drm/i915: Create a gtt structure
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42                                                     unsigned alignment,
43                                                     bool map_and_fenceable,
44                                                     bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46                                 struct drm_i915_gem_object *obj,
47                                 struct drm_i915_gem_pwrite *args,
48                                 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57                                     struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64         if (obj->tiling_mode)
65                 i915_gem_release_mmap(obj);
66
67         /* As we do not have an associated fence register, we will force
68          * a tiling change if we ever need to acquire one.
69          */
70         obj->fence_dirty = false;
71         obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76                                   size_t size)
77 {
78         dev_priv->mm.object_count++;
79         dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83                                      size_t size)
84 {
85         dev_priv->mm.object_count--;
86         dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92         struct drm_i915_private *dev_priv = dev->dev_private;
93         struct completion *x = &dev_priv->error_completion;
94         unsigned long flags;
95         int ret;
96
97         if (!atomic_read(&dev_priv->mm.wedged))
98                 return 0;
99
100         /*
101          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102          * userspace. If it takes that long something really bad is going on and
103          * we should simply try to bail out and fail as gracefully as possible.
104          */
105         ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106         if (ret == 0) {
107                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108                 return -EIO;
109         } else if (ret < 0) {
110                 return ret;
111         }
112
113         if (atomic_read(&dev_priv->mm.wedged)) {
114                 /* GPU is hung, bump the completion count to account for
115                  * the token we just consumed so that we never hit zero and
116                  * end up waiting upon a subsequent completion event that
117                  * will never happen.
118                  */
119                 spin_lock_irqsave(&x->wait.lock, flags);
120                 x->done++;
121                 spin_unlock_irqrestore(&x->wait.lock, flags);
122         }
123         return 0;
124 }
125
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128         int ret;
129
130         ret = i915_gem_wait_for_error(dev);
131         if (ret)
132                 return ret;
133
134         ret = mutex_lock_interruptible(&dev->struct_mutex);
135         if (ret)
136                 return ret;
137
138         WARN_ON(i915_verify_lists(dev));
139         return 0;
140 }
141
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145         return obj->gtt_space && !obj->active;
146 }
147
148 int
149 i915_gem_init_ioctl(struct drm_device *dev, void *data,
150                     struct drm_file *file)
151 {
152         struct drm_i915_gem_init *args = data;
153
154         if (drm_core_check_feature(dev, DRIVER_MODESET))
155                 return -ENODEV;
156
157         if (args->gtt_start >= args->gtt_end ||
158             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159                 return -EINVAL;
160
161         /* GEM with user mode setting was never supported on ilk and later. */
162         if (INTEL_INFO(dev)->gen >= 5)
163                 return -ENODEV;
164
165         mutex_lock(&dev->struct_mutex);
166         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
167                                   args->gtt_end);
168         mutex_unlock(&dev->struct_mutex);
169
170         return 0;
171 }
172
173 int
174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
175                             struct drm_file *file)
176 {
177         struct drm_i915_private *dev_priv = dev->dev_private;
178         struct drm_i915_gem_get_aperture *args = data;
179         struct drm_i915_gem_object *obj;
180         size_t pinned;
181
182         pinned = 0;
183         mutex_lock(&dev->struct_mutex);
184         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185                 if (obj->pin_count)
186                         pinned += obj->gtt_space->size;
187         mutex_unlock(&dev->struct_mutex);
188
189         args->aper_size = dev_priv->gtt.total;
190         args->aper_available_size = args->aper_size - pinned;
191
192         return 0;
193 }
194
195 void *i915_gem_object_alloc(struct drm_device *dev)
196 {
197         struct drm_i915_private *dev_priv = dev->dev_private;
198         return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
199 }
200
201 void i915_gem_object_free(struct drm_i915_gem_object *obj)
202 {
203         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
204         kmem_cache_free(dev_priv->slab, obj);
205 }
206
207 static int
208 i915_gem_create(struct drm_file *file,
209                 struct drm_device *dev,
210                 uint64_t size,
211                 uint32_t *handle_p)
212 {
213         struct drm_i915_gem_object *obj;
214         int ret;
215         u32 handle;
216
217         size = roundup(size, PAGE_SIZE);
218         if (size == 0)
219                 return -EINVAL;
220
221         /* Allocate the new object */
222         obj = i915_gem_alloc_object(dev, size);
223         if (obj == NULL)
224                 return -ENOMEM;
225
226         ret = drm_gem_handle_create(file, &obj->base, &handle);
227         if (ret) {
228                 drm_gem_object_release(&obj->base);
229                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
230                 i915_gem_object_free(obj);
231                 return ret;
232         }
233
234         /* drop reference from allocate - handle holds it now */
235         drm_gem_object_unreference(&obj->base);
236         trace_i915_gem_object_create(obj);
237
238         *handle_p = handle;
239         return 0;
240 }
241
242 int
243 i915_gem_dumb_create(struct drm_file *file,
244                      struct drm_device *dev,
245                      struct drm_mode_create_dumb *args)
246 {
247         /* have to work out size/pitch and return them */
248         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
249         args->size = args->pitch * args->height;
250         return i915_gem_create(file, dev,
251                                args->size, &args->handle);
252 }
253
254 int i915_gem_dumb_destroy(struct drm_file *file,
255                           struct drm_device *dev,
256                           uint32_t handle)
257 {
258         return drm_gem_handle_delete(file, handle);
259 }
260
261 /**
262  * Creates a new mm object and returns a handle to it.
263  */
264 int
265 i915_gem_create_ioctl(struct drm_device *dev, void *data,
266                       struct drm_file *file)
267 {
268         struct drm_i915_gem_create *args = data;
269
270         return i915_gem_create(file, dev,
271                                args->size, &args->handle);
272 }
273
274 static inline int
275 __copy_to_user_swizzled(char __user *cpu_vaddr,
276                         const char *gpu_vaddr, int gpu_offset,
277                         int length)
278 {
279         int ret, cpu_offset = 0;
280
281         while (length > 0) {
282                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
283                 int this_length = min(cacheline_end - gpu_offset, length);
284                 int swizzled_gpu_offset = gpu_offset ^ 64;
285
286                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
287                                      gpu_vaddr + swizzled_gpu_offset,
288                                      this_length);
289                 if (ret)
290                         return ret + length;
291
292                 cpu_offset += this_length;
293                 gpu_offset += this_length;
294                 length -= this_length;
295         }
296
297         return 0;
298 }
299
300 static inline int
301 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
302                           const char __user *cpu_vaddr,
303                           int length)
304 {
305         int ret, cpu_offset = 0;
306
307         while (length > 0) {
308                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
309                 int this_length = min(cacheline_end - gpu_offset, length);
310                 int swizzled_gpu_offset = gpu_offset ^ 64;
311
312                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
313                                        cpu_vaddr + cpu_offset,
314                                        this_length);
315                 if (ret)
316                         return ret + length;
317
318                 cpu_offset += this_length;
319                 gpu_offset += this_length;
320                 length -= this_length;
321         }
322
323         return 0;
324 }
325
326 /* Per-page copy function for the shmem pread fastpath.
327  * Flushes invalid cachelines before reading the target if
328  * needs_clflush is set. */
329 static int
330 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
331                  char __user *user_data,
332                  bool page_do_bit17_swizzling, bool needs_clflush)
333 {
334         char *vaddr;
335         int ret;
336
337         if (unlikely(page_do_bit17_swizzling))
338                 return -EINVAL;
339
340         vaddr = kmap_atomic(page);
341         if (needs_clflush)
342                 drm_clflush_virt_range(vaddr + shmem_page_offset,
343                                        page_length);
344         ret = __copy_to_user_inatomic(user_data,
345                                       vaddr + shmem_page_offset,
346                                       page_length);
347         kunmap_atomic(vaddr);
348
349         return ret ? -EFAULT : 0;
350 }
351
352 static void
353 shmem_clflush_swizzled_range(char *addr, unsigned long length,
354                              bool swizzled)
355 {
356         if (unlikely(swizzled)) {
357                 unsigned long start = (unsigned long) addr;
358                 unsigned long end = (unsigned long) addr + length;
359
360                 /* For swizzling simply ensure that we always flush both
361                  * channels. Lame, but simple and it works. Swizzled
362                  * pwrite/pread is far from a hotpath - current userspace
363                  * doesn't use it at all. */
364                 start = round_down(start, 128);
365                 end = round_up(end, 128);
366
367                 drm_clflush_virt_range((void *)start, end - start);
368         } else {
369                 drm_clflush_virt_range(addr, length);
370         }
371
372 }
373
374 /* Only difference to the fast-path function is that this can handle bit17
375  * and uses non-atomic copy and kmap functions. */
376 static int
377 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
378                  char __user *user_data,
379                  bool page_do_bit17_swizzling, bool needs_clflush)
380 {
381         char *vaddr;
382         int ret;
383
384         vaddr = kmap(page);
385         if (needs_clflush)
386                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
387                                              page_length,
388                                              page_do_bit17_swizzling);
389
390         if (page_do_bit17_swizzling)
391                 ret = __copy_to_user_swizzled(user_data,
392                                               vaddr, shmem_page_offset,
393                                               page_length);
394         else
395                 ret = __copy_to_user(user_data,
396                                      vaddr + shmem_page_offset,
397                                      page_length);
398         kunmap(page);
399
400         return ret ? - EFAULT : 0;
401 }
402
403 static int
404 i915_gem_shmem_pread(struct drm_device *dev,
405                      struct drm_i915_gem_object *obj,
406                      struct drm_i915_gem_pread *args,
407                      struct drm_file *file)
408 {
409         char __user *user_data;
410         ssize_t remain;
411         loff_t offset;
412         int shmem_page_offset, page_length, ret = 0;
413         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
414         int prefaulted = 0;
415         int needs_clflush = 0;
416         struct scatterlist *sg;
417         int i;
418
419         user_data = (char __user *) (uintptr_t) args->data_ptr;
420         remain = args->size;
421
422         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
423
424         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
425                 /* If we're not in the cpu read domain, set ourself into the gtt
426                  * read domain and manually flush cachelines (if required). This
427                  * optimizes for the case when the gpu will dirty the data
428                  * anyway again before the next pread happens. */
429                 if (obj->cache_level == I915_CACHE_NONE)
430                         needs_clflush = 1;
431                 if (obj->gtt_space) {
432                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
433                         if (ret)
434                                 return ret;
435                 }
436         }
437
438         ret = i915_gem_object_get_pages(obj);
439         if (ret)
440                 return ret;
441
442         i915_gem_object_pin_pages(obj);
443
444         offset = args->offset;
445
446         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
447                 struct page *page;
448
449                 if (i < offset >> PAGE_SHIFT)
450                         continue;
451
452                 if (remain <= 0)
453                         break;
454
455                 /* Operation in this page
456                  *
457                  * shmem_page_offset = offset within page in shmem file
458                  * page_length = bytes to copy for this page
459                  */
460                 shmem_page_offset = offset_in_page(offset);
461                 page_length = remain;
462                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
463                         page_length = PAGE_SIZE - shmem_page_offset;
464
465                 page = sg_page(sg);
466                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
467                         (page_to_phys(page) & (1 << 17)) != 0;
468
469                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
470                                        user_data, page_do_bit17_swizzling,
471                                        needs_clflush);
472                 if (ret == 0)
473                         goto next_page;
474
475                 mutex_unlock(&dev->struct_mutex);
476
477                 if (!prefaulted) {
478                         ret = fault_in_multipages_writeable(user_data, remain);
479                         /* Userspace is tricking us, but we've already clobbered
480                          * its pages with the prefault and promised to write the
481                          * data up to the first fault. Hence ignore any errors
482                          * and just continue. */
483                         (void)ret;
484                         prefaulted = 1;
485                 }
486
487                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
488                                        user_data, page_do_bit17_swizzling,
489                                        needs_clflush);
490
491                 mutex_lock(&dev->struct_mutex);
492
493 next_page:
494                 mark_page_accessed(page);
495
496                 if (ret)
497                         goto out;
498
499                 remain -= page_length;
500                 user_data += page_length;
501                 offset += page_length;
502         }
503
504 out:
505         i915_gem_object_unpin_pages(obj);
506
507         return ret;
508 }
509
510 /**
511  * Reads data from the object referenced by handle.
512  *
513  * On error, the contents of *data are undefined.
514  */
515 int
516 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
517                      struct drm_file *file)
518 {
519         struct drm_i915_gem_pread *args = data;
520         struct drm_i915_gem_object *obj;
521         int ret = 0;
522
523         if (args->size == 0)
524                 return 0;
525
526         if (!access_ok(VERIFY_WRITE,
527                        (char __user *)(uintptr_t)args->data_ptr,
528                        args->size))
529                 return -EFAULT;
530
531         ret = i915_mutex_lock_interruptible(dev);
532         if (ret)
533                 return ret;
534
535         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
536         if (&obj->base == NULL) {
537                 ret = -ENOENT;
538                 goto unlock;
539         }
540
541         /* Bounds check source.  */
542         if (args->offset > obj->base.size ||
543             args->size > obj->base.size - args->offset) {
544                 ret = -EINVAL;
545                 goto out;
546         }
547
548         /* prime objects have no backing filp to GEM pread/pwrite
549          * pages from.
550          */
551         if (!obj->base.filp) {
552                 ret = -EINVAL;
553                 goto out;
554         }
555
556         trace_i915_gem_object_pread(obj, args->offset, args->size);
557
558         ret = i915_gem_shmem_pread(dev, obj, args, file);
559
560 out:
561         drm_gem_object_unreference(&obj->base);
562 unlock:
563         mutex_unlock(&dev->struct_mutex);
564         return ret;
565 }
566
567 /* This is the fast write path which cannot handle
568  * page faults in the source data
569  */
570
571 static inline int
572 fast_user_write(struct io_mapping *mapping,
573                 loff_t page_base, int page_offset,
574                 char __user *user_data,
575                 int length)
576 {
577         void __iomem *vaddr_atomic;
578         void *vaddr;
579         unsigned long unwritten;
580
581         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
582         /* We can use the cpu mem copy function because this is X86. */
583         vaddr = (void __force*)vaddr_atomic + page_offset;
584         unwritten = __copy_from_user_inatomic_nocache(vaddr,
585                                                       user_data, length);
586         io_mapping_unmap_atomic(vaddr_atomic);
587         return unwritten;
588 }
589
590 /**
591  * This is the fast pwrite path, where we copy the data directly from the
592  * user into the GTT, uncached.
593  */
594 static int
595 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
596                          struct drm_i915_gem_object *obj,
597                          struct drm_i915_gem_pwrite *args,
598                          struct drm_file *file)
599 {
600         drm_i915_private_t *dev_priv = dev->dev_private;
601         ssize_t remain;
602         loff_t offset, page_base;
603         char __user *user_data;
604         int page_offset, page_length, ret;
605
606         ret = i915_gem_object_pin(obj, 0, true, true);
607         if (ret)
608                 goto out;
609
610         ret = i915_gem_object_set_to_gtt_domain(obj, true);
611         if (ret)
612                 goto out_unpin;
613
614         ret = i915_gem_object_put_fence(obj);
615         if (ret)
616                 goto out_unpin;
617
618         user_data = (char __user *) (uintptr_t) args->data_ptr;
619         remain = args->size;
620
621         offset = obj->gtt_offset + args->offset;
622
623         while (remain > 0) {
624                 /* Operation in this page
625                  *
626                  * page_base = page offset within aperture
627                  * page_offset = offset within page
628                  * page_length = bytes to copy for this page
629                  */
630                 page_base = offset & PAGE_MASK;
631                 page_offset = offset_in_page(offset);
632                 page_length = remain;
633                 if ((page_offset + remain) > PAGE_SIZE)
634                         page_length = PAGE_SIZE - page_offset;
635
636                 /* If we get a fault while copying data, then (presumably) our
637                  * source page isn't available.  Return the error and we'll
638                  * retry in the slow path.
