Merge branch 'linux-next' of git://git.open-osd.org/linux-open-osd
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem_tiling.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <linux/string.h>
29 #include <linux/bitops.h>
30 #include <drm/drmP.h>
31 #include <drm/i915_drm.h>
32 #include "i915_drv.h"
33
34 /** @file i915_gem_tiling.c
35  *
36  * Support for managing tiling state of buffer objects.
37  *
38  * The idea behind tiling is to increase cache hit rates by rearranging
39  * pixel data so that a group of pixel accesses are in the same cacheline.
40  * Performance improvement from doing this on the back/depth buffer are on
41  * the order of 30%.
42  *
43  * Intel architectures make this somewhat more complicated, though, by
44  * adjustments made to addressing of data when the memory is in interleaved
45  * mode (matched pairs of DIMMS) to improve memory bandwidth.
46  * For interleaved memory, the CPU sends every sequential 64 bytes
47  * to an alternate memory channel so it can get the bandwidth from both.
48  *
49  * The GPU also rearranges its accesses for increased bandwidth to interleaved
50  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
51  * it does it a little differently, since one walks addresses not just in the
52  * X direction but also Y.  So, along with alternating channels when bit
53  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
54  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
55  * are common to both the 915 and 965-class hardware.
56  *
57  * The CPU also sometimes XORs in higher bits as well, to improve
58  * bandwidth doing strided access like we do so frequently in graphics.  This
59  * is called "Channel XOR Randomization" in the MCH documentation.  The result
60  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
61  * decode.
62  *
63  * All of this bit 6 XORing has an effect on our memory management,
64  * as we need to make sure that the 3d driver can correctly address object
65  * contents.
66  *
67  * If we don't have interleaved memory, all tiling is safe and no swizzling is
68  * required.
69  *
70  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
71  * 17 is not just a page offset, so as we page an objet out and back in,
72  * individual pages in it will have different bit 17 addresses, resulting in
73  * each 64 bytes being swapped with its neighbor!
74  *
75  * Otherwise, if interleaved, we have to tell the 3d driver what the address
76  * swizzling it needs to do is, since it's writing with the CPU to the pages
77  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
78  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
79  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
80  * to match what the GPU expects.
81  */
82
83 /**
84  * Detects bit 6 swizzling of address lookup between IGD access and CPU
85  * access through main memory.
86  */
87 void
88 i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
89 {
90         drm_i915_private_t *dev_priv = dev->dev_private;
91         uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
92         uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
93
94         if (IS_VALLEYVIEW(dev)) {
95                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
96                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
97         } else if (INTEL_INFO(dev)->gen >= 6) {
98                 uint32_t dimm_c0, dimm_c1;
99                 dimm_c0 = I915_READ(MAD_DIMM_C0);
100                 dimm_c1 = I915_READ(MAD_DIMM_C1);
101                 dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
102                 dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
103                 /* Enable swizzling when the channels are populated with
104                  * identically sized dimms. We don't need to check the 3rd
105                  * channel because no cpu with gpu attached ships in that
106                  * configuration. Also, swizzling only makes sense for 2
107                  * channels anyway. */
108                 if (dimm_c0 == dimm_c1) {
109                         swizzle_x = I915_BIT_6_SWIZZLE_9_10;
110                         swizzle_y = I915_BIT_6_SWIZZLE_9;
111                 } else {
112                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
113                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
114                 }
115         } else if (IS_GEN5(dev)) {
116                 /* On Ironlake whatever DRAM config, GPU always do
117                  * same swizzling setup.
118                  */
119                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
120                 swizzle_y = I915_BIT_6_SWIZZLE_9;
121         } else if (IS_GEN2(dev)) {
122                 /* As far as we know, the 865 doesn't have these bit 6
123                  * swizzling issues.
124                  */
125                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
126                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
127         } else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
128                 uint32_t dcc;
129
130                 /* On 9xx chipsets, channel interleave by the CPU is
131                  * determined by DCC.  For single-channel, neither the CPU
132                  * nor the GPU do swizzling.  For dual channel interleaved,
133                  * the GPU's interleave is bit 9 and 10 for X tiled, and bit
134                  * 9 for Y tiled.  The CPU's interleave is independent, and
135                  * can be based on either bit 11 (haven't seen this yet) or
136                  * bit 17 (common).
