ea93898d51bcd40ea34a45517bad797eb55a8421
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42                                                    bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45                                bool readonly);
46 static void
47 i915_gem_object_retire(struct drm_i915_gem_object *obj);
48
49 static int i915_gem_phys_pwrite(struct drm_device *dev,
50                                 struct drm_i915_gem_object *obj,
51                                 struct drm_i915_gem_pwrite *args,
52                                 struct drm_file *file);
53
54 static void i915_gem_write_fence(struct drm_device *dev, int reg,
55                                  struct drm_i915_gem_object *obj);
56 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
57                                          struct drm_i915_fence_reg *fence,
58                                          bool enable);
59
60 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
61                                              struct shrink_control *sc);
62 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
63                                             struct shrink_control *sc);
64 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
65 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
66
67 static bool cpu_cache_is_coherent(struct drm_device *dev,
68                                   enum i915_cache_level level)
69 {
70         return HAS_LLC(dev) || level != I915_CACHE_NONE;
71 }
72
73 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
74 {
75         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
76                 return true;
77
78         return obj->pin_display;
79 }
80
81 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
82 {
83         if (obj->tiling_mode)
84                 i915_gem_release_mmap(obj);
85
86         /* As we do not have an associated fence register, we will force
87          * a tiling change if we ever need to acquire one.
88          */
89         obj->fence_dirty = false;
90         obj->fence_reg = I915_FENCE_REG_NONE;
91 }
92
93 /* some bookkeeping */
94 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
95                                   size_t size)
96 {
97         spin_lock(&dev_priv->mm.object_stat_lock);
98         dev_priv->mm.object_count++;
99         dev_priv->mm.object_memory += size;
100         spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102
103 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
104                                      size_t size)
105 {
106         spin_lock(&dev_priv->mm.object_stat_lock);
107         dev_priv->mm.object_count--;
108         dev_priv->mm.object_memory -= size;
109         spin_unlock(&dev_priv->mm.object_stat_lock);
110 }
111
112 static int
113 i915_gem_wait_for_error(struct i915_gpu_error *error)
114 {
115         int ret;
116
117 #define EXIT_COND (!i915_reset_in_progress(error) || \
118                    i915_terminally_wedged(error))
119         if (EXIT_COND)
120                 return 0;
121
122         /*
123          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
124          * userspace. If it takes that long something really bad is going on and
125          * we should simply try to bail out and fail as gracefully as possible.
126          */
127         ret = wait_event_interruptible_timeout(error->reset_queue,
128                                                EXIT_COND,
129                                                10*HZ);
130         if (ret == 0) {
131                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
132                 return -EIO;
133         } else if (ret < 0) {
134                 return ret;
135         }
136 #undef EXIT_COND
137
138         return 0;
139 }
140
141 int i915_mutex_lock_interruptible(struct drm_device *dev)
142 {
143         struct drm_i915_private *dev_priv = dev->dev_private;
144         int ret;
145
146         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
147         if (ret)
148                 return ret;
149
150         ret = mutex_lock_interruptible(&dev->struct_mutex);
151         if (ret)
152                 return ret;
153
154         WARN_ON(i915_verify_lists(dev));
155         return 0;
156 }
157
158 static inline bool
159 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
160 {
161         return i915_gem_obj_bound_any(obj) && !obj->active;
162 }
163
164 int
165 i915_gem_init_ioctl(struct drm_device *dev, void *data,
166                     struct drm_file *file)
167 {
168         struct drm_i915_private *dev_priv = dev->dev_private;
169         struct drm_i915_gem_init *args = data;
170
171         if (drm_core_check_feature(dev, DRIVER_MODESET))
172                 return -ENODEV;
173
174         if (args->gtt_start >= args->gtt_end ||
175             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
176                 return -EINVAL;
177
178         /* GEM with user mode setting was never supported on ilk and later. */
179         if (INTEL_INFO(dev)->gen >= 5)
180                 return -ENODEV;
181
182         mutex_lock(&dev->struct_mutex);
183         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
184                                   args->gtt_end);
185         dev_priv->gtt.mappable_end = args->gtt_end;
186         mutex_unlock(&dev->struct_mutex);
187
188         return 0;
189 }
190
191 int
192 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
193                             struct drm_file *file)
194 {
195         struct drm_i915_private *dev_priv = dev->dev_private;
196         struct drm_i915_gem_get_aperture *args = data;
197         struct drm_i915_gem_object *obj;
198         size_t pinned;
199
200         pinned = 0;
201         mutex_lock(&dev->struct_mutex);
202         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
203                 if (i915_gem_obj_is_pinned(obj))
204                         pinned += i915_gem_obj_ggtt_size(obj);
205         mutex_unlock(&dev->struct_mutex);
206
207         args->aper_size = dev_priv->gtt.base.total;
208         args->aper_available_size = args->aper_size - pinned;
209
210         return 0;
211 }
212
213 void *i915_gem_object_alloc(struct drm_device *dev)
214 {
215         struct drm_i915_private *dev_priv = dev->dev_private;
216         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
217 }
218
219 void i915_gem_object_free(struct drm_i915_gem_object *obj)
220 {
221         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
222         kmem_cache_free(dev_priv->slab, obj);
223 }
224
225 static int
226 i915_gem_create(struct drm_file *file,
227                 struct drm_device *dev,
228                 uint64_t size,
229                 uint32_t *handle_p)
230 {
231         struct drm_i915_gem_object *obj;
232         int ret;
233         u32 handle;
234
235         size = roundup(size, PAGE_SIZE);
236         if (size == 0)
237                 return -EINVAL;
238
239         /* Allocate the new object */
240         obj = i915_gem_alloc_object(dev, size);
241         if (obj == NULL)
242                 return -ENOMEM;
243
244         ret = drm_gem_handle_create(file, &obj->base, &handle);
245         /* drop reference from allocate - handle holds it now */
246         drm_gem_object_unreference_unlocked(&obj->base);
247         if (ret)
248                 return ret;
249
250         *handle_p = handle;
251         return 0;
252 }
253
254 int
255 i915_gem_dumb_create(struct drm_file *file,
256                      struct drm_device *dev,
257                      struct drm_mode_create_dumb *args)
258 {
259         /* have to work out size/pitch and return them */
260         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
261         args->size = args->pitch * args->height;
262         return i915_gem_create(file, dev,
263                                args->size, &args->handle);
264 }
265
266 /**
267  * Creates a new mm object and returns a handle to it.
268  */
269 int
270 i915_gem_create_ioctl(struct drm_device *dev, void *data,
271                       struct drm_file *file)
272 {
273         struct drm_i915_gem_create *args = data;
274
275         return i915_gem_create(file, dev,
276                                args->size, &args->handle);
277 }
278
279 static inline int
280 __copy_to_user_swizzled(char __user *cpu_vaddr,
281                         const char *gpu_vaddr, int gpu_offset,
282                         int length)
283 {
284         int ret, cpu_offset = 0;
285
286         while (length > 0) {
287                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
288                 int this_length = min(cacheline_end - gpu_offset, length);
289                 int swizzled_gpu_offset = gpu_offset ^ 64;
290
291                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
292                                      gpu_vaddr + swizzled_gpu_offset,
293                                      this_length);
294                 if (ret)
295                         return ret + length;
296
297                 cpu_offset += this_length;
298                 gpu_offset += this_length;
299                 length -= this_length;
300         }
301
302         return 0;
303 }
304
305 static inline int
306 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
307                           const char __user *cpu_vaddr,
308                           int length)
309 {
310         int ret, cpu_offset = 0;
311
312         while (length > 0) {
313                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
314                 int this_length = min(cacheline_end - gpu_offset, length);
315                 int swizzled_gpu_offset = gpu_offset ^ 64;
316
317                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
318                                        cpu_vaddr + cpu_offset,
319                                        this_length);
320                 if (ret)
321                         return ret + length;
322
323                 cpu_offset += this_length;
324                 gpu_offset += this_length;
325                 length -= this_length;
326         }
327
328         return 0;
329 }
330
331 /*
332  * Pins the specified object's pages and synchronizes the object with
333  * GPU accesses. Sets needs_clflush to non-zero if the caller should
334  * flush the object from the CPU cache.
335  */
336 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
337                                     int *needs_clflush)
338 {
339         int ret;
340
341         *needs_clflush = 0;
342
343         if (!obj->base.filp)
344                 return -EINVAL;
345
346         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
347                 /* If we're not in the cpu read domain, set ourself into the gtt
348                  * read domain and manually flush cachelines (if required). This
349                  * optimizes for the case when the gpu will dirty the data
350                  * anyway again before the next pread happens. */
351                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
352                                                         obj->cache_level);
353                 ret = i915_gem_object_wait_rendering(obj, true);
354                 if (ret)
355                         return ret;
356
357                 i915_gem_object_retire(obj);
358         }
359
360         ret = i915_gem_object_get_pages(obj);
361         if (ret)
362                 return ret;
363
364         i915_gem_object_pin_pages(obj);
365
366         return ret;
367 }
368
369 /* Per-page copy function for the shmem pread fastpath.
370  * Flushes invalid cachelines before reading the target if
371  * needs_clflush is set. */
372 static int
373 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
374                  char __user *user_data,
375                  bool page_do_bit17_swizzling, bool needs_clflush)
376 {
377         char *vaddr;
378         int ret;
379
380         if (unlikely(page_do_bit17_swizzling))
381                 return -EINVAL;
382
383         vaddr = kmap_atomic(page);
384         if (needs_clflush)
385                 drm_clflush_virt_range(vaddr + shmem_page_offset,
386                                        page_length);
387         ret = __copy_to_user_inatomic(user_data,
388                                       vaddr + shmem_page_offset,
389                                       page_length);
390         kunmap_atomic(vaddr);
391
392         return ret ? -EFAULT : 0;
393 }
394
395 static void
396 shmem_clflush_swizzled_range(char *addr, unsigned long length,
397                              bool swizzled)
398 {
399         if (unlikely(swizzled)) {
400                 unsigned long start = (unsigned long) addr;
401                 unsigned long end = (unsigned long) addr + length;
402
403                 /* For swizzling simply ensure that we always flush both
404                  * channels. Lame, but simple and it works. Swizzled
405                  * pwrite/pread is far from a hotpath - current userspace
406                  * doesn't use it at all. */
407                 start = round_down(start, 128);
408                 end = round_up(end, 128);
409
410                 drm_clflush_virt_range((void *)start, end - start);
411         } else {
412                 drm_clflush_virt_range(addr, length);
413         }
414
415 }
416
417 /* Only difference to the fast-path function is that this can handle bit17
418  * and uses non-atomic copy and kmap functions. */
419 static int
420 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
421                  char __user *user_data,
422                  bool page_do_bit17_swizzling, bool needs_clflush)
423 {
424         char *vaddr;
425         int ret;
426
427         vaddr = kmap(page);
428         if (needs_clflush)
429                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
430                                              page_length,
431                                              page_do_bit17_swizzling);
432
433         if (page_do_bit17_swizzling)
434                 ret = __copy_to_user_swizzled(user_data,
435                                               vaddr, shmem_page_offset,
436                                               page_length);
437         else
438                 ret = __copy_to_user(user_data,
439                                      vaddr + shmem_page_offset,
440                                      page_length);
441         kunmap(page);
442
443         return ret ? - EFAULT : 0;
444 }
445
446 static int
447 i915_gem_shmem_pread(struct drm_device *dev,
448                      struct drm_i915_gem_object *obj,
449                      struct drm_i915_gem_pread *args,
450                      struct drm_file *file)
451 {
452         char __user *user_data;
453         ssize_t remain;
454         loff_t offset;
455         int shmem_page_offset, page_length, ret = 0;
456         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
457         int prefaulted = 0;
458         int needs_clflush = 0;
459         struct sg_page_iter sg_iter;
460
461         user_data = to_user_ptr(args->data_ptr);
462         remain = args->size;
463
464         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
465
466         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
467         if (ret)
468                 return ret;
469
470         offset = args->offset;
471
472         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
473                          offset >> PAGE_SHIFT) {
474                 struct page *page = sg_page_iter_page(&sg_iter);
475
476                 if (remain <= 0)
477                         break;
478
479                 /* Operation in this page
480                  *
481                  * shmem_page_offset = offset within page in shmem file
482                  * page_length = bytes to copy for this page
483                  */
484                 shmem_page_offset = offset_in_page(offset);
485                 page_length = remain;
486                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
487                         page_length = PAGE_SIZE - shmem_page_offset;
488
489                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
490                         (page_to_phys(page) & (1 << 17)) != 0;
491
492                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
493                                        user_data, page_do_bit17_swizzling,
494                                        needs_clflush);
495                 if (ret == 0)
496                         goto next_page;
497
498                 mutex_unlock(&dev->struct_mutex);
499
500                 if (likely(!i915.prefault_disable) && !prefaulted) {
501                         ret = fault_in_multipages_writeable(user_data, remain);
502                         /* Userspace is tricking us, but we've already clobbered
503                          * its pages with the prefault and promised to write the
504                          * data up to the first fault. Hence ignore any errors
505                          * and just continue. */
506                         (void)ret;
507                         prefaulted = 1;
508                 }
509
510                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
511                                        user_data, page_do_bit17_swizzling,
512                                        needs_clflush);
513
514                 mutex_lock(&dev->struct_mutex);
515
516                 if (ret)
517                         goto out;
518
519 next_page:
520                 remain -= page_length;
521                 user_data += page_length;
522                 offset += page_length;
523         }
524
525 out:
526         i915_gem_object_unpin_pages(obj);
527
528         return ret;
529 }
530
531 /**
532  * Reads data from the object referenced by handle.
533  *
534  * On error, the contents of *data are undefined.
535  */
536 int
537 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
538                      struct drm_file *file)
539 {
540         struct drm_i915_gem_pread *args = data;
541         struct drm_i915_gem_object *obj;
542         int ret = 0;
543
544         if (args->size == 0)
545                 return 0;
546
547         if (!access_ok(VERIFY_WRITE,
548                        to_user_ptr(args->data_ptr),
549                        args->size))
550                 return -EFAULT;
551
552         ret = i915_mutex_lock_interruptible(dev);
553         if (ret)
554                 return ret;
555
556         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
557         if (&obj->base == NULL) {
558                 ret = -ENOENT;
559                 goto unlock;
560         }
561
562         /* Bounds check source.  */
563         if (args->offset > obj->base.size ||
564             args->size > obj->base.size - args->offset) {
565                 ret = -EINVAL;
566                 goto out;
567         }
568
569         /* prime objects have no backing filp to GEM pread/pwrite
570          * pages from.
571          */
572         if (!obj->base.filp) {
573                 ret = -EINVAL;
574                 goto out;
575         }
576
577         trace_i915_gem_object_pread(obj, args->offset, args->size);
578
579         ret = i915_gem_shmem_pread(dev, obj, args, file);
580
581 out:
582         drm_gem_object_unreference(&obj->base);
583 unlock:
584         mutex_unlock(&dev->struct_mutex);
585         return ret;
586 }
587
588 /* This is the fast write path which cannot handle
589  * page faults in the source data
590  */
591
592 static inline int
593 fast_user_write(struct io_mapping *mapping,
594                 loff_t page_base, int page_offset,
595                 char __user *user_data,
596                 int length)
597 {
598         void __iomem *vaddr_atomic;
599         void *vaddr;
600         unsigned long unwritten;
601
602         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
603         /* We can use the cpu mem copy function because this is X86. */
604         vaddr = (void __force*)vaddr_atomic + page_offset;
605         unwritten = __copy_from_user_inatomic_nocache(vaddr,
606                                                       user_data, length);
607         io_mapping_unmap_atomic(vaddr_atomic);
608         return unwritten;
609 }
610
611 /**
612  * This is the fast pwrite path, where we copy the data directly from the
613  * user into the GTT, uncached.
614  */
615 static int
616 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
617                          struct drm_i915_gem_object *obj,
618                          struct drm_i915_gem_pwrite *args,
619                          struct drm_file *file)
620 {
621         struct drm_i915_private *dev_priv = dev->dev_private;
622         ssize_t remain;
623         loff_t offset, page_base;
624         char __user *user_data;
625         int page_offset, page_length, ret;
626
627         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
628         if (ret)
629                 goto out;
630
631         ret = i915_gem_object_set_to_gtt_domain(obj, true);
632         if (ret)
633                 goto out_unpin;
634
635         ret = i915_gem_object_put_fence(obj);
636         if (ret)
637                 goto out_unpin;
638
639         user_data = to_user_ptr(args->data_ptr);
640         remain = args->size;
641
642         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
643
644         while (remain > 0) {
645                 /* Operation in this page
646                  *
647                  * page_base = page offset within aperture
648                  * page_offset = offset within page
649                  * page_length = bytes to copy for this page
650                  */
651                 page_base = offset & PAGE_MASK;
652                 page_offset = offset_in_page(offset);
653                 page_length = remain;
654                 if ((page_offset + remain) > PAGE_SIZE)
655                         page_length = PAGE_SIZE - page_offset;
656
657                 /* If we get a fault while copying data, then (presumably) our
658                  * source page isn't available.  Return the error and we'll
659                  * retry in the slow path.
660                  */
661                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
662                                     page_offset, user_data, page_length)) {
663                         ret = -EFAULT;
664                         goto out_unpin;
665                 }
666
667                 remain -= page_length;
668                 user_data += page_length;
669                 offset += page_length;
670         }
671
672 out_unpin:
673         i915_gem_object_ggtt_unpin(obj);
674 out:
675         return ret;
676 }
677
678 /* Per-page copy function for the shmem pwrite fastpath.