639                  */
640                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
641                                     page_offset, user_data, page_length)) {
642                         ret = -EFAULT;
643                         goto out_unpin;
644                 }
645
646                 remain -= page_length;
647                 user_data += page_length;
648                 offset += page_length;
649         }
650
651 out_unpin:
652         i915_gem_object_unpin(obj);
653 out:
654         return ret;
655 }
656
657 /* Per-page copy function for the shmem pwrite fastpath.
658  * Flushes invalid cachelines before writing to the target if
659  * needs_clflush_before is set and flushes out any written cachelines after
660  * writing if needs_clflush is set. */
661 static int
662 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
663                   char __user *user_data,
664                   bool page_do_bit17_swizzling,
665                   bool needs_clflush_before,
666                   bool needs_clflush_after)
667 {
668         char *vaddr;
669         int ret;
670
671         if (unlikely(page_do_bit17_swizzling))
672                 return -EINVAL;
673
674         vaddr = kmap_atomic(page);
675         if (needs_clflush_before)
676                 drm_clflush_virt_range(vaddr + shmem_page_offset,
677                                        page_length);
678         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
679                                                 user_data,
680                                                 page_length);
681         if (needs_clflush_after)
682                 drm_clflush_virt_range(vaddr + shmem_page_offset,
683                                        page_length);
684         kunmap_atomic(vaddr);
685
686         return ret ? -EFAULT : 0;
687 }
688
689 /* Only difference to the fast-path function is that this can handle bit17
690  * and uses non-atomic copy and kmap functions. */
691 static int
692 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
693                   char __user *user_data,
694                   bool page_do_bit17_swizzling,
695                   bool needs_clflush_before,
696                   bool needs_clflush_after)
697 {
698         char *vaddr;
699         int ret;
700
701         vaddr = kmap(page);
702         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
703                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
704                                              page_length,
705                                              page_do_bit17_swizzling);
706         if (page_do_bit17_swizzling)
707                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
708                                                 user_data,
709                                                 page_length);
710         else
711                 ret = __copy_from_user(vaddr + shmem_page_offset,
712                                        user_data,
713                                        page_length);
714         if (needs_clflush_after)
715                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
716                                              page_length,
717                                              page_do_bit17_swizzling);
718         kunmap(page);
719
720         return ret ? -EFAULT : 0;
721 }
722
723 static int
724 i915_gem_shmem_pwrite(struct drm_device *dev,
725                       struct drm_i915_gem_object *obj,
726                       struct drm_i915_gem_pwrite *args,
727                       struct drm_file *file)
728 {
729         ssize_t remain;
730         loff_t offset;
731         char __user *user_data;
732         int shmem_page_offset, page_length, ret = 0;
733         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
734         int hit_slowpath = 0;
735         int needs_clflush_after = 0;
736         int needs_clflush_before = 0;
737         int i;
738         struct scatterlist *sg;
739
740         user_data = (char __user *) (uintptr_t) args->data_ptr;
741         remain = args->size;
742
743         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
744
745         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
746                 /* If we're not in the cpu write domain, set ourself into the gtt
747                  * write domain and manually flush cachelines (if required). This
748                  * optimizes for the case when the gpu will use the data
749                  * right away and we therefore have to clflush anyway. */
750                 if (obj->cache_level == I915_CACHE_NONE)
751                         needs_clflush_after = 1;
752                 if (obj->gtt_space) {
753                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
754                         if (ret)
755                                 return ret;
756                 }
757         }
758         /* Same trick applies for invalidate partially written cachelines before
759          * writing.  */
760         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
761             && obj->cache_level == I915_CACHE_NONE)
762                 needs_clflush_before = 1;
763
764         ret = i915_gem_object_get_pages(obj);
765         if (ret)
766                 return ret;
767
768         i915_gem_object_pin_pages(obj);
769
770         offset = args->offset;
771         obj->dirty = 1;
772
773         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
774                 struct page *page;
775                 int partial_cacheline_write;
776
777                 if (i < offset >> PAGE_SHIFT)
778                         continue;
779
780                 if (remain <= 0)
781                         break;
782
783                 /* Operation in this page
784                  *
785                  * shmem_page_offset = offset within page in shmem file
786                  * page_length = bytes to copy for this page
787                  */
788                 shmem_page_offset = offset_in_page(offset);
789
790                 page_length = remain;
791                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
792                         page_length = PAGE_SIZE - shmem_page_offset;
793
794                 /* If we don't overwrite a cacheline completely we need to be
795                  * careful to have up-to-date data by first clflushing. Don't
796                  * overcomplicate things and flush the entire patch. */
797                 partial_cacheline_write = needs_clflush_before &&
798                         ((shmem_page_offset | page_length)
799                                 & (boot_cpu_data.x86_clflush_size - 1));
800
801                 page = sg_page(sg);
802                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
803                         (page_to_phys(page) & (1 << 17)) != 0;
804
805                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
806                                         user_data, page_do_bit17_swizzling,
807                                         partial_cacheline_write,
808                                         needs_clflush_after);
809                 if (ret == 0)
810                         goto next_page;
811
812                 hit_slowpath = 1;
813                 mutex_unlock(&dev->struct_mutex);
814                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
815                                         user_data, page_do_bit17_swizzling,
816                                         partial_cacheline_write,
817                                         needs_clflush_after);
818
819                 mutex_lock(&dev->struct_mutex);
820
821 next_page:
822                 set_page_dirty(page);
823                 mark_page_accessed(page);
824
825                 if (ret)
826                         goto out;
827
828                 remain -= page_length;
829                 user_data += page_length;
830                 offset += page_length;
831         }
832
833 out:
834         i915_gem_object_unpin_pages(obj);
835
836         if (hit_slowpath) {
837                 /*
838                  * Fixup: Flush cpu caches in case we didn't flush the dirty
839                  * cachelines in-line while writing and the object moved
840                  * out of the cpu write domain while we've dropped the lock.
841                  */
842                 if (!needs_clflush_after &&
843                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
844                         i915_gem_clflush_object(obj);
845                         i915_gem_chipset_flush(dev);
846                 }
847         }
848
849         if (needs_clflush_after)
850                 i915_gem_chipset_flush(dev);
851
852         return ret;
853 }
854
855 /**
856  * Writes data to the object referenced by handle.
857  *
858  * On error, the contents of the buffer that were to be modified are undefined.
859  */
860 int
861 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
862                       struct drm_file *file)
863 {
864         struct drm_i915_gem_pwrite *args = data;
865         struct drm_i915_gem_object *obj;
866         int ret;
867
868         if (args->size == 0)
869                 return 0;
870
871         if (!access_ok(VERIFY_READ,
872                        (char __user *)(uintptr_t)args->data_ptr,
873                        args->size))
874                 return -EFAULT;
875
876         ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
877                                            args->size);
878         if (ret)
879                 return -EFAULT;
880
881         ret = i915_mutex_lock_interruptible(dev);
882         if (ret)
883                 return ret;
884
885         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
886         if (&obj->base == NULL) {
887                 ret = -ENOENT;
888                 goto unlock;
889         }
890
891         /* Bounds check destination. */
892         if (args->offset > obj->base.size ||
893             args->size > obj->base.size - args->offset) {
894                 ret = -EINVAL;
895                 goto out;
896         }
897
898         /* prime objects have no backing filp to GEM pread/pwrite
899          * pages from.
900          */
901         if (!obj->base.filp) {
902                 ret = -EINVAL;
903                 goto out;
904         }
905
906         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
907
908         ret = -EFAULT;
909         /* We can only do the GTT pwrite on untiled buffers, as otherwise
910          * it would end up going through the fenced access, and we'll get
911          * different detiling behavior between reading and writing.
912          * pread/pwrite currently are reading and writing from the CPU
913          * perspective, requiring manual detiling by the client.
914          */
915         if (obj->phys_obj) {
916                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
917                 goto out;
918         }
919
920         if (obj->cache_level == I915_CACHE_NONE &&
921             obj->tiling_mode == I915_TILING_NONE &&
922             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
923                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
924                 /* Note that the gtt paths might fail with non-page-backed user
925                  * pointers (e.g. gtt mappings when moving data between
926                  * textures). Fallback to the shmem path in that case. */
927         }
928
929         if (ret == -EFAULT || ret == -ENOSPC)
930                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
931
932 out:
933         drm_gem_object_unreference(&obj->base);
934 unlock:
935         mutex_unlock(&dev->struct_mutex);
936         return ret;
937 }
938
939 int
940 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
941                      bool interruptible)
942 {
943         if (atomic_read(&dev_priv->mm.wedged)) {
944                 struct completion *x = &dev_priv->error_completion;
945                 bool recovery_complete;
946                 unsigned long flags;
947
948                 /* Give the error handler a chance to run. */
949                 spin_lock_irqsave(&x->wait.lock, flags);
950                 recovery_complete = x->done > 0;
951                 spin_unlock_irqrestore(&x->wait.lock, flags);
952
953                 /* Non-interruptible callers can't handle -EAGAIN, hence return
954                  * -EIO unconditionally for these. */
955                 if (!interruptible)
956                         return -EIO;
957
958                 /* Recovery complete, but still wedged means reset failure. */
959                 if (recovery_complete)
960                         return -EIO;
961
962                 return -EAGAIN;
963         }
964
965         return 0;
966 }
967
968 /*
969  * Compare seqno against outstanding lazy request. Emit a request if they are
970  * equal.
971  */
972 static int
973 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
974 {
975         int ret;
976
977         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
978
979         ret = 0;
980         if (seqno == ring->outstanding_lazy_request)
981                 ret = i915_add_request(ring, NULL, NULL);
982
983         return ret;
984 }
985
986 /**
987  * __wait_seqno - wait until execution of seqno has finished
988  * @ring: the ring expected to report seqno
989  * @seqno: duh!
990  * @interruptible: do an interruptible wait (normally yes)
991  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
992  *
993  * Returns 0 if the seqno was found within the alloted time. Else returns the
994  * errno with remaining time filled in timeout argument.
995  */
996 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
997                         bool interruptible, struct timespec *timeout)
998 {
999         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1000         struct timespec before, now, wait_time={1,0};
1001         unsigned long timeout_jiffies;
1002         long end;
1003         bool wait_forever = true;
1004         int ret;
1005
1006         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1007                 return 0;
1008
1009         trace_i915_gem_request_wait_begin(ring, seqno);
1010
1011         if (timeout != NULL) {
1012                 wait_time = *timeout;
1013                 wait_forever = false;
1014         }
1015
1016         timeout_jiffies = timespec_to_jiffies(&wait_time);
1017
1018         if (WARN_ON(!ring->irq_get(ring)))
1019                 return -ENODEV;
1020
1021         /* Record current time in case interrupted by signal, or wedged * */
1022         getrawmonotonic(&before);
1023
1024 #define EXIT_COND \
1025         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1026         atomic_read(&dev_priv->mm.wedged))
1027         do {
1028                 if (interruptible)
1029                         end = wait_event_interruptible_timeout(ring->irq_queue,
1030                                                                EXIT_COND,
1031                                                                timeout_jiffies);
1032                 else
1033                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1034                                                  timeout_jiffies);
1035
1036                 ret = i915_gem_check_wedge(dev_priv, interruptible);
1037                 if (ret)
1038                         end = ret;
1039         } while (end == 0 && wait_forever);
1040
1041         getrawmonotonic(&now);
1042
1043         ring->irq_put(ring);
1044         trace_i915_gem_request_wait_end(ring, seqno);
1045 #undef EXIT_COND
1046
1047         if (timeout) {
1048                 struct timespec sleep_time = timespec_sub(now, before);
1049                 *timeout = timespec_sub(*timeout, sleep_time);
1050         }
1051
1052         switch (end) {
1053         case -EIO:
1054         case -EAGAIN: /* Wedged */
1055         case -ERESTARTSYS: /* Signal */
1056                 return (int)end;
1057         case 0: /* Timeout */
1058                 if (timeout)
1059                         set_normalized_timespec(timeout, 0, 0);
1060                 return -ETIME;
1061         default: /* Completed */
1062                 WARN_ON(end < 0); /* We're not aware of other errors */
1063                 return 0;
1064         }
1065 }
1066
1067 /**
1068  * Waits for a sequence number to be signaled, and cleans up the
1069  * request and object lists appropriately for that event.
1070  */
1071 int
1072 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1073 {
1074         struct drm_device *dev = ring->dev;
1075         struct drm_i915_private *dev_priv = dev->dev_private;
1076         bool interruptible = dev_priv->mm.interruptible;
1077         int ret;
1078
1079         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1080         BUG_ON(seqno == 0);
1081
1082         ret = i915_gem_check_wedge(dev_priv, interruptible);
1083         if (ret)
1084                 return ret;
1085
1086         ret = i915_gem_check_olr(ring, seqno);
1087         if (ret)
1088                 return ret;
1089
1090         return __wait_seqno(ring, seqno, interruptible, NULL);
1091 }
1092
1093 /**
1094  * Ensures that all rendering to the object has completed and the object is
1095  * safe to unbind from the GTT or access from the CPU.
1096  */
1097 static __must_check int
1098 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1099                                bool readonly)
1100 {
1101         struct intel_ring_buffer *ring = obj->ring;
1102         u32 seqno;
1103         int ret;
1104
1105         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1106         if (seqno == 0)
1107                 return 0;
1108
1109         ret = i915_wait_seqno(ring, seqno);
1110         if (ret)
1111                 return ret;
1112
1113         i915_gem_retire_requests_ring(ring);
1114
1115         /* Manually manage the write flush as we may have not yet
1116          * retired the buffer.
1117          */
1118         if (obj->last_write_seqno &&
1119             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1120                 obj->last_write_seqno = 0;
1121                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1122         }
1123
1124         return 0;
1125 }
1126
1127 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1128  * as the object state may change during this call.
1129  */
1130 static __must_check int
1131 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1132                                             bool readonly)
1133 {
1134         struct drm_device *dev = obj->base.dev;
1135         struct drm_i915_private *dev_priv = dev->dev_private;
1136         struct intel_ring_buffer *ring = obj->ring;
1137         u32 seqno;
1138         int ret;
1139
1140         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1141         BUG_ON(!dev_priv->mm.interruptible);
1142
1143         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1144         if (seqno == 0)
1145                 return 0;
1146
1147         ret = i915_gem_check_wedge(dev_priv, true);
1148         if (ret)
1149                 return ret;
1150
1151         ret = i915_gem_check_olr(ring, seqno);
1152         if (ret)
1153                 return ret;
1154
1155         mutex_unlock(&dev->struct_mutex);
1156         ret = __wait_seqno(ring, seqno, true, NULL);
1157         mutex_lock(&dev->struct_mutex);
1158
1159         i915_gem_retire_requests_ring(ring);
1160
1161         /* Manually manage the write flush as we may have not yet
1162          * retired the buffer.
1163          */
1164         if (obj->last_write_seqno &&
1165             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1166                 obj->last_write_seqno = 0;
1167                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1168         }
1169
1170         return ret;
1171 }
1172
1173 /**
1174  * Called when user space prepares to use an object with the CPU, either
1175  * through the mmap ioctl's mapping or a GTT mapping.
