Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_breadcrumbs.c
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/kthread.h>
26
27 #include "i915_drv.h"
28
29 static void intel_breadcrumbs_fake_irq(unsigned long data)
30 {
31         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
32
33         /*
34          * The timer persists in case we cannot enable interrupts,
35          * or if we have previously seen seqno/interrupt incoherency
36          * ("missed interrupt" syndrome). Here the worker will wake up
37          * every jiffie in order to kick the oldest waiter to do the
38          * coherent seqno check.
39          */
40         rcu_read_lock();
41         if (intel_engine_wakeup(engine))
42                 mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
43         rcu_read_unlock();
44 }
45
46 static void irq_enable(struct intel_engine_cs *engine)
47 {
48         /* Enabling the IRQ may miss the generation of the interrupt, but
49          * we still need to force the barrier before reading the seqno,
50          * just in case.
51          */
52         engine->breadcrumbs.irq_posted = true;
53
54         spin_lock_irq(&engine->i915->irq_lock);
55         engine->irq_enable(engine);
56         spin_unlock_irq(&engine->i915->irq_lock);
57 }
58
59 static void irq_disable(struct intel_engine_cs *engine)
60 {
61         spin_lock_irq(&engine->i915->irq_lock);
62         engine->irq_disable(engine);
63         spin_unlock_irq(&engine->i915->irq_lock);
64
65         engine->breadcrumbs.irq_posted = false;
66 }
67
68 static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
69 {
70         struct intel_engine_cs *engine =
71                 container_of(b, struct intel_engine_cs, breadcrumbs);
72         struct drm_i915_private *i915 = engine->i915;
73
74         assert_spin_locked(&b->lock);
75         if (b->rpm_wakelock)
76                 return;
77
78         /* Since we are waiting on a request, the GPU should be busy
79          * and should have its own rpm reference. For completeness,
80          * record an rpm reference for ourselves to cover the
81          * interrupt we unmask.
82          */
83         intel_runtime_pm_get_noresume(i915);
84         b->rpm_wakelock = true;
85
86         /* No interrupts? Kick the waiter every jiffie! */
87         if (intel_irqs_enabled(i915)) {
88                 if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
89                         irq_enable(engine);
90                 b->irq_enabled = true;
91         }
92
93         if (!b->irq_enabled ||
94             test_bit(engine->id, &i915->gpu_error.missed_irq_rings))
95                 mod_timer(&b->fake_irq, jiffies + 1);
96
97         /* Ensure that even if the GPU hangs, we get woken up.
98          *
99          * However, note that if no one is waiting, we never notice
100          * a gpu hang. Eventually, we will have to wait for a resource
101          * held by the GPU and so trigger a hangcheck. In the most
102          * pathological case, this will be upon memory starvation!
103          */
104         i915_queue_hangcheck(i915);
105 }
106
107 static void __intel_breadcrumbs_disable_irq(struct intel_breadcrumbs *b)
108 {
109         struct intel_engine_cs *engine =
110                 container_of(b, struct intel_engine_cs, breadcrumbs);
111
112         assert_spin_locked(&b->lock);
113         if (!b->rpm_wakelock)
114                 return;
115
116         if (b->irq_enabled) {
117                 irq_disable(engine);
118                 b->irq_enabled = false;
119         }
120
121         intel_runtime_pm_put(engine->i915);
122         b->rpm_wakelock = false;
123 }
124
125 static inline struct intel_wait *to_wait(struct rb_node *node)
126 {
127         return container_of(node, struct intel_wait, node);
128 }
129
130 static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
131                                               struct intel_wait *wait)
132 {
133         assert_spin_locked(&b->lock);
134
135         /* This request is completed, so remove it from the tree, mark it as
136          * complete, and *then* wake up the associated task.
