3e0cabe9b54498caa60428652ce6f9245f7d9535
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43                                                    bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46                                bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57                                              struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59                                             struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61                                  unsigned long event,
62                                  void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66                                   enum i915_cache_level level)
67 {
68         return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74                 return true;
75
76         return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81         if (obj->tiling_mode)
82                 i915_gem_release_mmap(obj);
83
84         /* As we do not have an associated fence register, we will force
85          * a tiling change if we ever need to acquire one.
86          */
87         obj->fence_dirty = false;
88         obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93                                   size_t size)
94 {
95         spin_lock(&dev_priv->mm.object_stat_lock);
96         dev_priv->mm.object_count++;
97         dev_priv->mm.object_memory += size;
98         spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102                                      size_t size)
103 {
104         spin_lock(&dev_priv->mm.object_stat_lock);
105         dev_priv->mm.object_count--;
106         dev_priv->mm.object_memory -= size;
107         spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113         int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116                    i915_terminally_wedged(error))
117         if (EXIT_COND)
118                 return 0;
119
120         /*
121          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122          * userspace. If it takes that long something really bad is going on and
123          * we should simply try to bail out and fail as gracefully as possible.
124          */
125         ret = wait_event_interruptible_timeout(error->reset_queue,
126                                                EXIT_COND,
127                                                10*HZ);
128         if (ret == 0) {
129                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130                 return -EIO;
131         } else if (ret < 0) {
132                 return ret;
133         }
134 #undef EXIT_COND
135
136         return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141         struct drm_i915_private *dev_priv = dev->dev_private;
142         int ret;
143
144         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145         if (ret)
146                 return ret;
147
148         ret = mutex_lock_interruptible(&dev->struct_mutex);
149         if (ret)
150                 return ret;
151
152         WARN_ON(i915_verify_lists(dev));
153         return 0;
154 }
155
156 static inline bool
157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158 {
159         return i915_gem_obj_bound_any(obj) && !obj->active;
160 }
161
162 int
163 i915_gem_init_ioctl(struct drm_device *dev, void *data,
164                     struct drm_file *file)
165 {
166         struct drm_i915_private *dev_priv = dev->dev_private;
167         struct drm_i915_gem_init *args = data;
168
169         if (drm_core_check_feature(dev, DRIVER_MODESET))
170                 return -ENODEV;
171
172         if (args->gtt_start >= args->gtt_end ||
173             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
174                 return -EINVAL;
175
176         /* GEM with user mode setting was never supported on ilk and later. */
177         if (INTEL_INFO(dev)->gen >= 5)
178                 return -ENODEV;
179
180         mutex_lock(&dev->struct_mutex);
181         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
182                                   args->gtt_end);
183         dev_priv->gtt.mappable_end = args->gtt_end;
184         mutex_unlock(&dev->struct_mutex);
185
186         return 0;
187 }
188
189 int
190 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
191                             struct drm_file *file)
192 {
193         struct drm_i915_private *dev_priv = dev->dev_private;
194         struct drm_i915_gem_get_aperture *args = data;
195         struct drm_i915_gem_object *obj;
196         size_t pinned;
197
198         pinned = 0;
199         mutex_lock(&dev->struct_mutex);
200         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
201                 if (i915_gem_obj_is_pinned(obj))
202                         pinned += i915_gem_obj_ggtt_size(obj);
203         mutex_unlock(&dev->struct_mutex);
204
205         args->aper_size = dev_priv->gtt.base.total;
206         args->aper_available_size = args->aper_size - pinned;
207
208         return 0;
209 }
210
211 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
212 {
213         drm_dma_handle_t *phys = obj->phys_handle;
214
215         if (!phys)
216                 return;
217
218         if (obj->madv == I915_MADV_WILLNEED) {
219                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
220                 char *vaddr = phys->vaddr;
221                 int i;
222
223                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
224                         struct page *page = shmem_read_mapping_page(mapping, i);
225                         if (!IS_ERR(page)) {
226                                 char *dst = kmap_atomic(page);
227                                 memcpy(dst, vaddr, PAGE_SIZE);
228                                 drm_clflush_virt_range(dst, PAGE_SIZE);
229                                 kunmap_atomic(dst);
230
231                                 set_page_dirty(page);
232                                 mark_page_accessed(page);
233                                 page_cache_release(page);
234                         }
235                         vaddr += PAGE_SIZE;
236                 }
237                 i915_gem_chipset_flush(obj->base.dev);
238         }
239
240 #ifdef CONFIG_X86
241         set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
242 #endif
243         drm_pci_free(obj->base.dev, phys);
244         obj->phys_handle = NULL;
245 }
246
247 int
248 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
249                             int align)
250 {
251         drm_dma_handle_t *phys;
252         struct address_space *mapping;
253         char *vaddr;
254         int i;
255
256         if (obj->phys_handle) {
257                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
258                         return -EBUSY;
259
260                 return 0;
261         }
262
263         if (obj->madv != I915_MADV_WILLNEED)
264                 return -EFAULT;
265
266         if (obj->base.filp == NULL)
267                 return -EINVAL;
268
269         /* create a new object */
270         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
271         if (!phys)
272                 return -ENOMEM;
273
274         vaddr = phys->vaddr;
275 #ifdef CONFIG_X86
276         set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
277 #endif
278         mapping = file_inode(obj->base.filp)->i_mapping;
279         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
280                 struct page *page;
281                 char *src;
282
283                 page = shmem_read_mapping_page(mapping, i);
284                 if (IS_ERR(page)) {
285 #ifdef CONFIG_X86
286                         set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
287 #endif
288                         drm_pci_free(obj->base.dev, phys);
289                         return PTR_ERR(page);
290                 }
291
292                 src = kmap_atomic(page);
293                 memcpy(vaddr, src, PAGE_SIZE);
294                 kunmap_atomic(src);
295
296                 mark_page_accessed(page);
297                 page_cache_release(page);
298
299                 vaddr += PAGE_SIZE;
300         }
301
302         obj->phys_handle = phys;
303         return 0;
304 }
305
306 static int
307 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
308                      struct drm_i915_gem_pwrite *args,
309                      struct drm_file *file_priv)
310 {
311         struct drm_device *dev = obj->base.dev;
312         void *vaddr = obj->phys_handle->vaddr + args->offset;
313         char __user *user_data = to_user_ptr(args->data_ptr);
314
315         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
316                 unsigned long unwritten;
317
318                 /* The physical object once assigned is fixed for the lifetime
319                  * of the obj, so we can safely drop the lock and continue
320                  * to access vaddr.
321                  */
322                 mutex_unlock(&dev->struct_mutex);
323                 unwritten = copy_from_user(vaddr, user_data, args->size);
324                 mutex_lock(&dev->struct_mutex);
325                 if (unwritten)
326                         return -EFAULT;
327         }
328
329         i915_gem_chipset_flush(dev);
330         return 0;
331 }
332
333 void *i915_gem_object_alloc(struct drm_device *dev)
334 {
335         struct drm_i915_private *dev_priv = dev->dev_private;
336         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
337 }
338
339 void i915_gem_object_free(struct drm_i915_gem_object *obj)
340 {
341         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
342         kmem_cache_free(dev_priv->slab, obj);
343 }
344
345 static int
346 i915_gem_create(struct drm_file *file,
347                 struct drm_device *dev,
348                 uint64_t size,
349                 uint32_t *handle_p)
350 {
351         struct drm_i915_gem_object *obj;
352         int ret;
353         u32 handle;
354
355         size = roundup(size, PAGE_SIZE);
356         if (size == 0)
357                 return -EINVAL;
358
359         /* Allocate the new object */
360         obj = i915_gem_alloc_object(dev, size);
361         if (obj == NULL)
362                 return -ENOMEM;
363
364         ret = drm_gem_handle_create(file, &obj->base, &handle);
365         /* drop reference from allocate - handle holds it now */
366         drm_gem_object_unreference_unlocked(&obj->base);
367         if (ret)
368                 return ret;
369
370         *handle_p = handle;
371         return 0;
372 }
373
374 int
375 i915_gem_dumb_create(struct drm_file *file,
376                      struct drm_device *dev,
377                      struct drm_mode_create_dumb *args)
378 {
379         /* have to work out size/pitch and return them */
380         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
381         args->size = args->pitch * args->height;
382         return i915_gem_create(file, dev,
383                                args->size, &args->handle);
384 }
385
386 /**
387  * Creates a new mm object and returns a handle to it.
388  */
389 int
390 i915_gem_create_ioctl(struct drm_device *dev, void *data,
391                       struct drm_file *file)
392 {
393         struct drm_i915_gem_create *args = data;
394
395         return i915_gem_create(file, dev,
396                                args->size, &args->handle);
397 }
398
399 static inline int
400 __copy_to_user_swizzled(char __user *cpu_vaddr,
401                         const char *gpu_vaddr, int gpu_offset,
402                         int length)
403 {
404         int ret, cpu_offset = 0;
405
406         while (length > 0) {
407                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
408                 int this_length = min(cacheline_end - gpu_offset, length);
409                 int swizzled_gpu_offset = gpu_offset ^ 64;
410
411                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
412                                      gpu_vaddr + swizzled_gpu_offset,
413                                      this_length);
414                 if (ret)
415                         return ret + length;
416
417                 cpu_offset += this_length;
418                 gpu_offset += this_length;
419                 length -= this_length;
420         }
421
422         return 0;
423 }
424
425 static inline int
426 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
427                           const char __user *cpu_vaddr,
428                           int length)
429 {
430         int ret, cpu_offset = 0;
431
432         while (length > 0) {
433                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
434                 int this_length = min(cacheline_end - gpu_offset, length);
435                 int swizzled_gpu_offset = gpu_offset ^ 64;
436
437                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
438                                        cpu_vaddr + cpu_offset,
439                                        this_length);
440                 if (ret)
441                         return ret + length;
442
443                 cpu_offset += this_length;
444                 gpu_offset += this_length;
445                 length -= this_length;
446         }
447
448         return 0;
449 }
450
451 /*
452  * Pins the specified object's pages and synchronizes the object with
453  * GPU accesses. Sets needs_clflush to non-zero if the caller should
454  * flush the object from the CPU cache.
455  */
456 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
457                                     int *needs_clflush)
458 {
459         int ret;
460
461         *needs_clflush = 0;
462
463         if (!obj->base.filp)
464                 return -EINVAL;
465
466         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
467                 /* If we're not in the cpu read domain, set ourself into the gtt
468                  * read domain and manually flush cachelines (if required). This
469                  * optimizes for the case when the gpu will dirty the data
470                  * anyway again before the next pread happens. */
471                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
472                                                         obj->cache_level);
473                 ret = i915_gem_object_wait_rendering(obj, true);
474                 if (ret)
475                         return ret;
476
477                 i915_gem_object_retire(obj);
478         }
479
480         ret = i915_gem_object_get_pages(obj);
481         if (ret)
482                 return ret;
483
484         i915_gem_object_pin_pages(obj);
485
486         return ret;
487 }
488
489 /* Per-page copy function for the shmem pread fastpath.
490  * Flushes invalid cachelines before reading the target if
491  * needs_clflush is set. */
492 static int
493 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
494                  char __user *user_data,
495                  bool page_do_bit17_swizzling, bool needs_clflush)
496 {
497         char *vaddr;
498         int ret;
499
500         if (unlikely(page_do_bit17_swizzling))
501                 return -EINVAL;
502
503         vaddr = kmap_atomic(page);
504         if (needs_clflush)
505                 drm_clflush_virt_range(vaddr + shmem_page_offset,
506                                        page_length);
507         ret = __copy_to_user_inatomic(user_data,
508                                       vaddr + shmem_page_offset,
509                                       page_length);
510         kunmap_atomic(vaddr);
511
512         return ret ? -EFAULT : 0;
513 }
514
515 static void
516 shmem_clflush_swizzled_range(char *addr, unsigned long length,
517                              bool swizzled)
518 {
519         if (unlikely(swizzled)) {
520                 unsigned long start = (unsigned long) addr;
521                 unsigned long end = (unsigned long) addr + length;
522
523                 /* For swizzling simply ensure that we always flush both
524                  * channels. Lame, but simple and it works. Swizzled
525                  * pwrite/pread is far from a hotpath - current userspace
526                  * doesn't use it at all. */
527                 start = round_down(start, 128);
528                 end = round_up(end, 128);
529
530                 drm_clflush_virt_range((void *)start, end - start);
531         } else {
532                 drm_clflush_virt_range(addr, length);
533         }
534
535 }
536
537 /* Only difference to the fast-path function is that this can handle bit17
538  * and uses non-atomic copy and kmap functions. */
539 static int
540 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
541                  char __user *user_data,
542                  bool page_do_bit17_swizzling, bool needs_clflush)
543 {
544         char *vaddr;
545         int ret;
546
547         vaddr = kmap(page);
548         if (needs_clflush)
549                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
550                                              page_length,
551                                              page_do_bit17_swizzling);
552
553         if (page_do_bit17_swizzling)
554                 ret = __copy_to_user_swizzled(user_data,
555                                               vaddr, shmem_page_offset,
556                                               page_length);
557         else
558                 ret = __copy_to_user(user_data,
559                                      vaddr + shmem_page_offset,
560                                      page_length);
561         kunmap(page);
562
563         return ret ? - EFAULT : 0;
564 }
565
566 static int
567 i915_gem_shmem_pread(struct drm_device *dev,
568                      struct drm_i915_gem_object *obj,
569                      struct drm_i915_gem_pread *args,
570                      struct drm_file *file)
571 {
572         char __user *user_data;
573         ssize_t remain;
574         loff_t offset;
575         int shmem_page_offset, page_length, ret = 0;
576         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
577         int prefaulted = 0;
578         int needs_clflush = 0;
579         struct sg_page_iter sg_iter;
580
581         user_data = to_user_ptr(args->data_ptr);
582         remain = args->size;
583
584         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
585
586         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
587         if (ret)
588                 return ret;
589
590         offset = args->offset;
591
592         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
593                          offset >> PAGE_SHIFT) {
594                 struct page *page = sg_page_iter_page(&sg_iter);
595
596                 if (remain <= 0)
597                         break;
598
599                 /* Operation in this page
600                  *
601                  * shmem_page_offset = offset within page in shmem file
602                  * page_length = bytes to copy for this page
603                  */
604                 shmem_page_offset = offset_in_page(offset);
605                 page_length = remain;
606                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
607                         page_length = PAGE_SIZE - shmem_page_offset;
608
609                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
610                         (page_to_phys(page) & (1 << 17)) != 0;
611
612                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
613                                        user_data, page_do_bit17_swizzling,
614                                        needs_clflush);
615                 if (ret == 0)
616                         goto next_page;
617
618                 mutex_unlock(&dev->struct_mutex);
619
620                 if (likely(!i915.prefault_disable) && !prefaulted) {
621                         ret = fault_in_multipages_writeable(user_data, remain);
622                         /* Userspace is tricking us, but we've already clobbered
623                          * its pages with the prefault and promised to write the
624                          * data up to the first fault. Hence ignore any errors
625                          * and just continue. */
626                         (void)ret;
627                         prefaulted = 1;
628                 }
629
630                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
631                                        user_data, page_do_bit17_swizzling,
632                                        needs_clflush);
633
634                 mutex_lock(&dev->struct_mutex);
635
636                 if (ret)
637                         goto out;
638
639 next_page:
640                 remain -= page_length;
641                 user_data += page_length;
642                 offset += page_length;
643         }
644
645 out:
646         i915_gem_object_unpin_pages(obj);
647
648         return ret;
649 }
650
651 /**
652  * Reads data from the object referenced by handle.
653  *
654  * On error, the contents of *data are undefined.
655  */
656 int
657 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
658                      struct drm_file *file)
659 {
660         struct drm_i915_gem_pread *args = data;
661         struct drm_i915_gem_object *obj;
662         int ret = 0;
663
664         if (args->size == 0)
665                 return 0;
666
667         if (!access_ok(VERIFY_WRITE,
668                        to_user_ptr(args->data_ptr),
669                        args->size))
670                 return -EFAULT;
671
672         ret = i915_mutex_lock_interruptible(dev);
673         if (ret)
674                 return ret;
675
676         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
677         if (&obj->base == NULL) {
678                 ret = -ENOENT;
679                 goto unlock;
680         }
681
682         /* Bounds check source.  */
683         if (args->offset > obj->base.size ||
684             args->size > obj->base.size - args->offset) {
685                 ret = -EINVAL;
686                 goto out;
687         }
688
689         /* prime objects have no backing filp to GEM pread/pwrite
690          * pages from.
691          */
692         if (!obj->base.filp) {
693                 ret = -EINVAL;
694                 goto out;
695         }
696
697         trace_i915_gem_object_pread(obj, args->offset, args->size);
698
699         ret = i915_gem_shmem_pread(dev, obj, args, file);
700
701 out:
702         drm_gem_object_unreference(&obj->base);
703 unlock:
704         mutex_unlock(&dev->struct_mutex);
705         return ret;
706 }
707
708 /* This is the fast write path which cannot handle
709  * page faults in the source data
710  */
711
712 static inline int
713 fast_user_write(struct io_mapping *mapping,
714                 loff_t page_base, int page_offset,
715                 char __user *user_data,
716                 int length)
717 {
718         void __iomem *vaddr_atomic;
719         void *vaddr;
720         unsigned long unwritten;
721
722         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
723         /* We can use the cpu mem copy function because this is X86. */
724         vaddr = (void __force*)vaddr_atomic + page_offset;
725         unwritten = __copy_from_user_inatomic_nocache(vaddr,
726                                                       user_data, length);
727         io_mapping_unmap_atomic(vaddr_atomic);
728         return unwritten;
729 }
730
731 /**
732  * This is the fast pwrite path, where we copy the data directly from the
733  * user into the GTT, uncached.
734  */
735 static int
736 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
737                          struct drm_i915_gem_object *obj,
738                          struct drm_i915_gem_pwrite *args,
739                          struct drm_file *file)
740 {
741         struct drm_i915_private *dev_priv = dev->dev_private;
742         ssize_t remain;
743         loff_t offset, page_base;
744         char __user *user_data;
745         int page_offset, page_length, ret;
746
747         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
748         if (ret)
749                 goto out;
750
751         ret = i915_gem_object_set_to_gtt_domain(obj, true);
752         if (ret)
753                 goto out_unpin;
754
755         ret = i915_gem_object_put_fence(obj);
756         if (ret)
757                 goto out_unpin;
758
759         user_data = to_user_ptr(args->data_ptr);
760         remain = args->size;
761
762         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
763
764         while (remain > 0) {
765                 /* Operation in this page
766                  *
767                  * page_base = page offset within aperture
768                  * page_offset = offset within page
769                  * page_length = bytes to copy for this page
770                  */
771                 page_base = offset & PAGE_MASK;
772                 page_offset = offset_in_page(offset);
773                 page_length = remain;
774                 if ((page_offset + remain) > PAGE_SIZE)
775                         page_length = PAGE_SIZE - page_offset;
776
777                 /* If we get a fault while copying data, then (presumably) our
778                  * source page isn't available.  Return the error and we'll
779                  * retry in the slow path.