679  * Flushes invalid cachelines before writing to the target if
680  * needs_clflush_before is set and flushes out any written cachelines after
681  * writing if needs_clflush is set. */
682 static int
683 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
684                   char __user *user_data,
685                   bool page_do_bit17_swizzling,
686                   bool needs_clflush_before,
687                   bool needs_clflush_after)
688 {
689         char *vaddr;
690         int ret;
691
692         if (unlikely(page_do_bit17_swizzling))
693                 return -EINVAL;
694
695         vaddr = kmap_atomic(page);
696         if (needs_clflush_before)
697                 drm_clflush_virt_range(vaddr + shmem_page_offset,
698                                        page_length);
699         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
700                                         user_data, page_length);
701         if (needs_clflush_after)
702                 drm_clflush_virt_range(vaddr + shmem_page_offset,
703                                        page_length);
704         kunmap_atomic(vaddr);
705
706         return ret ? -EFAULT : 0;
707 }
708
709 /* Only difference to the fast-path function is that this can handle bit17
710  * and uses non-atomic copy and kmap functions. */
711 static int
712 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
713                   char __user *user_data,
714                   bool page_do_bit17_swizzling,
715                   bool needs_clflush_before,
716                   bool needs_clflush_after)
717 {
718         char *vaddr;
719         int ret;
720
721         vaddr = kmap(page);
722         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
723                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
724                                              page_length,
725                                              page_do_bit17_swizzling);
726         if (page_do_bit17_swizzling)
727                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
728                                                 user_data,
729                                                 page_length);
730         else
731                 ret = __copy_from_user(vaddr + shmem_page_offset,
732                                        user_data,
733                                        page_length);
734         if (needs_clflush_after)
735                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
736                                              page_length,
737                                              page_do_bit17_swizzling);
738         kunmap(page);
739
740         return ret ? -EFAULT : 0;
741 }
742
743 static int
744 i915_gem_shmem_pwrite(struct drm_device *dev,
745                       struct drm_i915_gem_object *obj,
746                       struct drm_i915_gem_pwrite *args,
747                       struct drm_file *file)
748 {
749         ssize_t remain;
750         loff_t offset;
751         char __user *user_data;
752         int shmem_page_offset, page_length, ret = 0;
753         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
754         int hit_slowpath = 0;
755         int needs_clflush_after = 0;
756         int needs_clflush_before = 0;
757         struct sg_page_iter sg_iter;
758
759         user_data = to_user_ptr(args->data_ptr);
760         remain = args->size;
761
762         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
763
764         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
765                 /* If we're not in the cpu write domain, set ourself into the gtt
766                  * write domain and manually flush cachelines (if required). This
767                  * optimizes for the case when the gpu will use the data
768                  * right away and we therefore have to clflush anyway. */
769                 needs_clflush_after = cpu_write_needs_clflush(obj);
770                 ret = i915_gem_object_wait_rendering(obj, false);
771                 if (ret)
772                         return ret;
773
774                 i915_gem_object_retire(obj);
775         }
776         /* Same trick applies to invalidate partially written cachelines read
777          * before writing. */
778         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
779                 needs_clflush_before =
780                         !cpu_cache_is_coherent(dev, obj->cache_level);
781
782         ret = i915_gem_object_get_pages(obj);
783         if (ret)
784                 return ret;
785
786         i915_gem_object_pin_pages(obj);
787
788         offset = args->offset;
789         obj->dirty = 1;
790
791         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
792                          offset >> PAGE_SHIFT) {
793                 struct page *page = sg_page_iter_page(&sg_iter);
794                 int partial_cacheline_write;
795
796                 if (remain <= 0)
797                         break;
798
799                 /* Operation in this page
800                  *
801                  * shmem_page_offset = offset within page in shmem file
802                  * page_length = bytes to copy for this page
803                  */
804                 shmem_page_offset = offset_in_page(offset);
805
806                 page_length = remain;
807                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
808                         page_length = PAGE_SIZE - shmem_page_offset;
809
810                 /* If we don't overwrite a cacheline completely we need to be
811                  * careful to have up-to-date data by first clflushing. Don't
812                  * overcomplicate things and flush the entire patch. */
813                 partial_cacheline_write = needs_clflush_before &&
814                         ((shmem_page_offset | page_length)
815                                 & (boot_cpu_data.x86_clflush_size - 1));
816
817                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
818                         (page_to_phys(page) & (1 << 17)) != 0;
819
820                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
821                                         user_data, page_do_bit17_swizzling,
822                                         partial_cacheline_write,
823                                         needs_clflush_after);
824                 if (ret == 0)
825                         goto next_page;
826
827                 hit_slowpath = 1;
828                 mutex_unlock(&dev->struct_mutex);
829                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
830                                         user_data, page_do_bit17_swizzling,
831                                         partial_cacheline_write,
832                                         needs_clflush_after);
833
834                 mutex_lock(&dev->struct_mutex);
835
836                 if (ret)
837                         goto out;
838
839 next_page:
840                 remain -= page_length;
841                 user_data += page_length;
842                 offset += page_length;
843         }
844
845 out:
846         i915_gem_object_unpin_pages(obj);
847
848         if (hit_slowpath) {
849                 /*
850                  * Fixup: Flush cpu caches in case we didn't flush the dirty
851                  * cachelines in-line while writing and the object moved
852                  * out of the cpu write domain while we've dropped the lock.
853                  */
854                 if (!needs_clflush_after &&
855                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
856                         if (i915_gem_clflush_object(obj, obj->pin_display))
857                                 i915_gem_chipset_flush(dev);
858                 }
859         }
860
861         if (needs_clflush_after)
862                 i915_gem_chipset_flush(dev);
863
864         return ret;
865 }
866
867 /**
868  * Writes data to the object referenced by handle.
869  *
870  * On error, the contents of the buffer that were to be modified are undefined.
871  */
872 int
873 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
874                       struct drm_file *file)
875 {
876         struct drm_i915_gem_pwrite *args = data;
877         struct drm_i915_gem_object *obj;
878         int ret;
879
880         if (args->size == 0)
881                 return 0;
882
883         if (!access_ok(VERIFY_READ,
884                        to_user_ptr(args->data_ptr),
885                        args->size))
886                 return -EFAULT;
887
888         if (likely(!i915.prefault_disable)) {
889                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
890                                                    args->size);
891                 if (ret)
892                         return -EFAULT;
893         }
894
895         ret = i915_mutex_lock_interruptible(dev);
896         if (ret)
897                 return ret;
898
899         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
900         if (&obj->base == NULL) {
901                 ret = -ENOENT;
902                 goto unlock;
903         }
904
905         /* Bounds check destination. */
906         if (args->offset > obj->base.size ||
907             args->size > obj->base.size - args->offset) {
908                 ret = -EINVAL;
909                 goto out;
910         }
911
912         /* prime objects have no backing filp to GEM pread/pwrite
913          * pages from.
914          */
915         if (!obj->base.filp) {
916                 ret = -EINVAL;
917                 goto out;
918         }
919
920         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
921
922         ret = -EFAULT;
923         /* We can only do the GTT pwrite on untiled buffers, as otherwise
924          * it would end up going through the fenced access, and we'll get
925          * different detiling behavior between reading and writing.
926          * pread/pwrite currently are reading and writing from the CPU
927          * perspective, requiring manual detiling by the client.
928          */
929         if (obj->phys_obj) {
930                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
931                 goto out;
932         }
933
934         if (obj->tiling_mode == I915_TILING_NONE &&
935             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
936             cpu_write_needs_clflush(obj)) {
937                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
938                 /* Note that the gtt paths might fail with non-page-backed user
939                  * pointers (e.g. gtt mappings when moving data between
940                  * textures). Fallback to the shmem path in that case. */
941         }
942
943         if (ret == -EFAULT || ret == -ENOSPC)
944                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
945
946 out:
947         drm_gem_object_unreference(&obj->base);
948 unlock:
949         mutex_unlock(&dev->struct_mutex);
950         return ret;
951 }
952
953 int
954 i915_gem_check_wedge(struct i915_gpu_error *error,
955                      bool interruptible)
956 {
957         if (i915_reset_in_progress(error)) {
958                 /* Non-interruptible callers can't handle -EAGAIN, hence return
959                  * -EIO unconditionally for these. */
960                 if (!interruptible)
961                         return -EIO;
962
963                 /* Recovery complete, but the reset failed ... */
964                 if (i915_terminally_wedged(error))
965                         return -EIO;
966
967                 return -EAGAIN;
968         }
969
970         return 0;
971 }
972
973 /*
974  * Compare seqno against outstanding lazy request. Emit a request if they are
975  * equal.
976  */
977 static int
978 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
979 {
980         int ret;
981
982         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
983
984         ret = 0;
985         if (seqno == ring->outstanding_lazy_seqno)
986                 ret = i915_add_request(ring, NULL);
987
988         return ret;
989 }
990
991 static void fake_irq(unsigned long data)
992 {
993         wake_up_process((struct task_struct *)data);
994 }
995
996 static bool missed_irq(struct drm_i915_private *dev_priv,
997                        struct intel_ring_buffer *ring)
998 {
999         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1000 }
1001
1002 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1003 {
1004         if (file_priv == NULL)
1005                 return true;
1006
1007         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1008 }
1009
1010 /**
1011  * __wait_seqno - wait until execution of seqno has finished
1012  * @ring: the ring expected to report seqno
1013  * @seqno: duh!
1014  * @reset_counter: reset sequence associated with the given seqno
1015  * @interruptible: do an interruptible wait (normally yes)
1016  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1017  *
1018  * Note: It is of utmost importance that the passed in seqno and reset_counter
1019  * values have been read by the caller in an smp safe manner. Where read-side
1020  * locks are involved, it is sufficient to read the reset_counter before
1021  * unlocking the lock that protects the seqno. For lockless tricks, the
1022  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1023  * inserted.
1024  *
1025  * Returns 0 if the seqno was found within the alloted time. Else returns the
1026  * errno with remaining time filled in timeout argument.
1027  */
1028 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1029                         unsigned reset_counter,
1030                         bool interruptible,
1031                         struct timespec *timeout,
1032                         struct drm_i915_file_private *file_priv)
1033 {
1034         struct drm_device *dev = ring->dev;
1035         struct drm_i915_private *dev_priv = dev->dev_private;
1036         const bool irq_test_in_progress =
1037                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1038         struct timespec before, now;
1039         DEFINE_WAIT(wait);
1040         unsigned long timeout_expire;
1041         int ret;
1042
1043         WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1044
1045         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1046                 return 0;
1047
1048         timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1049
1050         if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1051                 gen6_rps_boost(dev_priv);
1052                 if (file_priv)
1053                         mod_delayed_work(dev_priv->wq,
1054                                          &file_priv->mm.idle_work,
1055                                          msecs_to_jiffies(100));
1056         }
1057
1058         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1059                 return -ENODEV;
1060
1061         /* Record current time in case interrupted by signal, or wedged */
1062         trace_i915_gem_request_wait_begin(ring, seqno);
1063         getrawmonotonic(&before);
1064         for (;;) {
1065                 struct timer_list timer;
1066
1067                 prepare_to_wait(&ring->irq_queue, &wait,
1068                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1069
1070                 /* We need to check whether any gpu reset happened in between
1071                  * the caller grabbing the seqno and now ... */
1072                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1073                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1074                          * is truely gone. */
1075                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1076                         if (ret == 0)
1077                                 ret = -EAGAIN;
1078                         break;
1079                 }
1080
1081                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1082                         ret = 0;
1083                         break;
1084                 }
1085
1086                 if (interruptible && signal_pending(current)) {
1087                         ret = -ERESTARTSYS;
1088                         break;
1089                 }
1090
1091                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1092                         ret = -ETIME;
1093                         break;
1094                 }
1095
1096                 timer.function = NULL;
1097                 if (timeout || missed_irq(dev_priv, ring)) {
1098                         unsigned long expire;
1099
1100                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1101                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1102                         mod_timer(&timer, expire);
1103                 }
1104
1105                 io_schedule();
1106
1107                 if (timer.function) {
1108                         del_singleshot_timer_sync(&timer);
1109                         destroy_timer_on_stack(&timer);
1110                 }
1111         }
1112         getrawmonotonic(&now);
1113         trace_i915_gem_request_wait_end(ring, seqno);
1114
1115         if (!irq_test_in_progress)
1116                 ring->irq_put(ring);
1117
1118         finish_wait(&ring->irq_queue, &wait);
1119
1120         if (timeout) {
1121                 struct timespec sleep_time = timespec_sub(now, before);
1122                 *timeout = timespec_sub(*timeout, sleep_time);
1123                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1124                         set_normalized_timespec(timeout, 0, 0);
1125         }
1126
1127         return ret;
1128 }
1129
1130 /**
1131  * Waits for a sequence number to be signaled, and cleans up the
1132  * request and object lists appropriately for that event.
1133  */
1134 int
1135 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1136 {
1137         struct drm_device *dev = ring->dev;
1138         struct drm_i915_private *dev_priv = dev->dev_private;
1139         bool interruptible = dev_priv->mm.interruptible;
1140         int ret;
1141
1142         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1143         BUG_ON(seqno == 0);
1144
1145         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1146         if (ret)
1147                 return ret;
1148
1149         ret = i915_gem_check_olr(ring, seqno);
1150         if (ret)
1151                 return ret;
1152
1153         return __wait_seqno(ring, seqno,
1154                             atomic_read(&dev_priv->gpu_error.reset_counter),
1155                             interruptible, NULL, NULL);
1156 }
1157
1158 static int
1159 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1160                                      struct intel_ring_buffer *ring)
1161 {
1162         if (!obj->active)
1163                 return 0;
1164
1165         /* Manually manage the write flush as we may have not yet
1166          * retired the buffer.
1167          *
1168          * Note that the last_write_seqno is always the earlier of
1169          * the two (read/write) seqno, so if we haved successfully waited,
1170          * we know we have passed the last write.
1171          */
1172         obj->last_write_seqno = 0;
1173
1174         return 0;
1175 }
1176
1177 /**
1178  * Ensures that all rendering to the object has completed and the object is
1179  * safe to unbind from the GTT or access from the CPU.
1180  */
1181 static __must_check int
1182 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1183                                bool readonly)
1184 {
1185         struct intel_ring_buffer *ring = obj->ring;
1186         u32 seqno;
1187         int ret;
1188
1189         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1190         if (seqno == 0)
1191                 return 0;
1192
1193         ret = i915_wait_seqno(ring, seqno);
1194         if (ret)
1195                 return ret;
1196
1197         return i915_gem_object_wait_rendering__tail(obj, ring);
1198 }
1199
1200 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1201  * as the object state may change during this call.
1202  */
1203 static __must_check int
1204 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1205                                             struct drm_i915_file_private *file_priv,
1206                                             bool readonly)
1207 {
1208         struct drm_device *dev = obj->base.dev;
1209         struct drm_i915_private *dev_priv = dev->dev_private;
1210         struct intel_ring_buffer *ring = obj->ring;
1211         unsigned reset_counter;
1212         u32 seqno;
1213         int ret;
1214
1215         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1216         BUG_ON(!dev_priv->mm.interruptible);
1217
1218         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1219         if (seqno == 0)
1220                 return 0;
1221
1222         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1223         if (ret)
1224                 return ret;
1225
1226         ret = i915_gem_check_olr(ring, seqno);
1227         if (ret)
1228                 return ret;
1229
1230         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1231         mutex_unlock(&dev->struct_mutex);
1232         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1233         mutex_lock(&dev->struct_mutex);
1234         if (ret)
1235                 return ret;
1236
1237         return i915_gem_object_wait_rendering__tail(obj, ring);
1238 }
1239
1240 /**
1241  * Called when user space prepares to use an object with the CPU, either
1242  * through the mmap ioctl's mapping or a GTT mapping.
1243  */
1244 int
1245 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1246                           struct drm_file *file)
1247 {
1248         struct drm_i915_gem_set_domain *args = data;
1249         struct drm_i915_gem_object *obj;
1250         uint32_t read_domains = args->read_domains;
1251         uint32_t write_domain = args->write_domain;
1252         int ret;
1253
1254         /* Only handle setting domains to types used by the CPU. */
1255         if (write_domain & I915_GEM_GPU_DOMAINS)
1256                 return -EINVAL;
1257
1258         if (read_domains & I915_GEM_GPU_DOMAINS)
1259                 return -EINVAL;
1260
1261         /* Having something in the write domain implies it's in the read
1262          * domain, and only that read domain.  Enforce that in the request.
1263          */
1264         if (write_domain != 0 && read_domains != write_domain)
1265                 return -EINVAL;
1266
1267         ret = i915_mutex_lock_interruptible(dev);
1268         if (ret)
1269                 return ret;
1270
1271         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1272         if (&obj->base == NULL) {
1273                 ret = -ENOENT;
1274                 goto unlock;
1275         }
1276
1277         /* Try to flush the object off the GPU without holding the lock.
1278          * We will repeat the flush holding the lock in the normal manner
1279          * to catch cases where we are gazumped.
1280          */
1281         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1282                                                           file->driver_priv,
1283                                                           !write_domain);
1284         if (ret)
1285                 goto unref;
1286
1287         if (read_domains & I915_GEM_DOMAIN_GTT) {
1288                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1289
1290                 /* Silently promote "you're not bound, there was nothing to do"
1291                  * to success, since the client was just asking us to
1292                  * make sure everything was done.
1293                  */
1294                 if (ret == -EINVAL)
1295                         ret = 0;
1296         } else {
1297                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1298         }
1299
1300 unref:
1301         drm_gem_object_unreference(&obj->base);
1302 unlock:
1303         mutex_unlock(&dev->struct_mutex);
1304         return ret;
1305 }
1306
1307 /**
1308  * Called when user space has done writes to this buffer
1309  */
1310 int
1311 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1312                          struct drm_file *file)
1313 {
1314         struct drm_i915_gem_sw_finish *args = data;
1315         struct drm_i915_gem_object *obj;
1316         int ret = 0;
1317
1318         ret = i915_mutex_lock_interruptible(dev);
1319         if (ret)
1320                 return ret;
1321
1322         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1323         if (&obj->base == NULL) {
1324                 ret = -ENOENT;
1325                 goto unlock;
1326         }
1327
1328         /* Pinned buffers may be scanout, so flush the cache */
1329         if (obj->pin_display)
1330                 i915_gem_object_flush_cpu_write_domain(obj, true);
1331
1332         drm_gem_object_unreference(&obj->base);
1333 unlock:
1334         mutex_unlock(&dev->struct_mutex);
1335         return ret;
1336 }
1337
1338 /**
1339  * Maps the contents of an object, returning the address it is mapped
1340  * into.
1341  *
1342  * While the mapping holds a reference on the contents of the object, it doesn't
1343  * imply a ref on the object itself.
1344  */
1345 int
1346 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1347                     struct drm_file *file)
1348 {
1349         struct drm_i915_gem_mmap *args = data;
1350         struct drm_gem_object *obj;
1351         unsigned long addr;
1352
1353         obj = drm_gem_object_lookup(dev, file, args->handle);
1354         if (obj == NULL)
1355                 return -ENOENT;
1356
1357         /* prime objects have no backing filp to GEM mmap
1358          * pages from.