137                  */
138                 dcc = I915_READ(DCC);
139                 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
140                 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
141                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
142                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
143                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
144                         break;
145                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
146                         if (dcc & DCC_CHANNEL_XOR_DISABLE) {
147                                 /* This is the base swizzling by the GPU for
148                                  * tiled buffers.
149                                  */
150                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
151                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
152                         } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
153                                 /* Bit 11 swizzling by the CPU in addition. */
154                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
155                                 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
156                         } else {
157                                 /* Bit 17 swizzling by the CPU in addition. */
158                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
159                                 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
160                         }
161                         break;
162                 }
163                 if (dcc == 0xffffffff) {
164                         DRM_ERROR("Couldn't read from MCHBAR.  "
165                                   "Disabling tiling.\n");
166                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
167                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
168                 }
169         } else {
170                 /* The 965, G33, and newer, have a very flexible memory
171                  * configuration.  It will enable dual-channel mode
172                  * (interleaving) on as much memory as it can, and the GPU
173                  * will additionally sometimes enable different bit 6
174                  * swizzling for tiled objects from the CPU.
175                  *
176                  * Here's what I found on the G965:
177                  *    slot fill         memory size  swizzling
178                  * 0A   0B   1A   1B    1-ch   2-ch
179                  * 512  0    0    0     512    0     O
180                  * 512  0    512  0     16     1008  X
181                  * 512  0    0    512   16     1008  X
182                  * 0    512  0    512   16     1008  X
183                  * 1024 1024 1024 0     2048   1024  O
184                  *
185                  * We could probably detect this based on either the DRB
186                  * matching, which was the case for the swizzling required in
187                  * the table above, or from the 1-ch value being less than
188                  * the minimum size of a rank.
189                  */
190                 if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
191                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
192                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
193                 } else {
194                         swizzle_x = I915_BIT_6_SWIZZLE_9_10;
195                         swizzle_y = I915_BIT_6_SWIZZLE_9;
196                 }
197         }
198
199         dev_priv->mm.bit_6_swizzle_x = swizzle_x;
200         dev_priv->mm.bit_6_swizzle_y = swizzle_y;
201 }
202
203 /* Check pitch constriants for all chips & tiling formats */
204 static bool
205 i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
206 {
207         int tile_width;
208
209         /* Linear is always fine */
210         if (tiling_mode == I915_TILING_NONE)
211                 return true;
212
213         if (IS_GEN2(dev) ||
214             (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
215                 tile_width = 128;
216         else
217                 tile_width = 512;
218
219         /* check maximum stride & object size */
220         if (INTEL_INFO(dev)->gen >= 4) {
221                 /* i965 stores the end address of the gtt mapping in the fence
222                  * reg, so dont bother to check the size */
223                 if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
224                         return false;
225         } else {
226                 if (stride > 8192)
227                         return false;
228
229                 if (IS_GEN3(dev)) {
230                         if (size > I830_FENCE_MAX_SIZE_VAL << 20)
231                                 return false;
232                 } else {
233                         if (size > I830_FENCE_MAX_SIZE_VAL << 19)
234                                 return false;
235                 }
236         }
237
238         /* 965+ just needs multiples of tile width */
239         if (INTEL_INFO(dev)->gen >= 4) {
240                 if (stride & (tile_width - 1))
241                         return false;
242                 return true;
243         }
244
245         /* Pre-965 needs power of two tile widths */
246         if (stride < tile_width)
247                 return false;
248
249         if (stride & (stride - 1))
250                 return false;
251
252         return true;
253 }
254
255 /* Is the current GTT allocation valid for the change in tiling? */
256 static bool
257 i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
258 {
259         u32 size;
260
261         if (tiling_mode == I915_TILING_NONE)
262                 return true;
263
264         if (INTEL_INFO(obj->base.dev)->gen >= 4)
265                 return true;
266
267         if (INTEL_INFO(obj->base.dev)->gen == 3) {
268                 if (obj->gtt_offset & ~I915_FENCE_START_MASK)
269                         return false;
270         } else {
271                 if (obj->gtt_offset & ~I830_FENCE_START_MASK)
272                         return false;
273         }
274
275         /*
276          * Previous chips need to be aligned to the size of the smallest
277          * fence register that can contain the object.
