drm/i915: Move the gtt mm takedown to cleanup
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30
31 #define GEN6_PPGTT_PD_ENTRIES 512
32 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
33 typedef uint64_t gen8_gtt_pte_t;
34 typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
35
36 /* PPGTT stuff */
37 #define GEN6_GTT_ADDR_ENCODE(addr)      ((addr) | (((addr) >> 28) & 0xff0))
38 #define HSW_GTT_ADDR_ENCODE(addr)       ((addr) | (((addr) >> 28) & 0x7f0))
39
40 #define GEN6_PDE_VALID                  (1 << 0)
41 /* gen6+ has bit 11-4 for physical addr bit 39-32 */
42 #define GEN6_PDE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
43
44 #define GEN6_PTE_VALID                  (1 << 0)
45 #define GEN6_PTE_UNCACHED               (1 << 1)
46 #define HSW_PTE_UNCACHED                (0)
47 #define GEN6_PTE_CACHE_LLC              (2 << 1)
48 #define GEN7_PTE_CACHE_L3_LLC           (3 << 1)
49 #define GEN6_PTE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
50 #define HSW_PTE_ADDR_ENCODE(addr)       HSW_GTT_ADDR_ENCODE(addr)
51
52 /* Cacheability Control is a 4-bit value. The low three bits are stored in *
53  * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
54  */
55 #define HSW_CACHEABILITY_CONTROL(bits)  ((((bits) & 0x7) << 1) | \
56                                          (((bits) & 0x8) << (11 - 3)))
57 #define HSW_WB_LLC_AGE3                 HSW_CACHEABILITY_CONTROL(0x2)
58 #define HSW_WB_LLC_AGE0                 HSW_CACHEABILITY_CONTROL(0x3)
59 #define HSW_WB_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0xb)
60 #define HSW_WT_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0x6)
61
62 #define GEN8_PTES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
63 #define GEN8_PDES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
64 #define GEN8_LEGACY_PDPS                4
65
66 #define PPAT_UNCACHED_INDEX             (_PAGE_PWT | _PAGE_PCD)
67 #define PPAT_CACHED_PDE_INDEX           0 /* WB LLC */
68 #define PPAT_CACHED_INDEX               _PAGE_PAT /* WB LLCeLLC */
69 #define PPAT_DISPLAY_ELLC_INDEX         _PAGE_PCD /* WT eLLC */
70
71 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
72                                              enum i915_cache_level level,
73                                              bool valid)
74 {
75         gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
76         pte |= addr;
77         if (level != I915_CACHE_NONE)
78                 pte |= PPAT_CACHED_INDEX;
79         else
80                 pte |= PPAT_UNCACHED_INDEX;
81         return pte;
82 }
83
84 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
85                                              dma_addr_t addr,
86                                              enum i915_cache_level level)
87 {
88         gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
89         pde |= addr;
90         if (level != I915_CACHE_NONE)
91                 pde |= PPAT_CACHED_PDE_INDEX;
92         else
93                 pde |= PPAT_UNCACHED_INDEX;
94         return pde;
95 }
96
97 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
98                                      enum i915_cache_level level,
99                                      bool valid)
100 {
101         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
102         pte |= GEN6_PTE_ADDR_ENCODE(addr);
103
104         switch (level) {
105         case I915_CACHE_L3_LLC:
106         case I915_CACHE_LLC:
107                 pte |= GEN6_PTE_CACHE_LLC;
108                 break;
109         case I915_CACHE_NONE:
110                 pte |= GEN6_PTE_UNCACHED;
111                 break;
112         default:
113                 WARN_ON(1);
114         }
115
116         return pte;
117 }
118
119 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
120                                      enum i915_cache_level level,
121                                      bool valid)
122 {
123         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
124         pte |= GEN6_PTE_ADDR_ENCODE(addr);
125
126         switch (level) {
127         case I915_CACHE_L3_LLC:
128                 pte |= GEN7_PTE_CACHE_L3_LLC;
129                 break;
130         case I915_CACHE_LLC:
131                 pte |= GEN6_PTE_CACHE_LLC;
132                 break;
133         case I915_CACHE_NONE:
134                 pte |= GEN6_PTE_UNCACHED;
135                 break;
136         default:
137                 WARN_ON(1);
138         }
139
140         return pte;
141 }
142
143 #define BYT_PTE_WRITEABLE               (1 << 1)
144 #define BYT_PTE_SNOOPED_BY_CPU_CACHES   (1 << 2)
145
146 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
147                                      enum i915_cache_level level,
148                                      bool valid)
149 {
150         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
151         pte |= GEN6_PTE_ADDR_ENCODE(addr);
152
153         /* Mark the page as writeable.  Other platforms don't have a
154          * setting for read-only/writable, so this matches that behavior.