1359          */
1360         if (!obj->filp) {
1361                 drm_gem_object_unreference_unlocked(obj);
1362                 return -EINVAL;
1363         }
1364
1365         addr = vm_mmap(obj->filp, 0, args->size,
1366                        PROT_READ | PROT_WRITE, MAP_SHARED,
1367                        args->offset);
1368         drm_gem_object_unreference_unlocked(obj);
1369         if (IS_ERR((void *)addr))
1370                 return addr;
1371
1372         args->addr_ptr = (uint64_t) addr;
1373
1374         return 0;
1375 }
1376
1377 /**
1378  * i915_gem_fault - fault a page into the GTT
1379  * vma: VMA in question
1380  * vmf: fault info
1381  *
1382  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1383  * from userspace.  The fault handler takes care of binding the object to
1384  * the GTT (if needed), allocating and programming a fence register (again,
1385  * only if needed based on whether the old reg is still valid or the object
1386  * is tiled) and inserting a new PTE into the faulting process.
1387  *
1388  * Note that the faulting process may involve evicting existing objects
1389  * from the GTT and/or fence registers to make room.  So performance may
1390  * suffer if the GTT working set is large or there are few fence registers
1391  * left.
1392  */
1393 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1394 {
1395         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1396         struct drm_device *dev = obj->base.dev;
1397         struct drm_i915_private *dev_priv = dev->dev_private;
1398         pgoff_t page_offset;
1399         unsigned long pfn;
1400         int ret = 0;
1401         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1402
1403         intel_runtime_pm_get(dev_priv);
1404
1405         /* We don't use vmf->pgoff since that has the fake offset */
1406         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1407                 PAGE_SHIFT;
1408
1409         ret = i915_mutex_lock_interruptible(dev);
1410         if (ret)
1411                 goto out;
1412
1413         trace_i915_gem_object_fault(obj, page_offset, true, write);
1414
1415         /* Try to flush the object off the GPU first without holding the lock.
1416          * Upon reacquiring the lock, we will perform our sanity checks and then
1417          * repeat the flush holding the lock in the normal manner to catch cases
1418          * where we are gazumped.
1419          */
1420         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1421         if (ret)
1422                 goto unlock;
1423
1424         /* Access to snoopable pages through the GTT is incoherent. */
1425         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1426                 ret = -EINVAL;
1427                 goto unlock;
1428         }
1429
1430         /* Now bind it into the GTT if needed */
1431         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1432         if (ret)
1433                 goto unlock;
1434
1435         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1436         if (ret)
1437                 goto unpin;
1438
1439         ret = i915_gem_object_get_fence(obj);
1440         if (ret)
1441                 goto unpin;
1442
1443         obj->fault_mappable = true;
1444
1445         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1446         pfn >>= PAGE_SHIFT;
1447         pfn += page_offset;
1448
1449         /* Finally, remap it using the new GTT offset */
1450         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1451 unpin:
1452         i915_gem_object_ggtt_unpin(obj);
1453 unlock:
1454         mutex_unlock(&dev->struct_mutex);
1455 out:
1456         switch (ret) {
1457         case -EIO:
1458                 /* If this -EIO is due to a gpu hang, give the reset code a
1459                  * chance to clean up the mess. Otherwise return the proper
1460                  * SIGBUS. */
1461                 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1462                         ret = VM_FAULT_SIGBUS;
1463                         break;
1464                 }
1465         case -EAGAIN:
1466                 /*
1467                  * EAGAIN means the gpu is hung and we'll wait for the error
1468                  * handler to reset everything when re-faulting in
1469                  * i915_mutex_lock_interruptible.
1470                  */
1471         case 0:
1472         case -ERESTARTSYS:
1473         case -EINTR:
1474         case -EBUSY:
1475                 /*
1476                  * EBUSY is ok: this just means that another thread
1477                  * already did the job.
1478                  */
1479                 ret = VM_FAULT_NOPAGE;
1480                 break;
1481         case -ENOMEM:
1482                 ret = VM_FAULT_OOM;
1483                 break;
1484         case -ENOSPC:
1485         case -EFAULT:
1486                 ret = VM_FAULT_SIGBUS;
1487                 break;
1488         default:
1489                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1490                 ret = VM_FAULT_SIGBUS;
1491                 break;
1492         }
1493
1494         intel_runtime_pm_put(dev_priv);
1495         return ret;
1496 }
1497
1498 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1499 {
1500         struct i915_vma *vma;
1501
1502         /*
1503          * Only the global gtt is relevant for gtt memory mappings, so restrict
1504          * list traversal to objects bound into the global address space. Note
1505          * that the active list should be empty, but better safe than sorry.
1506          */
1507         WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1508         list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1509                 i915_gem_release_mmap(vma->obj);
1510         list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1511                 i915_gem_release_mmap(vma->obj);
1512 }
1513
1514 /**
1515  * i915_gem_release_mmap - remove physical page mappings
1516  * @obj: obj in question
1517  *
1518  * Preserve the reservation of the mmapping with the DRM core code, but
1519  * relinquish ownership of the pages back to the system.
1520  *
1521  * It is vital that we remove the page mapping if we have mapped a tiled
1522  * object through the GTT and then lose the fence register due to
1523  * resource pressure. Similarly if the object has been moved out of the
1524  * aperture, than pages mapped into userspace must be revoked. Removing the
1525  * mapping will then trigger a page fault on the next user access, allowing
1526  * fixup by i915_gem_fault().
1527  */
1528 void
1529 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1530 {
1531         if (!obj->fault_mappable)
1532                 return;
1533
1534         drm_vma_node_unmap(&obj->base.vma_node,
1535                            obj->base.dev->anon_inode->i_mapping);
1536         obj->fault_mappable = false;
1537 }
1538
1539 uint32_t
1540 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1541 {
1542         uint32_t gtt_size;
1543
1544         if (INTEL_INFO(dev)->gen >= 4 ||
1545             tiling_mode == I915_TILING_NONE)
1546                 return size;
1547
1548         /* Previous chips need a power-of-two fence region when tiling */
1549         if (INTEL_INFO(dev)->gen == 3)
1550                 gtt_size = 1024*1024;
1551         else
1552                 gtt_size = 512*1024;
1553
1554         while (gtt_size < size)
1555                 gtt_size <<= 1;
1556
1557         return gtt_size;
1558 }
1559
1560 /**
1561  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1562  * @obj: object to check
1563  *
1564  * Return the required GTT alignment for an object, taking into account
1565  * potential fence register mapping.
1566  */
1567 uint32_t
1568 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1569                            int tiling_mode, bool fenced)
1570 {
1571         /*
1572          * Minimum alignment is 4k (GTT page size), but might be greater
1573          * if a fence register is needed for the object.
1574          */
1575         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1576             tiling_mode == I915_TILING_NONE)
1577                 return 4096;
1578
1579         /*
1580          * Previous chips need to be aligned to the size of the smallest
1581          * fence register that can contain the object.
1582          */
1583         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1584 }
1585
1586 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1587 {
1588         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1589         int ret;
1590
1591         if (drm_vma_node_has_offset(&obj->base.vma_node))
1592                 return 0;
1593
1594         dev_priv->mm.shrinker_no_lock_stealing = true;
1595
1596         ret = drm_gem_create_mmap_offset(&obj->base);
1597         if (ret != -ENOSPC)
1598                 goto out;
1599
1600         /* Badly fragmented mmap space? The only way we can recover
1601          * space is by destroying unwanted objects. We can't randomly release
1602          * mmap_offsets as userspace expects them to be persistent for the
1603          * lifetime of the objects. The closest we can is to release the
1604          * offsets on purgeable objects by truncating it and marking it purged,
1605          * which prevents userspace from ever using that object again.
1606          */
1607         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1608         ret = drm_gem_create_mmap_offset(&obj->base);
1609         if (ret != -ENOSPC)
1610                 goto out;
1611
1612         i915_gem_shrink_all(dev_priv);
1613         ret = drm_gem_create_mmap_offset(&obj->base);
1614 out:
1615         dev_priv->mm.shrinker_no_lock_stealing = false;
1616
1617         return ret;
1618 }
1619
1620 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1621 {
1622         drm_gem_free_mmap_offset(&obj->base);
1623 }
1624
1625 int
1626 i915_gem_mmap_gtt(struct drm_file *file,
1627                   struct drm_device *dev,
1628                   uint32_t handle,
1629                   uint64_t *offset)
1630 {
1631         struct drm_i915_private *dev_priv = dev->dev_private;
1632         struct drm_i915_gem_object *obj;
1633         int ret;
1634
1635         ret = i915_mutex_lock_interruptible(dev);
1636         if (ret)
1637                 return ret;
1638
1639         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1640         if (&obj->base == NULL) {
1641                 ret = -ENOENT;
1642                 goto unlock;
1643         }
1644
1645         if (obj->base.size > dev_priv->gtt.mappable_end) {
1646                 ret = -E2BIG;
1647                 goto out;
1648         }
1649
1650         if (obj->madv != I915_MADV_WILLNEED) {
1651                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1652                 ret = -EFAULT;
1653                 goto out;
1654         }
1655
1656         ret = i915_gem_object_create_mmap_offset(obj);
1657         if (ret)
1658                 goto out;
1659
1660         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1661
1662 out:
1663         drm_gem_object_unreference(&obj->base);
1664 unlock:
1665         mutex_unlock(&dev->struct_mutex);
1666         return ret;
1667 }
1668
1669 /**
1670  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1671  * @dev: DRM device
1672  * @data: GTT mapping ioctl data
1673  * @file: GEM object info
1674  *
1675  * Simply returns the fake offset to userspace so it can mmap it.
1676  * The mmap call will end up in drm_gem_mmap(), which will set things
1677  * up so we can get faults in the handler above.
1678  *
1679  * The fault handler will take care of binding the object into the GTT
1680  * (since it may have been evicted to make room for something), allocating
1681  * a fence register, and mapping the appropriate aperture address into
1682  * userspace.
1683  */
1684 int
1685 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1686                         struct drm_file *file)
1687 {
1688         struct drm_i915_gem_mmap_gtt *args = data;
1689
1690         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1691 }
1692
1693 static inline int
1694 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1695 {
1696         return obj->madv == I915_MADV_DONTNEED;
1697 }
1698
1699 /* Immediately discard the backing storage */
1700 static void
1701 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1702 {
1703         i915_gem_object_free_mmap_offset(obj);
1704
1705         if (obj->base.filp == NULL)
1706                 return;
1707
1708         /* Our goal here is to return as much of the memory as
1709          * is possible back to the system as we are called from OOM.
1710          * To do this we must instruct the shmfs to drop all of its
1711          * backing pages, *now*.
1712          */
1713         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1714         obj->madv = __I915_MADV_PURGED;
1715 }
1716
1717 /* Try to discard unwanted pages */
1718 static void
1719 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1720 {
1721         struct address_space *mapping;
1722
1723         switch (obj->madv) {
1724         case I915_MADV_DONTNEED:
1725                 i915_gem_object_truncate(obj);
1726         case __I915_MADV_PURGED:
1727                 return;
1728         }
1729
1730         if (obj->base.filp == NULL)
1731                 return;
1732
1733         mapping = file_inode(obj->base.filp)->i_mapping,
1734         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1735 }
1736
1737 static void
1738 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1739 {
1740         struct sg_page_iter sg_iter;
1741         int ret;
1742
1743         BUG_ON(obj->madv == __I915_MADV_PURGED);
1744
1745         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1746         if (ret) {
1747                 /* In the event of a disaster, abandon all caches and
1748                  * hope for the best.
1749                  */
1750                 WARN_ON(ret != -EIO);
1751                 i915_gem_clflush_object(obj, true);
1752                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1753         }
1754
1755         if (i915_gem_object_needs_bit17_swizzle(obj))
1756                 i915_gem_object_save_bit_17_swizzle(obj);
1757
1758         if (obj->madv == I915_MADV_DONTNEED)
1759                 obj->dirty = 0;
1760
1761         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1762                 struct page *page = sg_page_iter_page(&sg_iter);
1763
1764                 if (obj->dirty)
1765                         set_page_dirty(page);
1766
1767                 if (obj->madv == I915_MADV_WILLNEED)
1768                         mark_page_accessed(page);
1769
1770                 page_cache_release(page);
1771         }
1772         obj->dirty = 0;
1773
1774         sg_free_table(obj->pages);
1775         kfree(obj->pages);
1776 }
1777
1778 int
1779 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1780 {
1781         const struct drm_i915_gem_object_ops *ops = obj->ops;
1782
1783         if (obj->pages == NULL)
1784                 return 0;
1785
1786         if (obj->pages_pin_count)
1787                 return -EBUSY;
1788
1789         BUG_ON(i915_gem_obj_bound_any(obj));
1790
1791         /* ->put_pages might need to allocate memory for the bit17 swizzle
1792          * array, hence protect them from being reaped by removing them from gtt
1793          * lists early. */
1794         list_del(&obj->global_list);
1795
1796         ops->put_pages(obj);
1797         obj->pages = NULL;
1798
1799         i915_gem_object_invalidate(obj);
1800
1801         return 0;
1802 }
1803
1804 static unsigned long
1805 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1806                   bool purgeable_only)
1807 {
1808         struct list_head still_in_list;
1809         struct drm_i915_gem_object *obj;
1810         unsigned long count = 0;
1811
1812         /*
1813          * As we may completely rewrite the (un)bound list whilst unbinding
1814          * (due to retiring requests) we have to strictly process only
1815          * one element of the list at the time, and recheck the list
1816          * on every iteration.
1817          *
1818          * In particular, we must hold a reference whilst removing the
1819          * object as we may end up waiting for and/or retiring the objects.
1820          * This might release the final reference (held by the active list)
1821          * and result in the object being freed from under us. This is
1822          * similar to the precautions the eviction code must take whilst
1823          * removing objects.
1824          *
1825          * Also note that although these lists do not hold a reference to
1826          * the object we can safely grab one here: The final object
1827          * unreferencing and the bound_list are both protected by the
1828          * dev->struct_mutex and so we won't ever be able to observe an
1829          * object on the bound_list with a reference count equals 0.
1830          */
1831         INIT_LIST_HEAD(&still_in_list);
1832         while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1833                 obj = list_first_entry(&dev_priv->mm.unbound_list,
1834                                        typeof(*obj), global_list);
1835                 list_move_tail(&obj->global_list, &still_in_list);
1836
1837                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1838                         continue;
1839
1840                 drm_gem_object_reference(&obj->base);
1841
1842                 if (i915_gem_object_put_pages(obj) == 0)
1843                         count += obj->base.size >> PAGE_SHIFT;
1844
1845                 drm_gem_object_unreference(&obj->base);
1846         }
1847         list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1848
1849         INIT_LIST_HEAD(&still_in_list);
1850         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1851                 struct i915_vma *vma, *v;
1852
1853                 obj = list_first_entry(&dev_priv->mm.bound_list,
1854                                        typeof(*obj), global_list);
1855                 list_move_tail(&obj->global_list, &still_in_list);
1856
1857                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1858                         continue;
1859
1860                 drm_gem_object_reference(&obj->base);
1861
1862                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1863                         if (i915_vma_unbind(vma))
1864                                 break;
1865
1866                 if (i915_gem_object_put_pages(obj) == 0)
1867                         count += obj->base.size >> PAGE_SHIFT;
1868
1869                 drm_gem_object_unreference(&obj->base);
1870         }
1871         list_splice(&still_in_list, &dev_priv->mm.bound_list);
1872
1873         return count;
1874 }
1875
1876 static unsigned long
1877 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1878 {
1879         return __i915_gem_shrink(dev_priv, target, true);
1880 }
1881
1882 static unsigned long
1883 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1884 {
1885         i915_gem_evict_everything(dev_priv->dev);
1886         return __i915_gem_shrink(dev_priv, LONG_MAX, false);
1887 }
1888
1889 static int
1890 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1891 {
1892         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1893         int page_count, i;
1894         struct address_space *mapping;
1895         struct sg_table *st;
1896         struct scatterlist *sg;
1897         struct sg_page_iter sg_iter;
1898         struct page *page;
1899         unsigned long last_pfn = 0;     /* suppress gcc warning */
1900         gfp_t gfp;
1901
1902         /* Assert that the object is not currently in any GPU domain. As it
1903          * wasn't in the GTT, there shouldn't be any way it could have been in
1904          * a GPU cache
1905          */
1906         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1907         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1908
1909         st = kmalloc(sizeof(*st), GFP_KERNEL);
1910         if (st == NULL)
1911                 return -ENOMEM;
1912
1913         page_count = obj->base.size / PAGE_SIZE;
1914         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1915                 kfree(st);
1916                 return -ENOMEM;
1917         }
1918
1919         /* Get the list of pages out of our struct file.  They'll be pinned
1920          * at this point until we release them.
1921          *
1922          * Fail silently without starting the shrinker
1923          */
1924         mapping = file_inode(obj->base.filp)->i_mapping;
1925         gfp = mapping_gfp_mask(mapping);
1926         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1927         gfp &= ~(__GFP_IO | __GFP_WAIT);
1928         sg = st->sgl;
1929         st->nents = 0;
1930         for (i = 0; i < page_count; i++) {
1931                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1932                 if (IS_ERR(page)) {
1933                         i915_gem_purge(dev_priv, page_count);
1934                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1935                 }
1936                 if (IS_ERR(page)) {
1937                         /* We've tried hard to allocate the memory by reaping
1938                          * our own buffer, now let the real VM do its job and
1939                          * go down in flames if truly OOM.
1940                          */
1941                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1942                         gfp |= __GFP_IO | __GFP_WAIT;
1943
1944                         i915_gem_shrink_all(dev_priv);
1945                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1946                         if (IS_ERR(page))
1947                                 goto err_pages;
1948
1949                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1950                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1951                 }
1952 #ifdef CONFIG_SWIOTLB
1953                 if (swiotlb_nr_tbl()) {
1954                         st->nents++;
1955                         sg_set_page(sg, page, PAGE_SIZE, 0);
1956                         sg = sg_next(sg);
1957                         continue;
1958                 }
1959 #endif
1960                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1961                         if (i)
1962                                 sg = sg_next(sg);
1963                         st->nents++;
1964                         sg_set_page(sg, page, PAGE_SIZE, 0);
1965                 } else {
1966                         sg->length += PAGE_SIZE;
1967                 }
1968                 last_pfn = page_to_pfn(page);
1969
1970                 /* Check that the i965g/gm workaround works. */
1971                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1972         }
1973 #ifdef CONFIG_SWIOTLB
1974         if (!swiotlb_nr_tbl())
1975 #endif
1976                 sg_mark_end(sg);
1977         obj->pages = st;
1978
1979         if (i915_gem_object_needs_bit17_swizzle(obj))
1980                 i915_gem_object_do_bit_17_swizzle(obj);
1981
1982         return 0;
1983
1984 err_pages:
1985         sg_mark_end(sg);
1986         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1987                 page_cache_release(sg_page_iter_page(&sg_iter));
1988         sg_free_table(st);
1989         kfree(st);
1990
1991         /* shmemfs first checks if there is enough memory to allocate the page
1992          * and reports ENOSPC should there be insufficient, along with the usual
1993          * ENOMEM for a genuine allocation failure.