1176  */
1177 int
1178 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1179                           struct drm_file *file)
1180 {
1181         struct drm_i915_gem_set_domain *args = data;
1182         struct drm_i915_gem_object *obj;
1183         uint32_t read_domains = args->read_domains;
1184         uint32_t write_domain = args->write_domain;
1185         int ret;
1186
1187         /* Only handle setting domains to types used by the CPU. */
1188         if (write_domain & I915_GEM_GPU_DOMAINS)
1189                 return -EINVAL;
1190
1191         if (read_domains & I915_GEM_GPU_DOMAINS)
1192                 return -EINVAL;
1193
1194         /* Having something in the write domain implies it's in the read
1195          * domain, and only that read domain.  Enforce that in the request.
1196          */
1197         if (write_domain != 0 && read_domains != write_domain)
1198                 return -EINVAL;
1199
1200         ret = i915_mutex_lock_interruptible(dev);
1201         if (ret)
1202                 return ret;
1203
1204         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1205         if (&obj->base == NULL) {
1206                 ret = -ENOENT;
1207                 goto unlock;
1208         }
1209
1210         /* Try to flush the object off the GPU without holding the lock.
1211          * We will repeat the flush holding the lock in the normal manner
1212          * to catch cases where we are gazumped.
1213          */
1214         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1215         if (ret)
1216                 goto unref;
1217
1218         if (read_domains & I915_GEM_DOMAIN_GTT) {
1219                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1220
1221                 /* Silently promote "you're not bound, there was nothing to do"
1222                  * to success, since the client was just asking us to
1223                  * make sure everything was done.
1224                  */
1225                 if (ret == -EINVAL)
1226                         ret = 0;
1227         } else {
1228                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1229         }
1230
1231 unref:
1232         drm_gem_object_unreference(&obj->base);
1233 unlock:
1234         mutex_unlock(&dev->struct_mutex);
1235         return ret;
1236 }
1237
1238 /**
1239  * Called when user space has done writes to this buffer
1240  */
1241 int
1242 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1243                          struct drm_file *file)
1244 {
1245         struct drm_i915_gem_sw_finish *args = data;
1246         struct drm_i915_gem_object *obj;
1247         int ret = 0;
1248
1249         ret = i915_mutex_lock_interruptible(dev);
1250         if (ret)
1251                 return ret;
1252
1253         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254         if (&obj->base == NULL) {
1255                 ret = -ENOENT;
1256                 goto unlock;
1257         }
1258
1259         /* Pinned buffers may be scanout, so flush the cache */
1260         if (obj->pin_count)
1261                 i915_gem_object_flush_cpu_write_domain(obj);
1262
1263         drm_gem_object_unreference(&obj->base);
1264 unlock:
1265         mutex_unlock(&dev->struct_mutex);
1266         return ret;
1267 }
1268
1269 /**
1270  * Maps the contents of an object, returning the address it is mapped
1271  * into.
1272  *
1273  * While the mapping holds a reference on the contents of the object, it doesn't
1274  * imply a ref on the object itself.
1275  */
1276 int
1277 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1278                     struct drm_file *file)
1279 {
1280         struct drm_i915_gem_mmap *args = data;
1281         struct drm_gem_object *obj;
1282         unsigned long addr;
1283
1284         obj = drm_gem_object_lookup(dev, file, args->handle);
1285         if (obj == NULL)
1286                 return -ENOENT;
1287
1288         /* prime objects have no backing filp to GEM mmap
1289          * pages from.
1290          */
1291         if (!obj->filp) {
1292                 drm_gem_object_unreference_unlocked(obj);
1293                 return -EINVAL;
1294         }
1295
1296         addr = vm_mmap(obj->filp, 0, args->size,
1297                        PROT_READ | PROT_WRITE, MAP_SHARED,
1298                        args->offset);
1299         drm_gem_object_unreference_unlocked(obj);
1300         if (IS_ERR((void *)addr))
1301                 return addr;
1302
1303         args->addr_ptr = (uint64_t) addr;
1304
1305         return 0;
1306 }
1307
1308 /**
1309  * i915_gem_fault - fault a page into the GTT
1310  * vma: VMA in question
1311  * vmf: fault info
1312  *
1313  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1314  * from userspace.  The fault handler takes care of binding the object to
1315  * the GTT (if needed), allocating and programming a fence register (again,
1316  * only if needed based on whether the old reg is still valid or the object
1317  * is tiled) and inserting a new PTE into the faulting process.
1318  *
1319  * Note that the faulting process may involve evicting existing objects
1320  * from the GTT and/or fence registers to make room.  So performance may
1321  * suffer if the GTT working set is large or there are few fence registers
1322  * left.
1323  */
1324 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1325 {
1326         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1327         struct drm_device *dev = obj->base.dev;
1328         drm_i915_private_t *dev_priv = dev->dev_private;
1329         pgoff_t page_offset;
1330         unsigned long pfn;
1331         int ret = 0;
1332         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1333
1334         /* We don't use vmf->pgoff since that has the fake offset */
1335         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1336                 PAGE_SHIFT;
1337
1338         ret = i915_mutex_lock_interruptible(dev);
1339         if (ret)
1340                 goto out;
1341
1342         trace_i915_gem_object_fault(obj, page_offset, true, write);
1343
1344         /* Access to snoopable pages through the GTT is incoherent. */
1345         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1346                 ret = -EINVAL;
1347                 goto unlock;
1348         }
1349
1350         /* Now bind it into the GTT if needed */
1351         ret = i915_gem_object_pin(obj, 0, true, false);
1352         if (ret)
1353                 goto unlock;
1354
1355         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1356         if (ret)
1357                 goto unpin;
1358
1359         ret = i915_gem_object_get_fence(obj);
1360         if (ret)
1361                 goto unpin;
1362
1363         obj->fault_mappable = true;
1364
1365         pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1366                 page_offset;
1367
1368         /* Finally, remap it using the new GTT offset */
1369         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1370 unpin:
1371         i915_gem_object_unpin(obj);
1372 unlock:
1373         mutex_unlock(&dev->struct_mutex);
1374 out:
1375         switch (ret) {
1376         case -EIO:
1377                 /* If this -EIO is due to a gpu hang, give the reset code a
1378                  * chance to clean up the mess. Otherwise return the proper
1379                  * SIGBUS. */
1380                 if (!atomic_read(&dev_priv->mm.wedged))
1381                         return VM_FAULT_SIGBUS;
1382         case -EAGAIN:
1383                 /* Give the error handler a chance to run and move the
1384                  * objects off the GPU active list. Next time we service the
1385                  * fault, we should be able to transition the page into the
1386                  * GTT without touching the GPU (and so avoid further
1387                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1388                  * with coherency, just lost writes.
1389                  */
1390                 set_need_resched();
1391         case 0:
1392         case -ERESTARTSYS:
1393         case -EINTR:
1394         case -EBUSY:
1395                 /*
1396                  * EBUSY is ok: this just means that another thread
1397                  * already did the job.
1398                  */
1399                 return VM_FAULT_NOPAGE;
1400         case -ENOMEM:
1401                 return VM_FAULT_OOM;
1402         case -ENOSPC:
1403                 return VM_FAULT_SIGBUS;
1404         default:
1405                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1406                 return VM_FAULT_SIGBUS;
1407         }
1408 }
1409
1410 /**
1411  * i915_gem_release_mmap - remove physical page mappings
1412  * @obj: obj in question
1413  *
1414  * Preserve the reservation of the mmapping with the DRM core code, but
1415  * relinquish ownership of the pages back to the system.
1416  *
1417  * It is vital that we remove the page mapping if we have mapped a tiled
1418  * object through the GTT and then lose the fence register due to
1419  * resource pressure. Similarly if the object has been moved out of the
1420  * aperture, than pages mapped into userspace must be revoked. Removing the
1421  * mapping will then trigger a page fault on the next user access, allowing
1422  * fixup by i915_gem_fault().
1423  */
1424 void
1425 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1426 {
1427         if (!obj->fault_mappable)
1428                 return;
1429
1430         if (obj->base.dev->dev_mapping)
1431                 unmap_mapping_range(obj->base.dev->dev_mapping,
1432                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1433                                     obj->base.size, 1);
1434
1435         obj->fault_mappable = false;
1436 }
1437
1438 uint32_t
1439 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1440 {
1441         uint32_t gtt_size;
1442
1443         if (INTEL_INFO(dev)->gen >= 4 ||
1444             tiling_mode == I915_TILING_NONE)
1445                 return size;
1446
1447         /* Previous chips need a power-of-two fence region when tiling */
1448         if (INTEL_INFO(dev)->gen == 3)
1449                 gtt_size = 1024*1024;
1450         else
1451                 gtt_size = 512*1024;
1452
1453         while (gtt_size < size)
1454                 gtt_size <<= 1;
1455
1456         return gtt_size;
1457 }
1458
1459 /**
1460  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1461  * @obj: object to check
1462  *
1463  * Return the required GTT alignment for an object, taking into account
1464  * potential fence register mapping.
1465  */
1466 uint32_t
1467 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1468                            int tiling_mode, bool fenced)
1469 {
1470         /*
1471          * Minimum alignment is 4k (GTT page size), but might be greater
1472          * if a fence register is needed for the object.
1473          */
1474         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1475             tiling_mode == I915_TILING_NONE)
1476                 return 4096;
1477
1478         /*
1479          * Previous chips need to be aligned to the size of the smallest
1480          * fence register that can contain the object.
1481          */
1482         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1483 }
1484
1485 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1486 {
1487         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1488         int ret;
1489
1490         if (obj->base.map_list.map)
1491                 return 0;
1492
1493         dev_priv->mm.shrinker_no_lock_stealing = true;
1494
1495         ret = drm_gem_create_mmap_offset(&obj->base);
1496         if (ret != -ENOSPC)
1497                 goto out;
1498
1499         /* Badly fragmented mmap space? The only way we can recover
1500          * space is by destroying unwanted objects. We can't randomly release
1501          * mmap_offsets as userspace expects them to be persistent for the
1502          * lifetime of the objects. The closest we can is to release the
1503          * offsets on purgeable objects by truncating it and marking it purged,
1504          * which prevents userspace from ever using that object again.
1505          */
1506         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1507         ret = drm_gem_create_mmap_offset(&obj->base);
1508         if (ret != -ENOSPC)
1509                 goto out;
1510
1511         i915_gem_shrink_all(dev_priv);
1512         ret = drm_gem_create_mmap_offset(&obj->base);
1513 out:
1514         dev_priv->mm.shrinker_no_lock_stealing = false;
1515
1516         return ret;
1517 }
1518
1519 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1520 {
1521         if (!obj->base.map_list.map)
1522                 return;
1523
1524         drm_gem_free_mmap_offset(&obj->base);
1525 }
1526
1527 int
1528 i915_gem_mmap_gtt(struct drm_file *file,
1529                   struct drm_device *dev,
1530                   uint32_t handle,
1531                   uint64_t *offset)
1532 {
1533         struct drm_i915_private *dev_priv = dev->dev_private;
1534         struct drm_i915_gem_object *obj;
1535         int ret;
1536
1537         ret = i915_mutex_lock_interruptible(dev);
1538         if (ret)
1539                 return ret;
1540
1541         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1542         if (&obj->base == NULL) {
1543                 ret = -ENOENT;
1544                 goto unlock;
1545         }
1546
1547         if (obj->base.size > dev_priv->gtt.mappable_end) {
1548                 ret = -E2BIG;
1549                 goto out;
1550         }
1551
1552         if (obj->madv != I915_MADV_WILLNEED) {
1553                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1554                 ret = -EINVAL;
1555                 goto out;
1556         }
1557
1558         ret = i915_gem_object_create_mmap_offset(obj);
1559         if (ret)
1560                 goto out;
1561
1562         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1563
1564 out:
1565         drm_gem_object_unreference(&obj->base);
1566 unlock:
1567         mutex_unlock(&dev->struct_mutex);
1568         return ret;
1569 }
1570
1571 /**
1572  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1573  * @dev: DRM device
1574  * @data: GTT mapping ioctl data
1575  * @file: GEM object info
1576  *
1577  * Simply returns the fake offset to userspace so it can mmap it.
1578  * The mmap call will end up in drm_gem_mmap(), which will set things
1579  * up so we can get faults in the handler above.
1580  *
1581  * The fault handler will take care of binding the object into the GTT
1582  * (since it may have been evicted to make room for something), allocating
1583  * a fence register, and mapping the appropriate aperture address into
1584  * userspace.
1585  */
1586 int
1587 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1588                         struct drm_file *file)
1589 {
1590         struct drm_i915_gem_mmap_gtt *args = data;
1591
1592         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1593 }
1594
1595 /* Immediately discard the backing storage */
1596 static void
1597 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1598 {
1599         struct inode *inode;
1600
1601         i915_gem_object_free_mmap_offset(obj);
1602
1603         if (obj->base.filp == NULL)
1604                 return;
1605
1606         /* Our goal here is to return as much of the memory as
1607          * is possible back to the system as we are called from OOM.
1608          * To do this we must instruct the shmfs to drop all of its
1609          * backing pages, *now*.
1610          */
1611         inode = obj->base.filp->f_path.dentry->d_inode;
1612         shmem_truncate_range(inode, 0, (loff_t)-1);
1613
1614         obj->madv = __I915_MADV_PURGED;
1615 }
1616
1617 static inline int
1618 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1619 {
1620         return obj->madv == I915_MADV_DONTNEED;
1621 }
1622
1623 static void
1624 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1625 {
1626         int page_count = obj->base.size / PAGE_SIZE;
1627         struct scatterlist *sg;
1628         int ret, i;
1629
1630         BUG_ON(obj->madv == __I915_MADV_PURGED);
1631
1632         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1633         if (ret) {
1634                 /* In the event of a disaster, abandon all caches and
1635                  * hope for the best.
