x86/nmi: Fix use of unallocated cpumask_var_t
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48         DRM_FORMAT_C8, \
49         DRM_FORMAT_RGB565, \
50         DRM_FORMAT_XRGB8888, \
51         DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55         COMMON_PRIMARY_FORMATS,
56         DRM_FORMAT_XRGB1555,
57         DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62         COMMON_PRIMARY_FORMATS, \
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_ABGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_ARGB2101010,
67         DRM_FORMAT_XBGR2101010,
68         DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73         DRM_FORMAT_ARGB8888,
74 };
75
76 #define DIV_ROUND_CLOSEST_ULL(ll, d)    \
77 ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
78
79 static void intel_increase_pllclock(struct drm_device *dev,
80                                     enum pipe pipe);
81 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
82
83 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84                                 struct intel_crtc_config *pipe_config);
85 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86                                    struct intel_crtc_config *pipe_config);
87
88 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89                           int x, int y, struct drm_framebuffer *old_fb);
90 static int intel_framebuffer_init(struct drm_device *dev,
91                                   struct intel_framebuffer *ifb,
92                                   struct drm_mode_fb_cmd2 *mode_cmd,
93                                   struct drm_i915_gem_object *obj);
94 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
96 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
97                                          struct intel_link_m_n *m_n,
98                                          struct intel_link_m_n *m2_n2);
99 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
100 static void haswell_set_pipeconf(struct drm_crtc *crtc);
101 static void intel_set_pipe_csc(struct drm_crtc *crtc);
102 static void vlv_prepare_pll(struct intel_crtc *crtc);
103 static void chv_prepare_pll(struct intel_crtc *crtc);
104
105 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106 {
107         if (!connector->mst_port)
108                 return connector->encoder;
109         else
110                 return &connector->mst_port->mst_encoders[pipe]->base;
111 }
112
113 typedef struct {
114         int     min, max;
115 } intel_range_t;
116
117 typedef struct {
118         int     dot_limit;
119         int     p2_slow, p2_fast;
120 } intel_p2_t;
121
122 typedef struct intel_limit intel_limit_t;
123 struct intel_limit {
124         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
125         intel_p2_t          p2;
126 };
127
128 int
129 intel_pch_rawclk(struct drm_device *dev)
130 {
131         struct drm_i915_private *dev_priv = dev->dev_private;
132
133         WARN_ON(!HAS_PCH_SPLIT(dev));
134
135         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136 }
137
138 static inline u32 /* units of 100MHz */
139 intel_fdi_link_freq(struct drm_device *dev)
140 {
141         if (IS_GEN5(dev)) {
142                 struct drm_i915_private *dev_priv = dev->dev_private;
143                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144         } else
145                 return 27;
146 }
147
148 static const intel_limit_t intel_limits_i8xx_dac = {
149         .dot = { .min = 25000, .max = 350000 },
150         .vco = { .min = 908000, .max = 1512000 },
151         .n = { .min = 2, .max = 16 },
152         .m = { .min = 96, .max = 140 },
153         .m1 = { .min = 18, .max = 26 },
154         .m2 = { .min = 6, .max = 16 },
155         .p = { .min = 4, .max = 128 },
156         .p1 = { .min = 2, .max = 33 },
157         .p2 = { .dot_limit = 165000,
158                 .p2_slow = 4, .p2_fast = 2 },
159 };
160
161 static const intel_limit_t intel_limits_i8xx_dvo = {
162         .dot = { .min = 25000, .max = 350000 },
163         .vco = { .min = 908000, .max = 1512000 },
164         .n = { .min = 2, .max = 16 },
165         .m = { .min = 96, .max = 140 },
166         .m1 = { .min = 18, .max = 26 },
167         .m2 = { .min = 6, .max = 16 },
168         .p = { .min = 4, .max = 128 },
169         .p1 = { .min = 2, .max = 33 },
170         .p2 = { .dot_limit = 165000,
171                 .p2_slow = 4, .p2_fast = 4 },
172 };
173
174 static const intel_limit_t intel_limits_i8xx_lvds = {
175         .dot = { .min = 25000, .max = 350000 },
176         .vco = { .min = 908000, .max = 1512000 },
177         .n = { .min = 2, .max = 16 },
178         .m = { .min = 96, .max = 140 },
179         .m1 = { .min = 18, .max = 26 },