780                  */
781                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
782                                     page_offset, user_data, page_length)) {
783                         ret = -EFAULT;
784                         goto out_unpin;
785                 }
786
787                 remain -= page_length;
788                 user_data += page_length;
789                 offset += page_length;
790         }
791
792 out_unpin:
793         i915_gem_object_ggtt_unpin(obj);
794 out:
795         return ret;
796 }
797
798 /* Per-page copy function for the shmem pwrite fastpath.
799  * Flushes invalid cachelines before writing to the target if
800  * needs_clflush_before is set and flushes out any written cachelines after
801  * writing if needs_clflush is set. */
802 static int
803 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
804                   char __user *user_data,
805                   bool page_do_bit17_swizzling,
806                   bool needs_clflush_before,
807                   bool needs_clflush_after)
808 {
809         char *vaddr;
810         int ret;
811
812         if (unlikely(page_do_bit17_swizzling))
813                 return -EINVAL;
814
815         vaddr = kmap_atomic(page);
816         if (needs_clflush_before)
817                 drm_clflush_virt_range(vaddr + shmem_page_offset,
818                                        page_length);
819         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
820                                         user_data, page_length);
821         if (needs_clflush_after)
822                 drm_clflush_virt_range(vaddr + shmem_page_offset,
823                                        page_length);
824         kunmap_atomic(vaddr);
825
826         return ret ? -EFAULT : 0;
827 }
828
829 /* Only difference to the fast-path function is that this can handle bit17
830  * and uses non-atomic copy and kmap functions. */
831 static int
832 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
833                   char __user *user_data,
834                   bool page_do_bit17_swizzling,
835                   bool needs_clflush_before,
836                   bool needs_clflush_after)
837 {
838         char *vaddr;
839         int ret;
840
841         vaddr = kmap(page);
842         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
843                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
844                                              page_length,
845                                              page_do_bit17_swizzling);
846         if (page_do_bit17_swizzling)
847                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
848                                                 user_data,
849                                                 page_length);
850         else
851                 ret = __copy_from_user(vaddr + shmem_page_offset,
852                                        user_data,
853                                        page_length);
854         if (needs_clflush_after)
855                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
856                                              page_length,
857                                              page_do_bit17_swizzling);
858         kunmap(page);
859
860         return ret ? -EFAULT : 0;
861 }
862
863 static int
864 i915_gem_shmem_pwrite(struct drm_device *dev,
865                       struct drm_i915_gem_object *obj,
866                       struct drm_i915_gem_pwrite *args,
867                       struct drm_file *file)
868 {
869         ssize_t remain;
870         loff_t offset;
871         char __user *user_data;
872         int shmem_page_offset, page_length, ret = 0;
873         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
874         int hit_slowpath = 0;
875         int needs_clflush_after = 0;
876         int needs_clflush_before = 0;
877         struct sg_page_iter sg_iter;
878
879         user_data = to_user_ptr(args->data_ptr);
880         remain = args->size;
881
882         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
883
884         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
885                 /* If we're not in the cpu write domain, set ourself into the gtt
886                  * write domain and manually flush cachelines (if required). This
887                  * optimizes for the case when the gpu will use the data
888                  * right away and we therefore have to clflush anyway. */
889                 needs_clflush_after = cpu_write_needs_clflush(obj);
890                 ret = i915_gem_object_wait_rendering(obj, false);
891                 if (ret)
892                         return ret;
893
894                 i915_gem_object_retire(obj);
895         }
896         /* Same trick applies to invalidate partially written cachelines read
897          * before writing. */
898         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
899                 needs_clflush_before =
900                         !cpu_cache_is_coherent(dev, obj->cache_level);
901
902         ret = i915_gem_object_get_pages(obj);
903         if (ret)
904                 return ret;
905
906         i915_gem_object_pin_pages(obj);
907
908         offset = args->offset;
909         obj->dirty = 1;
910
911         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
912                          offset >> PAGE_SHIFT) {
913                 struct page *page = sg_page_iter_page(&sg_iter);
914                 int partial_cacheline_write;
915
916                 if (remain <= 0)
917                         break;
918
919                 /* Operation in this page
920                  *
921                  * shmem_page_offset = offset within page in shmem file
922                  * page_length = bytes to copy for this page
923                  */
924                 shmem_page_offset = offset_in_page(offset);
925
926                 page_length = remain;
927                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
928                         page_length = PAGE_SIZE - shmem_page_offset;
929
930                 /* If we don't overwrite a cacheline completely we need to be
931                  * careful to have up-to-date data by first clflushing. Don't
932                  * overcomplicate things and flush the entire patch. */
933                 partial_cacheline_write = needs_clflush_before &&
934                         ((shmem_page_offset | page_length)
935                                 & (boot_cpu_data.x86_clflush_size - 1));
936
937                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
938                         (page_to_phys(page) & (1 << 17)) != 0;
939
940                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
941                                         user_data, page_do_bit17_swizzling,
942                                         partial_cacheline_write,
943                                         needs_clflush_after);
944                 if (ret == 0)
945                         goto next_page;
946
947                 hit_slowpath = 1;
948                 mutex_unlock(&dev->struct_mutex);
949                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
950                                         user_data, page_do_bit17_swizzling,
951                                         partial_cacheline_write,
952                                         needs_clflush_after);
953
954                 mutex_lock(&dev->struct_mutex);
955
956                 if (ret)
957                         goto out;
958
959 next_page:
960                 remain -= page_length;
961                 user_data += page_length;
962                 offset += page_length;
963         }
964
965 out:
966         i915_gem_object_unpin_pages(obj);
967
968         if (hit_slowpath) {
969                 /*
970                  * Fixup: Flush cpu caches in case we didn't flush the dirty
971                  * cachelines in-line while writing and the object moved
972                  * out of the cpu write domain while we've dropped the lock.
973                  */
974                 if (!needs_clflush_after &&
975                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
976                         if (i915_gem_clflush_object(obj, obj->pin_display))
977                                 i915_gem_chipset_flush(dev);
978                 }
979         }
980
981         if (needs_clflush_after)
982                 i915_gem_chipset_flush(dev);
983
984         return ret;
985 }
986
987 /**
988  * Writes data to the object referenced by handle.
989  *
990  * On error, the contents of the buffer that were to be modified are undefined.
991  */
992 int
993 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
994                       struct drm_file *file)
995 {
996         struct drm_i915_gem_pwrite *args = data;
997         struct drm_i915_gem_object *obj;
998         int ret;
999
1000         if (args->size == 0)
1001                 return 0;
1002
1003         if (!access_ok(VERIFY_READ,
1004                        to_user_ptr(args->data_ptr),
1005                        args->size))
1006                 return -EFAULT;
1007
1008         if (likely(!i915.prefault_disable)) {
1009                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1010                                                    args->size);
1011                 if (ret)
1012                         return -EFAULT;
1013         }
1014
1015         ret = i915_mutex_lock_interruptible(dev);
1016         if (ret)
1017                 return ret;
1018
1019         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1020         if (&obj->base == NULL) {
1021                 ret = -ENOENT;
1022                 goto unlock;
1023         }
1024
1025         /* Bounds check destination. */
1026         if (args->offset > obj->base.size ||
1027             args->size > obj->base.size - args->offset) {
1028                 ret = -EINVAL;
1029                 goto out;
1030         }
1031
1032         /* prime objects have no backing filp to GEM pread/pwrite
1033          * pages from.
1034          */
1035         if (!obj->base.filp) {
1036                 ret = -EINVAL;
1037                 goto out;
1038         }
1039
1040         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1041
1042         ret = -EFAULT;
1043         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1044          * it would end up going through the fenced access, and we'll get
1045          * different detiling behavior between reading and writing.
1046          * pread/pwrite currently are reading and writing from the CPU
1047          * perspective, requiring manual detiling by the client.
1048          */
1049         if (obj->phys_handle) {
1050                 ret = i915_gem_phys_pwrite(obj, args, file);
1051                 goto out;
1052         }
1053
1054         if (obj->tiling_mode == I915_TILING_NONE &&
1055             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1056             cpu_write_needs_clflush(obj)) {
1057                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1058                 /* Note that the gtt paths might fail with non-page-backed user
1059                  * pointers (e.g. gtt mappings when moving data between
1060                  * textures). Fallback to the shmem path in that case. */
1061         }
1062
1063         if (ret == -EFAULT || ret == -ENOSPC)
1064                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1065
1066 out:
1067         drm_gem_object_unreference(&obj->base);
1068 unlock:
1069         mutex_unlock(&dev->struct_mutex);
1070         return ret;
1071 }
1072
1073 int
1074 i915_gem_check_wedge(struct i915_gpu_error *error,
1075                      bool interruptible)
1076 {
1077         if (i915_reset_in_progress(error)) {
1078                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1079                  * -EIO unconditionally for these. */
1080                 if (!interruptible)
1081                         return -EIO;
1082
1083                 /* Recovery complete, but the reset failed ... */
1084                 if (i915_terminally_wedged(error))
1085                         return -EIO;
1086
1087                 /*
1088                  * Check if GPU Reset is in progress - we need intel_ring_begin
1089                  * to work properly to reinit the hw state while the gpu is
1090                  * still marked as reset-in-progress. Handle this with a flag.
1091                  */
1092                 if (!error->reload_in_reset)
1093                         return -EAGAIN;
1094         }
1095
1096         return 0;
1097 }
1098
1099 /*
1100  * Compare seqno against outstanding lazy request. Emit a request if they are
1101  * equal.
1102  */
1103 int
1104 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1105 {
1106         int ret;
1107
1108         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1109
1110         ret = 0;
1111         if (seqno == ring->outstanding_lazy_seqno)
1112                 ret = i915_add_request(ring, NULL);
1113
1114         return ret;
1115 }
1116
1117 static void fake_irq(unsigned long data)
1118 {
1119         wake_up_process((struct task_struct *)data);
1120 }
1121
1122 static bool missed_irq(struct drm_i915_private *dev_priv,
1123                        struct intel_engine_cs *ring)
1124 {
1125         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1126 }
1127
1128 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1129 {
1130         if (file_priv == NULL)
1131                 return true;
1132
1133         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1134 }
1135
1136 /**
1137  * __i915_wait_seqno - wait until execution of seqno has finished
1138  * @ring: the ring expected to report seqno
1139  * @seqno: duh!
1140  * @reset_counter: reset sequence associated with the given seqno
1141  * @interruptible: do an interruptible wait (normally yes)
1142  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1143  *
1144  * Note: It is of utmost importance that the passed in seqno and reset_counter
1145  * values have been read by the caller in an smp safe manner. Where read-side
1146  * locks are involved, it is sufficient to read the reset_counter before
1147  * unlocking the lock that protects the seqno. For lockless tricks, the
1148  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1149  * inserted.
1150  *
1151  * Returns 0 if the seqno was found within the alloted time. Else returns the
1152  * errno with remaining time filled in timeout argument.
1153  */
1154 int __i915_wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1155                         unsigned reset_counter,
1156                         bool interruptible,
1157                         s64 *timeout,
1158                         struct drm_i915_file_private *file_priv)
1159 {
1160         struct drm_device *dev = ring->dev;
1161         struct drm_i915_private *dev_priv = dev->dev_private;
1162         const bool irq_test_in_progress =
1163                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1164         DEFINE_WAIT(wait);
1165         unsigned long timeout_expire;
1166         s64 before, now;
1167         int ret;
1168
1169         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1170
1171         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1172                 return 0;
1173
1174         timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1175
1176         if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1177                 gen6_rps_boost(dev_priv);
1178                 if (file_priv)
1179                         mod_delayed_work(dev_priv->wq,
1180                                          &file_priv->mm.idle_work,
1181                                          msecs_to_jiffies(100));
1182         }
1183
1184         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1185                 return -ENODEV;
1186
1187         /* Record current time in case interrupted by signal, or wedged */
1188         trace_i915_gem_request_wait_begin(ring, seqno);
1189         before = ktime_get_raw_ns();
1190         for (;;) {
1191                 struct timer_list timer;
1192
1193                 prepare_to_wait(&ring->irq_queue, &wait,
1194                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1195
1196                 /* We need to check whether any gpu reset happened in between
1197                  * the caller grabbing the seqno and now ... */
1198                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1199                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1200                          * is truely gone. */
1201                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1202                         if (ret == 0)
1203                                 ret = -EAGAIN;
1204                         break;
1205                 }
1206
1207                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1208                         ret = 0;
1209                         break;
1210                 }
1211
1212                 if (interruptible && signal_pending(current)) {
1213                         ret = -ERESTARTSYS;
1214                         break;
1215                 }
1216
1217                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1218                         ret = -ETIME;
1219                         break;
1220                 }
1221
1222                 timer.function = NULL;
1223                 if (timeout || missed_irq(dev_priv, ring)) {
1224                         unsigned long expire;
1225
1226                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1227                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1228                         mod_timer(&timer, expire);
1229                 }
1230
1231                 io_schedule();
1232
1233                 if (timer.function) {
1234                         del_singleshot_timer_sync(&timer);
1235                         destroy_timer_on_stack(&timer);
1236                 }
1237         }
1238         now = ktime_get_raw_ns();
1239         trace_i915_gem_request_wait_end(ring, seqno);
1240
1241         if (!irq_test_in_progress)
1242                 ring->irq_put(ring);
1243
1244         finish_wait(&ring->irq_queue, &wait);
1245
1246         if (timeout) {
1247                 s64 tres = *timeout - (now - before);
1248
1249                 *timeout = tres < 0 ? 0 : tres;
1250         }
1251
1252         return ret;
1253 }
1254
1255 /**
1256  * Waits for a sequence number to be signaled, and cleans up the
1257  * request and object lists appropriately for that event.
1258  */
1259 int
1260 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1261 {
1262         struct drm_device *dev = ring->dev;
1263         struct drm_i915_private *dev_priv = dev->dev_private;
1264         bool interruptible = dev_priv->mm.interruptible;
1265         unsigned reset_counter;
1266         int ret;
1267
1268         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1269         BUG_ON(seqno == 0);
1270
1271         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1272         if (ret)
1273                 return ret;
1274
1275         ret = i915_gem_check_olr(ring, seqno);
1276         if (ret)
1277                 return ret;
1278
1279         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1280         return __i915_wait_seqno(ring, seqno, reset_counter, interruptible,
1281                                  NULL, NULL);
1282 }
1283
1284 static int
1285 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1286 {
1287         if (!obj->active)
1288                 return 0;
1289
1290         /* Manually manage the write flush as we may have not yet
1291          * retired the buffer.
1292          *
1293          * Note that the last_write_seqno is always the earlier of
1294          * the two (read/write) seqno, so if we haved successfully waited,
1295          * we know we have passed the last write.
1296          */
1297         obj->last_write_seqno = 0;
1298
1299         return 0;
1300 }
1301
1302 /**
1303  * Ensures that all rendering to the object has completed and the object is
1304  * safe to unbind from the GTT or access from the CPU.
1305  */
1306 static __must_check int
1307 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1308                                bool readonly)
1309 {
1310         struct intel_engine_cs *ring = obj->ring;
1311         u32 seqno;
1312         int ret;
1313
1314         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1315         if (seqno == 0)
1316                 return 0;
1317
1318         ret = i915_wait_seqno(ring, seqno);
1319         if (ret)
1320                 return ret;
1321
1322         return i915_gem_object_wait_rendering__tail(obj);
1323 }
1324
1325 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1326  * as the object state may change during this call.
1327  */
1328 static __must_check int
1329 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1330                                             struct drm_i915_file_private *file_priv,
1331                                             bool readonly)
1332 {
1333         struct drm_device *dev = obj->base.dev;
1334         struct drm_i915_private *dev_priv = dev->dev_private;
1335         struct intel_engine_cs *ring = obj->ring;
1336         unsigned reset_counter;
1337         u32 seqno;
1338         int ret;
1339
1340         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1341         BUG_ON(!dev_priv->mm.interruptible);
1342
1343         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1344         if (seqno == 0)
1345                 return 0;
1346
1347         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1348         if (ret)
1349                 return ret;
1350
1351         ret = i915_gem_check_olr(ring, seqno);
1352         if (ret)
1353                 return ret;
1354
1355         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1356         mutex_unlock(&dev->struct_mutex);
1357         ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL,
1358                                 file_priv);
1359         mutex_lock(&dev->struct_mutex);
1360         if (ret)
1361                 return ret;
1362
1363         return i915_gem_object_wait_rendering__tail(obj);
1364 }
1365
1366 /**
1367  * Called when user space prepares to use an object with the CPU, either
1368  * through the mmap ioctl's mapping or a GTT mapping.
1369  */
1370 int
1371 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1372                           struct drm_file *file)
1373 {
1374         struct drm_i915_gem_set_domain *args = data;
1375         struct drm_i915_gem_object *obj;
1376         uint32_t read_domains = args->read_domains;
1377         uint32_t write_domain = args->write_domain;
1378         int ret;
1379
1380         /* Only handle setting domains to types used by the CPU. */
1381         if (write_domain & I915_GEM_GPU_DOMAINS)
1382                 return -EINVAL;
1383
1384         if (read_domains & I915_GEM_GPU_DOMAINS)
1385                 return -EINVAL;
1386
1387         /* Having something in the write domain implies it's in the read
1388          * domain, and only that read domain.  Enforce that in the request.
1389          */
1390         if (write_domain != 0 && read_domains != write_domain)
1391                 return -EINVAL;
1392
1393         ret = i915_mutex_lock_interruptible(dev);
1394         if (ret)
1395                 return ret;
1396
1397         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1398         if (&obj->base == NULL) {
1399                 ret = -ENOENT;
1400                 goto unlock;
1401         }
1402
1403         /* Try to flush the object off the GPU without holding the lock.
1404          * We will repeat the flush holding the lock in the normal manner
1405          * to catch cases where we are gazumped.
1406          */
1407         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1408                                                           file->driver_priv,
1409                                                           !write_domain);
1410         if (ret)
1411                 goto unref;
1412
1413         if (read_domains & I915_GEM_DOMAIN_GTT) {
1414                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1415
1416                 /* Silently promote "you're not bound, there was nothing to do"
1417                  * to success, since the client was just asking us to
1418                  * make sure everything was done.
1419                  */
1420                 if (ret == -EINVAL)
1421                         ret = 0;
1422         } else {
1423                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1424         }
1425
1426 unref:
1427         drm_gem_object_unreference(&obj->base);
1428 unlock:
1429         mutex_unlock(&dev->struct_mutex);
1430         return ret;
1431 }
1432
1433 /**
1434  * Called when user space has done writes to this buffer
1435  */
1436 int
1437 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1438                          struct drm_file *file)
1439 {
1440         struct drm_i915_gem_sw_finish *args = data;
1441         struct drm_i915_gem_object *obj;
1442         int ret = 0;
1443
1444         ret = i915_mutex_lock_interruptible(dev);
1445         if (ret)
1446                 return ret;
1447
1448         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1449         if (&obj->base == NULL) {
1450                 ret = -ENOENT;
1451                 goto unlock;
1452         }
1453
1454         /* Pinned buffers may be scanout, so flush the cache */
1455         if (obj->pin_display)
1456                 i915_gem_object_flush_cpu_write_domain(obj, true);
1457
1458         drm_gem_object_unreference(&obj->base);
1459 unlock:
1460         mutex_unlock(&dev->struct_mutex);
1461         return ret;
1462 }
1463
1464 /**
1465  * Maps the contents of an object, returning the address it is mapped
1466  * into.