155          */
156         pte |= BYT_PTE_WRITEABLE;
157
158         if (level != I915_CACHE_NONE)
159                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
160
161         return pte;
162 }
163
164 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
165                                      enum i915_cache_level level,
166                                      bool valid)
167 {
168         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
169         pte |= HSW_PTE_ADDR_ENCODE(addr);
170
171         if (level != I915_CACHE_NONE)
172                 pte |= HSW_WB_LLC_AGE3;
173
174         return pte;
175 }
176
177 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
178                                       enum i915_cache_level level,
179                                       bool valid)
180 {
181         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
182         pte |= HSW_PTE_ADDR_ENCODE(addr);
183
184         switch (level) {
185         case I915_CACHE_NONE:
186                 break;
187         case I915_CACHE_WT:
188                 pte |= HSW_WT_ELLC_LLC_AGE0;
189                 break;
190         default:
191                 pte |= HSW_WB_ELLC_LLC_AGE0;
192                 break;
193         }
194
195         return pte;
196 }
197
198 /* Broadwell Page Directory Pointer Descriptors */
199 static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
200                            uint64_t val)
201 {
202         int ret;
203
204         BUG_ON(entry >= 4);
205
206         ret = intel_ring_begin(ring, 6);
207         if (ret)
208                 return ret;
209
210         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
211         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
212         intel_ring_emit(ring, (u32)(val >> 32));
213         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
214         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
215         intel_ring_emit(ring, (u32)(val));
216         intel_ring_advance(ring);
217
218         return 0;
219 }
220
221 static int gen8_ppgtt_enable(struct drm_device *dev)
222 {
223         struct drm_i915_private *dev_priv = dev->dev_private;
224         struct intel_ring_buffer *ring;
225         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
226         int i, j, ret;
227
228         /* bit of a hack to find the actual last used pd */
229         int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
230
231         for_each_ring(ring, dev_priv, j) {
232                 I915_WRITE(RING_MODE_GEN7(ring),
233                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
234         }
235
236         for (i = used_pd - 1; i >= 0; i--) {
237                 dma_addr_t addr = ppgtt->pd_dma_addr[i];
238                 for_each_ring(ring, dev_priv, j) {
239                         ret = gen8_write_pdp(ring, i, addr);
240                         if (ret)
241                                 goto err_out;
242                 }
243         }
244         return 0;
245
246 err_out:
247         for_each_ring(ring, dev_priv, j)
248                 I915_WRITE(RING_MODE_GEN7(ring),
249                            _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
250         return ret;
251 }
252
253 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
254                                    unsigned first_entry,
255                                    unsigned num_entries,
256                                    bool use_scratch)
257 {
258         struct i915_hw_ppgtt *ppgtt =
259                 container_of(vm, struct i915_hw_ppgtt, base);
260         gen8_gtt_pte_t *pt_vaddr, scratch_pte;
261         unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
262         unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE;
263         unsigned last_pte, i;
264
265         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
266                                       I915_CACHE_LLC, use_scratch);
267
268         while (num_entries) {
269                 struct page *page_table = &ppgtt->gen8_pt_pages[act_pt];
270
271                 last_pte = first_pte + num_entries;
272                 if (last_pte > GEN8_PTES_PER_PAGE)
273                         last_pte = GEN8_PTES_PER_PAGE;
274
275                 pt_vaddr = kmap_atomic(page_table);
276
277                 for (i = first_pte; i < last_pte; i++)
278                         pt_vaddr[i] = scratch_pte;
279
280                 kunmap_atomic(pt_vaddr);
281
282                 num_entries -= last_pte - first_pte;
283                 first_pte = 0;
284                 act_pt++;
285         }
286 }
287
288 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
289                                       struct sg_table *pages,
290                                       unsigned first_entry,
291                                       enum i915_cache_level cache_level)
292 {
293         struct i915_hw_ppgtt *ppgtt =
294                 container_of(vm, struct i915_hw_ppgtt, base);
295         gen8_gtt_pte_t *pt_vaddr;
296         unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
297         unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE;
298         struct sg_page_iter sg_iter;
299
300         pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
301         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
302                 dma_addr_t page_addr;
303
304                 page_addr = sg_dma_address(sg_iter.sg) +
305                                 (sg_iter.sg_pgoffset << PAGE_SHIFT);
306                 pt_vaddr[act_pte] = gen8_pte_encode(page_addr, cache_level,
307                                                     true);
308                 if (++act_pte == GEN8_PTES_PER_PAGE) {
309                         kunmap_atomic(pt_vaddr);
310                         act_pt++;
311                         pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
312                         act_pte = 0;
313
314                 }
315         }
316         kunmap_atomic(pt_vaddr);
317 }
318
319 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
320 {
321         struct i915_hw_ppgtt *ppgtt =
322                 container_of(vm, struct i915_hw_ppgtt, base);
323         int i, j;
324
325         drm_mm_takedown(&vm->mm);
326
327         for (i = 0; i < ppgtt->num_pd_pages ; i++) {
328                 if (ppgtt->pd_dma_addr[i]) {
329                         pci_unmap_page(ppgtt->base.dev->pdev,
330                                        ppgtt->pd_dma_addr[i],
331                                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
332
333                         for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
334                                 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
335                                 if (addr)
336                                         pci_unmap_page(ppgtt->base.dev->pdev,
337                                                        addr,
338                                                        PAGE_SIZE,
339                                                        PCI_DMA_BIDIRECTIONAL);
340
341                         }
342                 }
343                 kfree(ppgtt->gen8_pt_dma_addr[i]);
344         }
345
346         __free_pages(ppgtt->gen8_pt_pages, get_order(ppgtt->num_pt_pages << PAGE_SHIFT));
347         __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
348 }
349
350 /**
351  * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
352  * net effect resembling a 2-level page table in normal x86 terms. Each PDP
353  * represents 1GB of memory
354  * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
355  *
356  * TODO: Do something with the size parameter
357  **/
358 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
359 {
360         struct page *pt_pages;
361         int i, j, ret = -ENOMEM;
362         const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
363         const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
364
365         if (size % (1<<30))
366                 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
367
368         /* FIXME: split allocation into smaller pieces. For now we only ever do
369          * this once, but with full PPGTT, the multiple contiguous allocations
370          * will be bad.