180         .m2 = { .min = 6, .max = 16 },
181         .p = { .min = 4, .max = 128 },
182         .p1 = { .min = 1, .max = 6 },
183         .p2 = { .dot_limit = 165000,
184                 .p2_slow = 14, .p2_fast = 7 },
185 };
186
187 static const intel_limit_t intel_limits_i9xx_sdvo = {
188         .dot = { .min = 20000, .max = 400000 },
189         .vco = { .min = 1400000, .max = 2800000 },
190         .n = { .min = 1, .max = 6 },
191         .m = { .min = 70, .max = 120 },
192         .m1 = { .min = 8, .max = 18 },
193         .m2 = { .min = 3, .max = 7 },
194         .p = { .min = 5, .max = 80 },
195         .p1 = { .min = 1, .max = 8 },
196         .p2 = { .dot_limit = 200000,
197                 .p2_slow = 10, .p2_fast = 5 },
198 };
199
200 static const intel_limit_t intel_limits_i9xx_lvds = {
201         .dot = { .min = 20000, .max = 400000 },
202         .vco = { .min = 1400000, .max = 2800000 },
203         .n = { .min = 1, .max = 6 },
204         .m = { .min = 70, .max = 120 },
205         .m1 = { .min = 8, .max = 18 },
206         .m2 = { .min = 3, .max = 7 },
207         .p = { .min = 7, .max = 98 },
208         .p1 = { .min = 1, .max = 8 },
209         .p2 = { .dot_limit = 112000,
210                 .p2_slow = 14, .p2_fast = 7 },
211 };
212
213
214 static const intel_limit_t intel_limits_g4x_sdvo = {
215         .dot = { .min = 25000, .max = 270000 },
216         .vco = { .min = 1750000, .max = 3500000},
217         .n = { .min = 1, .max = 4 },
218         .m = { .min = 104, .max = 138 },
219         .m1 = { .min = 17, .max = 23 },
220         .m2 = { .min = 5, .max = 11 },
221         .p = { .min = 10, .max = 30 },
222         .p1 = { .min = 1, .max = 3},
223         .p2 = { .dot_limit = 270000,
224                 .p2_slow = 10,
225                 .p2_fast = 10
226         },
227 };
228
229 static const intel_limit_t intel_limits_g4x_hdmi = {
230         .dot = { .min = 22000, .max = 400000 },
231         .vco = { .min = 1750000, .max = 3500000},
232         .n = { .min = 1, .max = 4 },
233         .m = { .min = 104, .max = 138 },
234         .m1 = { .min = 16, .max = 23 },
235         .m2 = { .min = 5, .max = 11 },
236         .p = { .min = 5, .max = 80 },
237         .p1 = { .min = 1, .max = 8},
238         .p2 = { .dot_limit = 165000,
239                 .p2_slow = 10, .p2_fast = 5 },
240 };
241
242 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
243         .dot = { .min = 20000, .max = 115000 },
244         .vco = { .min = 1750000, .max = 3500000 },
245         .n = { .min = 1, .max = 3 },
246         .m = { .min = 104, .max = 138 },
247         .m1 = { .min = 17, .max = 23 },
248         .m2 = { .min = 5, .max = 11 },
249         .p = { .min = 28, .max = 112 },
250         .p1 = { .min = 2, .max = 8 },
251         .p2 = { .dot_limit = 0,
252                 .p2_slow = 14, .p2_fast = 14
253         },
254 };
255
256 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
257         .dot = { .min = 80000, .max = 224000 },
258         .vco = { .min = 1750000, .max = 3500000 },
259         .n = { .min = 1, .max = 3 },
260         .m = { .min = 104, .max = 138 },
261         .m1 = { .min = 17, .max = 23 },
262         .m2 = { .min = 5, .max = 11 },
263         .p = { .min = 14, .max = 42 },
264         .p1 = { .min = 2, .max = 6 },
265         .p2 = { .dot_limit = 0,
266                 .p2_slow = 7, .p2_fast = 7
267         },
268 };
269
270 static const intel_limit_t intel_limits_pineview_sdvo = {
271         .dot = { .min = 20000, .max = 400000},
272         .vco = { .min = 1700000, .max = 3500000 },
273         /* Pineview's Ncounter is a ring counter */
274         .n = { .min = 3, .max = 6 },
275         .m = { .min = 2, .max = 256 },
276         /* Pineview only has one combined m divider, which we treat as m2. */
277         .m1 = { .min = 0, .max = 0 },
278         .m2 = { .min = 0, .max = 254 },
279         .p = { .min = 5, .max = 80 },
280         .p1 = { .min = 1, .max = 8 },
281         .p2 = { .dot_limit = 200000,
282                 .p2_slow = 10, .p2_fast = 5 },
283 };
284
285 static const intel_limit_t intel_limits_pineview_lvds = {
286         .dot = { .min = 20000, .max = 400000 },
287         .vco = { .min = 1700000, .max = 3500000 },
288         .n = { .min = 3, .max = 6 },
289         .m = { .min = 2, .max = 256 },
290         .m1 = { .min = 0, .max = 0 },
291         .m2 = { .min = 0, .max = 254 },
292         .p = { .min = 7, .max = 112 },
293         .p1 = { .min = 1, .max = 8 },
294         .p2 = { .dot_limit = 112000,
295                 .p2_slow = 14, .p2_fast = 14 },
296 };
297
298 /* Ironlake / Sandybridge
299  *
300  * We calculate clock using (register_value + 2) for N/M1/M2, so here
301  * the range value for them is (actual_value - 2).