1467  *
1468  * While the mapping holds a reference on the contents of the object, it doesn't
1469  * imply a ref on the object itself.
1470  *
1471  * IMPORTANT:
1472  *
1473  * DRM driver writers who look a this function as an example for how to do GEM
1474  * mmap support, please don't implement mmap support like here. The modern way
1475  * to implement DRM mmap support is with an mmap offset ioctl (like
1476  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1477  * That way debug tooling like valgrind will understand what's going on, hiding
1478  * the mmap call in a driver private ioctl will break that. The i915 driver only
1479  * does cpu mmaps this way because we didn't know better.
1480  */
1481 int
1482 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1483                     struct drm_file *file)
1484 {
1485         struct drm_i915_gem_mmap *args = data;
1486         struct drm_gem_object *obj;
1487         unsigned long addr;
1488
1489         obj = drm_gem_object_lookup(dev, file, args->handle);
1490         if (obj == NULL)
1491                 return -ENOENT;
1492
1493         /* prime objects have no backing filp to GEM mmap
1494          * pages from.
1495          */
1496         if (!obj->filp) {
1497                 drm_gem_object_unreference_unlocked(obj);
1498                 return -EINVAL;
1499         }
1500
1501         addr = vm_mmap(obj->filp, 0, args->size,
1502                        PROT_READ | PROT_WRITE, MAP_SHARED,
1503                        args->offset);
1504         drm_gem_object_unreference_unlocked(obj);
1505         if (IS_ERR((void *)addr))
1506                 return addr;
1507
1508         args->addr_ptr = (uint64_t) addr;
1509
1510         return 0;
1511 }
1512
1513 /**
1514  * i915_gem_fault - fault a page into the GTT
1515  * vma: VMA in question
1516  * vmf: fault info
1517  *
1518  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1519  * from userspace.  The fault handler takes care of binding the object to
1520  * the GTT (if needed), allocating and programming a fence register (again,
1521  * only if needed based on whether the old reg is still valid or the object
1522  * is tiled) and inserting a new PTE into the faulting process.
1523  *
1524  * Note that the faulting process may involve evicting existing objects
1525  * from the GTT and/or fence registers to make room.  So performance may
1526  * suffer if the GTT working set is large or there are few fence registers
1527  * left.
1528  */
1529 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1530 {
1531         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1532         struct drm_device *dev = obj->base.dev;
1533         struct drm_i915_private *dev_priv = dev->dev_private;
1534         pgoff_t page_offset;
1535         unsigned long pfn;
1536         int ret = 0;
1537         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1538
1539         intel_runtime_pm_get(dev_priv);
1540
1541         /* We don't use vmf->pgoff since that has the fake offset */
1542         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1543                 PAGE_SHIFT;
1544
1545         ret = i915_mutex_lock_interruptible(dev);
1546         if (ret)
1547                 goto out;
1548
1549         trace_i915_gem_object_fault(obj, page_offset, true, write);
1550
1551         /* Try to flush the object off the GPU first without holding the lock.
1552          * Upon reacquiring the lock, we will perform our sanity checks and then
1553          * repeat the flush holding the lock in the normal manner to catch cases
1554          * where we are gazumped.
1555          */
1556         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1557         if (ret)
1558                 goto unlock;
1559
1560         /* Access to snoopable pages through the GTT is incoherent. */
1561         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1562                 ret = -EFAULT;
1563                 goto unlock;
1564         }
1565
1566         /* Now bind it into the GTT if needed */
1567         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1568         if (ret)
1569                 goto unlock;
1570
1571         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1572         if (ret)
1573                 goto unpin;
1574
1575         ret = i915_gem_object_get_fence(obj);
1576         if (ret)
1577                 goto unpin;
1578
1579         /* Finally, remap it using the new GTT offset */
1580         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1581         pfn >>= PAGE_SHIFT;
1582
1583         if (!obj->fault_mappable) {
1584                 unsigned long size = min_t(unsigned long,
1585                                            vma->vm_end - vma->vm_start,
1586                                            obj->base.size);
1587                 int i;
1588
1589                 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1590                         ret = vm_insert_pfn(vma,
1591                                             (unsigned long)vma->vm_start + i * PAGE_SIZE,
1592                                             pfn + i);
1593                         if (ret)
1594                                 break;
1595                 }
1596
1597                 obj->fault_mappable = true;
1598         } else
1599                 ret = vm_insert_pfn(vma,
1600                                     (unsigned long)vmf->virtual_address,
1601                                     pfn + page_offset);
1602 unpin:
1603         i915_gem_object_ggtt_unpin(obj);
1604 unlock:
1605         mutex_unlock(&dev->struct_mutex);
1606 out:
1607         switch (ret) {
1608         case -EIO:
1609                 /*
1610                  * We eat errors when the gpu is terminally wedged to avoid
1611                  * userspace unduly crashing (gl has no provisions for mmaps to
1612                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1613                  * and so needs to be reported.
1614                  */
1615                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1616                         ret = VM_FAULT_SIGBUS;
1617                         break;
1618                 }
1619         case -EAGAIN:
1620                 /*
1621                  * EAGAIN means the gpu is hung and we'll wait for the error
1622                  * handler to reset everything when re-faulting in
1623                  * i915_mutex_lock_interruptible.
1624                  */
1625         case 0:
1626         case -ERESTARTSYS:
1627         case -EINTR:
1628         case -EBUSY:
1629                 /*
1630                  * EBUSY is ok: this just means that another thread
1631                  * already did the job.
1632                  */
1633                 ret = VM_FAULT_NOPAGE;
1634                 break;
1635         case -ENOMEM:
1636                 ret = VM_FAULT_OOM;
1637                 break;
1638         case -ENOSPC:
1639         case -EFAULT:
1640                 ret = VM_FAULT_SIGBUS;
1641                 break;
1642         default:
1643                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1644                 ret = VM_FAULT_SIGBUS;
1645                 break;
1646         }
1647
1648         intel_runtime_pm_put(dev_priv);
1649         return ret;
1650 }
1651
1652 /**
1653  * i915_gem_release_mmap - remove physical page mappings
1654  * @obj: obj in question
1655  *
1656  * Preserve the reservation of the mmapping with the DRM core code, but
1657  * relinquish ownership of the pages back to the system.
1658  *
1659  * It is vital that we remove the page mapping if we have mapped a tiled
1660  * object through the GTT and then lose the fence register due to
1661  * resource pressure. Similarly if the object has been moved out of the
1662  * aperture, than pages mapped into userspace must be revoked. Removing the
1663  * mapping will then trigger a page fault on the next user access, allowing
1664  * fixup by i915_gem_fault().
1665  */
1666 void
1667 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1668 {
1669         if (!obj->fault_mappable)
1670                 return;
1671
1672         drm_vma_node_unmap(&obj->base.vma_node,
1673                            obj->base.dev->anon_inode->i_mapping);
1674         obj->fault_mappable = false;
1675 }
1676
1677 void
1678 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1679 {
1680         struct drm_i915_gem_object *obj;
1681
1682         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1683                 i915_gem_release_mmap(obj);
1684 }
1685
1686 uint32_t
1687 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1688 {
1689         uint32_t gtt_size;
1690
1691         if (INTEL_INFO(dev)->gen >= 4 ||
1692             tiling_mode == I915_TILING_NONE)
1693                 return size;
1694
1695         /* Previous chips need a power-of-two fence region when tiling */
1696         if (INTEL_INFO(dev)->gen == 3)
1697                 gtt_size = 1024*1024;
1698         else
1699                 gtt_size = 512*1024;
1700
1701         while (gtt_size < size)
1702                 gtt_size <<= 1;
1703
1704         return gtt_size;
1705 }
1706
1707 /**
1708  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1709  * @obj: object to check
1710  *
1711  * Return the required GTT alignment for an object, taking into account
1712  * potential fence register mapping.
1713  */
1714 uint32_t
1715 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1716                            int tiling_mode, bool fenced)
1717 {
1718         /*
1719          * Minimum alignment is 4k (GTT page size), but might be greater
1720          * if a fence register is needed for the object.
1721          */
1722         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1723             tiling_mode == I915_TILING_NONE)
1724                 return 4096;
1725
1726         /*
1727          * Previous chips need to be aligned to the size of the smallest
1728          * fence register that can contain the object.
1729          */
1730         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1731 }
1732
1733 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1734 {
1735         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1736         int ret;
1737
1738         if (drm_vma_node_has_offset(&obj->base.vma_node))
1739                 return 0;
1740
1741         dev_priv->mm.shrinker_no_lock_stealing = true;
1742
1743         ret = drm_gem_create_mmap_offset(&obj->base);
1744         if (ret != -ENOSPC)
1745                 goto out;
1746
1747         /* Badly fragmented mmap space? The only way we can recover
1748          * space is by destroying unwanted objects. We can't randomly release
1749          * mmap_offsets as userspace expects them to be persistent for the
1750          * lifetime of the objects. The closest we can is to release the
1751          * offsets on purgeable objects by truncating it and marking it purged,
1752          * which prevents userspace from ever using that object again.
1753          */
1754         i915_gem_shrink(dev_priv,
1755                         obj->base.size >> PAGE_SHIFT,
1756                         I915_SHRINK_BOUND |
1757                         I915_SHRINK_UNBOUND |
1758                         I915_SHRINK_PURGEABLE);
1759         ret = drm_gem_create_mmap_offset(&obj->base);
1760         if (ret != -ENOSPC)
1761                 goto out;
1762
1763         i915_gem_shrink_all(dev_priv);
1764         ret = drm_gem_create_mmap_offset(&obj->base);
1765 out:
1766         dev_priv->mm.shrinker_no_lock_stealing = false;
1767
1768         return ret;
1769 }
1770
1771 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1772 {
1773         drm_gem_free_mmap_offset(&obj->base);
1774 }
1775
1776 int
1777 i915_gem_mmap_gtt(struct drm_file *file,
1778                   struct drm_device *dev,
1779                   uint32_t handle,
1780                   uint64_t *offset)
1781 {
1782         struct drm_i915_private *dev_priv = dev->dev_private;
1783         struct drm_i915_gem_object *obj;
1784         int ret;
1785
1786         ret = i915_mutex_lock_interruptible(dev);
1787         if (ret)
1788                 return ret;
1789
1790         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1791         if (&obj->base == NULL) {
1792                 ret = -ENOENT;
1793                 goto unlock;
1794         }
1795
1796         if (obj->base.size > dev_priv->gtt.mappable_end) {
1797                 ret = -E2BIG;
1798                 goto out;
1799         }
1800
1801         if (obj->madv != I915_MADV_WILLNEED) {
1802                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1803                 ret = -EFAULT;
1804                 goto out;
1805         }
1806
1807         ret = i915_gem_object_create_mmap_offset(obj);
1808         if (ret)
1809                 goto out;
1810
1811         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1812
1813 out:
1814         drm_gem_object_unreference(&obj->base);
1815 unlock:
1816         mutex_unlock(&dev->struct_mutex);
1817         return ret;
1818 }
1819
1820 /**
1821  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1822  * @dev: DRM device
1823  * @data: GTT mapping ioctl data
1824  * @file: GEM object info
1825  *
1826  * Simply returns the fake offset to userspace so it can mmap it.
1827  * The mmap call will end up in drm_gem_mmap(), which will set things
1828  * up so we can get faults in the handler above.
1829  *
1830  * The fault handler will take care of binding the object into the GTT
1831  * (since it may have been evicted to make room for something), allocating
1832  * a fence register, and mapping the appropriate aperture address into
1833  * userspace.
1834  */
1835 int
1836 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1837                         struct drm_file *file)
1838 {
1839         struct drm_i915_gem_mmap_gtt *args = data;
1840
1841         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1842 }
1843
1844 static inline int
1845 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1846 {
1847         return obj->madv == I915_MADV_DONTNEED;
1848 }
1849
1850 /* Immediately discard the backing storage */
1851 static void
1852 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1853 {
1854         i915_gem_object_free_mmap_offset(obj);
1855
1856         if (obj->base.filp == NULL)
1857                 return;
1858
1859         /* Our goal here is to return as much of the memory as
1860          * is possible back to the system as we are called from OOM.
1861          * To do this we must instruct the shmfs to drop all of its
1862          * backing pages, *now*.
1863          */
1864         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1865         obj->madv = __I915_MADV_PURGED;
1866 }
1867
1868 /* Try to discard unwanted pages */
1869 static void
1870 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1871 {
1872         struct address_space *mapping;
1873
1874         switch (obj->madv) {
1875         case I915_MADV_DONTNEED:
1876                 i915_gem_object_truncate(obj);
1877         case __I915_MADV_PURGED:
1878                 return;
1879         }
1880
1881         if (obj->base.filp == NULL)
1882                 return;
1883
1884         mapping = file_inode(obj->base.filp)->i_mapping,
1885         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1886 }
1887
1888 static void
1889 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1890 {
1891         struct sg_page_iter sg_iter;
1892         int ret;
1893
1894         BUG_ON(obj->madv == __I915_MADV_PURGED);
1895
1896         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1897         if (ret) {
1898                 /* In the event of a disaster, abandon all caches and
1899                  * hope for the best.
1900                  */
1901                 WARN_ON(ret != -EIO);
1902                 i915_gem_clflush_object(obj, true);
1903                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1904         }
1905
1906         if (i915_gem_object_needs_bit17_swizzle(obj))
1907                 i915_gem_object_save_bit_17_swizzle(obj);
1908
1909         if (obj->madv == I915_MADV_DONTNEED)
1910                 obj->dirty = 0;
1911
1912         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1913                 struct page *page = sg_page_iter_page(&sg_iter);
1914
1915                 if (obj->dirty)
1916                         set_page_dirty(page);
1917
1918                 if (obj->madv == I915_MADV_WILLNEED)
1919                         mark_page_accessed(page);
1920
1921                 page_cache_release(page);
1922         }
1923         obj->dirty = 0;
1924
1925         sg_free_table(obj->pages);
1926         kfree(obj->pages);
1927 }
1928
1929 int
1930 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1931 {
1932         const struct drm_i915_gem_object_ops *ops = obj->ops;
1933
1934         if (obj->pages == NULL)
1935                 return 0;
1936
1937         if (obj->pages_pin_count)
1938                 return -EBUSY;
1939
1940         BUG_ON(i915_gem_obj_bound_any(obj));
1941
1942         /* ->put_pages might need to allocate memory for the bit17 swizzle
1943          * array, hence protect them from being reaped by removing them from gtt
1944          * lists early. */
1945         list_del(&obj->global_list);
1946
1947         ops->put_pages(obj);
1948         obj->pages = NULL;
1949
1950         i915_gem_object_invalidate(obj);
1951
1952         return 0;
1953 }
1954
1955 unsigned long
1956 i915_gem_shrink(struct drm_i915_private *dev_priv,
1957                 long target, unsigned flags)
1958 {
1959         const struct {
1960                 struct list_head *list;
1961                 unsigned int bit;
1962         } phases[] = {
1963                 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
1964                 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
1965                 { NULL, 0 },
1966         }, *phase;
1967         unsigned long count = 0;
1968
1969         /*
1970          * As we may completely rewrite the (un)bound list whilst unbinding
1971          * (due to retiring requests) we have to strictly process only
1972          * one element of the list at the time, and recheck the list
1973          * on every iteration.
1974          *
1975          * In particular, we must hold a reference whilst removing the
1976          * object as we may end up waiting for and/or retiring the objects.
1977          * This might release the final reference (held by the active list)
1978          * and result in the object being freed from under us. This is
1979          * similar to the precautions the eviction code must take whilst
1980          * removing objects.
1981          *
1982          * Also note that although these lists do not hold a reference to
1983          * the object we can safely grab one here: The final object
1984          * unreferencing and the bound_list are both protected by the
1985          * dev->struct_mutex and so we won't ever be able to observe an
1986          * object on the bound_list with a reference count equals 0.
1987          */
1988         for (phase = phases; phase->list; phase++) {
1989                 struct list_head still_in_list;
1990
1991                 if ((flags & phase->bit) == 0)
1992                         continue;
1993
1994                 INIT_LIST_HEAD(&still_in_list);
1995                 while (count < target && !list_empty(phase->list)) {
1996                         struct drm_i915_gem_object *obj;
1997                         struct i915_vma *vma, *v;
1998
1999                         obj = list_first_entry(phase->list,
2000                                                typeof(*obj), global_list);
2001                         list_move_tail(&obj->global_list, &still_in_list);
2002
2003                         if (flags & I915_SHRINK_PURGEABLE &&
2004                             !i915_gem_object_is_purgeable(obj))
2005                                 continue;
2006
2007                         drm_gem_object_reference(&obj->base);
2008
2009                         /* For the unbound phase, this should be a no-op! */
2010                         list_for_each_entry_safe(vma, v,
2011                                                  &obj->vma_list, vma_link)
2012                                 if (i915_vma_unbind(vma))
2013                                         break;
2014
2015                         if (i915_gem_object_put_pages(obj) == 0)
2016                                 count += obj->base.size >> PAGE_SHIFT;
2017
2018                         drm_gem_object_unreference(&obj->base);
2019                 }
2020                 list_splice(&still_in_list, phase->list);
2021         }
2022
2023         return count;
2024 }
2025
2026 static unsigned long
2027 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2028 {
2029         i915_gem_evict_everything(dev_priv->dev);
2030         return i915_gem_shrink(dev_priv, LONG_MAX,
2031                                I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2032 }
2033
2034 static int
2035 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2036 {
2037         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2038         int page_count, i;
2039         struct address_space *mapping;
2040         struct sg_table *st;
2041         struct scatterlist *sg;
2042         struct sg_page_iter sg_iter;
2043         struct page *page;
2044         unsigned long last_pfn = 0;     /* suppress gcc warning */
2045         gfp_t gfp;
2046
2047         /* Assert that the object is not currently in any GPU domain. As it
2048          * wasn't in the GTT, there shouldn't be any way it could have been in
2049          * a GPU cache
2050          */
2051         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2052         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2053
2054         st = kmalloc(sizeof(*st), GFP_KERNEL);
2055         if (st == NULL)
2056                 return -ENOMEM;
2057
2058         page_count = obj->base.size / PAGE_SIZE;
2059         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2060                 kfree(st);
2061                 return -ENOMEM;
2062         }
2063
2064         /* Get the list of pages out of our struct file.  They'll be pinned
2065          * at this point until we release them.
2066          *
2067          * Fail silently without starting the shrinker
2068          */
2069         mapping = file_inode(obj->base.filp)->i_mapping;
2070         gfp = mapping_gfp_mask(mapping);
2071         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2072         gfp &= ~(__GFP_IO | __GFP_WAIT);
2073         sg = st->sgl;
2074         st->nents = 0;
2075         for (i = 0; i < page_count; i++) {
2076                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2077                 if (IS_ERR(page)) {
2078                         i915_gem_shrink(dev_priv,
2079                                         page_count,
2080                                         I915_SHRINK_BOUND |
2081                                         I915_SHRINK_UNBOUND |
2082                                         I915_SHRINK_PURGEABLE);
2083                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2084                 }
2085                 if (IS_ERR(page)) {
2086                         /* We've tried hard to allocate the memory by reaping
2087                          * our own buffer, now let the real VM do its job and
2088                          * go down in flames if truly OOM.
