_reg_table *table)
137 {
138         ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
139         ATOM_INIT_REG_BLOCK *reg_block;
140         int result = 0;
141         u8 frev, crev;
142         u16 size;
143
144         vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
145                 cgs_atom_get_data_table(hwmgr->device,
146                                 GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
147
148         if (module_index >= vram_info->ucNumOfVRAMModule) {
149                 printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
150                 result = -1;
151         } else if (vram_info->sHeader.ucTableFormatRevision < 2) {
152                 printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
153                 result = -1;
154         }
155
156         if (0 == result) {
157                 reg_block = (ATOM_INIT_REG_BLOCK *)
158                         ((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
159                 result = atomctrl_set_mc_reg_address_table(reg_block, table);
160         }
161
162         if (0 == result) {
163                 result = atomctrl_retrieve_ac_timing(module_index,
164                                         reg_block, table);
165         }
166
167         return result;
168 }
169
170 /**
171  * Set DRAM timings based on engine clock and memory clock.
172  */
173 int atomctrl_set_engine_dram_timings_rv770(
174                 struct pp_hwmgr *hwmgr,
175                 uint32_t engine_clock,
176                 uint32_t memory_clock)
177 {
178         SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
179
180         /* They are both in 10KHz Units. */
181         engine_clock_parameters.ulTargetEngineClock =
182                 (uint32_t) engine_clock & SET_CLOCK_FREQ_MASK;
183         engine_clock_parameters.ulTargetEngineClock |=
184                 (COMPUTE_ENGINE_PLL_PARAM << 24);
185
186         /* in 10 khz units.*/
187         engine_clock_parameters.sReserved.ulClock =
188                 (uint32_t) memory_clock & SET_CLOCK_FREQ_MASK;
189         return cgs_atom_exec_cmd_table(hwmgr->device,
190                         GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
191                         &engine_clock_parameters);
192 }
193
194 /**
195  * Private Function to get the PowerPlay Table Address.
196  * WARNING: The tabled returned by this function is in
197  * dynamically allocated memory.
198  * The caller has to release if by calling kfree.
199  */
200 static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
201 {
202         int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
203         u8 frev, crev;
204         u16 size;
205         union voltage_object_info *voltage_info;
206
207         voltage_info = (union voltage_object_info *)
208                 cgs_atom_get_data_table(device, index,
209                         &size, &frev, &crev);
210
211         if (voltage_info != NULL)
212                 return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
213         else
214                 return NULL;
215 }
216
217 static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
218                 const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
219                 uint8_t voltage_type, uint8_t voltage_mode)
220 {
221         unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
222         unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
223         uint8_t *start = (uint8_t *)voltage_object_info_table;
224
225         while (offset < size) {
226                 const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
227                         (const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
228
229                 if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
230                         voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
231                         return voltage_object;
232
233                 offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
234         }
235
236         return NULL;
237 }
238
239 /** atomctrl_get_memory_pll_dividers_si().
240  *
241  * @param hwmgr                 input parameter: pointer to HwMgr
242  * @param clock_value             input parameter: memory clock
243  * @param dividers                 output parameter: memory PLL dividers
244  * @param strobe_mode            input parameter: 1 for strobe mode,  0 for performance mode
245  */
246 int atomctrl_get_memory_pll_dividers_si(
247                 struct pp_hwmgr *hwmgr,
248                 uint32_t clock_value,
249                 pp_atomctrl_memory_clock_param *mpll_param,
250                 bool strobe_mode)
251 {
252         COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
253         int result;
254
255         mpll_parameters.ulClock = (uint32_t) clock_value;
256         mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
257
258         result = cgs_atom_exec_cmd_table
259                 (hwmgr->device,
260                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
261                  &mpll_parameters);
262
263         if (0 == result) {
264                 mpll_param->mpll_fb_divider.clk_frac =
265                         mpll_parameters.ulFbDiv.usFbDivFrac;
266                 mpll_param->mpll_fb_divider.cl_kf =
267                         mpll_parameters.ulFbDiv.usFbDiv;
268                 mpll_param->mpll_post_divider =
269                         (uint32_t)mpll_parameters.ucPostDiv;
270                 mpll_param->vco_mode =
271                         (uint32_t)(mpll_parameters.ucPllCntlFlag &
272                                         MPLL_CNTL_FLAG_VCO_MODE_MASK);
273                 mpll_param->yclk_sel =
274                         (uint32_t)((mpll_parameters.ucPllCntlFlag &
275                                                 MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
276                 mpll_param->qdr =
277                         (uint32_t)((mpll_parameters.ucPllCntlFlag &
278                                                 MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
279                 mpll_param->half_rate =
280                         (uint32_t)((mpll_parameters.ucPllCntlFlag &
281                                                 MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
282                 mpll_param->dll_speed =
283                         (uint32_t)(mpll_parameters.ucDllSpeed);
284                 mpll_param->bw_ctrl =
285                         (uint32_t)(mpll_parameters.ucBWCntl);
286         }
287
288         return result;
289 }
290
291 /** atomctrl_get_memory_pll_dividers_vi().