1994          *
1995          * We use ENOSPC in our driver to mean that we have run out of aperture
1996          * space and so want to translate the error from shmemfs back to our
1997          * usual understanding of ENOMEM.
1998          */
1999         if (PTR_ERR(page) == -ENOSPC)
2000                 return -ENOMEM;
2001         else
2002                 return PTR_ERR(page);
2003 }
2004
2005 /* Ensure that the associated pages are gathered from the backing storage
2006  * and pinned into our object. i915_gem_object_get_pages() may be called
2007  * multiple times before they are released by a single call to
2008  * i915_gem_object_put_pages() - once the pages are no longer referenced
2009  * either as a result of memory pressure (reaping pages under the shrinker)
2010  * or as the object is itself released.
2011  */
2012 int
2013 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2014 {
2015         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2016         const struct drm_i915_gem_object_ops *ops = obj->ops;
2017         int ret;
2018
2019         if (obj->pages)
2020                 return 0;
2021
2022         if (obj->madv != I915_MADV_WILLNEED) {
2023                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2024                 return -EFAULT;
2025         }
2026
2027         BUG_ON(obj->pages_pin_count);
2028
2029         ret = ops->get_pages(obj);
2030         if (ret)
2031                 return ret;
2032
2033         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2034         return 0;
2035 }
2036
2037 static void
2038 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2039                                struct intel_ring_buffer *ring)
2040 {
2041         struct drm_device *dev = obj->base.dev;
2042         struct drm_i915_private *dev_priv = dev->dev_private;
2043         u32 seqno = intel_ring_get_seqno(ring);
2044
2045         BUG_ON(ring == NULL);
2046         if (obj->ring != ring && obj->last_write_seqno) {
2047                 /* Keep the seqno relative to the current ring */
2048                 obj->last_write_seqno = seqno;
2049         }
2050         obj->ring = ring;
2051
2052         /* Add a reference if we're newly entering the active list. */
2053         if (!obj->active) {
2054                 drm_gem_object_reference(&obj->base);
2055                 obj->active = 1;
2056         }
2057
2058         list_move_tail(&obj->ring_list, &ring->active_list);
2059
2060         obj->last_read_seqno = seqno;
2061
2062         if (obj->fenced_gpu_access) {
2063                 obj->last_fenced_seqno = seqno;
2064
2065                 /* Bump MRU to take account of the delayed flush */
2066                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2067                         struct drm_i915_fence_reg *reg;
2068
2069                         reg = &dev_priv->fence_regs[obj->fence_reg];
2070                         list_move_tail(&reg->lru_list,
2071                                        &dev_priv->mm.fence_list);
2072                 }
2073         }
2074 }
2075
2076 void i915_vma_move_to_active(struct i915_vma *vma,
2077                              struct intel_ring_buffer *ring)
2078 {
2079         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2080         return i915_gem_object_move_to_active(vma->obj, ring);
2081 }
2082
2083 static void
2084 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2085 {
2086         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2087         struct i915_address_space *vm;
2088         struct i915_vma *vma;
2089
2090         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2091         BUG_ON(!obj->active);
2092
2093         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2094                 vma = i915_gem_obj_to_vma(obj, vm);
2095                 if (vma && !list_empty(&vma->mm_list))
2096                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2097         }
2098
2099         list_del_init(&obj->ring_list);
2100         obj->ring = NULL;
2101
2102         obj->last_read_seqno = 0;
2103         obj->last_write_seqno = 0;
2104         obj->base.write_domain = 0;
2105
2106         obj->last_fenced_seqno = 0;
2107         obj->fenced_gpu_access = false;
2108
2109         obj->active = 0;
2110         drm_gem_object_unreference(&obj->base);
2111
2112         WARN_ON(i915_verify_lists(dev));
2113 }
2114
2115 static void
2116 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2117 {
2118         struct intel_ring_buffer *ring = obj->ring;
2119
2120         if (ring == NULL)
2121                 return;
2122
2123         if (i915_seqno_passed(ring->get_seqno(ring, true),
2124                               obj->last_read_seqno))
2125                 i915_gem_object_move_to_inactive(obj);
2126 }
2127
2128 static int
2129 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2130 {
2131         struct drm_i915_private *dev_priv = dev->dev_private;
2132         struct intel_ring_buffer *ring;
2133         int ret, i, j;
2134
2135         /* Carefully retire all requests without writing to the rings */
2136         for_each_ring(ring, dev_priv, i) {
2137                 ret = intel_ring_idle(ring);
2138                 if (ret)
2139                         return ret;
2140         }
2141         i915_gem_retire_requests(dev);
2142
2143         /* Finally reset hw state */
2144         for_each_ring(ring, dev_priv, i) {
2145                 intel_ring_init_seqno(ring, seqno);
2146
2147                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2148                         ring->semaphore.sync_seqno[j] = 0;
2149         }
2150
2151         return 0;
2152 }
2153
2154 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2155 {
2156         struct drm_i915_private *dev_priv = dev->dev_private;
2157         int ret;
2158
2159         if (seqno == 0)
2160                 return -EINVAL;
2161
2162         /* HWS page needs to be set less than what we
2163          * will inject to ring
2164          */
2165         ret = i915_gem_init_seqno(dev, seqno - 1);
2166         if (ret)
2167                 return ret;
2168
2169         /* Carefully set the last_seqno value so that wrap
2170          * detection still works
2171          */
2172         dev_priv->next_seqno = seqno;
2173         dev_priv->last_seqno = seqno - 1;
2174         if (dev_priv->last_seqno == 0)
2175                 dev_priv->last_seqno--;
2176
2177         return 0;
2178 }
2179
2180 int
2181 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2182 {
2183         struct drm_i915_private *dev_priv = dev->dev_private;
2184
2185         /* reserve 0 for non-seqno */
2186         if (dev_priv->next_seqno == 0) {
2187                 int ret = i915_gem_init_seqno(dev, 0);
2188                 if (ret)
2189                         return ret;
2190
2191                 dev_priv->next_seqno = 1;
2192         }
2193
2194         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2195         return 0;
2196 }
2197
2198 int __i915_add_request(struct intel_ring_buffer *ring,
2199                        struct drm_file *file,
2200                        struct drm_i915_gem_object *obj,
2201                        u32 *out_seqno)
2202 {
2203         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2204         struct drm_i915_gem_request *request;
2205         u32 request_ring_position, request_start;
2206         int ret;
2207
2208         request_start = intel_ring_get_tail(ring);
2209         /*
2210          * Emit any outstanding flushes - execbuf can fail to emit the flush
2211          * after having emitted the batchbuffer command. Hence we need to fix
2212          * things up similar to emitting the lazy request. The difference here
2213          * is that the flush _must_ happen before the next request, no matter
2214          * what.
2215          */
2216         ret = intel_ring_flush_all_caches(ring);
2217         if (ret)
2218                 return ret;
2219
2220         request = ring->preallocated_lazy_request;
2221         if (WARN_ON(request == NULL))
2222                 return -ENOMEM;
2223
2224         /* Record the position of the start of the request so that
2225          * should we detect the updated seqno part-way through the
2226          * GPU processing the request, we never over-estimate the
2227          * position of the head.
2228          */
2229         request_ring_position = intel_ring_get_tail(ring);
2230
2231         ret = ring->add_request(ring);
2232         if (ret)
2233                 return ret;
2234
2235         request->seqno = intel_ring_get_seqno(ring);
2236         request->ring = ring;
2237         request->head = request_start;
2238         request->tail = request_ring_position;
2239
2240         /* Whilst this request exists, batch_obj will be on the
2241          * active_list, and so will hold the active reference. Only when this
2242          * request is retired will the the batch_obj be moved onto the
2243          * inactive_list and lose its active reference. Hence we do not need
2244          * to explicitly hold another reference here.
2245          */
2246         request->batch_obj = obj;
2247
2248         /* Hold a reference to the current context so that we can inspect
2249          * it later in case a hangcheck error event fires.
2250          */
2251         request->ctx = ring->last_context;
2252         if (request->ctx)
2253                 i915_gem_context_reference(request->ctx);
2254
2255         request->emitted_jiffies = jiffies;
2256         list_add_tail(&request->list, &ring->request_list);
2257         request->file_priv = NULL;
2258
2259         if (file) {
2260                 struct drm_i915_file_private *file_priv = file->driver_priv;
2261
2262                 spin_lock(&file_priv->mm.lock);
2263                 request->file_priv = file_priv;
2264                 list_add_tail(&request->client_list,
2265                               &file_priv->mm.request_list);
2266                 spin_unlock(&file_priv->mm.lock);
2267         }
2268
2269         trace_i915_gem_request_add(ring, request->seqno);
2270         ring->outstanding_lazy_seqno = 0;
2271         ring->preallocated_lazy_request = NULL;
2272
2273         if (!dev_priv->ums.mm_suspended) {
2274                 i915_queue_hangcheck(ring->dev);
2275
2276                 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2277                 queue_delayed_work(dev_priv->wq,
2278                                    &dev_priv->mm.retire_work,
2279                                    round_jiffies_up_relative(HZ));
2280                 intel_mark_busy(dev_priv->dev);
2281         }
2282
2283         if (out_seqno)
2284                 *out_seqno = request->seqno;
2285         return 0;
2286 }
2287
2288 static inline void
2289 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2290 {
2291         struct drm_i915_file_private *file_priv = request->file_priv;
2292
2293         if (!file_priv)
2294                 return;
2295
2296         spin_lock(&file_priv->mm.lock);
2297         list_del(&request->client_list);
2298         request->file_priv = NULL;
2299         spin_unlock(&file_priv->mm.lock);
2300 }
2301
2302 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2303                                    const struct i915_hw_context *ctx)
2304 {
2305         unsigned long elapsed;
2306
2307         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2308
2309         if (ctx->hang_stats.banned)
2310                 return true;
2311
2312         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2313                 if (!i915_gem_context_is_default(ctx)) {
2314                         DRM_DEBUG("context hanging too fast, banning!\n");
2315                         return true;
2316                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2317                         if (i915_stop_ring_allow_warn(dev_priv))
2318                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2319                         return true;
2320                 }
2321         }
2322
2323         return false;
2324 }
2325
2326 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2327                                   struct i915_hw_context *ctx,
2328                                   const bool guilty)
2329 {
2330         struct i915_ctx_hang_stats *hs;
2331
2332         if (WARN_ON(!ctx))
2333                 return;
2334
2335         hs = &ctx->hang_stats;
2336
2337         if (guilty) {
2338                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2339                 hs->batch_active++;
2340                 hs->guilty_ts = get_seconds();
2341         } else {
2342                 hs->batch_pending++;
2343         }
2344 }
2345
2346 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2347 {
2348         list_del(&request->list);
2349         i915_gem_request_remove_from_client(request);
2350
2351         if (request->ctx)
2352                 i915_gem_context_unreference(request->ctx);
2353
2354         kfree(request);
2355 }
2356
2357 struct drm_i915_gem_request *
2358 i915_gem_find_active_request(struct intel_ring_buffer *ring)
2359 {
2360         struct drm_i915_gem_request *request;
2361         u32 completed_seqno;
2362
2363         completed_seqno = ring->get_seqno(ring, false);
2364
2365         list_for_each_entry(request, &ring->request_list, list) {
2366                 if (i915_seqno_passed(completed_seqno, request->seqno))
2367                         continue;
2368
2369                 return request;
2370         }
2371
2372         return NULL;
2373 }
2374
2375 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2376                                        struct intel_ring_buffer *ring)
2377 {
2378         struct drm_i915_gem_request *request;
2379         bool ring_hung;
2380
2381         request = i915_gem_find_active_request(ring);
2382
2383         if (request == NULL)
2384                 return;
2385
2386         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2387
2388         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2389
2390         list_for_each_entry_continue(request, &ring->request_list, list)
2391                 i915_set_reset_status(dev_priv, request->ctx, false);
2392 }
2393
2394 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2395                                         struct intel_ring_buffer *ring)
2396 {
2397         while (!list_empty(&ring->active_list)) {
2398                 struct drm_i915_gem_object *obj;
2399
2400                 obj = list_first_entry(&ring->active_list,
2401                                        struct drm_i915_gem_object,
2402                                        ring_list);
2403
2404                 i915_gem_object_move_to_inactive(obj);
2405         }
2406
2407         /*
2408          * We must free the requests after all the corresponding objects have
2409          * been moved off active lists. Which is the same order as the normal
2410          * retire_requests function does. This is important if object hold
2411          * implicit references on things like e.g. ppgtt address spaces through
2412          * the request.
2413          */
2414         while (!list_empty(&ring->request_list)) {
2415                 struct drm_i915_gem_request *request;
2416
2417                 request = list_first_entry(&ring->request_list,
2418                                            struct drm_i915_gem_request,
2419                                            list);
2420
2421                 i915_gem_free_request(request);
2422         }
2423
2424         /* These may not have been flush before the reset, do so now */
2425         kfree(ring->preallocated_lazy_request);
2426         ring->preallocated_lazy_request = NULL;
2427         ring->outstanding_lazy_seqno = 0;
2428 }
2429
2430 void i915_gem_restore_fences(struct drm_device *dev)
2431 {
2432         struct drm_i915_private *dev_priv = dev->dev_private;
2433         int i;
2434
2435         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2436                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2437
2438                 /*
2439                  * Commit delayed tiling changes if we have an object still
2440                  * attached to the fence, otherwise just clear the fence.
2441                  */
2442                 if (reg->obj) {
2443                         i915_gem_object_update_fence(reg->obj, reg,
2444                                                      reg->obj->tiling_mode);
2445                 } else {
2446                         i915_gem_write_fence(dev, i, NULL);
2447                 }
2448         }
2449 }
2450
2451 void i915_gem_reset(struct drm_device *dev)
2452 {
2453         struct drm_i915_private *dev_priv = dev->dev_private;
2454         struct intel_ring_buffer *ring;
2455         int i;
2456
2457         /*
2458          * Before we free the objects from the requests, we need to inspect
2459          * them for finding the guilty party. As the requests only borrow
2460          * their reference to the objects, the inspection must be done first.
2461          */
2462         for_each_ring(ring, dev_priv, i)
2463                 i915_gem_reset_ring_status(dev_priv, ring);
2464
2465         for_each_ring(ring, dev_priv, i)
2466                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2467
2468         i915_gem_context_reset(dev);
2469
2470         i915_gem_restore_fences(dev);
2471 }
2472
2473 /**
2474  * This function clears the request list as sequence numbers are passed.
2475  */
2476 void
2477 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2478 {
2479         uint32_t seqno;
2480
2481         if (list_empty(&ring->request_list))
2482                 return;
2483
2484         WARN_ON(i915_verify_lists(ring->dev));
2485
2486         seqno = ring->get_seqno(ring, true);
2487
2488         /* Move any buffers on the active list that are no longer referenced
2489          * by the ringbuffer to the flushing/inactive lists as appropriate,
2490          * before we free the context associated with the requests.
2491          */
2492         while (!list_empty(&ring->active_list)) {
2493                 struct drm_i915_gem_object *obj;
2494
2495                 obj = list_first_entry(&ring->active_list,
2496                                       struct drm_i915_gem_object,
2497                                       ring_list);
2498
2499                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2500                         break;
2501
2502                 i915_gem_object_move_to_inactive(obj);
2503         }
2504
2505
2506         while (!list_empty(&ring->request_list)) {
2507                 struct drm_i915_gem_request *request;
2508
2509                 request = list_first_entry(&ring->request_list,
2510                                            struct drm_i915_gem_request,
2511                                            list);
2512
2513                 if (!i915_seqno_passed(seqno, request->seqno))
2514                         break;
2515
2516                 trace_i915_gem_request_retire(ring, request->seqno);
2517                 /* We know the GPU must have read the request to have
2518                  * sent us the seqno + interrupt, so use the position
2519                  * of tail of the request to update the last known position
2520                  * of the GPU head.
2521                  */
2522                 ring->last_retired_head = request->tail;
2523
2524                 i915_gem_free_request(request);
2525         }
2526
2527         if (unlikely(ring->trace_irq_seqno &&
2528                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2529                 ring->irq_put(ring);
2530                 ring->trace_irq_seqno = 0;
2531         }
2532
2533         WARN_ON(i915_verify_lists(ring->dev));
2534 }
2535
2536 bool
2537 i915_gem_retire_requests(struct drm_device *dev)
2538 {
2539         struct drm_i915_private *dev_priv = dev->dev_private;
2540         struct intel_ring_buffer *ring;
2541         bool idle = true;
2542         int i;
2543
2544         for_each_ring(ring, dev_priv, i) {
2545                 i915_gem_retire_requests_ring(ring);
2546                 idle &= list_empty(&ring->request_list);
2547         }
2548
2549         if (idle)
2550                 mod_delayed_work(dev_priv->wq,
2551                                    &dev_priv->mm.idle_work,
2552                                    msecs_to_jiffies(100));
2553
2554         return idle;
2555 }
2556
2557 static void
2558 i915_gem_retire_work_handler(struct work_struct *work)
2559 {
2560         struct drm_i915_private *dev_priv =
2561                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2562         struct drm_device *dev = dev_priv->dev;
2563         bool idle;
2564
2565         /* Come back later if the device is busy... */
2566         idle = false;
2567         if (mutex_trylock(&dev->struct_mutex)) {
2568                 idle = i915_gem_retire_requests(dev);
2569                 mutex_unlock(&dev->struct_mutex);
2570         }
2571         if (!idle)
2572                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2573                                    round_jiffies_up_relative(HZ));
2574 }
2575
2576 static void
2577 i915_gem_idle_work_handler(struct work_struct *work)
2578 {
2579         struct drm_i915_private *dev_priv =
2580                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2581
2582         intel_mark_idle(dev_priv->dev);
2583 }
2584
2585 /**
2586  * Ensures that an object will eventually get non-busy by flushing any required
2587  * write domains, emitting any outstanding lazy request and retiring and
2588  * completed requests.
2589  */
2590 static int
2591 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2592 {
2593         int ret;
2594
2595         if (obj->active) {
2596                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2597                 if (ret)
2598                         return ret;
2599
2600                 i915_gem_retire_requests_ring(obj->ring);
2601         }
2602
2603         return 0;
2604 }
2605
2606 /**
2607  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2608  * @DRM_IOCTL_ARGS: standard ioctl arguments
2609  *
2610  * Returns 0 if successful, else an error is returned with the remaining time in
2611  * the timeout parameter.