2089                          */
2090                         i915_gem_shrink_all(dev_priv);
2091                         page = shmem_read_mapping_page(mapping, i);
2092                         if (IS_ERR(page))
2093                                 goto err_pages;
2094                 }
2095 #ifdef CONFIG_SWIOTLB
2096                 if (swiotlb_nr_tbl()) {
2097                         st->nents++;
2098                         sg_set_page(sg, page, PAGE_SIZE, 0);
2099                         sg = sg_next(sg);
2100                         continue;
2101                 }
2102 #endif
2103                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2104                         if (i)
2105                                 sg = sg_next(sg);
2106                         st->nents++;
2107                         sg_set_page(sg, page, PAGE_SIZE, 0);
2108                 } else {
2109                         sg->length += PAGE_SIZE;
2110                 }
2111                 last_pfn = page_to_pfn(page);
2112
2113                 /* Check that the i965g/gm workaround works. */
2114                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2115         }
2116 #ifdef CONFIG_SWIOTLB
2117         if (!swiotlb_nr_tbl())
2118 #endif
2119                 sg_mark_end(sg);
2120         obj->pages = st;
2121
2122         if (i915_gem_object_needs_bit17_swizzle(obj))
2123                 i915_gem_object_do_bit_17_swizzle(obj);
2124
2125         return 0;
2126
2127 err_pages:
2128         sg_mark_end(sg);
2129         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2130                 page_cache_release(sg_page_iter_page(&sg_iter));
2131         sg_free_table(st);
2132         kfree(st);
2133
2134         /* shmemfs first checks if there is enough memory to allocate the page
2135          * and reports ENOSPC should there be insufficient, along with the usual
2136          * ENOMEM for a genuine allocation failure.
2137          *
2138          * We use ENOSPC in our driver to mean that we have run out of aperture
2139          * space and so want to translate the error from shmemfs back to our
2140          * usual understanding of ENOMEM.
2141          */
2142         if (PTR_ERR(page) == -ENOSPC)
2143                 return -ENOMEM;
2144         else
2145                 return PTR_ERR(page);
2146 }
2147
2148 /* Ensure that the associated pages are gathered from the backing storage
2149  * and pinned into our object. i915_gem_object_get_pages() may be called
2150  * multiple times before they are released by a single call to
2151  * i915_gem_object_put_pages() - once the pages are no longer referenced
2152  * either as a result of memory pressure (reaping pages under the shrinker)
2153  * or as the object is itself released.
2154  */
2155 int
2156 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2157 {
2158         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2159         const struct drm_i915_gem_object_ops *ops = obj->ops;
2160         int ret;
2161
2162         if (obj->pages)
2163                 return 0;
2164
2165         if (obj->madv != I915_MADV_WILLNEED) {
2166                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2167                 return -EFAULT;
2168         }
2169
2170         BUG_ON(obj->pages_pin_count);
2171
2172         ret = ops->get_pages(obj);
2173         if (ret)
2174                 return ret;
2175
2176         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2177         return 0;
2178 }
2179
2180 static void
2181 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2182                                struct intel_engine_cs *ring)
2183 {
2184         u32 seqno = intel_ring_get_seqno(ring);
2185
2186         BUG_ON(ring == NULL);
2187         if (obj->ring != ring && obj->last_write_seqno) {
2188                 /* Keep the seqno relative to the current ring */
2189                 obj->last_write_seqno = seqno;
2190         }
2191         obj->ring = ring;
2192
2193         /* Add a reference if we're newly entering the active list. */
2194         if (!obj->active) {
2195                 drm_gem_object_reference(&obj->base);
2196                 obj->active = 1;
2197         }
2198
2199         list_move_tail(&obj->ring_list, &ring->active_list);
2200
2201         obj->last_read_seqno = seqno;
2202 }
2203
2204 void i915_vma_move_to_active(struct i915_vma *vma,
2205                              struct intel_engine_cs *ring)
2206 {
2207         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2208         return i915_gem_object_move_to_active(vma->obj, ring);
2209 }
2210
2211 static void
2212 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2213 {
2214         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2215         struct i915_address_space *vm;
2216         struct i915_vma *vma;
2217
2218         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2219         BUG_ON(!obj->active);
2220
2221         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2222                 vma = i915_gem_obj_to_vma(obj, vm);
2223                 if (vma && !list_empty(&vma->mm_list))
2224                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2225         }
2226
2227         intel_fb_obj_flush(obj, true);
2228
2229         list_del_init(&obj->ring_list);
2230         obj->ring = NULL;
2231
2232         obj->last_read_seqno = 0;
2233         obj->last_write_seqno = 0;
2234         obj->base.write_domain = 0;
2235
2236         obj->last_fenced_seqno = 0;
2237
2238         obj->active = 0;
2239         drm_gem_object_unreference(&obj->base);
2240
2241         WARN_ON(i915_verify_lists(dev));
2242 }
2243
2244 static void
2245 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2246 {
2247         struct intel_engine_cs *ring = obj->ring;
2248
2249         if (ring == NULL)
2250                 return;
2251
2252         if (i915_seqno_passed(ring->get_seqno(ring, true),
2253                               obj->last_read_seqno))
2254                 i915_gem_object_move_to_inactive(obj);
2255 }
2256
2257 static int
2258 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2259 {
2260         struct drm_i915_private *dev_priv = dev->dev_private;
2261         struct intel_engine_cs *ring;
2262         int ret, i, j;
2263
2264         /* Carefully retire all requests without writing to the rings */
2265         for_each_ring(ring, dev_priv, i) {
2266                 ret = intel_ring_idle(ring);
2267                 if (ret)
2268                         return ret;
2269         }
2270         i915_gem_retire_requests(dev);
2271
2272         /* Finally reset hw state */
2273         for_each_ring(ring, dev_priv, i) {
2274                 intel_ring_init_seqno(ring, seqno);
2275
2276                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2277                         ring->semaphore.sync_seqno[j] = 0;
2278         }
2279
2280         return 0;
2281 }
2282
2283 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2284 {
2285         struct drm_i915_private *dev_priv = dev->dev_private;
2286         int ret;
2287
2288         if (seqno == 0)
2289                 return -EINVAL;
2290
2291         /* HWS page needs to be set less than what we
2292          * will inject to ring
2293          */
2294         ret = i915_gem_init_seqno(dev, seqno - 1);
2295         if (ret)
2296                 return ret;
2297
2298         /* Carefully set the last_seqno value so that wrap
2299          * detection still works
2300          */
2301         dev_priv->next_seqno = seqno;
2302         dev_priv->last_seqno = seqno - 1;
2303         if (dev_priv->last_seqno == 0)
2304                 dev_priv->last_seqno--;
2305
2306         return 0;
2307 }
2308
2309 int
2310 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2311 {
2312         struct drm_i915_private *dev_priv = dev->dev_private;
2313
2314         /* reserve 0 for non-seqno */
2315         if (dev_priv->next_seqno == 0) {
2316                 int ret = i915_gem_init_seqno(dev, 0);
2317                 if (ret)
2318                         return ret;
2319
2320                 dev_priv->next_seqno = 1;
2321         }
2322
2323         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2324         return 0;
2325 }
2326
2327 int __i915_add_request(struct intel_engine_cs *ring,
2328                        struct drm_file *file,
2329                        struct drm_i915_gem_object *obj,
2330                        u32 *out_seqno)
2331 {
2332         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2333         struct drm_i915_gem_request *request;
2334         struct intel_ringbuffer *ringbuf;
2335         u32 request_ring_position, request_start;
2336         int ret;
2337
2338         request = ring->preallocated_lazy_request;
2339         if (WARN_ON(request == NULL))
2340                 return -ENOMEM;
2341
2342         if (i915.enable_execlists) {
2343                 struct intel_context *ctx = request->ctx;
2344                 ringbuf = ctx->engine[ring->id].ringbuf;
2345         } else
2346                 ringbuf = ring->buffer;
2347
2348         request_start = intel_ring_get_tail(ringbuf);
2349         /*
2350          * Emit any outstanding flushes - execbuf can fail to emit the flush
2351          * after having emitted the batchbuffer command. Hence we need to fix
2352          * things up similar to emitting the lazy request. The difference here
2353          * is that the flush _must_ happen before the next request, no matter
2354          * what.
2355          */
2356         if (i915.enable_execlists) {
2357                 ret = logical_ring_flush_all_caches(ringbuf);
2358                 if (ret)
2359                         return ret;
2360         } else {
2361                 ret = intel_ring_flush_all_caches(ring);
2362                 if (ret)
2363                         return ret;
2364         }
2365
2366         /* Record the position of the start of the request so that
2367          * should we detect the updated seqno part-way through the
2368          * GPU processing the request, we never over-estimate the
2369          * position of the head.
2370          */
2371         request_ring_position = intel_ring_get_tail(ringbuf);
2372
2373         if (i915.enable_execlists) {
2374                 ret = ring->emit_request(ringbuf);
2375                 if (ret)
2376                         return ret;
2377         } else {
2378                 ret = ring->add_request(ring);
2379                 if (ret)
2380                         return ret;
2381         }
2382
2383         request->seqno = intel_ring_get_seqno(ring);
2384         request->ring = ring;
2385         request->head = request_start;
2386         request->tail = request_ring_position;
2387
2388         /* Whilst this request exists, batch_obj will be on the
2389          * active_list, and so will hold the active reference. Only when this
2390          * request is retired will the the batch_obj be moved onto the
2391          * inactive_list and lose its active reference. Hence we do not need
2392          * to explicitly hold another reference here.
2393          */
2394         request->batch_obj = obj;
2395
2396         if (!i915.enable_execlists) {
2397                 /* Hold a reference to the current context so that we can inspect
2398                  * it later in case a hangcheck error event fires.
2399                  */
2400                 request->ctx = ring->last_context;
2401                 if (request->ctx)
2402                         i915_gem_context_reference(request->ctx);
2403         }
2404
2405         request->emitted_jiffies = jiffies;
2406         list_add_tail(&request->list, &ring->request_list);
2407         request->file_priv = NULL;
2408
2409         if (file) {
2410                 struct drm_i915_file_private *file_priv = file->driver_priv;
2411
2412                 spin_lock(&file_priv->mm.lock);
2413                 request->file_priv = file_priv;
2414                 list_add_tail(&request->client_list,
2415                               &file_priv->mm.request_list);
2416                 spin_unlock(&file_priv->mm.lock);
2417         }
2418
2419         trace_i915_gem_request_add(ring, request->seqno);
2420         ring->outstanding_lazy_seqno = 0;
2421         ring->preallocated_lazy_request = NULL;
2422
2423         if (!dev_priv->ums.mm_suspended) {
2424                 i915_queue_hangcheck(ring->dev);
2425
2426                 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2427                 queue_delayed_work(dev_priv->wq,
2428                                    &dev_priv->mm.retire_work,
2429                                    round_jiffies_up_relative(HZ));
2430                 intel_mark_busy(dev_priv->dev);
2431         }
2432
2433         if (out_seqno)
2434                 *out_seqno = request->seqno;
2435         return 0;
2436 }
2437
2438 static inline void
2439 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2440 {
2441         struct drm_i915_file_private *file_priv = request->file_priv;
2442
2443         if (!file_priv)
2444                 return;
2445
2446         spin_lock(&file_priv->mm.lock);
2447         list_del(&request->client_list);
2448         request->file_priv = NULL;
2449         spin_unlock(&file_priv->mm.lock);
2450 }
2451
2452 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2453                                    const struct intel_context *ctx)
2454 {
2455         unsigned long elapsed;
2456
2457         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2458
2459         if (ctx->hang_stats.banned)
2460                 return true;
2461
2462         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2463                 if (!i915_gem_context_is_default(ctx)) {
2464                         DRM_DEBUG("context hanging too fast, banning!\n");
2465                         return true;
2466                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2467                         if (i915_stop_ring_allow_warn(dev_priv))
2468                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2469                         return true;
2470                 }
2471         }
2472
2473         return false;
2474 }
2475
2476 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2477                                   struct intel_context *ctx,
2478                                   const bool guilty)
2479 {
2480         struct i915_ctx_hang_stats *hs;
2481
2482         if (WARN_ON(!ctx))
2483                 return;
2484
2485         hs = &ctx->hang_stats;
2486
2487         if (guilty) {
2488                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2489                 hs->batch_active++;
2490                 hs->guilty_ts = get_seconds();
2491         } else {
2492                 hs->batch_pending++;
2493         }
2494 }
2495
2496 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2497 {
2498         list_del(&request->list);
2499         i915_gem_request_remove_from_client(request);
2500
2501         if (request->ctx)
2502                 i915_gem_context_unreference(request->ctx);
2503
2504         kfree(request);
2505 }
2506
2507 struct drm_i915_gem_request *
2508 i915_gem_find_active_request(struct intel_engine_cs *ring)
2509 {
2510         struct drm_i915_gem_request *request;
2511         u32 completed_seqno;
2512
2513         completed_seqno = ring->get_seqno(ring, false);
2514
2515         list_for_each_entry(request, &ring->request_list, list) {
2516                 if (i915_seqno_passed(completed_seqno, request->seqno))
2517                         continue;
2518
2519                 return request;
2520         }
2521
2522         return NULL;
2523 }
2524
2525 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2526                                        struct intel_engine_cs *ring)
2527 {
2528         struct drm_i915_gem_request *request;
2529         bool ring_hung;
2530
2531         request = i915_gem_find_active_request(ring);
2532
2533         if (request == NULL)
2534                 return;
2535
2536         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2537
2538         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2539
2540         list_for_each_entry_continue(request, &ring->request_list, list)
2541                 i915_set_reset_status(dev_priv, request->ctx, false);
2542 }
2543
2544 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2545                                         struct intel_engine_cs *ring)
2546 {
2547         while (!list_empty(&ring->active_list)) {
2548                 struct drm_i915_gem_object *obj;
2549
2550                 obj = list_first_entry(&ring->active_list,
2551                                        struct drm_i915_gem_object,
2552                                        ring_list);
2553
2554                 i915_gem_object_move_to_inactive(obj);
2555         }
2556
2557         /*
2558          * We must free the requests after all the corresponding objects have
2559          * been moved off active lists. Which is the same order as the normal
2560          * retire_requests function does. This is important if object hold
2561          * implicit references on things like e.g. ppgtt address spaces through
2562          * the request.
2563          */
2564         while (!list_empty(&ring->request_list)) {
2565                 struct drm_i915_gem_request *request;
2566
2567                 request = list_first_entry(&ring->request_list,
2568                                            struct drm_i915_gem_request,
2569                                            list);
2570
2571                 i915_gem_free_request(request);
2572         }
2573
2574         while (!list_empty(&ring->execlist_queue)) {
2575                 struct intel_ctx_submit_request *submit_req;
2576
2577                 submit_req = list_first_entry(&ring->execlist_queue,
2578                                 struct intel_ctx_submit_request,
2579                                 execlist_link);
2580                 list_del(&submit_req->execlist_link);
2581                 intel_runtime_pm_put(dev_priv);
2582                 i915_gem_context_unreference(submit_req->ctx);
2583                 kfree(submit_req);
2584         }
2585
2586         /* These may not have been flush before the reset, do so now */
2587         kfree(ring->preallocated_lazy_request);
2588         ring->preallocated_lazy_request = NULL;
2589         ring->outstanding_lazy_seqno = 0;
2590 }
2591
2592 void i915_gem_restore_fences(struct drm_device *dev)
2593 {
2594         struct drm_i915_private *dev_priv = dev->dev_private;
2595         int i;
2596
2597         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2598                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2599
2600                 /*
2601                  * Commit delayed tiling changes if we have an object still
2602                  * attached to the fence, otherwise just clear the fence.
2603                  */
2604                 if (reg->obj) {
2605                         i915_gem_object_update_fence(reg->obj, reg,
2606                                                      reg->obj->tiling_mode);
2607                 } else {
2608                         i915_gem_write_fence(dev, i, NULL);
2609                 }
2610         }
2611 }
2612
2613 void i915_gem_reset(struct drm_device *dev)
2614 {
2615         struct drm_i915_private *dev_priv = dev->dev_private;
2616         struct intel_engine_cs *ring;
2617         int i;
2618
2619         /*
2620          * Before we free the objects from the requests, we need to inspect
2621          * them for finding the guilty party. As the requests only borrow
2622          * their reference to the objects, the inspection must be done first.
2623          */
2624         for_each_ring(ring, dev_priv, i)
2625                 i915_gem_reset_ring_status(dev_priv, ring);
2626
2627         for_each_ring(ring, dev_priv, i)
2628                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2629
2630         i915_gem_context_reset(dev);
2631
2632         i915_gem_restore_fences(dev);
2633 }
2634
2635 /**
2636  * This function clears the request list as sequence numbers are passed.
2637  */
2638 void
2639 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2640 {
2641         uint32_t seqno;
2642
2643         if (list_empty(&ring->request_list))
2644                 return;
2645
2646         WARN_ON(i915_verify_lists(ring->dev));
2647
2648         seqno = ring->get_seqno(ring, true);
2649
2650         /* Move any buffers on the active list that are no longer referenced
2651          * by the ringbuffer to the flushing/inactive lists as appropriate,
2652          * before we free the context associated with the requests.
2653          */
2654         while (!list_empty(&ring->active_list)) {
2655                 struct drm_i915_gem_object *obj;
2656
2657                 obj = list_first_entry(&ring->active_list,
2658                                       struct drm_i915_gem_object,
2659                                       ring_list);
2660
2661                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2662                         break;
2663
2664                 i915_gem_object_move_to_inactive(obj);
2665         }
2666
2667
2668         while (!list_empty(&ring->request_list)) {
2669                 struct drm_i915_gem_request *request;
2670                 struct intel_ringbuffer *ringbuf;
2671
2672                 request = list_first_entry(&ring->request_list,
2673                                            struct drm_i915_gem_request,
2674                                            list);
2675
2676                 if (!i915_seqno_passed(seqno, request->seqno))
2677                         break;
2678
2679                 trace_i915_gem_request_retire(ring, request->seqno);
2680
2681                 /* This is one of the few common intersection points
2682                  * between legacy ringbuffer submission and execlists:
2683                  * we need to tell them apart in order to find the correct
2684                  * ringbuffer to which the request belongs to.
2685                  */
2686                 if (i915.enable_execlists) {
2687                         struct intel_context *ctx = request->ctx;
2688                         ringbuf = ctx->engine[ring->id].ringbuf;
2689                 } else
2690                         ringbuf = ring->buffer;
2691
2692                 /* We know the GPU must have read the request to have
2693                  * sent us the seqno + interrupt, so use the position
2694                  * of tail of the request to update the last known position
2695                  * of the GPU head.
