drm/i915: fix up error cleanup in i915_gem_object_bind_to_gtt
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42                                                     unsigned alignment,
43                                                     bool map_and_fenceable,
44                                                     bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46                                 struct drm_i915_gem_object *obj,
47                                 struct drm_i915_gem_pwrite *args,
48                                 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57                                     struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64         if (obj->tiling_mode)
65                 i915_gem_release_mmap(obj);
66
67         /* As we do not have an associated fence register, we will force
68          * a tiling change if we ever need to acquire one.
69          */
70         obj->fence_dirty = false;
71         obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76                                   size_t size)
77 {
78         dev_priv->mm.object_count++;
79         dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83                                      size_t size)
84 {
85         dev_priv->mm.object_count--;
86         dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92         int ret;
93
94 #define EXIT_COND (!i915_reset_in_progress(error) || \
95                    i915_terminally_wedged(error))
96         if (EXIT_COND)
97                 return 0;
98
99         /*
100          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101          * userspace. If it takes that long something really bad is going on and
102          * we should simply try to bail out and fail as gracefully as possible.
103          */
104         ret = wait_event_interruptible_timeout(error->reset_queue,
105                                                EXIT_COND,
106                                                10*HZ);
107         if (ret == 0) {
108                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109                 return -EIO;
110         } else if (ret < 0) {
111                 return ret;
112         }
113 #undef EXIT_COND
114
115         return 0;
116 }
117
118 int i915_mutex_lock_interruptible(struct drm_device *dev)
119 {
120         struct drm_i915_private *dev_priv = dev->dev_private;
121         int ret;
122
123         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
124         if (ret)
125                 return ret;
126
127         ret = mutex_lock_interruptible(&dev->struct_mutex);
128         if (ret)
129                 return ret;
130
131         WARN_ON(i915_verify_lists(dev));
132         return 0;
133 }
134
135 static inline bool
136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
137 {
138         return i915_gem_obj_ggtt_bound(obj) && !obj->active;
139 }
140
141 int
142 i915_gem_init_ioctl(struct drm_device *dev, void *data,
143                     struct drm_file *file)
144 {
145         struct drm_i915_private *dev_priv = dev->dev_private;
146         struct drm_i915_gem_init *args = data;
147
148         if (drm_core_check_feature(dev, DRIVER_MODESET))
149                 return -ENODEV;
150
151         if (args->gtt_start >= args->gtt_end ||
152             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153                 return -EINVAL;
154
155         /* GEM with user mode setting was never supported on ilk and later. */
156         if (INTEL_INFO(dev)->gen >= 5)
157                 return -ENODEV;
158
159         mutex_lock(&dev->struct_mutex);
160         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161                                   args->gtt_end);
162         dev_priv->gtt.mappable_end = args->gtt_end;
163         mutex_unlock(&dev->struct_mutex);
164
165         return 0;
166 }
167
168 int
169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170                             struct drm_file *file)
171 {
172         struct drm_i915_private *dev_priv = dev->dev_private;
173         struct drm_i915_gem_get_aperture *args = data;
174         struct drm_i915_gem_object *obj;
175         size_t pinned;
176
177         pinned = 0;
178         mutex_lock(&dev->struct_mutex);
179         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
180                 if (obj->pin_count)
181                         pinned += i915_gem_obj_ggtt_size(obj);
182         mutex_unlock(&dev->struct_mutex);
183
184         args->aper_size = dev_priv->gtt.base.total;
185         args->aper_available_size = args->aper_size - pinned;
186
187         return 0;
188 }
189
190 void *i915_gem_object_alloc(struct drm_device *dev)
191 {
192         struct drm_i915_private *dev_priv = dev->dev_private;
193         return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194 }
195
196 void i915_gem_object_free(struct drm_i915_gem_object *obj)
197 {
198         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199         kmem_cache_free(dev_priv->slab, obj);
200 }
201
202 static int
203 i915_gem_create(struct drm_file *file,
204                 struct drm_device *dev,
205                 uint64_t size,
206                 uint32_t *handle_p)
207 {
208         struct drm_i915_gem_object *obj;
209         int ret;
210         u32 handle;
211
212         size = roundup(size, PAGE_SIZE);
213         if (size == 0)
214                 return -EINVAL;
215
216         /* Allocate the new object */
217         obj = i915_gem_alloc_object(dev, size);
218         if (obj == NULL)
219                 return -ENOMEM;
220
221         ret = drm_gem_handle_create(file, &obj->base, &handle);
222         if (ret) {
223                 drm_gem_object_release(&obj->base);
224                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
225                 i915_gem_object_free(obj);
226                 return ret;
227         }
228
229         /* drop reference from allocate - handle holds it now */
230         drm_gem_object_unreference(&obj->base);
231         trace_i915_gem_object_create(obj);
232
233         *handle_p = handle;
234         return 0;
235 }
236
237 int
238 i915_gem_dumb_create(struct drm_file *file,
239                      struct drm_device *dev,
240                      struct drm_mode_create_dumb *args)
241 {
242         /* have to work out size/pitch and return them */
243         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
244         args->size = args->pitch * args->height;
245         return i915_gem_create(file, dev,
246                                args->size, &args->handle);
247 }
248
249 int i915_gem_dumb_destroy(struct drm_file *file,
250                           struct drm_device *dev,
251                           uint32_t handle)
252 {
253         return drm_gem_handle_delete(file, handle);
254 }
255
256 /**
257  * Creates a new mm object and returns a handle to it.
258  */
259 int
260 i915_gem_create_ioctl(struct drm_device *dev, void *data,
261                       struct drm_file *file)
262 {
263         struct drm_i915_gem_create *args = data;
264
265         return i915_gem_create(file, dev,
266                                args->size, &args->handle);
267 }
268
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271                         const char *gpu_vaddr, int gpu_offset,
272                         int length)
273 {
274         int ret, cpu_offset = 0;
275
276         while (length > 0) {
277                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278                 int this_length = min(cacheline_end - gpu_offset, length);
279                 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282                                      gpu_vaddr + swizzled_gpu_offset,
283                                      this_length);
284                 if (ret)
285                         return ret + length;
286
287                 cpu_offset += this_length;
288                 gpu_offset += this_length;
289                 length -= this_length;
290         }
291
292         return 0;
293 }
294
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297                           const char __user *cpu_vaddr,
298                           int length)
299 {
300         int ret, cpu_offset = 0;
301
302         while (length > 0) {
303                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304                 int this_length = min(cacheline_end - gpu_offset, length);
305                 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308                                        cpu_vaddr + cpu_offset,
309                                        this_length);
310                 if (ret)
311                         return ret + length;
312
313                 cpu_offset += this_length;
314                 gpu_offset += this_length;
315                 length -= this_length;
316         }
317
318         return 0;
319 }
320
321 /* Per-page copy function for the shmem pread fastpath.
322  * Flushes invalid cachelines before reading the target if
323  * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326                  char __user *user_data,
327                  bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329         char *vaddr;
330         int ret;
331
332         if (unlikely(page_do_bit17_swizzling))
333                 return -EINVAL;
334
335         vaddr = kmap_atomic(page);
336         if (needs_clflush)
337                 drm_clflush_virt_range(vaddr + shmem_page_offset,
338                                        page_length);
339         ret = __copy_to_user_inatomic(user_data,
340                                       vaddr + shmem_page_offset,
341                                       page_length);
342         kunmap_atomic(vaddr);
343
344         return ret ? -EFAULT : 0;
345 }
346
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349                              bool swizzled)
350 {
351         if (unlikely(swizzled)) {
352                 unsigned long start = (unsigned long) addr;
353                 unsigned long end = (unsigned long) addr + length;
354
355                 /* For swizzling simply ensure that we always flush both
356                  * channels. Lame, but simple and it works. Swizzled
357                  * pwrite/pread is far from a hotpath - current userspace
358                  * doesn't use it at all. */
359                 start = round_down(start, 128);
360                 end = round_up(end, 128);
361
362                 drm_clflush_virt_range((void *)start, end - start);
363         } else {
364                 drm_clflush_virt_range(addr, length);
365         }
366
367 }
368
369 /* Only difference to the fast-path function is that this can handle bit17
370  * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373                  char __user *user_data,
374                  bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376         char *vaddr;
377         int ret;
378
379         vaddr = kmap(page);
380         if (needs_clflush)
381                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382                                              page_length,
383                                              page_do_bit17_swizzling);
384
385         if (page_do_bit17_swizzling)
386                 ret = __copy_to_user_swizzled(user_data,
387                                               vaddr, shmem_page_offset,
388                                               page_length);
389         else
390                 ret = __copy_to_user(user_data,
391                                      vaddr + shmem_page_offset,
392                                      page_length);
393         kunmap(page);
394
395         return ret ? - EFAULT : 0;
396 }
397
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400                      struct drm_i915_gem_object *obj,
401                      struct drm_i915_gem_pread *args,
402                      struct drm_file *file)
403 {
404         char __user *user_data;
405         ssize_t remain;
406         loff_t offset;
407         int shmem_page_offset, page_length, ret = 0;
408         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409         int prefaulted = 0;
410         int needs_clflush = 0;
411         struct sg_page_iter sg_iter;
412
413         user_data = to_user_ptr(args->data_ptr);
414         remain = args->size;
415
416         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417
418         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419                 /* If we're not in the cpu read domain, set ourself into the gtt
420                  * read domain and manually flush cachelines (if required). This
421                  * optimizes for the case when the gpu will dirty the data
422                  * anyway again before the next pread happens. */
423                 if (obj->cache_level == I915_CACHE_NONE)
424                         needs_clflush = 1;
425                 if (i915_gem_obj_ggtt_bound(obj)) {
426                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
427                         if (ret)
428                                 return ret;
429                 }
430         }
431
432         ret = i915_gem_object_get_pages(obj);
433         if (ret)
434                 return ret;
435
436         i915_gem_object_pin_pages(obj);
437
438         offset = args->offset;
439
440         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441                          offset >> PAGE_SHIFT) {
442                 struct page *page = sg_page_iter_page(&sg_iter);
443
444                 if (remain <= 0)
445                         break;
446
447                 /* Operation in this page
448                  *
449                  * shmem_page_offset = offset within page in shmem file
450                  * page_length = bytes to copy for this page
451                  */
452                 shmem_page_offset = offset_in_page(offset);
453                 page_length = remain;
454                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455                         page_length = PAGE_SIZE - shmem_page_offset;
456
457                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458                         (page_to_phys(page) & (1 << 17)) != 0;
459
460                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461                                        user_data, page_do_bit17_swizzling,
462                                        needs_clflush);
463                 if (ret == 0)
464                         goto next_page;
465
466                 mutex_unlock(&dev->struct_mutex);
467
468                 if (likely(!i915_prefault_disable) && !prefaulted) {
469                         ret = fault_in_multipages_writeable(user_data, remain);
470                         /* Userspace is tricking us, but we've already clobbered
471                          * its pages with the prefault and promised to write the
472                          * data up to the first fault. Hence ignore any errors
473                          * and just continue. */
474                         (void)ret;
475                         prefaulted = 1;
476                 }
477
478                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479                                        user_data, page_do_bit17_swizzling,
480                                        needs_clflush);
481
482                 mutex_lock(&dev->struct_mutex);
483
484 next_page:
485                 mark_page_accessed(page);
486
487                 if (ret)
488                         goto out;
489
490                 remain -= page_length;
491                 user_data += page_length;
492                 offset += page_length;
493         }
494
495 out:
496         i915_gem_object_unpin_pages(obj);
497
498         return ret;
499 }
500
501 /**
502  * Reads data from the object referenced by handle.
503  *
504  * On error, the contents of *data are undefined.
505  */
506 int
507 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
508                      struct drm_file *file)
509 {
510         struct drm_i915_gem_pread *args = data;
511         struct drm_i915_gem_object *obj;
512         int ret = 0;
513
514         if (args->size == 0)
515                 return 0;
516
517         if (!access_ok(VERIFY_WRITE,
518                        to_user_ptr(args->data_ptr),
519                        args->size))
520                 return -EFAULT;
521
522         ret = i915_mutex_lock_interruptible(dev);
523         if (ret)
524                 return ret;
525
526         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
527         if (&obj->base == NULL) {
528                 ret = -ENOENT;
529                 goto unlock;
530         }
531
532         /* Bounds check source.  */
533         if (args->offset > obj->base.size ||
534             args->size > obj->base.size - args->offset) {
535                 ret = -EINVAL;
536                 goto out;
537         }
538
539         /* prime objects have no backing filp to GEM pread/pwrite
540          * pages from.
541          */
542         if (!obj->base.filp) {
543                 ret = -EINVAL;
544                 goto out;
545         }
546
547         trace_i915_gem_object_pread(obj, args->offset, args->size);
548
549         ret = i915_gem_shmem_pread(dev, obj, args, file);
550
551 out:
552         drm_gem_object_unreference(&obj->base);
553 unlock:
554         mutex_unlock(&dev->struct_mutex);
555         return ret;
556 }
557
558 /* This is the fast write path which cannot handle
559  * page faults in the source data
560  */
561
562 static inline int
563 fast_user_write(struct io_mapping *mapping,
564                 loff_t page_base, int page_offset,
565                 char __user *user_data,
566                 int length)
567 {
568         void __iomem *vaddr_atomic;
569         void *vaddr;
570         unsigned long unwritten;
571
572         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
573         /* We can use the cpu mem copy function because this is X86. */
574         vaddr = (void __force*)vaddr_atomic + page_offset;
575         unwritten = __copy_from_user_inatomic_nocache(vaddr,
576                                                       user_data, length);
577         io_mapping_unmap_atomic(vaddr_atomic);
578         return unwritten;
579 }
580
581 /**
582  * This is the fast pwrite path, where we copy the data directly from the
583  * user into the GTT, uncached.
584  */
585 static int
586 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587                          struct drm_i915_gem_object *obj,
588                          struct drm_i915_gem_pwrite *args,
589                          struct drm_file *file)
590 {
591         drm_i915_private_t *dev_priv = dev->dev_private;
592         ssize_t remain;
593         loff_t offset, page_base;
594         char __user *user_data;
595         int page_offset, page_length, ret;
596
597         ret = i915_gem_object_pin(obj, 0, true, true);
598         if (ret)
599                 goto out;
600
601         ret = i915_gem_object_set_to_gtt_domain(obj, true);
602         if (ret)
603                 goto out_unpin;
604
605         ret = i915_gem_object_put_fence(obj);
606         if (ret)
607                 goto out_unpin;
608
609         user_data = to_user_ptr(args->data_ptr);
610         remain = args->size;
611
612         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
613
614         while (remain > 0) {
615                 /* Operation in this page
616                  *
617                  * page_base = page offset within aperture
618                  * page_offset = offset within page
619                  * page_length = bytes to copy for this page
620                  */
621                 page_base = offset & PAGE_MASK;
622                 page_offset = offset_in_page(offset);
623                 page_length = remain;
624                 if ((page_offset + remain) > PAGE_SIZE)
625                         page_length = PAGE_SIZE - page_offset;
626
627                 /* If we get a fault while copying data, then (presumably) our
628                  * source page isn't available.  Return the error and we'll
629                  * retry in the slow path.
630                  */
631                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
632                                     page_offset, user_data, page_length)) {
633                         ret = -EFAULT;
634                         goto out_unpin;
635                 }
636
637                 remain -= page_length;
638                 user_data += page_length;
639                 offset += page_length;
640         }
641
642 out_unpin:
643         i915_gem_object_unpin(obj);
644 out:
645         return ret;
646 }
647
648 /* Per-page copy function for the shmem pwrite fastpath.