137          */
138         rb_erase(&wait->node, &b->waiters);
139         RB_CLEAR_NODE(&wait->node);
140
141         wake_up_process(wait->tsk); /* implicit smp_wmb() */
142 }
143
144 static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
145                                     struct intel_wait *wait)
146 {
147         struct intel_breadcrumbs *b = &engine->breadcrumbs;
148         struct rb_node **p, *parent, *completed;
149         bool first;
150         u32 seqno;
151
152         /* Insert the request into the retirement ordered list
153          * of waiters by walking the rbtree. If we are the oldest
154          * seqno in the tree (the first to be retired), then
155          * set ourselves as the bottom-half.
156          *
157          * As we descend the tree, prune completed branches since we hold the
158          * spinlock we know that the first_waiter must be delayed and can
159          * reduce some of the sequential wake up latency if we take action
160          * ourselves and wake up the completed tasks in parallel. Also, by
161          * removing stale elements in the tree, we may be able to reduce the
162          * ping-pong between the old bottom-half and ourselves as first-waiter.
163          */
164         first = true;
165         parent = NULL;
166         completed = NULL;
167         seqno = intel_engine_get_seqno(engine);
168
169          /* If the request completed before we managed to grab the spinlock,
170           * return now before adding ourselves to the rbtree. We let the
171           * current bottom-half handle any pending wakeups and instead
172           * try and get out of the way quickly.
173           */
174         if (i915_seqno_passed(seqno, wait->seqno)) {
175                 RB_CLEAR_NODE(&wait->node);
176                 return first;
177         }
178
179         p = &b->waiters.rb_node;
180         while (*p) {
181                 parent = *p;
182                 if (wait->seqno == to_wait(parent)->seqno) {
183                         /* We have multiple waiters on the same seqno, select
184                          * the highest priority task (that with the smallest
185                          * task->prio) to serve as the bottom-half for this
186                          * group.
187                          */
188                         if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
189                                 p = &parent->rb_right;
190                                 first = false;
191                         } else {
192                                 p = &parent->rb_left;
193                         }
194                 } else if (i915_seqno_passed(wait->seqno,
195                                              to_wait(parent)->seqno)) {
196                         p = &parent->rb_right;
197                         if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
198                                 completed = parent;
199                         else
200                                 first = false;
201                 } else {
202                         p = &parent->rb_left;
203                 }
204         }
205         rb_link_node(&wait->node, parent, p);
206         rb_insert_color(&wait->node, &b->waiters);
207         GEM_BUG_ON(!first && !b->irq_seqno_bh);
208
209         if (completed) {
210                 struct rb_node *next = rb_next(completed);
211
212                 GEM_BUG_ON(!next && !first);
213                 if (next && next != &wait->node) {
214                         GEM_BUG_ON(first);
215                         b->first_wait = to_wait(next);
216                         smp_store_mb(b->irq_seqno_bh, b->first_wait->tsk);
217                         /* As there is a delay between reading the current
218                          * seqno, processing the completed tasks and selecting
219                          * the next waiter, we may have missed the interrupt
220                          * and so need for the next bottom-half to wakeup.
221                          *
222                          * Also as we enable the IRQ, we may miss the
223                          * interrupt for that seqno, so we have to wake up
224                          * the next bottom-half in order to do a coherent check
225                          * in case the seqno passed.
226                          */
227                         __intel_breadcrumbs_enable_irq(b);
228                         if (READ_ONCE(b->irq_posted))
229                                 wake_up_process(to_wait(next)->tsk);
230                 }
231
232                 do {
233                         struct intel_wait *crumb = to_wait(completed);
234                         completed = rb_prev(completed);
235                         __intel_breadcrumbs_finish(b, crumb);
236                 } while (completed);
237         }
238
239         if (first) {
240                 GEM_BUG_ON(rb_first(&b->waiters) != &wait->node);
241                 b->first_wait = wait;
242                 smp_store_mb(b->irq_seqno_bh, wait->tsk);
243                 /* After assigning ourselves as the new bottom-half, we must
244                  * perform a cursory check to prevent a missed interrupt.