1636                  */
1637                 WARN_ON(ret != -EIO);
1638                 i915_gem_clflush_object(obj);
1639                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1640         }
1641
1642         if (i915_gem_object_needs_bit17_swizzle(obj))
1643                 i915_gem_object_save_bit_17_swizzle(obj);
1644
1645         if (obj->madv == I915_MADV_DONTNEED)
1646                 obj->dirty = 0;
1647
1648         for_each_sg(obj->pages->sgl, sg, page_count, i) {
1649                 struct page *page = sg_page(sg);
1650
1651                 if (obj->dirty)
1652                         set_page_dirty(page);
1653
1654                 if (obj->madv == I915_MADV_WILLNEED)
1655                         mark_page_accessed(page);
1656
1657                 page_cache_release(page);
1658         }
1659         obj->dirty = 0;
1660
1661         sg_free_table(obj->pages);
1662         kfree(obj->pages);
1663 }
1664
1665 int
1666 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1667 {
1668         const struct drm_i915_gem_object_ops *ops = obj->ops;
1669
1670         if (obj->pages == NULL)
1671                 return 0;
1672
1673         BUG_ON(obj->gtt_space);
1674
1675         if (obj->pages_pin_count)
1676                 return -EBUSY;
1677
1678         /* ->put_pages might need to allocate memory for the bit17 swizzle
1679          * array, hence protect them from being reaped by removing them from gtt
1680          * lists early. */
1681         list_del(&obj->gtt_list);
1682
1683         ops->put_pages(obj);
1684         obj->pages = NULL;
1685
1686         if (i915_gem_object_is_purgeable(obj))
1687                 i915_gem_object_truncate(obj);
1688
1689         return 0;
1690 }
1691
1692 static long
1693 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1694 {
1695         struct drm_i915_gem_object *obj, *next;
1696         long count = 0;
1697
1698         list_for_each_entry_safe(obj, next,
1699                                  &dev_priv->mm.unbound_list,
1700                                  gtt_list) {
1701                 if (i915_gem_object_is_purgeable(obj) &&
1702                     i915_gem_object_put_pages(obj) == 0) {
1703                         count += obj->base.size >> PAGE_SHIFT;
1704                         if (count >= target)
1705                                 return count;
1706                 }
1707         }
1708
1709         list_for_each_entry_safe(obj, next,
1710                                  &dev_priv->mm.inactive_list,
1711                                  mm_list) {
1712                 if (i915_gem_object_is_purgeable(obj) &&
1713                     i915_gem_object_unbind(obj) == 0 &&
1714                     i915_gem_object_put_pages(obj) == 0) {
1715                         count += obj->base.size >> PAGE_SHIFT;
1716                         if (count >= target)
1717                                 return count;
1718                 }
1719         }
1720
1721         return count;
1722 }
1723
1724 static void
1725 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1726 {
1727         struct drm_i915_gem_object *obj, *next;
1728
1729         i915_gem_evict_everything(dev_priv->dev);
1730
1731         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1732                 i915_gem_object_put_pages(obj);
1733 }
1734
1735 static int
1736 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1737 {
1738         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1739         int page_count, i;
1740         struct address_space *mapping;
1741         struct sg_table *st;
1742         struct scatterlist *sg;
1743         struct page *page;
1744         gfp_t gfp;
1745
1746         /* Assert that the object is not currently in any GPU domain. As it
1747          * wasn't in the GTT, there shouldn't be any way it could have been in
1748          * a GPU cache
1749          */
1750         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1751         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1752
1753         st = kmalloc(sizeof(*st), GFP_KERNEL);
1754         if (st == NULL)
1755                 return -ENOMEM;
1756
1757         page_count = obj->base.size / PAGE_SIZE;
1758         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1759                 sg_free_table(st);
1760                 kfree(st);
1761                 return -ENOMEM;
1762         }
1763
1764         /* Get the list of pages out of our struct file.  They'll be pinned
1765          * at this point until we release them.
1766          *
1767          * Fail silently without starting the shrinker
1768          */
1769         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1770         gfp = mapping_gfp_mask(mapping);
1771         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1772         gfp &= ~(__GFP_IO | __GFP_WAIT);
1773         for_each_sg(st->sgl, sg, page_count, i) {
1774                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1775                 if (IS_ERR(page)) {
1776                         i915_gem_purge(dev_priv, page_count);
1777                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1778                 }
1779                 if (IS_ERR(page)) {
1780                         /* We've tried hard to allocate the memory by reaping
1781                          * our own buffer, now let the real VM do its job and
1782                          * go down in flames if truly OOM.
1783                          */
1784                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1785                         gfp |= __GFP_IO | __GFP_WAIT;
1786
1787                         i915_gem_shrink_all(dev_priv);
1788                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1789                         if (IS_ERR(page))
1790                                 goto err_pages;
1791
1792                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1793                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1794                 }
1795
1796                 sg_set_page(sg, page, PAGE_SIZE, 0);
1797         }
1798
1799         obj->pages = st;
1800
1801         if (i915_gem_object_needs_bit17_swizzle(obj))
1802                 i915_gem_object_do_bit_17_swizzle(obj);
1803
1804         return 0;
1805
1806 err_pages:
1807         for_each_sg(st->sgl, sg, i, page_count)
1808                 page_cache_release(sg_page(sg));
1809         sg_free_table(st);
1810         kfree(st);
1811         return PTR_ERR(page);
1812 }
1813
1814 /* Ensure that the associated pages are gathered from the backing storage
1815  * and pinned into our object. i915_gem_object_get_pages() may be called
1816  * multiple times before they are released by a single call to
1817  * i915_gem_object_put_pages() - once the pages are no longer referenced
1818  * either as a result of memory pressure (reaping pages under the shrinker)
1819  * or as the object is itself released.
1820  */
1821 int
1822 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1823 {
1824         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1825         const struct drm_i915_gem_object_ops *ops = obj->ops;
1826         int ret;
1827
1828         if (obj->pages)
1829                 return 0;
1830
1831         if (obj->madv != I915_MADV_WILLNEED) {
1832                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1833                 return -EINVAL;
1834         }
1835
1836         BUG_ON(obj->pages_pin_count);
1837
1838         ret = ops->get_pages(obj);
1839         if (ret)
1840                 return ret;
1841
1842         list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1843         return 0;
1844 }
1845
1846 void
1847 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1848                                struct intel_ring_buffer *ring)
1849 {
1850         struct drm_device *dev = obj->base.dev;
1851         struct drm_i915_private *dev_priv = dev->dev_private;
1852         u32 seqno = intel_ring_get_seqno(ring);
1853
1854         BUG_ON(ring == NULL);
1855         obj->ring = ring;
1856
1857         /* Add a reference if we're newly entering the active list. */
1858         if (!obj->active) {
1859                 drm_gem_object_reference(&obj->base);
1860                 obj->active = 1;
1861         }
1862
1863         /* Move from whatever list we were on to the tail of execution. */
1864         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1865         list_move_tail(&obj->ring_list, &ring->active_list);
1866
1867         obj->last_read_seqno = seqno;
1868
1869         if (obj->fenced_gpu_access) {
1870                 obj->last_fenced_seqno = seqno;
1871
1872                 /* Bump MRU to take account of the delayed flush */
1873                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1874                         struct drm_i915_fence_reg *reg;
1875
1876                         reg = &dev_priv->fence_regs[obj->fence_reg];
1877                         list_move_tail(&reg->lru_list,
1878                                        &dev_priv->mm.fence_list);
1879                 }
1880         }
1881 }
1882
1883 static void
1884 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1885 {
1886         struct drm_device *dev = obj->base.dev;
1887         struct drm_i915_private *dev_priv = dev->dev_private;
1888
1889         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1890         BUG_ON(!obj->active);
1891
1892         if (obj->pin_count) /* are we a framebuffer? */
1893                 intel_mark_fb_idle(obj);
1894
1895         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1896
1897         list_del_init(&obj->ring_list);
1898         obj->ring = NULL;
1899
1900         obj->last_read_seqno = 0;
1901         obj->last_write_seqno = 0;
1902         obj->base.write_domain = 0;
1903
1904         obj->last_fenced_seqno = 0;
1905         obj->fenced_gpu_access = false;
1906
1907         obj->active = 0;
1908         drm_gem_object_unreference(&obj->base);
1909
1910         WARN_ON(i915_verify_lists(dev));
1911 }
1912
1913 static int
1914 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1915 {
1916         struct drm_i915_private *dev_priv = dev->dev_private;
1917         struct intel_ring_buffer *ring;
1918         int ret, i, j;
1919
1920         /* Carefully retire all requests without writing to the rings */
1921         for_each_ring(ring, dev_priv, i) {
1922                 ret = intel_ring_idle(ring);
1923                 if (ret)
1924                         return ret;
1925         }
1926         i915_gem_retire_requests(dev);
1927
1928         /* Finally reset hw state */
1929         for_each_ring(ring, dev_priv, i) {
1930                 intel_ring_init_seqno(ring, seqno);
1931
1932                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1933                         ring->sync_seqno[j] = 0;
1934         }
1935
1936         return 0;
1937 }
1938
1939 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1940 {
1941         struct drm_i915_private *dev_priv = dev->dev_private;
1942         int ret;
1943
1944         if (seqno == 0)
1945                 return -EINVAL;
1946
1947         /* HWS page needs to be set less than what we
1948          * will inject to ring
1949          */
1950         ret = i915_gem_init_seqno(dev, seqno - 1);
1951         if (ret)
1952                 return ret;
1953
1954         /* Carefully set the last_seqno value so that wrap
1955          * detection still works
1956          */
1957         dev_priv->next_seqno = seqno;
1958         dev_priv->last_seqno = seqno - 1;
1959         if (dev_priv->last_seqno == 0)
1960                 dev_priv->last_seqno--;
1961
1962         return 0;
1963 }
1964
1965 int
1966 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1967 {
1968         struct drm_i915_private *dev_priv = dev->dev_private;
1969
1970         /* reserve 0 for non-seqno */
1971         if (dev_priv->next_seqno == 0) {
1972                 int ret = i915_gem_init_seqno(dev, 0);
1973                 if (ret)
1974                         return ret;
1975
1976                 dev_priv->next_seqno = 1;
1977         }
1978
1979         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1980         return 0;
1981 }
1982
1983 int
1984 i915_add_request(struct intel_ring_buffer *ring,
1985                  struct drm_file *file,
1986                  u32 *out_seqno)
1987 {
1988         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1989         struct drm_i915_gem_request *request;
1990         u32 request_ring_position;
1991         int was_empty;
1992         int ret;
1993
1994         /*
1995          * Emit any outstanding flushes - execbuf can fail to emit the flush
1996          * after having emitted the batchbuffer command. Hence we need to fix
1997          * things up similar to emitting the lazy request. The difference here
1998          * is that the flush _must_ happen before the next request, no matter
1999          * what.
2000          */
2001         ret = intel_ring_flush_all_caches(ring);
2002         if (ret)
2003                 return ret;
2004
2005         request = kmalloc(sizeof(*request), GFP_KERNEL);
2006         if (request == NULL)
2007                 return -ENOMEM;
2008
2009
2010         /* Record the position of the start of the request so that
2011          * should we detect the updated seqno part-way through the
2012          * GPU processing the request, we never over-estimate the
2013          * position of the head.
2014          */
2015         request_ring_position = intel_ring_get_tail(ring);
2016
2017         ret = ring->add_request(ring);
2018         if (ret) {
2019                 kfree(request);
2020                 return ret;
2021         }
2022
2023         request->seqno = intel_ring_get_seqno(ring);
2024         request->ring = ring;
2025         request->tail = request_ring_position;
2026         request->emitted_jiffies = jiffies;
2027         was_empty = list_empty(&ring->request_list);
2028         list_add_tail(&request->list, &ring->request_list);
2029         request->file_priv = NULL;
2030
2031         if (file) {
2032                 struct drm_i915_file_private *file_priv = file->driver_priv;
2033
2034                 spin_lock(&file_priv->mm.lock);
2035                 request->file_priv = file_priv;
2036                 list_add_tail(&request->client_list,
2037                               &file_priv->mm.request_list);
2038                 spin_unlock(&file_priv->mm.lock);
2039         }
2040
2041         trace_i915_gem_request_add(ring, request->seqno);
2042         ring->outstanding_lazy_request = 0;
2043
2044         if (!dev_priv->mm.suspended) {
2045                 if (i915_enable_hangcheck) {
2046                         mod_timer(&dev_priv->hangcheck_timer,
2047                                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2048                 }
2049                 if (was_empty) {
2050                         queue_delayed_work(dev_priv->wq,
2051                                            &dev_priv->mm.retire_work,
2052                                            round_jiffies_up_relative(HZ));
2053                         intel_mark_busy(dev_priv->dev);
2054                 }
2055         }
2056
2057         if (out_seqno)
2058                 *out_seqno = request->seqno;
2059         return 0;
2060 }
2061
2062 static inline void
2063 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2064 {
2065         struct drm_i915_file_private *file_priv = request->file_priv;
2066
2067         if (!file_priv)
2068                 return;
2069
2070         spin_lock(&file_priv->mm.lock);
2071         if (request->file_priv) {
2072                 list_del(&request->client_list);
2073                 request->file_priv = NULL;
2074         }
2075         spin_unlock(&file_priv->mm.lock);
2076 }
2077
2078 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2079                                       struct intel_ring_buffer *ring)
2080 {
2081         while (!list_empty(&ring->request_list)) {
2082                 struct drm_i915_gem_request *request;
2083
2084                 request = list_first_entry(&ring->request_list,
2085                                            struct drm_i915_gem_request,
2086                                            list);
2087
2088                 list_del(&request->list);
2089                 i915_gem_request_remove_from_client(request);
2090                 kfree(request);
2091         }
2092
2093         while (!list_empty(&ring->active_list)) {
2094                 struct drm_i915_gem_object *obj;
2095
2096                 obj = list_first_entry(&ring->active_list,
2097                                        struct drm_i915_gem_object,
2098                                        ring_list);
2099
2100                 i915_gem_object_move_to_inactive(obj);
2101         }
2102 }
2103
2104 static void i915_gem_reset_fences(struct drm_device *dev)
2105 {
2106         struct drm_i915_private *dev_priv = dev->dev_private;
2107         int i;
2108
2109         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2110                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2111
2112                 i915_gem_write_fence(dev, i, NULL);
2113
2114                 if (reg->obj)
2115                         i915_gem_object_fence_lost(reg->obj);
2116
2117                 reg->pin_count = 0;
2118                 reg->obj = NULL;
2119                 INIT_LIST_HEAD(&reg->lru_list);
2120         }
2121
2122         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2123 }
2124
2125 void i915_gem_reset(struct drm_device *dev)
2126 {
2127         struct drm_i915_private *dev_priv = dev->dev_private;
2128         struct drm_i915_gem_object *obj;
2129         struct intel_ring_buffer *ring;
2130         int i;
2131
2132         for_each_ring(ring, dev_priv, i)
2133                 i915_gem_reset_ring_lists(dev_priv, ring);
2134
2135         /* Move everything out of the GPU domains to ensure we do any
2136          * necessary invalidation upon reuse.
2137          */
2138         list_for_each_entry(obj,
2139                             &dev_priv->mm.inactive_list,
2140                             mm_list)
2141         {
2142                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2143         }
2144
2145         /* The fence registers are invalidated so clear them out */
2146         i915_gem_reset_fences(dev);
2147 }
2148
2149 /**
2150  * This function clears the request list as sequence numbers are passed.
2151  */
2152 void
2153 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2154 {
2155         uint32_t seqno;
2156
2157         if (list_empty(&ring->request_list))
2158                 return;
2159
2160         WARN_ON(i915_verify_lists(ring->dev));
2161
2162         seqno = ring->get_seqno(ring, true);
2163
2164         while (!list_empty(&ring->request_list)) {
2165                 struct drm_i915_gem_request *request;
2166
2167                 request = list_first_entry(&ring->request_list,
2168                                            struct drm_i915_gem_request,
2169                                            list);
2170
2171                 if (!i915_seqno_passed(seqno, request->seqno))
2172                         break;
2173
2174                 trace_i915_gem_request_retire(ring, request->seqno);
2175                 /* We know the GPU must have read the request to have
2176                  * sent us the seqno + interrupt, so use the position
2177                  * of tail of the request to update the last known position
2178                  * of the GPU head.
2179                  */
2180                 ring->last_retired_head = request->tail;
2181
2182                 list_del(&request->list);
2183                 i915_gem_request_remove_from_client(request);
2184                 kfree(request);
2185         }
2186
2187         /* Move any buffers on the active list that are no longer referenced
2188          * by the ringbuffer to the flushing/inactive lists as appropriate.