371          */
372         ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
373         if (!ppgtt->pd_pages)
374                 return -ENOMEM;
375
376         pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
377         if (!pt_pages) {
378                 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
379                 return -ENOMEM;
380         }
381
382         ppgtt->gen8_pt_pages = pt_pages;
383         ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
384         ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
385         ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
386         ppgtt->enable = gen8_ppgtt_enable;
387         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
388         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
389         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
390         ppgtt->base.start = 0;
391         ppgtt->base.total = ppgtt->num_pt_pages * GEN8_PTES_PER_PAGE * PAGE_SIZE;
392
393         BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
394
395         /*
396          * - Create a mapping for the page directories.
397          * - For each page directory:
398          *      allocate space for page table mappings.
399          *      map each page table
400          */
401         for (i = 0; i < max_pdp; i++) {
402                 dma_addr_t temp;
403                 temp = pci_map_page(ppgtt->base.dev->pdev,
404                                     &ppgtt->pd_pages[i], 0,
405                                     PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
406                 if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
407                         goto err_out;
408
409                 ppgtt->pd_dma_addr[i] = temp;
410
411                 ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL);
412                 if (!ppgtt->gen8_pt_dma_addr[i])
413                         goto err_out;
414
415                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
416                         struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
417                         temp = pci_map_page(ppgtt->base.dev->pdev,
418                                             p, 0, PAGE_SIZE,
419                                             PCI_DMA_BIDIRECTIONAL);
420
421                         if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
422                                 goto err_out;
423
424                         ppgtt->gen8_pt_dma_addr[i][j] = temp;
425                 }
426         }
427
428         /* For now, the PPGTT helper functions all require that the PDEs are
429          * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
430          * will never need to touch the PDEs again */
431         for (i = 0; i < max_pdp; i++) {
432                 gen8_ppgtt_pde_t *pd_vaddr;
433                 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
434                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
435                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
436                         pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
437                                                       I915_CACHE_LLC);
438                 }
439                 kunmap_atomic(pd_vaddr);
440         }
441
442         ppgtt->base.clear_range(&ppgtt->base, 0,
443                                 ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE,
444                                 true);
445
446         DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
447                          ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
448         DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
449                          ppgtt->num_pt_pages,
450                          (ppgtt->num_pt_pages - num_pt_pages) +
451                          size % (1<<30));
452         return 0;
453
454 err_out:
455         ppgtt->base.cleanup(&ppgtt->base);
456         return ret;
457 }
458
459 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
460 {
461         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
462         gen6_gtt_pte_t __iomem *pd_addr;
463         uint32_t pd_entry;
464         int i;
465
466         WARN_ON(ppgtt->pd_offset & 0x3f);
467         pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
468                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
469         for (i = 0; i < ppgtt->num_pd_entries; i++) {
470                 dma_addr_t pt_addr;
471
472                 pt_addr = ppgtt->pt_dma_addr[i];
473                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
474                 pd_entry |= GEN6_PDE_VALID;
475
476                 writel(pd_entry, pd_addr + i);
477         }
478         readl(pd_addr);
479 }
480
481 static int gen6_ppgtt_enable(struct drm_device *dev)
482 {
483         drm_i915_private_t *dev_priv = dev->dev_private;
484         uint32_t pd_offset;
485         struct intel_ring_buffer *ring;
486         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
487         int i;
488
489         BUG_ON(ppgtt->pd_offset & 0x3f);
490
491         gen6_write_pdes(ppgtt);
492
493         pd_offset = ppgtt->pd_offset;
494         pd_offset /= 64; /* in cachelines, */
495         pd_offset <<= 16;
496
497         if (INTEL_INFO(dev)->gen == 6) {
498                 uint32_t ecochk, gab_ctl, ecobits;
499
500                 ecobits = I915_READ(GAC_ECO_BITS);
501                 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
502                                          ECOBITS_PPGTT_CACHE64B);
503
504                 gab_ctl = I915_READ(GAB_CTL);
505                 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
506
507                 ecochk = I915_READ(GAM_ECOCHK);
508                 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
509                                        ECOCHK_PPGTT_CACHE64B);
510                 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
511         } else if (INTEL_INFO(dev)->gen >= 7) {
512                 uint32_t ecochk, ecobits;
513
514                 ecobits = I915_READ(GAC_ECO_BITS);
515                 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
516
517                 ecochk = I915_READ(GAM_ECOCHK);
518                 if (IS_HASWELL(dev)) {
519                         ecochk |= ECOCHK_PPGTT_WB_HSW;
520                 } else {
521                         ecochk |= ECOCHK_PPGTT_LLC_IVB;
522                         ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
523                 }
524                 I915_WRITE(GAM_ECOCHK, ecochk);
525                 /* GFX_MODE is per-ring on gen7+ */
526         }
527
528         for_each_ring(ring, dev_priv, i) {
529                 if (INTEL_INFO(dev)->gen >= 7)
530                         I915_WRITE(RING_MODE_GEN7(ring),
531                                    _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
532
533                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
534                 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
535         }
536         return 0;
537 }
538
539 /* PPGTT support for Sandybdrige/Gen6 and later */
540 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
541                                    unsigned first_entry,
542                                    unsigned num_entries,
543                                    bool use_scratch)
544 {
545         struct i915_hw_ppgtt *ppgtt =
546                 container_of(vm, struct i915_hw_ppgtt, base);
547         gen6_gtt_pte_t *pt_vaddr, scratch_pte;
548         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
549         unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
550         unsigned last_pte, i;
551
552         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
553
554         while (num_entries) {
555                 last_pte = first_pte + num_entries;