2696                  */
2697                 ringbuf->last_retired_head = request->tail;
2698
2699                 i915_gem_free_request(request);
2700         }
2701
2702         if (unlikely(ring->trace_irq_seqno &&
2703                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2704                 ring->irq_put(ring);
2705                 ring->trace_irq_seqno = 0;
2706         }
2707
2708         WARN_ON(i915_verify_lists(ring->dev));
2709 }
2710
2711 bool
2712 i915_gem_retire_requests(struct drm_device *dev)
2713 {
2714         struct drm_i915_private *dev_priv = dev->dev_private;
2715         struct intel_engine_cs *ring;
2716         bool idle = true;
2717         int i;
2718
2719         for_each_ring(ring, dev_priv, i) {
2720                 i915_gem_retire_requests_ring(ring);
2721                 idle &= list_empty(&ring->request_list);
2722         }
2723
2724         if (idle)
2725                 mod_delayed_work(dev_priv->wq,
2726                                    &dev_priv->mm.idle_work,
2727                                    msecs_to_jiffies(100));
2728
2729         return idle;
2730 }
2731
2732 static void
2733 i915_gem_retire_work_handler(struct work_struct *work)
2734 {
2735         struct drm_i915_private *dev_priv =
2736                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2737         struct drm_device *dev = dev_priv->dev;
2738         bool idle;
2739
2740         /* Come back later if the device is busy... */
2741         idle = false;
2742         if (mutex_trylock(&dev->struct_mutex)) {
2743                 idle = i915_gem_retire_requests(dev);
2744                 mutex_unlock(&dev->struct_mutex);
2745         }
2746         if (!idle)
2747                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2748                                    round_jiffies_up_relative(HZ));
2749 }
2750
2751 static void
2752 i915_gem_idle_work_handler(struct work_struct *work)
2753 {
2754         struct drm_i915_private *dev_priv =
2755                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2756
2757         intel_mark_idle(dev_priv->dev);
2758 }
2759
2760 /**
2761  * Ensures that an object will eventually get non-busy by flushing any required
2762  * write domains, emitting any outstanding lazy request and retiring and
2763  * completed requests.
2764  */
2765 static int
2766 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2767 {
2768         int ret;
2769
2770         if (obj->active) {
2771                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2772                 if (ret)
2773                         return ret;
2774
2775                 i915_gem_retire_requests_ring(obj->ring);
2776         }
2777
2778         return 0;
2779 }
2780
2781 /**
2782  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2783  * @DRM_IOCTL_ARGS: standard ioctl arguments
2784  *
2785  * Returns 0 if successful, else an error is returned with the remaining time in
2786  * the timeout parameter.
2787  *  -ETIME: object is still busy after timeout
2788  *  -ERESTARTSYS: signal interrupted the wait
2789  *  -ENONENT: object doesn't exist
2790  * Also possible, but rare:
2791  *  -EAGAIN: GPU wedged
2792  *  -ENOMEM: damn
2793  *  -ENODEV: Internal IRQ fail
2794  *  -E?: The add request failed
2795  *
2796  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2797  * non-zero timeout parameter the wait ioctl will wait for the given number of
2798  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2799  * without holding struct_mutex the object may become re-busied before this
2800  * function completes. A similar but shorter * race condition exists in the busy
2801  * ioctl
2802  */
2803 int
2804 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2805 {
2806         struct drm_i915_private *dev_priv = dev->dev_private;
2807         struct drm_i915_gem_wait *args = data;
2808         struct drm_i915_gem_object *obj;
2809         struct intel_engine_cs *ring = NULL;
2810         unsigned reset_counter;
2811         u32 seqno = 0;
2812         int ret = 0;
2813
2814         if (args->flags != 0)
2815                 return -EINVAL;
2816
2817         ret = i915_mutex_lock_interruptible(dev);
2818         if (ret)
2819                 return ret;
2820
2821         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2822         if (&obj->base == NULL) {
2823                 mutex_unlock(&dev->struct_mutex);
2824                 return -ENOENT;
2825         }
2826
2827         /* Need to make sure the object gets inactive eventually. */
2828         ret = i915_gem_object_flush_active(obj);
2829         if (ret)
2830                 goto out;
2831
2832         if (obj->active) {
2833                 seqno = obj->last_read_seqno;
2834                 ring = obj->ring;
2835         }
2836
2837         if (seqno == 0)
2838                  goto out;
2839
2840         /* Do this after OLR check to make sure we make forward progress polling
2841          * on this IOCTL with a timeout <=0 (like busy ioctl)
2842          */
2843         if (args->timeout_ns <= 0) {
2844                 ret = -ETIME;
2845                 goto out;
2846         }
2847
2848         drm_gem_object_unreference(&obj->base);
2849         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2850         mutex_unlock(&dev->struct_mutex);
2851
2852         return __i915_wait_seqno(ring, seqno, reset_counter, true,
2853                                  &args->timeout_ns, file->driver_priv);
2854
2855 out:
2856         drm_gem_object_unreference(&obj->base);
2857         mutex_unlock(&dev->struct_mutex);
2858         return ret;
2859 }
2860
2861 /**
2862  * i915_gem_object_sync - sync an object to a ring.
2863  *
2864  * @obj: object which may be in use on another ring.
2865  * @to: ring we wish to use the object on. May be NULL.
2866  *
2867  * This code is meant to abstract object synchronization with the GPU.
2868  * Calling with NULL implies synchronizing the object with the CPU
2869  * rather than a particular GPU ring.
2870  *
2871  * Returns 0 if successful, else propagates up the lower layer error.
2872  */
2873 int
2874 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2875                      struct intel_engine_cs *to)
2876 {
2877         struct intel_engine_cs *from = obj->ring;
2878         u32 seqno;
2879         int ret, idx;
2880
2881         if (from == NULL || to == from)
2882                 return 0;
2883
2884         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2885                 return i915_gem_object_wait_rendering(obj, false);
2886
2887         idx = intel_ring_sync_index(from, to);
2888
2889         seqno = obj->last_read_seqno;
2890         /* Optimization: Avoid semaphore sync when we are sure we already
2891          * waited for an object with higher seqno */
2892         if (seqno <= from->semaphore.sync_seqno[idx])
2893                 return 0;
2894
2895         ret = i915_gem_check_olr(obj->ring, seqno);
2896         if (ret)
2897                 return ret;
2898
2899         trace_i915_gem_ring_sync_to(from, to, seqno);
2900         ret = to->semaphore.sync_to(to, from, seqno);
2901         if (!ret)
2902                 /* We use last_read_seqno because sync_to()
2903                  * might have just caused seqno wrap under
2904                  * the radar.
2905                  */
2906                 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2907
2908         return ret;
2909 }
2910
2911 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2912 {
2913         u32 old_write_domain, old_read_domains;
2914
2915         /* Force a pagefault for domain tracking on next user access */
2916         i915_gem_release_mmap(obj);
2917
2918         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2919                 return;
2920
2921         /* Wait for any direct GTT access to complete */
2922         mb();
2923
2924         old_read_domains = obj->base.read_domains;
2925         old_write_domain = obj->base.write_domain;
2926
2927         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2928         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2929
2930         trace_i915_gem_object_change_domain(obj,
2931                                             old_read_domains,
2932                                             old_write_domain);
2933 }
2934
2935 int i915_vma_unbind(struct i915_vma *vma)
2936 {
2937         struct drm_i915_gem_object *obj = vma->obj;
2938         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2939         int ret;
2940
2941         if (list_empty(&vma->vma_link))
2942                 return 0;
2943
2944         if (!drm_mm_node_allocated(&vma->node)) {
2945                 i915_gem_vma_destroy(vma);
2946                 return 0;
2947         }
2948
2949         if (vma->pin_count)
2950                 return -EBUSY;
2951
2952         BUG_ON(obj->pages == NULL);
2953
2954         ret = i915_gem_object_finish_gpu(obj);
2955         if (ret)
2956                 return ret;
2957         /* Continue on if we fail due to EIO, the GPU is hung so we
2958          * should be safe and we need to cleanup or else we might
2959          * cause memory corruption through use-after-free.
2960          */
2961
2962         /* Throw away the active reference before moving to the unbound list */
2963         i915_gem_object_retire(obj);
2964
2965         if (i915_is_ggtt(vma->vm)) {
2966                 i915_gem_object_finish_gtt(obj);
2967
2968                 /* release the fence reg _after_ flushing */
2969                 ret = i915_gem_object_put_fence(obj);
2970                 if (ret)
2971                         return ret;
2972         }
2973
2974         trace_i915_vma_unbind(vma);
2975
2976         vma->unbind_vma(vma);
2977
2978         list_del_init(&vma->mm_list);
2979         if (i915_is_ggtt(vma->vm))
2980                 obj->map_and_fenceable = false;
2981
2982         drm_mm_remove_node(&vma->node);
2983         i915_gem_vma_destroy(vma);
2984
2985         /* Since the unbound list is global, only move to that list if
2986          * no more VMAs exist. */
2987         if (list_empty(&obj->vma_list)) {
2988                 i915_gem_gtt_finish_object(obj);
2989                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2990         }
2991
2992         /* And finally now the object is completely decoupled from this vma,
2993          * we can drop its hold on the backing storage and allow it to be
2994          * reaped by the shrinker.
2995          */
2996         i915_gem_object_unpin_pages(obj);
2997
2998         return 0;
2999 }
3000
3001 int i915_gpu_idle(struct drm_device *dev)
3002 {
3003         struct drm_i915_private *dev_priv = dev->dev_private;
3004         struct intel_engine_cs *ring;
3005         int ret, i;
3006
3007         /* Flush everything onto the inactive list. */
3008         for_each_ring(ring, dev_priv, i) {
3009                 if (!i915.enable_execlists) {
3010                         ret = i915_switch_context(ring, ring->default_context);
3011                         if (ret)
3012                                 return ret;
3013                 }
3014
3015                 ret = intel_ring_idle(ring);
3016                 if (ret)
3017                         return ret;
3018         }
3019
3020         return 0;
3021 }
3022
3023 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3024                                  struct drm_i915_gem_object *obj)
3025 {
3026         struct drm_i915_private *dev_priv = dev->dev_private;
3027         int fence_reg;
3028         int fence_pitch_shift;
3029
3030         if (INTEL_INFO(dev)->gen >= 6) {
3031                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3032                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3033         } else {
3034                 fence_reg = FENCE_REG_965_0;
3035                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3036         }
3037
3038         fence_reg += reg * 8;
3039
3040         /* To w/a incoherency with non-atomic 64-bit register updates,
3041          * we split the 64-bit update into two 32-bit writes. In order
3042          * for a partial fence not to be evaluated between writes, we
3043          * precede the update with write to turn off the fence register,
3044          * and only enable the fence as the last step.
3045          *
3046          * For extra levels of paranoia, we make sure each step lands
3047          * before applying the next step.
3048          */
3049         I915_WRITE(fence_reg, 0);
3050         POSTING_READ(fence_reg);
3051
3052         if (obj) {
3053                 u32 size = i915_gem_obj_ggtt_size(obj);
3054                 uint64_t val;
3055
3056                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3057                                  0xfffff000) << 32;
3058                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3059                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3060                 if (obj->tiling_mode == I915_TILING_Y)
3061                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3062                 val |= I965_FENCE_REG_VALID;
3063
3064                 I915_WRITE(fence_reg + 4, val >> 32);
3065                 POSTING_READ(fence_reg + 4);
3066
3067                 I915_WRITE(fence_reg + 0, val);
3068                 POSTING_READ(fence_reg);
3069         } else {
3070                 I915_WRITE(fence_reg + 4, 0);
3071                 POSTING_READ(fence_reg + 4);
3072         }
3073 }
3074
3075 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3076                                  struct drm_i915_gem_object *obj)
3077 {
3078         struct drm_i915_private *dev_priv = dev->dev_private;
3079         u32 val;
3080
3081         if (obj) {
3082                 u32 size = i915_gem_obj_ggtt_size(obj);
3083                 int pitch_val;
3084                 int tile_width;
3085
3086                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3087                      (size & -size) != size ||
3088                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3089                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3090                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3091
3092                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3093                         tile_width = 128;
3094                 else
3095                         tile_width = 512;
3096
3097                 /* Note: pitch better be a power of two tile widths */
3098                 pitch_val = obj->stride / tile_width;
3099                 pitch_val = ffs(pitch_val) - 1;
3100
3101                 val = i915_gem_obj_ggtt_offset(obj);
3102                 if (obj->tiling_mode == I915_TILING_Y)
3103                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3104                 val |= I915_FENCE_SIZE_BITS(size);
3105                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3106                 val |= I830_FENCE_REG_VALID;
3107         } else
3108                 val = 0;
3109
3110         if (reg < 8)
3111                 reg = FENCE_REG_830_0 + reg * 4;
3112         else
3113                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3114
3115         I915_WRITE(reg, val);
3116         POSTING_READ(reg);
3117 }
3118
3119 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3120                                 struct drm_i915_gem_object *obj)
3121 {
3122         struct drm_i915_private *dev_priv = dev->dev_private;
3123         uint32_t val;
3124
3125         if (obj) {
3126                 u32 size = i915_gem_obj_ggtt_size(obj);
3127                 uint32_t pitch_val;
3128
3129                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3130                      (size & -size) != size ||
3131                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3132                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3133                      i915_gem_obj_ggtt_offset(obj), size);
3134
3135                 pitch_val = obj->stride / 128;
3136                 pitch_val = ffs(pitch_val) - 1;
3137
3138                 val = i915_gem_obj_ggtt_offset(obj);
3139                 if (obj->tiling_mode == I915_TILING_Y)
3140                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3141                 val |= I830_FENCE_SIZE_BITS(size);
3142                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3143                 val |= I830_FENCE_REG_VALID;
3144         } else
3145                 val = 0;
3146
3147         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3148         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3149 }
3150
3151 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3152 {
3153         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3154 }
3155
3156 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3157                                  struct drm_i915_gem_object *obj)
3158 {
3159         struct drm_i915_private *dev_priv = dev->dev_private;
3160
3161         /* Ensure that all CPU reads are completed before installing a fence
3162          * and all writes before removing the fence.
3163          */
3164         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3165                 mb();
3166
3167         WARN(obj && (!obj->stride || !obj->tiling_mode),
3168              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3169              obj->stride, obj->tiling_mode);
3170
3171         switch (INTEL_INFO(dev)->gen) {
3172         case 9:
3173         case 8:
3174         case 7:
3175         case 6:
3176         case 5:
3177         case 4: i965_write_fence_reg(dev, reg, obj); break;
3178         case 3: i915_write_fence_reg(dev, reg, obj); break;
3179         case 2: i830_write_fence_reg(dev, reg, obj); break;
3180         default: BUG();
3181         }
3182
3183         /* And similarly be paranoid that no direct access to this region
3184          * is reordered to before the fence is installed.
3185          */
3186         if (i915_gem_object_needs_mb(obj))
3187                 mb();
3188 }
3189
3190 static inline int fence_number(struct drm_i915_private *dev_priv,
3191                                struct drm_i915_fence_reg *fence)
3192 {
3193         return fence - dev_priv->fence_regs;
3194 }
3195
3196 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3197                                          struct drm_i915_fence_reg *fence,
3198                                          bool enable)
3199 {
3200         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3201         int reg = fence_number(dev_priv, fence);
3202
3203         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3204
3205         if (enable) {
3206                 obj->fence_reg = reg;
3207                 fence->obj = obj;
3208                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3209         } else {
3210                 obj->fence_reg = I915_FENCE_REG_NONE;
3211                 fence->obj = NULL;
3212                 list_del_init(&fence->lru_list);
3213         }
3214         obj->fence_dirty = false;
3215 }
3216
3217 static int
3218 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3219 {
3220         if (obj->last_fenced_seqno) {
3221                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3222                 if (ret)
3223                         return ret;
3224
3225                 obj->last_fenced_seqno = 0;
3226         }
3227
3228         return 0;
3229 }
3230
3231 int
3232 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3233 {
3234         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3235         struct drm_i915_fence_reg *fence;
3236         int ret;
3237
3238         ret = i915_gem_object_wait_fence(obj);
3239         if (ret)
3240                 return ret;
3241
3242         if (obj->fence_reg == I915_FENCE_REG_NONE)
3243                 return 0;
3244
3245         fence = &dev_priv->fence_regs[obj->fence_reg];
3246
3247         if (WARN_ON(fence->pin_count))
3248                 return -EBUSY;
3249
3250         i915_gem_object_fence_lost(obj);
3251         i915_gem_object_update_fence(obj, fence, false);
3252
3253         return 0;
3254 }
3255
3256 static struct drm_i915_fence_reg *
3257 i915_find_fence_reg(struct drm_device *dev)
3258 {
3259         struct drm_i915_private *dev_priv = dev->dev_private;
3260         struct drm_i915_fence_reg *reg, *avail;
3261         int i;
3262
3263         /* First try to find a free reg */
3264         avail = NULL;
3265         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3266                 reg = &dev_priv->fence_regs[i];
3267                 if (!reg->obj)
3268                         return reg;
3269
3270                 if (!reg->pin_count)
3271                         avail = reg;
3272         }
3273
3274         if (avail == NULL)
3275                 goto deadlock;
3276
3277         /* None available, try to steal one or wait for a user to finish */
3278         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3279                 if (reg->pin_count)
3280                         continue;
3281
3282                 return reg;
3283         }
3284
3285 deadlock:
3286         /* Wait for completion of pending flips which consume fences */
3287         if (intel_has_pending_fb_unpin(dev))
3288                 return ERR_PTR(-EAGAIN);
3289
3290         return ERR_PTR(-EDEADLK);
3291 }
3292
3293 /**
3294  * i915_gem_object_get_fence - set up fencing for an object
3295  * @obj: object to map through a fence reg
3296  *
3297  * When mapping objects through the GTT, userspace wants to be able to write
3298  * to them without having to worry about swizzling if the object is tiled.
3299  * This function walks the fence regs looking for a free one for @obj,
3300  * stealing one if it can't find any.
3301  *
3302  * It then sets up the reg based on the object's properties: address, pitch
3303  * and tiling format.
3304  *
3305  * For an untiled surface, this removes any existing fence.
3306  */
3307 int
3308 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3309 {
3310         struct drm_device *dev = obj->base.dev;
3311         struct drm_i915_private *dev_priv = dev->dev_private;
3312         bool enable = obj->tiling_mode != I915_TILING_NONE;
3313         struct drm_i915_fence_reg *reg;
3314         int ret;
3315
3316         /* Have we updated the tiling parameters upon the object and so
3317          * will need to serialise the write to the associated fence register?
3318          */
3319         if (obj->fence_dirty) {
3320                 ret = i915_gem_object_wait_fence(obj);
3321                 if (ret)
3322                         return ret;
3323         }
3324
3325         /* Just update our place in the LRU if our fence is getting reused. */
3326         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3327                 reg = &dev_priv->fence_regs[obj->fence_reg];
3328                 if (!obj->fence_dirty) {
3329                         list_move_tail(&reg->lru_list,
3330                                        &dev_priv->mm.fence_list);
3331                         return 0;
3332                 }
3333         } else if (enable) {
3334                 if (WARN_ON(!obj->map_and_fenceable))
3335                         return -EINVAL;
3336
3337                 reg = i915_find_fence_reg(dev);
3338                 if (IS_ERR(reg))
3339                         return PTR_ERR(reg);
3340
3341                 if (reg->obj) {
3342                         struct drm_i915_gem_object *old = reg->obj;
3343
3344                         ret = i915_gem_object_wait_fence(old);
3345                         if (ret)
3346                                 return ret;
3347
3348                         i915_gem_object_fence_lost(old);
3349                 }
3350         } else
3351                 return 0;
3352
3353         i915_gem_object_update_fence(obj, reg, enable);
3354
3355         return 0;
3356 }
3357
3358 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3359                                      unsigned long cache_level)
3360 {
3361         struct drm_mm_node *gtt_space = &vma->node;
3362         struct drm_mm_node *other;
3363
3364         /*
3365          * On some machines we have to be careful when putting differing types
3366          * of snoopable memory together to avoid the prefetcher crossing memory
3367          * domains and dying. During vm initialisation, we decide whether or not
3368          * these constraints apply and set the drm_mm.color_adjust
3369          * appropriately.