2189          */
2190         while (!list_empty(&ring->active_list)) {
2191                 struct drm_i915_gem_object *obj;
2192
2193                 obj = list_first_entry(&ring->active_list,
2194                                       struct drm_i915_gem_object,
2195                                       ring_list);
2196
2197                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2198                         break;
2199
2200                 i915_gem_object_move_to_inactive(obj);
2201         }
2202
2203         if (unlikely(ring->trace_irq_seqno &&
2204                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2205                 ring->irq_put(ring);
2206                 ring->trace_irq_seqno = 0;
2207         }
2208
2209         WARN_ON(i915_verify_lists(ring->dev));
2210 }
2211
2212 void
2213 i915_gem_retire_requests(struct drm_device *dev)
2214 {
2215         drm_i915_private_t *dev_priv = dev->dev_private;
2216         struct intel_ring_buffer *ring;
2217         int i;
2218
2219         for_each_ring(ring, dev_priv, i)
2220                 i915_gem_retire_requests_ring(ring);
2221 }
2222
2223 static void
2224 i915_gem_retire_work_handler(struct work_struct *work)
2225 {
2226         drm_i915_private_t *dev_priv;
2227         struct drm_device *dev;
2228         struct intel_ring_buffer *ring;
2229         bool idle;
2230         int i;
2231
2232         dev_priv = container_of(work, drm_i915_private_t,
2233                                 mm.retire_work.work);
2234         dev = dev_priv->dev;
2235
2236         /* Come back later if the device is busy... */
2237         if (!mutex_trylock(&dev->struct_mutex)) {
2238                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2239                                    round_jiffies_up_relative(HZ));
2240                 return;
2241         }
2242
2243         i915_gem_retire_requests(dev);
2244
2245         /* Send a periodic flush down the ring so we don't hold onto GEM
2246          * objects indefinitely.
2247          */
2248         idle = true;
2249         for_each_ring(ring, dev_priv, i) {
2250                 if (ring->gpu_caches_dirty)
2251                         i915_add_request(ring, NULL, NULL);
2252
2253                 idle &= list_empty(&ring->request_list);
2254         }
2255
2256         if (!dev_priv->mm.suspended && !idle)
2257                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2258                                    round_jiffies_up_relative(HZ));
2259         if (idle)
2260                 intel_mark_idle(dev);
2261
2262         mutex_unlock(&dev->struct_mutex);
2263 }
2264
2265 /**
2266  * Ensures that an object will eventually get non-busy by flushing any required
2267  * write domains, emitting any outstanding lazy request and retiring and
2268  * completed requests.
2269  */
2270 static int
2271 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2272 {
2273         int ret;
2274
2275         if (obj->active) {
2276                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2277                 if (ret)
2278                         return ret;
2279
2280                 i915_gem_retire_requests_ring(obj->ring);
2281         }
2282
2283         return 0;
2284 }
2285
2286 /**
2287  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2288  * @DRM_IOCTL_ARGS: standard ioctl arguments
2289  *
2290  * Returns 0 if successful, else an error is returned with the remaining time in
2291  * the timeout parameter.
2292  *  -ETIME: object is still busy after timeout
2293  *  -ERESTARTSYS: signal interrupted the wait
2294  *  -ENONENT: object doesn't exist
2295  * Also possible, but rare:
2296  *  -EAGAIN: GPU wedged
2297  *  -ENOMEM: damn
2298  *  -ENODEV: Internal IRQ fail
2299  *  -E?: The add request failed
2300  *
2301  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2302  * non-zero timeout parameter the wait ioctl will wait for the given number of
2303  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2304  * without holding struct_mutex the object may become re-busied before this
2305  * function completes. A similar but shorter * race condition exists in the busy
2306  * ioctl
2307  */
2308 int
2309 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2310 {
2311         struct drm_i915_gem_wait *args = data;
2312         struct drm_i915_gem_object *obj;
2313         struct intel_ring_buffer *ring = NULL;
2314         struct timespec timeout_stack, *timeout = NULL;
2315         u32 seqno = 0;
2316         int ret = 0;
2317
2318         if (args->timeout_ns >= 0) {
2319                 timeout_stack = ns_to_timespec(args->timeout_ns);
2320                 timeout = &timeout_stack;
2321         }
2322
2323         ret = i915_mutex_lock_interruptible(dev);
2324         if (ret)
2325                 return ret;
2326
2327         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2328         if (&obj->base == NULL) {
2329                 mutex_unlock(&dev->struct_mutex);
2330                 return -ENOENT;
2331         }
2332
2333         /* Need to make sure the object gets inactive eventually. */
2334         ret = i915_gem_object_flush_active(obj);
2335         if (ret)
2336                 goto out;
2337
2338         if (obj->active) {
2339                 seqno = obj->last_read_seqno;
2340                 ring = obj->ring;
2341         }
2342
2343         if (seqno == 0)
2344                  goto out;
2345
2346         /* Do this after OLR check to make sure we make forward progress polling
2347          * on this IOCTL with a 0 timeout (like busy ioctl)
2348          */
2349         if (!args->timeout_ns) {
2350                 ret = -ETIME;
2351                 goto out;
2352         }
2353
2354         drm_gem_object_unreference(&obj->base);
2355         mutex_unlock(&dev->struct_mutex);
2356
2357         ret = __wait_seqno(ring, seqno, true, timeout);
2358         if (timeout) {
2359                 WARN_ON(!timespec_valid(timeout));
2360                 args->timeout_ns = timespec_to_ns(timeout);
2361         }
2362         return ret;
2363
2364 out:
2365         drm_gem_object_unreference(&obj->base);
2366         mutex_unlock(&dev->struct_mutex);
2367         return ret;
2368 }
2369
2370 /**
2371  * i915_gem_object_sync - sync an object to a ring.
2372  *
2373  * @obj: object which may be in use on another ring.
2374  * @to: ring we wish to use the object on. May be NULL.
2375  *
2376  * This code is meant to abstract object synchronization with the GPU.
2377  * Calling with NULL implies synchronizing the object with the CPU
2378  * rather than a particular GPU ring.
2379  *
2380  * Returns 0 if successful, else propagates up the lower layer error.
2381  */
2382 int
2383 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2384                      struct intel_ring_buffer *to)
2385 {
2386         struct intel_ring_buffer *from = obj->ring;
2387         u32 seqno;
2388         int ret, idx;
2389
2390         if (from == NULL || to == from)
2391                 return 0;
2392
2393         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2394                 return i915_gem_object_wait_rendering(obj, false);
2395
2396         idx = intel_ring_sync_index(from, to);
2397
2398         seqno = obj->last_read_seqno;
2399         if (seqno <= from->sync_seqno[idx])
2400                 return 0;
2401
2402         ret = i915_gem_check_olr(obj->ring, seqno);
2403         if (ret)
2404                 return ret;
2405
2406         ret = to->sync_to(to, from, seqno);
2407         if (!ret)
2408                 /* We use last_read_seqno because sync_to()
2409                  * might have just caused seqno wrap under
2410                  * the radar.
2411                  */
2412                 from->sync_seqno[idx] = obj->last_read_seqno;
2413
2414         return ret;
2415 }
2416
2417 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2418 {
2419         u32 old_write_domain, old_read_domains;
2420
2421         /* Act a barrier for all accesses through the GTT */
2422         mb();
2423
2424         /* Force a pagefault for domain tracking on next user access */
2425         i915_gem_release_mmap(obj);
2426
2427         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2428                 return;
2429
2430         old_read_domains = obj->base.read_domains;
2431         old_write_domain = obj->base.write_domain;
2432
2433         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2434         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2435
2436         trace_i915_gem_object_change_domain(obj,
2437                                             old_read_domains,
2438                                             old_write_domain);
2439 }
2440
2441 /**
2442  * Unbinds an object from the GTT aperture.
2443  */
2444 int
2445 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2446 {
2447         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2448         int ret;
2449
2450         if (obj->gtt_space == NULL)
2451                 return 0;
2452
2453         if (obj->pin_count)
2454                 return -EBUSY;
2455
2456         BUG_ON(obj->pages == NULL);
2457
2458         ret = i915_gem_object_finish_gpu(obj);
2459         if (ret)
2460                 return ret;
2461         /* Continue on if we fail due to EIO, the GPU is hung so we
2462          * should be safe and we need to cleanup or else we might
2463          * cause memory corruption through use-after-free.
2464          */
2465
2466         i915_gem_object_finish_gtt(obj);
2467
2468         /* release the fence reg _after_ flushing */
2469         ret = i915_gem_object_put_fence(obj);
2470         if (ret)
2471                 return ret;
2472
2473         trace_i915_gem_object_unbind(obj);
2474
2475         if (obj->has_global_gtt_mapping)
2476                 i915_gem_gtt_unbind_object(obj);
2477         if (obj->has_aliasing_ppgtt_mapping) {
2478                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2479                 obj->has_aliasing_ppgtt_mapping = 0;
2480         }
2481         i915_gem_gtt_finish_object(obj);
2482
2483         list_del(&obj->mm_list);
2484         list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2485         /* Avoid an unnecessary call to unbind on rebind. */
2486         obj->map_and_fenceable = true;
2487
2488         drm_mm_put_block(obj->gtt_space);
2489         obj->gtt_space = NULL;
2490         obj->gtt_offset = 0;
2491
2492         return 0;
2493 }
2494
2495 int i915_gpu_idle(struct drm_device *dev)
2496 {
2497         drm_i915_private_t *dev_priv = dev->dev_private;
2498         struct intel_ring_buffer *ring;
2499         int ret, i;
2500
2501         /* Flush everything onto the inactive list. */
2502         for_each_ring(ring, dev_priv, i) {
2503                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2504                 if (ret)
2505                         return ret;
2506
2507                 ret = intel_ring_idle(ring);
2508                 if (ret)
2509                         return ret;
2510         }
2511
2512         return 0;
2513 }
2514
2515 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2516                                  struct drm_i915_gem_object *obj)
2517 {
2518         drm_i915_private_t *dev_priv = dev->dev_private;
2519         int fence_reg;
2520         int fence_pitch_shift;
2521         uint64_t val;
2522
2523         if (INTEL_INFO(dev)->gen >= 6) {
2524                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2525                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2526         } else {
2527                 fence_reg = FENCE_REG_965_0;
2528                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2529         }
2530
2531         if (obj) {
2532                 u32 size = obj->gtt_space->size;
2533
2534                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2535                                  0xfffff000) << 32;
2536                 val |= obj->gtt_offset & 0xfffff000;
2537                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2538                 if (obj->tiling_mode == I915_TILING_Y)
2539                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2540                 val |= I965_FENCE_REG_VALID;
2541         } else
2542                 val = 0;
2543
2544         fence_reg += reg * 8;
2545         I915_WRITE64(fence_reg, val);
2546         POSTING_READ(fence_reg);
2547 }
2548
2549 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2550                                  struct drm_i915_gem_object *obj)
2551 {
2552         drm_i915_private_t *dev_priv = dev->dev_private;
2553         u32 val;
2554
2555         if (obj) {
2556                 u32 size = obj->gtt_space->size;
2557                 int pitch_val;
2558                 int tile_width;
2559
2560                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2561                      (size & -size) != size ||
2562                      (obj->gtt_offset & (size - 1)),
2563                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2564                      obj->gtt_offset, obj->map_and_fenceable, size);
2565
2566                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2567                         tile_width = 128;
2568                 else
2569                         tile_width = 512;
2570
2571                 /* Note: pitch better be a power of two tile widths */
2572                 pitch_val = obj->stride / tile_width;
2573                 pitch_val = ffs(pitch_val) - 1;
2574
2575                 val = obj->gtt_offset;
2576                 if (obj->tiling_mode == I915_TILING_Y)
2577                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2578                 val |= I915_FENCE_SIZE_BITS(size);
2579                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2580                 val |= I830_FENCE_REG_VALID;
2581         } else
2582                 val = 0;
2583
2584         if (reg < 8)
2585                 reg = FENCE_REG_830_0 + reg * 4;
2586         else
2587                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2588
2589         I915_WRITE(reg, val);
2590         POSTING_READ(reg);
2591 }
2592
2593 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2594                                 struct drm_i915_gem_object *obj)
2595 {
2596         drm_i915_private_t *dev_priv = dev->dev_private;
2597         uint32_t val;
2598
2599         if (obj) {
2600                 u32 size = obj->gtt_space->size;
2601                 uint32_t pitch_val;
2602
2603                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2604                      (size & -size) != size ||
2605                      (obj->gtt_offset & (size - 1)),
2606                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2607                      obj->gtt_offset, size);
2608
2609                 pitch_val = obj->stride / 128;
2610                 pitch_val = ffs(pitch_val) - 1;
2611
2612                 val = obj->gtt_offset;
2613                 if (obj->tiling_mode == I915_TILING_Y)
2614                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2615                 val |= I830_FENCE_SIZE_BITS(size);
2616                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2617                 val |= I830_FENCE_REG_VALID;
2618         } else
2619                 val = 0;
2620
2621         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2622         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2623 }
2624
2625 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2626                                  struct drm_i915_gem_object *obj)
2627 {
2628         switch (INTEL_INFO(dev)->gen) {
2629         case 7:
2630         case 6:
2631         case 5:
2632         case 4: i965_write_fence_reg(dev, reg, obj); break;
2633         case 3: i915_write_fence_reg(dev, reg, obj); break;
2634         case 2: i830_write_fence_reg(dev, reg, obj); break;
2635         default: BUG();
2636         }
2637 }
2638
2639 static inline int fence_number(struct drm_i915_private *dev_priv,
2640                                struct drm_i915_fence_reg *fence)
2641 {
2642         return fence - dev_priv->fence_regs;
2643 }
2644
2645 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2646                                          struct drm_i915_fence_reg *fence,
2647                                          bool enable)
2648 {
2649         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2650         int reg = fence_number(dev_priv, fence);
2651
2652         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2653
2654         if (enable) {
2655                 obj->fence_reg = reg;
2656                 fence->obj = obj;
2657                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2658         } else {
2659                 obj->fence_reg = I915_FENCE_REG_NONE;
2660                 fence->obj = NULL;
2661                 list_del_init(&fence->lru_list);
2662         }
2663 }
2664
2665 static int
2666 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2667 {
2668         if (obj->last_fenced_seqno) {
2669                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2670                 if (ret)
2671                         return ret;
2672
2673                 obj->last_fenced_seqno = 0;
2674         }
2675
2676         /* Ensure that all CPU reads are completed before installing a fence
2677          * and all writes before removing the fence.
2678          */
2679         if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2680                 mb();
2681
2682         obj->fenced_gpu_access = false;
2683         return 0;
2684 }
2685
2686 int
2687 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2688 {
2689         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2690         int ret;
2691
2692         ret = i915_gem_object_flush_fence(obj);
2693         if (ret)
2694                 return ret;
2695
2696         if (obj->fence_reg == I915_FENCE_REG_NONE)
2697                 return 0;
2698
2699         i915_gem_object_update_fence(obj,
2700                                      &dev_priv->fence_regs[obj->fence_reg],
2701                                      false);
2702         i915_gem_object_fence_lost(obj);
2703
2704         return 0;
2705 }
2706
2707 static struct drm_i915_fence_reg *
2708 i915_find_fence_reg(struct drm_device *dev)
2709 {
2710         struct drm_i915_private *dev_priv = dev->dev_private;
2711         struct drm_i915_fence_reg *reg, *avail;
2712         int i;
2713
2714         /* First try to find a free reg */
2715         avail = NULL;
2716         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2717                 reg = &dev_priv->fence_regs[i];
2718                 if (!reg->obj)
2719                         return reg;
2720
2721                 if (!reg->pin_count)
2722                         avail = reg;
2723         }
2724
2725         if (avail == NULL)
2726                 return NULL;
2727
2728         /* None available, try to steal one or wait for a user to finish */
2729         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2730                 if (reg->pin_count)
2731                         continue;
2732
2733                 return reg;
2734         }
2735
2736         return NULL;
2737 }
2738
2739 /**
2740  * i915_gem_object_get_fence - set up fencing for an object
2741  * @obj: object to map through a fence reg
2742  *
2743  * When mapping objects through the GTT, userspace wants to be able to write
2744  * to them without having to worry about swizzling if the object is tiled.