556                 if (last_pte > I915_PPGTT_PT_ENTRIES)
557                         last_pte = I915_PPGTT_PT_ENTRIES;
558
559                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
560
561                 for (i = first_pte; i < last_pte; i++)
562                         pt_vaddr[i] = scratch_pte;
563
564                 kunmap_atomic(pt_vaddr);
565
566                 num_entries -= last_pte - first_pte;
567                 first_pte = 0;
568                 act_pt++;
569         }
570 }
571
572 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
573                                       struct sg_table *pages,
574                                       unsigned first_entry,
575                                       enum i915_cache_level cache_level)
576 {
577         struct i915_hw_ppgtt *ppgtt =
578                 container_of(vm, struct i915_hw_ppgtt, base);
579         gen6_gtt_pte_t *pt_vaddr;
580         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
581         unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
582         struct sg_page_iter sg_iter;
583
584         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
585         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
586                 dma_addr_t page_addr;
587
588                 page_addr = sg_page_iter_dma_address(&sg_iter);
589                 pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level, true);
590                 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
591                         kunmap_atomic(pt_vaddr);
592                         act_pt++;
593                         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
594                         act_pte = 0;
595
596                 }
597         }
598         kunmap_atomic(pt_vaddr);
599 }
600
601 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
602 {
603         struct i915_hw_ppgtt *ppgtt =
604                 container_of(vm, struct i915_hw_ppgtt, base);
605         int i;
606
607         drm_mm_takedown(&ppgtt->base.mm);
608
609         if (ppgtt->pt_dma_addr) {
610                 for (i = 0; i < ppgtt->num_pd_entries; i++)
611                         pci_unmap_page(ppgtt->base.dev->pdev,
612                                        ppgtt->pt_dma_addr[i],
613                                        4096, PCI_DMA_BIDIRECTIONAL);
614         }
615
616         kfree(ppgtt->pt_dma_addr);
617         for (i = 0; i < ppgtt->num_pd_entries; i++)
618                 __free_page(ppgtt->pt_pages[i]);
619         kfree(ppgtt->pt_pages);
620         kfree(ppgtt);
621 }
622
623 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
624 {
625         struct drm_device *dev = ppgtt->base.dev;
626         struct drm_i915_private *dev_priv = dev->dev_private;
627         unsigned first_pd_entry_in_global_pt;
628         int i;
629         int ret = -ENOMEM;
630
631         /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
632          * entries. For aliasing ppgtt support we just steal them at the end for
633          * now. */
634         first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
635
636         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
637         ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
638         ppgtt->enable = gen6_ppgtt_enable;
639         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
640         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
641         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
642         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
643         ppgtt->base.start = 0;
644         ppgtt->base.total = GEN6_PPGTT_PD_ENTRIES * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
645         ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
646                                   GFP_KERNEL);
647         if (!ppgtt->pt_pages)
648                 return -ENOMEM;
649
650         for (i = 0; i < ppgtt->num_pd_entries; i++) {
651                 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
652                 if (!ppgtt->pt_pages[i])
653                         goto err_pt_alloc;
654         }
655
656         ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
657                                      GFP_KERNEL);
658         if (!ppgtt->pt_dma_addr)
659                 goto err_pt_alloc;
660
661         for (i = 0; i < ppgtt->num_pd_entries; i++) {
662                 dma_addr_t pt_addr;
663
664                 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
665                                        PCI_DMA_BIDIRECTIONAL);
666
667                 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
668                         ret = -EIO;
669                         goto err_pd_pin;
670
671                 }
672                 ppgtt->pt_dma_addr[i] = pt_addr;
673         }
674
675         ppgtt->base.clear_range(&ppgtt->base, 0,
676                                 ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
677
678         ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
679
680         return 0;
681
682 err_pd_pin:
683         if (ppgtt->pt_dma_addr) {
684                 for (i--; i >= 0; i--)
685                         pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
686                                        4096, PCI_DMA_BIDIRECTIONAL);
687         }
688 err_pt_alloc:
689         kfree(ppgtt->pt_dma_addr);
690         for (i = 0; i < ppgtt->num_pd_entries; i++) {
691                 if (ppgtt->pt_pages[i])
692                         __free_page(ppgtt->pt_pages[i]);
693         }
694         kfree(ppgtt->pt_pages);
695
696         return ret;
697 }
698
699 static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
700 {
701         struct drm_i915_private *dev_priv = dev->dev_private;
702         struct i915_hw_ppgtt *ppgtt;
703         int ret;
704
705         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
706         if (!ppgtt)
707                 return -ENOMEM;
708
709         ppgtt->base.dev = dev;
710
711         if (INTEL_INFO(dev)->gen < 8)
712                 ret = gen6_ppgtt_init(ppgtt);
713         else if (IS_GEN8(dev))
714                 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
715         else
716                 BUG();
717
718         if (ret)
719                 kfree(ppgtt);
720         else {
721                 dev_priv->mm.aliasing_ppgtt = ppgtt;
722                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
723                             ppgtt->base.total);
724         }
725
726         return ret;
727 }
728
729 void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
730 {
731         struct drm_i915_private *dev_priv = dev->dev_private;
732         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
733
734         if (!ppgtt)
735                 return;
736
737         ppgtt->base.cleanup(&ppgtt->base);
738         dev_priv->mm.aliasing_ppgtt = NULL;
739 }
740
741 void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
742                             struct drm_i915_gem_object *obj,
743                             enum i915_cache_level cache_level)
744 {
745         ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
746                                    i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
747                                    cache_level);
748 }
749
750 void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
751                               struct drm_i915_gem_object *obj)
752 {
753         ppgtt->base.clear_range(&ppgtt->base,
754                                 i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
755                                 obj->base.size >> PAGE_SHIFT,
756                                 true);
757 }
758
759 extern int intel_iommu_gfx_mapped;
760 /* Certain Gen5 chipsets require require idling the GPU before
761  * unmapping anything from the GTT when VT-d is enabled.