292  *
293  * @param hwmgr                 input parameter: pointer to HwMgr
294  * @param clock_value             input parameter: memory clock
295  * @param dividers               output parameter: memory PLL dividers
296  */
297 int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
298                 uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
299 {
300         COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
301         int result;
302
303         mpll_parameters.ulClock.ulClock = (uint32_t)clock_value;
304
305         result = cgs_atom_exec_cmd_table(hwmgr->device,
306                         GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
307                         &mpll_parameters);
308
309         if (!result)
310                 mpll_param->mpll_post_divider =
311                                 (uint32_t)mpll_parameters.ulClock.ucPostDiv;
312
313         return result;
314 }
315
316 int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
317                                           uint32_t clock_value,
318                                           pp_atomctrl_clock_dividers_kong *dividers)
319 {
320         COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
321         int result;
322
323         pll_parameters.ulClock = clock_value;
324
325         result = cgs_atom_exec_cmd_table
326                 (hwmgr->device,
327                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
328                  &pll_parameters);
329
330         if (0 == result) {
331                 dividers->pll_post_divider = pll_parameters.ucPostDiv;
332                 dividers->real_clock = pll_parameters.ulClock;
333         }
334
335         return result;
336 }
337
338 int atomctrl_get_engine_pll_dividers_vi(
339                 struct pp_hwmgr *hwmgr,
340                 uint32_t clock_value,
341                 pp_atomctrl_clock_dividers_vi *dividers)
342 {
343         COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
344         int result;
345
346         pll_patameters.ulClock.ulClock = clock_value;
347         pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
348
349         result = cgs_atom_exec_cmd_table
350                 (hwmgr->device,
351                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
352                  &pll_patameters);
353
354         if (0 == result) {
355                 dividers->pll_post_divider =
356                         pll_patameters.ulClock.ucPostDiv;
357                 dividers->real_clock =
358                         pll_patameters.ulClock.ulClock;
359
360                 dividers->ul_fb_div.ul_fb_div_frac =
361                         pll_patameters.ulFbDiv.usFbDivFrac;
362                 dividers->ul_fb_div.ul_fb_div =
363                         pll_patameters.ulFbDiv.usFbDiv;
364
365                 dividers->uc_pll_ref_div =
366                         pll_patameters.ucPllRefDiv;
367                 dividers->uc_pll_post_div =
368                         pll_patameters.ucPllPostDiv;
369                 dividers->uc_pll_cntl_flag =
370                         pll_patameters.ucPllCntlFlag;
371         }
372
373         return result;
374 }
375
376 int atomctrl_get_dfs_pll_dividers_vi(
377                 struct pp_hwmgr *hwmgr,
378                 uint32_t clock_value,
379                 pp_atomctrl_clock_dividers_vi *dividers)
380 {
381         COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
382         int result;
383
384         pll_patameters.ulClock.ulClock = clock_value;
385         pll_patameters.ulClock.ucPostDiv =
386                 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
387
388         result = cgs_atom_exec_cmd_table
389                 (hwmgr->device,
390                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
391                  &pll_patameters);
392
393         if (0 == result) {
394                 dividers->pll_post_divider =
395                         pll_patameters.ulClock.ucPostDiv;
396                 dividers->real_clock =
397                         pll_patameters.ulClock.ulClock;
398
399                 dividers->ul_fb_div.ul_fb_div_frac =
400                         pll_patameters.ulFbDiv.usFbDivFrac;
401                 dividers->ul_fb_div.ul_fb_div =
402                         pll_patameters.ulFbDiv.usFbDiv;
403
404                 dividers->uc_pll_ref_div =
405                         pll_patameters.ucPllRefDiv;
406                 dividers->uc_pll_post_div =
407                         pll_patameters.ucPllPostDiv;
408                 dividers->uc_pll_cntl_flag =
409                         pll_patameters.ucPllCntlFlag;
410         }
411
412         return result;
413 }
414
415 /**
416  * Get the reference clock in 10KHz
417  */
418 uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
419 {
420         ATOM_FIRMWARE_INFO *fw_info;
421         u8 frev, crev;
422         u16 size;
423         uint32_t clock;
424
425         fw_info = (ATOM_FIRMWARE_INFO *)
426                 cgs_atom_get_data_table(hwmgr->device,
427                         GetIndexIntoMasterTable(DATA, FirmwareInfo),
428                         &size, &frev, &crev);
429
430         if (fw_info == NULL)
431                 clock = 2700;
432         else
433                 clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
434
435         return clock;
436 }
437
438 /**
439  * Returns true if the given voltage type is controlled by GPIO pins.