2745  * This function walks the fence regs looking for a free one for @obj,
2746  * stealing one if it can't find any.
2747  *
2748  * It then sets up the reg based on the object's properties: address, pitch
2749  * and tiling format.
2750  *
2751  * For an untiled surface, this removes any existing fence.
2752  */
2753 int
2754 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2755 {
2756         struct drm_device *dev = obj->base.dev;
2757         struct drm_i915_private *dev_priv = dev->dev_private;
2758         bool enable = obj->tiling_mode != I915_TILING_NONE;
2759         struct drm_i915_fence_reg *reg;
2760         int ret;
2761
2762         /* Have we updated the tiling parameters upon the object and so
2763          * will need to serialise the write to the associated fence register?
2764          */
2765         if (obj->fence_dirty) {
2766                 ret = i915_gem_object_flush_fence(obj);
2767                 if (ret)
2768                         return ret;
2769         }
2770
2771         /* Just update our place in the LRU if our fence is getting reused. */
2772         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2773                 reg = &dev_priv->fence_regs[obj->fence_reg];
2774                 if (!obj->fence_dirty) {
2775                         list_move_tail(&reg->lru_list,
2776                                        &dev_priv->mm.fence_list);
2777                         return 0;
2778                 }
2779         } else if (enable) {
2780                 reg = i915_find_fence_reg(dev);
2781                 if (reg == NULL)
2782                         return -EDEADLK;
2783
2784                 if (reg->obj) {
2785                         struct drm_i915_gem_object *old = reg->obj;
2786
2787                         ret = i915_gem_object_flush_fence(old);
2788                         if (ret)
2789                                 return ret;
2790
2791                         i915_gem_object_fence_lost(old);
2792                 }
2793         } else
2794                 return 0;
2795
2796         i915_gem_object_update_fence(obj, reg, enable);
2797         obj->fence_dirty = false;
2798
2799         return 0;
2800 }
2801
2802 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2803                                      struct drm_mm_node *gtt_space,
2804                                      unsigned long cache_level)
2805 {
2806         struct drm_mm_node *other;
2807
2808         /* On non-LLC machines we have to be careful when putting differing
2809          * types of snoopable memory together to avoid the prefetcher
2810          * crossing memory domains and dying.
2811          */
2812         if (HAS_LLC(dev))
2813                 return true;
2814
2815         if (gtt_space == NULL)
2816                 return true;
2817
2818         if (list_empty(&gtt_space->node_list))
2819                 return true;
2820
2821         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2822         if (other->allocated && !other->hole_follows && other->color != cache_level)
2823                 return false;
2824
2825         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2826         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2827                 return false;
2828
2829         return true;
2830 }
2831
2832 static void i915_gem_verify_gtt(struct drm_device *dev)
2833 {
2834 #if WATCH_GTT
2835         struct drm_i915_private *dev_priv = dev->dev_private;
2836         struct drm_i915_gem_object *obj;
2837         int err = 0;
2838
2839         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2840                 if (obj->gtt_space == NULL) {
2841                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
2842                         err++;
2843                         continue;
2844                 }
2845
2846                 if (obj->cache_level != obj->gtt_space->color) {
2847                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2848                                obj->gtt_space->start,
2849                                obj->gtt_space->start + obj->gtt_space->size,
2850                                obj->cache_level,
2851                                obj->gtt_space->color);
2852                         err++;
2853                         continue;
2854                 }
2855
2856                 if (!i915_gem_valid_gtt_space(dev,
2857                                               obj->gtt_space,
2858                                               obj->cache_level)) {
2859                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2860                                obj->gtt_space->start,
2861                                obj->gtt_space->start + obj->gtt_space->size,
2862                                obj->cache_level);
2863                         err++;
2864                         continue;
2865                 }
2866         }
2867
2868         WARN_ON(err);
2869 #endif
2870 }
2871
2872 /**
2873  * Finds free space in the GTT aperture and binds the object there.
2874  */
2875 static int
2876 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2877                             unsigned alignment,
2878                             bool map_and_fenceable,
2879                             bool nonblocking)
2880 {
2881         struct drm_device *dev = obj->base.dev;
2882         drm_i915_private_t *dev_priv = dev->dev_private;
2883         struct drm_mm_node *node;
2884         u32 size, fence_size, fence_alignment, unfenced_alignment;
2885         bool mappable, fenceable;
2886         int ret;
2887
2888         fence_size = i915_gem_get_gtt_size(dev,
2889                                            obj->base.size,
2890                                            obj->tiling_mode);
2891         fence_alignment = i915_gem_get_gtt_alignment(dev,
2892                                                      obj->base.size,
2893                                                      obj->tiling_mode, true);
2894         unfenced_alignment =
2895                 i915_gem_get_gtt_alignment(dev,
2896                                                     obj->base.size,
2897                                                     obj->tiling_mode, false);
2898
2899         if (alignment == 0)
2900                 alignment = map_and_fenceable ? fence_alignment :
2901                                                 unfenced_alignment;
2902         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2903                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2904                 return -EINVAL;
2905         }
2906
2907         size = map_and_fenceable ? fence_size : obj->base.size;
2908
2909         /* If the object is bigger than the entire aperture, reject it early
2910          * before evicting everything in a vain attempt to find space.
2911          */
2912         if (obj->base.size >
2913             (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) {
2914                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2915                 return -E2BIG;
2916         }
2917
2918         ret = i915_gem_object_get_pages(obj);
2919         if (ret)
2920                 return ret;
2921
2922         i915_gem_object_pin_pages(obj);
2923
2924         node = kzalloc(sizeof(*node), GFP_KERNEL);
2925         if (node == NULL) {
2926                 i915_gem_object_unpin_pages(obj);
2927                 return -ENOMEM;
2928         }
2929
2930  search_free:
2931         if (map_and_fenceable)
2932                 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2933                                                           size, alignment, obj->cache_level,
2934                                                           0, dev_priv->gtt.mappable_end);
2935         else
2936                 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2937                                                  size, alignment, obj->cache_level);
2938         if (ret) {
2939                 ret = i915_gem_evict_something(dev, size, alignment,
2940                                                obj->cache_level,
2941                                                map_and_fenceable,
2942                                                nonblocking);
2943                 if (ret == 0)
2944                         goto search_free;
2945
2946                 i915_gem_object_unpin_pages(obj);
2947                 kfree(node);
2948                 return ret;
2949         }
2950         if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2951                 i915_gem_object_unpin_pages(obj);
2952                 drm_mm_put_block(node);
2953                 return -EINVAL;
2954         }
2955
2956         ret = i915_gem_gtt_prepare_object(obj);
2957         if (ret) {
2958                 i915_gem_object_unpin_pages(obj);
2959                 drm_mm_put_block(node);
2960                 return ret;
2961         }
2962
2963         list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2964         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2965
2966         obj->gtt_space = node;
2967         obj->gtt_offset = node->start;
2968
2969         fenceable =
2970                 node->size == fence_size &&
2971                 (node->start & (fence_alignment - 1)) == 0;
2972
2973         mappable =
2974                 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
2975
2976         obj->map_and_fenceable = mappable && fenceable;
2977
2978         i915_gem_object_unpin_pages(obj);
2979         trace_i915_gem_object_bind(obj, map_and_fenceable);
2980         i915_gem_verify_gtt(dev);
2981         return 0;
2982 }
2983
2984 void
2985 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2986 {
2987         /* If we don't have a page list set up, then we're not pinned
2988          * to GPU, and we can ignore the cache flush because it'll happen
2989          * again at bind time.
2990          */
2991         if (obj->pages == NULL)
2992                 return;
2993
2994         /* If the GPU is snooping the contents of the CPU cache,
2995          * we do not need to manually clear the CPU cache lines.  However,
2996          * the caches are only snooped when the render cache is
2997          * flushed/invalidated.  As we always have to emit invalidations
2998          * and flushes when moving into and out of the RENDER domain, correct
2999          * snooping behaviour occurs naturally as the result of our domain
3000          * tracking.
3001          */
3002         if (obj->cache_level != I915_CACHE_NONE)
3003                 return;
3004
3005         trace_i915_gem_object_clflush(obj);
3006
3007         drm_clflush_sg(obj->pages);
3008 }
3009
3010 /** Flushes the GTT write domain for the object if it's dirty. */
3011 static void
3012 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3013 {
3014         uint32_t old_write_domain;
3015
3016         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3017                 return;
3018
3019         /* No actual flushing is required for the GTT write domain.  Writes
3020          * to it immediately go to main memory as far as we know, so there's
3021          * no chipset flush.  It also doesn't land in render cache.
3022          *
3023          * However, we do have to enforce the order so that all writes through
3024          * the GTT land before any writes to the device, such as updates to
3025          * the GATT itself.
3026          */
3027         wmb();
3028
3029         old_write_domain = obj->base.write_domain;
3030         obj->base.write_domain = 0;
3031
3032         trace_i915_gem_object_change_domain(obj,
3033                                             obj->base.read_domains,
3034                                             old_write_domain);
3035 }
3036
3037 /** Flushes the CPU write domain for the object if it's dirty. */
3038 static void
3039 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3040 {
3041         uint32_t old_write_domain;
3042
3043         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3044                 return;
3045
3046         i915_gem_clflush_object(obj);
3047         i915_gem_chipset_flush(obj->base.dev);
3048         old_write_domain = obj->base.write_domain;
3049         obj->base.write_domain = 0;
3050
3051         trace_i915_gem_object_change_domain(obj,
3052                                             obj->base.read_domains,
3053                                             old_write_domain);
3054 }
3055
3056 /**
3057  * Moves a single object to the GTT read, and possibly write domain.
3058  *
3059  * This function returns when the move is complete, including waiting on
3060  * flushes to occur.
3061  */
3062 int
3063 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3064 {
3065         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3066         uint32_t old_write_domain, old_read_domains;
3067         int ret;
3068
3069         /* Not valid to be called on unbound objects. */
3070         if (obj->gtt_space == NULL)
3071                 return -EINVAL;
3072
3073         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3074                 return 0;
3075
3076         ret = i915_gem_object_wait_rendering(obj, !write);
3077         if (ret)
3078                 return ret;
3079
3080         i915_gem_object_flush_cpu_write_domain(obj);
3081
3082         old_write_domain = obj->base.write_domain;
3083         old_read_domains = obj->base.read_domains;
3084
3085         /* It should now be out of any other write domains, and we can update
3086          * the domain values for our changes.
3087          */
3088         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3089         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3090         if (write) {
3091                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3092                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3093                 obj->dirty = 1;
3094         }
3095
3096         trace_i915_gem_object_change_domain(obj,
3097                                             old_read_domains,
3098                                             old_write_domain);
3099
3100         /* And bump the LRU for this access */
3101         if (i915_gem_object_is_inactive(obj))
3102                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3103
3104         return 0;
3105 }
3106
3107 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3108                                     enum i915_cache_level cache_level)
3109 {
3110         struct drm_device *dev = obj->base.dev;
3111         drm_i915_private_t *dev_priv = dev->dev_private;
3112         int ret;
3113
3114         if (obj->cache_level == cache_level)
3115                 return 0;
3116
3117         if (obj->pin_count) {
3118                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3119                 return -EBUSY;
3120         }
3121
3122         if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3123                 ret = i915_gem_object_unbind(obj);
3124                 if (ret)
3125                         return ret;
3126         }
3127
3128         if (obj->gtt_space) {
3129                 ret = i915_gem_object_finish_gpu(obj);
3130                 if (ret)
3131                         return ret;
3132
3133                 i915_gem_object_finish_gtt(obj);
3134
3135                 /* Before SandyBridge, you could not use tiling or fence
3136                  * registers with snooped memory, so relinquish any fences
3137                  * currently pointing to our region in the aperture.
3138                  */
3139                 if (INTEL_INFO(dev)->gen < 6) {
3140                         ret = i915_gem_object_put_fence(obj);
3141                         if (ret)
3142                                 return ret;
3143                 }
3144
3145                 if (obj->has_global_gtt_mapping)
3146                         i915_gem_gtt_bind_object(obj, cache_level);
3147                 if (obj->has_aliasing_ppgtt_mapping)
3148                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3149                                                obj, cache_level);
3150
3151                 obj->gtt_space->color = cache_level;
3152         }
3153
3154         if (cache_level == I915_CACHE_NONE) {
3155                 u32 old_read_domains, old_write_domain;
3156
3157                 /* If we're coming from LLC cached, then we haven't
3158                  * actually been tracking whether the data is in the
3159                  * CPU cache or not, since we only allow one bit set
3160                  * in obj->write_domain and have been skipping the clflushes.
3161                  * Just set it to the CPU cache for now.
3162                  */
3163                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3164                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3165
3166                 old_read_domains = obj->base.read_domains;
3167                 old_write_domain = obj->base.write_domain;
3168
3169                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3170                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3171
3172                 trace_i915_gem_object_change_domain(obj,
3173                                                     old_read_domains,
3174                                                     old_write_domain);
3175         }
3176
3177         obj->cache_level = cache_level;
3178         i915_gem_verify_gtt(dev);
3179         return 0;
3180 }
3181
3182 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3183                                struct drm_file *file)
3184 {
3185         struct drm_i915_gem_caching *args = data;
3186         struct drm_i915_gem_object *obj;
3187         int ret;
3188
3189         ret = i915_mutex_lock_interruptible(dev);
3190         if (ret)
3191                 return ret;
3192
3193         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3194         if (&obj->base == NULL) {
3195                 ret = -ENOENT;
3196                 goto unlock;
3197         }
3198
3199         args->caching = obj->cache_level != I915_CACHE_NONE;
3200
3201         drm_gem_object_unreference(&obj->base);
3202 unlock:
3203         mutex_unlock(&dev->struct_mutex);
3204         return ret;
3205 }
3206
3207 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3208                                struct drm_file *file)
3209 {
3210         struct drm_i915_gem_caching *args = data;
3211         struct drm_i915_gem_object *obj;
3212         enum i915_cache_level level;
3213         int ret;
3214
3215         switch (args->caching) {
3216         case I915_CACHING_NONE:
3217                 level = I915_CACHE_NONE;
3218                 break;
3219         case I915_CACHING_CACHED:
3220                 level = I915_CACHE_LLC;
3221                 break;
3222         default:
3223                 return -EINVAL;
3224         }
3225
3226         ret = i915_mutex_lock_interruptible(dev);
3227         if (ret)
3228                 return ret;
3229
3230         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3231         if (&obj->base == NULL) {
3232                 ret = -ENOENT;
3233                 goto unlock;
3234         }
3235
3236         ret = i915_gem_object_set_cache_level(obj, level);
3237
3238         drm_gem_object_unreference(&obj->base);
3239 unlock:
3240         mutex_unlock(&dev->struct_mutex);
3241         return ret;
3242 }
3243
3244 /*
3245  * Prepare buffer for display plane (scanout, cursors, etc).
3246  * Can be called from an uninterruptible phase (modesetting) and allows
3247  * any flushes to be pipelined (for pageflips).
3248  */
3249 int
3250 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3251                                      u32 alignment,
3252                                      struct intel_ring_buffer *pipelined)
3253 {
3254         u32 old_read_domains, old_write_domain;
3255         int ret;
3256
3257         if (pipelined != obj->ring) {
3258                 ret = i915_gem_object_sync(obj, pipelined);
3259                 if (ret)
3260                         return ret;
3261         }
3262
3263         /* The display engine is not coherent with the LLC cache on gen6.  As
3264          * a result, we make sure that the pinning that is about to occur is
3265          * done with uncached PTEs. This is lowest common denominator for all
3266          * chipsets.