649  * Flushes invalid cachelines before writing to the target if
650  * needs_clflush_before is set and flushes out any written cachelines after
651  * writing if needs_clflush is set. */
652 static int
653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654                   char __user *user_data,
655                   bool page_do_bit17_swizzling,
656                   bool needs_clflush_before,
657                   bool needs_clflush_after)
658 {
659         char *vaddr;
660         int ret;
661
662         if (unlikely(page_do_bit17_swizzling))
663                 return -EINVAL;
664
665         vaddr = kmap_atomic(page);
666         if (needs_clflush_before)
667                 drm_clflush_virt_range(vaddr + shmem_page_offset,
668                                        page_length);
669         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670                                                 user_data,
671                                                 page_length);
672         if (needs_clflush_after)
673                 drm_clflush_virt_range(vaddr + shmem_page_offset,
674                                        page_length);
675         kunmap_atomic(vaddr);
676
677         return ret ? -EFAULT : 0;
678 }
679
680 /* Only difference to the fast-path function is that this can handle bit17
681  * and uses non-atomic copy and kmap functions. */
682 static int
683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684                   char __user *user_data,
685                   bool page_do_bit17_swizzling,
686                   bool needs_clflush_before,
687                   bool needs_clflush_after)
688 {
689         char *vaddr;
690         int ret;
691
692         vaddr = kmap(page);
693         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
694                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695                                              page_length,
696                                              page_do_bit17_swizzling);
697         if (page_do_bit17_swizzling)
698                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
699                                                 user_data,
700                                                 page_length);
701         else
702                 ret = __copy_from_user(vaddr + shmem_page_offset,
703                                        user_data,
704                                        page_length);
705         if (needs_clflush_after)
706                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707                                              page_length,
708                                              page_do_bit17_swizzling);
709         kunmap(page);
710
711         return ret ? -EFAULT : 0;
712 }
713
714 static int
715 i915_gem_shmem_pwrite(struct drm_device *dev,
716                       struct drm_i915_gem_object *obj,
717                       struct drm_i915_gem_pwrite *args,
718                       struct drm_file *file)
719 {
720         ssize_t remain;
721         loff_t offset;
722         char __user *user_data;
723         int shmem_page_offset, page_length, ret = 0;
724         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
725         int hit_slowpath = 0;
726         int needs_clflush_after = 0;
727         int needs_clflush_before = 0;
728         struct sg_page_iter sg_iter;
729
730         user_data = to_user_ptr(args->data_ptr);
731         remain = args->size;
732
733         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
734
735         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736                 /* If we're not in the cpu write domain, set ourself into the gtt
737                  * write domain and manually flush cachelines (if required). This
738                  * optimizes for the case when the gpu will use the data
739                  * right away and we therefore have to clflush anyway. */
740                 if (obj->cache_level == I915_CACHE_NONE)
741                         needs_clflush_after = 1;
742                 if (i915_gem_obj_ggtt_bound(obj)) {
743                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
744                         if (ret)
745                                 return ret;
746                 }
747         }
748         /* Same trick applies for invalidate partially written cachelines before
749          * writing.  */
750         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751             && obj->cache_level == I915_CACHE_NONE)
752                 needs_clflush_before = 1;
753
754         ret = i915_gem_object_get_pages(obj);
755         if (ret)
756                 return ret;
757
758         i915_gem_object_pin_pages(obj);
759
760         offset = args->offset;
761         obj->dirty = 1;
762
763         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764                          offset >> PAGE_SHIFT) {
765                 struct page *page = sg_page_iter_page(&sg_iter);
766                 int partial_cacheline_write;
767
768                 if (remain <= 0)
769                         break;
770
771                 /* Operation in this page
772                  *
773                  * shmem_page_offset = offset within page in shmem file
774                  * page_length = bytes to copy for this page
775                  */
776                 shmem_page_offset = offset_in_page(offset);
777
778                 page_length = remain;
779                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780                         page_length = PAGE_SIZE - shmem_page_offset;
781
782                 /* If we don't overwrite a cacheline completely we need to be
783                  * careful to have up-to-date data by first clflushing. Don't
784                  * overcomplicate things and flush the entire patch. */
785                 partial_cacheline_write = needs_clflush_before &&
786                         ((shmem_page_offset | page_length)
787                                 & (boot_cpu_data.x86_clflush_size - 1));
788
789                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790                         (page_to_phys(page) & (1 << 17)) != 0;
791
792                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793                                         user_data, page_do_bit17_swizzling,
794                                         partial_cacheline_write,
795                                         needs_clflush_after);
796                 if (ret == 0)
797                         goto next_page;
798
799                 hit_slowpath = 1;
800                 mutex_unlock(&dev->struct_mutex);
801                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802                                         user_data, page_do_bit17_swizzling,
803                                         partial_cacheline_write,
804                                         needs_clflush_after);
805
806                 mutex_lock(&dev->struct_mutex);
807
808 next_page:
809                 set_page_dirty(page);
810                 mark_page_accessed(page);
811
812                 if (ret)
813                         goto out;
814
815                 remain -= page_length;
816                 user_data += page_length;
817                 offset += page_length;
818         }
819
820 out:
821         i915_gem_object_unpin_pages(obj);
822
823         if (hit_slowpath) {
824                 /*
825                  * Fixup: Flush cpu caches in case we didn't flush the dirty
826                  * cachelines in-line while writing and the object moved
827                  * out of the cpu write domain while we've dropped the lock.
828                  */
829                 if (!needs_clflush_after &&
830                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
831                         i915_gem_clflush_object(obj);
832                         i915_gem_chipset_flush(dev);
833                 }
834         }
835
836         if (needs_clflush_after)
837                 i915_gem_chipset_flush(dev);
838
839         return ret;
840 }
841
842 /**
843  * Writes data to the object referenced by handle.
844  *
845  * On error, the contents of the buffer that were to be modified are undefined.
846  */
847 int
848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
849                       struct drm_file *file)
850 {
851         struct drm_i915_gem_pwrite *args = data;
852         struct drm_i915_gem_object *obj;
853         int ret;
854
855         if (args->size == 0)
856                 return 0;
857
858         if (!access_ok(VERIFY_READ,
859                        to_user_ptr(args->data_ptr),
860                        args->size))
861                 return -EFAULT;
862
863         if (likely(!i915_prefault_disable)) {
864                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
865                                                    args->size);
866                 if (ret)
867                         return -EFAULT;
868         }
869
870         ret = i915_mutex_lock_interruptible(dev);
871         if (ret)
872                 return ret;
873
874         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
875         if (&obj->base == NULL) {
876                 ret = -ENOENT;
877                 goto unlock;
878         }
879
880         /* Bounds check destination. */
881         if (args->offset > obj->base.size ||
882             args->size > obj->base.size - args->offset) {
883                 ret = -EINVAL;
884                 goto out;
885         }
886
887         /* prime objects have no backing filp to GEM pread/pwrite
888          * pages from.
889          */
890         if (!obj->base.filp) {
891                 ret = -EINVAL;
892                 goto out;
893         }
894
895         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
896
897         ret = -EFAULT;
898         /* We can only do the GTT pwrite on untiled buffers, as otherwise
899          * it would end up going through the fenced access, and we'll get
900          * different detiling behavior between reading and writing.
901          * pread/pwrite currently are reading and writing from the CPU
902          * perspective, requiring manual detiling by the client.
903          */
904         if (obj->phys_obj) {
905                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
906                 goto out;
907         }
908
909         if (obj->cache_level == I915_CACHE_NONE &&
910             obj->tiling_mode == I915_TILING_NONE &&
911             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
912                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
913                 /* Note that the gtt paths might fail with non-page-backed user
914                  * pointers (e.g. gtt mappings when moving data between
915                  * textures). Fallback to the shmem path in that case. */
916         }
917
918         if (ret == -EFAULT || ret == -ENOSPC)
919                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
920
921 out:
922         drm_gem_object_unreference(&obj->base);
923 unlock:
924         mutex_unlock(&dev->struct_mutex);
925         return ret;
926 }
927
928 int
929 i915_gem_check_wedge(struct i915_gpu_error *error,
930                      bool interruptible)
931 {
932         if (i915_reset_in_progress(error)) {
933                 /* Non-interruptible callers can't handle -EAGAIN, hence return
934                  * -EIO unconditionally for these. */
935                 if (!interruptible)
936                         return -EIO;
937
938                 /* Recovery complete, but the reset failed ... */
939                 if (i915_terminally_wedged(error))
940                         return -EIO;
941
942                 return -EAGAIN;
943         }
944
945         return 0;
946 }
947
948 /*
949  * Compare seqno against outstanding lazy request. Emit a request if they are
950  * equal.
951  */
952 static int
953 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
954 {
955         int ret;
956
957         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
958
959         ret = 0;
960         if (seqno == ring->outstanding_lazy_request)
961                 ret = i915_add_request(ring, NULL);
962
963         return ret;
964 }
965
966 /**
967  * __wait_seqno - wait until execution of seqno has finished
968  * @ring: the ring expected to report seqno
969  * @seqno: duh!
970  * @reset_counter: reset sequence associated with the given seqno
971  * @interruptible: do an interruptible wait (normally yes)
972  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
973  *
974  * Note: It is of utmost importance that the passed in seqno and reset_counter
975  * values have been read by the caller in an smp safe manner. Where read-side
976  * locks are involved, it is sufficient to read the reset_counter before
977  * unlocking the lock that protects the seqno. For lockless tricks, the
978  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
979  * inserted.
980  *
981  * Returns 0 if the seqno was found within the alloted time. Else returns the
982  * errno with remaining time filled in timeout argument.
983  */
984 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
985                         unsigned reset_counter,
986                         bool interruptible, struct timespec *timeout)
987 {
988         drm_i915_private_t *dev_priv = ring->dev->dev_private;
989         struct timespec before, now, wait_time={1,0};
990         unsigned long timeout_jiffies;
991         long end;
992         bool wait_forever = true;
993         int ret;
994
995         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
996                 return 0;
997
998         trace_i915_gem_request_wait_begin(ring, seqno);
999
1000         if (timeout != NULL) {
1001                 wait_time = *timeout;
1002                 wait_forever = false;
1003         }
1004
1005         timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1006
1007         if (WARN_ON(!ring->irq_get(ring)))
1008                 return -ENODEV;
1009
1010         /* Record current time in case interrupted by signal, or wedged * */
1011         getrawmonotonic(&before);
1012
1013 #define EXIT_COND \
1014         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1015          i915_reset_in_progress(&dev_priv->gpu_error) || \
1016          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1017         do {
1018                 if (interruptible)
1019                         end = wait_event_interruptible_timeout(ring->irq_queue,
1020                                                                EXIT_COND,
1021                                                                timeout_jiffies);
1022                 else
1023                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1024                                                  timeout_jiffies);
1025
1026                 /* We need to check whether any gpu reset happened in between
1027                  * the caller grabbing the seqno and now ... */
1028                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1029                         end = -EAGAIN;
1030
1031                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1032                  * gone. */
1033                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1034                 if (ret)
1035                         end = ret;
1036         } while (end == 0 && wait_forever);
1037
1038         getrawmonotonic(&now);
1039
1040         ring->irq_put(ring);
1041         trace_i915_gem_request_wait_end(ring, seqno);
1042 #undef EXIT_COND
1043
1044         if (timeout) {
1045                 struct timespec sleep_time = timespec_sub(now, before);
1046                 *timeout = timespec_sub(*timeout, sleep_time);
1047                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1048                         set_normalized_timespec(timeout, 0, 0);
1049         }
1050
1051         switch (end) {
1052         case -EIO:
1053         case -EAGAIN: /* Wedged */
1054         case -ERESTARTSYS: /* Signal */
1055                 return (int)end;
1056         case 0: /* Timeout */
1057                 return -ETIME;
1058         default: /* Completed */
1059                 WARN_ON(end < 0); /* We're not aware of other errors */
1060                 return 0;
1061         }
1062 }
1063
1064 /**
1065  * Waits for a sequence number to be signaled, and cleans up the
1066  * request and object lists appropriately for that event.
1067  */
1068 int
1069 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1070 {
1071         struct drm_device *dev = ring->dev;
1072         struct drm_i915_private *dev_priv = dev->dev_private;
1073         bool interruptible = dev_priv->mm.interruptible;
1074         int ret;
1075
1076         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1077         BUG_ON(seqno == 0);
1078
1079         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1080         if (ret)
1081                 return ret;
1082
1083         ret = i915_gem_check_olr(ring, seqno);
1084         if (ret)
1085                 return ret;
1086
1087         return __wait_seqno(ring, seqno,
1088                             atomic_read(&dev_priv->gpu_error.reset_counter),
1089                             interruptible, NULL);
1090 }
1091
1092 static int
1093 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1094                                      struct intel_ring_buffer *ring)
1095 {
1096         i915_gem_retire_requests_ring(ring);
1097
1098         /* Manually manage the write flush as we may have not yet
1099          * retired the buffer.
1100          *
1101          * Note that the last_write_seqno is always the earlier of
1102          * the two (read/write) seqno, so if we haved successfully waited,
1103          * we know we have passed the last write.
1104          */
1105         obj->last_write_seqno = 0;
1106         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1107
1108         return 0;
1109 }
1110
1111 /**
1112  * Ensures that all rendering to the object has completed and the object is
1113  * safe to unbind from the GTT or access from the CPU.
1114  */
1115 static __must_check int
1116 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1117                                bool readonly)
1118 {
1119         struct intel_ring_buffer *ring = obj->ring;
1120         u32 seqno;
1121         int ret;
1122
1123         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1124         if (seqno == 0)
1125                 return 0;
1126
1127         ret = i915_wait_seqno(ring, seqno);
1128         if (ret)
1129                 return ret;
1130
1131         return i915_gem_object_wait_rendering__tail(obj, ring);
1132 }
1133
1134 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1135  * as the object state may change during this call.
1136  */
1137 static __must_check int
1138 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1139                                             bool readonly)
1140 {
1141         struct drm_device *dev = obj->base.dev;
1142         struct drm_i915_private *dev_priv = dev->dev_private;
1143         struct intel_ring_buffer *ring = obj->ring;
1144         unsigned reset_counter;
1145         u32 seqno;
1146         int ret;
1147
1148         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1149         BUG_ON(!dev_priv->mm.interruptible);
1150
1151         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1152         if (seqno == 0)
1153                 return 0;
1154
1155         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1156         if (ret)
1157                 return ret;
1158
1159         ret = i915_gem_check_olr(ring, seqno);
1160         if (ret)
1161                 return ret;
1162
1163         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1164         mutex_unlock(&dev->struct_mutex);
1165         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1166         mutex_lock(&dev->struct_mutex);
1167         if (ret)
1168                 return ret;
1169
1170         return i915_gem_object_wait_rendering__tail(obj, ring);
1171 }
1172
1173 /**
1174  * Called when user space prepares to use an object with the CPU, either
1175  * through the mmap ioctl's mapping or a GTT mapping.
1176  */
1177 int
1178 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1179                           struct drm_file *file)
1180 {
1181         struct drm_i915_gem_set_domain *args = data;
1182         struct drm_i915_gem_object *obj;
1183         uint32_t read_domains = args->read_domains;
1184         uint32_t write_domain = args->write_domain;
1185         int ret;
1186
1187         /* Only handle setting domains to types used by the CPU. */
1188         if (write_domain & I915_GEM_GPU_DOMAINS)
1189                 return -EINVAL;
1190
1191         if (read_domains & I915_GEM_GPU_DOMAINS)
1192                 return -EINVAL;
1193
1194         /* Having something in the write domain implies it's in the read
1195          * domain, and only that read domain.  Enforce that in the request.
1196          */
1197         if (write_domain != 0 && read_domains != write_domain)
1198                 return -EINVAL;
1199
1200         ret = i915_mutex_lock_interruptible(dev);
1201         if (ret)
1202                 return ret;
1203
1204         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1205         if (&obj->base == NULL) {
1206                 ret = -ENOENT;
1207                 goto unlock;
1208         }
1209
1210         /* Try to flush the object off the GPU without holding the lock.
1211          * We will repeat the flush holding the lock in the normal manner
1212          * to catch cases where we are gazumped.
1213          */
1214         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1215         if (ret)
1216                 goto unref;
1217
1218         if (read_domains & I915_GEM_DOMAIN_GTT) {
1219                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1220
1221                 /* Silently promote "you're not bound, there was nothing to do"
1222                  * to success, since the client was just asking us to
1223                  * make sure everything was done.
1224                  */
1225                 if (ret == -EINVAL)
1226                         ret = 0;
1227         } else {
1228                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1229         }
1230
1231 unref:
1232         drm_gem_object_unreference(&obj->base);
1233 unlock:
1234         mutex_unlock(&dev->struct_mutex);
1235         return ret;
1236 }
1237
1238 /**
1239  * Called when user space has done writes to this buffer
1240  */
1241 int
1242 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1243                          struct drm_file *file)
1244 {
1245         struct drm_i915_gem_sw_finish *args = data;
1246         struct drm_i915_gem_object *obj;
1247         int ret = 0;
1248
1249         ret = i915_mutex_lock_interruptible(dev);
1250         if (ret)
1251                 return ret;
1252
1253         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254         if (&obj->base == NULL) {
1255                 ret = -ENOENT;
1256                 goto unlock;
1257         }
1258
1259         /* Pinned buffers may be scanout, so flush the cache */
1260         if (obj->pin_count)
1261                 i915_gem_object_flush_cpu_write_domain(obj);
1262
1263         drm_gem_object_unreference(&obj->base);
1264 unlock:
1265         mutex_unlock(&dev->struct_mutex);
1266         return ret;
1267 }
1268
1269 /**
1270  * Maps the contents of an object, returning the address it is mapped
1271  * into.
1272  *
1273  * While the mapping holds a reference on the contents of the object, it doesn't
1274  * imply a ref on the object itself.