440  * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
441  * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
442  * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
443  */
444 bool atomctrl_is_voltage_controled_by_gpio_v3(
445                 struct pp_hwmgr *hwmgr,
446                 uint8_t voltage_type,
447                 uint8_t voltage_mode)
448 {
449         ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
450                 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
451         bool ret;
452
453         PP_ASSERT_WITH_CODE((NULL != voltage_info),
454                         "Could not find Voltage Table in BIOS.", return false;);
455
456         ret = (NULL != atomctrl_lookup_voltage_type_v3
457                         (voltage_info, voltage_type, voltage_mode)) ? true : false;
458
459         return ret;
460 }
461
462 int atomctrl_get_voltage_table_v3(
463                 struct pp_hwmgr *hwmgr,
464                 uint8_t voltage_type,
465                 uint8_t voltage_mode,
466                 pp_atomctrl_voltage_table *voltage_table)
467 {
468         ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
469                 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
470         const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
471         unsigned int i;
472
473         PP_ASSERT_WITH_CODE((NULL != voltage_info),
474                         "Could not find Voltage Table in BIOS.", return -1;);
475
476         voltage_object = atomctrl_lookup_voltage_type_v3
477                 (voltage_info, voltage_type, voltage_mode);
478
479         if (voltage_object == NULL)
480                 return -1;
481
482         PP_ASSERT_WITH_CODE(
483                         (voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
484                         PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
485                         "Too many voltage entries!",
486                         return -1;
487                         );
488
489         for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
490                 voltage_table->entries[i].value =
491                         voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue;
492                 voltage_table->entries[i].smio_low =
493                         voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId;
494         }
495
496         voltage_table->mask_low    =
497                 voltage_object->asGpioVoltageObj.ulGpioMaskVal;
498         voltage_table->count      =
499                 voltage_object->asGpioVoltageObj.ucGpioEntryNum;
500         voltage_table->phase_delay =
501                 voltage_object->asGpioVoltageObj.ucPhaseDelay;
502
503         return 0;
504 }
505
506 static bool atomctrl_lookup_gpio_pin(
507                 ATOM_GPIO_PIN_LUT * gpio_lookup_table,
508                 const uint32_t pinId,
509                 pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
510 {
511         unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
512         unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
513         uint8_t *start = (uint8_t *)gpio_lookup_table;
514
515         while (offset < size) {
516                 const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
517                         (const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
518
519                 if (pinId == pin_assignment->ucGPIO_ID) {
520                         gpio_pin_assignment->uc_gpio_pin_bit_shift =
521                                 pin_assignment->ucGpioPinBitShift;
522                         gpio_pin_assignment->us_gpio_pin_aindex =
523                                 le16_to_cpu(pin_assignment->usGpioPin_AIndex);
524                         return false;
525                 }
526
527                 offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
528         }
529
530         return true;
531 }
532
533 /**
534  * Private Function to get the PowerPlay Table Address.
535  * WARNING: The tabled returned by this function is in
536  * dynamically allocated memory.
537  * The caller has to release if by calling kfree.
538  */
539 static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
540 {
541         u8 frev, crev;
542         u16 size;
543         void *table_address;
544
545         table_address = (ATOM_GPIO_PIN_LUT *)
546                 cgs_atom_get_data_table(device,
547                                 GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
548                                 &size, &frev, &crev);
549
550         PP_ASSERT_WITH_CODE((NULL != table_address),
551                         "Error retrieving BIOS Table Address!", return NULL;);
552
553         return (ATOM_GPIO_PIN_LUT *)table_address;
554 }
555
556 /**
557  * Returns 1 if the given pin id find in lookup table.