762  */
763 static inline bool needs_idle_maps(struct drm_device *dev)
764 {
765 #ifdef CONFIG_INTEL_IOMMU
766         /* Query intel_iommu to see if we need the workaround. Presumably that
767          * was loaded first.
768          */
769         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
770                 return true;
771 #endif
772         return false;
773 }
774
775 static bool do_idling(struct drm_i915_private *dev_priv)
776 {
777         bool ret = dev_priv->mm.interruptible;
778
779         if (unlikely(dev_priv->gtt.do_idle_maps)) {
780                 dev_priv->mm.interruptible = false;
781                 if (i915_gpu_idle(dev_priv->dev)) {
782                         DRM_ERROR("Couldn't idle GPU\n");
783                         /* Wait a bit, in hopes it avoids the hang */
784                         udelay(10);
785                 }
786         }
787
788         return ret;
789 }
790
791 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
792 {
793         if (unlikely(dev_priv->gtt.do_idle_maps))
794                 dev_priv->mm.interruptible = interruptible;
795 }
796
797 void i915_check_and_clear_faults(struct drm_device *dev)
798 {
799         struct drm_i915_private *dev_priv = dev->dev_private;
800         struct intel_ring_buffer *ring;
801         int i;
802
803         if (INTEL_INFO(dev)->gen < 6)
804                 return;
805
806         for_each_ring(ring, dev_priv, i) {
807                 u32 fault_reg;
808                 fault_reg = I915_READ(RING_FAULT_REG(ring));
809                 if (fault_reg & RING_FAULT_VALID) {
810                         DRM_DEBUG_DRIVER("Unexpected fault\n"
811                                          "\tAddr: 0x%08lx\\n"
812                                          "\tAddress space: %s\n"
813                                          "\tSource ID: %d\n"
814                                          "\tType: %d\n",
815                                          fault_reg & PAGE_MASK,
816                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
817                                          RING_FAULT_SRCID(fault_reg),
818                                          RING_FAULT_FAULT_TYPE(fault_reg));
819                         I915_WRITE(RING_FAULT_REG(ring),
820                                    fault_reg & ~RING_FAULT_VALID);
821                 }
822         }
823         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
824 }
825
826 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
827 {
828         struct drm_i915_private *dev_priv = dev->dev_private;
829
830         /* Don't bother messing with faults pre GEN6 as we have little
831          * documentation supporting that it's a good idea.
832          */
833         if (INTEL_INFO(dev)->gen < 6)
834                 return;
835
836         i915_check_and_clear_faults(dev);
837
838         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
839                                        dev_priv->gtt.base.start / PAGE_SIZE,
840                                        dev_priv->gtt.base.total / PAGE_SIZE,
841                                        false);
842 }
843
844 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
845 {
846         struct drm_i915_private *dev_priv = dev->dev_private;
847         struct drm_i915_gem_object *obj;
848
849         i915_check_and_clear_faults(dev);
850
851         /* First fill our portion of the GTT with scratch pages */
852         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
853                                        dev_priv->gtt.base.start / PAGE_SIZE,
854                                        dev_priv->gtt.base.total / PAGE_SIZE,
855                                        true);
856
857         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
858                 i915_gem_clflush_object(obj, obj->pin_display);
859                 i915_gem_gtt_bind_object(obj, obj->cache_level);
860         }
861
862         i915_gem_chipset_flush(dev);
863 }
864
865 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
866 {
867         if (obj->has_dma_mapping)
868                 return 0;
869
870         if (!dma_map_sg(&obj->base.dev->pdev->dev,
871                         obj->pages->sgl, obj->pages->nents,
872                         PCI_DMA_BIDIRECTIONAL))
873                 return -ENOSPC;
874
875         return 0;
876 }
877
878 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
879 {
880 #ifdef writeq
881         writeq(pte, addr);
882 #else
883         iowrite32((u32)pte, addr);
884         iowrite32(pte >> 32, addr + 4);
885 #endif
886 }
887
888 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
889                                      struct sg_table *st,
890                                      unsigned int first_entry,
891                                      enum i915_cache_level level)
892 {
893         struct drm_i915_private *dev_priv = vm->dev->dev_private;
894         gen8_gtt_pte_t __iomem *gtt_entries =
895                 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
896         int i = 0;
897         struct sg_page_iter sg_iter;
898         dma_addr_t addr;
899
900         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
901                 addr = sg_dma_address(sg_iter.sg) +
902                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
903                 gen8_set_pte(&gtt_entries[i],
904                              gen8_pte_encode(addr, level, true));
905                 i++;
906         }
907
908         /*
909          * XXX: This serves as a posting read to make sure that the PTE has
910          * actually been updated. There is some concern that even though
911          * registers and PTEs are within the same BAR that they are potentially
912          * of NUMA access patterns. Therefore, even with the way we assume
913          * hardware should work, we must keep this posting read for paranoia.
914          */
915         if (i != 0)
916                 WARN_ON(readq(&gtt_entries[i-1])
917                         != gen8_pte_encode(addr, level, true));
918
919 #if 0 /* TODO: Still needed on GEN8? */
920         /* This next bit makes the above posting read even more important. We
921          * want to flush the TLBs only after we're certain all the PTE updates
922          * have finished.
923          */
924         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
925         POSTING_READ(GFX_FLSH_CNTL_GEN6);
926 #endif
927 }
928
929 /*
930  * Binds an object into the global gtt with the specified cache level. The object
931  * will be accessible to the GPU via commands whose operands reference offsets
932  * within the global GTT as well as accessible by the GPU through the GMADR
933  * mapped BAR (dev_priv->mm.gtt->gtt).