278          */
279         if (INTEL_INFO(obj->base.dev)->gen == 3)
280                 size = 1024*1024;
281         else
282                 size = 512*1024;
283
284         while (size < obj->base.size)
285                 size <<= 1;
286
287         if (obj->gtt_space->size != size)
288                 return false;
289
290         if (obj->gtt_offset & (size - 1))
291                 return false;
292
293         return true;
294 }
295
296 /**
297  * Sets the tiling mode of an object, returning the required swizzling of
298  * bit 6 of addresses in the object.
299  */
300 int
301 i915_gem_set_tiling(struct drm_device *dev, void *data,
302                    struct drm_file *file)
303 {
304         struct drm_i915_gem_set_tiling *args = data;
305         drm_i915_private_t *dev_priv = dev->dev_private;
306         struct drm_i915_gem_object *obj;
307         int ret = 0;
308
309         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
310         if (&obj->base == NULL)
311                 return -ENOENT;
312
313         if (!i915_tiling_ok(dev,
314                             args->stride, obj->base.size, args->tiling_mode)) {
315                 drm_gem_object_unreference_unlocked(&obj->base);
316                 return -EINVAL;
317         }
318
319         if (obj->pin_count) {
320                 drm_gem_object_unreference_unlocked(&obj->base);
321                 return -EBUSY;
322         }
323
324         if (args->tiling_mode == I915_TILING_NONE) {
325                 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
326                 args->stride = 0;
327         } else {
328                 if (args->tiling_mode == I915_TILING_X)
329                         args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
330                 else
331                         args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
332
333                 /* Hide bit 17 swizzling from the user.  This prevents old Mesa
334                  * from aborting the application on sw fallbacks to bit 17,
335                  * and we use the pread/pwrite bit17 paths to swizzle for it.
336                  * If there was a user that was relying on the swizzle
337                  * information for drm_intel_bo_map()ed reads/writes this would
338                  * break it, but we don't have any of those.
339                  */
340                 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
341                         args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
342                 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
343                         args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
344
345                 /* If we can't handle the swizzling, make it untiled. */
346                 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
347                         args->tiling_mode = I915_TILING_NONE;
348                         args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
349                         args->stride = 0;
350                 }
351         }
352
353         mutex_lock(&dev->struct_mutex);
354         if (args->tiling_mode != obj->tiling_mode ||
355             args->stride != obj->stride) {
356                 /* We need to rebind the object if its current allocation
357                  * no longer meets the alignment restrictions for its new
358                  * tiling mode. Otherwise we can just leave it alone, but
359                  * need to ensure that any fence register is updated before
360                  * the next fenced (either through the GTT or by the BLT unit
361                  * on older GPUs) access.
362                  *
363                  * After updating the tiling parameters, we then flag whether
364                  * we need to update an associated fence register. Note this
365                  * has to also include the unfenced register the GPU uses
366                  * whilst executing a fenced command for an untiled object.