558  */
559 bool atomctrl_get_pp_assign_pin(
560                 struct pp_hwmgr *hwmgr,
561                 const uint32_t pinId,
562                 pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
563 {
564         bool bRet = 0;
565         ATOM_GPIO_PIN_LUT *gpio_lookup_table =
566                 get_gpio_lookup_table(hwmgr->device);
567
568         PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
569                         "Could not find GPIO lookup Table in BIOS.", return -1);
570
571         bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
572                 gpio_pin_assignment);
573
574         return bRet;
575 }
576
577 int atomctrl_calculate_voltage_evv_on_sclk(
578                 struct pp_hwmgr *hwmgr,
579                 uint8_t voltage_type,
580                 uint32_t sclk,
581                 uint16_t virtual_voltage_Id,
582                 uint16_t *voltage,
583                 uint16_t dpm_level,
584                 bool debug)
585 {
586         ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
587
588         EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
589         EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
590         EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
591         EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
592         EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
593         EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
594         EFUSE_INPUT_PARAMETER sInput_FuseValues;
595         READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
596
597         uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
598         fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
599         fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
600         fInt fLkg_FT, repeat;
601         fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
602         fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
603         fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
604         fInt fSclk_margin, fSclk, fEVV_V;
605         fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
606         uint32_t ul_FT_Lkg_V0NORM;
607         fInt fLn_MaxDivMin, fMin, fAverage, fRange;
608         fInt fRoots[2];
609         fInt fStepSize = GetScaledFraction(625, 100000);
610
611         int result;
612
613         getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
614                         cgs_atom_get_data_table(hwmgr->device,
615                                         GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
616                                         NULL, NULL, NULL);
617
618         if (!getASICProfilingInfo)
619                 return -1;
620
621         if(getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
622                         (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
623                         getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
624                 return -1;
625
626         /*-----------------------------------------------------------
627          *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
628          *-----------------------------------------------------------
629          */
630         fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
631
632         switch (dpm_level) {
633         case 1:
634                 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm1);
635                 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM1, 1000);
636                 break;
637         case 2:
638                 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm2);
639                 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM2, 1000);
640                 break;
641         case 3:
642                 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm3);
643                 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM3, 1000);
644                 break;
645         case 4:
646                 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm4);
647                 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM4, 1000);
648                 break;
649         case 5:
650                 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm5);
651                 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM5, 1000);
652                 break;
653         case 6:
654                 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm6);
655                 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM6, 1000);
656                 break;
657         case 7:
658                 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm7);
659                 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM7, 1000);
660                 break;
661         default:
662                 printk(KERN_ERR "DPM Level not supported\n");
663                 fPowerDPMx = Convert_ULONG_ToFraction(1);
664                 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM0, 1000);
665         }
666
667         /*-------------------------
668          * DECODING FUSE VALUES
669          * ------------------------
670          */
671         /*Decode RO_Fused*/
672         sRO_fuse = getASICProfilingInfo->sRoFuse;
673
674         sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
675         sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
676         sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
677
678         sOutput_FuseValues.sEfuse = sInput_FuseValues;
679
680         result = cgs_atom_exec_cmd_table(hwmgr->device,
681                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
682                         &sOutput_FuseValues);
683
684         if (result)
685                 return result;
686
687         /* Finally, the actual fuse value */
688         ul_RO_fused = sOutput_FuseValues.ulEfuseValue;