934  */
935 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
936                                      struct sg_table *st,
937                                      unsigned int first_entry,
938                                      enum i915_cache_level level)
939 {
940         struct drm_i915_private *dev_priv = vm->dev->dev_private;
941         gen6_gtt_pte_t __iomem *gtt_entries =
942                 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
943         int i = 0;
944         struct sg_page_iter sg_iter;
945         dma_addr_t addr;
946
947         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
948                 addr = sg_page_iter_dma_address(&sg_iter);
949                 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
950                 i++;
951         }
952
953         /* XXX: This serves as a posting read to make sure that the PTE has
954          * actually been updated. There is some concern that even though
955          * registers and PTEs are within the same BAR that they are potentially
956          * of NUMA access patterns. Therefore, even with the way we assume
957          * hardware should work, we must keep this posting read for paranoia.
958          */
959         if (i != 0)
960                 WARN_ON(readl(&gtt_entries[i-1]) !=
961                         vm->pte_encode(addr, level, true));
962
963         /* This next bit makes the above posting read even more important. We
964          * want to flush the TLBs only after we're certain all the PTE updates
965          * have finished.
966          */
967         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
968         POSTING_READ(GFX_FLSH_CNTL_GEN6);
969 }
970
971 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
972                                   unsigned int first_entry,
973                                   unsigned int num_entries,
974                                   bool use_scratch)
975 {
976         struct drm_i915_private *dev_priv = vm->dev->dev_private;
977         gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
978                 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
979         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
980         int i;
981
982         if (WARN(num_entries > max_entries,
983                  "First entry = %d; Num entries = %d (max=%d)\n",
984                  first_entry, num_entries, max_entries))
985                 num_entries = max_entries;
986
987         scratch_pte = gen8_pte_encode(vm->scratch.addr,
988                                       I915_CACHE_LLC,
989                                       use_scratch);
990         for (i = 0; i < num_entries; i++)
991                 gen8_set_pte(&gtt_base[i], scratch_pte);
992         readl(gtt_base);
993 }
994
995 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
996                                   unsigned int first_entry,
997                                   unsigned int num_entries,
998                                   bool use_scratch)
999 {
1000         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1001         gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1002                 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1003         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1004         int i;
1005
1006         if (WARN(num_entries > max_entries,
1007                  "First entry = %d; Num entries = %d (max=%d)\n",
1008                  first_entry, num_entries, max_entries))
1009                 num_entries = max_entries;
1010
1011         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1012
1013         for (i = 0; i < num_entries; i++)
1014                 iowrite32(scratch_pte, &gtt_base[i]);
1015         readl(gtt_base);
1016 }
1017
1018 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
1019                                      struct sg_table *st,
1020                                      unsigned int pg_start,
1021                                      enum i915_cache_level cache_level)
1022 {
1023         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1024                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1025
1026         intel_gtt_insert_sg_entries(st, pg_start, flags);
1027
1028 }
1029
1030 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1031                                   unsigned int first_entry,
1032                                   unsigned int num_entries,
1033                                   bool unused)
1034 {
1035         intel_gtt_clear_range(first_entry, num_entries);
1036 }
1037
1038
1039 void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
1040                               enum i915_cache_level cache_level)
1041 {
1042         struct drm_device *dev = obj->base.dev;
1043         struct drm_i915_private *dev_priv = dev->dev_private;
1044         const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
1045
1046         dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
1047                                           entry,
1048                                           cache_level);
1049
1050         obj->has_global_gtt_mapping = 1;
1051 }
1052
1053 void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
1054 {
1055         struct drm_device *dev = obj->base.dev;
1056         struct drm_i915_private *dev_priv = dev->dev_private;
1057         const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
1058
1059         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1060                                        entry,
1061                                        obj->base.size >> PAGE_SHIFT,
1062                                        true);
1063
1064         obj->has_global_gtt_mapping = 0;
1065 }
1066
1067 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1068 {
1069         struct drm_device *dev = obj->base.dev;
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071         bool interruptible;
1072
1073         interruptible = do_idling(dev_priv);
1074
1075         if (!obj->has_dma_mapping)
1076                 dma_unmap_sg(&dev->pdev->dev,
1077                              obj->pages->sgl, obj->pages->nents,
1078                              PCI_DMA_BIDIRECTIONAL);
1079
1080         undo_idling(dev_priv, interruptible);
1081 }
1082
1083 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1084                                   unsigned long color,
1085                                   unsigned long *start,
1086                                   unsigned long *end)
1087 {
1088         if (node->color != color)
1089                 *start += 4096;
1090
1091         if (!list_empty(&node->node_list)) {
1092                 node = list_entry(node->node_list.next,
1093                                   struct drm_mm_node,
1094                                   node_list);
1095                 if (node->allocated && node->color != color)
1096                         *end -= 4096;
1097         }
1098 }
1099
1100 void i915_gem_setup_global_gtt(struct drm_device *dev,
1101                                unsigned long start,
1102                                unsigned long mappable_end,
1103                                unsigned long end)
1104 {
1105         /* Let GEM Manage all of the aperture.
1106          *
1107          * However, leave one page at the end still bound to the scratch page.
1108          * There are a number of places where the hardware apparently prefetches
1109          * past the end of the object, and we've seen multiple hangs with the
1110          * GPU head pointer stuck in a batchbuffer bound at the last page of the
1111          * aperture.  One page should be enough to keep any prefetching inside
1112          * of the aperture.