3267          *
3268          * However for gen6+, we could do better by using the GFDT bit instead
3269          * of uncaching, which would allow us to flush all the LLC-cached data
3270          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3271          */
3272         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3273         if (ret)
3274                 return ret;
3275
3276         /* As the user may map the buffer once pinned in the display plane
3277          * (e.g. libkms for the bootup splash), we have to ensure that we
3278          * always use map_and_fenceable for all scanout buffers.
3279          */
3280         ret = i915_gem_object_pin(obj, alignment, true, false);
3281         if (ret)
3282                 return ret;
3283
3284         i915_gem_object_flush_cpu_write_domain(obj);
3285
3286         old_write_domain = obj->base.write_domain;
3287         old_read_domains = obj->base.read_domains;
3288
3289         /* It should now be out of any other write domains, and we can update
3290          * the domain values for our changes.
3291          */
3292         obj->base.write_domain = 0;
3293         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3294
3295         trace_i915_gem_object_change_domain(obj,
3296                                             old_read_domains,
3297                                             old_write_domain);
3298
3299         return 0;
3300 }
3301
3302 int
3303 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3304 {
3305         int ret;
3306
3307         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3308                 return 0;
3309
3310         ret = i915_gem_object_wait_rendering(obj, false);
3311         if (ret)
3312                 return ret;
3313
3314         /* Ensure that we invalidate the GPU's caches and TLBs. */
3315         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3316         return 0;
3317 }
3318
3319 /**
3320  * Moves a single object to the CPU read, and possibly write domain.
3321  *
3322  * This function returns when the move is complete, including waiting on
3323  * flushes to occur.
3324  */
3325 int
3326 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3327 {
3328         uint32_t old_write_domain, old_read_domains;
3329         int ret;
3330
3331         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3332                 return 0;
3333
3334         ret = i915_gem_object_wait_rendering(obj, !write);
3335         if (ret)
3336                 return ret;
3337
3338         i915_gem_object_flush_gtt_write_domain(obj);
3339
3340         old_write_domain = obj->base.write_domain;
3341         old_read_domains = obj->base.read_domains;
3342
3343         /* Flush the CPU cache if it's still invalid. */
3344         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3345                 i915_gem_clflush_object(obj);
3346
3347                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3348         }
3349
3350         /* It should now be out of any other write domains, and we can update
3351          * the domain values for our changes.
3352          */
3353         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3354
3355         /* If we're writing through the CPU, then the GPU read domains will
3356          * need to be invalidated at next use.
3357          */
3358         if (write) {
3359                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3360                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3361         }
3362
3363         trace_i915_gem_object_change_domain(obj,
3364                                             old_read_domains,
3365                                             old_write_domain);
3366
3367         return 0;
3368 }
3369
3370 /* Throttle our rendering by waiting until the ring has completed our requests
3371  * emitted over 20 msec ago.
3372  *
3373  * Note that if we were to use the current jiffies each time around the loop,
3374  * we wouldn't escape the function with any frames outstanding if the time to
3375  * render a frame was over 20ms.
3376  *
3377  * This should get us reasonable parallelism between CPU and GPU but also
3378  * relatively low latency when blocking on a particular request to finish.
3379  */
3380 static int
3381 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3382 {
3383         struct drm_i915_private *dev_priv = dev->dev_private;
3384         struct drm_i915_file_private *file_priv = file->driver_priv;
3385         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3386         struct drm_i915_gem_request *request;
3387         struct intel_ring_buffer *ring = NULL;
3388         u32 seqno = 0;
3389         int ret;
3390
3391         if (atomic_read(&dev_priv->mm.wedged))
3392                 return -EIO;
3393
3394         spin_lock(&file_priv->mm.lock);
3395         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3396                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3397                         break;
3398
3399                 ring = request->ring;
3400                 seqno = request->seqno;
3401         }
3402         spin_unlock(&file_priv->mm.lock);
3403
3404         if (seqno == 0)
3405                 return 0;
3406
3407         ret = __wait_seqno(ring, seqno, true, NULL);
3408         if (ret == 0)
3409                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3410
3411         return ret;
3412 }
3413
3414 int
3415 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3416                     uint32_t alignment,
3417                     bool map_and_fenceable,
3418                     bool nonblocking)
3419 {
3420         int ret;
3421
3422         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3423                 return -EBUSY;
3424
3425         if (obj->gtt_space != NULL) {
3426                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3427                     (map_and_fenceable && !obj->map_and_fenceable)) {
3428                         WARN(obj->pin_count,
3429                              "bo is already pinned with incorrect alignment:"
3430                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3431                              " obj->map_and_fenceable=%d\n",
3432                              obj->gtt_offset, alignment,
3433                              map_and_fenceable,
3434                              obj->map_and_fenceable);
3435                         ret = i915_gem_object_unbind(obj);
3436                         if (ret)
3437                                 return ret;
3438                 }
3439         }
3440
3441         if (obj->gtt_space == NULL) {
3442                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3443
3444                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3445                                                   map_and_fenceable,
3446                                                   nonblocking);
3447                 if (ret)
3448                         return ret;
3449
3450                 if (!dev_priv->mm.aliasing_ppgtt)
3451                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3452         }
3453
3454         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3455                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3456
3457         obj->pin_count++;
3458         obj->pin_mappable |= map_and_fenceable;
3459
3460         return 0;
3461 }
3462
3463 void
3464 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3465 {
3466         BUG_ON(obj->pin_count == 0);
3467         BUG_ON(obj->gtt_space == NULL);
3468
3469         if (--obj->pin_count == 0)
3470                 obj->pin_mappable = false;
3471 }
3472
3473 int
3474 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3475                    struct drm_file *file)
3476 {
3477         struct drm_i915_gem_pin *args = data;
3478         struct drm_i915_gem_object *obj;
3479         int ret;
3480
3481         ret = i915_mutex_lock_interruptible(dev);
3482         if (ret)
3483                 return ret;
3484
3485         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3486         if (&obj->base == NULL) {
3487                 ret = -ENOENT;
3488                 goto unlock;
3489         }
3490
3491         if (obj->madv != I915_MADV_WILLNEED) {
3492                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3493                 ret = -EINVAL;
3494                 goto out;
3495         }
3496
3497         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3498                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3499                           args->handle);
3500                 ret = -EINVAL;
3501                 goto out;
3502         }
3503
3504         obj->user_pin_count++;
3505         obj->pin_filp = file;
3506         if (obj->user_pin_count == 1) {
3507                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3508                 if (ret)
3509                         goto out;
3510         }
3511
3512         /* XXX - flush the CPU caches for pinned objects
3513          * as the X server doesn't manage domains yet
3514          */
3515         i915_gem_object_flush_cpu_write_domain(obj);
3516         args->offset = obj->gtt_offset;
3517 out:
3518         drm_gem_object_unreference(&obj->base);
3519 unlock:
3520         mutex_unlock(&dev->struct_mutex);
3521         return ret;
3522 }
3523
3524 int
3525 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3526                      struct drm_file *file)
3527 {
3528         struct drm_i915_gem_pin *args = data;
3529         struct drm_i915_gem_object *obj;
3530         int ret;
3531
3532         ret = i915_mutex_lock_interruptible(dev);
3533         if (ret)
3534                 return ret;
3535
3536         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3537         if (&obj->base == NULL) {
3538                 ret = -ENOENT;
3539                 goto unlock;
3540         }
3541
3542         if (obj->pin_filp != file) {
3543                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3544                           args->handle);
3545                 ret = -EINVAL;
3546                 goto out;
3547         }
3548         obj->user_pin_count--;
3549         if (obj->user_pin_count == 0) {
3550                 obj->pin_filp = NULL;
3551                 i915_gem_object_unpin(obj);
3552         }
3553
3554 out:
3555         drm_gem_object_unreference(&obj->base);
3556 unlock:
3557         mutex_unlock(&dev->struct_mutex);
3558         return ret;
3559 }
3560
3561 int
3562 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3563                     struct drm_file *file)
3564 {
3565         struct drm_i915_gem_busy *args = data;
3566         struct drm_i915_gem_object *obj;
3567         int ret;
3568
3569         ret = i915_mutex_lock_interruptible(dev);
3570         if (ret)
3571                 return ret;
3572
3573         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3574         if (&obj->base == NULL) {
3575                 ret = -ENOENT;
3576                 goto unlock;
3577         }
3578
3579         /* Count all active objects as busy, even if they are currently not used
3580          * by the gpu. Users of this interface expect objects to eventually
3581          * become non-busy without any further actions, therefore emit any
3582          * necessary flushes here.
3583          */
3584         ret = i915_gem_object_flush_active(obj);
3585
3586         args->busy = obj->active;
3587         if (obj->ring) {
3588                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3589                 args->busy |= intel_ring_flag(obj->ring) << 16;
3590         }
3591
3592         drm_gem_object_unreference(&obj->base);
3593 unlock:
3594         mutex_unlock(&dev->struct_mutex);
3595         return ret;
3596 }
3597
3598 int
3599 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3600                         struct drm_file *file_priv)
3601 {
3602         return i915_gem_ring_throttle(dev, file_priv);
3603 }
3604
3605 int
3606 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3607                        struct drm_file *file_priv)
3608 {
3609         struct drm_i915_gem_madvise *args = data;
3610         struct drm_i915_gem_object *obj;
3611         int ret;
3612
3613         switch (args->madv) {
3614         case I915_MADV_DONTNEED:
3615         case I915_MADV_WILLNEED:
3616             break;
3617         default:
3618             return -EINVAL;
3619         }
3620
3621         ret = i915_mutex_lock_interruptible(dev);
3622         if (ret)
3623                 return ret;
3624
3625         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3626         if (&obj->base == NULL) {
3627                 ret = -ENOENT;
3628                 goto unlock;
3629         }
3630
3631         if (obj->pin_count) {
3632                 ret = -EINVAL;
3633                 goto out;
3634         }
3635
3636         if (obj->madv != __I915_MADV_PURGED)
3637                 obj->madv = args->madv;
3638
3639         /* if the object is no longer attached, discard its backing storage */
3640         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3641                 i915_gem_object_truncate(obj);
3642
3643         args->retained = obj->madv != __I915_MADV_PURGED;
3644
3645 out:
3646         drm_gem_object_unreference(&obj->base);
3647 unlock:
3648         mutex_unlock(&dev->struct_mutex);
3649         return ret;
3650 }
3651
3652 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3653                           const struct drm_i915_gem_object_ops *ops)
3654 {
3655         INIT_LIST_HEAD(&obj->mm_list);
3656         INIT_LIST_HEAD(&obj->gtt_list);
3657         INIT_LIST_HEAD(&obj->ring_list);
3658         INIT_LIST_HEAD(&obj->exec_list);
3659
3660         obj->ops = ops;
3661
3662         obj->fence_reg = I915_FENCE_REG_NONE;
3663         obj->madv = I915_MADV_WILLNEED;
3664         /* Avoid an unnecessary call to unbind on the first bind. */
3665         obj->map_and_fenceable = true;
3666
3667         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3668 }
3669
3670 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3671         .get_pages = i915_gem_object_get_pages_gtt,
3672         .put_pages = i915_gem_object_put_pages_gtt,
3673 };
3674
3675 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3676                                                   size_t size)
3677 {
3678         struct drm_i915_gem_object *obj;
3679         struct address_space *mapping;
3680         gfp_t mask;
3681
3682         obj = i915_gem_object_alloc(dev);
3683         if (obj == NULL)
3684                 return NULL;
3685
3686         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3687                 i915_gem_object_free(obj);
3688                 return NULL;
3689         }
3690
3691         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3692         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3693                 /* 965gm cannot relocate objects above 4GiB. */
3694                 mask &= ~__GFP_HIGHMEM;
3695                 mask |= __GFP_DMA32;
3696         }
3697
3698         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3699         mapping_set_gfp_mask(mapping, mask);
3700
3701         i915_gem_object_init(obj, &i915_gem_object_ops);
3702
3703         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3704         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3705
3706         if (HAS_LLC(dev)) {
3707                 /* On some devices, we can have the GPU use the LLC (the CPU
3708                  * cache) for about a 10% performance improvement
3709                  * compared to uncached.  Graphics requests other than
3710                  * display scanout are coherent with the CPU in
3711                  * accessing this cache.  This means in this mode we
3712                  * don't need to clflush on the CPU side, and on the
3713                  * GPU side we only need to flush internal caches to
3714                  * get data visible to the CPU.
3715                  *
3716                  * However, we maintain the display planes as UC, and so
3717                  * need to rebind when first used as such.
3718                  */
3719                 obj->cache_level = I915_CACHE_LLC;
3720         } else
3721                 obj->cache_level = I915_CACHE_NONE;
3722
3723         return obj;
3724 }
3725
3726 int i915_gem_init_object(struct drm_gem_object *obj)
3727 {
3728         BUG();
3729
3730         return 0;
3731 }
3732
3733 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3734 {
3735         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3736         struct drm_device *dev = obj->base.dev;
3737         drm_i915_private_t *dev_priv = dev->dev_private;
3738
3739         trace_i915_gem_object_destroy(obj);
3740
3741         if (obj->phys_obj)
3742                 i915_gem_detach_phys_object(dev, obj);
3743
3744         obj->pin_count = 0;
3745         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3746                 bool was_interruptible;
3747
3748                 was_interruptible = dev_priv->mm.interruptible;
3749                 dev_priv->mm.interruptible = false;
3750
3751                 WARN_ON(i915_gem_object_unbind(obj));
3752
3753                 dev_priv->mm.interruptible = was_interruptible;
3754         }
3755
3756         obj->pages_pin_count = 0;
3757         i915_gem_object_put_pages(obj);
3758         i915_gem_object_free_mmap_offset(obj);
3759         i915_gem_object_release_stolen(obj);
3760
3761         BUG_ON(obj->pages);
3762
3763         if (obj->base.import_attach)
3764                 drm_prime_gem_destroy(&obj->base, NULL);
3765
3766         drm_gem_object_release(&obj->base);
3767         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3768
3769         kfree(obj->bit_17);
3770         i915_gem_object_free(obj);
3771 }
3772
3773 int
3774 i915_gem_idle(struct drm_device *dev)
3775 {
3776         drm_i915_private_t *dev_priv = dev->dev_private;
3777         int ret;
3778
3779         mutex_lock(&dev->struct_mutex);
3780
3781         if (dev_priv->mm.suspended) {
3782                 mutex_unlock(&dev->struct_mutex);
3783                 return 0;
3784         }
3785
3786         ret = i915_gpu_idle(dev);
3787         if (ret) {
3788                 mutex_unlock(&dev->struct_mutex);
3789                 return ret;
3790         }
3791         i915_gem_retire_requests(dev);
3792
3793         /* Under UMS, be paranoid and evict. */
3794         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3795                 i915_gem_evict_everything(dev);
3796
3797         i915_gem_reset_fences(dev);
3798
3799         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3800          * We need to replace this with a semaphore, or something.
3801          * And not confound mm.suspended!