689         fMin = GetScaledFraction(sRO_fuse.ulEfuseMin, 1);
690         fRange = GetScaledFraction(sRO_fuse.ulEfuseEncodeRange, 1);
691         fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
692
693         sCACm_fuse = getASICProfilingInfo->sCACm;
694
695         sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
696         sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
697         sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
698
699         sOutput_FuseValues.sEfuse = sInput_FuseValues;
700
701         result = cgs_atom_exec_cmd_table(hwmgr->device,
702                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
703                         &sOutput_FuseValues);
704
705         if (result)
706                 return result;
707
708         ul_CACm_fused = sOutput_FuseValues.ulEfuseValue;
709         fMin = GetScaledFraction(sCACm_fuse.ulEfuseMin, 1000);
710         fRange = GetScaledFraction(sCACm_fuse.ulEfuseEncodeRange, 1000);
711
712         fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
713
714         sCACb_fuse = getASICProfilingInfo->sCACb;
715
716         sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
717         sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
718         sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
719         sOutput_FuseValues.sEfuse = sInput_FuseValues;
720
721         result = cgs_atom_exec_cmd_table(hwmgr->device,
722                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
723                         &sOutput_FuseValues);
724
725         if (result)
726                 return result;
727
728         ul_CACb_fused = sOutput_FuseValues.ulEfuseValue;
729         fMin = GetScaledFraction(sCACb_fuse.ulEfuseMin, 1000);
730         fRange = GetScaledFraction(sCACb_fuse.ulEfuseEncodeRange, 1000);
731
732         fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
733
734         sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
735
736         sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
737         sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
738         sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
739
740         sOutput_FuseValues.sEfuse = sInput_FuseValues;
741
742         result = cgs_atom_exec_cmd_table(hwmgr->device,
743                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
744                         &sOutput_FuseValues);
745
746         if (result)
747                 return result;
748
749         ul_Kt_Beta_fused = sOutput_FuseValues.ulEfuseValue;
750         fAverage = GetScaledFraction(sKt_Beta_fuse.ulEfuseEncodeAverage, 1000);
751         fRange = GetScaledFraction(sKt_Beta_fuse.ulEfuseEncodeRange, 1000);
752
753         fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
754                         fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
755
756         sKv_m_fuse = getASICProfilingInfo->sKv_m;
757
758         sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
759         sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
760         sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
761
762         sOutput_FuseValues.sEfuse = sInput_FuseValues;
763
764         result = cgs_atom_exec_cmd_table(hwmgr->device,
765                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
766                         &sOutput_FuseValues);
767         if (result)
768                 return result;
769
770         ul_Kv_m_fused = sOutput_FuseValues.ulEfuseValue;
771         fAverage = GetScaledFraction(sKv_m_fuse.ulEfuseEncodeAverage, 1000);
772         fRange = GetScaledFraction((sKv_m_fuse.ulEfuseEncodeRange & 0x7fffffff), 1000);
773         fRange = fMultiply(fRange, ConvertToFraction(-1));
774
775         fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
776                         fAverage, fRange, sKv_m_fuse.ucEfuseLength);
777
778         sKv_b_fuse = getASICProfilingInfo->sKv_b;
779
780         sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
781         sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
782         sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
783         sOutput_FuseValues.sEfuse = sInput_FuseValues;
784
785         result = cgs_atom_exec_cmd_table(hwmgr->device,
786                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
787                         &sOutput_FuseValues);
788
789         if (result)
790                 return result;
791
792         ul_Kv_b_fused = sOutput_FuseValues.ulEfuseValue;
793         fAverage = GetScaledFraction(sKv_b_fuse.ulEfuseEncodeAverage, 1000);
794         fRange = GetScaledFraction(sKv_b_fuse.ulEfuseEncodeRange, 1000);
795
796         fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
797                         fAverage, fRange, sKv_b_fuse.ucEfuseLength);
798
799         /* Decoding the Leakage - No special struct container */
800         /*
801          * usLkgEuseIndex=56
802          * ucLkgEfuseBitLSB=6
803          * ucLkgEfuseLength=10
804          * ulLkgEncodeLn_MaxDivMin=69077
805          * ulLkgEncodeMax=1000000
806          * ulLkgEncodeMin=1000
807          * ulEfuseLogisticAlpha=13
808          */
809
810         sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
811         sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
812         sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
813
814         sOutput_FuseValues.sEfuse = sInput_FuseValues;
815
816         result = cgs_atom_exec_cmd_table(hwmgr->device,
817                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
818                         &sOutput_FuseValues);
819
820         if (result)
821                 return result;
822
823         ul_FT_Lkg_V0NORM = sOutput_FuseValues.ulEfuseValue;
824         fLn_MaxDivMin = GetScaledFraction(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin, 10000);