1113          */
1114         struct drm_i915_private *dev_priv = dev->dev_private;
1115         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1116         struct drm_mm_node *entry;
1117         struct drm_i915_gem_object *obj;
1118         unsigned long hole_start, hole_end;
1119
1120         BUG_ON(mappable_end > end);
1121
1122         /* Subtract the guard page ... */
1123         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1124         if (!HAS_LLC(dev))
1125                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1126
1127         /* Mark any preallocated objects as occupied */
1128         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1129                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1130                 int ret;
1131                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1132                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
1133
1134                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1135                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1136                 if (ret)
1137                         DRM_DEBUG_KMS("Reservation failed\n");
1138                 obj->has_global_gtt_mapping = 1;
1139         }
1140
1141         dev_priv->gtt.base.start = start;
1142         dev_priv->gtt.base.total = end - start;
1143
1144         /* Clear any non-preallocated blocks */
1145         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1146                 const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
1147                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1148                               hole_start, hole_end);
1149                 ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
1150         }
1151
1152         /* And finally clear the reserved guard page */
1153         ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
1154 }
1155
1156 static bool
1157 intel_enable_ppgtt(struct drm_device *dev)
1158 {
1159         if (i915_enable_ppgtt >= 0)
1160                 return i915_enable_ppgtt;
1161
1162 #ifdef CONFIG_INTEL_IOMMU
1163         /* Disable ppgtt on SNB if VT-d is on. */
1164         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
1165                 return false;
1166 #endif
1167
1168         return true;
1169 }
1170
1171 void i915_gem_init_global_gtt(struct drm_device *dev)
1172 {
1173         struct drm_i915_private *dev_priv = dev->dev_private;
1174         unsigned long gtt_size, mappable_size;
1175
1176         gtt_size = dev_priv->gtt.base.total;
1177         mappable_size = dev_priv->gtt.mappable_end;
1178
1179         if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
1180                 int ret;
1181
1182                 if (INTEL_INFO(dev)->gen <= 7) {
1183                         /* PPGTT pdes are stolen from global gtt ptes, so shrink the
1184                          * aperture accordingly when using aliasing ppgtt. */
1185                         gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
1186                 }
1187
1188                 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1189
1190                 ret = i915_gem_init_aliasing_ppgtt(dev);
1191                 if (!ret)
1192                         return;
1193
1194                 DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
1195                 drm_mm_takedown(&dev_priv->gtt.base.mm);
1196                 if (INTEL_INFO(dev)->gen < 8)
1197                         gtt_size += GEN6_PPGTT_PD_ENTRIES*PAGE_SIZE;
1198         }
1199         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1200 }
1201
1202 static int setup_scratch_page(struct drm_device *dev)
1203 {
1204         struct drm_i915_private *dev_priv = dev->dev_private;
1205         struct page *page;
1206         dma_addr_t dma_addr;
1207
1208         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1209         if (page == NULL)
1210                 return -ENOMEM;
1211         get_page(page);
1212         set_pages_uc(page, 1);
1213
1214 #ifdef CONFIG_INTEL_IOMMU
1215         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1216                                 PCI_DMA_BIDIRECTIONAL);
1217         if (pci_dma_mapping_error(dev->pdev, dma_addr))
1218                 return -EINVAL;
1219 #else
1220         dma_addr = page_to_phys(page);
1221 #endif
1222         dev_priv->gtt.base.scratch.page = page;
1223         dev_priv->gtt.base.scratch.addr = dma_addr;
1224
1225         return 0;
1226 }
1227
1228 static void teardown_scratch_page(struct drm_device *dev)
1229 {
1230         struct drm_i915_private *dev_priv = dev->dev_private;
1231         struct page *page = dev_priv->gtt.base.scratch.page;
1232
1233         set_pages_wb(page, 1);
1234         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1235                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1236         put_page(page);
1237         __free_page(page);
1238 }
1239
1240 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1241 {
1242         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1243         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1244         return snb_gmch_ctl << 20;
1245 }
1246
1247 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1248 {
1249         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1250         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1251         if (bdw_gmch_ctl)
1252                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1253         if (bdw_gmch_ctl > 4) {
1254                 WARN_ON(!i915_preliminary_hw_support);
1255                 return 4<<20;
1256         }
1257
1258         return bdw_gmch_ctl << 20;
1259 }
1260
1261 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1262 {
1263         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1264         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1265         return snb_gmch_ctl << 25; /* 32 MB units */
1266 }
1267
1268 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1269 {
1270         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1271         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1272         return bdw_gmch_ctl << 25; /* 32 MB units */
1273 }
1274
1275 static int ggtt_probe_common(struct drm_device *dev,
1276                              size_t gtt_size)
1277 {
1278         struct drm_i915_private *dev_priv = dev->dev_private;
1279         phys_addr_t gtt_bus_addr;
1280         int ret;
1281
1282         /* For Modern GENs the PTEs and register space are split in the BAR */
1283         gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
1284                 (pci_resource_len(dev->pdev, 0) / 2);
1285
1286         dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
1287         if (!dev_priv->gtt.gsm) {
1288                 DRM_ERROR("Failed to map the gtt page table\n");
1289                 return -ENOMEM;
1290         }
1291
1292         ret = setup_scratch_page(dev);
1293         if (ret) {
1294                 DRM_ERROR("Scratch setup failed\n");
1295                 /* iounmap will also get called at remove, but meh */
1296                 iounmap(dev_priv->gtt.gsm);
1297         }
1298
1299         return ret;
1300 }
1301
1302 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1303  * bits. When using advanced contexts each context stores its own PAT, but
1304  * writing this data shouldn't be harmful even in those cases. */
1305 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
1306 {