1275  */
1276 int
1277 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1278                     struct drm_file *file)
1279 {
1280         struct drm_i915_gem_mmap *args = data;
1281         struct drm_gem_object *obj;
1282         unsigned long addr;
1283
1284         obj = drm_gem_object_lookup(dev, file, args->handle);
1285         if (obj == NULL)
1286                 return -ENOENT;
1287
1288         /* prime objects have no backing filp to GEM mmap
1289          * pages from.
1290          */
1291         if (!obj->filp) {
1292                 drm_gem_object_unreference_unlocked(obj);
1293                 return -EINVAL;
1294         }
1295
1296         addr = vm_mmap(obj->filp, 0, args->size,
1297                        PROT_READ | PROT_WRITE, MAP_SHARED,
1298                        args->offset);
1299         drm_gem_object_unreference_unlocked(obj);
1300         if (IS_ERR((void *)addr))
1301                 return addr;
1302
1303         args->addr_ptr = (uint64_t) addr;
1304
1305         return 0;
1306 }
1307
1308 /**
1309  * i915_gem_fault - fault a page into the GTT
1310  * vma: VMA in question
1311  * vmf: fault info
1312  *
1313  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1314  * from userspace.  The fault handler takes care of binding the object to
1315  * the GTT (if needed), allocating and programming a fence register (again,
1316  * only if needed based on whether the old reg is still valid or the object
1317  * is tiled) and inserting a new PTE into the faulting process.
1318  *
1319  * Note that the faulting process may involve evicting existing objects
1320  * from the GTT and/or fence registers to make room.  So performance may
1321  * suffer if the GTT working set is large or there are few fence registers
1322  * left.
1323  */
1324 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1325 {
1326         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1327         struct drm_device *dev = obj->base.dev;
1328         drm_i915_private_t *dev_priv = dev->dev_private;
1329         pgoff_t page_offset;
1330         unsigned long pfn;
1331         int ret = 0;
1332         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1333
1334         /* We don't use vmf->pgoff since that has the fake offset */
1335         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1336                 PAGE_SHIFT;
1337
1338         ret = i915_mutex_lock_interruptible(dev);
1339         if (ret)
1340                 goto out;
1341
1342         trace_i915_gem_object_fault(obj, page_offset, true, write);
1343
1344         /* Access to snoopable pages through the GTT is incoherent. */
1345         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1346                 ret = -EINVAL;
1347                 goto unlock;
1348         }
1349
1350         /* Now bind it into the GTT if needed */
1351         ret = i915_gem_object_pin(obj, 0, true, false);
1352         if (ret)
1353                 goto unlock;
1354
1355         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1356         if (ret)
1357                 goto unpin;
1358
1359         ret = i915_gem_object_get_fence(obj);
1360         if (ret)
1361                 goto unpin;
1362
1363         obj->fault_mappable = true;
1364
1365         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1366         pfn >>= PAGE_SHIFT;
1367         pfn += page_offset;
1368
1369         /* Finally, remap it using the new GTT offset */
1370         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1371 unpin:
1372         i915_gem_object_unpin(obj);
1373 unlock:
1374         mutex_unlock(&dev->struct_mutex);
1375 out:
1376         switch (ret) {
1377         case -EIO:
1378                 /* If this -EIO is due to a gpu hang, give the reset code a
1379                  * chance to clean up the mess. Otherwise return the proper
1380                  * SIGBUS. */
1381                 if (i915_terminally_wedged(&dev_priv->gpu_error))
1382                         return VM_FAULT_SIGBUS;
1383         case -EAGAIN:
1384                 /* Give the error handler a chance to run and move the
1385                  * objects off the GPU active list. Next time we service the
1386                  * fault, we should be able to transition the page into the
1387                  * GTT without touching the GPU (and so avoid further
1388                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1389                  * with coherency, just lost writes.
1390                  */
1391                 set_need_resched();
1392         case 0:
1393         case -ERESTARTSYS:
1394         case -EINTR:
1395         case -EBUSY:
1396                 /*
1397                  * EBUSY is ok: this just means that another thread
1398                  * already did the job.
1399                  */
1400                 return VM_FAULT_NOPAGE;
1401         case -ENOMEM:
1402                 return VM_FAULT_OOM;
1403         case -ENOSPC:
1404                 return VM_FAULT_SIGBUS;
1405         default:
1406                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1407                 return VM_FAULT_SIGBUS;
1408         }
1409 }
1410
1411 /**
1412  * i915_gem_release_mmap - remove physical page mappings
1413  * @obj: obj in question
1414  *
1415  * Preserve the reservation of the mmapping with the DRM core code, but
1416  * relinquish ownership of the pages back to the system.
1417  *
1418  * It is vital that we remove the page mapping if we have mapped a tiled
1419  * object through the GTT and then lose the fence register due to
1420  * resource pressure. Similarly if the object has been moved out of the
1421  * aperture, than pages mapped into userspace must be revoked. Removing the
1422  * mapping will then trigger a page fault on the next user access, allowing
1423  * fixup by i915_gem_fault().
1424  */
1425 void
1426 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1427 {
1428         if (!obj->fault_mappable)
1429                 return;
1430
1431         if (obj->base.dev->dev_mapping)
1432                 unmap_mapping_range(obj->base.dev->dev_mapping,
1433                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1434                                     obj->base.size, 1);
1435
1436         obj->fault_mappable = false;
1437 }
1438
1439 uint32_t
1440 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1441 {
1442         uint32_t gtt_size;
1443
1444         if (INTEL_INFO(dev)->gen >= 4 ||
1445             tiling_mode == I915_TILING_NONE)
1446                 return size;
1447
1448         /* Previous chips need a power-of-two fence region when tiling */
1449         if (INTEL_INFO(dev)->gen == 3)
1450                 gtt_size = 1024*1024;
1451         else
1452                 gtt_size = 512*1024;
1453
1454         while (gtt_size < size)
1455                 gtt_size <<= 1;
1456
1457         return gtt_size;
1458 }
1459
1460 /**
1461  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1462  * @obj: object to check
1463  *
1464  * Return the required GTT alignment for an object, taking into account
1465  * potential fence register mapping.
1466  */
1467 uint32_t
1468 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1469                            int tiling_mode, bool fenced)
1470 {
1471         /*
1472          * Minimum alignment is 4k (GTT page size), but might be greater
1473          * if a fence register is needed for the object.
1474          */
1475         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1476             tiling_mode == I915_TILING_NONE)
1477                 return 4096;
1478
1479         /*
1480          * Previous chips need to be aligned to the size of the smallest
1481          * fence register that can contain the object.
1482          */
1483         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1484 }
1485
1486 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1487 {
1488         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1489         int ret;
1490
1491         if (obj->base.map_list.map)
1492                 return 0;
1493
1494         dev_priv->mm.shrinker_no_lock_stealing = true;
1495
1496         ret = drm_gem_create_mmap_offset(&obj->base);
1497         if (ret != -ENOSPC)
1498                 goto out;
1499
1500         /* Badly fragmented mmap space? The only way we can recover
1501          * space is by destroying unwanted objects. We can't randomly release
1502          * mmap_offsets as userspace expects them to be persistent for the
1503          * lifetime of the objects. The closest we can is to release the
1504          * offsets on purgeable objects by truncating it and marking it purged,
1505          * which prevents userspace from ever using that object again.
1506          */
1507         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1508         ret = drm_gem_create_mmap_offset(&obj->base);
1509         if (ret != -ENOSPC)
1510                 goto out;
1511
1512         i915_gem_shrink_all(dev_priv);
1513         ret = drm_gem_create_mmap_offset(&obj->base);
1514 out:
1515         dev_priv->mm.shrinker_no_lock_stealing = false;
1516
1517         return ret;
1518 }
1519
1520 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1521 {
1522         if (!obj->base.map_list.map)
1523                 return;
1524
1525         drm_gem_free_mmap_offset(&obj->base);
1526 }
1527
1528 int
1529 i915_gem_mmap_gtt(struct drm_file *file,
1530                   struct drm_device *dev,
1531                   uint32_t handle,
1532                   uint64_t *offset)
1533 {
1534         struct drm_i915_private *dev_priv = dev->dev_private;
1535         struct drm_i915_gem_object *obj;
1536         int ret;
1537
1538         ret = i915_mutex_lock_interruptible(dev);
1539         if (ret)
1540                 return ret;
1541
1542         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1543         if (&obj->base == NULL) {
1544                 ret = -ENOENT;
1545                 goto unlock;
1546         }
1547
1548         if (obj->base.size > dev_priv->gtt.mappable_end) {
1549                 ret = -E2BIG;
1550                 goto out;
1551         }
1552
1553         if (obj->madv != I915_MADV_WILLNEED) {
1554                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1555                 ret = -EINVAL;
1556                 goto out;
1557         }
1558
1559         ret = i915_gem_object_create_mmap_offset(obj);
1560         if (ret)
1561                 goto out;
1562
1563         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1564
1565 out:
1566         drm_gem_object_unreference(&obj->base);
1567 unlock:
1568         mutex_unlock(&dev->struct_mutex);
1569         return ret;
1570 }
1571
1572 /**
1573  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1574  * @dev: DRM device
1575  * @data: GTT mapping ioctl data
1576  * @file: GEM object info
1577  *
1578  * Simply returns the fake offset to userspace so it can mmap it.
1579  * The mmap call will end up in drm_gem_mmap(), which will set things
1580  * up so we can get faults in the handler above.
1581  *
1582  * The fault handler will take care of binding the object into the GTT
1583  * (since it may have been evicted to make room for something), allocating
1584  * a fence register, and mapping the appropriate aperture address into
1585  * userspace.
1586  */
1587 int
1588 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1589                         struct drm_file *file)
1590 {
1591         struct drm_i915_gem_mmap_gtt *args = data;
1592
1593         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1594 }
1595
1596 /* Immediately discard the backing storage */
1597 static void
1598 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1599 {
1600         struct inode *inode;
1601
1602         i915_gem_object_free_mmap_offset(obj);
1603
1604         if (obj->base.filp == NULL)
1605                 return;
1606
1607         /* Our goal here is to return as much of the memory as
1608          * is possible back to the system as we are called from OOM.
1609          * To do this we must instruct the shmfs to drop all of its
1610          * backing pages, *now*.
1611          */
1612         inode = file_inode(obj->base.filp);
1613         shmem_truncate_range(inode, 0, (loff_t)-1);
1614
1615         obj->madv = __I915_MADV_PURGED;
1616 }
1617
1618 static inline int
1619 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1620 {
1621         return obj->madv == I915_MADV_DONTNEED;
1622 }
1623
1624 static void
1625 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1626 {
1627         struct sg_page_iter sg_iter;
1628         int ret;
1629
1630         BUG_ON(obj->madv == __I915_MADV_PURGED);
1631
1632         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1633         if (ret) {
1634                 /* In the event of a disaster, abandon all caches and
1635                  * hope for the best.
1636                  */
1637                 WARN_ON(ret != -EIO);
1638                 i915_gem_clflush_object(obj);
1639                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1640         }
1641
1642         if (i915_gem_object_needs_bit17_swizzle(obj))
1643                 i915_gem_object_save_bit_17_swizzle(obj);
1644
1645         if (obj->madv == I915_MADV_DONTNEED)
1646                 obj->dirty = 0;
1647
1648         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1649                 struct page *page = sg_page_iter_page(&sg_iter);
1650
1651                 if (obj->dirty)
1652                         set_page_dirty(page);
1653
1654                 if (obj->madv == I915_MADV_WILLNEED)
1655                         mark_page_accessed(page);
1656
1657                 page_cache_release(page);
1658         }
1659         obj->dirty = 0;
1660
1661         sg_free_table(obj->pages);
1662         kfree(obj->pages);
1663 }
1664
1665 int
1666 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1667 {
1668         const struct drm_i915_gem_object_ops *ops = obj->ops;
1669
1670         if (obj->pages == NULL)
1671                 return 0;
1672
1673         BUG_ON(i915_gem_obj_ggtt_bound(obj));
1674
1675         if (obj->pages_pin_count)
1676                 return -EBUSY;
1677
1678         /* ->put_pages might need to allocate memory for the bit17 swizzle
1679          * array, hence protect them from being reaped by removing them from gtt
1680          * lists early. */
1681         list_del(&obj->global_list);
1682
1683         ops->put_pages(obj);
1684         obj->pages = NULL;
1685
1686         if (i915_gem_object_is_purgeable(obj))
1687                 i915_gem_object_truncate(obj);
1688
1689         return 0;
1690 }
1691
1692 static long
1693 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1694                   bool purgeable_only)
1695 {
1696         struct drm_i915_gem_object *obj, *next;
1697         struct i915_address_space *vm = &dev_priv->gtt.base;
1698         long count = 0;
1699
1700         list_for_each_entry_safe(obj, next,
1701                                  &dev_priv->mm.unbound_list,
1702                                  global_list) {
1703                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1704                     i915_gem_object_put_pages(obj) == 0) {
1705                         count += obj->base.size >> PAGE_SHIFT;
1706                         if (count >= target)
1707                                 return count;
1708                 }
1709         }
1710
1711         list_for_each_entry_safe(obj, next, &vm->inactive_list, mm_list) {
1712                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1713                     i915_gem_object_unbind(obj) == 0 &&
1714                     i915_gem_object_put_pages(obj) == 0) {
1715                         count += obj->base.size >> PAGE_SHIFT;
1716                         if (count >= target)
1717                                 return count;
1718                 }
1719         }
1720
1721         return count;
1722 }
1723
1724 static long
1725 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1726 {
1727         return __i915_gem_shrink(dev_priv, target, true);
1728 }
1729
1730 static void
1731 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1732 {
1733         struct drm_i915_gem_object *obj, *next;
1734
1735         i915_gem_evict_everything(dev_priv->dev);
1736
1737         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1738                                  global_list)
1739                 i915_gem_object_put_pages(obj);
1740 }
1741
1742 static int
1743 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1744 {
1745         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1746         int page_count, i;
1747         struct address_space *mapping;
1748         struct sg_table *st;
1749         struct scatterlist *sg;
1750         struct sg_page_iter sg_iter;
1751         struct page *page;
1752         unsigned long last_pfn = 0;     /* suppress gcc warning */
1753         gfp_t gfp;
1754
1755         /* Assert that the object is not currently in any GPU domain. As it
1756          * wasn't in the GTT, there shouldn't be any way it could have been in
1757          * a GPU cache
1758          */
1759         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1760         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1761
1762         st = kmalloc(sizeof(*st), GFP_KERNEL);
1763         if (st == NULL)
1764                 return -ENOMEM;
1765
1766         page_count = obj->base.size / PAGE_SIZE;
1767         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1768                 sg_free_table(st);
1769                 kfree(st);
1770                 return -ENOMEM;
1771         }
1772
1773         /* Get the list of pages out of our struct file.  They'll be pinned
1774          * at this point until we release them.
1775          *
1776          * Fail silently without starting the shrinker
1777          */
1778         mapping = file_inode(obj->base.filp)->i_mapping;
1779         gfp = mapping_gfp_mask(mapping);
1780         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1781         gfp &= ~(__GFP_IO | __GFP_WAIT);
1782         sg = st->sgl;
1783         st->nents = 0;
1784         for (i = 0; i < page_count; i++) {
1785                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1786                 if (IS_ERR(page)) {
1787                         i915_gem_purge(dev_priv, page_count);
1788                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1789                 }
1790                 if (IS_ERR(page)) {
1791                         /* We've tried hard to allocate the memory by reaping
1792                          * our own buffer, now let the real VM do its job and
1793                          * go down in flames if truly OOM.
1794                          */
1795                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1796                         gfp |= __GFP_IO | __GFP_WAIT;
1797
1798                         i915_gem_shrink_all(dev_priv);
1799                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1800                         if (IS_ERR(page))
1801                                 goto err_pages;
1802
1803                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1804                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1805                 }
1806 #ifdef CONFIG_SWIOTLB
1807                 if (swiotlb_nr_tbl()) {
1808                         st->nents++;
1809                         sg_set_page(sg, page, PAGE_SIZE, 0);
1810                         sg = sg_next(sg);
1811                         continue;
1812                 }
1813 #endif
1814                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1815                         if (i)
1816                                 sg = sg_next(sg);
1817                         st->nents++;
1818                         sg_set_page(sg, page, PAGE_SIZE, 0);
1819                 } else {
1820                         sg->length += PAGE_SIZE;
1821                 }
1822                 last_pfn = page_to_pfn(page);
1823         }
1824 #ifdef CONFIG_SWIOTLB
1825         if (!swiotlb_nr_tbl())
1826 #endif
1827                 sg_mark_end(sg);
1828         obj->pages = st;
1829
1830         if (i915_gem_object_needs_bit17_swizzle(obj))
1831                 i915_gem_object_do_bit_17_swizzle(obj);
1832
1833         return 0;
1834
1835 err_pages:
1836         sg_mark_end(sg);
1837         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1838                 page_cache_release(sg_page_iter_page(&sg_iter));
1839         sg_free_table(st);
1840         kfree(st);
1841         return PTR_ERR(page);
1842 }
1843
1844 /* Ensure that the associated pages are gathered from the backing storage
1845  * and pinned into our object. i915_gem_object_get_pages() may be called
1846  * multiple times before they are released by a single call to
1847  * i915_gem_object_put_pages() - once the pages are no longer referenced
1848  * either as a result of memory pressure (reaping pages under the shrinker)
1849  * or as the object is itself released.