245                  * Either we miss the interrupt whilst programming the hardware,
246                  * or if there was a previous waiter (for a later seqno) they
247                  * may be woken instead of us (due to the inherent race
248                  * in the unlocked read of b->irq_seqno_bh in the irq handler)
249                  * and so we miss the wake up.
250                  */
251                 __intel_breadcrumbs_enable_irq(b);
252         }
253         GEM_BUG_ON(!b->irq_seqno_bh);
254         GEM_BUG_ON(!b->first_wait);
255         GEM_BUG_ON(rb_first(&b->waiters) != &b->first_wait->node);
256
257         return first;
258 }
259
260 bool intel_engine_add_wait(struct intel_engine_cs *engine,
261                            struct intel_wait *wait)
262 {
263         struct intel_breadcrumbs *b = &engine->breadcrumbs;
264         bool first;
265
266         spin_lock(&b->lock);
267         first = __intel_engine_add_wait(engine, wait);
268         spin_unlock(&b->lock);
269
270         return first;
271 }
272
273 void intel_engine_enable_fake_irq(struct intel_engine_cs *engine)
274 {
275         mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
276 }
277
278 static inline bool chain_wakeup(struct rb_node *rb, int priority)
279 {
280         return rb && to_wait(rb)->tsk->prio <= priority;
281 }
282
283 static inline int wakeup_priority(struct intel_breadcrumbs *b,
284                                   struct task_struct *tsk)
285 {
286         if (tsk == b->signaler)
287                 return INT_MIN;
288         else
289                 return tsk->prio;
290 }
291
292 void intel_engine_remove_wait(struct intel_engine_cs *engine,
293                               struct intel_wait *wait)
294 {
295         struct intel_breadcrumbs *b = &engine->breadcrumbs;
296
297         /* Quick check to see if this waiter was already decoupled from
298          * the tree by the bottom-half to avoid contention on the spinlock
299          * by the herd.
300          */
301         if (RB_EMPTY_NODE(&wait->node))
302                 return;
303
304         spin_lock(&b->lock);
305
306         if (RB_EMPTY_NODE(&wait->node))
307                 goto out_unlock;
308
309         if (b->first_wait == wait) {
310                 const int priority = wakeup_priority(b, wait->tsk);
311                 struct rb_node *next;
312
313                 GEM_BUG_ON(b->irq_seqno_bh != wait->tsk);
314
315                 /* We are the current bottom-half. Find the next candidate,
316                  * the first waiter in the queue on the remaining oldest
317                  * request. As multiple seqnos may complete in the time it
318                  * takes us to wake up and find the next waiter, we have to
319                  * wake up that waiter for it to perform its own coherent
320                  * completion check.
321                  */
322                 next = rb_next(&wait->node);
323                 if (chain_wakeup(next, priority)) {
324                         /* If the next waiter is already complete,
325                          * wake it up and continue onto the next waiter. So
326                          * if have a small herd, they will wake up in parallel
327                          * rather than sequentially, which should reduce
328                          * the overall latency in waking all the completed
329                          * clients.
330                          *
331                          * However, waking up a chain adds extra latency to
332                          * the first_waiter. This is undesirable if that
333                          * waiter is a high priority task.
334                          */
335                         u32 seqno = intel_engine_get_seqno(engine);
336
337                         while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
338                                 struct rb_node *n = rb_next(next);
339
340                                 __intel_breadcrumbs_finish(b, to_wait(next));
341                                 next = n;
342                                 if (!chain_wakeup(next, priority))
343                                         break;
344                         }
345                 }
346
347                 if (next) {
348                         /* In our haste, we may have completed the first waiter
349                          * before we enabled the interrupt. Do so now as we
350                          * have a second waiter for a future seqno. Afterwards,
351                          * we have to wake up that waiter in case we missed
352                          * the interrupt, or if we have to handle an
353                          * exception rather than a seqno completion.