825         fMin = GetScaledFraction(getASICProfilingInfo->ulLkgEncodeMin, 10000);
826
827         fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
828                         fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
829         fLkg_FT = fFT_Lkg_V0NORM;
830
831         /*-------------------------------------------
832          * PART 2 - Grabbing all required values
833          *-------------------------------------------
834          */
835         fSM_A0 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A0, 1000000),
836                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
837         fSM_A1 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A1, 1000000),
838                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
839         fSM_A2 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A2, 100000),
840                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
841         fSM_A3 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A3, 1000000),
842                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
843         fSM_A4 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A4, 1000000),
844                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
845         fSM_A5 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A5, 1000),
846                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
847         fSM_A6 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A6, 1000),
848                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
849         fSM_A7 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A7, 1000),
850                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
851
852         fMargin_RO_a = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_a);
853         fMargin_RO_b = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_b);
854         fMargin_RO_c = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_c);
855
856         fMargin_fixed = ConvertToFraction(getASICProfilingInfo->ulMargin_fixed);
857
858         fMargin_FMAX_mean = GetScaledFraction(
859                         getASICProfilingInfo->ulMargin_Fmax_mean, 10000);
860         fMargin_Plat_mean = GetScaledFraction(
861                         getASICProfilingInfo->ulMargin_plat_mean, 10000);
862         fMargin_FMAX_sigma = GetScaledFraction(
863                         getASICProfilingInfo->ulMargin_Fmax_sigma, 10000);
864         fMargin_Plat_sigma = GetScaledFraction(
865                         getASICProfilingInfo->ulMargin_plat_sigma, 10000);
866
867         fMargin_DC_sigma = GetScaledFraction(
868                         getASICProfilingInfo->ulMargin_DC_sigma, 100);
869         fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
870
871         fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
872         fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
873         fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
874         fKv_m_fused =  fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
875         fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
876
877         fSclk = GetScaledFraction(sclk, 100);
878
879         fV_max = fDivide(GetScaledFraction(
880                         getASICProfilingInfo->ulMaxVddc, 1000), ConvertToFraction(4));
881         fT_prod = GetScaledFraction(getASICProfilingInfo->ulBoardCoreTemp, 10);
882         fLKG_Factor = GetScaledFraction(getASICProfilingInfo->ulEvvLkgFactor, 100);
883         fT_FT = GetScaledFraction(getASICProfilingInfo->ulLeakageTemp, 10);
884         fV_FT = fDivide(GetScaledFraction(
885                         getASICProfilingInfo->ulLeakageVoltage, 1000), ConvertToFraction(4));
886         fV_min = fDivide(GetScaledFraction(
887                         getASICProfilingInfo->ulMinVddc, 1000), ConvertToFraction(4));
888
889         /*-----------------------
890          * PART 3
891          *-----------------------
892          */
893
894         fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4,fSclk), fSM_A5));
895         fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
896         fC_Term = fAdd(fMargin_RO_c,
897                         fAdd(fMultiply(fSM_A0,fLkg_FT),
898                         fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT,fSclk)),
899                         fAdd(fMultiply(fSM_A3, fSclk),
900                         fSubtract(fSM_A7,fRO_fused)))));
901
902         fVDDC_base = fSubtract(fRO_fused,
903                         fSubtract(fMargin_RO_c,
904                                         fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
905         fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0,fSclk), fSM_A2));
906
907         repeat = fSubtract(fVDDC_base,
908                         fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
909
910         fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
911                         fGetSquare(repeat)),
912                         fAdd(fMultiply(fMargin_RO_b, repeat),
913                         fMargin_RO_c));
914
915         fDC_SCLK = fSubtract(fRO_fused,
916                         fSubtract(fRO_DC_margin,
917                         fSubtract(fSM_A3,
918                         fMultiply(fSM_A2, repeat))));
919         fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0,repeat), fSM_A1));
920
921         fSigma_DC = fSubtract(fSclk, fDC_SCLK);
922
923         fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
924         fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
925         fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
926         fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
927
928         fSquared_Sigma_DC = fGetSquare(fSigma_DC);
929         fSquared_Sigma_CR = fGetSquare(fSigma_CR);