1850  */
1851 int
1852 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1853 {
1854         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1855         const struct drm_i915_gem_object_ops *ops = obj->ops;
1856         int ret;
1857
1858         if (obj->pages)
1859                 return 0;
1860
1861         if (obj->madv != I915_MADV_WILLNEED) {
1862                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1863                 return -EINVAL;
1864         }
1865
1866         BUG_ON(obj->pages_pin_count);
1867
1868         ret = ops->get_pages(obj);
1869         if (ret)
1870                 return ret;
1871
1872         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1873         return 0;
1874 }
1875
1876 void
1877 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1878                                struct intel_ring_buffer *ring)
1879 {
1880         struct drm_device *dev = obj->base.dev;
1881         struct drm_i915_private *dev_priv = dev->dev_private;
1882         struct i915_address_space *vm = &dev_priv->gtt.base;
1883         u32 seqno = intel_ring_get_seqno(ring);
1884
1885         BUG_ON(ring == NULL);
1886         obj->ring = ring;
1887
1888         /* Add a reference if we're newly entering the active list. */
1889         if (!obj->active) {
1890                 drm_gem_object_reference(&obj->base);
1891                 obj->active = 1;
1892         }
1893
1894         /* Move from whatever list we were on to the tail of execution. */
1895         list_move_tail(&obj->mm_list, &vm->active_list);
1896         list_move_tail(&obj->ring_list, &ring->active_list);
1897
1898         obj->last_read_seqno = seqno;
1899
1900         if (obj->fenced_gpu_access) {
1901                 obj->last_fenced_seqno = seqno;
1902
1903                 /* Bump MRU to take account of the delayed flush */
1904                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1905                         struct drm_i915_fence_reg *reg;
1906
1907                         reg = &dev_priv->fence_regs[obj->fence_reg];
1908                         list_move_tail(&reg->lru_list,
1909                                        &dev_priv->mm.fence_list);
1910                 }
1911         }
1912 }
1913
1914 static void
1915 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1916 {
1917         struct drm_device *dev = obj->base.dev;
1918         struct drm_i915_private *dev_priv = dev->dev_private;
1919         struct i915_address_space *vm = &dev_priv->gtt.base;
1920
1921         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1922         BUG_ON(!obj->active);
1923
1924         list_move_tail(&obj->mm_list, &vm->inactive_list);
1925
1926         list_del_init(&obj->ring_list);
1927         obj->ring = NULL;
1928
1929         obj->last_read_seqno = 0;
1930         obj->last_write_seqno = 0;
1931         obj->base.write_domain = 0;
1932
1933         obj->last_fenced_seqno = 0;
1934         obj->fenced_gpu_access = false;
1935
1936         obj->active = 0;
1937         drm_gem_object_unreference(&obj->base);
1938
1939         WARN_ON(i915_verify_lists(dev));
1940 }
1941
1942 static int
1943 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1944 {
1945         struct drm_i915_private *dev_priv = dev->dev_private;
1946         struct intel_ring_buffer *ring;
1947         int ret, i, j;
1948
1949         /* Carefully retire all requests without writing to the rings */
1950         for_each_ring(ring, dev_priv, i) {
1951                 ret = intel_ring_idle(ring);
1952                 if (ret)
1953                         return ret;
1954         }
1955         i915_gem_retire_requests(dev);
1956
1957         /* Finally reset hw state */
1958         for_each_ring(ring, dev_priv, i) {
1959                 intel_ring_init_seqno(ring, seqno);
1960
1961                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1962                         ring->sync_seqno[j] = 0;
1963         }
1964
1965         return 0;
1966 }
1967
1968 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1969 {
1970         struct drm_i915_private *dev_priv = dev->dev_private;
1971         int ret;
1972
1973         if (seqno == 0)
1974                 return -EINVAL;
1975
1976         /* HWS page needs to be set less than what we
1977          * will inject to ring
1978          */
1979         ret = i915_gem_init_seqno(dev, seqno - 1);
1980         if (ret)
1981                 return ret;
1982
1983         /* Carefully set the last_seqno value so that wrap
1984          * detection still works
1985          */
1986         dev_priv->next_seqno = seqno;
1987         dev_priv->last_seqno = seqno - 1;
1988         if (dev_priv->last_seqno == 0)
1989                 dev_priv->last_seqno--;
1990
1991         return 0;
1992 }
1993
1994 int
1995 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1996 {
1997         struct drm_i915_private *dev_priv = dev->dev_private;
1998
1999         /* reserve 0 for non-seqno */
2000         if (dev_priv->next_seqno == 0) {
2001                 int ret = i915_gem_init_seqno(dev, 0);
2002                 if (ret)
2003                         return ret;
2004
2005                 dev_priv->next_seqno = 1;
2006         }
2007
2008         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2009         return 0;
2010 }
2011
2012 int __i915_add_request(struct intel_ring_buffer *ring,
2013                        struct drm_file *file,
2014                        struct drm_i915_gem_object *obj,
2015                        u32 *out_seqno)
2016 {
2017         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2018         struct drm_i915_gem_request *request;
2019         u32 request_ring_position, request_start;
2020         int was_empty;
2021         int ret;
2022
2023         request_start = intel_ring_get_tail(ring);
2024         /*
2025          * Emit any outstanding flushes - execbuf can fail to emit the flush
2026          * after having emitted the batchbuffer command. Hence we need to fix
2027          * things up similar to emitting the lazy request. The difference here
2028          * is that the flush _must_ happen before the next request, no matter
2029          * what.
2030          */
2031         ret = intel_ring_flush_all_caches(ring);
2032         if (ret)
2033                 return ret;
2034
2035         request = kmalloc(sizeof(*request), GFP_KERNEL);
2036         if (request == NULL)
2037                 return -ENOMEM;
2038
2039
2040         /* Record the position of the start of the request so that
2041          * should we detect the updated seqno part-way through the
2042          * GPU processing the request, we never over-estimate the
2043          * position of the head.
2044          */
2045         request_ring_position = intel_ring_get_tail(ring);
2046
2047         ret = ring->add_request(ring);
2048         if (ret) {
2049                 kfree(request);
2050                 return ret;
2051         }
2052
2053         request->seqno = intel_ring_get_seqno(ring);
2054         request->ring = ring;
2055         request->head = request_start;
2056         request->tail = request_ring_position;
2057         request->ctx = ring->last_context;
2058         request->batch_obj = obj;
2059
2060         /* Whilst this request exists, batch_obj will be on the
2061          * active_list, and so will hold the active reference. Only when this
2062          * request is retired will the the batch_obj be moved onto the
2063          * inactive_list and lose its active reference. Hence we do not need
2064          * to explicitly hold another reference here.
2065          */
2066
2067         if (request->ctx)
2068                 i915_gem_context_reference(request->ctx);
2069
2070         request->emitted_jiffies = jiffies;
2071         was_empty = list_empty(&ring->request_list);
2072         list_add_tail(&request->list, &ring->request_list);
2073         request->file_priv = NULL;
2074
2075         if (file) {
2076                 struct drm_i915_file_private *file_priv = file->driver_priv;
2077
2078                 spin_lock(&file_priv->mm.lock);
2079                 request->file_priv = file_priv;
2080                 list_add_tail(&request->client_list,
2081                               &file_priv->mm.request_list);
2082                 spin_unlock(&file_priv->mm.lock);
2083         }
2084
2085         trace_i915_gem_request_add(ring, request->seqno);
2086         ring->outstanding_lazy_request = 0;
2087
2088         if (!dev_priv->ums.mm_suspended) {
2089                 i915_queue_hangcheck(ring->dev);
2090
2091                 if (was_empty) {
2092                         queue_delayed_work(dev_priv->wq,
2093                                            &dev_priv->mm.retire_work,
2094                                            round_jiffies_up_relative(HZ));
2095                         intel_mark_busy(dev_priv->dev);
2096                 }
2097         }
2098
2099         if (out_seqno)
2100                 *out_seqno = request->seqno;
2101         return 0;
2102 }
2103
2104 static inline void
2105 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2106 {
2107         struct drm_i915_file_private *file_priv = request->file_priv;
2108
2109         if (!file_priv)
2110                 return;
2111
2112         spin_lock(&file_priv->mm.lock);
2113         if (request->file_priv) {
2114                 list_del(&request->client_list);
2115                 request->file_priv = NULL;
2116         }
2117         spin_unlock(&file_priv->mm.lock);
2118 }
2119
2120 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
2121 {
2122         if (acthd >= i915_gem_obj_ggtt_offset(obj) &&
2123             acthd < i915_gem_obj_ggtt_offset(obj) + obj->base.size)
2124                 return true;
2125
2126         return false;
2127 }
2128
2129 static bool i915_head_inside_request(const u32 acthd_unmasked,
2130                                      const u32 request_start,
2131                                      const u32 request_end)
2132 {
2133         const u32 acthd = acthd_unmasked & HEAD_ADDR;
2134
2135         if (request_start < request_end) {
2136                 if (acthd >= request_start && acthd < request_end)
2137                         return true;
2138         } else if (request_start > request_end) {
2139                 if (acthd >= request_start || acthd < request_end)
2140                         return true;
2141         }
2142
2143         return false;
2144 }
2145
2146 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2147                                 const u32 acthd, bool *inside)
2148 {
2149         /* There is a possibility that unmasked head address
2150          * pointing inside the ring, matches the batch_obj address range.
2151          * However this is extremely unlikely.
2152          */
2153
2154         if (request->batch_obj) {
2155                 if (i915_head_inside_object(acthd, request->batch_obj)) {
2156                         *inside = true;
2157                         return true;
2158                 }
2159         }
2160
2161         if (i915_head_inside_request(acthd, request->head, request->tail)) {
2162                 *inside = false;
2163                 return true;
2164         }
2165
2166         return false;
2167 }
2168
2169 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2170                                   struct drm_i915_gem_request *request,
2171                                   u32 acthd)
2172 {
2173         struct i915_ctx_hang_stats *hs = NULL;
2174         bool inside, guilty;
2175
2176         /* Innocent until proven guilty */
2177         guilty = false;
2178
2179         if (ring->hangcheck.action != wait &&
2180             i915_request_guilty(request, acthd, &inside)) {
2181                 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2182                           ring->name,
2183                           inside ? "inside" : "flushing",
2184                           request->batch_obj ?
2185                           i915_gem_obj_ggtt_offset(request->batch_obj) : 0,
2186                           request->ctx ? request->ctx->id : 0,
2187                           acthd);
2188
2189                 guilty = true;
2190         }
2191
2192         /* If contexts are disabled or this is the default context, use
2193          * file_priv->reset_state
2194          */
2195         if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2196                 hs = &request->ctx->hang_stats;
2197         else if (request->file_priv)
2198                 hs = &request->file_priv->hang_stats;
2199
2200         if (hs) {
2201                 if (guilty)
2202                         hs->batch_active++;
2203                 else
2204                         hs->batch_pending++;
2205         }
2206 }
2207
2208 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2209 {
2210         list_del(&request->list);
2211         i915_gem_request_remove_from_client(request);
2212
2213         if (request->ctx)
2214                 i915_gem_context_unreference(request->ctx);
2215
2216         kfree(request);
2217 }
2218
2219 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2220                                       struct intel_ring_buffer *ring)
2221 {
2222         u32 completed_seqno;
2223         u32 acthd;
2224
2225         acthd = intel_ring_get_active_head(ring);
2226         completed_seqno = ring->get_seqno(ring, false);
2227
2228         while (!list_empty(&ring->request_list)) {
2229                 struct drm_i915_gem_request *request;
2230
2231                 request = list_first_entry(&ring->request_list,
2232                                            struct drm_i915_gem_request,
2233                                            list);
2234
2235                 if (request->seqno > completed_seqno)
2236                         i915_set_reset_status(ring, request, acthd);
2237
2238                 i915_gem_free_request(request);
2239         }
2240
2241         while (!list_empty(&ring->active_list)) {
2242                 struct drm_i915_gem_object *obj;
2243
2244                 obj = list_first_entry(&ring->active_list,
2245                                        struct drm_i915_gem_object,
2246                                        ring_list);
2247
2248                 i915_gem_object_move_to_inactive(obj);
2249         }
2250 }
2251
2252 static void i915_gem_reset_fences(struct drm_device *dev)
2253 {
2254         struct drm_i915_private *dev_priv = dev->dev_private;
2255         int i;
2256
2257         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2258                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2259
2260                 if (reg->obj)
2261                         i915_gem_object_fence_lost(reg->obj);
2262
2263                 i915_gem_write_fence(dev, i, NULL);
2264
2265                 reg->pin_count = 0;
2266                 reg->obj = NULL;
2267                 INIT_LIST_HEAD(&reg->lru_list);
2268         }
2269
2270         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2271 }
2272
2273 void i915_gem_reset(struct drm_device *dev)
2274 {
2275         struct drm_i915_private *dev_priv = dev->dev_private;
2276         struct i915_address_space *vm = &dev_priv->gtt.base;
2277         struct drm_i915_gem_object *obj;
2278         struct intel_ring_buffer *ring;
2279         int i;
2280
2281         for_each_ring(ring, dev_priv, i)
2282                 i915_gem_reset_ring_lists(dev_priv, ring);
2283
2284         /* Move everything out of the GPU domains to ensure we do any
2285          * necessary invalidation upon reuse.
2286          */
2287         list_for_each_entry(obj, &vm->inactive_list, mm_list)
2288                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2289
2290         /* The fence registers are invalidated so clear them out */
2291         i915_gem_reset_fences(dev);
2292 }
2293
2294 /**
2295  * This function clears the request list as sequence numbers are passed.
2296  */
2297 void
2298 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2299 {
2300         uint32_t seqno;
2301
2302         if (list_empty(&ring->request_list))
2303                 return;
2304
2305         WARN_ON(i915_verify_lists(ring->dev));
2306
2307         seqno = ring->get_seqno(ring, true);
2308
2309         while (!list_empty(&ring->request_list)) {
2310                 struct drm_i915_gem_request *request;
2311
2312                 request = list_first_entry(&ring->request_list,
2313                                            struct drm_i915_gem_request,
2314                                            list);
2315
2316                 if (!i915_seqno_passed(seqno, request->seqno))
2317                         break;
2318
2319                 trace_i915_gem_request_retire(ring, request->seqno);
2320                 /* We know the GPU must have read the request to have
2321                  * sent us the seqno + interrupt, so use the position
2322                  * of tail of the request to update the last known position
2323                  * of the GPU head.
2324                  */
2325                 ring->last_retired_head = request->tail;
2326
2327                 i915_gem_free_request(request);
2328         }
2329
2330         /* Move any buffers on the active list that are no longer referenced
2331          * by the ringbuffer to the flushing/inactive lists as appropriate.
2332          */
2333         while (!list_empty(&ring->active_list)) {
2334                 struct drm_i915_gem_object *obj;
2335
2336                 obj = list_first_entry(&ring->active_list,
2337                                       struct drm_i915_gem_object,
2338                                       ring_list);
2339
2340                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2341                         break;
2342
2343                 i915_gem_object_move_to_inactive(obj);
2344         }
2345
2346         if (unlikely(ring->trace_irq_seqno &&
2347                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2348                 ring->irq_put(ring);
2349                 ring->trace_irq_seqno = 0;
2350         }
2351
2352         WARN_ON(i915_verify_lists(ring->dev));
2353 }
2354
2355 void
2356 i915_gem_retire_requests(struct drm_device *dev)
2357 {
2358         drm_i915_private_t *dev_priv = dev->dev_private;
2359         struct intel_ring_buffer *ring;
2360         int i;
2361
2362         for_each_ring(ring, dev_priv, i)
2363                 i915_gem_retire_requests_ring(ring);
2364 }
2365
2366 static void
2367 i915_gem_retire_work_handler(struct work_struct *work)
2368 {
2369         drm_i915_private_t *dev_priv;
2370         struct drm_device *dev;
2371         struct intel_ring_buffer *ring;
2372         bool idle;
2373         int i;
2374
2375         dev_priv = container_of(work, drm_i915_private_t,
2376                                 mm.retire_work.work);
2377         dev = dev_priv->dev;
2378
2379         /* Come back later if the device is busy... */
2380         if (!mutex_trylock(&dev->struct_mutex)) {
2381                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2382                                    round_jiffies_up_relative(HZ));
2383                 return;
2384         }
2385
2386         i915_gem_retire_requests(dev);
2387
2388         /* Send a periodic flush down the ring so we don't hold onto GEM
2389          * objects indefinitely.