3802          */
3803         dev_priv->mm.suspended = 1;
3804         del_timer_sync(&dev_priv->hangcheck_timer);
3805
3806         i915_kernel_lost_context(dev);
3807         i915_gem_cleanup_ringbuffer(dev);
3808
3809         mutex_unlock(&dev->struct_mutex);
3810
3811         /* Cancel the retire work handler, which should be idle now. */
3812         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3813
3814         return 0;
3815 }
3816
3817 void i915_gem_l3_remap(struct drm_device *dev)
3818 {
3819         drm_i915_private_t *dev_priv = dev->dev_private;
3820         u32 misccpctl;
3821         int i;
3822
3823         if (!IS_IVYBRIDGE(dev))
3824                 return;
3825
3826         if (!dev_priv->l3_parity.remap_info)
3827                 return;
3828
3829         misccpctl = I915_READ(GEN7_MISCCPCTL);
3830         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3831         POSTING_READ(GEN7_MISCCPCTL);
3832
3833         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3834                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3835                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3836                         DRM_DEBUG("0x%x was already programmed to %x\n",
3837                                   GEN7_L3LOG_BASE + i, remap);
3838                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3839                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
3840                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3841         }
3842
3843         /* Make sure all the writes land before disabling dop clock gating */
3844         POSTING_READ(GEN7_L3LOG_BASE);
3845
3846         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3847 }
3848
3849 void i915_gem_init_swizzling(struct drm_device *dev)
3850 {
3851         drm_i915_private_t *dev_priv = dev->dev_private;
3852
3853         if (INTEL_INFO(dev)->gen < 5 ||
3854             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3855                 return;
3856
3857         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3858                                  DISP_TILE_SURFACE_SWIZZLING);
3859
3860         if (IS_GEN5(dev))
3861                 return;
3862
3863         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3864         if (IS_GEN6(dev))
3865                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3866         else if (IS_GEN7(dev))
3867                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3868         else
3869                 BUG();
3870 }
3871
3872 static bool
3873 intel_enable_blt(struct drm_device *dev)
3874 {
3875         if (!HAS_BLT(dev))
3876                 return false;
3877
3878         /* The blitter was dysfunctional on early prototypes */
3879         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3880                 DRM_INFO("BLT not supported on this pre-production hardware;"
3881                          " graphics performance will be degraded.\n");
3882                 return false;
3883         }
3884
3885         return true;
3886 }
3887
3888 int
3889 i915_gem_init_hw(struct drm_device *dev)
3890 {
3891         drm_i915_private_t *dev_priv = dev->dev_private;
3892         int ret;
3893
3894         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3895                 return -EIO;
3896
3897         if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3898                 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3899
3900         i915_gem_l3_remap(dev);
3901
3902         i915_gem_init_swizzling(dev);
3903
3904         dev_priv->next_seqno = dev_priv->last_seqno = (u32)~0 - 0x1000;
3905
3906         ret = intel_init_render_ring_buffer(dev);
3907         if (ret)
3908                 return ret;
3909
3910         if (HAS_BSD(dev)) {
3911                 ret = intel_init_bsd_ring_buffer(dev);
3912                 if (ret)
3913                         goto cleanup_render_ring;
3914         }
3915
3916         if (intel_enable_blt(dev)) {
3917                 ret = intel_init_blt_ring_buffer(dev);
3918                 if (ret)
3919                         goto cleanup_bsd_ring;
3920         }
3921
3922         /*
3923          * XXX: There was some w/a described somewhere suggesting loading
3924          * contexts before PPGTT.
3925          */
3926         i915_gem_context_init(dev);
3927         i915_gem_init_ppgtt(dev);
3928
3929         return 0;
3930
3931 cleanup_bsd_ring:
3932         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3933 cleanup_render_ring:
3934         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3935         return ret;
3936 }
3937
3938 int i915_gem_init(struct drm_device *dev)
3939 {
3940         struct drm_i915_private *dev_priv = dev->dev_private;
3941         int ret;
3942
3943         mutex_lock(&dev->struct_mutex);
3944         i915_gem_init_global_gtt(dev);
3945         ret = i915_gem_init_hw(dev);
3946         mutex_unlock(&dev->struct_mutex);
3947         if (ret) {
3948                 i915_gem_cleanup_aliasing_ppgtt(dev);
3949                 return ret;
3950         }
3951
3952         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3953         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3954                 dev_priv->dri1.allow_batchbuffer = 1;
3955         return 0;
3956 }
3957
3958 void
3959 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3960 {
3961         drm_i915_private_t *dev_priv = dev->dev_private;
3962         struct intel_ring_buffer *ring;
3963         int i;
3964
3965         for_each_ring(ring, dev_priv, i)
3966                 intel_cleanup_ring_buffer(ring);
3967 }
3968
3969 int
3970 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3971                        struct drm_file *file_priv)
3972 {
3973         drm_i915_private_t *dev_priv = dev->dev_private;
3974         int ret;
3975
3976         if (drm_core_check_feature(dev, DRIVER_MODESET))
3977                 return 0;
3978
3979         if (atomic_read(&dev_priv->mm.wedged)) {
3980                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3981                 atomic_set(&dev_priv->mm.wedged, 0);
3982         }
3983
3984         mutex_lock(&dev->struct_mutex);
3985         dev_priv->mm.suspended = 0;
3986
3987         ret = i915_gem_init_hw(dev);
3988         if (ret != 0) {
3989                 mutex_unlock(&dev->struct_mutex);
3990                 return ret;
3991         }
3992
3993         BUG_ON(!list_empty(&dev_priv->mm.active_list));
3994         mutex_unlock(&dev->struct_mutex);
3995
3996         ret = drm_irq_install(dev);
3997         if (ret)
3998                 goto cleanup_ringbuffer;
3999
4000         return 0;
4001
4002 cleanup_ringbuffer:
4003         mutex_lock(&dev->struct_mutex);
4004         i915_gem_cleanup_ringbuffer(dev);
4005         dev_priv->mm.suspended = 1;
4006         mutex_unlock(&dev->struct_mutex);
4007
4008         return ret;
4009 }
4010
4011 int
4012 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4013                        struct drm_file *file_priv)
4014 {
4015         if (drm_core_check_feature(dev, DRIVER_MODESET))
4016                 return 0;
4017
4018         drm_irq_uninstall(dev);
4019         return i915_gem_idle(dev);
4020 }
4021
4022 void
4023 i915_gem_lastclose(struct drm_device *dev)
4024 {
4025         int ret;
4026
4027         if (drm_core_check_feature(dev, DRIVER_MODESET))
4028                 return;
4029
4030         ret = i915_gem_idle(dev);
4031         if (ret)
4032                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4033 }
4034
4035 static void
4036 init_ring_lists(struct intel_ring_buffer *ring)
4037 {
4038         INIT_LIST_HEAD(&ring->active_list);
4039         INIT_LIST_HEAD(&ring->request_list);
4040 }
4041
4042 void
4043 i915_gem_load(struct drm_device *dev)
4044 {
4045         drm_i915_private_t *dev_priv = dev->dev_private;
4046         int i;
4047
4048         dev_priv->slab =
4049                 kmem_cache_create("i915_gem_object",
4050                                   sizeof(struct drm_i915_gem_object), 0,
4051                                   SLAB_HWCACHE_ALIGN,
4052                                   NULL);
4053
4054         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4055         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4056         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4057         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4058         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4059         for (i = 0; i < I915_NUM_RINGS; i++)
4060                 init_ring_lists(&dev_priv->ring[i]);
4061         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4062                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4063         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4064                           i915_gem_retire_work_handler);
4065         init_completion(&dev_priv->error_completion);
4066
4067         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4068         if (IS_GEN3(dev)) {
4069                 I915_WRITE(MI_ARB_STATE,
4070                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4071         }
4072
4073         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4074
4075         /* Old X drivers will take 0-2 for front, back, depth buffers */
4076         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4077                 dev_priv->fence_reg_start = 3;
4078
4079         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4080                 dev_priv->num_fence_regs = 16;
4081         else
4082                 dev_priv->num_fence_regs = 8;
4083
4084         /* Initialize fence registers to zero */
4085         i915_gem_reset_fences(dev);
4086
4087         i915_gem_detect_bit_6_swizzle(dev);
4088         init_waitqueue_head(&dev_priv->pending_flip_queue);
4089
4090         dev_priv->mm.interruptible = true;
4091
4092         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4093         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4094         register_shrinker(&dev_priv->mm.inactive_shrinker);
4095 }
4096
4097 /*
4098  * Create a physically contiguous memory object for this object
4099  * e.g. for cursor + overlay regs
4100  */
4101 static int i915_gem_init_phys_object(struct drm_device *dev,
4102                                      int id, int size, int align)
4103 {
4104         drm_i915_private_t *dev_priv = dev->dev_private;
4105         struct drm_i915_gem_phys_object *phys_obj;
4106         int ret;
4107
4108         if (dev_priv->mm.phys_objs[id - 1] || !size)
4109                 return 0;
4110
4111         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4112         if (!phys_obj)
4113                 return -ENOMEM;
4114
4115         phys_obj->id = id;
4116
4117         phys_obj->handle = drm_pci_alloc(dev, size, align);
4118         if (!phys_obj->handle) {
4119                 ret = -ENOMEM;
4120                 goto kfree_obj;
4121         }
4122 #ifdef CONFIG_X86
4123         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4124 #endif
4125
4126         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4127
4128         return 0;
4129 kfree_obj:
4130         kfree(phys_obj);
4131         return ret;
4132 }
4133
4134 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4135 {
4136         drm_i915_private_t *dev_priv = dev->dev_private;
4137         struct drm_i915_gem_phys_object *phys_obj;
4138
4139         if (!dev_priv->mm.phys_objs[id - 1])
4140                 return;
4141
4142         phys_obj = dev_priv->mm.phys_objs[id - 1];
4143         if (phys_obj->cur_obj) {
4144                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4145         }
4146
4147 #ifdef CONFIG_X86
4148         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4149 #endif
4150         drm_pci_free(dev, phys_obj->handle);
4151         kfree(phys_obj);
4152         dev_priv->mm.phys_objs[id - 1] = NULL;
4153 }
4154
4155 void i915_gem_free_all_phys_object(struct drm_device *dev)
4156 {
4157         int i;
4158
4159         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4160                 i915_gem_free_phys_object(dev, i);
4161 }
4162
4163 void i915_gem_detach_phys_object(struct drm_device *dev,
4164                                  struct drm_i915_gem_object *obj)
4165 {
4166         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4167         char *vaddr;
4168         int i;
4169         int page_count;
4170
4171         if (!obj->phys_obj)
4172                 return;
4173         vaddr = obj->phys_obj->handle->vaddr;
4174
4175         page_count = obj->base.size / PAGE_SIZE;
4176         for (i = 0; i < page_count; i++) {
4177                 struct page *page = shmem_read_mapping_page(mapping, i);
4178                 if (!IS_ERR(page)) {
4179                         char *dst = kmap_atomic(page);
4180                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4181                         kunmap_atomic(dst);
4182
4183                         drm_clflush_pages(&page, 1);
4184
4185                         set_page_dirty(page);
4186                         mark_page_accessed(page);
4187                         page_cache_release(page);
4188                 }
4189         }
4190         i915_gem_chipset_flush(dev);
4191
4192         obj->phys_obj->cur_obj = NULL;
4193         obj->phys_obj = NULL;
4194 }
4195
4196 int
4197 i915_gem_attach_phys_object(struct drm_device *dev,
4198                             struct drm_i915_gem_object *obj,
4199                             int id,
4200                             int align)
4201 {
4202         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4203         drm_i915_private_t *dev_priv = dev->dev_private;
4204         int ret = 0;
4205         int page_count;
4206         int i;
4207
4208         if (id > I915_MAX_PHYS_OBJECT)
4209                 return -EINVAL;
4210
4211         if (obj->phys_obj) {
4212                 if (obj->phys_obj->id == id)
4213                         return 0;
4214                 i915_gem_detach_phys_object(dev, obj);
4215         }
4216
4217         /* create a new object */
4218         if (!dev_priv->mm.phys_objs[id - 1]) {
4219                 ret = i915_gem_init_phys_object(dev, id,
4220                                                 obj->base.size, align);
4221                 if (ret) {
4222                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4223                                   id, obj->base.size);
4224                         return ret;
4225                 }
4226         }
4227
4228         /* bind to the object */
4229         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4230         obj->phys_obj->cur_obj = obj;
4231
4232         page_count = obj->base.size / PAGE_SIZE;
4233
4234         for (i = 0; i < page_count; i++) {
4235                 struct page *page;
4236                 char *dst, *src;
4237
4238                 page = shmem_read_mapping_page(mapping, i);
4239                 if (IS_ERR(page))
4240                         return PTR_ERR(page);
4241
4242                 src = kmap_atomic(page);
4243                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4244                 memcpy(dst, src, PAGE_SIZE);
4245                 kunmap_atomic(src);
4246
4247                 mark_page_accessed(page);
4248                 page_cache_release(page);
4249         }
4250
4251         return 0;
4252 }
4253
4254 static int
4255 i915_gem_phys_pwrite(struct drm_device *dev,
4256                      struct drm_i915_gem_object *obj,
4257                      struct drm_i915_gem_pwrite *args,
4258                      struct drm_file *file_priv)
4259 {
4260         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4261         char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4262
4263         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4264                 unsigned long unwritten;
4265
4266                 /* The physical object once assigned is fixed for the lifetime
4267                  * of the obj, so we can safely drop the lock and continue
4268                  * to access vaddr.
4269                  */
4270                 mutex_unlock(&dev->struct_mutex);
4271                 unwritten = copy_from_user(vaddr, user_data, args->size);
4272                 mutex_lock(&dev->struct_mutex);
4273                 if (unwritten)
4274                         return -EFAULT;
4275         }
4276
4277         i915_gem_chipset_flush(dev);
4278         return 0;
4279 }
4280
4281 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4282 {
4283         struct drm_i915_file_private *file_priv = file->driver_priv;
4284
4285         /* Clean up our request list when the client is going away, so that
4286          * later retire_requests won't dereference our soon-to-be-gone
4287          * file_priv.
4288          */
4289         spin_lock(&file_priv->mm.lock);
4290         while (!list_empty(&file_priv->mm.request_list)) {
4291                 struct drm_i915_gem_request *request;
4292
4293                 request = list_first_entry(&file_priv->mm.request_list,
4294                                            struct drm_i915_gem_request,
4295                                            client_list);
4296                 list_del(&request->client_list);
4297                 request->file_priv = NULL;
4298         }
4299         spin_unlock(&file_priv->mm.lock);
4300 }
4301
4302 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4303 {
4304         if (!mutex_is_locked(mutex))
4305                 return false;
4306
4307 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4308         return mutex->owner == task;
4309 #else
4310         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4311         return false;
4312 #endif
4313 }
4314
4315 static int
4316 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4317 {
4318         struct drm_i915_private *dev_priv =
4319                 container_of(shrinker,
4320                              struct drm_i915_private,
4321                              mm.inactive_shrinker);
4322         struct drm_device *dev = dev_priv->dev;
4323         struct drm_i915_gem_object *obj;
4324         int nr_to_scan = sc->nr_to_scan;
4325         bool unlock = true;
4326         int cnt;
4327
4328         if (!mutex_trylock(&dev->struct_mutex)) {
4329                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4330                         return 0;
4331
4332                 if (dev_priv->mm.shrinker_no_lock_stealing)
4333                         return 0;
4334
4335                 unlock = false;
4336         }
4337
4338         if (nr_to_scan) {
4339                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4340                 if (nr_to_scan > 0)
4341                         i915_gem_shrink_all(dev_priv);
4342         }
4343
4344         cnt = 0;
4345         list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4346                 if (obj->pages_pin_count == 0)
4347                         cnt += obj->base.size >> PAGE_SHIFT;
4348         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4349                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4350                         cnt += obj->base.size >> PAGE_SHIFT;
4351
4352         if (unlock)
4353                 mutex_unlock(&dev->struct_mutex);
4354         return cnt;
4355 }