2612  *  -ETIME: object is still busy after timeout
2613  *  -ERESTARTSYS: signal interrupted the wait
2614  *  -ENONENT: object doesn't exist
2615  * Also possible, but rare:
2616  *  -EAGAIN: GPU wedged
2617  *  -ENOMEM: damn
2618  *  -ENODEV: Internal IRQ fail
2619  *  -E?: The add request failed
2620  *
2621  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2622  * non-zero timeout parameter the wait ioctl will wait for the given number of
2623  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2624  * without holding struct_mutex the object may become re-busied before this
2625  * function completes. A similar but shorter * race condition exists in the busy
2626  * ioctl
2627  */
2628 int
2629 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2630 {
2631         struct drm_i915_private *dev_priv = dev->dev_private;
2632         struct drm_i915_gem_wait *args = data;
2633         struct drm_i915_gem_object *obj;
2634         struct intel_ring_buffer *ring = NULL;
2635         struct timespec timeout_stack, *timeout = NULL;
2636         unsigned reset_counter;
2637         u32 seqno = 0;
2638         int ret = 0;
2639
2640         if (args->timeout_ns >= 0) {
2641                 timeout_stack = ns_to_timespec(args->timeout_ns);
2642                 timeout = &timeout_stack;
2643         }
2644
2645         ret = i915_mutex_lock_interruptible(dev);
2646         if (ret)
2647                 return ret;
2648
2649         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2650         if (&obj->base == NULL) {
2651                 mutex_unlock(&dev->struct_mutex);
2652                 return -ENOENT;
2653         }
2654
2655         /* Need to make sure the object gets inactive eventually. */
2656         ret = i915_gem_object_flush_active(obj);
2657         if (ret)
2658                 goto out;
2659
2660         if (obj->active) {
2661                 seqno = obj->last_read_seqno;
2662                 ring = obj->ring;
2663         }
2664
2665         if (seqno == 0)
2666                  goto out;
2667
2668         /* Do this after OLR check to make sure we make forward progress polling
2669          * on this IOCTL with a 0 timeout (like busy ioctl)
2670          */
2671         if (!args->timeout_ns) {
2672                 ret = -ETIME;
2673                 goto out;
2674         }
2675
2676         drm_gem_object_unreference(&obj->base);
2677         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2678         mutex_unlock(&dev->struct_mutex);
2679
2680         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2681         if (timeout)
2682                 args->timeout_ns = timespec_to_ns(timeout);
2683         return ret;
2684
2685 out:
2686         drm_gem_object_unreference(&obj->base);
2687         mutex_unlock(&dev->struct_mutex);
2688         return ret;
2689 }
2690
2691 /**
2692  * i915_gem_object_sync - sync an object to a ring.
2693  *
2694  * @obj: object which may be in use on another ring.
2695  * @to: ring we wish to use the object on. May be NULL.
2696  *
2697  * This code is meant to abstract object synchronization with the GPU.
2698  * Calling with NULL implies synchronizing the object with the CPU
2699  * rather than a particular GPU ring.
2700  *
2701  * Returns 0 if successful, else propagates up the lower layer error.
2702  */
2703 int
2704 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2705                      struct intel_ring_buffer *to)
2706 {
2707         struct intel_ring_buffer *from = obj->ring;
2708         u32 seqno;
2709         int ret, idx;
2710
2711         if (from == NULL || to == from)
2712                 return 0;
2713
2714         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2715                 return i915_gem_object_wait_rendering(obj, false);
2716
2717         idx = intel_ring_sync_index(from, to);
2718
2719         seqno = obj->last_read_seqno;
2720         if (seqno <= from->semaphore.sync_seqno[idx])
2721                 return 0;
2722
2723         ret = i915_gem_check_olr(obj->ring, seqno);
2724         if (ret)
2725                 return ret;
2726
2727         trace_i915_gem_ring_sync_to(from, to, seqno);
2728         ret = to->semaphore.sync_to(to, from, seqno);
2729         if (!ret)
2730                 /* We use last_read_seqno because sync_to()
2731                  * might have just caused seqno wrap under
2732                  * the radar.
2733                  */
2734                 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2735
2736         return ret;
2737 }
2738
2739 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2740 {
2741         u32 old_write_domain, old_read_domains;
2742
2743         /* Force a pagefault for domain tracking on next user access */
2744         i915_gem_release_mmap(obj);
2745
2746         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2747                 return;
2748
2749         /* Wait for any direct GTT access to complete */
2750         mb();
2751
2752         old_read_domains = obj->base.read_domains;
2753         old_write_domain = obj->base.write_domain;
2754
2755         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2756         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2757
2758         trace_i915_gem_object_change_domain(obj,
2759                                             old_read_domains,
2760                                             old_write_domain);
2761 }
2762
2763 int i915_vma_unbind(struct i915_vma *vma)
2764 {
2765         struct drm_i915_gem_object *obj = vma->obj;
2766         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2767         int ret;
2768
2769         if (list_empty(&vma->vma_link))
2770                 return 0;
2771
2772         if (!drm_mm_node_allocated(&vma->node)) {
2773                 i915_gem_vma_destroy(vma);
2774                 return 0;
2775         }
2776
2777         if (vma->pin_count)
2778                 return -EBUSY;
2779
2780         BUG_ON(obj->pages == NULL);
2781
2782         ret = i915_gem_object_finish_gpu(obj);
2783         if (ret)
2784                 return ret;
2785         /* Continue on if we fail due to EIO, the GPU is hung so we
2786          * should be safe and we need to cleanup or else we might
2787          * cause memory corruption through use-after-free.
2788          */
2789
2790         if (i915_is_ggtt(vma->vm)) {
2791                 i915_gem_object_finish_gtt(obj);
2792
2793                 /* release the fence reg _after_ flushing */
2794                 ret = i915_gem_object_put_fence(obj);
2795                 if (ret)
2796                         return ret;
2797         }
2798
2799         trace_i915_vma_unbind(vma);
2800
2801         vma->unbind_vma(vma);
2802
2803         i915_gem_gtt_finish_object(obj);
2804
2805         list_del_init(&vma->mm_list);
2806         /* Avoid an unnecessary call to unbind on rebind. */
2807         if (i915_is_ggtt(vma->vm))
2808                 obj->map_and_fenceable = true;
2809
2810         drm_mm_remove_node(&vma->node);
2811         i915_gem_vma_destroy(vma);
2812
2813         /* Since the unbound list is global, only move to that list if
2814          * no more VMAs exist. */
2815         if (list_empty(&obj->vma_list))
2816                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2817
2818         /* And finally now the object is completely decoupled from this vma,
2819          * we can drop its hold on the backing storage and allow it to be
2820          * reaped by the shrinker.
2821          */
2822         i915_gem_object_unpin_pages(obj);
2823
2824         return 0;
2825 }
2826
2827 int i915_gpu_idle(struct drm_device *dev)
2828 {
2829         struct drm_i915_private *dev_priv = dev->dev_private;
2830         struct intel_ring_buffer *ring;
2831         int ret, i;
2832
2833         /* Flush everything onto the inactive list. */
2834         for_each_ring(ring, dev_priv, i) {
2835                 ret = i915_switch_context(ring, ring->default_context);
2836                 if (ret)
2837                         return ret;
2838
2839                 ret = intel_ring_idle(ring);
2840                 if (ret)
2841                         return ret;
2842         }
2843
2844         return 0;
2845 }
2846
2847 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2848                                  struct drm_i915_gem_object *obj)
2849 {
2850         struct drm_i915_private *dev_priv = dev->dev_private;
2851         int fence_reg;
2852         int fence_pitch_shift;
2853
2854         if (INTEL_INFO(dev)->gen >= 6) {
2855                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2856                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2857         } else {
2858                 fence_reg = FENCE_REG_965_0;
2859                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2860         }
2861
2862         fence_reg += reg * 8;
2863
2864         /* To w/a incoherency with non-atomic 64-bit register updates,
2865          * we split the 64-bit update into two 32-bit writes. In order
2866          * for a partial fence not to be evaluated between writes, we
2867          * precede the update with write to turn off the fence register,
2868          * and only enable the fence as the last step.
2869          *
2870          * For extra levels of paranoia, we make sure each step lands
2871          * before applying the next step.
2872          */
2873         I915_WRITE(fence_reg, 0);
2874         POSTING_READ(fence_reg);
2875
2876         if (obj) {
2877                 u32 size = i915_gem_obj_ggtt_size(obj);
2878                 uint64_t val;
2879
2880                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2881                                  0xfffff000) << 32;
2882                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2883                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2884                 if (obj->tiling_mode == I915_TILING_Y)
2885                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2886                 val |= I965_FENCE_REG_VALID;
2887
2888                 I915_WRITE(fence_reg + 4, val >> 32);
2889                 POSTING_READ(fence_reg + 4);
2890
2891                 I915_WRITE(fence_reg + 0, val);
2892                 POSTING_READ(fence_reg);
2893         } else {
2894                 I915_WRITE(fence_reg + 4, 0);
2895                 POSTING_READ(fence_reg + 4);
2896         }
2897 }
2898
2899 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2900                                  struct drm_i915_gem_object *obj)
2901 {
2902         struct drm_i915_private *dev_priv = dev->dev_private;
2903         u32 val;
2904
2905         if (obj) {
2906                 u32 size = i915_gem_obj_ggtt_size(obj);
2907                 int pitch_val;
2908                 int tile_width;
2909
2910                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2911                      (size & -size) != size ||
2912                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2913                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2914                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2915
2916                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2917                         tile_width = 128;
2918                 else
2919                         tile_width = 512;
2920
2921                 /* Note: pitch better be a power of two tile widths */
2922                 pitch_val = obj->stride / tile_width;
2923                 pitch_val = ffs(pitch_val) - 1;
2924
2925                 val = i915_gem_obj_ggtt_offset(obj);
2926                 if (obj->tiling_mode == I915_TILING_Y)
2927                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2928                 val |= I915_FENCE_SIZE_BITS(size);
2929                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2930                 val |= I830_FENCE_REG_VALID;
2931         } else
2932                 val = 0;
2933
2934         if (reg < 8)
2935                 reg = FENCE_REG_830_0 + reg * 4;
2936         else
2937                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2938
2939         I915_WRITE(reg, val);
2940         POSTING_READ(reg);
2941 }
2942
2943 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2944                                 struct drm_i915_gem_object *obj)
2945 {
2946         struct drm_i915_private *dev_priv = dev->dev_private;
2947         uint32_t val;
2948
2949         if (obj) {
2950                 u32 size = i915_gem_obj_ggtt_size(obj);
2951                 uint32_t pitch_val;
2952
2953                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2954                      (size & -size) != size ||
2955                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2956                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2957                      i915_gem_obj_ggtt_offset(obj), size);
2958
2959                 pitch_val = obj->stride / 128;
2960                 pitch_val = ffs(pitch_val) - 1;
2961
2962                 val = i915_gem_obj_ggtt_offset(obj);
2963                 if (obj->tiling_mode == I915_TILING_Y)
2964                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2965                 val |= I830_FENCE_SIZE_BITS(size);
2966                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2967                 val |= I830_FENCE_REG_VALID;
2968         } else
2969                 val = 0;
2970
2971         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2972         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2973 }
2974
2975 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2976 {
2977         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2978 }
2979
2980 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2981                                  struct drm_i915_gem_object *obj)
2982 {
2983         struct drm_i915_private *dev_priv = dev->dev_private;
2984
2985         /* Ensure that all CPU reads are completed before installing a fence
2986          * and all writes before removing the fence.
2987          */
2988         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2989                 mb();
2990
2991         WARN(obj && (!obj->stride || !obj->tiling_mode),
2992              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2993              obj->stride, obj->tiling_mode);
2994
2995         switch (INTEL_INFO(dev)->gen) {
2996         case 8:
2997         case 7:
2998         case 6:
2999         case 5:
3000         case 4: i965_write_fence_reg(dev, reg, obj); break;
3001         case 3: i915_write_fence_reg(dev, reg, obj); break;
3002         case 2: i830_write_fence_reg(dev, reg, obj); break;
3003         default: BUG();
3004         }
3005
3006         /* And similarly be paranoid that no direct access to this region
3007          * is reordered to before the fence is installed.
3008          */
3009         if (i915_gem_object_needs_mb(obj))
3010                 mb();
3011 }
3012
3013 static inline int fence_number(struct drm_i915_private *dev_priv,
3014                                struct drm_i915_fence_reg *fence)
3015 {
3016         return fence - dev_priv->fence_regs;
3017 }
3018
3019 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3020                                          struct drm_i915_fence_reg *fence,
3021                                          bool enable)
3022 {
3023         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3024         int reg = fence_number(dev_priv, fence);
3025
3026         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3027
3028         if (enable) {
3029                 obj->fence_reg = reg;
3030                 fence->obj = obj;
3031                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3032         } else {
3033                 obj->fence_reg = I915_FENCE_REG_NONE;
3034                 fence->obj = NULL;
3035                 list_del_init(&fence->lru_list);
3036         }
3037         obj->fence_dirty = false;
3038 }
3039
3040 static int
3041 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3042 {
3043         if (obj->last_fenced_seqno) {
3044                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3045                 if (ret)
3046                         return ret;
3047
3048                 obj->last_fenced_seqno = 0;
3049         }
3050
3051         obj->fenced_gpu_access = false;
3052         return 0;
3053 }
3054
3055 int
3056 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3057 {
3058         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3059         struct drm_i915_fence_reg *fence;
3060         int ret;
3061
3062         ret = i915_gem_object_wait_fence(obj);
3063         if (ret)
3064                 return ret;
3065
3066         if (obj->fence_reg == I915_FENCE_REG_NONE)
3067                 return 0;
3068
3069         fence = &dev_priv->fence_regs[obj->fence_reg];
3070
3071         if (WARN_ON(fence->pin_count))
3072                 return -EBUSY;
3073
3074         i915_gem_object_fence_lost(obj);
3075         i915_gem_object_update_fence(obj, fence, false);
3076
3077         return 0;
3078 }
3079
3080 static struct drm_i915_fence_reg *
3081 i915_find_fence_reg(struct drm_device *dev)
3082 {
3083         struct drm_i915_private *dev_priv = dev->dev_private;
3084         struct drm_i915_fence_reg *reg, *avail;
3085         int i;
3086
3087         /* First try to find a free reg */
3088         avail = NULL;
3089         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3090                 reg = &dev_priv->fence_regs[i];
3091                 if (!reg->obj)
3092                         return reg;
3093
3094                 if (!reg->pin_count)
3095                         avail = reg;
3096         }
3097
3098         if (avail == NULL)
3099                 goto deadlock;
3100
3101         /* None available, try to steal one or wait for a user to finish */
3102         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3103                 if (reg->pin_count)
3104                         continue;
3105
3106                 return reg;
3107         }
3108
3109 deadlock:
3110         /* Wait for completion of pending flips which consume fences */
3111         if (intel_has_pending_fb_unpin(dev))
3112                 return ERR_PTR(-EAGAIN);
3113
3114         return ERR_PTR(-EDEADLK);
3115 }
3116
3117 /**
3118  * i915_gem_object_get_fence - set up fencing for an object
3119  * @obj: object to map through a fence reg
3120  *
3121  * When mapping objects through the GTT, userspace wants to be able to write
3122  * to them without having to worry about swizzling if the object is tiled.
3123  * This function walks the fence regs looking for a free one for @obj,
3124  * stealing one if it can't find any.
3125  *
3126  * It then sets up the reg based on the object's properties: address, pitch
3127  * and tiling format.
3128  *
3129  * For an untiled surface, this removes any existing fence.
3130  */
3131 int
3132 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3133 {
3134         struct drm_device *dev = obj->base.dev;
3135         struct drm_i915_private *dev_priv = dev->dev_private;
3136         bool enable = obj->tiling_mode != I915_TILING_NONE;
3137         struct drm_i915_fence_reg *reg;
3138         int ret;
3139
3140         /* Have we updated the tiling parameters upon the object and so
3141          * will need to serialise the write to the associated fence register?
3142          */
3143         if (obj->fence_dirty) {
3144                 ret = i915_gem_object_wait_fence(obj);
3145                 if (ret)
3146                         return ret;
3147         }
3148
3149         /* Just update our place in the LRU if our fence is getting reused. */
3150         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3151                 reg = &dev_priv->fence_regs[obj->fence_reg];
3152                 if (!obj->fence_dirty) {
3153                         list_move_tail(&reg->lru_list,
3154                                        &dev_priv->mm.fence_list);
3155                         return 0;
3156                 }
3157         } else if (enable) {
3158                 reg = i915_find_fence_reg(dev);
3159                 if (IS_ERR(reg))
3160                         return PTR_ERR(reg);
3161
3162                 if (reg->obj) {
3163                         struct drm_i915_gem_object *old = reg->obj;
3164
3165                         ret = i915_gem_object_wait_fence(old);
3166                         if (ret)
3167                                 return ret;
3168
3169                         i915_gem_object_fence_lost(old);
3170                 }
3171         } else
3172                 return 0;
3173
3174         i915_gem_object_update_fence(obj, reg, enable);
3175
3176         return 0;
3177 }
3178
3179 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3180                                      struct drm_mm_node *gtt_space,
3181                                      unsigned long cache_level)
3182 {
3183         struct drm_mm_node *other;
3184
3185         /* On non-LLC machines we have to be careful when putting differing
3186          * types of snoopable memory together to avoid the prefetcher
3187          * crossing memory domains and dying.
3188          */
3189         if (HAS_LLC(dev))
3190                 return true;
3191
3192         if (!drm_mm_node_allocated(gtt_space))
3193                 return true;
3194
3195         if (list_empty(&gtt_space->node_list))
3196                 return true;
3197
3198         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3199         if (other->allocated && !other->hole_follows && other->color != cache_level)
3200                 return false;
3201
3202         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3203         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3204                 return false;
3205
3206         return true;
3207 }
3208
3209 static void i915_gem_verify_gtt(struct drm_device *dev)
3210 {
3211 #if WATCH_GTT
3212         struct drm_i915_private *dev_priv = dev->dev_private;
3213         struct drm_i915_gem_object *obj;
3214         int err = 0;
3215
3216         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3217                 if (obj->gtt_space == NULL) {
3218                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3219                         err++;
3220                         continue;
3221                 }
3222
3223                 if (obj->cache_level != obj->gtt_space->color) {
3224                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3225                                i915_gem_obj_ggtt_offset(obj),
3226                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3227                                obj->cache_level,
3228                                obj->gtt_space->color);
3229                         err++;
3230                         continue;
3231                 }
3232
3233                 if (!i915_gem_valid_gtt_space(dev,
3234                                               obj->gtt_space,
3235                                               obj->cache_level)) {
3236                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3237                                i915_gem_obj_ggtt_offset(obj),
3238                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3239                                obj->cache_level);
3240                         err++;
3241                         continue;
3242                 }
3243         }
3244
3245         WARN_ON(err);
3246 #endif
3247 }
3248
3249 /**
3250  * Finds free space in the GTT aperture and binds the object there.