2390          */
2391         idle = true;
2392         for_each_ring(ring, dev_priv, i) {
2393                 if (ring->gpu_caches_dirty)
2394                         i915_add_request(ring, NULL);
2395
2396                 idle &= list_empty(&ring->request_list);
2397         }
2398
2399         if (!dev_priv->ums.mm_suspended && !idle)
2400                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2401                                    round_jiffies_up_relative(HZ));
2402         if (idle)
2403                 intel_mark_idle(dev);
2404
2405         mutex_unlock(&dev->struct_mutex);
2406 }
2407
2408 /**
2409  * Ensures that an object will eventually get non-busy by flushing any required
2410  * write domains, emitting any outstanding lazy request and retiring and
2411  * completed requests.
2412  */
2413 static int
2414 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2415 {
2416         int ret;
2417
2418         if (obj->active) {
2419                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2420                 if (ret)
2421                         return ret;
2422
2423                 i915_gem_retire_requests_ring(obj->ring);
2424         }
2425
2426         return 0;
2427 }
2428
2429 /**
2430  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2431  * @DRM_IOCTL_ARGS: standard ioctl arguments
2432  *
2433  * Returns 0 if successful, else an error is returned with the remaining time in
2434  * the timeout parameter.
2435  *  -ETIME: object is still busy after timeout
2436  *  -ERESTARTSYS: signal interrupted the wait
2437  *  -ENONENT: object doesn't exist
2438  * Also possible, but rare:
2439  *  -EAGAIN: GPU wedged
2440  *  -ENOMEM: damn
2441  *  -ENODEV: Internal IRQ fail
2442  *  -E?: The add request failed
2443  *
2444  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2445  * non-zero timeout parameter the wait ioctl will wait for the given number of
2446  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2447  * without holding struct_mutex the object may become re-busied before this
2448  * function completes. A similar but shorter * race condition exists in the busy
2449  * ioctl
2450  */
2451 int
2452 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2453 {
2454         drm_i915_private_t *dev_priv = dev->dev_private;
2455         struct drm_i915_gem_wait *args = data;
2456         struct drm_i915_gem_object *obj;
2457         struct intel_ring_buffer *ring = NULL;
2458         struct timespec timeout_stack, *timeout = NULL;
2459         unsigned reset_counter;
2460         u32 seqno = 0;
2461         int ret = 0;
2462
2463         if (args->timeout_ns >= 0) {
2464                 timeout_stack = ns_to_timespec(args->timeout_ns);
2465                 timeout = &timeout_stack;
2466         }
2467
2468         ret = i915_mutex_lock_interruptible(dev);
2469         if (ret)
2470                 return ret;
2471
2472         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2473         if (&obj->base == NULL) {
2474                 mutex_unlock(&dev->struct_mutex);
2475                 return -ENOENT;
2476         }
2477
2478         /* Need to make sure the object gets inactive eventually. */
2479         ret = i915_gem_object_flush_active(obj);
2480         if (ret)
2481                 goto out;
2482
2483         if (obj->active) {
2484                 seqno = obj->last_read_seqno;
2485                 ring = obj->ring;
2486         }
2487
2488         if (seqno == 0)
2489                  goto out;
2490
2491         /* Do this after OLR check to make sure we make forward progress polling
2492          * on this IOCTL with a 0 timeout (like busy ioctl)
2493          */
2494         if (!args->timeout_ns) {
2495                 ret = -ETIME;
2496                 goto out;
2497         }
2498
2499         drm_gem_object_unreference(&obj->base);
2500         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2501         mutex_unlock(&dev->struct_mutex);
2502
2503         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2504         if (timeout)
2505                 args->timeout_ns = timespec_to_ns(timeout);
2506         return ret;
2507
2508 out:
2509         drm_gem_object_unreference(&obj->base);
2510         mutex_unlock(&dev->struct_mutex);
2511         return ret;
2512 }
2513
2514 /**
2515  * i915_gem_object_sync - sync an object to a ring.
2516  *
2517  * @obj: object which may be in use on another ring.
2518  * @to: ring we wish to use the object on. May be NULL.
2519  *
2520  * This code is meant to abstract object synchronization with the GPU.
2521  * Calling with NULL implies synchronizing the object with the CPU
2522  * rather than a particular GPU ring.
2523  *
2524  * Returns 0 if successful, else propagates up the lower layer error.
2525  */
2526 int
2527 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2528                      struct intel_ring_buffer *to)
2529 {
2530         struct intel_ring_buffer *from = obj->ring;
2531         u32 seqno;
2532         int ret, idx;
2533
2534         if (from == NULL || to == from)
2535                 return 0;
2536
2537         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2538                 return i915_gem_object_wait_rendering(obj, false);
2539
2540         idx = intel_ring_sync_index(from, to);
2541
2542         seqno = obj->last_read_seqno;
2543         if (seqno <= from->sync_seqno[idx])
2544                 return 0;
2545
2546         ret = i915_gem_check_olr(obj->ring, seqno);
2547         if (ret)
2548                 return ret;
2549
2550         ret = to->sync_to(to, from, seqno);
2551         if (!ret)
2552                 /* We use last_read_seqno because sync_to()
2553                  * might have just caused seqno wrap under
2554                  * the radar.
2555                  */
2556                 from->sync_seqno[idx] = obj->last_read_seqno;
2557
2558         return ret;
2559 }
2560
2561 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2562 {
2563         u32 old_write_domain, old_read_domains;
2564
2565         /* Force a pagefault for domain tracking on next user access */
2566         i915_gem_release_mmap(obj);
2567
2568         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2569                 return;
2570
2571         /* Wait for any direct GTT access to complete */
2572         mb();
2573
2574         old_read_domains = obj->base.read_domains;
2575         old_write_domain = obj->base.write_domain;
2576
2577         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2578         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2579
2580         trace_i915_gem_object_change_domain(obj,
2581                                             old_read_domains,
2582                                             old_write_domain);
2583 }
2584
2585 /**
2586  * Unbinds an object from the GTT aperture.
2587  */
2588 int
2589 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2590 {
2591         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2592         struct i915_vma *vma;
2593         int ret;
2594
2595         if (!i915_gem_obj_ggtt_bound(obj))
2596                 return 0;
2597
2598         if (obj->pin_count)
2599                 return -EBUSY;
2600
2601         BUG_ON(obj->pages == NULL);
2602
2603         ret = i915_gem_object_finish_gpu(obj);
2604         if (ret)
2605                 return ret;
2606         /* Continue on if we fail due to EIO, the GPU is hung so we
2607          * should be safe and we need to cleanup or else we might
2608          * cause memory corruption through use-after-free.
2609          */
2610
2611         i915_gem_object_finish_gtt(obj);
2612
2613         /* release the fence reg _after_ flushing */
2614         ret = i915_gem_object_put_fence(obj);
2615         if (ret)
2616                 return ret;
2617
2618         trace_i915_gem_object_unbind(obj);
2619
2620         if (obj->has_global_gtt_mapping)
2621                 i915_gem_gtt_unbind_object(obj);
2622         if (obj->has_aliasing_ppgtt_mapping) {
2623                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2624                 obj->has_aliasing_ppgtt_mapping = 0;
2625         }
2626         i915_gem_gtt_finish_object(obj);
2627         i915_gem_object_unpin_pages(obj);
2628
2629         list_del(&obj->mm_list);
2630         /* Avoid an unnecessary call to unbind on rebind. */
2631         obj->map_and_fenceable = true;
2632
2633         vma = __i915_gem_obj_to_vma(obj);
2634         list_del(&vma->vma_link);
2635         drm_mm_remove_node(&vma->node);
2636         i915_gem_vma_destroy(vma);
2637
2638         /* Since the unbound list is global, only move to that list if
2639          * no more VMAs exist.
2640          * NB: Until we have real VMAs there will only ever be one */
2641         WARN_ON(!list_empty(&obj->vma_list));
2642         if (list_empty(&obj->vma_list))
2643                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2644
2645         return 0;
2646 }
2647
2648 int i915_gpu_idle(struct drm_device *dev)
2649 {
2650         drm_i915_private_t *dev_priv = dev->dev_private;
2651         struct intel_ring_buffer *ring;
2652         int ret, i;
2653
2654         /* Flush everything onto the inactive list. */
2655         for_each_ring(ring, dev_priv, i) {
2656                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2657                 if (ret)
2658                         return ret;
2659
2660                 ret = intel_ring_idle(ring);
2661                 if (ret)
2662                         return ret;
2663         }
2664
2665         return 0;
2666 }
2667
2668 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2669                                  struct drm_i915_gem_object *obj)
2670 {
2671         drm_i915_private_t *dev_priv = dev->dev_private;
2672         int fence_reg;
2673         int fence_pitch_shift;
2674         uint64_t val;
2675
2676         if (INTEL_INFO(dev)->gen >= 6) {
2677                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2678                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2679         } else {
2680                 fence_reg = FENCE_REG_965_0;
2681                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2682         }
2683
2684         if (obj) {
2685                 u32 size = i915_gem_obj_ggtt_size(obj);
2686
2687                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2688                                  0xfffff000) << 32;
2689                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2690                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2691                 if (obj->tiling_mode == I915_TILING_Y)
2692                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2693                 val |= I965_FENCE_REG_VALID;
2694         } else
2695                 val = 0;
2696
2697         fence_reg += reg * 8;
2698         I915_WRITE64(fence_reg, val);
2699         POSTING_READ(fence_reg);
2700 }
2701
2702 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2703                                  struct drm_i915_gem_object *obj)
2704 {
2705         drm_i915_private_t *dev_priv = dev->dev_private;
2706         u32 val;
2707
2708         if (obj) {
2709                 u32 size = i915_gem_obj_ggtt_size(obj);
2710                 int pitch_val;
2711                 int tile_width;
2712
2713                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2714                      (size & -size) != size ||
2715                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2716                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2717                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2718
2719                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2720                         tile_width = 128;
2721                 else
2722                         tile_width = 512;
2723
2724                 /* Note: pitch better be a power of two tile widths */
2725                 pitch_val = obj->stride / tile_width;
2726                 pitch_val = ffs(pitch_val) - 1;
2727
2728                 val = i915_gem_obj_ggtt_offset(obj);
2729                 if (obj->tiling_mode == I915_TILING_Y)
2730                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2731                 val |= I915_FENCE_SIZE_BITS(size);
2732                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2733                 val |= I830_FENCE_REG_VALID;
2734         } else
2735                 val = 0;
2736
2737         if (reg < 8)
2738                 reg = FENCE_REG_830_0 + reg * 4;
2739         else
2740                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2741
2742         I915_WRITE(reg, val);
2743         POSTING_READ(reg);
2744 }
2745
2746 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2747                                 struct drm_i915_gem_object *obj)
2748 {
2749         drm_i915_private_t *dev_priv = dev->dev_private;
2750         uint32_t val;
2751
2752         if (obj) {
2753                 u32 size = i915_gem_obj_ggtt_size(obj);
2754                 uint32_t pitch_val;
2755
2756                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2757                      (size & -size) != size ||
2758                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2759                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2760                      i915_gem_obj_ggtt_offset(obj), size);
2761
2762                 pitch_val = obj->stride / 128;
2763                 pitch_val = ffs(pitch_val) - 1;
2764
2765                 val = i915_gem_obj_ggtt_offset(obj);
2766                 if (obj->tiling_mode == I915_TILING_Y)
2767                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2768                 val |= I830_FENCE_SIZE_BITS(size);
2769                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2770                 val |= I830_FENCE_REG_VALID;
2771         } else
2772                 val = 0;
2773
2774         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2775         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2776 }
2777
2778 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2779 {
2780         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2781 }
2782
2783 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2784                                  struct drm_i915_gem_object *obj)
2785 {
2786         struct drm_i915_private *dev_priv = dev->dev_private;
2787
2788         /* Ensure that all CPU reads are completed before installing a fence
2789          * and all writes before removing the fence.
2790          */
2791         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2792                 mb();
2793
2794         switch (INTEL_INFO(dev)->gen) {
2795         case 7:
2796         case 6:
2797         case 5:
2798         case 4: i965_write_fence_reg(dev, reg, obj); break;
2799         case 3: i915_write_fence_reg(dev, reg, obj); break;
2800         case 2: i830_write_fence_reg(dev, reg, obj); break;
2801         default: BUG();
2802         }
2803
2804         /* And similarly be paranoid that no direct access to this region
2805          * is reordered to before the fence is installed.
2806          */
2807         if (i915_gem_object_needs_mb(obj))
2808                 mb();
2809 }
2810
2811 static inline int fence_number(struct drm_i915_private *dev_priv,
2812                                struct drm_i915_fence_reg *fence)
2813 {
2814         return fence - dev_priv->fence_regs;
2815 }
2816
2817 struct write_fence {
2818         struct drm_device *dev;
2819         struct drm_i915_gem_object *obj;
2820         int fence;
2821 };
2822
2823 static void i915_gem_write_fence__ipi(void *data)
2824 {
2825         struct write_fence *args = data;
2826
2827         /* Required for SNB+ with LLC */
2828         wbinvd();
2829
2830         /* Required for VLV */
2831         i915_gem_write_fence(args->dev, args->fence, args->obj);
2832 }
2833
2834 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2835                                          struct drm_i915_fence_reg *fence,
2836                                          bool enable)
2837 {
2838         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2839         struct write_fence args = {
2840                 .dev = obj->base.dev,
2841                 .fence = fence_number(dev_priv, fence),
2842                 .obj = enable ? obj : NULL,
2843         };
2844
2845         /* In order to fully serialize access to the fenced region and
2846          * the update to the fence register we need to take extreme
2847          * measures on SNB+. In theory, the write to the fence register
2848          * flushes all memory transactions before, and coupled with the
2849          * mb() placed around the register write we serialise all memory
2850          * operations with respect to the changes in the tiler. Yet, on
2851          * SNB+ we need to take a step further and emit an explicit wbinvd()
2852          * on each processor in order to manually flush all memory
2853          * transactions before updating the fence register.
2854          *
2855          * However, Valleyview complicates matter. There the wbinvd is
2856          * insufficient and unlike SNB/IVB requires the serialising
2857          * register write. (Note that that register write by itself is
2858          * conversely not sufficient for SNB+.) To compromise, we do both.
2859          */
2860         if (INTEL_INFO(args.dev)->gen >= 6)
2861                 on_each_cpu(i915_gem_write_fence__ipi, &args, 1);
2862         else
2863                 i915_gem_write_fence(args.dev, args.fence, args.obj);
2864
2865         if (enable) {
2866                 obj->fence_reg = args.fence;
2867                 fence->obj = obj;
2868                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2869         } else {
2870                 obj->fence_reg = I915_FENCE_REG_NONE;
2871                 fence->obj = NULL;
2872                 list_del_init(&fence->lru_list);
2873         }
2874 }
2875
2876 static int
2877 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2878 {
2879         if (obj->last_fenced_seqno) {
2880                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2881                 if (ret)
2882                         return ret;
2883
2884                 obj->last_fenced_seqno = 0;
2885         }
2886
2887         obj->fenced_gpu_access = false;
2888         return 0;
2889 }
2890
2891 int
2892 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2893 {
2894         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2895         struct drm_i915_fence_reg *fence;
2896         int ret;
2897
2898         ret = i915_gem_object_wait_fence(obj);
2899         if (ret)
2900                 return ret;
2901
2902         if (obj->fence_reg == I915_FENCE_REG_NONE)
2903                 return 0;
2904
2905         fence = &dev_priv->fence_regs[obj->fence_reg];
2906
2907         i915_gem_object_fence_lost(obj);
2908         i915_gem_object_update_fence(obj, fence, false);
2909
2910         return 0;
2911 }
2912
2913 static struct drm_i915_fence_reg *
2914 i915_find_fence_reg(struct drm_device *dev)
2915 {
2916         struct drm_i915_private *dev_priv = dev->dev_private;
2917         struct drm_i915_fence_reg *reg, *avail;
2918         int i;
2919
2920         /* First try to find a free reg */
2921         avail = NULL;
2922         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2923                 reg = &dev_priv->fence_regs[i];
2924                 if (!reg->obj)
2925                         return reg;
2926
2927                 if (!reg->pin_count)
2928                         avail = reg;
2929         }
2930
2931         if (avail == NULL)
2932                 return NULL;
2933
2934         /* None available, try to steal one or wait for a user to finish */
2935         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2936                 if (reg->pin_count)
2937                         continue;
2938
2939                 return reg;
2940         }
2941
2942         return NULL;
2943 }
2944
2945 /**
2946  * i915_gem_object_get_fence - set up fencing for an object
2947  * @obj: object to map through a fence reg
2948  *
2949  * When mapping objects through the GTT, userspace wants to be able to write
2950  * to them without having to worry about swizzling if the object is tiled.