367                  */
368
369                 obj->map_and_fenceable =
370                         obj->gtt_space == NULL ||
371                         (obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end &&
372                          i915_gem_object_fence_ok(obj, args->tiling_mode));
373
374                 /* Rebind if we need a change of alignment */
375                 if (!obj->map_and_fenceable) {
376                         u32 unfenced_alignment =
377                                 i915_gem_get_unfenced_gtt_alignment(dev,
378                                                                     obj->base.size,
379                                                                     args->tiling_mode);
380                         if (obj->gtt_offset & (unfenced_alignment - 1))
381                                 ret = i915_gem_object_unbind(obj);
382                 }
383
384                 if (ret == 0) {
385                         obj->fence_dirty =
386                                 obj->fenced_gpu_access ||
387                                 obj->fence_reg != I915_FENCE_REG_NONE;
388
389                         obj->tiling_mode = args->tiling_mode;
390                         obj->stride = args->stride;
391
392                         /* Force the fence to be reacquired for GTT access */
393                         i915_gem_release_mmap(obj);
394                 }
395         }
396         /* we have to maintain this existing ABI... */
397         args->stride = obj->stride;
398         args->tiling_mode = obj->tiling_mode;
399         drm_gem_object_unreference(&obj->base);
400         mutex_unlock(&dev->struct_mutex);
401
402         return ret;
403 }
404
405 /**
406  * Returns the current tiling mode and required bit 6 swizzling for the object.
407  */
408 int
409 i915_gem_get_tiling(struct drm_device *dev, void *data,
410                    struct drm_file *file)
411 {
412         struct drm_i915_gem_get_tiling *args = data;
413         drm_i915_private_t *dev_priv = dev->dev_private;
414         struct drm_i915_gem_object *obj;
415
416         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
417         if (&obj->base == NULL)
418                 return -ENOENT;
419
420         mutex_lock(&dev->struct_mutex);
421
422         args->tiling_mode = obj->tiling_mode;
423         switch (obj->tiling_mode) {
424         case I915_TILING_X:
425                 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
426                 break;
427         case I915_TILING_Y:
428                 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
429                 break;
430         case I915_TILING_NONE:
431                 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
432                 break;
433         default:
434                 DRM_ERROR("unknown tiling mode\n");
435         }
436
437         /* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
438         if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
439                 args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
440         if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
441                 args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
442
443         drm_gem_object_unreference(&obj->base);
444         mutex_unlock(&dev->struct_mutex);
445
446         return 0;
447 }
448
449 /**
450  * Swap every 64 bytes of this page around, to account for it having a new
451  * bit 17 of its physical address and therefore being interpreted differently
452  * by the GPU.
453  */
454 static void
455 i915_gem_swizzle_page(struct page *page)
456 {
457         char temp[64];
458         char *vaddr;
459         int i;
460
461         vaddr = kmap(page);
462
463         for (i = 0; i < PAGE_SIZE; i += 128) {
464                 memcpy(temp, &vaddr[i], 64);
465                 memcpy(&vaddr[i], &vaddr[i + 64], 64);
466                 memcpy(&vaddr[i + 64], temp, 64);
467         }
468
469         kunmap(page);
470 }
471
472 void
473 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
474 {
475         struct scatterlist *sg;
476         int page_count = obj->base.size >> PAGE_SHIFT;
477         int i;
478
479         if (obj->bit_17 == NULL)
480                 return;
481
482         for_each_sg(obj->pages->sgl, sg, page_count, i) {
483                 struct page *page = sg_page(sg);
484                 char new_bit_17 = page_to_phys(page) >> 17;
485                 if ((new_bit_17 & 0x1) !=
486                     (test_bit(i, obj->bit_17) != 0)) {
487                         i915_gem_swizzle_page(page);
488                         set_page_dirty(page);
489                 }
490         }
491 }
492
493 void
494 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
495 {
496         struct scatterlist *sg;
497         int page_count = obj->base.size >> PAGE_SHIFT;
498         int i;
499
500         if (obj->bit_17 == NULL) {
501                 obj->bit_17 = kmalloc(BITS_TO_LONGS(page_count) *
502                                            sizeof(long), GFP_KERNEL);
503                 if (obj->bit_17 == NULL) {
504                         DRM_ERROR("Failed to allocate memory for bit 17 "
505                                   "record\n");
506                         return;
507                 }
508         }
509
510         for_each_sg(obj->pages->sgl, sg, page_count, i) {
511                 struct page *page = sg_page(sg);
512                 if (page_to_phys(page) & (1 << 17))
513                         __set_bit(i, obj->bit_17);
514                 else
515                         __clear_bit(i, obj->bit_17);
516         }
517 }