3251  */
3252 static struct i915_vma *
3253 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3254                            struct i915_address_space *vm,
3255                            unsigned alignment,
3256                            unsigned flags)
3257 {
3258         struct drm_device *dev = obj->base.dev;
3259         struct drm_i915_private *dev_priv = dev->dev_private;
3260         u32 size, fence_size, fence_alignment, unfenced_alignment;
3261         size_t gtt_max =
3262                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3263         struct i915_vma *vma;
3264         int ret;
3265
3266         fence_size = i915_gem_get_gtt_size(dev,
3267                                            obj->base.size,
3268                                            obj->tiling_mode);
3269         fence_alignment = i915_gem_get_gtt_alignment(dev,
3270                                                      obj->base.size,
3271                                                      obj->tiling_mode, true);
3272         unfenced_alignment =
3273                 i915_gem_get_gtt_alignment(dev,
3274                                            obj->base.size,
3275                                            obj->tiling_mode, false);
3276
3277         if (alignment == 0)
3278                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3279                                                 unfenced_alignment;
3280         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3281                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3282                 return ERR_PTR(-EINVAL);
3283         }
3284
3285         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3286
3287         /* If the object is bigger than the entire aperture, reject it early
3288          * before evicting everything in a vain attempt to find space.
3289          */
3290         if (obj->base.size > gtt_max) {
3291                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3292                           obj->base.size,
3293                           flags & PIN_MAPPABLE ? "mappable" : "total",
3294                           gtt_max);
3295                 return ERR_PTR(-E2BIG);
3296         }
3297
3298         ret = i915_gem_object_get_pages(obj);
3299         if (ret)
3300                 return ERR_PTR(ret);
3301
3302         i915_gem_object_pin_pages(obj);
3303
3304         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3305         if (IS_ERR(vma))
3306                 goto err_unpin;
3307
3308 search_free:
3309         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3310                                                   size, alignment,
3311                                                   obj->cache_level, 0, gtt_max,
3312                                                   DRM_MM_SEARCH_DEFAULT,
3313                                                   DRM_MM_CREATE_DEFAULT);
3314         if (ret) {
3315                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3316                                                obj->cache_level, flags);
3317                 if (ret == 0)
3318                         goto search_free;
3319
3320                 goto err_free_vma;
3321         }
3322         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3323                                               obj->cache_level))) {
3324                 ret = -EINVAL;
3325                 goto err_remove_node;
3326         }
3327
3328         ret = i915_gem_gtt_prepare_object(obj);
3329         if (ret)
3330                 goto err_remove_node;
3331
3332         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3333         list_add_tail(&vma->mm_list, &vm->inactive_list);
3334
3335         if (i915_is_ggtt(vm)) {
3336                 bool mappable, fenceable;
3337
3338                 fenceable = (vma->node.size == fence_size &&
3339                              (vma->node.start & (fence_alignment - 1)) == 0);
3340
3341                 mappable = (vma->node.start + obj->base.size <=
3342                             dev_priv->gtt.mappable_end);
3343
3344                 obj->map_and_fenceable = mappable && fenceable;
3345         }
3346
3347         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3348
3349         trace_i915_vma_bind(vma, flags);
3350         vma->bind_vma(vma, obj->cache_level,
3351                       flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3352
3353         i915_gem_verify_gtt(dev);
3354         return vma;
3355
3356 err_remove_node:
3357         drm_mm_remove_node(&vma->node);
3358 err_free_vma:
3359         i915_gem_vma_destroy(vma);
3360         vma = ERR_PTR(ret);
3361 err_unpin:
3362         i915_gem_object_unpin_pages(obj);
3363         return vma;
3364 }
3365
3366 bool
3367 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3368                         bool force)
3369 {
3370         /* If we don't have a page list set up, then we're not pinned
3371          * to GPU, and we can ignore the cache flush because it'll happen
3372          * again at bind time.
3373          */
3374         if (obj->pages == NULL)
3375                 return false;
3376
3377         /*
3378          * Stolen memory is always coherent with the GPU as it is explicitly
3379          * marked as wc by the system, or the system is cache-coherent.
3380          */
3381         if (obj->stolen)
3382                 return false;
3383
3384         /* If the GPU is snooping the contents of the CPU cache,
3385          * we do not need to manually clear the CPU cache lines.  However,
3386          * the caches are only snooped when the render cache is
3387          * flushed/invalidated.  As we always have to emit invalidations
3388          * and flushes when moving into and out of the RENDER domain, correct
3389          * snooping behaviour occurs naturally as the result of our domain
3390          * tracking.
3391          */
3392         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3393                 return false;
3394
3395         trace_i915_gem_object_clflush(obj);
3396         drm_clflush_sg(obj->pages);
3397
3398         return true;
3399 }
3400
3401 /** Flushes the GTT write domain for the object if it's dirty. */
3402 static void
3403 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3404 {
3405         uint32_t old_write_domain;
3406
3407         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3408                 return;
3409
3410         /* No actual flushing is required for the GTT write domain.  Writes
3411          * to it immediately go to main memory as far as we know, so there's
3412          * no chipset flush.  It also doesn't land in render cache.
3413          *
3414          * However, we do have to enforce the order so that all writes through
3415          * the GTT land before any writes to the device, such as updates to
3416          * the GATT itself.
3417          */
3418         wmb();
3419
3420         old_write_domain = obj->base.write_domain;
3421         obj->base.write_domain = 0;
3422
3423         trace_i915_gem_object_change_domain(obj,
3424                                             obj->base.read_domains,
3425                                             old_write_domain);
3426 }
3427
3428 /** Flushes the CPU write domain for the object if it's dirty. */
3429 static void
3430 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3431                                        bool force)
3432 {
3433         uint32_t old_write_domain;
3434
3435         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3436                 return;
3437
3438         if (i915_gem_clflush_object(obj, force))
3439                 i915_gem_chipset_flush(obj->base.dev);
3440
3441         old_write_domain = obj->base.write_domain;
3442         obj->base.write_domain = 0;
3443
3444         trace_i915_gem_object_change_domain(obj,
3445                                             obj->base.read_domains,
3446                                             old_write_domain);
3447 }
3448
3449 /**
3450  * Moves a single object to the GTT read, and possibly write domain.
3451  *
3452  * This function returns when the move is complete, including waiting on
3453  * flushes to occur.
3454  */
3455 int
3456 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3457 {
3458         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3459         uint32_t old_write_domain, old_read_domains;
3460         int ret;
3461
3462         /* Not valid to be called on unbound objects. */
3463         if (!i915_gem_obj_bound_any(obj))
3464                 return -EINVAL;
3465
3466         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3467                 return 0;
3468
3469         ret = i915_gem_object_wait_rendering(obj, !write);
3470         if (ret)
3471                 return ret;
3472
3473         i915_gem_object_retire(obj);
3474         i915_gem_object_flush_cpu_write_domain(obj, false);
3475
3476         /* Serialise direct access to this object with the barriers for
3477          * coherent writes from the GPU, by effectively invalidating the
3478          * GTT domain upon first access.
3479          */
3480         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3481                 mb();
3482
3483         old_write_domain = obj->base.write_domain;
3484         old_read_domains = obj->base.read_domains;
3485
3486         /* It should now be out of any other write domains, and we can update
3487          * the domain values for our changes.
3488          */
3489         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3490         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3491         if (write) {
3492                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3493                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3494                 obj->dirty = 1;
3495         }
3496
3497         trace_i915_gem_object_change_domain(obj,
3498                                             old_read_domains,
3499                                             old_write_domain);
3500
3501         /* And bump the LRU for this access */
3502         if (i915_gem_object_is_inactive(obj)) {
3503                 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3504                 if (vma)
3505                         list_move_tail(&vma->mm_list,
3506                                        &dev_priv->gtt.base.inactive_list);
3507
3508         }
3509
3510         return 0;
3511 }
3512
3513 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3514                                     enum i915_cache_level cache_level)
3515 {
3516         struct drm_device *dev = obj->base.dev;
3517         struct i915_vma *vma, *next;
3518         int ret;
3519
3520         if (obj->cache_level == cache_level)
3521                 return 0;
3522
3523         if (i915_gem_obj_is_pinned(obj)) {
3524                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3525                 return -EBUSY;
3526         }
3527
3528         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3529                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3530                         ret = i915_vma_unbind(vma);
3531                         if (ret)
3532                                 return ret;
3533                 }
3534         }
3535
3536         if (i915_gem_obj_bound_any(obj)) {
3537                 ret = i915_gem_object_finish_gpu(obj);
3538                 if (ret)
3539                         return ret;
3540
3541                 i915_gem_object_finish_gtt(obj);
3542
3543                 /* Before SandyBridge, you could not use tiling or fence
3544                  * registers with snooped memory, so relinquish any fences
3545                  * currently pointing to our region in the aperture.
3546                  */
3547                 if (INTEL_INFO(dev)->gen < 6) {
3548                         ret = i915_gem_object_put_fence(obj);
3549                         if (ret)
3550                                 return ret;
3551                 }
3552
3553                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3554                         if (drm_mm_node_allocated(&vma->node))
3555                                 vma->bind_vma(vma, cache_level,
3556                                               obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3557         }
3558
3559         list_for_each_entry(vma, &obj->vma_list, vma_link)
3560                 vma->node.color = cache_level;
3561         obj->cache_level = cache_level;
3562
3563         if (cpu_write_needs_clflush(obj)) {
3564                 u32 old_read_domains, old_write_domain;
3565
3566                 /* If we're coming from LLC cached, then we haven't
3567                  * actually been tracking whether the data is in the
3568                  * CPU cache or not, since we only allow one bit set
3569                  * in obj->write_domain and have been skipping the clflushes.
3570                  * Just set it to the CPU cache for now.
3571                  */
3572                 i915_gem_object_retire(obj);
3573                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3574
3575                 old_read_domains = obj->base.read_domains;
3576                 old_write_domain = obj->base.write_domain;
3577
3578                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3579                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3580
3581                 trace_i915_gem_object_change_domain(obj,
3582                                                     old_read_domains,
3583                                                     old_write_domain);
3584         }
3585
3586         i915_gem_verify_gtt(dev);
3587         return 0;
3588 }
3589
3590 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3591                                struct drm_file *file)
3592 {
3593         struct drm_i915_gem_caching *args = data;
3594         struct drm_i915_gem_object *obj;
3595         int ret;
3596
3597         ret = i915_mutex_lock_interruptible(dev);
3598         if (ret)
3599                 return ret;
3600
3601         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3602         if (&obj->base == NULL) {
3603                 ret = -ENOENT;
3604                 goto unlock;
3605         }
3606
3607         switch (obj->cache_level) {
3608         case I915_CACHE_LLC:
3609         case I915_CACHE_L3_LLC:
3610                 args->caching = I915_CACHING_CACHED;
3611                 break;
3612
3613         case I915_CACHE_WT:
3614                 args->caching = I915_CACHING_DISPLAY;
3615                 break;
3616
3617         default:
3618                 args->caching = I915_CACHING_NONE;
3619                 break;
3620         }
3621
3622         drm_gem_object_unreference(&obj->base);
3623 unlock:
3624         mutex_unlock(&dev->struct_mutex);
3625         return ret;
3626 }
3627
3628 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3629                                struct drm_file *file)
3630 {
3631         struct drm_i915_gem_caching *args = data;
3632         struct drm_i915_gem_object *obj;
3633         enum i915_cache_level level;
3634         int ret;
3635
3636         switch (args->caching) {
3637         case I915_CACHING_NONE:
3638                 level = I915_CACHE_NONE;
3639                 break;
3640         case I915_CACHING_CACHED:
3641                 level = I915_CACHE_LLC;
3642                 break;
3643         case I915_CACHING_DISPLAY:
3644                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3645                 break;
3646         default:
3647                 return -EINVAL;
3648         }
3649
3650         ret = i915_mutex_lock_interruptible(dev);
3651         if (ret)
3652                 return ret;
3653
3654         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3655         if (&obj->base == NULL) {
3656                 ret = -ENOENT;
3657                 goto unlock;
3658         }
3659
3660         ret = i915_gem_object_set_cache_level(obj, level);
3661
3662         drm_gem_object_unreference(&obj->base);
3663 unlock:
3664         mutex_unlock(&dev->struct_mutex);
3665         return ret;
3666 }
3667
3668 static bool is_pin_display(struct drm_i915_gem_object *obj)
3669 {
3670         struct i915_vma *vma;
3671
3672         if (list_empty(&obj->vma_list))
3673                 return false;
3674
3675         vma = i915_gem_obj_to_ggtt(obj);
3676         if (!vma)
3677                 return false;
3678
3679         /* There are 3 sources that pin objects:
3680          *   1. The display engine (scanouts, sprites, cursors);
3681          *   2. Reservations for execbuffer;
3682          *   3. The user.
3683          *
3684          * We can ignore reservations as we hold the struct_mutex and
3685          * are only called outside of the reservation path.  The user
3686          * can only increment pin_count once, and so if after
3687          * subtracting the potential reference by the user, any pin_count
3688          * remains, it must be due to another use by the display engine.
3689          */
3690         return vma->pin_count - !!obj->user_pin_count;
3691 }
3692
3693 /*
3694  * Prepare buffer for display plane (scanout, cursors, etc).
3695  * Can be called from an uninterruptible phase (modesetting) and allows
3696  * any flushes to be pipelined (for pageflips).
3697  */
3698 int
3699 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3700                                      u32 alignment,
3701                                      struct intel_ring_buffer *pipelined)
3702 {
3703         u32 old_read_domains, old_write_domain;
3704         bool was_pin_display;
3705         int ret;
3706
3707         if (pipelined != obj->ring) {
3708                 ret = i915_gem_object_sync(obj, pipelined);
3709                 if (ret)
3710                         return ret;
3711         }
3712
3713         /* Mark the pin_display early so that we account for the
3714          * display coherency whilst setting up the cache domains.
3715          */
3716         was_pin_display = obj->pin_display;
3717         obj->pin_display = true;
3718
3719         /* The display engine is not coherent with the LLC cache on gen6.  As
3720          * a result, we make sure that the pinning that is about to occur is
3721          * done with uncached PTEs. This is lowest common denominator for all
3722          * chipsets.
3723          *
3724          * However for gen6+, we could do better by using the GFDT bit instead
3725          * of uncaching, which would allow us to flush all the LLC-cached data
3726          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3727          */
3728         ret = i915_gem_object_set_cache_level(obj,
3729                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3730         if (ret)
3731                 goto err_unpin_display;
3732
3733         /* As the user may map the buffer once pinned in the display plane
3734          * (e.g. libkms for the bootup splash), we have to ensure that we
3735          * always use map_and_fenceable for all scanout buffers.
3736          */
3737         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3738         if (ret)
3739                 goto err_unpin_display;
3740
3741         i915_gem_object_flush_cpu_write_domain(obj, true);
3742
3743         old_write_domain = obj->base.write_domain;
3744         old_read_domains = obj->base.read_domains;
3745
3746         /* It should now be out of any other write domains, and we can update
3747          * the domain values for our changes.
3748          */
3749         obj->base.write_domain = 0;
3750         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3751
3752         trace_i915_gem_object_change_domain(obj,
3753                                             old_read_domains,
3754                                             old_write_domain);
3755
3756         return 0;
3757
3758 err_unpin_display:
3759         WARN_ON(was_pin_display != is_pin_display(obj));
3760         obj->pin_display = was_pin_display;
3761         return ret;
3762 }
3763
3764 void
3765 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3766 {
3767         i915_gem_object_ggtt_unpin(obj);
3768         obj->pin_display = is_pin_display(obj);
3769 }
3770
3771 int
3772 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3773 {
3774         int ret;
3775
3776         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3777                 return 0;
3778
3779         ret = i915_gem_object_wait_rendering(obj, false);
3780         if (ret)
3781                 return ret;
3782
3783         /* Ensure that we invalidate the GPU's caches and TLBs. */
3784         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3785         return 0;
3786 }
3787
3788 /**
3789  * Moves a single object to the CPU read, and possibly write domain.
3790  *
3791  * This function returns when the move is complete, including waiting on
3792  * flushes to occur.
3793  */
3794 int
3795 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3796 {
3797         uint32_t old_write_domain, old_read_domains;
3798         int ret;
3799
3800         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3801                 return 0;
3802
3803         ret = i915_gem_object_wait_rendering(obj, !write);
3804         if (ret)
3805                 return ret;
3806
3807         i915_gem_object_retire(obj);
3808         i915_gem_object_flush_gtt_write_domain(obj);
3809
3810         old_write_domain = obj->base.write_domain;
3811         old_read_domains = obj->base.read_domains;
3812
3813         /* Flush the CPU cache if it's still invalid. */
3814         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3815                 i915_gem_clflush_object(obj, false);
3816
3817                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3818         }
3819
3820         /* It should now be out of any other write domains, and we can update
3821          * the domain values for our changes.
3822          */
3823         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3824
3825         /* If we're writing through the CPU, then the GPU read domains will
3826          * need to be invalidated at next use.
3827          */
3828         if (write) {
3829                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3830                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3831         }
3832
3833         trace_i915_gem_object_change_domain(obj,
3834                                             old_read_domains,
3835                                             old_write_domain);
3836
3837         return 0;
3838 }
3839
3840 /* Throttle our rendering by waiting until the ring has completed our requests
3841  * emitted over 20 msec ago.
3842  *
3843  * Note that if we were to use the current jiffies each time around the loop,
3844  * we wouldn't escape the function with any frames outstanding if the time to
3845  * render a frame was over 20ms.
3846  *
3847  * This should get us reasonable parallelism between CPU and GPU but also
3848  * relatively low latency when blocking on a particular request to finish.