2951  * This function walks the fence regs looking for a free one for @obj,
2952  * stealing one if it can't find any.
2953  *
2954  * It then sets up the reg based on the object's properties: address, pitch
2955  * and tiling format.
2956  *
2957  * For an untiled surface, this removes any existing fence.
2958  */
2959 int
2960 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2961 {
2962         struct drm_device *dev = obj->base.dev;
2963         struct drm_i915_private *dev_priv = dev->dev_private;
2964         bool enable = obj->tiling_mode != I915_TILING_NONE;
2965         struct drm_i915_fence_reg *reg;
2966         int ret;
2967
2968         /* Have we updated the tiling parameters upon the object and so
2969          * will need to serialise the write to the associated fence register?
2970          */
2971         if (obj->fence_dirty) {
2972                 ret = i915_gem_object_wait_fence(obj);
2973                 if (ret)
2974                         return ret;
2975         }
2976
2977         /* Just update our place in the LRU if our fence is getting reused. */
2978         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2979                 reg = &dev_priv->fence_regs[obj->fence_reg];
2980                 if (!obj->fence_dirty) {
2981                         list_move_tail(&reg->lru_list,
2982                                        &dev_priv->mm.fence_list);
2983                         return 0;
2984                 }
2985         } else if (enable) {
2986                 reg = i915_find_fence_reg(dev);
2987                 if (reg == NULL)
2988                         return -EDEADLK;
2989
2990                 if (reg->obj) {
2991                         struct drm_i915_gem_object *old = reg->obj;
2992
2993                         ret = i915_gem_object_wait_fence(old);
2994                         if (ret)
2995                                 return ret;
2996
2997                         i915_gem_object_fence_lost(old);
2998                 }
2999         } else
3000                 return 0;
3001
3002         i915_gem_object_update_fence(obj, reg, enable);
3003         obj->fence_dirty = false;
3004
3005         return 0;
3006 }
3007
3008 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3009                                      struct drm_mm_node *gtt_space,
3010                                      unsigned long cache_level)
3011 {
3012         struct drm_mm_node *other;
3013
3014         /* On non-LLC machines we have to be careful when putting differing
3015          * types of snoopable memory together to avoid the prefetcher
3016          * crossing memory domains and dying.
3017          */
3018         if (HAS_LLC(dev))
3019                 return true;
3020
3021         if (!drm_mm_node_allocated(gtt_space))
3022                 return true;
3023
3024         if (list_empty(&gtt_space->node_list))
3025                 return true;
3026
3027         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3028         if (other->allocated && !other->hole_follows && other->color != cache_level)
3029                 return false;
3030
3031         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3032         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3033                 return false;
3034
3035         return true;
3036 }
3037
3038 static void i915_gem_verify_gtt(struct drm_device *dev)
3039 {
3040 #if WATCH_GTT
3041         struct drm_i915_private *dev_priv = dev->dev_private;
3042         struct drm_i915_gem_object *obj;
3043         int err = 0;
3044
3045         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3046                 if (obj->gtt_space == NULL) {
3047                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3048                         err++;
3049                         continue;
3050                 }
3051
3052                 if (obj->cache_level != obj->gtt_space->color) {
3053                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3054                                i915_gem_obj_ggtt_offset(obj),
3055                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3056                                obj->cache_level,
3057                                obj->gtt_space->color);
3058                         err++;
3059                         continue;
3060                 }
3061
3062                 if (!i915_gem_valid_gtt_space(dev,
3063                                               obj->gtt_space,
3064                                               obj->cache_level)) {
3065                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3066                                i915_gem_obj_ggtt_offset(obj),
3067                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3068                                obj->cache_level);
3069                         err++;
3070                         continue;
3071                 }
3072         }
3073
3074         WARN_ON(err);
3075 #endif
3076 }
3077
3078 /**
3079  * Finds free space in the GTT aperture and binds the object there.
3080  */
3081 static int
3082 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3083                             unsigned alignment,
3084                             bool map_and_fenceable,
3085                             bool nonblocking)
3086 {
3087         struct drm_device *dev = obj->base.dev;
3088         drm_i915_private_t *dev_priv = dev->dev_private;
3089         struct i915_address_space *vm = &dev_priv->gtt.base;
3090         u32 size, fence_size, fence_alignment, unfenced_alignment;
3091         bool mappable, fenceable;
3092         size_t gtt_max = map_and_fenceable ?
3093                 dev_priv->gtt.mappable_end : dev_priv->gtt.base.total;
3094         struct i915_vma *vma;
3095         int ret;
3096
3097         if (WARN_ON(!list_empty(&obj->vma_list)))
3098                 return -EBUSY;
3099
3100         fence_size = i915_gem_get_gtt_size(dev,
3101                                            obj->base.size,
3102                                            obj->tiling_mode);
3103         fence_alignment = i915_gem_get_gtt_alignment(dev,
3104                                                      obj->base.size,
3105                                                      obj->tiling_mode, true);
3106         unfenced_alignment =
3107                 i915_gem_get_gtt_alignment(dev,
3108                                                     obj->base.size,
3109                                                     obj->tiling_mode, false);
3110
3111         if (alignment == 0)
3112                 alignment = map_and_fenceable ? fence_alignment :
3113                                                 unfenced_alignment;
3114         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3115                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3116                 return -EINVAL;
3117         }
3118
3119         size = map_and_fenceable ? fence_size : obj->base.size;
3120
3121         /* If the object is bigger than the entire aperture, reject it early
3122          * before evicting everything in a vain attempt to find space.
3123          */
3124         if (obj->base.size > gtt_max) {
3125                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3126                           obj->base.size,
3127                           map_and_fenceable ? "mappable" : "total",
3128                           gtt_max);
3129                 return -E2BIG;
3130         }
3131
3132         ret = i915_gem_object_get_pages(obj);
3133         if (ret)
3134                 return ret;
3135
3136         i915_gem_object_pin_pages(obj);
3137
3138         vma = i915_gem_vma_create(obj, &dev_priv->gtt.base);
3139         if (IS_ERR(vma)) {
3140                 ret = PTR_ERR(vma);
3141                 goto err_unpin;
3142         }
3143
3144 search_free:
3145         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
3146                                                   &vma->node,
3147                                                   size, alignment,
3148                                                   obj->cache_level, 0, gtt_max);
3149         if (ret) {
3150                 ret = i915_gem_evict_something(dev, size, alignment,
3151                                                obj->cache_level,
3152                                                map_and_fenceable,
3153                                                nonblocking);
3154                 if (ret == 0)
3155                         goto search_free;
3156
3157                 goto err_free_vma;
3158         }
3159         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3160                                               obj->cache_level))) {
3161                 ret = -EINVAL;
3162                 goto err_remove_node;
3163         }
3164
3165         ret = i915_gem_gtt_prepare_object(obj);
3166         if (ret)
3167                 goto err_remove_node;
3168
3169         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3170         list_add_tail(&obj->mm_list, &vm->inactive_list);
3171         list_add(&vma->vma_link, &obj->vma_list);
3172
3173         fenceable =
3174                 i915_gem_obj_ggtt_size(obj) == fence_size &&
3175                 (i915_gem_obj_ggtt_offset(obj) & (fence_alignment - 1)) == 0;
3176
3177         mappable = i915_gem_obj_ggtt_offset(obj) + obj->base.size <=
3178                 dev_priv->gtt.mappable_end;
3179
3180         obj->map_and_fenceable = mappable && fenceable;
3181
3182         trace_i915_gem_object_bind(obj, map_and_fenceable);
3183         i915_gem_verify_gtt(dev);
3184         return 0;
3185
3186 err_remove_node:
3187         drm_mm_remove_node(&vma->node);
3188 err_free_vma:
3189         i915_gem_vma_destroy(vma);
3190 err_unpin:
3191         i915_gem_object_unpin_pages(obj);
3192         return ret;
3193 }
3194
3195 void
3196 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3197 {
3198         /* If we don't have a page list set up, then we're not pinned
3199          * to GPU, and we can ignore the cache flush because it'll happen
3200          * again at bind time.
3201          */
3202         if (obj->pages == NULL)
3203                 return;
3204
3205         /*
3206          * Stolen memory is always coherent with the GPU as it is explicitly
3207          * marked as wc by the system, or the system is cache-coherent.
3208          */
3209         if (obj->stolen)
3210                 return;
3211
3212         /* If the GPU is snooping the contents of the CPU cache,
3213          * we do not need to manually clear the CPU cache lines.  However,
3214          * the caches are only snooped when the render cache is
3215          * flushed/invalidated.  As we always have to emit invalidations
3216          * and flushes when moving into and out of the RENDER domain, correct
3217          * snooping behaviour occurs naturally as the result of our domain
3218          * tracking.
3219          */
3220         if (obj->cache_level != I915_CACHE_NONE)
3221                 return;
3222
3223         trace_i915_gem_object_clflush(obj);
3224
3225         drm_clflush_sg(obj->pages);
3226 }
3227
3228 /** Flushes the GTT write domain for the object if it's dirty. */
3229 static void
3230 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3231 {
3232         uint32_t old_write_domain;
3233
3234         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3235                 return;
3236
3237         /* No actual flushing is required for the GTT write domain.  Writes
3238          * to it immediately go to main memory as far as we know, so there's
3239          * no chipset flush.  It also doesn't land in render cache.
3240          *
3241          * However, we do have to enforce the order so that all writes through
3242          * the GTT land before any writes to the device, such as updates to
3243          * the GATT itself.
3244          */
3245         wmb();
3246
3247         old_write_domain = obj->base.write_domain;
3248         obj->base.write_domain = 0;
3249
3250         trace_i915_gem_object_change_domain(obj,
3251                                             obj->base.read_domains,
3252                                             old_write_domain);
3253 }
3254
3255 /** Flushes the CPU write domain for the object if it's dirty. */
3256 static void
3257 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3258 {
3259         uint32_t old_write_domain;
3260
3261         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3262                 return;
3263
3264         i915_gem_clflush_object(obj);
3265         i915_gem_chipset_flush(obj->base.dev);
3266         old_write_domain = obj->base.write_domain;
3267         obj->base.write_domain = 0;
3268
3269         trace_i915_gem_object_change_domain(obj,
3270                                             obj->base.read_domains,
3271                                             old_write_domain);
3272 }
3273
3274 /**
3275  * Moves a single object to the GTT read, and possibly write domain.
3276  *
3277  * This function returns when the move is complete, including waiting on
3278  * flushes to occur.
3279  */
3280 int
3281 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3282 {
3283         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3284         uint32_t old_write_domain, old_read_domains;
3285         int ret;
3286
3287         /* Not valid to be called on unbound objects. */
3288         if (!i915_gem_obj_ggtt_bound(obj))
3289                 return -EINVAL;
3290
3291         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3292                 return 0;
3293
3294         ret = i915_gem_object_wait_rendering(obj, !write);
3295         if (ret)
3296                 return ret;
3297
3298         i915_gem_object_flush_cpu_write_domain(obj);
3299
3300         /* Serialise direct access to this object with the barriers for
3301          * coherent writes from the GPU, by effectively invalidating the
3302          * GTT domain upon first access.
3303          */
3304         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3305                 mb();
3306
3307         old_write_domain = obj->base.write_domain;
3308         old_read_domains = obj->base.read_domains;
3309
3310         /* It should now be out of any other write domains, and we can update
3311          * the domain values for our changes.
3312          */
3313         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3314         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3315         if (write) {
3316                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3317                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3318                 obj->dirty = 1;
3319         }
3320
3321         trace_i915_gem_object_change_domain(obj,
3322                                             old_read_domains,
3323                                             old_write_domain);
3324
3325         /* And bump the LRU for this access */
3326         if (i915_gem_object_is_inactive(obj))
3327                 list_move_tail(&obj->mm_list,
3328                                &dev_priv->gtt.base.inactive_list);
3329
3330         return 0;
3331 }
3332
3333 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3334                                     enum i915_cache_level cache_level)
3335 {
3336         struct drm_device *dev = obj->base.dev;
3337         drm_i915_private_t *dev_priv = dev->dev_private;
3338         struct i915_vma *vma = __i915_gem_obj_to_vma(obj);
3339         int ret;
3340
3341         if (obj->cache_level == cache_level)
3342                 return 0;
3343
3344         if (obj->pin_count) {
3345                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3346                 return -EBUSY;
3347         }
3348
3349         if (vma && !i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3350                 ret = i915_gem_object_unbind(obj);
3351                 if (ret)
3352                         return ret;
3353         }
3354
3355         if (i915_gem_obj_ggtt_bound(obj)) {
3356                 ret = i915_gem_object_finish_gpu(obj);
3357                 if (ret)
3358                         return ret;
3359
3360                 i915_gem_object_finish_gtt(obj);
3361
3362                 /* Before SandyBridge, you could not use tiling or fence
3363                  * registers with snooped memory, so relinquish any fences
3364                  * currently pointing to our region in the aperture.
3365                  */
3366                 if (INTEL_INFO(dev)->gen < 6) {
3367                         ret = i915_gem_object_put_fence(obj);
3368                         if (ret)
3369                                 return ret;
3370                 }
3371
3372                 if (obj->has_global_gtt_mapping)
3373                         i915_gem_gtt_bind_object(obj, cache_level);
3374                 if (obj->has_aliasing_ppgtt_mapping)
3375                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3376                                                obj, cache_level);
3377
3378                 i915_gem_obj_ggtt_set_color(obj, cache_level);
3379         }
3380
3381         if (cache_level == I915_CACHE_NONE) {
3382                 u32 old_read_domains, old_write_domain;
3383
3384                 /* If we're coming from LLC cached, then we haven't
3385                  * actually been tracking whether the data is in the
3386                  * CPU cache or not, since we only allow one bit set
3387                  * in obj->write_domain and have been skipping the clflushes.
3388                  * Just set it to the CPU cache for now.
3389                  */
3390                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3391                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3392
3393                 old_read_domains = obj->base.read_domains;
3394                 old_write_domain = obj->base.write_domain;
3395
3396                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3397                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3398
3399                 trace_i915_gem_object_change_domain(obj,
3400                                                     old_read_domains,
3401                                                     old_write_domain);
3402         }
3403
3404         obj->cache_level = cache_level;
3405         i915_gem_verify_gtt(dev);
3406         return 0;
3407 }
3408
3409 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3410                                struct drm_file *file)
3411 {
3412         struct drm_i915_gem_caching *args = data;
3413         struct drm_i915_gem_object *obj;
3414         int ret;
3415
3416         ret = i915_mutex_lock_interruptible(dev);
3417         if (ret)
3418                 return ret;
3419
3420         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3421         if (&obj->base == NULL) {
3422                 ret = -ENOENT;
3423                 goto unlock;
3424         }
3425
3426         args->caching = obj->cache_level != I915_CACHE_NONE;
3427
3428         drm_gem_object_unreference(&obj->base);
3429 unlock:
3430         mutex_unlock(&dev->struct_mutex);
3431         return ret;
3432 }
3433
3434 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3435                                struct drm_file *file)
3436 {
3437         struct drm_i915_gem_caching *args = data;
3438         struct drm_i915_gem_object *obj;
3439         enum i915_cache_level level;
3440         int ret;
3441
3442         switch (args->caching) {
3443         case I915_CACHING_NONE:
3444                 level = I915_CACHE_NONE;
3445                 break;
3446         case I915_CACHING_CACHED:
3447                 level = I915_CACHE_LLC;
3448                 break;
3449         default:
3450                 return -EINVAL;
3451         }
3452
3453         ret = i915_mutex_lock_interruptible(dev);
3454         if (ret)
3455                 return ret;
3456
3457         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3458         if (&obj->base == NULL) {
3459                 ret = -ENOENT;
3460                 goto unlock;
3461         }
3462
3463         ret = i915_gem_object_set_cache_level(obj, level);
3464
3465         drm_gem_object_unreference(&obj->base);
3466 unlock:
3467         mutex_unlock(&dev->struct_mutex);
3468         return ret;
3469 }
3470
3471 /*
3472  * Prepare buffer for display plane (scanout, cursors, etc).
3473  * Can be called from an uninterruptible phase (modesetting) and allows
3474  * any flushes to be pipelined (for pageflips).
3475  */
3476 int
3477 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3478                                      u32 alignment,
3479                                      struct intel_ring_buffer *pipelined)
3480 {
3481         u32 old_read_domains, old_write_domain;
3482         int ret;
3483
3484         if (pipelined != obj->ring) {
3485                 ret = i915_gem_object_sync(obj, pipelined);
3486                 if (ret)
3487                         return ret;
3488         }
3489
3490         /* The display engine is not coherent with the LLC cache on gen6.  As
3491          * a result, we make sure that the pinning that is about to occur is
3492          * done with uncached PTEs. This is lowest common denominator for all
3493          * chipsets.