3370          */
3371         if (vma->vm->mm.color_adjust == NULL)
3372                 return true;
3373
3374         if (!drm_mm_node_allocated(gtt_space))
3375                 return true;
3376
3377         if (list_empty(&gtt_space->node_list))
3378                 return true;
3379
3380         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3381         if (other->allocated && !other->hole_follows && other->color != cache_level)
3382                 return false;
3383
3384         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3385         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3386                 return false;
3387
3388         return true;
3389 }
3390
3391 /**
3392  * Finds free space in the GTT aperture and binds the object there.
3393  */
3394 static struct i915_vma *
3395 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3396                            struct i915_address_space *vm,
3397                            unsigned alignment,
3398                            uint64_t flags)
3399 {
3400         struct drm_device *dev = obj->base.dev;
3401         struct drm_i915_private *dev_priv = dev->dev_private;
3402         u32 size, fence_size, fence_alignment, unfenced_alignment;
3403         unsigned long start =
3404                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3405         unsigned long end =
3406                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3407         struct i915_vma *vma;
3408         int ret;
3409
3410         fence_size = i915_gem_get_gtt_size(dev,
3411                                            obj->base.size,
3412                                            obj->tiling_mode);
3413         fence_alignment = i915_gem_get_gtt_alignment(dev,
3414                                                      obj->base.size,
3415                                                      obj->tiling_mode, true);
3416         unfenced_alignment =
3417                 i915_gem_get_gtt_alignment(dev,
3418                                            obj->base.size,
3419                                            obj->tiling_mode, false);
3420
3421         if (alignment == 0)
3422                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3423                                                 unfenced_alignment;
3424         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3425                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3426                 return ERR_PTR(-EINVAL);
3427         }
3428
3429         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3430
3431         /* If the object is bigger than the entire aperture, reject it early
3432          * before evicting everything in a vain attempt to find space.
3433          */
3434         if (obj->base.size > end) {
3435                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3436                           obj->base.size,
3437                           flags & PIN_MAPPABLE ? "mappable" : "total",
3438                           end);
3439                 return ERR_PTR(-E2BIG);
3440         }
3441
3442         ret = i915_gem_object_get_pages(obj);
3443         if (ret)
3444                 return ERR_PTR(ret);
3445
3446         i915_gem_object_pin_pages(obj);
3447
3448         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3449         if (IS_ERR(vma))
3450                 goto err_unpin;
3451
3452 search_free:
3453         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3454                                                   size, alignment,
3455                                                   obj->cache_level,
3456                                                   start, end,
3457                                                   DRM_MM_SEARCH_DEFAULT,
3458                                                   DRM_MM_CREATE_DEFAULT);
3459         if (ret) {
3460                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3461                                                obj->cache_level,
3462                                                start, end,
3463                                                flags);
3464                 if (ret == 0)
3465                         goto search_free;
3466
3467                 goto err_free_vma;
3468         }
3469         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3470                 ret = -EINVAL;
3471                 goto err_remove_node;
3472         }
3473
3474         ret = i915_gem_gtt_prepare_object(obj);
3475         if (ret)
3476                 goto err_remove_node;
3477
3478         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3479         list_add_tail(&vma->mm_list, &vm->inactive_list);
3480
3481         trace_i915_vma_bind(vma, flags);
3482         vma->bind_vma(vma, obj->cache_level,
3483                       flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3484
3485         return vma;
3486
3487 err_remove_node:
3488         drm_mm_remove_node(&vma->node);
3489 err_free_vma:
3490         i915_gem_vma_destroy(vma);
3491         vma = ERR_PTR(ret);
3492 err_unpin:
3493         i915_gem_object_unpin_pages(obj);
3494         return vma;
3495 }
3496
3497 bool
3498 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3499                         bool force)
3500 {
3501         /* If we don't have a page list set up, then we're not pinned
3502          * to GPU, and we can ignore the cache flush because it'll happen
3503          * again at bind time.
3504          */
3505         if (obj->pages == NULL)
3506                 return false;
3507
3508         /*
3509          * Stolen memory is always coherent with the GPU as it is explicitly
3510          * marked as wc by the system, or the system is cache-coherent.
3511          */
3512         if (obj->stolen)
3513                 return false;
3514
3515         /* If the GPU is snooping the contents of the CPU cache,
3516          * we do not need to manually clear the CPU cache lines.  However,
3517          * the caches are only snooped when the render cache is
3518          * flushed/invalidated.  As we always have to emit invalidations
3519          * and flushes when moving into and out of the RENDER domain, correct
3520          * snooping behaviour occurs naturally as the result of our domain
3521          * tracking.
3522          */
3523         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3524                 return false;
3525
3526         trace_i915_gem_object_clflush(obj);
3527         drm_clflush_sg(obj->pages);
3528
3529         return true;
3530 }
3531
3532 /** Flushes the GTT write domain for the object if it's dirty. */
3533 static void
3534 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3535 {
3536         uint32_t old_write_domain;
3537
3538         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3539                 return;
3540
3541         /* No actual flushing is required for the GTT write domain.  Writes
3542          * to it immediately go to main memory as far as we know, so there's
3543          * no chipset flush.  It also doesn't land in render cache.
3544          *
3545          * However, we do have to enforce the order so that all writes through
3546          * the GTT land before any writes to the device, such as updates to
3547          * the GATT itself.
3548          */
3549         wmb();
3550
3551         old_write_domain = obj->base.write_domain;
3552         obj->base.write_domain = 0;
3553
3554         intel_fb_obj_flush(obj, false);
3555
3556         trace_i915_gem_object_change_domain(obj,
3557                                             obj->base.read_domains,
3558                                             old_write_domain);
3559 }
3560
3561 /** Flushes the CPU write domain for the object if it's dirty. */
3562 static void
3563 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3564                                        bool force)
3565 {
3566         uint32_t old_write_domain;
3567
3568         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3569                 return;
3570
3571         if (i915_gem_clflush_object(obj, force))
3572                 i915_gem_chipset_flush(obj->base.dev);
3573
3574         old_write_domain = obj->base.write_domain;
3575         obj->base.write_domain = 0;
3576
3577         intel_fb_obj_flush(obj, false);
3578
3579         trace_i915_gem_object_change_domain(obj,
3580                                             obj->base.read_domains,
3581                                             old_write_domain);
3582 }
3583
3584 /**
3585  * Moves a single object to the GTT read, and possibly write domain.
3586  *
3587  * This function returns when the move is complete, including waiting on
3588  * flushes to occur.
3589  */
3590 int
3591 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3592 {
3593         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3594         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3595         uint32_t old_write_domain, old_read_domains;
3596         int ret;
3597
3598         /* Not valid to be called on unbound objects. */
3599         if (vma == NULL)
3600                 return -EINVAL;
3601
3602         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3603                 return 0;
3604
3605         ret = i915_gem_object_wait_rendering(obj, !write);
3606         if (ret)
3607                 return ret;
3608
3609         i915_gem_object_retire(obj);
3610         i915_gem_object_flush_cpu_write_domain(obj, false);
3611
3612         /* Serialise direct access to this object with the barriers for
3613          * coherent writes from the GPU, by effectively invalidating the
3614          * GTT domain upon first access.
3615          */
3616         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3617                 mb();
3618
3619         old_write_domain = obj->base.write_domain;
3620         old_read_domains = obj->base.read_domains;
3621
3622         /* It should now be out of any other write domains, and we can update
3623          * the domain values for our changes.
3624          */
3625         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3626         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3627         if (write) {
3628                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3629                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3630                 obj->dirty = 1;
3631         }
3632
3633         if (write)
3634                 intel_fb_obj_invalidate(obj, NULL);
3635
3636         trace_i915_gem_object_change_domain(obj,
3637                                             old_read_domains,
3638                                             old_write_domain);
3639
3640         /* And bump the LRU for this access */
3641         if (i915_gem_object_is_inactive(obj))
3642                 list_move_tail(&vma->mm_list,
3643                                &dev_priv->gtt.base.inactive_list);
3644
3645         return 0;
3646 }
3647
3648 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3649                                     enum i915_cache_level cache_level)
3650 {
3651         struct drm_device *dev = obj->base.dev;
3652         struct i915_vma *vma, *next;
3653         int ret;
3654
3655         if (obj->cache_level == cache_level)
3656                 return 0;
3657
3658         if (i915_gem_obj_is_pinned(obj)) {
3659                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3660                 return -EBUSY;
3661         }
3662
3663         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3664                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3665                         ret = i915_vma_unbind(vma);
3666                         if (ret)
3667                                 return ret;
3668                 }
3669         }
3670
3671         if (i915_gem_obj_bound_any(obj)) {
3672                 ret = i915_gem_object_finish_gpu(obj);
3673                 if (ret)
3674                         return ret;
3675
3676                 i915_gem_object_finish_gtt(obj);
3677
3678                 /* Before SandyBridge, you could not use tiling or fence
3679                  * registers with snooped memory, so relinquish any fences
3680                  * currently pointing to our region in the aperture.
3681                  */
3682                 if (INTEL_INFO(dev)->gen < 6) {
3683                         ret = i915_gem_object_put_fence(obj);
3684                         if (ret)
3685                                 return ret;
3686                 }
3687
3688                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3689                         if (drm_mm_node_allocated(&vma->node))
3690                                 vma->bind_vma(vma, cache_level,
3691                                                 vma->bound & GLOBAL_BIND);
3692         }
3693
3694         list_for_each_entry(vma, &obj->vma_list, vma_link)
3695                 vma->node.color = cache_level;
3696         obj->cache_level = cache_level;
3697
3698         if (cpu_write_needs_clflush(obj)) {
3699                 u32 old_read_domains, old_write_domain;
3700
3701                 /* If we're coming from LLC cached, then we haven't
3702                  * actually been tracking whether the data is in the
3703                  * CPU cache or not, since we only allow one bit set
3704                  * in obj->write_domain and have been skipping the clflushes.
3705                  * Just set it to the CPU cache for now.
3706                  */
3707                 i915_gem_object_retire(obj);
3708                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3709
3710                 old_read_domains = obj->base.read_domains;
3711                 old_write_domain = obj->base.write_domain;
3712
3713                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3714                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3715
3716                 trace_i915_gem_object_change_domain(obj,
3717                                                     old_read_domains,
3718                                                     old_write_domain);
3719         }
3720
3721         return 0;
3722 }
3723
3724 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3725                                struct drm_file *file)
3726 {
3727         struct drm_i915_gem_caching *args = data;
3728         struct drm_i915_gem_object *obj;
3729         int ret;
3730
3731         ret = i915_mutex_lock_interruptible(dev);
3732         if (ret)
3733                 return ret;
3734
3735         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3736         if (&obj->base == NULL) {
3737                 ret = -ENOENT;
3738                 goto unlock;
3739         }
3740
3741         switch (obj->cache_level) {
3742         case I915_CACHE_LLC:
3743         case I915_CACHE_L3_LLC:
3744                 args->caching = I915_CACHING_CACHED;
3745                 break;
3746
3747         case I915_CACHE_WT:
3748                 args->caching = I915_CACHING_DISPLAY;
3749                 break;
3750
3751         default:
3752                 args->caching = I915_CACHING_NONE;
3753                 break;
3754         }
3755
3756         drm_gem_object_unreference(&obj->base);
3757 unlock:
3758         mutex_unlock(&dev->struct_mutex);
3759         return ret;
3760 }
3761
3762 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3763                                struct drm_file *file)
3764 {
3765         struct drm_i915_gem_caching *args = data;
3766         struct drm_i915_gem_object *obj;
3767         enum i915_cache_level level;
3768         int ret;
3769
3770         switch (args->caching) {
3771         case I915_CACHING_NONE:
3772                 level = I915_CACHE_NONE;
3773                 break;
3774         case I915_CACHING_CACHED:
3775                 level = I915_CACHE_LLC;
3776                 break;
3777         case I915_CACHING_DISPLAY:
3778                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3779                 break;
3780         default:
3781                 return -EINVAL;
3782         }
3783
3784         ret = i915_mutex_lock_interruptible(dev);
3785         if (ret)
3786                 return ret;
3787
3788         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3789         if (&obj->base == NULL) {
3790                 ret = -ENOENT;
3791                 goto unlock;
3792         }
3793
3794         ret = i915_gem_object_set_cache_level(obj, level);
3795
3796         drm_gem_object_unreference(&obj->base);
3797 unlock:
3798         mutex_unlock(&dev->struct_mutex);
3799         return ret;
3800 }
3801
3802 static bool is_pin_display(struct drm_i915_gem_object *obj)
3803 {
3804         struct i915_vma *vma;
3805
3806         vma = i915_gem_obj_to_ggtt(obj);
3807         if (!vma)
3808                 return false;
3809
3810         /* There are 3 sources that pin objects:
3811          *   1. The display engine (scanouts, sprites, cursors);
3812          *   2. Reservations for execbuffer;
3813          *   3. The user.
3814          *
3815          * We can ignore reservations as we hold the struct_mutex and
3816          * are only called outside of the reservation path.  The user
3817          * can only increment pin_count once, and so if after
3818          * subtracting the potential reference by the user, any pin_count
3819          * remains, it must be due to another use by the display engine.
3820          */
3821         return vma->pin_count - !!obj->user_pin_count;
3822 }
3823
3824 /*
3825  * Prepare buffer for display plane (scanout, cursors, etc).
3826  * Can be called from an uninterruptible phase (modesetting) and allows
3827  * any flushes to be pipelined (for pageflips).
3828  */
3829 int
3830 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3831                                      u32 alignment,
3832                                      struct intel_engine_cs *pipelined)
3833 {
3834         u32 old_read_domains, old_write_domain;
3835         bool was_pin_display;
3836         int ret;
3837
3838         if (pipelined != obj->ring) {
3839                 ret = i915_gem_object_sync(obj, pipelined);
3840                 if (ret)
3841                         return ret;
3842         }
3843
3844         /* Mark the pin_display early so that we account for the
3845          * display coherency whilst setting up the cache domains.
3846          */
3847         was_pin_display = obj->pin_display;
3848         obj->pin_display = true;
3849
3850         /* The display engine is not coherent with the LLC cache on gen6.  As
3851          * a result, we make sure that the pinning that is about to occur is
3852          * done with uncached PTEs. This is lowest common denominator for all
3853          * chipsets.
3854          *
3855          * However for gen6+, we could do better by using the GFDT bit instead
3856          * of uncaching, which would allow us to flush all the LLC-cached data
3857          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3858          */
3859         ret = i915_gem_object_set_cache_level(obj,
3860                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3861         if (ret)
3862                 goto err_unpin_display;
3863
3864         /* As the user may map the buffer once pinned in the display plane
3865          * (e.g. libkms for the bootup splash), we have to ensure that we
3866          * always use map_and_fenceable for all scanout buffers.
3867          */
3868         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3869         if (ret)
3870                 goto err_unpin_display;
3871
3872         i915_gem_object_flush_cpu_write_domain(obj, true);
3873
3874         old_write_domain = obj->base.write_domain;
3875         old_read_domains = obj->base.read_domains;
3876
3877         /* It should now be out of any other write domains, and we can update
3878          * the domain values for our changes.
3879          */
3880         obj->base.write_domain = 0;
3881         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3882
3883         trace_i915_gem_object_change_domain(obj,
3884                                             old_read_domains,
3885                                             old_write_domain);
3886
3887         return 0;
3888
3889 err_unpin_display:
3890         WARN_ON(was_pin_display != is_pin_display(obj));
3891         obj->pin_display = was_pin_display;
3892         return ret;
3893 }
3894
3895 void
3896 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3897 {
3898         i915_gem_object_ggtt_unpin(obj);
3899         obj->pin_display = is_pin_display(obj);
3900 }
3901
3902 int
3903 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3904 {
3905         int ret;
3906
3907         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3908                 return 0;
3909
3910         ret = i915_gem_object_wait_rendering(obj, false);
3911         if (ret)
3912                 return ret;
3913
3914         /* Ensure that we invalidate the GPU's caches and TLBs. */
3915         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3916         return 0;
3917 }
3918
3919 /**
3920  * Moves a single object to the CPU read, and possibly write domain.
3921  *
3922  * This function returns when the move is complete, including waiting on
3923  * flushes to occur.
3924  */
3925 int
3926 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3927 {
3928         uint32_t old_write_domain, old_read_domains;
3929         int ret;
3930
3931         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3932                 return 0;
3933
3934         ret = i915_gem_object_wait_rendering(obj, !write);
3935         if (ret)
3936                 return ret;
3937
3938         i915_gem_object_retire(obj);
3939         i915_gem_object_flush_gtt_write_domain(obj);
3940
3941         old_write_domain = obj->base.write_domain;
3942         old_read_domains = obj->base.read_domains;
3943
3944         /* Flush the CPU cache if it's still invalid. */
3945         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3946                 i915_gem_clflush_object(obj, false);
3947
3948                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3949         }
3950
3951         /* It should now be out of any other write domains, and we can update
3952          * the domain values for our changes.
3953          */
3954         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3955
3956         /* If we're writing through the CPU, then the GPU read domains will
3957          * need to be invalidated at next use.
3958          */
3959         if (write) {
3960                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3961                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3962         }
3963
3964         if (write)
3965                 intel_fb_obj_invalidate(obj, NULL);
3966
3967         trace_i915_gem_object_change_domain(obj,
3968                                             old_read_domains,
3969                                             old_write_domain);
3970
3971         return 0;
3972 }
3973
3974 /* Throttle our rendering by waiting until the ring has completed our requests
3975  * emitted over 20 msec ago.
3976  *
3977  * Note that if we were to use the current jiffies each time around the loop,
3978  * we wouldn't escape the function with any frames outstanding if the time to
3979  * render a frame was over 20ms.
3980  *
3981  * This should get us reasonable parallelism between CPU and GPU but also
3982  * relatively low latency when blocking on a particular request to finish.