930         fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
931
932         fSclk_margin = fAdd(fMicro_FMAX,
933                         fAdd(fMicro_CR,
934                         fAdd(fMargin_fixed,
935                         fSqrt(fAdd(fSquared_Sigma_FMAX,
936                         fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
937         /*
938          fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
939          fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
940          fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
941          */
942
943         fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
944         fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
945         fC_Term = fAdd(fRO_DC_margin,
946                         fAdd(fMultiply(fSM_A0, fLkg_FT),
947                         fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
948                         fAdd(fSclk, fSclk_margin)),
949                         fAdd(fMultiply(fSM_A3,
950                         fAdd(fSclk, fSclk_margin)),
951                         fSubtract(fSM_A7, fRO_fused)))));
952
953         SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
954
955         if (GreaterThan(fRoots[0], fRoots[1]))
956                 fEVV_V = fRoots[1];
957         else
958                 fEVV_V = fRoots[0];
959
960         if (GreaterThan(fV_min, fEVV_V))
961                 fEVV_V = fV_min;
962         else if (GreaterThan(fEVV_V, fV_max))
963                 fEVV_V = fSubtract(fV_max, fStepSize);
964
965         fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
966
967         /*-----------------
968          * PART 4
969          *-----------------
970          */
971
972         fV_x = fV_min;
973
974         while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
975                 fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
976                                 fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
977                                 fGetSquare(fV_x)), fDerateTDP);
978
979                 fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
980                                 fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
981                                 fT_prod), fKv_b_fused), fV_x)), fV_x)));
982                 fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
983                                 fKt_Beta_fused, fT_prod)));
984                 fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
985                                 fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
986                 fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
987                                 fKt_Beta_fused, fT_FT)));
988
989                 fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
990
991                 fTDP_Current = fDivide(fTDP_Power, fV_x);
992
993                 fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
994                                 ConvertToFraction(10)));
995
996                 fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
997
998                 if (GreaterThan(fV_max, fV_NL) &&
999                         (GreaterThan(fV_NL,fEVV_V) ||
1000                         Equal(fV_NL, fEVV_V))) {
1001                         fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
1002
1003                         *voltage = (uint16_t)fV_NL.partial.real;
1004                         break;
1005                 } else
1006                         fV_x = fAdd(fV_x, fStepSize);
1007         }
1008
1009         return result;
1010 }
1011
1012 /** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
1013  * @param hwmgr                 input: pointer to hwManager
1014  * @param voltage_type            input: type of EVV voltage VDDC or VDDGFX
1015  * @param sclk                        input: in 10Khz unit. DPM state SCLK frequency
1016  *                                              which is define in PPTable SCLK/VDDC dependence
1017  *                              table associated with this virtual_voltage_Id
1018  * @param virtual_voltage_Id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1019  * @param voltage                      output: real voltage level in unit of mv
1020  */
1021 int atomctrl_get_voltage_evv_on_sclk(
1022                 struct pp_hwmgr *hwmgr,
1023                 uint8_t voltage_type,
1024                 uint32_t sclk, uint16_t virtual_voltage_Id,
1025                 uint16_t *voltage)
1026 {
1027         int result;
1028         GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1029
1030         get_voltage_info_param_space.ucVoltageType   =
1031                 voltage_type;
1032         get_voltage_info_param_space.ucVoltageMode   =
1033                 ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1034         get_voltage_info_param_space.usVoltageLevel  =
1035                 virtual_voltage_Id;
1036         get_voltage_info_param_space.ulSCLKFreq      =
1037                 sclk;
1038
1039         result = cgs_atom_exec_cmd_table(hwmgr->device,
1040                         GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1041                         &get_voltage_info_param_space);
1042
1043         if (0 != result)
1044                 return result;
1045
1046         *voltage = ((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1047                         (&get_voltage_info_param_space))->usVoltageLevel;
1048
1049         return result;
1050 }
1051
1052 /**
1053  * Get the mpll reference clock in 10KHz
1054  */
1055 uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
1056 {
1057         ATOM_COMMON_TABLE_HEADER *fw_info;
1058         uint32_t clock;
1059         u8 frev, crev;
1060         u16 size;
1061
1062         fw_info = (ATOM_COMMON_TABLE_HEADER *)
1063                 cgs_atom_get_data_table(hwmgr->device,