3849  */
3850 static int
3851 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3852 {
3853         struct drm_i915_private *dev_priv = dev->dev_private;
3854         struct drm_i915_file_private *file_priv = file->driver_priv;
3855         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3856         struct drm_i915_gem_request *request;
3857         struct intel_ring_buffer *ring = NULL;
3858         unsigned reset_counter;
3859         u32 seqno = 0;
3860         int ret;
3861
3862         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3863         if (ret)
3864                 return ret;
3865
3866         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3867         if (ret)
3868                 return ret;
3869
3870         spin_lock(&file_priv->mm.lock);
3871         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3872                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3873                         break;
3874
3875                 ring = request->ring;
3876                 seqno = request->seqno;
3877         }
3878         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3879         spin_unlock(&file_priv->mm.lock);
3880
3881         if (seqno == 0)
3882                 return 0;
3883
3884         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3885         if (ret == 0)
3886                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3887
3888         return ret;
3889 }
3890
3891 int
3892 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3893                     struct i915_address_space *vm,
3894                     uint32_t alignment,
3895                     unsigned flags)
3896 {
3897         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3898         struct i915_vma *vma;
3899         int ret;
3900
3901         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
3902                 return -ENODEV;
3903
3904         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3905                 return -EINVAL;
3906
3907         vma = i915_gem_obj_to_vma(obj, vm);
3908         if (vma) {
3909                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3910                         return -EBUSY;
3911
3912                 if ((alignment &&
3913                      vma->node.start & (alignment - 1)) ||
3914                     (flags & PIN_MAPPABLE && !obj->map_and_fenceable)) {
3915                         WARN(vma->pin_count,
3916                              "bo is already pinned with incorrect alignment:"
3917                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3918                              " obj->map_and_fenceable=%d\n",
3919                              i915_gem_obj_offset(obj, vm), alignment,
3920                              flags & PIN_MAPPABLE,
3921                              obj->map_and_fenceable);
3922                         ret = i915_vma_unbind(vma);
3923                         if (ret)
3924                                 return ret;
3925
3926                         vma = NULL;
3927                 }
3928         }
3929
3930         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3931                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
3932                 if (IS_ERR(vma))
3933                         return PTR_ERR(vma);
3934         }
3935
3936         if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
3937                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
3938
3939         vma->pin_count++;
3940         if (flags & PIN_MAPPABLE)
3941                 obj->pin_mappable |= true;
3942
3943         return 0;
3944 }
3945
3946 void
3947 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3948 {
3949         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3950
3951         BUG_ON(!vma);
3952         BUG_ON(vma->pin_count == 0);
3953         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3954
3955         if (--vma->pin_count == 0)
3956                 obj->pin_mappable = false;
3957 }
3958
3959 bool
3960 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
3961 {
3962         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3963                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3964                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
3965
3966                 WARN_ON(!ggtt_vma ||
3967                         dev_priv->fence_regs[obj->fence_reg].pin_count >
3968                         ggtt_vma->pin_count);
3969                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
3970                 return true;
3971         } else
3972                 return false;
3973 }
3974
3975 void
3976 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
3977 {
3978         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3979                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3980                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
3981                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
3982         }
3983 }
3984
3985 int
3986 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3987                    struct drm_file *file)
3988 {
3989         struct drm_i915_gem_pin *args = data;
3990         struct drm_i915_gem_object *obj;
3991         int ret;
3992
3993         if (INTEL_INFO(dev)->gen >= 6)
3994                 return -ENODEV;
3995
3996         ret = i915_mutex_lock_interruptible(dev);
3997         if (ret)
3998                 return ret;
3999
4000         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4001         if (&obj->base == NULL) {
4002                 ret = -ENOENT;
4003                 goto unlock;
4004         }
4005
4006         if (obj->madv != I915_MADV_WILLNEED) {
4007                 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4008                 ret = -EFAULT;
4009                 goto out;
4010         }
4011
4012         if (obj->pin_filp != NULL && obj->pin_filp != file) {
4013                 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4014                           args->handle);
4015                 ret = -EINVAL;
4016                 goto out;
4017         }
4018
4019         if (obj->user_pin_count == ULONG_MAX) {
4020                 ret = -EBUSY;
4021                 goto out;
4022         }
4023
4024         if (obj->user_pin_count == 0) {
4025                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4026                 if (ret)
4027                         goto out;
4028         }
4029
4030         obj->user_pin_count++;
4031         obj->pin_filp = file;
4032
4033         args->offset = i915_gem_obj_ggtt_offset(obj);
4034 out:
4035         drm_gem_object_unreference(&obj->base);
4036 unlock:
4037         mutex_unlock(&dev->struct_mutex);
4038         return ret;
4039 }
4040
4041 int
4042 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4043                      struct drm_file *file)
4044 {
4045         struct drm_i915_gem_pin *args = data;
4046         struct drm_i915_gem_object *obj;
4047         int ret;
4048
4049         ret = i915_mutex_lock_interruptible(dev);
4050         if (ret)
4051                 return ret;
4052
4053         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4054         if (&obj->base == NULL) {
4055                 ret = -ENOENT;
4056                 goto unlock;
4057         }
4058
4059         if (obj->pin_filp != file) {
4060                 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4061                           args->handle);
4062                 ret = -EINVAL;
4063                 goto out;
4064         }
4065         obj->user_pin_count--;
4066         if (obj->user_pin_count == 0) {
4067                 obj->pin_filp = NULL;
4068                 i915_gem_object_ggtt_unpin(obj);
4069         }
4070
4071 out:
4072         drm_gem_object_unreference(&obj->base);
4073 unlock:
4074         mutex_unlock(&dev->struct_mutex);
4075         return ret;
4076 }
4077
4078 int
4079 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4080                     struct drm_file *file)
4081 {
4082         struct drm_i915_gem_busy *args = data;
4083         struct drm_i915_gem_object *obj;
4084         int ret;
4085
4086         ret = i915_mutex_lock_interruptible(dev);
4087         if (ret)
4088                 return ret;
4089
4090         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4091         if (&obj->base == NULL) {
4092                 ret = -ENOENT;
4093                 goto unlock;
4094         }
4095
4096         /* Count all active objects as busy, even if they are currently not used
4097          * by the gpu. Users of this interface expect objects to eventually
4098          * become non-busy without any further actions, therefore emit any
4099          * necessary flushes here.
4100          */
4101         ret = i915_gem_object_flush_active(obj);
4102
4103         args->busy = obj->active;
4104         if (obj->ring) {
4105                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4106                 args->busy |= intel_ring_flag(obj->ring) << 16;
4107         }
4108
4109         drm_gem_object_unreference(&obj->base);
4110 unlock:
4111         mutex_unlock(&dev->struct_mutex);
4112         return ret;
4113 }
4114
4115 int
4116 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4117                         struct drm_file *file_priv)
4118 {
4119         return i915_gem_ring_throttle(dev, file_priv);
4120 }
4121
4122 int
4123 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4124                        struct drm_file *file_priv)
4125 {
4126         struct drm_i915_gem_madvise *args = data;
4127         struct drm_i915_gem_object *obj;
4128         int ret;
4129
4130         switch (args->madv) {
4131         case I915_MADV_DONTNEED:
4132         case I915_MADV_WILLNEED:
4133             break;
4134         default:
4135             return -EINVAL;
4136         }
4137
4138         ret = i915_mutex_lock_interruptible(dev);
4139         if (ret)
4140                 return ret;
4141
4142         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4143         if (&obj->base == NULL) {
4144                 ret = -ENOENT;
4145                 goto unlock;
4146         }
4147
4148         if (i915_gem_obj_is_pinned(obj)) {
4149                 ret = -EINVAL;
4150                 goto out;
4151         }
4152
4153         if (obj->madv != __I915_MADV_PURGED)
4154                 obj->madv = args->madv;
4155
4156         /* if the object is no longer attached, discard its backing storage */
4157         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4158                 i915_gem_object_truncate(obj);
4159
4160         args->retained = obj->madv != __I915_MADV_PURGED;
4161
4162 out:
4163         drm_gem_object_unreference(&obj->base);
4164 unlock:
4165         mutex_unlock(&dev->struct_mutex);
4166         return ret;
4167 }
4168
4169 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4170                           const struct drm_i915_gem_object_ops *ops)
4171 {
4172         INIT_LIST_HEAD(&obj->global_list);
4173         INIT_LIST_HEAD(&obj->ring_list);
4174         INIT_LIST_HEAD(&obj->obj_exec_link);
4175         INIT_LIST_HEAD(&obj->vma_list);
4176
4177         obj->ops = ops;
4178
4179         obj->fence_reg = I915_FENCE_REG_NONE;
4180         obj->madv = I915_MADV_WILLNEED;
4181         /* Avoid an unnecessary call to unbind on the first bind. */
4182         obj->map_and_fenceable = true;
4183
4184         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4185 }
4186
4187 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4188         .get_pages = i915_gem_object_get_pages_gtt,
4189         .put_pages = i915_gem_object_put_pages_gtt,
4190 };
4191
4192 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4193                                                   size_t size)
4194 {
4195         struct drm_i915_gem_object *obj;
4196         struct address_space *mapping;
4197         gfp_t mask;
4198
4199         obj = i915_gem_object_alloc(dev);
4200         if (obj == NULL)
4201                 return NULL;
4202
4203         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4204                 i915_gem_object_free(obj);
4205                 return NULL;
4206         }
4207
4208         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4209         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4210                 /* 965gm cannot relocate objects above 4GiB. */
4211                 mask &= ~__GFP_HIGHMEM;
4212                 mask |= __GFP_DMA32;
4213         }
4214
4215         mapping = file_inode(obj->base.filp)->i_mapping;
4216         mapping_set_gfp_mask(mapping, mask);
4217
4218         i915_gem_object_init(obj, &i915_gem_object_ops);
4219
4220         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4221         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4222
4223         if (HAS_LLC(dev)) {
4224                 /* On some devices, we can have the GPU use the LLC (the CPU
4225                  * cache) for about a 10% performance improvement
4226                  * compared to uncached.  Graphics requests other than
4227                  * display scanout are coherent with the CPU in
4228                  * accessing this cache.  This means in this mode we
4229                  * don't need to clflush on the CPU side, and on the
4230                  * GPU side we only need to flush internal caches to
4231                  * get data visible to the CPU.
4232                  *
4233                  * However, we maintain the display planes as UC, and so
4234                  * need to rebind when first used as such.
4235                  */
4236                 obj->cache_level = I915_CACHE_LLC;
4237         } else
4238                 obj->cache_level = I915_CACHE_NONE;
4239
4240         trace_i915_gem_object_create(obj);
4241
4242         return obj;
4243 }
4244
4245 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4246 {
4247         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4248         struct drm_device *dev = obj->base.dev;
4249         struct drm_i915_private *dev_priv = dev->dev_private;
4250         struct i915_vma *vma, *next;
4251
4252         intel_runtime_pm_get(dev_priv);
4253
4254         trace_i915_gem_object_destroy(obj);
4255
4256         if (obj->phys_obj)
4257                 i915_gem_detach_phys_object(dev, obj);
4258
4259         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4260                 int ret;
4261
4262                 vma->pin_count = 0;
4263                 ret = i915_vma_unbind(vma);
4264                 if (WARN_ON(ret == -ERESTARTSYS)) {
4265                         bool was_interruptible;
4266
4267                         was_interruptible = dev_priv->mm.interruptible;
4268                         dev_priv->mm.interruptible = false;
4269
4270                         WARN_ON(i915_vma_unbind(vma));
4271
4272                         dev_priv->mm.interruptible = was_interruptible;
4273                 }
4274         }
4275
4276         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4277          * before progressing. */
4278         if (obj->stolen)
4279                 i915_gem_object_unpin_pages(obj);
4280
4281         if (WARN_ON(obj->pages_pin_count))
4282                 obj->pages_pin_count = 0;
4283         if (obj->madv != __I915_MADV_PURGED)
4284                 obj->madv = I915_MADV_DONTNEED;
4285         i915_gem_object_put_pages(obj);
4286         i915_gem_object_free_mmap_offset(obj);
4287         i915_gem_object_release_stolen(obj);
4288
4289         BUG_ON(obj->pages);
4290
4291         if (obj->base.import_attach)
4292                 drm_prime_gem_destroy(&obj->base, NULL);
4293
4294         if (obj->ops->release)
4295                 obj->ops->release(obj);
4296
4297         drm_gem_object_release(&obj->base);
4298         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4299
4300         kfree(obj->bit_17);
4301         i915_gem_object_free(obj);
4302
4303         intel_runtime_pm_put(dev_priv);
4304 }
4305
4306 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4307                                      struct i915_address_space *vm)
4308 {
4309         struct i915_vma *vma;
4310         list_for_each_entry(vma, &obj->vma_list, vma_link)
4311                 if (vma->vm == vm)
4312                         return vma;
4313
4314         return NULL;
4315 }
4316
4317 void i915_gem_vma_destroy(struct i915_vma *vma)
4318 {
4319         WARN_ON(vma->node.allocated);
4320
4321         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4322         if (!list_empty(&vma->exec_list))
4323                 return;
4324
4325         list_del(&vma->vma_link);
4326
4327         kfree(vma);
4328 }
4329
4330 static void
4331 i915_gem_stop_ringbuffers(struct drm_device *dev)
4332 {
4333         struct drm_i915_private *dev_priv = dev->dev_private;
4334         struct intel_ring_buffer *ring;
4335         int i;
4336
4337         for_each_ring(ring, dev_priv, i)
4338                 intel_stop_ring_buffer(ring);
4339 }
4340
4341 int
4342 i915_gem_suspend(struct drm_device *dev)
4343 {
4344         struct drm_i915_private *dev_priv = dev->dev_private;
4345         int ret = 0;
4346
4347         mutex_lock(&dev->struct_mutex);
4348         if (dev_priv->ums.mm_suspended)
4349                 goto err;
4350
4351         ret = i915_gpu_idle(dev);
4352         if (ret)
4353                 goto err;
4354
4355         i915_gem_retire_requests(dev);
4356
4357         /* Under UMS, be paranoid and evict. */
4358         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4359                 i915_gem_evict_everything(dev);
4360
4361         i915_kernel_lost_context(dev);
4362         i915_gem_stop_ringbuffers(dev);
4363
4364         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4365          * We need to replace this with a semaphore, or something.
4366          * And not confound ums.mm_suspended!
4367          */
4368         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4369                                                              DRIVER_MODESET);
4370         mutex_unlock(&dev->struct_mutex);
4371
4372         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4373         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4374         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4375
4376         return 0;
4377
4378 err:
4379         mutex_unlock(&dev->struct_mutex);
4380         return ret;
4381 }
4382
4383 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4384 {
4385         struct drm_device *dev = ring->dev;
4386         struct drm_i915_private *dev_priv = dev->dev_private;
4387         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4388         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4389         int i, ret;
4390
4391         if (!HAS_L3_DPF(dev) || !remap_info)
4392                 return 0;
4393
4394         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4395         if (ret)
4396                 return ret;
4397
4398         /*
4399          * Note: We do not worry about the concurrent register cacheline hang
4400          * here because no other code should access these registers other than
4401          * at initialization time.
4402          */
4403         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4404                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4405                 intel_ring_emit(ring, reg_base + i);
4406                 intel_ring_emit(ring, remap_info[i/4]);
4407         }
4408
4409         intel_ring_advance(ring);
4410
4411         return ret;
4412 }
4413
4414 void i915_gem_init_swizzling(struct drm_device *dev)
4415 {
4416         struct drm_i915_private *dev_priv = dev->dev_private;
4417
4418         if (INTEL_INFO(dev)->gen < 5 ||
4419             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4420                 return;
4421
4422         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4423                                  DISP_TILE_SURFACE_SWIZZLING);
4424
4425         if (IS_GEN5(dev))
4426                 return;
4427
4428         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4429         if (IS_GEN6(dev))
4430                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4431         else if (IS_GEN7(dev))
4432                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4433         else if (IS_GEN8(dev))
4434                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4435         else
4436                 BUG();
4437 }
4438
4439 static bool
4440 intel_enable_blt(struct drm_device *dev)
4441 {
4442         if (!HAS_BLT(dev))
4443                 return false;
4444
4445         /* The blitter was dysfunctional on early prototypes */
4446         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4447                 DRM_INFO("BLT not supported on this pre-production hardware;"
4448                          " graphics performance will be degraded.\n");
4449                 return false;
4450         }
4451
4452         return true;
4453 }
4454
4455 static int i915_gem_init_rings(struct drm_device *dev)
4456 {
4457         struct drm_i915_private *dev_priv = dev->dev_private;
4458         int ret;
4459
4460         ret = intel_init_render_ring_buffer(dev);
4461         if (ret)
4462                 return ret;
4463
4464         if (HAS_BSD(dev)) {
4465                 ret = intel_init_bsd_ring_buffer(dev);
4466                 if (ret)
4467                         goto cleanup_render_ring;
4468         }
4469
4470         if (intel_enable_blt(dev)) {
4471                 ret = intel_init_blt_ring_buffer(dev);
4472                 if (ret)
4473                         goto cleanup_bsd_ring;
4474         }
4475
4476         if (HAS_VEBOX(dev)) {
4477                 ret = intel_init_vebox_ring_buffer(dev);
4478                 if (ret)
4479                         goto cleanup_blt_ring;
4480         }
4481
4482         if (HAS_BSD2(dev)) {
4483                 ret = intel_init_bsd2_ring_buffer(dev);
4484                 if (ret)
4485                         goto cleanup_vebox_ring;
4486         }
4487
4488         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4489         if (ret)
4490                 goto cleanup_bsd2_ring;
4491
4492         return 0;
4493
4494 cleanup_bsd2_ring:
4495         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4496 cleanup_vebox_ring:
4497         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4498 cleanup_blt_ring:
4499         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4500 cleanup_bsd_ring:
4501         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4502 cleanup_render_ring:
4503         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4504
4505         return ret;
4506 }
4507
4508 int
4509 i915_gem_init_hw(struct drm_device *dev)
4510 {
4511         struct drm_i915_private *dev_priv = dev->dev_private;
4512         int ret, i;
4513
4514         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4515                 return -EIO;
4516
4517         if (dev_priv->ellc_size)
4518                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4519
4520         if (IS_HASWELL(dev))
4521                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4522                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4523
4524         if (HAS_PCH_NOP(dev)) {
4525                 if (IS_IVYBRIDGE(dev)) {
4526                         u32 temp = I915_READ(GEN7_MSG_CTL);
4527                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4528                         I915_WRITE(GEN7_MSG_CTL, temp);
4529                 } else if (INTEL_INFO(dev)->gen >= 7) {
4530                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4531                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4532                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4533                 }
4534         }
4535
4536         i915_gem_init_swizzling(dev);
4537
4538         ret = i915_gem_init_rings(dev);
4539         if (ret)
4540                 return ret;
4541
4542         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4543                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4544
4545         /*
4546          * XXX: Contexts should only be initialized once. Doing a switch to the
4547          * default context switch however is something we'd like to do after
4548          * reset or thaw (the latter may not actually be necessary for HW, but
4549          * goes with our code better). Context switching requires rings (for
4550          * the do_switch), but before enabling PPGTT. So don't move this.