3983  */
3984 static int
3985 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3986 {
3987         struct drm_i915_private *dev_priv = dev->dev_private;
3988         struct drm_i915_file_private *file_priv = file->driver_priv;
3989         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3990         struct drm_i915_gem_request *request;
3991         struct intel_engine_cs *ring = NULL;
3992         unsigned reset_counter;
3993         u32 seqno = 0;
3994         int ret;
3995
3996         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3997         if (ret)
3998                 return ret;
3999
4000         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4001         if (ret)
4002                 return ret;
4003
4004         spin_lock(&file_priv->mm.lock);
4005         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4006                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4007                         break;
4008
4009                 ring = request->ring;
4010                 seqno = request->seqno;
4011         }
4012         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4013         spin_unlock(&file_priv->mm.lock);
4014
4015         if (seqno == 0)
4016                 return 0;
4017
4018         ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4019         if (ret == 0)
4020                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4021
4022         return ret;
4023 }
4024
4025 static bool
4026 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4027 {
4028         struct drm_i915_gem_object *obj = vma->obj;
4029
4030         if (alignment &&
4031             vma->node.start & (alignment - 1))
4032                 return true;
4033
4034         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4035                 return true;
4036
4037         if (flags & PIN_OFFSET_BIAS &&
4038             vma->node.start < (flags & PIN_OFFSET_MASK))
4039                 return true;
4040
4041         return false;
4042 }
4043
4044 int
4045 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4046                     struct i915_address_space *vm,
4047                     uint32_t alignment,
4048                     uint64_t flags)
4049 {
4050         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4051         struct i915_vma *vma;
4052         unsigned bound;
4053         int ret;
4054
4055         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4056                 return -ENODEV;
4057
4058         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4059                 return -EINVAL;
4060
4061         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4062                 return -EINVAL;
4063
4064         vma = i915_gem_obj_to_vma(obj, vm);
4065         if (vma) {
4066                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4067                         return -EBUSY;
4068
4069                 if (i915_vma_misplaced(vma, alignment, flags)) {
4070                         WARN(vma->pin_count,
4071                              "bo is already pinned with incorrect alignment:"
4072                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4073                              " obj->map_and_fenceable=%d\n",
4074                              i915_gem_obj_offset(obj, vm), alignment,
4075                              !!(flags & PIN_MAPPABLE),
4076                              obj->map_and_fenceable);
4077                         ret = i915_vma_unbind(vma);
4078                         if (ret)
4079                                 return ret;
4080
4081                         vma = NULL;
4082                 }
4083         }
4084
4085         bound = vma ? vma->bound : 0;
4086         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4087                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4088                 if (IS_ERR(vma))
4089                         return PTR_ERR(vma);
4090         }
4091
4092         if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
4093                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4094
4095         if ((bound ^ vma->bound) & GLOBAL_BIND) {
4096                 bool mappable, fenceable;
4097                 u32 fence_size, fence_alignment;
4098
4099                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4100                                                    obj->base.size,
4101                                                    obj->tiling_mode);
4102                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4103                                                              obj->base.size,
4104                                                              obj->tiling_mode,
4105                                                              true);
4106
4107                 fenceable = (vma->node.size == fence_size &&
4108                              (vma->node.start & (fence_alignment - 1)) == 0);
4109
4110                 mappable = (vma->node.start + obj->base.size <=
4111                             dev_priv->gtt.mappable_end);
4112
4113                 obj->map_and_fenceable = mappable && fenceable;
4114         }
4115
4116         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4117
4118         vma->pin_count++;
4119         if (flags & PIN_MAPPABLE)
4120                 obj->pin_mappable |= true;
4121
4122         return 0;
4123 }
4124
4125 void
4126 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4127 {
4128         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4129
4130         BUG_ON(!vma);
4131         BUG_ON(vma->pin_count == 0);
4132         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4133
4134         if (--vma->pin_count == 0)
4135                 obj->pin_mappable = false;
4136 }
4137
4138 bool
4139 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4140 {
4141         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4142                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4143                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4144
4145                 WARN_ON(!ggtt_vma ||
4146                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4147                         ggtt_vma->pin_count);
4148                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4149                 return true;
4150         } else
4151                 return false;
4152 }
4153
4154 void
4155 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4156 {
4157         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4158                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4159                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4160                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4161         }
4162 }
4163
4164 int
4165 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4166                    struct drm_file *file)
4167 {
4168         struct drm_i915_gem_pin *args = data;
4169         struct drm_i915_gem_object *obj;
4170         int ret;
4171
4172         if (INTEL_INFO(dev)->gen >= 6)
4173                 return -ENODEV;
4174
4175         ret = i915_mutex_lock_interruptible(dev);
4176         if (ret)
4177                 return ret;
4178
4179         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4180         if (&obj->base == NULL) {
4181                 ret = -ENOENT;
4182                 goto unlock;
4183         }
4184
4185         if (obj->madv != I915_MADV_WILLNEED) {
4186                 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4187                 ret = -EFAULT;
4188                 goto out;
4189         }
4190
4191         if (obj->pin_filp != NULL && obj->pin_filp != file) {
4192                 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4193                           args->handle);
4194                 ret = -EINVAL;
4195                 goto out;
4196         }
4197
4198         if (obj->user_pin_count == ULONG_MAX) {
4199                 ret = -EBUSY;
4200                 goto out;
4201         }
4202
4203         if (obj->user_pin_count == 0) {
4204                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4205                 if (ret)
4206                         goto out;
4207         }
4208
4209         obj->user_pin_count++;
4210         obj->pin_filp = file;
4211
4212         args->offset = i915_gem_obj_ggtt_offset(obj);
4213 out:
4214         drm_gem_object_unreference(&obj->base);
4215 unlock:
4216         mutex_unlock(&dev->struct_mutex);
4217         return ret;
4218 }
4219
4220 int
4221 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4222                      struct drm_file *file)
4223 {
4224         struct drm_i915_gem_pin *args = data;
4225         struct drm_i915_gem_object *obj;
4226         int ret;
4227
4228         ret = i915_mutex_lock_interruptible(dev);
4229         if (ret)
4230                 return ret;
4231
4232         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4233         if (&obj->base == NULL) {
4234                 ret = -ENOENT;
4235                 goto unlock;
4236         }
4237
4238         if (obj->pin_filp != file) {
4239                 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4240                           args->handle);
4241                 ret = -EINVAL;
4242                 goto out;
4243         }
4244         obj->user_pin_count--;
4245         if (obj->user_pin_count == 0) {
4246                 obj->pin_filp = NULL;
4247                 i915_gem_object_ggtt_unpin(obj);
4248         }
4249
4250 out:
4251         drm_gem_object_unreference(&obj->base);
4252 unlock:
4253         mutex_unlock(&dev->struct_mutex);
4254         return ret;
4255 }
4256
4257 int
4258 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4259                     struct drm_file *file)
4260 {
4261         struct drm_i915_gem_busy *args = data;
4262         struct drm_i915_gem_object *obj;
4263         int ret;
4264
4265         ret = i915_mutex_lock_interruptible(dev);
4266         if (ret)
4267                 return ret;
4268
4269         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4270         if (&obj->base == NULL) {
4271                 ret = -ENOENT;
4272                 goto unlock;
4273         }
4274
4275         /* Count all active objects as busy, even if they are currently not used
4276          * by the gpu. Users of this interface expect objects to eventually
4277          * become non-busy without any further actions, therefore emit any
4278          * necessary flushes here.
4279          */
4280         ret = i915_gem_object_flush_active(obj);
4281
4282         args->busy = obj->active;
4283         if (obj->ring) {
4284                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4285                 args->busy |= intel_ring_flag(obj->ring) << 16;
4286         }
4287
4288         drm_gem_object_unreference(&obj->base);
4289 unlock:
4290         mutex_unlock(&dev->struct_mutex);
4291         return ret;
4292 }
4293
4294 int
4295 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4296                         struct drm_file *file_priv)
4297 {
4298         return i915_gem_ring_throttle(dev, file_priv);
4299 }
4300
4301 int
4302 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4303                        struct drm_file *file_priv)
4304 {
4305         struct drm_i915_gem_madvise *args = data;
4306         struct drm_i915_gem_object *obj;
4307         int ret;
4308
4309         switch (args->madv) {
4310         case I915_MADV_DONTNEED:
4311         case I915_MADV_WILLNEED:
4312             break;
4313         default:
4314             return -EINVAL;
4315         }
4316
4317         ret = i915_mutex_lock_interruptible(dev);
4318         if (ret)
4319                 return ret;
4320
4321         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4322         if (&obj->base == NULL) {
4323                 ret = -ENOENT;
4324                 goto unlock;
4325         }
4326
4327         if (i915_gem_obj_is_pinned(obj)) {
4328                 ret = -EINVAL;
4329                 goto out;
4330         }
4331
4332         if (obj->madv != __I915_MADV_PURGED)
4333                 obj->madv = args->madv;
4334
4335         /* if the object is no longer attached, discard its backing storage */
4336         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4337                 i915_gem_object_truncate(obj);
4338
4339         args->retained = obj->madv != __I915_MADV_PURGED;
4340
4341 out:
4342         drm_gem_object_unreference(&obj->base);
4343 unlock:
4344         mutex_unlock(&dev->struct_mutex);
4345         return ret;
4346 }
4347
4348 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4349                           const struct drm_i915_gem_object_ops *ops)
4350 {
4351         INIT_LIST_HEAD(&obj->global_list);
4352         INIT_LIST_HEAD(&obj->ring_list);
4353         INIT_LIST_HEAD(&obj->obj_exec_link);
4354         INIT_LIST_HEAD(&obj->vma_list);
4355
4356         obj->ops = ops;
4357
4358         obj->fence_reg = I915_FENCE_REG_NONE;
4359         obj->madv = I915_MADV_WILLNEED;
4360
4361         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4362 }
4363
4364 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4365         .get_pages = i915_gem_object_get_pages_gtt,
4366         .put_pages = i915_gem_object_put_pages_gtt,
4367 };
4368
4369 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4370                                                   size_t size)
4371 {
4372         struct drm_i915_gem_object *obj;
4373         struct address_space *mapping;
4374         gfp_t mask;
4375
4376         obj = i915_gem_object_alloc(dev);
4377         if (obj == NULL)
4378                 return NULL;
4379
4380         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4381                 i915_gem_object_free(obj);
4382                 return NULL;
4383         }
4384
4385         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4386         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4387                 /* 965gm cannot relocate objects above 4GiB. */
4388                 mask &= ~__GFP_HIGHMEM;
4389                 mask |= __GFP_DMA32;
4390         }
4391
4392         mapping = file_inode(obj->base.filp)->i_mapping;
4393         mapping_set_gfp_mask(mapping, mask);
4394
4395         i915_gem_object_init(obj, &i915_gem_object_ops);
4396
4397         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4398         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4399
4400         if (HAS_LLC(dev)) {
4401                 /* On some devices, we can have the GPU use the LLC (the CPU
4402                  * cache) for about a 10% performance improvement
4403                  * compared to uncached.  Graphics requests other than
4404                  * display scanout are coherent with the CPU in
4405                  * accessing this cache.  This means in this mode we
4406                  * don't need to clflush on the CPU side, and on the
4407                  * GPU side we only need to flush internal caches to
4408                  * get data visible to the CPU.
4409                  *
4410                  * However, we maintain the display planes as UC, and so
4411                  * need to rebind when first used as such.
4412                  */
4413                 obj->cache_level = I915_CACHE_LLC;
4414         } else
4415                 obj->cache_level = I915_CACHE_NONE;
4416
4417         trace_i915_gem_object_create(obj);
4418
4419         return obj;
4420 }
4421
4422 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4423 {
4424         /* If we are the last user of the backing storage (be it shmemfs
4425          * pages or stolen etc), we know that the pages are going to be
4426          * immediately released. In this case, we can then skip copying
4427          * back the contents from the GPU.
4428          */
4429
4430         if (obj->madv != I915_MADV_WILLNEED)
4431                 return false;
4432
4433         if (obj->base.filp == NULL)
4434                 return true;
4435
4436         /* At first glance, this looks racy, but then again so would be
4437          * userspace racing mmap against close. However, the first external
4438          * reference to the filp can only be obtained through the
4439          * i915_gem_mmap_ioctl() which safeguards us against the user
4440          * acquiring such a reference whilst we are in the middle of
4441          * freeing the object.
4442          */
4443         return atomic_long_read(&obj->base.filp->f_count) == 1;
4444 }
4445
4446 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4447 {
4448         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4449         struct drm_device *dev = obj->base.dev;
4450         struct drm_i915_private *dev_priv = dev->dev_private;
4451         struct i915_vma *vma, *next;
4452
4453         intel_runtime_pm_get(dev_priv);
4454
4455         trace_i915_gem_object_destroy(obj);
4456
4457         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4458                 int ret;
4459
4460                 vma->pin_count = 0;
4461                 ret = i915_vma_unbind(vma);
4462                 if (WARN_ON(ret == -ERESTARTSYS)) {
4463                         bool was_interruptible;
4464
4465                         was_interruptible = dev_priv->mm.interruptible;
4466                         dev_priv->mm.interruptible = false;
4467
4468                         WARN_ON(i915_vma_unbind(vma));
4469
4470                         dev_priv->mm.interruptible = was_interruptible;
4471                 }
4472         }
4473
4474         i915_gem_object_detach_phys(obj);
4475
4476         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4477          * before progressing. */
4478         if (obj->stolen)
4479                 i915_gem_object_unpin_pages(obj);
4480
4481         WARN_ON(obj->frontbuffer_bits);
4482
4483         if (WARN_ON(obj->pages_pin_count))
4484                 obj->pages_pin_count = 0;
4485         if (discard_backing_storage(obj))
4486                 obj->madv = I915_MADV_DONTNEED;
4487         i915_gem_object_put_pages(obj);
4488         i915_gem_object_free_mmap_offset(obj);
4489
4490         BUG_ON(obj->pages);
4491
4492         if (obj->base.import_attach)
4493                 drm_prime_gem_destroy(&obj->base, NULL);
4494
4495         if (obj->ops->release)
4496                 obj->ops->release(obj);
4497
4498         drm_gem_object_release(&obj->base);
4499         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4500
4501         kfree(obj->bit_17);
4502         i915_gem_object_free(obj);
4503
4504         intel_runtime_pm_put(dev_priv);
4505 }
4506
4507 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4508                                      struct i915_address_space *vm)
4509 {
4510         struct i915_vma *vma;
4511         list_for_each_entry(vma, &obj->vma_list, vma_link)
4512                 if (vma->vm == vm)
4513                         return vma;
4514
4515         return NULL;
4516 }
4517
4518 void i915_gem_vma_destroy(struct i915_vma *vma)
4519 {
4520         struct i915_address_space *vm = NULL;
4521         WARN_ON(vma->node.allocated);
4522
4523         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4524         if (!list_empty(&vma->exec_list))
4525                 return;
4526
4527         vm = vma->vm;
4528
4529         if (!i915_is_ggtt(vm))
4530                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4531
4532         list_del(&vma->vma_link);
4533
4534         kfree(vma);
4535 }
4536
4537 static void
4538 i915_gem_stop_ringbuffers(struct drm_device *dev)
4539 {
4540         struct drm_i915_private *dev_priv = dev->dev_private;
4541         struct intel_engine_cs *ring;
4542         int i;
4543
4544         for_each_ring(ring, dev_priv, i)
4545                 dev_priv->gt.stop_ring(ring);
4546 }
4547
4548 int
4549 i915_gem_suspend(struct drm_device *dev)
4550 {
4551         struct drm_i915_private *dev_priv = dev->dev_private;
4552         int ret = 0;
4553
4554         mutex_lock(&dev->struct_mutex);
4555         if (dev_priv->ums.mm_suspended)
4556                 goto err;
4557
4558         ret = i915_gpu_idle(dev);
4559         if (ret)
4560                 goto err;
4561
4562         i915_gem_retire_requests(dev);
4563
4564         /* Under UMS, be paranoid and evict. */
4565         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4566                 i915_gem_evict_everything(dev);
4567
4568         i915_kernel_lost_context(dev);
4569         i915_gem_stop_ringbuffers(dev);
4570
4571         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4572          * We need to replace this with a semaphore, or something.
4573          * And not confound ums.mm_suspended!
4574          */
4575         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4576                                                              DRIVER_MODESET);
4577         mutex_unlock(&dev->struct_mutex);
4578
4579         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4580         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4581         flush_delayed_work(&dev_priv->mm.idle_work);
4582
4583         return 0;
4584
4585 err:
4586         mutex_unlock(&dev->struct_mutex);
4587         return ret;
4588 }
4589
4590 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4591 {
4592         struct drm_device *dev = ring->dev;
4593         struct drm_i915_private *dev_priv = dev->dev_private;
4594         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4595         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4596         int i, ret;
4597
4598         if (!HAS_L3_DPF(dev) || !remap_info)
4599                 return 0;
4600
4601         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4602         if (ret)
4603                 return ret;
4604
4605         /*
4606          * Note: We do not worry about the concurrent register cacheline hang
4607          * here because no other code should access these registers other than
4608          * at initialization time.
4609          */
4610         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4611                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4612                 intel_ring_emit(ring, reg_base + i);
4613                 intel_ring_emit(ring, remap_info[i/4]);
4614         }
4615
4616         intel_ring_advance(ring);
4617
4618         return ret;
4619 }
4620
4621 void i915_gem_init_swizzling(struct drm_device *dev)
4622 {
4623         struct drm_i915_private *dev_priv = dev->dev_private;
4624
4625         if (INTEL_INFO(dev)->gen < 5 ||
4626             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4627                 return;
4628
4629         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4630                                  DISP_TILE_SURFACE_SWIZZLING);
4631
4632         if (IS_GEN5(dev))
4633                 return;
4634
4635         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4636         if (IS_GEN6(dev))
4637                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4638         else if (IS_GEN7(dev))
4639                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4640         else if (IS_GEN8(dev))
4641                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4642         else
4643                 BUG();
4644 }
4645
4646 static bool
4647 intel_enable_blt(struct drm_device *dev)
4648 {
4649         if (!HAS_BLT(dev))
4650                 return false;
4651
4652         /* The blitter was dysfunctional on early prototypes */
4653         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4654                 DRM_INFO("BLT not supported on this pre-production hardware;"
4655                          " graphics performance will be degraded.\n");
4656                 return false;
4657         }
4658
4659         return true;
4660 }
4661
4662 static void init_unused_ring(struct drm_device *dev, u32 base)
4663 {
4664         struct drm_i915_private *dev_priv = dev->dev_private;
4665
4666         I915_WRITE(RING_CTL(base), 0);
4667         I915_WRITE(RING_HEAD(base), 0);
4668         I915_WRITE(RING_TAIL(base), 0);
4669         I915_WRITE(RING_START(base), 0);
4670 }
4671
4672 static void init_unused_rings(struct drm_device *dev)
4673 {
4674         if (IS_I830(dev)) {
4675                 init_unused_ring(dev, PRB1_BASE);
4676                 init_unused_ring(dev, SRB0_BASE);
4677                 init_unused_ring(dev, SRB1_BASE);
4678                 init_unused_ring(dev, SRB2_BASE);
4679                 init_unused_ring(dev, SRB3_BASE);
4680         } else if (IS_GEN2(dev)) {
4681                 init_unused_ring(dev, SRB0_BASE);
4682                 init_unused_ring(dev, SRB1_BASE);
4683         } else if (IS_GEN3(dev)) {
4684                 init_unused_ring(dev, PRB1_BASE);
4685                 init_unused_ring(dev, PRB2_BASE);
4686         }
4687 }
4688
4689 int i915_gem_init_rings(struct drm_device *dev)
4690 {
4691         struct drm_i915_private *dev_priv = dev->dev_private;
4692         int ret;
4693
4694         /*
4695          * At least 830 can leave some of the unused rings
4696          * "active" (ie. head != tail) after resume which
4697          * will prevent c3 entry. Makes sure all unused rings
4698          * are totally idle.