1064                                 GetIndexIntoMasterTable(DATA, FirmwareInfo),
1065                                 &size, &frev, &crev);
1066
1067         if (fw_info == NULL)
1068                 clock = 2700;
1069         else {
1070                 if ((fw_info->ucTableFormatRevision == 2) &&
1071                         (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
1072                         ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
1073                                 (ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
1074                         clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
1075                 } else {
1076                         ATOM_FIRMWARE_INFO *fwInfo_0_0 =
1077                                 (ATOM_FIRMWARE_INFO *)fw_info;
1078                         clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
1079                 }
1080         }
1081
1082         return clock;
1083 }
1084
1085 /**
1086  * Get the asic internal spread spectrum table
1087  */
1088 static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
1089 {
1090         ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
1091         u8 frev, crev;
1092         u16 size;
1093
1094         table = (ATOM_ASIC_INTERNAL_SS_INFO *)
1095                 cgs_atom_get_data_table(device,
1096                         GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
1097                         &size, &frev, &crev);
1098
1099         return table;
1100 }
1101
1102 /**
1103  * Get the asic internal spread spectrum assignment
1104  */
1105 static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
1106                 const uint8_t clockSource,
1107                 const uint32_t clockSpeed,
1108                 pp_atomctrl_internal_ss_info *ssEntry)
1109 {
1110         ATOM_ASIC_INTERNAL_SS_INFO *table;
1111         ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
1112         int entry_found = 0;
1113
1114         memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
1115
1116         table = asic_internal_ss_get_ss_table(hwmgr->device);
1117
1118         if (NULL == table)
1119                 return -1;
1120
1121         ssInfo = &table->asSpreadSpectrum[0];
1122
1123         while (((uint8_t *)ssInfo - (uint8_t *)table) <
1124                 le16_to_cpu(table->sHeader.usStructureSize)) {
1125                 if ((clockSource == ssInfo->ucClockIndication) &&
1126                         ((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
1127                         entry_found = 1;
1128                         break;
1129                 }
1130
1131                 ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
1132                                 sizeof(ATOM_ASIC_SS_ASSIGNMENT));
1133         }
1134
1135         if (entry_found) {
1136                 ssEntry->speed_spectrum_percentage =
1137                         ssInfo->usSpreadSpectrumPercentage;
1138                 ssEntry->speed_spectrum_rate = ssInfo->usSpreadRateInKhz;
1139
1140                 if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
1141                         (GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
1142                         (GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
1143                         ssEntry->speed_spectrum_rate /= 100;
1144                 }
1145
1146                 switch (ssInfo->ucSpreadSpectrumMode) {
1147                 case 0:
1148                         ssEntry->speed_spectrum_mode =
1149                                 pp_atomctrl_spread_spectrum_mode_down;
1150                         break;
1151                 case 1:
1152                         ssEntry->speed_spectrum_mode =
1153                                 pp_atomctrl_spread_spectrum_mode_center;
1154                         break;
1155                 default:
1156                         ssEntry->speed_spectrum_mode =
1157                                 pp_atomctrl_spread_spectrum_mode_down;
1158                         break;
1159                 }
1160         }
1161
1162         return entry_found ? 0 : 1;
1163 }
1164
1165 /**
1166  * Get the memory clock spread spectrum info
1167  */
1168 int atomctrl_get_memory_clock_spread_spectrum(
1169                 struct pp_hwmgr *hwmgr,
1170                 const uint32_t memory_clock,
1171                 pp_atomctrl_internal_ss_info *ssInfo)
1172 {
1173         return asic_internal_ss_get_ss_asignment(hwmgr,
1174                         ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
1175 }
1176 /**
1177  * Get the engine clock spread spectrum info
1178  */
1179 int atomctrl_get_engine_clock_spread_spectrum(
1180                 struct pp_hwmgr *hwmgr,
1181                 const uint32_t engine_clock,
1182                 pp_atomctrl_internal_ss_info *ssInfo)
1183 {
1184         return asic_internal_ss_get_ss_asignment(hwmgr,
1185                         ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
1186 }
1187
1188 int atomctrl_read_efuse(void *device, uint16_t start_index,
1189                 uint16_t end_index, uint32_t mask, uint32_t *efuse)
1190 {
1191         int result;
1192         READ_EFUSE_VALUE_PARAMETER efuse_param;
1193
1194         efuse_param.sEfuse.usEfuseIndex = (start_index / 32) * 4;
1195         efuse_param.sEfuse.ucBitShift = (uint8_t)
1196                         (start_index - ((start_index / 32) * 32));
1197         efuse_param.sEfuse.ucBitLength  = (uint8_t)
1198                         ((end_index - start_index) + 1);
1199
1200         result = cgs_atom_exec_cmd_table(device,
1201                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
1202                         &efuse_param);
1203         if (!result)
1204                 *efuse = efuse_param.ulEfuseValue & mask;
1205
1206         return result;
1207 }