354                          */
355                         b->first_wait = to_wait(next);
356                         smp_store_mb(b->irq_seqno_bh, b->first_wait->tsk);
357                         if (b->first_wait->seqno != wait->seqno)
358                                 __intel_breadcrumbs_enable_irq(b);
359                         wake_up_process(b->irq_seqno_bh);
360                 } else {
361                         b->first_wait = NULL;
362                         WRITE_ONCE(b->irq_seqno_bh, NULL);
363                         __intel_breadcrumbs_disable_irq(b);
364                 }
365         } else {
366                 GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
367         }
368
369         GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
370         rb_erase(&wait->node, &b->waiters);
371
372 out_unlock:
373         GEM_BUG_ON(b->first_wait == wait);
374         GEM_BUG_ON(rb_first(&b->waiters) !=
375                    (b->first_wait ? &b->first_wait->node : NULL));
376         GEM_BUG_ON(!b->irq_seqno_bh ^ RB_EMPTY_ROOT(&b->waiters));
377         spin_unlock(&b->lock);
378 }
379
380 static bool signal_complete(struct drm_i915_gem_request *request)
381 {
382         if (!request)
383                 return false;
384
385         /* If another process served as the bottom-half it may have already
386          * signalled that this wait is already completed.
387          */
388         if (intel_wait_complete(&request->signaling.wait))
389                 return true;
390
391         /* Carefully check if the request is complete, giving time for the
392          * seqno to be visible or if the GPU hung.
393          */
394         if (__i915_request_irq_complete(request))
395                 return true;
396
397         return false;
398 }
399
400 static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
401 {
402         return container_of(rb, struct drm_i915_gem_request, signaling.node);
403 }
404
405 static void signaler_set_rtpriority(void)
406 {
407          struct sched_param param = { .sched_priority = 1 };
408
409          sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
410 }
411
412 static int intel_breadcrumbs_signaler(void *arg)
413 {
414         struct intel_engine_cs *engine = arg;
415         struct intel_breadcrumbs *b = &engine->breadcrumbs;
416         struct drm_i915_gem_request *request;
417
418         /* Install ourselves with high priority to reduce signalling latency */
419         signaler_set_rtpriority();
420
421         do {
422                 set_current_state(TASK_INTERRUPTIBLE);
423
424                 /* We are either woken up by the interrupt bottom-half,
425                  * or by a client adding a new signaller. In both cases,
426                  * the GPU seqno may have advanced beyond our oldest signal.
427                  * If it has, propagate the signal, remove the waiter and
428                  * check again with the next oldest signal. Otherwise we
429                  * need to wait for a new interrupt from the GPU or for
430                  * a new client.
431                  */
432                 request = READ_ONCE(b->first_signal);
433                 if (signal_complete(request)) {
434                         /* Wake up all other completed waiters and select the
435                          * next bottom-half for the next user interrupt.
436                          */
437                         intel_engine_remove_wait(engine,
438                                                  &request->signaling.wait);
439
440                         /* Find the next oldest signal. Note that as we have
441                          * not been holding the lock, another client may
442                          * have installed an even older signal than the one
443                          * we just completed - so double check we are still
444                          * the oldest before picking the next one.
445                          */
446                         spin_lock(&b->lock);
447                         if (request == b->first_signal) {
448                                 struct rb_node *rb =
449                                         rb_next(&request->signaling.node);
450                                 b->first_signal = rb ? to_signaler(rb) : NULL;
451                         }
452                         rb_erase(&request->signaling.node, &b->signals);
453                         spin_unlock(&b->lock);
454
455                         i915_gem_request_unreference(request);
456                 } else {
457                         if (kthread_should_stop())
458                                 break;
459
460                         schedule();
461                 }
462         } while (1);
463         __set_current_state(TASK_RUNNING);
464
465         return 0;
466 }
467
468 void intel_engine_enable_signaling(struct drm_i915_gem_request *request)
469 {
470         struct intel_engine_cs *engine = request->engine;
471         struct intel_breadcrumbs *b = &engine->breadcrumbs;
472         struct rb_node *parent, **p;
473         bool first, wakeup;
474
475         if (unlikely(READ_ONCE(request->signaling.wait.tsk)))
476                 return;
477
478         spin_lock(&b->lock);
479         if (unlikely(request->signaling.wait.tsk)) {
480                 wakeup = false;
481                 goto unlock;
482         }
483
484         request->signaling.wait.tsk = b->signaler;
485         request->signaling.wait.seqno = request->seqno;
486         i915_gem_request_reference(request);
487
488         /* First add ourselves into the list of waiters, but register our
489          * bottom-half as the signaller thread. As per usual, only the oldest
490          * waiter (not just signaller) is tasked as the bottom-half waking
491          * up all completed waiters after the user interrupt.