4699          */
4700         init_unused_rings(dev);
4701
4702         ret = intel_init_render_ring_buffer(dev);
4703         if (ret)
4704                 return ret;
4705
4706         if (HAS_BSD(dev)) {
4707                 ret = intel_init_bsd_ring_buffer(dev);
4708                 if (ret)
4709                         goto cleanup_render_ring;
4710         }
4711
4712         if (intel_enable_blt(dev)) {
4713                 ret = intel_init_blt_ring_buffer(dev);
4714                 if (ret)
4715                         goto cleanup_bsd_ring;
4716         }
4717
4718         if (HAS_VEBOX(dev)) {
4719                 ret = intel_init_vebox_ring_buffer(dev);
4720                 if (ret)
4721                         goto cleanup_blt_ring;
4722         }
4723
4724         if (HAS_BSD2(dev)) {
4725                 ret = intel_init_bsd2_ring_buffer(dev);
4726                 if (ret)
4727                         goto cleanup_vebox_ring;
4728         }
4729
4730         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4731         if (ret)
4732                 goto cleanup_bsd2_ring;
4733
4734         return 0;
4735
4736 cleanup_bsd2_ring:
4737         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4738 cleanup_vebox_ring:
4739         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4740 cleanup_blt_ring:
4741         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4742 cleanup_bsd_ring:
4743         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4744 cleanup_render_ring:
4745         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4746
4747         return ret;
4748 }
4749
4750 int
4751 i915_gem_init_hw(struct drm_device *dev)
4752 {
4753         struct drm_i915_private *dev_priv = dev->dev_private;
4754         int ret, i;
4755
4756         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4757                 return -EIO;
4758
4759         if (dev_priv->ellc_size)
4760                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4761
4762         if (IS_HASWELL(dev))
4763                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4764                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4765
4766         if (HAS_PCH_NOP(dev)) {
4767                 if (IS_IVYBRIDGE(dev)) {
4768                         u32 temp = I915_READ(GEN7_MSG_CTL);
4769                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4770                         I915_WRITE(GEN7_MSG_CTL, temp);
4771                 } else if (INTEL_INFO(dev)->gen >= 7) {
4772                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4773                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4774                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4775                 }
4776         }
4777
4778         i915_gem_init_swizzling(dev);
4779
4780         ret = dev_priv->gt.init_rings(dev);
4781         if (ret)
4782                 return ret;
4783
4784         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4785                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4786
4787         /*
4788          * XXX: Contexts should only be initialized once. Doing a switch to the
4789          * default context switch however is something we'd like to do after
4790          * reset or thaw (the latter may not actually be necessary for HW, but
4791          * goes with our code better). Context switching requires rings (for
4792          * the do_switch), but before enabling PPGTT. So don't move this.
4793          */
4794         ret = i915_gem_context_enable(dev_priv);
4795         if (ret && ret != -EIO) {
4796                 DRM_ERROR("Context enable failed %d\n", ret);
4797                 i915_gem_cleanup_ringbuffer(dev);
4798
4799                 return ret;
4800         }
4801
4802         ret = i915_ppgtt_init_hw(dev);
4803         if (ret && ret != -EIO) {
4804                 DRM_ERROR("PPGTT enable failed %d\n", ret);
4805                 i915_gem_cleanup_ringbuffer(dev);
4806         }
4807
4808         return ret;
4809 }
4810
4811 int i915_gem_init(struct drm_device *dev)
4812 {
4813         struct drm_i915_private *dev_priv = dev->dev_private;
4814         int ret;
4815
4816         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4817                         i915.enable_execlists);
4818
4819         mutex_lock(&dev->struct_mutex);
4820
4821         if (IS_VALLEYVIEW(dev)) {
4822                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4823                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4824                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4825                               VLV_GTLC_ALLOWWAKEACK), 10))
4826                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4827         }
4828
4829         if (!i915.enable_execlists) {
4830                 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4831                 dev_priv->gt.init_rings = i915_gem_init_rings;
4832                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4833                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4834         } else {
4835                 dev_priv->gt.do_execbuf = intel_execlists_submission;
4836                 dev_priv->gt.init_rings = intel_logical_rings_init;
4837                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4838                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4839         }
4840
4841         ret = i915_gem_init_userptr(dev);
4842         if (ret) {
4843                 mutex_unlock(&dev->struct_mutex);
4844                 return ret;
4845         }
4846
4847         i915_gem_init_global_gtt(dev);
4848
4849         ret = i915_gem_context_init(dev);
4850         if (ret) {
4851                 mutex_unlock(&dev->struct_mutex);
4852                 return ret;
4853         }
4854
4855         ret = i915_gem_init_hw(dev);
4856         if (ret == -EIO) {
4857                 /* Allow ring initialisation to fail by marking the GPU as
4858                  * wedged. But we only want to do this where the GPU is angry,
4859                  * for all other failure, such as an allocation failure, bail.
4860                  */
4861                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4862                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4863                 ret = 0;
4864         }
4865         mutex_unlock(&dev->struct_mutex);
4866
4867         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4868         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4869                 dev_priv->dri1.allow_batchbuffer = 1;
4870         return ret;
4871 }
4872
4873 void
4874 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4875 {
4876         struct drm_i915_private *dev_priv = dev->dev_private;
4877         struct intel_engine_cs *ring;
4878         int i;
4879
4880         for_each_ring(ring, dev_priv, i)
4881                 dev_priv->gt.cleanup_ring(ring);
4882 }
4883
4884 int
4885 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4886                        struct drm_file *file_priv)
4887 {
4888         struct drm_i915_private *dev_priv = dev->dev_private;
4889         int ret;
4890
4891         if (drm_core_check_feature(dev, DRIVER_MODESET))
4892                 return 0;
4893
4894         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4895                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4896                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4897         }
4898
4899         mutex_lock(&dev->struct_mutex);
4900         dev_priv->ums.mm_suspended = 0;
4901
4902         ret = i915_gem_init_hw(dev);
4903         if (ret != 0) {
4904                 mutex_unlock(&dev->struct_mutex);
4905                 return ret;
4906         }
4907
4908         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4909
4910         ret = drm_irq_install(dev, dev->pdev->irq);
4911         if (ret)
4912                 goto cleanup_ringbuffer;
4913         mutex_unlock(&dev->struct_mutex);
4914
4915         return 0;
4916
4917 cleanup_ringbuffer:
4918         i915_gem_cleanup_ringbuffer(dev);
4919         dev_priv->ums.mm_suspended = 1;
4920         mutex_unlock(&dev->struct_mutex);
4921
4922         return ret;
4923 }
4924
4925 int
4926 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4927                        struct drm_file *file_priv)
4928 {
4929         if (drm_core_check_feature(dev, DRIVER_MODESET))
4930                 return 0;
4931
4932         mutex_lock(&dev->struct_mutex);
4933         drm_irq_uninstall(dev);
4934         mutex_unlock(&dev->struct_mutex);
4935
4936         return i915_gem_suspend(dev);
4937 }
4938
4939 void
4940 i915_gem_lastclose(struct drm_device *dev)
4941 {
4942         int ret;
4943
4944         if (drm_core_check_feature(dev, DRIVER_MODESET))
4945                 return;
4946
4947         ret = i915_gem_suspend(dev);
4948         if (ret)
4949                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4950 }
4951
4952 static void
4953 init_ring_lists(struct intel_engine_cs *ring)
4954 {
4955         INIT_LIST_HEAD(&ring->active_list);
4956         INIT_LIST_HEAD(&ring->request_list);
4957 }
4958
4959 void i915_init_vm(struct drm_i915_private *dev_priv,
4960                   struct i915_address_space *vm)
4961 {
4962         if (!i915_is_ggtt(vm))
4963                 drm_mm_init(&vm->mm, vm->start, vm->total);
4964         vm->dev = dev_priv->dev;
4965         INIT_LIST_HEAD(&vm->active_list);
4966         INIT_LIST_HEAD(&vm->inactive_list);
4967         INIT_LIST_HEAD(&vm->global_link);
4968         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4969 }
4970
4971 void
4972 i915_gem_load(struct drm_device *dev)
4973 {
4974         struct drm_i915_private *dev_priv = dev->dev_private;
4975         int i;
4976
4977         dev_priv->slab =
4978                 kmem_cache_create("i915_gem_object",
4979                                   sizeof(struct drm_i915_gem_object), 0,
4980                                   SLAB_HWCACHE_ALIGN,
4981                                   NULL);
4982
4983         INIT_LIST_HEAD(&dev_priv->vm_list);
4984         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4985
4986         INIT_LIST_HEAD(&dev_priv->context_list);
4987         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4988         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4989         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4990         for (i = 0; i < I915_NUM_RINGS; i++)
4991                 init_ring_lists(&dev_priv->ring[i]);
4992         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4993                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4994         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4995                           i915_gem_retire_work_handler);
4996         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4997                           i915_gem_idle_work_handler);
4998         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4999
5000         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5001         if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
5002                 I915_WRITE(MI_ARB_STATE,
5003                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5004         }
5005
5006         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5007
5008         /* Old X drivers will take 0-2 for front, back, depth buffers */
5009         if (!drm_core_check_feature(dev, DRIVER_MODESET))
5010                 dev_priv->fence_reg_start = 3;
5011
5012         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5013                 dev_priv->num_fence_regs = 32;
5014         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5015                 dev_priv->num_fence_regs = 16;
5016         else
5017                 dev_priv->num_fence_regs = 8;
5018
5019         /* Initialize fence registers to zero */
5020         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5021         i915_gem_restore_fences(dev);
5022
5023         i915_gem_detect_bit_6_swizzle(dev);
5024         init_waitqueue_head(&dev_priv->pending_flip_queue);
5025
5026         dev_priv->mm.interruptible = true;
5027
5028         dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5029         dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5030         dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5031         register_shrinker(&dev_priv->mm.shrinker);
5032
5033         dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5034         register_oom_notifier(&dev_priv->mm.oom_notifier);
5035
5036         mutex_init(&dev_priv->fb_tracking.lock);
5037 }
5038
5039 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5040 {
5041         struct drm_i915_file_private *file_priv = file->driver_priv;
5042
5043         cancel_delayed_work_sync(&file_priv->mm.idle_work);
5044
5045         /* Clean up our request list when the client is going away, so that
5046          * later retire_requests won't dereference our soon-to-be-gone
5047          * file_priv.
5048          */
5049         spin_lock(&file_priv->mm.lock);
5050         while (!list_empty(&file_priv->mm.request_list)) {
5051                 struct drm_i915_gem_request *request;
5052
5053                 request = list_first_entry(&file_priv->mm.request_list,
5054                                            struct drm_i915_gem_request,
5055                                            client_list);
5056                 list_del(&request->client_list);
5057                 request->file_priv = NULL;
5058         }
5059         spin_unlock(&file_priv->mm.lock);
5060 }
5061
5062 static void
5063 i915_gem_file_idle_work_handler(struct work_struct *work)
5064 {
5065         struct drm_i915_file_private *file_priv =
5066                 container_of(work, typeof(*file_priv), mm.idle_work.work);
5067
5068         atomic_set(&file_priv->rps_wait_boost, false);
5069 }
5070
5071 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5072 {
5073         struct drm_i915_file_private *file_priv;
5074         int ret;
5075
5076         DRM_DEBUG_DRIVER("\n");
5077
5078         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5079         if (!file_priv)
5080                 return -ENOMEM;
5081
5082         file->driver_priv = file_priv;
5083         file_priv->dev_priv = dev->dev_private;
5084         file_priv->file = file;
5085
5086         spin_lock_init(&file_priv->mm.lock);
5087         INIT_LIST_HEAD(&file_priv->mm.request_list);
5088         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5089                           i915_gem_file_idle_work_handler);
5090
5091         ret = i915_gem_context_open(dev, file);
5092         if (ret)
5093                 kfree(file_priv);
5094
5095         return ret;
5096 }
5097
5098 /**
5099  * i915_gem_track_fb - update frontbuffer tracking
5100  * old: current GEM buffer for the frontbuffer slots
5101  * new: new GEM buffer for the frontbuffer slots
5102  * frontbuffer_bits: bitmask of frontbuffer slots
5103  *
5104  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5105  * from @old and setting them in @new. Both @old and @new can be NULL.
5106  */
5107 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5108                        struct drm_i915_gem_object *new,
5109                        unsigned frontbuffer_bits)
5110 {
5111         if (old) {
5112                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5113                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5114                 old->frontbuffer_bits &= ~frontbuffer_bits;
5115         }
5116
5117         if (new) {
5118                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5119                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5120                 new->frontbuffer_bits |= frontbuffer_bits;
5121         }
5122 }
5123
5124 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5125 {
5126         if (!mutex_is_locked(mutex))
5127                 return false;
5128
5129 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5130         return mutex->owner == task;
5131 #else
5132         /* Since UP may be pre-empted, we cannot assume that we own the lock */
5133         return false;
5134 #endif
5135 }
5136
5137 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5138 {
5139         if (!mutex_trylock(&dev->struct_mutex)) {
5140                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5141                         return false;
5142
5143                 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5144                         return false;
5145
5146                 *unlock = false;
5147         } else
5148                 *unlock = true;
5149
5150         return true;
5151 }
5152
5153 static int num_vma_bound(struct drm_i915_gem_object *obj)
5154 {
5155         struct i915_vma *vma;
5156         int count = 0;
5157
5158         list_for_each_entry(vma, &obj->vma_list, vma_link)
5159                 if (drm_mm_node_allocated(&vma->node))
5160                         count++;
5161
5162         return count;
5163 }
5164
5165 static unsigned long
5166 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5167 {
5168         struct drm_i915_private *dev_priv =
5169                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5170         struct drm_device *dev = dev_priv->dev;
5171         struct drm_i915_gem_object *obj;
5172         unsigned long count;
5173         bool unlock;
5174
5175         if (!i915_gem_shrinker_lock(dev, &unlock))
5176                 return 0;
5177
5178         count = 0;
5179         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5180                 if (obj->pages_pin_count == 0)
5181                         count += obj->base.size >> PAGE_SHIFT;
5182
5183         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5184                 if (!i915_gem_obj_is_pinned(obj) &&
5185                     obj->pages_pin_count == num_vma_bound(obj))
5186                         count += obj->base.size >> PAGE_SHIFT;
5187         }
5188
5189         if (unlock)
5190                 mutex_unlock(&dev->struct_mutex);
5191
5192         return count;
5193 }
5194
5195 /* All the new VM stuff */
5196 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5197                                   struct i915_address_space *vm)
5198 {
5199         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5200         struct i915_vma *vma;
5201
5202         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5203
5204         list_for_each_entry(vma, &o->vma_list, vma_link) {
5205                 if (vma->vm == vm)
5206                         return vma->node.start;
5207
5208         }
5209         WARN(1, "%s vma for this object not found.\n",
5210              i915_is_ggtt(vm) ? "global" : "ppgtt");
5211         return -1;
5212 }
5213
5214 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5215                         struct i915_address_space *vm)
5216 {
5217         struct i915_vma *vma;
5218
5219         list_for_each_entry(vma, &o->vma_list, vma_link)
5220                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5221                         return true;
5222
5223         return false;
5224 }
5225
5226 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5227 {
5228         struct i915_vma *vma;
5229
5230         list_for_each_entry(vma, &o->vma_list, vma_link)
5231                 if (drm_mm_node_allocated(&vma->node))
5232                         return true;
5233
5234         return false;
5235 }
5236
5237 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5238                                 struct i915_address_space *vm)
5239 {
5240         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5241         struct i915_vma *vma;
5242
5243         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5244
5245         BUG_ON(list_empty(&o->vma_list));
5246
5247         list_for_each_entry(vma, &o->vma_list, vma_link)
5248                 if (vma->vm == vm)
5249                         return vma->node.size;
5250
5251         return 0;
5252 }
5253
5254 static unsigned long
5255 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5256 {
5257         struct drm_i915_private *dev_priv =
5258                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5259         struct drm_device *dev = dev_priv->dev;
5260         unsigned long freed;
5261         bool unlock;
5262
5263         if (!i915_gem_shrinker_lock(dev, &unlock))
5264                 return SHRINK_STOP;
5265
5266         freed = i915_gem_shrink(dev_priv,
5267                                 sc->nr_to_scan,
5268                                 I915_SHRINK_BOUND |
5269                                 I915_SHRINK_UNBOUND |
5270                                 I915_SHRINK_PURGEABLE);
5271         if (freed < sc->nr_to_scan)
5272                 freed += i915_gem_shrink(dev_priv,
5273                                          sc->nr_to_scan - freed,
5274                                          I915_SHRINK_BOUND |
5275                                          I915_SHRINK_UNBOUND);
5276         if (unlock)
5277                 mutex_unlock(&dev->struct_mutex);
5278
5279         return freed;
5280 }
5281
5282 static int
5283 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5284 {
5285         struct drm_i915_private *dev_priv =
5286                 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5287         struct drm_device *dev = dev_priv->dev;
5288         struct drm_i915_gem_object *obj;
5289         unsigned long timeout = msecs_to_jiffies(5000) + 1;
5290         unsigned long pinned, bound, unbound, freed_pages;
5291         bool was_interruptible;
5292         bool unlock;
5293
5294         while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5295                 schedule_timeout_killable(1);
5296                 if (fatal_signal_pending(current))
5297                         return NOTIFY_DONE;
5298         }
5299         if (timeout == 0) {
5300                 pr_err("Unable to purge GPU memory due lock contention.\n");
5301                 return NOTIFY_DONE;
5302         }
5303
5304         was_interruptible = dev_priv->mm.interruptible;
5305         dev_priv->mm.interruptible = false;
5306
5307         freed_pages = i915_gem_shrink_all(dev_priv);
5308
5309         dev_priv->mm.interruptible = was_interruptible;
5310
5311         /* Because we may be allocating inside our own driver, we cannot
5312          * assert that there are no objects with pinned pages that are not
5313          * being pointed to by hardware.
5314          */
5315         unbound = bound = pinned = 0;
5316         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5317                 if (!obj->base.filp) /* not backed by a freeable object */
5318                         continue;
5319
5320                 if (obj->pages_pin_count)
5321                         pinned += obj->base.size;
5322                 else
5323                         unbound += obj->base.size;
5324         }
5325         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5326                 if (!obj->base.filp)
5327                         continue;
5328
5329                 if (obj->pages_pin_count)
5330                         pinned += obj->base.size;
5331                 else
5332                         bound += obj->base.size;
5333         }
5334
5335         if (unlock)
5336                 mutex_unlock(&dev->struct_mutex);
5337
5338         if (freed_pages || unbound || bound)
5339                 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5340                         freed_pages << PAGE_SHIFT, pinned);
5341         if (unbound || bound)
5342                 pr_err("%lu and %lu bytes still available in the "
5343                        "bound and unbound GPU page lists.\n",
5344                        bound, unbound);
5345
5346         *(unsigned long *)ptr += freed_pages;
5347         return NOTIFY_DONE;
5348 }
5349
5350 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5351 {
5352         struct i915_vma *vma;
5353
5354         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5355         if (vma->vm != i915_obj_to_ggtt(obj))
5356                 return NULL;
5357
5358         return vma;
5359 }