3494          *
3495          * However for gen6+, we could do better by using the GFDT bit instead
3496          * of uncaching, which would allow us to flush all the LLC-cached data
3497          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3498          */
3499         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3500         if (ret)
3501                 return ret;
3502
3503         /* As the user may map the buffer once pinned in the display plane
3504          * (e.g. libkms for the bootup splash), we have to ensure that we
3505          * always use map_and_fenceable for all scanout buffers.
3506          */
3507         ret = i915_gem_object_pin(obj, alignment, true, false);
3508         if (ret)
3509                 return ret;
3510
3511         i915_gem_object_flush_cpu_write_domain(obj);
3512
3513         old_write_domain = obj->base.write_domain;
3514         old_read_domains = obj->base.read_domains;
3515
3516         /* It should now be out of any other write domains, and we can update
3517          * the domain values for our changes.
3518          */
3519         obj->base.write_domain = 0;
3520         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3521
3522         trace_i915_gem_object_change_domain(obj,
3523                                             old_read_domains,
3524                                             old_write_domain);
3525
3526         return 0;
3527 }
3528
3529 int
3530 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3531 {
3532         int ret;
3533
3534         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3535                 return 0;
3536
3537         ret = i915_gem_object_wait_rendering(obj, false);
3538         if (ret)
3539                 return ret;
3540
3541         /* Ensure that we invalidate the GPU's caches and TLBs. */
3542         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3543         return 0;
3544 }
3545
3546 /**
3547  * Moves a single object to the CPU read, and possibly write domain.
3548  *
3549  * This function returns when the move is complete, including waiting on
3550  * flushes to occur.
3551  */
3552 int
3553 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3554 {
3555         uint32_t old_write_domain, old_read_domains;
3556         int ret;
3557
3558         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3559                 return 0;
3560
3561         ret = i915_gem_object_wait_rendering(obj, !write);
3562         if (ret)
3563                 return ret;
3564
3565         i915_gem_object_flush_gtt_write_domain(obj);
3566
3567         old_write_domain = obj->base.write_domain;
3568         old_read_domains = obj->base.read_domains;
3569
3570         /* Flush the CPU cache if it's still invalid. */
3571         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3572                 i915_gem_clflush_object(obj);
3573
3574                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3575         }
3576
3577         /* It should now be out of any other write domains, and we can update
3578          * the domain values for our changes.
3579          */
3580         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3581
3582         /* If we're writing through the CPU, then the GPU read domains will
3583          * need to be invalidated at next use.
3584          */
3585         if (write) {
3586                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3587                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3588         }
3589
3590         trace_i915_gem_object_change_domain(obj,
3591                                             old_read_domains,
3592                                             old_write_domain);
3593
3594         return 0;
3595 }
3596
3597 /* Throttle our rendering by waiting until the ring has completed our requests
3598  * emitted over 20 msec ago.
3599  *
3600  * Note that if we were to use the current jiffies each time around the loop,
3601  * we wouldn't escape the function with any frames outstanding if the time to
3602  * render a frame was over 20ms.
3603  *
3604  * This should get us reasonable parallelism between CPU and GPU but also
3605  * relatively low latency when blocking on a particular request to finish.
3606  */
3607 static int
3608 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3609 {
3610         struct drm_i915_private *dev_priv = dev->dev_private;
3611         struct drm_i915_file_private *file_priv = file->driver_priv;
3612         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3613         struct drm_i915_gem_request *request;
3614         struct intel_ring_buffer *ring = NULL;
3615         unsigned reset_counter;
3616         u32 seqno = 0;
3617         int ret;
3618
3619         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3620         if (ret)
3621                 return ret;
3622
3623         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3624         if (ret)
3625                 return ret;
3626
3627         spin_lock(&file_priv->mm.lock);
3628         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3629                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3630                         break;
3631
3632                 ring = request->ring;
3633                 seqno = request->seqno;
3634         }
3635         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3636         spin_unlock(&file_priv->mm.lock);
3637
3638         if (seqno == 0)
3639                 return 0;
3640
3641         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3642         if (ret == 0)
3643                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3644
3645         return ret;
3646 }
3647
3648 int
3649 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3650                     uint32_t alignment,
3651                     bool map_and_fenceable,
3652                     bool nonblocking)
3653 {
3654         int ret;
3655
3656         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3657                 return -EBUSY;
3658
3659         if (i915_gem_obj_ggtt_bound(obj)) {
3660                 if ((alignment && i915_gem_obj_ggtt_offset(obj) & (alignment - 1)) ||
3661                     (map_and_fenceable && !obj->map_and_fenceable)) {
3662                         WARN(obj->pin_count,
3663                              "bo is already pinned with incorrect alignment:"
3664                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3665                              " obj->map_and_fenceable=%d\n",
3666                              i915_gem_obj_ggtt_offset(obj), alignment,
3667                              map_and_fenceable,
3668                              obj->map_and_fenceable);
3669                         ret = i915_gem_object_unbind(obj);
3670                         if (ret)
3671                                 return ret;
3672                 }
3673         }
3674
3675         if (!i915_gem_obj_ggtt_bound(obj)) {
3676                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3677
3678                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3679                                                   map_and_fenceable,
3680                                                   nonblocking);
3681                 if (ret)
3682                         return ret;
3683
3684                 if (!dev_priv->mm.aliasing_ppgtt)
3685                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3686         }
3687
3688         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3689                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3690
3691         obj->pin_count++;
3692         obj->pin_mappable |= map_and_fenceable;
3693
3694         return 0;
3695 }
3696
3697 void
3698 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3699 {
3700         BUG_ON(obj->pin_count == 0);
3701         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3702
3703         if (--obj->pin_count == 0)
3704                 obj->pin_mappable = false;
3705 }
3706
3707 int
3708 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3709                    struct drm_file *file)
3710 {
3711         struct drm_i915_gem_pin *args = data;
3712         struct drm_i915_gem_object *obj;
3713         int ret;
3714
3715         ret = i915_mutex_lock_interruptible(dev);
3716         if (ret)
3717                 return ret;
3718
3719         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3720         if (&obj->base == NULL) {
3721                 ret = -ENOENT;
3722                 goto unlock;
3723         }
3724
3725         if (obj->madv != I915_MADV_WILLNEED) {
3726                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3727                 ret = -EINVAL;
3728                 goto out;
3729         }
3730
3731         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3732                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3733                           args->handle);
3734                 ret = -EINVAL;
3735                 goto out;
3736         }
3737
3738         if (obj->user_pin_count == 0) {
3739                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3740                 if (ret)
3741                         goto out;
3742         }
3743
3744         obj->user_pin_count++;
3745         obj->pin_filp = file;
3746
3747         /* XXX - flush the CPU caches for pinned objects
3748          * as the X server doesn't manage domains yet
3749          */
3750         i915_gem_object_flush_cpu_write_domain(obj);
3751         args->offset = i915_gem_obj_ggtt_offset(obj);
3752 out:
3753         drm_gem_object_unreference(&obj->base);
3754 unlock:
3755         mutex_unlock(&dev->struct_mutex);
3756         return ret;
3757 }
3758
3759 int
3760 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3761                      struct drm_file *file)
3762 {
3763         struct drm_i915_gem_pin *args = data;
3764         struct drm_i915_gem_object *obj;
3765         int ret;
3766
3767         ret = i915_mutex_lock_interruptible(dev);
3768         if (ret)
3769                 return ret;
3770
3771         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3772         if (&obj->base == NULL) {
3773                 ret = -ENOENT;
3774                 goto unlock;
3775         }
3776
3777         if (obj->pin_filp != file) {
3778                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3779                           args->handle);
3780                 ret = -EINVAL;
3781                 goto out;
3782         }
3783         obj->user_pin_count--;
3784         if (obj->user_pin_count == 0) {
3785                 obj->pin_filp = NULL;
3786                 i915_gem_object_unpin(obj);
3787         }
3788
3789 out:
3790         drm_gem_object_unreference(&obj->base);
3791 unlock:
3792         mutex_unlock(&dev->struct_mutex);
3793         return ret;
3794 }
3795
3796 int
3797 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3798                     struct drm_file *file)
3799 {
3800         struct drm_i915_gem_busy *args = data;
3801         struct drm_i915_gem_object *obj;
3802         int ret;
3803
3804         ret = i915_mutex_lock_interruptible(dev);
3805         if (ret)
3806                 return ret;
3807
3808         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3809         if (&obj->base == NULL) {
3810                 ret = -ENOENT;
3811                 goto unlock;
3812         }
3813
3814         /* Count all active objects as busy, even if they are currently not used
3815          * by the gpu. Users of this interface expect objects to eventually
3816          * become non-busy without any further actions, therefore emit any
3817          * necessary flushes here.
3818          */
3819         ret = i915_gem_object_flush_active(obj);
3820
3821         args->busy = obj->active;
3822         if (obj->ring) {
3823                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3824                 args->busy |= intel_ring_flag(obj->ring) << 16;
3825         }
3826
3827         drm_gem_object_unreference(&obj->base);
3828 unlock:
3829         mutex_unlock(&dev->struct_mutex);
3830         return ret;
3831 }
3832
3833 int
3834 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3835                         struct drm_file *file_priv)
3836 {
3837         return i915_gem_ring_throttle(dev, file_priv);
3838 }
3839
3840 int
3841 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3842                        struct drm_file *file_priv)
3843 {
3844         struct drm_i915_gem_madvise *args = data;
3845         struct drm_i915_gem_object *obj;
3846         int ret;
3847
3848         switch (args->madv) {
3849         case I915_MADV_DONTNEED:
3850         case I915_MADV_WILLNEED:
3851             break;
3852         default:
3853             return -EINVAL;
3854         }
3855
3856         ret = i915_mutex_lock_interruptible(dev);
3857         if (ret)
3858                 return ret;
3859
3860         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3861         if (&obj->base == NULL) {
3862                 ret = -ENOENT;
3863                 goto unlock;
3864         }
3865
3866         if (obj->pin_count) {
3867                 ret = -EINVAL;
3868                 goto out;
3869         }
3870
3871         if (obj->madv != __I915_MADV_PURGED)
3872                 obj->madv = args->madv;
3873
3874         /* if the object is no longer attached, discard its backing storage */
3875         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3876                 i915_gem_object_truncate(obj);
3877
3878         args->retained = obj->madv != __I915_MADV_PURGED;
3879
3880 out:
3881         drm_gem_object_unreference(&obj->base);
3882 unlock:
3883         mutex_unlock(&dev->struct_mutex);
3884         return ret;
3885 }
3886
3887 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3888                           const struct drm_i915_gem_object_ops *ops)
3889 {
3890         INIT_LIST_HEAD(&obj->mm_list);
3891         INIT_LIST_HEAD(&obj->global_list);
3892         INIT_LIST_HEAD(&obj->ring_list);
3893         INIT_LIST_HEAD(&obj->exec_list);
3894         INIT_LIST_HEAD(&obj->vma_list);
3895
3896         obj->ops = ops;
3897
3898         obj->fence_reg = I915_FENCE_REG_NONE;
3899         obj->madv = I915_MADV_WILLNEED;
3900         /* Avoid an unnecessary call to unbind on the first bind. */
3901         obj->map_and_fenceable = true;
3902
3903         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3904 }
3905
3906 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3907         .get_pages = i915_gem_object_get_pages_gtt,
3908         .put_pages = i915_gem_object_put_pages_gtt,
3909 };
3910
3911 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3912                                                   size_t size)
3913 {
3914         struct drm_i915_gem_object *obj;
3915         struct address_space *mapping;
3916         gfp_t mask;
3917
3918         obj = i915_gem_object_alloc(dev);
3919         if (obj == NULL)
3920                 return NULL;
3921
3922         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3923                 i915_gem_object_free(obj);
3924                 return NULL;
3925         }
3926
3927         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3928         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3929                 /* 965gm cannot relocate objects above 4GiB. */
3930                 mask &= ~__GFP_HIGHMEM;
3931                 mask |= __GFP_DMA32;
3932         }
3933
3934         mapping = file_inode(obj->base.filp)->i_mapping;
3935         mapping_set_gfp_mask(mapping, mask);
3936
3937         i915_gem_object_init(obj, &i915_gem_object_ops);
3938
3939         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3940         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3941
3942         if (HAS_LLC(dev)) {
3943                 /* On some devices, we can have the GPU use the LLC (the CPU
3944                  * cache) for about a 10% performance improvement
3945                  * compared to uncached.  Graphics requests other than
3946                  * display scanout are coherent with the CPU in
3947                  * accessing this cache.  This means in this mode we
3948                  * don't need to clflush on the CPU side, and on the
3949                  * GPU side we only need to flush internal caches to
3950                  * get data visible to the CPU.
3951                  *
3952                  * However, we maintain the display planes as UC, and so
3953                  * need to rebind when first used as such.
3954                  */
3955                 obj->cache_level = I915_CACHE_LLC;
3956         } else
3957                 obj->cache_level = I915_CACHE_NONE;
3958
3959         return obj;
3960 }
3961
3962 int i915_gem_init_object(struct drm_gem_object *obj)
3963 {
3964         BUG();
3965
3966         return 0;
3967 }
3968
3969 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3970 {
3971         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3972         struct drm_device *dev = obj->base.dev;
3973         drm_i915_private_t *dev_priv = dev->dev_private;
3974
3975         trace_i915_gem_object_destroy(obj);
3976
3977         if (obj->phys_obj)
3978                 i915_gem_detach_phys_object(dev, obj);
3979
3980         obj->pin_count = 0;
3981         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3982                 bool was_interruptible;
3983
3984                 was_interruptible = dev_priv->mm.interruptible;
3985                 dev_priv->mm.interruptible = false;
3986
3987                 WARN_ON(i915_gem_object_unbind(obj));
3988
3989                 dev_priv->mm.interruptible = was_interruptible;
3990         }
3991
3992         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3993          * before progressing. */
3994         if (obj->stolen)
3995                 i915_gem_object_unpin_pages(obj);
3996
3997         if (WARN_ON(obj->pages_pin_count))
3998                 obj->pages_pin_count = 0;
3999         i915_gem_object_put_pages(obj);
4000         i915_gem_object_free_mmap_offset(obj);
4001         i915_gem_object_release_stolen(obj);
4002
4003         BUG_ON(obj->pages);
4004
4005         if (obj->base.import_attach)
4006                 drm_prime_gem_destroy(&obj->base, NULL);
4007
4008         drm_gem_object_release(&obj->base);
4009         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4010
4011         kfree(obj->bit_17);
4012         i915_gem_object_free(obj);
4013 }
4014
4015 struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
4016                                      struct i915_address_space *vm)
4017 {
4018         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4019         if (vma == NULL)
4020                 return ERR_PTR(-ENOMEM);
4021
4022         INIT_LIST_HEAD(&vma->vma_link);
4023         vma->vm = vm;
4024         vma->obj = obj;
4025
4026         return vma;
4027 }
4028
4029 void i915_gem_vma_destroy(struct i915_vma *vma)
4030 {
4031         WARN_ON(vma->node.allocated);
4032         kfree(vma);
4033 }
4034
4035 int
4036 i915_gem_idle(struct drm_device *dev)
4037 {
4038         drm_i915_private_t *dev_priv = dev->dev_private;
4039         int ret;
4040
4041         if (dev_priv->ums.mm_suspended) {
4042                 mutex_unlock(&dev->struct_mutex);
4043                 return 0;
4044         }
4045
4046         ret = i915_gpu_idle(dev);
4047         if (ret) {
4048                 mutex_unlock(&dev->struct_mutex);
4049                 return ret;
4050         }
4051         i915_gem_retire_requests(dev);
4052
4053         /* Under UMS, be paranoid and evict. */
4054         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4055                 i915_gem_evict_everything(dev);
4056
4057         i915_gem_reset_fences(dev);
4058
4059         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4060
4061         i915_kernel_lost_context(dev);
4062         i915_gem_cleanup_ringbuffer(dev);
4063
4064         /* Cancel the retire work handler, which should be idle now. */
4065         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4066
4067         return 0;
4068 }
4069
4070 void i915_gem_l3_remap(struct drm_device *dev)
4071 {
4072         drm_i915_private_t *dev_priv = dev->dev_private;
4073         u32 misccpctl;
4074         int i;
4075
4076         if (!HAS_L3_GPU_CACHE(dev))
4077                 return;
4078
4079         if (!dev_priv->l3_parity.remap_info)
4080                 return;
4081
4082         misccpctl = I915_READ(GEN7_MISCCPCTL);
4083         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4084         POSTING_READ(GEN7_MISCCPCTL);
4085
4086         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4087                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4088                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4089                         DRM_DEBUG("0x%x was already programmed to %x\n",
4090                                   GEN7_L3LOG_BASE + i, remap);
4091                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4092                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
4093                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4094         }
4095
4096         /* Make sure all the writes land before disabling dop clock gating */
4097         POSTING_READ(GEN7_L3LOG_BASE);
4098
4099         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4100 }
4101
4102 void i915_gem_init_swizzling(struct drm_device *dev)
4103 {
4104         drm_i915_private_t *dev_priv = dev->dev_private;
4105
4106         if (INTEL_INFO(dev)->gen < 5 ||
4107             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4108                 return;
4109
4110         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4111                                  DISP_TILE_SURFACE_SWIZZLING);
4112
4113         if (IS_GEN5(dev))
4114                 return;
4115
4116         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4117         if (IS_GEN6(dev))
4118                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4119         else if (IS_GEN7(dev))
4120                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4121         else
4122                 BUG();
4123 }
4124
4125 static bool
4126 intel_enable_blt(struct drm_device *dev)
4127 {
4128         if (!HAS_BLT(dev))
4129                 return false;
4130
4131         /* The blitter was dysfunctional on early prototypes */
4132         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4133                 DRM_INFO("BLT not supported on this pre-production hardware;"
4134                          " graphics performance will be degraded.\n");
4135                 return false;
4136         }
4137
4138         return true;
4139 }
4140
4141 static int i915_gem_init_rings(struct drm_device *dev)
4142 {
4143         struct drm_i915_private *dev_priv = dev->dev_private;
4144         int ret;
4145
4146         ret = intel_init_render_ring_buffer(dev);
4147         if (ret)
4148                 return ret;
4149
4150         if (HAS_BSD(dev)) {
4151                 ret = intel_init_bsd_ring_buffer(dev);
4152                 if (ret)
4153                         goto cleanup_render_ring;
4154         }
4155
4156         if (intel_enable_blt(dev)) {
4157                 ret = intel_init_blt_ring_buffer(dev);
4158                 if (ret)
4159                         goto cleanup_bsd_ring;
4160         }
4161
4162         if (HAS_VEBOX(dev)) {
4163                 ret = intel_init_vebox_ring_buffer(dev);
4164                 if (ret)
4165                         goto cleanup_blt_ring;
4166         }
4167
4168
4169         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4170         if (ret)
4171                 goto cleanup_vebox_ring;
4172
4173         return 0;
4174
4175 cleanup_vebox_ring:
4176         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4177 cleanup_blt_ring:
4178         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4179 cleanup_bsd_ring:
4180         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4181 cleanup_render_ring:
4182         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4183
4184         return ret;
4185 }
4186
4187 int
4188 i915_gem_init_hw(struct drm_device *dev)
4189 {
4190         drm_i915_private_t *dev_priv = dev->dev_private;
4191         int ret;
4192
4193         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4194                 return -EIO;
4195
4196         if (dev_priv->ellc_size)
4197                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4198
4199         if (HAS_PCH_NOP(dev)) {
4200                 u32 temp = I915_READ(GEN7_MSG_CTL);
4201                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4202                 I915_WRITE(GEN7_MSG_CTL, temp);
4203         }
4204
4205         i915_gem_l3_remap(dev);
4206
4207         i915_gem_init_swizzling(dev);
4208
4209         ret = i915_gem_init_rings(dev);
4210         if (ret)
4211                 return ret;
4212
4213         /*
4214          * XXX: There was some w/a described somewhere suggesting loading
4215          * contexts before PPGTT.