4551          */
4552         ret = i915_gem_context_enable(dev_priv);
4553         if (ret && ret != -EIO) {
4554                 DRM_ERROR("Context enable failed %d\n", ret);
4555                 i915_gem_cleanup_ringbuffer(dev);
4556         }
4557
4558         return ret;
4559 }
4560
4561 int i915_gem_init(struct drm_device *dev)
4562 {
4563         struct drm_i915_private *dev_priv = dev->dev_private;
4564         int ret;
4565
4566         mutex_lock(&dev->struct_mutex);
4567
4568         if (IS_VALLEYVIEW(dev)) {
4569                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4570                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4571                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4572                               VLV_GTLC_ALLOWWAKEACK), 10))
4573                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4574         }
4575
4576         i915_gem_init_userptr(dev);
4577         i915_gem_init_global_gtt(dev);
4578
4579         ret = i915_gem_context_init(dev);
4580         if (ret) {
4581                 mutex_unlock(&dev->struct_mutex);
4582                 return ret;
4583         }
4584
4585         ret = i915_gem_init_hw(dev);
4586         if (ret == -EIO) {
4587                 /* Allow ring initialisation to fail by marking the GPU as
4588                  * wedged. But we only want to do this where the GPU is angry,
4589                  * for all other failure, such as an allocation failure, bail.
4590                  */
4591                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4592                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4593                 ret = 0;
4594         }
4595         mutex_unlock(&dev->struct_mutex);
4596
4597         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4598         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4599                 dev_priv->dri1.allow_batchbuffer = 1;
4600         return ret;
4601 }
4602
4603 void
4604 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4605 {
4606         struct drm_i915_private *dev_priv = dev->dev_private;
4607         struct intel_ring_buffer *ring;
4608         int i;
4609
4610         for_each_ring(ring, dev_priv, i)
4611                 intel_cleanup_ring_buffer(ring);
4612 }
4613
4614 int
4615 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4616                        struct drm_file *file_priv)
4617 {
4618         struct drm_i915_private *dev_priv = dev->dev_private;
4619         int ret;
4620
4621         if (drm_core_check_feature(dev, DRIVER_MODESET))
4622                 return 0;
4623
4624         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4625                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4626                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4627         }
4628
4629         mutex_lock(&dev->struct_mutex);
4630         dev_priv->ums.mm_suspended = 0;
4631
4632         ret = i915_gem_init_hw(dev);
4633         if (ret != 0) {
4634                 mutex_unlock(&dev->struct_mutex);
4635                 return ret;
4636         }
4637
4638         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4639
4640         ret = drm_irq_install(dev, dev->pdev->irq);
4641         if (ret)
4642                 goto cleanup_ringbuffer;
4643         mutex_unlock(&dev->struct_mutex);
4644
4645         return 0;
4646
4647 cleanup_ringbuffer:
4648         i915_gem_cleanup_ringbuffer(dev);
4649         dev_priv->ums.mm_suspended = 1;
4650         mutex_unlock(&dev->struct_mutex);
4651
4652         return ret;
4653 }
4654
4655 int
4656 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4657                        struct drm_file *file_priv)
4658 {
4659         if (drm_core_check_feature(dev, DRIVER_MODESET))
4660                 return 0;
4661
4662         mutex_lock(&dev->struct_mutex);
4663         drm_irq_uninstall(dev);
4664         mutex_unlock(&dev->struct_mutex);
4665
4666         return i915_gem_suspend(dev);
4667 }
4668
4669 void
4670 i915_gem_lastclose(struct drm_device *dev)
4671 {
4672         int ret;
4673
4674         if (drm_core_check_feature(dev, DRIVER_MODESET))
4675                 return;
4676
4677         ret = i915_gem_suspend(dev);
4678         if (ret)
4679                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4680 }
4681
4682 static void
4683 init_ring_lists(struct intel_ring_buffer *ring)
4684 {
4685         INIT_LIST_HEAD(&ring->active_list);
4686         INIT_LIST_HEAD(&ring->request_list);
4687 }
4688
4689 void i915_init_vm(struct drm_i915_private *dev_priv,
4690                   struct i915_address_space *vm)
4691 {
4692         if (!i915_is_ggtt(vm))
4693                 drm_mm_init(&vm->mm, vm->start, vm->total);
4694         vm->dev = dev_priv->dev;
4695         INIT_LIST_HEAD(&vm->active_list);
4696         INIT_LIST_HEAD(&vm->inactive_list);
4697         INIT_LIST_HEAD(&vm->global_link);
4698         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4699 }
4700
4701 void
4702 i915_gem_load(struct drm_device *dev)
4703 {
4704         struct drm_i915_private *dev_priv = dev->dev_private;
4705         int i;
4706
4707         dev_priv->slab =
4708                 kmem_cache_create("i915_gem_object",
4709                                   sizeof(struct drm_i915_gem_object), 0,
4710                                   SLAB_HWCACHE_ALIGN,
4711                                   NULL);
4712
4713         INIT_LIST_HEAD(&dev_priv->vm_list);
4714         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4715
4716         INIT_LIST_HEAD(&dev_priv->context_list);
4717         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4718         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4719         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4720         for (i = 0; i < I915_NUM_RINGS; i++)
4721                 init_ring_lists(&dev_priv->ring[i]);
4722         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4723                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4724         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4725                           i915_gem_retire_work_handler);
4726         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4727                           i915_gem_idle_work_handler);
4728         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4729
4730         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4731         if (IS_GEN3(dev)) {
4732                 I915_WRITE(MI_ARB_STATE,
4733                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4734         }
4735
4736         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4737
4738         /* Old X drivers will take 0-2 for front, back, depth buffers */
4739         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4740                 dev_priv->fence_reg_start = 3;
4741
4742         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4743                 dev_priv->num_fence_regs = 32;
4744         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4745                 dev_priv->num_fence_regs = 16;
4746         else
4747                 dev_priv->num_fence_regs = 8;
4748
4749         /* Initialize fence registers to zero */
4750         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4751         i915_gem_restore_fences(dev);
4752
4753         i915_gem_detect_bit_6_swizzle(dev);
4754         init_waitqueue_head(&dev_priv->pending_flip_queue);
4755
4756         dev_priv->mm.interruptible = true;
4757
4758         dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4759         dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4760         dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4761         register_shrinker(&dev_priv->mm.shrinker);
4762 }
4763
4764 /*
4765  * Create a physically contiguous memory object for this object
4766  * e.g. for cursor + overlay regs
4767  */
4768 static int i915_gem_init_phys_object(struct drm_device *dev,
4769                                      int id, int size, int align)
4770 {
4771         struct drm_i915_private *dev_priv = dev->dev_private;
4772         struct drm_i915_gem_phys_object *phys_obj;
4773         int ret;
4774
4775         if (dev_priv->mm.phys_objs[id - 1] || !size)
4776                 return 0;
4777
4778         phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4779         if (!phys_obj)
4780                 return -ENOMEM;
4781
4782         phys_obj->id = id;
4783
4784         phys_obj->handle = drm_pci_alloc(dev, size, align);
4785         if (!phys_obj->handle) {
4786                 ret = -ENOMEM;
4787                 goto kfree_obj;
4788         }
4789 #ifdef CONFIG_X86
4790         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4791 #endif
4792
4793         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4794
4795         return 0;
4796 kfree_obj:
4797         kfree(phys_obj);
4798         return ret;
4799 }
4800
4801 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4802 {
4803         struct drm_i915_private *dev_priv = dev->dev_private;
4804         struct drm_i915_gem_phys_object *phys_obj;
4805
4806         if (!dev_priv->mm.phys_objs[id - 1])
4807                 return;
4808
4809         phys_obj = dev_priv->mm.phys_objs[id - 1];
4810         if (phys_obj->cur_obj) {
4811                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4812         }
4813
4814 #ifdef CONFIG_X86
4815         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4816 #endif
4817         drm_pci_free(dev, phys_obj->handle);
4818         kfree(phys_obj);
4819         dev_priv->mm.phys_objs[id - 1] = NULL;
4820 }
4821
4822 void i915_gem_free_all_phys_object(struct drm_device *dev)
4823 {
4824         int i;
4825
4826         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4827                 i915_gem_free_phys_object(dev, i);
4828 }
4829
4830 void i915_gem_detach_phys_object(struct drm_device *dev,
4831                                  struct drm_i915_gem_object *obj)
4832 {
4833         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4834         char *vaddr;
4835         int i;
4836         int page_count;
4837
4838         if (!obj->phys_obj)
4839                 return;
4840         vaddr = obj->phys_obj->handle->vaddr;
4841
4842         page_count = obj->base.size / PAGE_SIZE;
4843         for (i = 0; i < page_count; i++) {
4844                 struct page *page = shmem_read_mapping_page(mapping, i);
4845                 if (!IS_ERR(page)) {
4846                         char *dst = kmap_atomic(page);
4847                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4848                         kunmap_atomic(dst);
4849
4850                         drm_clflush_pages(&page, 1);
4851
4852                         set_page_dirty(page);
4853                         mark_page_accessed(page);
4854                         page_cache_release(page);
4855                 }
4856         }
4857         i915_gem_chipset_flush(dev);
4858
4859         obj->phys_obj->cur_obj = NULL;
4860         obj->phys_obj = NULL;
4861 }
4862
4863 int
4864 i915_gem_attach_phys_object(struct drm_device *dev,
4865                             struct drm_i915_gem_object *obj,
4866                             int id,
4867                             int align)
4868 {
4869         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4870         struct drm_i915_private *dev_priv = dev->dev_private;
4871         int ret = 0;
4872         int page_count;
4873         int i;
4874
4875         if (id > I915_MAX_PHYS_OBJECT)
4876                 return -EINVAL;
4877
4878         if (obj->phys_obj) {
4879                 if (obj->phys_obj->id == id)
4880                         return 0;
4881                 i915_gem_detach_phys_object(dev, obj);
4882         }
4883
4884         /* create a new object */
4885         if (!dev_priv->mm.phys_objs[id - 1]) {
4886                 ret = i915_gem_init_phys_object(dev, id,
4887                                                 obj->base.size, align);
4888                 if (ret) {
4889                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4890                                   id, obj->base.size);
4891                         return ret;
4892                 }
4893         }
4894
4895         /* bind to the object */
4896         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4897         obj->phys_obj->cur_obj = obj;
4898
4899         page_count = obj->base.size / PAGE_SIZE;
4900
4901         for (i = 0; i < page_count; i++) {
4902                 struct page *page;
4903                 char *dst, *src;
4904
4905                 page = shmem_read_mapping_page(mapping, i);
4906                 if (IS_ERR(page))
4907                         return PTR_ERR(page);
4908
4909                 src = kmap_atomic(page);
4910                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4911                 memcpy(dst, src, PAGE_SIZE);
4912                 kunmap_atomic(src);
4913
4914                 mark_page_accessed(page);
4915                 page_cache_release(page);
4916         }
4917
4918         return 0;
4919 }
4920
4921 static int
4922 i915_gem_phys_pwrite(struct drm_device *dev,
4923                      struct drm_i915_gem_object *obj,
4924                      struct drm_i915_gem_pwrite *args,
4925                      struct drm_file *file_priv)
4926 {
4927         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4928         char __user *user_data = to_user_ptr(args->data_ptr);
4929
4930         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4931                 unsigned long unwritten;
4932
4933                 /* The physical object once assigned is fixed for the lifetime
4934                  * of the obj, so we can safely drop the lock and continue
4935                  * to access vaddr.
4936                  */
4937                 mutex_unlock(&dev->struct_mutex);
4938                 unwritten = copy_from_user(vaddr, user_data, args->size);
4939                 mutex_lock(&dev->struct_mutex);
4940                 if (unwritten)
4941                         return -EFAULT;
4942         }
4943
4944         i915_gem_chipset_flush(dev);
4945         return 0;
4946 }
4947
4948 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4949 {
4950         struct drm_i915_file_private *file_priv = file->driver_priv;
4951
4952         cancel_delayed_work_sync(&file_priv->mm.idle_work);
4953
4954         /* Clean up our request list when the client is going away, so that
4955          * later retire_requests won't dereference our soon-to-be-gone
4956          * file_priv.
4957          */
4958         spin_lock(&file_priv->mm.lock);
4959         while (!list_empty(&file_priv->mm.request_list)) {
4960                 struct drm_i915_gem_request *request;
4961
4962                 request = list_first_entry(&file_priv->mm.request_list,
4963                                            struct drm_i915_gem_request,
4964                                            client_list);
4965                 list_del(&request->client_list);
4966                 request->file_priv = NULL;
4967         }
4968         spin_unlock(&file_priv->mm.lock);
4969 }
4970
4971 static void
4972 i915_gem_file_idle_work_handler(struct work_struct *work)
4973 {
4974         struct drm_i915_file_private *file_priv =
4975                 container_of(work, typeof(*file_priv), mm.idle_work.work);
4976
4977         atomic_set(&file_priv->rps_wait_boost, false);
4978 }
4979
4980 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4981 {
4982         struct drm_i915_file_private *file_priv;
4983         int ret;
4984
4985         DRM_DEBUG_DRIVER("\n");
4986
4987         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4988         if (!file_priv)
4989                 return -ENOMEM;
4990
4991         file->driver_priv = file_priv;
4992         file_priv->dev_priv = dev->dev_private;
4993         file_priv->file = file;
4994
4995         spin_lock_init(&file_priv->mm.lock);
4996         INIT_LIST_HEAD(&file_priv->mm.request_list);
4997         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4998                           i915_gem_file_idle_work_handler);
4999
5000         ret = i915_gem_context_open(dev, file);
5001         if (ret)
5002                 kfree(file_priv);
5003
5004         return ret;
5005 }
5006
5007 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5008 {
5009         if (!mutex_is_locked(mutex))
5010                 return false;
5011
5012 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5013         return mutex->owner == task;
5014 #else
5015         /* Since UP may be pre-empted, we cannot assume that we own the lock */
5016         return false;
5017 #endif
5018 }
5019
5020 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5021 {
5022         if (!mutex_trylock(&dev->struct_mutex)) {
5023                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5024                         return false;
5025
5026                 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5027                         return false;
5028
5029                 *unlock = false;
5030         } else
5031                 *unlock = true;
5032
5033         return true;
5034 }
5035
5036 static int num_vma_bound(struct drm_i915_gem_object *obj)
5037 {
5038         struct i915_vma *vma;
5039         int count = 0;
5040
5041         list_for_each_entry(vma, &obj->vma_list, vma_link)
5042                 if (drm_mm_node_allocated(&vma->node))
5043                         count++;
5044
5045         return count;
5046 }
5047
5048 static unsigned long
5049 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5050 {
5051         struct drm_i915_private *dev_priv =
5052                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5053         struct drm_device *dev = dev_priv->dev;
5054         struct drm_i915_gem_object *obj;
5055         unsigned long count;
5056         bool unlock;
5057
5058         if (!i915_gem_shrinker_lock(dev, &unlock))
5059                 return 0;
5060
5061         count = 0;
5062         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5063                 if (obj->pages_pin_count == 0)
5064                         count += obj->base.size >> PAGE_SHIFT;
5065
5066         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5067                 if (!i915_gem_obj_is_pinned(obj) &&
5068                     obj->pages_pin_count == num_vma_bound(obj))
5069                         count += obj->base.size >> PAGE_SHIFT;
5070         }
5071
5072         if (unlock)
5073                 mutex_unlock(&dev->struct_mutex);
5074
5075         return count;
5076 }
5077
5078 /* All the new VM stuff */
5079 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5080                                   struct i915_address_space *vm)
5081 {
5082         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5083         struct i915_vma *vma;
5084
5085         if (!dev_priv->mm.aliasing_ppgtt ||
5086             vm == &dev_priv->mm.aliasing_ppgtt->base)
5087                 vm = &dev_priv->gtt.base;
5088
5089         BUG_ON(list_empty(&o->vma_list));
5090         list_for_each_entry(vma, &o->vma_list, vma_link) {
5091                 if (vma->vm == vm)
5092                         return vma->node.start;
5093
5094         }
5095         return -1;
5096 }
5097
5098 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5099                         struct i915_address_space *vm)
5100 {
5101         struct i915_vma *vma;
5102
5103         list_for_each_entry(vma, &o->vma_list, vma_link)
5104                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5105                         return true;
5106
5107         return false;
5108 }
5109
5110 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5111 {
5112         struct i915_vma *vma;
5113
5114         list_for_each_entry(vma, &o->vma_list, vma_link)
5115                 if (drm_mm_node_allocated(&vma->node))
5116                         return true;
5117
5118         return false;
5119 }
5120
5121 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5122                                 struct i915_address_space *vm)
5123 {
5124         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5125         struct i915_vma *vma;
5126
5127         if (!dev_priv->mm.aliasing_ppgtt ||
5128             vm == &dev_priv->mm.aliasing_ppgtt->base)
5129                 vm = &dev_priv->gtt.base;
5130
5131         BUG_ON(list_empty(&o->vma_list));
5132
5133         list_for_each_entry(vma, &o->vma_list, vma_link)
5134                 if (vma->vm == vm)
5135                         return vma->node.size;
5136
5137         return 0;
5138 }
5139
5140 static unsigned long
5141 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5142 {
5143         struct drm_i915_private *dev_priv =
5144                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5145         struct drm_device *dev = dev_priv->dev;
5146         unsigned long freed;
5147         bool unlock;
5148
5149         if (!i915_gem_shrinker_lock(dev, &unlock))
5150                 return SHRINK_STOP;
5151
5152         freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5153         if (freed < sc->nr_to_scan)
5154                 freed += __i915_gem_shrink(dev_priv,
5155                                            sc->nr_to_scan - freed,
5156                                            false);
5157         if (freed < sc->nr_to_scan)
5158                 freed += i915_gem_shrink_all(dev_priv);
5159
5160         if (unlock)
5161                 mutex_unlock(&dev->struct_mutex);
5162
5163         return freed;
5164 }
5165
5166 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5167 {
5168         struct i915_vma *vma;
5169
5170         /* This WARN has probably outlived its usefulness (callers already
5171          * WARN if they don't find the GGTT vma they expect). When removing,
5172          * remember to remove the pre-check in is_pin_display() as well */
5173         if (WARN_ON(list_empty(&obj->vma_list)))
5174                 return NULL;
5175
5176         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5177         if (vma->vm != obj_to_ggtt(obj))
5178                 return NULL;
5179
5180         return vma;
5181 }