492          *
493          * If we are the oldest waiter, enable the irq (after which we
494          * must double check that the seqno did not complete).
495          */
496         wakeup = __intel_engine_add_wait(engine, &request->signaling.wait);
497
498         /* Now insert ourselves into the retirement ordered list of signals
499          * on this engine. We track the oldest seqno as that will be the
500          * first signal to complete.
501          */
502         parent = NULL;
503         first = true;
504         p = &b->signals.rb_node;
505         while (*p) {
506                 parent = *p;
507                 if (i915_seqno_passed(request->seqno,
508                                       to_signaler(parent)->seqno)) {
509                         p = &parent->rb_right;
510                         first = false;
511                 } else {
512                         p = &parent->rb_left;
513                 }
514         }
515         rb_link_node(&request->signaling.node, parent, p);
516         rb_insert_color(&request->signaling.node, &b->signals);
517         if (first)
518                 smp_store_mb(b->first_signal, request);
519
520 unlock:
521         spin_unlock(&b->lock);
522
523         if (wakeup)
524                 wake_up_process(b->signaler);
525 }
526
527 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
528 {
529         struct intel_breadcrumbs *b = &engine->breadcrumbs;
530         struct task_struct *tsk;
531
532         spin_lock_init(&b->lock);
533         setup_timer(&b->fake_irq,
534                     intel_breadcrumbs_fake_irq,
535                     (unsigned long)engine);
536
537         /* Spawn a thread to provide a common bottom-half for all signals.
538          * As this is an asynchronous interface we cannot steal the current
539          * task for handling the bottom-half to the user interrupt, therefore
540          * we create a thread to do the coherent seqno dance after the
541          * interrupt and then signal the waitqueue (via the dma-buf/fence).
542          */
543         tsk = kthread_run(intel_breadcrumbs_signaler, engine,
544                           "i915/signal:%d", engine->id);
545         if (IS_ERR(tsk))
546                 return PTR_ERR(tsk);
547
548         b->signaler = tsk;
549
550         return 0;
551 }
552
553 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
554 {
555         struct intel_breadcrumbs *b = &engine->breadcrumbs;
556
557         if (!IS_ERR_OR_NULL(b->signaler))
558                 kthread_stop(b->signaler);
559
560         del_timer_sync(&b->fake_irq);
561 }
562
563 unsigned int intel_kick_waiters(struct drm_i915_private *i915)
564 {
565         struct intel_engine_cs *engine;
566         unsigned int mask = 0;
567
568         /* To avoid the task_struct disappearing beneath us as we wake up
569          * the process, we must first inspect the task_struct->state under the
570          * RCU lock, i.e. as we call wake_up_process() we must be holding the
571          * rcu_read_lock().
572          */
573         rcu_read_lock();
574         for_each_engine(engine, i915)
575                 if (unlikely(intel_engine_wakeup(engine)))
576                         mask |= intel_engine_flag(engine);
577         rcu_read_unlock();
578
579         return mask;
580 }
581
582 unsigned int intel_kick_signalers(struct drm_i915_private *i915)
583 {
584         struct intel_engine_cs *engine;
585         unsigned int mask = 0;
586
587         for_each_engine(engine, i915) {
588                 if (unlikely(READ_ONCE(engine->breadcrumbs.first_signal))) {
589                         wake_up_process(engine->breadcrumbs.signaler);
590                         mask |= intel_engine_flag(engine);
591                 }
592         }
593
594         return mask;
595 }