1307 #define GEN8_PPAT_UC            (0<<0)
1308 #define GEN8_PPAT_WC            (1<<0)
1309 #define GEN8_PPAT_WT            (2<<0)
1310 #define GEN8_PPAT_WB            (3<<0)
1311 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
1312 /* FIXME(BDW): Bspec is completely confused about cache control bits. */
1313 #define GEN8_PPAT_LLC           (1<<2)
1314 #define GEN8_PPAT_LLCELLC       (2<<2)
1315 #define GEN8_PPAT_LLCeLLC       (3<<2)
1316 #define GEN8_PPAT_AGE(x)        (x<<4)
1317 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
1318         uint64_t pat;
1319
1320         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
1321               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1322               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1323               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
1324               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1325               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1326               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1327               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1328
1329         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1330          * write would work. */
1331         I915_WRITE(GEN8_PRIVATE_PAT, pat);
1332         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1333 }
1334
1335 static int gen8_gmch_probe(struct drm_device *dev,
1336                            size_t *gtt_total,
1337                            size_t *stolen,
1338                            phys_addr_t *mappable_base,
1339                            unsigned long *mappable_end)
1340 {
1341         struct drm_i915_private *dev_priv = dev->dev_private;
1342         unsigned int gtt_size;
1343         u16 snb_gmch_ctl;
1344         int ret;
1345
1346         /* TODO: We're not aware of mappable constraints on gen8 yet */
1347         *mappable_base = pci_resource_start(dev->pdev, 2);
1348         *mappable_end = pci_resource_len(dev->pdev, 2);
1349
1350         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1351                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1352
1353         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1354
1355         *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1356
1357         gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1358         *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1359
1360         gen8_setup_private_ppat(dev_priv);
1361
1362         ret = ggtt_probe_common(dev, gtt_size);
1363
1364         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1365         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1366
1367         return ret;
1368 }
1369
1370 static int gen6_gmch_probe(struct drm_device *dev,
1371                            size_t *gtt_total,
1372                            size_t *stolen,
1373                            phys_addr_t *mappable_base,
1374                            unsigned long *mappable_end)
1375 {
1376         struct drm_i915_private *dev_priv = dev->dev_private;
1377         unsigned int gtt_size;
1378         u16 snb_gmch_ctl;
1379         int ret;
1380
1381         *mappable_base = pci_resource_start(dev->pdev, 2);
1382         *mappable_end = pci_resource_len(dev->pdev, 2);
1383
1384         /* 64/512MB is the current min/max we actually know of, but this is just
1385          * a coarse sanity check.
1386          */
1387         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1388                 DRM_ERROR("Unknown GMADR size (%lx)\n",
1389                           dev_priv->gtt.mappable_end);
1390                 return -ENXIO;
1391         }
1392
1393         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1394                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1395         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1396
1397         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1398
1399         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1400         *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1401
1402         ret = ggtt_probe_common(dev, gtt_size);
1403
1404         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1405         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
1406
1407         return ret;
1408 }
1409
1410 static void gen6_gmch_remove(struct i915_address_space *vm)
1411 {
1412
1413         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
1414
1415         drm_mm_takedown(&vm->mm);
1416         iounmap(gtt->gsm);
1417         teardown_scratch_page(vm->dev);
1418 }
1419
1420 static int i915_gmch_probe(struct drm_device *dev,
1421                            size_t *gtt_total,
1422                            size_t *stolen,
1423                            phys_addr_t *mappable_base,
1424                            unsigned long *mappable_end)
1425 {
1426         struct drm_i915_private *dev_priv = dev->dev_private;
1427         int ret;
1428
1429         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1430         if (!ret) {
1431                 DRM_ERROR("failed to set up gmch\n");
1432                 return -EIO;
1433         }
1434
1435         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
1436
1437         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
1438         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
1439         dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
1440
1441         return 0;
1442 }
1443
1444 static void i915_gmch_remove(struct i915_address_space *vm)
1445 {
1446         intel_gmch_remove();
1447 }
1448
1449 int i915_gem_gtt_init(struct drm_device *dev)
1450 {
1451         struct drm_i915_private *dev_priv = dev->dev_private;
1452         struct i915_gtt *gtt = &dev_priv->gtt;
1453         int ret;
1454
1455         if (INTEL_INFO(dev)->gen <= 5) {
1456                 gtt->gtt_probe = i915_gmch_probe;
1457                 gtt->base.cleanup = i915_gmch_remove;
1458         } else if (INTEL_INFO(dev)->gen < 8) {
1459                 gtt->gtt_probe = gen6_gmch_probe;
1460                 gtt->base.cleanup = gen6_gmch_remove;
1461                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
1462                         gtt->base.pte_encode = iris_pte_encode;
1463                 else if (IS_HASWELL(dev))
1464                         gtt->base.pte_encode = hsw_pte_encode;
1465                 else if (IS_VALLEYVIEW(dev))
1466                         gtt->base.pte_encode = byt_pte_encode;
1467                 else if (INTEL_INFO(dev)->gen >= 7)
1468                         gtt->base.pte_encode = ivb_pte_encode;
1469                 else
1470                         gtt->base.pte_encode = snb_pte_encode;
1471         } else {
1472                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
1473                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
1474         }
1475
1476         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
1477                              &gtt->mappable_base, &gtt->mappable_end);
1478         if (ret)
1479                 return ret;
1480
1481         gtt->base.dev = dev;
1482
1483         /* GMADR is the PCI mmio aperture into the global GTT. */
1484         DRM_INFO("Memory usable by graphics device = %zdM\n",
1485                  gtt->base.total >> 20);
1486         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
1487         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
1488
1489         return 0;
1490 }