4216          */
4217         i915_gem_context_init(dev);
4218         if (dev_priv->mm.aliasing_ppgtt) {
4219                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4220                 if (ret) {
4221                         i915_gem_cleanup_aliasing_ppgtt(dev);
4222                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4223                 }
4224         }
4225
4226         return 0;
4227 }
4228
4229 int i915_gem_init(struct drm_device *dev)
4230 {
4231         struct drm_i915_private *dev_priv = dev->dev_private;
4232         int ret;
4233
4234         mutex_lock(&dev->struct_mutex);
4235
4236         if (IS_VALLEYVIEW(dev)) {
4237                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4238                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4239                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4240                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4241         }
4242
4243         i915_gem_init_global_gtt(dev);
4244
4245         ret = i915_gem_init_hw(dev);
4246         mutex_unlock(&dev->struct_mutex);
4247         if (ret) {
4248                 i915_gem_cleanup_aliasing_ppgtt(dev);
4249                 return ret;
4250         }
4251
4252         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4253         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4254                 dev_priv->dri1.allow_batchbuffer = 1;
4255         return 0;
4256 }
4257
4258 void
4259 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4260 {
4261         drm_i915_private_t *dev_priv = dev->dev_private;
4262         struct intel_ring_buffer *ring;
4263         int i;
4264
4265         for_each_ring(ring, dev_priv, i)
4266                 intel_cleanup_ring_buffer(ring);
4267 }
4268
4269 int
4270 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4271                        struct drm_file *file_priv)
4272 {
4273         struct drm_i915_private *dev_priv = dev->dev_private;
4274         int ret;
4275
4276         if (drm_core_check_feature(dev, DRIVER_MODESET))
4277                 return 0;
4278
4279         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4280                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4281                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4282         }
4283
4284         mutex_lock(&dev->struct_mutex);
4285         dev_priv->ums.mm_suspended = 0;
4286
4287         ret = i915_gem_init_hw(dev);
4288         if (ret != 0) {
4289                 mutex_unlock(&dev->struct_mutex);
4290                 return ret;
4291         }
4292
4293         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4294         mutex_unlock(&dev->struct_mutex);
4295
4296         ret = drm_irq_install(dev);
4297         if (ret)
4298                 goto cleanup_ringbuffer;
4299
4300         return 0;
4301
4302 cleanup_ringbuffer:
4303         mutex_lock(&dev->struct_mutex);
4304         i915_gem_cleanup_ringbuffer(dev);
4305         dev_priv->ums.mm_suspended = 1;
4306         mutex_unlock(&dev->struct_mutex);
4307
4308         return ret;
4309 }
4310
4311 int
4312 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4313                        struct drm_file *file_priv)
4314 {
4315         struct drm_i915_private *dev_priv = dev->dev_private;
4316         int ret;
4317
4318         if (drm_core_check_feature(dev, DRIVER_MODESET))
4319                 return 0;
4320
4321         drm_irq_uninstall(dev);
4322
4323         mutex_lock(&dev->struct_mutex);
4324         ret =  i915_gem_idle(dev);
4325
4326         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4327          * We need to replace this with a semaphore, or something.
4328          * And not confound ums.mm_suspended!
4329          */
4330         if (ret != 0)
4331                 dev_priv->ums.mm_suspended = 1;
4332         mutex_unlock(&dev->struct_mutex);
4333
4334         return ret;
4335 }
4336
4337 void
4338 i915_gem_lastclose(struct drm_device *dev)
4339 {
4340         int ret;
4341
4342         if (drm_core_check_feature(dev, DRIVER_MODESET))
4343                 return;
4344
4345         mutex_lock(&dev->struct_mutex);
4346         ret = i915_gem_idle(dev);
4347         if (ret)
4348                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4349         mutex_unlock(&dev->struct_mutex);
4350 }
4351
4352 static void
4353 init_ring_lists(struct intel_ring_buffer *ring)
4354 {
4355         INIT_LIST_HEAD(&ring->active_list);
4356         INIT_LIST_HEAD(&ring->request_list);
4357 }
4358
4359 void
4360 i915_gem_load(struct drm_device *dev)
4361 {
4362         drm_i915_private_t *dev_priv = dev->dev_private;
4363         int i;
4364
4365         dev_priv->slab =
4366                 kmem_cache_create("i915_gem_object",
4367                                   sizeof(struct drm_i915_gem_object), 0,
4368                                   SLAB_HWCACHE_ALIGN,
4369                                   NULL);
4370
4371         INIT_LIST_HEAD(&dev_priv->gtt.base.active_list);
4372         INIT_LIST_HEAD(&dev_priv->gtt.base.inactive_list);
4373         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4374         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4375         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4376         for (i = 0; i < I915_NUM_RINGS; i++)
4377                 init_ring_lists(&dev_priv->ring[i]);
4378         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4379                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4380         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4381                           i915_gem_retire_work_handler);
4382         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4383
4384         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4385         if (IS_GEN3(dev)) {
4386                 I915_WRITE(MI_ARB_STATE,
4387                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4388         }
4389
4390         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4391
4392         /* Old X drivers will take 0-2 for front, back, depth buffers */
4393         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4394                 dev_priv->fence_reg_start = 3;
4395
4396         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4397                 dev_priv->num_fence_regs = 32;
4398         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4399                 dev_priv->num_fence_regs = 16;
4400         else
4401                 dev_priv->num_fence_regs = 8;
4402
4403         /* Initialize fence registers to zero */
4404         i915_gem_reset_fences(dev);
4405
4406         i915_gem_detect_bit_6_swizzle(dev);
4407         init_waitqueue_head(&dev_priv->pending_flip_queue);
4408
4409         dev_priv->mm.interruptible = true;
4410
4411         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4412         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4413         register_shrinker(&dev_priv->mm.inactive_shrinker);
4414 }
4415
4416 /*
4417  * Create a physically contiguous memory object for this object
4418  * e.g. for cursor + overlay regs
4419  */
4420 static int i915_gem_init_phys_object(struct drm_device *dev,
4421                                      int id, int size, int align)
4422 {
4423         drm_i915_private_t *dev_priv = dev->dev_private;
4424         struct drm_i915_gem_phys_object *phys_obj;
4425         int ret;
4426
4427         if (dev_priv->mm.phys_objs[id - 1] || !size)
4428                 return 0;
4429
4430         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4431         if (!phys_obj)
4432                 return -ENOMEM;
4433
4434         phys_obj->id = id;
4435
4436         phys_obj->handle = drm_pci_alloc(dev, size, align);
4437         if (!phys_obj->handle) {
4438                 ret = -ENOMEM;
4439                 goto kfree_obj;
4440         }
4441 #ifdef CONFIG_X86
4442         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4443 #endif
4444
4445         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4446
4447         return 0;
4448 kfree_obj:
4449         kfree(phys_obj);
4450         return ret;
4451 }
4452
4453 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4454 {
4455         drm_i915_private_t *dev_priv = dev->dev_private;
4456         struct drm_i915_gem_phys_object *phys_obj;
4457
4458         if (!dev_priv->mm.phys_objs[id - 1])
4459                 return;
4460
4461         phys_obj = dev_priv->mm.phys_objs[id - 1];
4462         if (phys_obj->cur_obj) {
4463                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4464         }
4465
4466 #ifdef CONFIG_X86
4467         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4468 #endif
4469         drm_pci_free(dev, phys_obj->handle);
4470         kfree(phys_obj);
4471         dev_priv->mm.phys_objs[id - 1] = NULL;
4472 }
4473
4474 void i915_gem_free_all_phys_object(struct drm_device *dev)
4475 {
4476         int i;
4477
4478         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4479                 i915_gem_free_phys_object(dev, i);
4480 }
4481
4482 void i915_gem_detach_phys_object(struct drm_device *dev,
4483                                  struct drm_i915_gem_object *obj)
4484 {
4485         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4486         char *vaddr;
4487         int i;
4488         int page_count;
4489
4490         if (!obj->phys_obj)
4491                 return;
4492         vaddr = obj->phys_obj->handle->vaddr;
4493
4494         page_count = obj->base.size / PAGE_SIZE;
4495         for (i = 0; i < page_count; i++) {
4496                 struct page *page = shmem_read_mapping_page(mapping, i);
4497                 if (!IS_ERR(page)) {
4498                         char *dst = kmap_atomic(page);
4499                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4500                         kunmap_atomic(dst);
4501
4502                         drm_clflush_pages(&page, 1);
4503
4504                         set_page_dirty(page);
4505                         mark_page_accessed(page);
4506                         page_cache_release(page);
4507                 }
4508         }
4509         i915_gem_chipset_flush(dev);
4510
4511         obj->phys_obj->cur_obj = NULL;
4512         obj->phys_obj = NULL;
4513 }
4514
4515 int
4516 i915_gem_attach_phys_object(struct drm_device *dev,
4517                             struct drm_i915_gem_object *obj,
4518                             int id,
4519                             int align)
4520 {
4521         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4522         drm_i915_private_t *dev_priv = dev->dev_private;
4523         int ret = 0;
4524         int page_count;
4525         int i;
4526
4527         if (id > I915_MAX_PHYS_OBJECT)
4528                 return -EINVAL;
4529
4530         if (obj->phys_obj) {
4531                 if (obj->phys_obj->id == id)
4532                         return 0;
4533                 i915_gem_detach_phys_object(dev, obj);
4534         }
4535
4536         /* create a new object */
4537         if (!dev_priv->mm.phys_objs[id - 1]) {
4538                 ret = i915_gem_init_phys_object(dev, id,
4539                                                 obj->base.size, align);
4540                 if (ret) {
4541                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4542                                   id, obj->base.size);
4543                         return ret;
4544                 }
4545         }
4546
4547         /* bind to the object */
4548         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4549         obj->phys_obj->cur_obj = obj;
4550
4551         page_count = obj->base.size / PAGE_SIZE;
4552
4553         for (i = 0; i < page_count; i++) {
4554                 struct page *page;
4555                 char *dst, *src;
4556
4557                 page = shmem_read_mapping_page(mapping, i);
4558                 if (IS_ERR(page))
4559                         return PTR_ERR(page);
4560
4561                 src = kmap_atomic(page);
4562                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4563                 memcpy(dst, src, PAGE_SIZE);
4564                 kunmap_atomic(src);
4565
4566                 mark_page_accessed(page);
4567                 page_cache_release(page);
4568         }
4569
4570         return 0;
4571 }
4572
4573 static int
4574 i915_gem_phys_pwrite(struct drm_device *dev,
4575                      struct drm_i915_gem_object *obj,
4576                      struct drm_i915_gem_pwrite *args,
4577                      struct drm_file *file_priv)
4578 {
4579         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4580         char __user *user_data = to_user_ptr(args->data_ptr);
4581
4582         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4583                 unsigned long unwritten;
4584
4585                 /* The physical object once assigned is fixed for the lifetime
4586                  * of the obj, so we can safely drop the lock and continue
4587                  * to access vaddr.
4588                  */
4589                 mutex_unlock(&dev->struct_mutex);
4590                 unwritten = copy_from_user(vaddr, user_data, args->size);
4591                 mutex_lock(&dev->struct_mutex);
4592                 if (unwritten)
4593                         return -EFAULT;
4594         }
4595
4596         i915_gem_chipset_flush(dev);
4597         return 0;
4598 }
4599
4600 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4601 {
4602         struct drm_i915_file_private *file_priv = file->driver_priv;
4603
4604         /* Clean up our request list when the client is going away, so that
4605          * later retire_requests won't dereference our soon-to-be-gone
4606          * file_priv.
4607          */
4608         spin_lock(&file_priv->mm.lock);
4609         while (!list_empty(&file_priv->mm.request_list)) {
4610                 struct drm_i915_gem_request *request;
4611
4612                 request = list_first_entry(&file_priv->mm.request_list,
4613                                            struct drm_i915_gem_request,
4614                                            client_list);
4615                 list_del(&request->client_list);
4616                 request->file_priv = NULL;
4617         }
4618         spin_unlock(&file_priv->mm.lock);
4619 }
4620
4621 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4622 {
4623         if (!mutex_is_locked(mutex))
4624                 return false;
4625
4626 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4627         return mutex->owner == task;
4628 #else
4629         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4630         return false;
4631 #endif
4632 }
4633
4634 static int
4635 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4636 {
4637         struct drm_i915_private *dev_priv =
4638                 container_of(shrinker,
4639                              struct drm_i915_private,
4640                              mm.inactive_shrinker);
4641         struct drm_device *dev = dev_priv->dev;
4642         struct i915_address_space *vm = &dev_priv->gtt.base;
4643         struct drm_i915_gem_object *obj;
4644         int nr_to_scan = sc->nr_to_scan;
4645         bool unlock = true;
4646         int cnt;
4647
4648         if (!mutex_trylock(&dev->struct_mutex)) {
4649                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4650                         return 0;
4651
4652                 if (dev_priv->mm.shrinker_no_lock_stealing)
4653                         return 0;
4654
4655                 unlock = false;
4656         }
4657
4658         if (nr_to_scan) {
4659                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4660                 if (nr_to_scan > 0)
4661                         nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4662                                                         false);
4663                 if (nr_to_scan > 0)
4664                         i915_gem_shrink_all(dev_priv);
4665         }
4666
4667         cnt = 0;
4668         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4669                 if (obj->pages_pin_count == 0)
4670                         cnt += obj->base.size >> PAGE_SHIFT;
4671         list_for_each_entry(obj, &vm->inactive_list, global_list)
4672                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4673                         cnt += obj->base.size >> PAGE_SHIFT;
4674
4675         if (unlock)
4676                 mutex_unlock(&dev->struct_mutex);
4677         return cnt;
4678 }