302  */
303 static const intel_limit_t intel_limits_ironlake_dac = {
304         .dot = { .min = 25000, .max = 350000 },
305         .vco = { .min = 1760000, .max = 3510000 },
306         .n = { .min = 1, .max = 5 },
307         .m = { .min = 79, .max = 127 },
308         .m1 = { .min = 12, .max = 22 },
309         .m2 = { .min = 5, .max = 9 },
310         .p = { .min = 5, .max = 80 },
311         .p1 = { .min = 1, .max = 8 },
312         .p2 = { .dot_limit = 225000,
313                 .p2_slow = 10, .p2_fast = 5 },
314 };
315
316 static const intel_limit_t intel_limits_ironlake_single_lvds = {
317         .dot = { .min = 25000, .max = 350000 },
318         .vco = { .min = 1760000, .max = 3510000 },
319         .n = { .min = 1, .max = 3 },
320         .m = { .min = 79, .max = 118 },
321         .m1 = { .min = 12, .max = 22 },
322         .m2 = { .min = 5, .max = 9 },
323         .p = { .min = 28, .max = 112 },
324         .p1 = { .min = 2, .max = 8 },
325         .p2 = { .dot_limit = 225000,
326                 .p2_slow = 14, .p2_fast = 14 },
327 };
328
329 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
330         .dot = { .min = 25000, .max = 350000 },
331         .vco = { .min = 1760000, .max = 3510000 },
332         .n = { .min = 1, .max = 3 },
333         .m = { .min = 79, .max = 127 },
334         .m1 = { .min = 12, .max = 22 },
335         .m2 = { .min = 5, .max = 9 },
336         .p = { .min = 14, .max = 56 },
337         .p1 = { .min = 2, .max = 8 },
338         .p2 = { .dot_limit = 225000,
339                 .p2_slow = 7, .p2_fast = 7 },
340 };
341
342 /* LVDS 100mhz refclk limits. */
343 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
344         .dot = { .min = 25000, .max = 350000 },
345         .vco = { .min = 1760000, .max = 3510000 },
346         .n = { .min = 1, .max = 2 },
347         .m = { .min = 79, .max = 126 },
348         .m1 = { .min = 12, .max = 22 },
349         .m2 = { .min = 5, .max = 9 },
350         .p = { .min = 28, .max = 112 },
351         .p1 = { .min = 2, .max = 8 },
352         .p2 = { .dot_limit = 225000,
353                 .p2_slow = 14, .p2_fast = 14 },
354 };
355
356 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
357         .dot = { .min = 25000, .max = 350000 },
358         .vco = { .min = 1760000, .max = 3510000 },
359         .n = { .min = 1, .max = 3 },
360         .m = { .min = 79, .max = 126 },
361         .m1 = { .min = 12, .max = 22 },
362         .m2 = { .min = 5, .max = 9 },
363         .p = { .min = 14, .max = 42 },
364         .p1 = { .min = 2, .max = 6 },
365         .p2 = { .dot_limit = 225000,
366                 .p2_slow = 7, .p2_fast = 7 },
367 };
368
369 static const intel_limit_t intel_limits_vlv = {
370          /*
371           * These are the data rate limits (measured in fast clocks)
372           * since those are the strictest limits we have. The fast
373           * clock and actual rate limits are more relaxed, so checking
374           * them would make no difference.
375           */
376         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
377         .vco = { .min = 4000000, .max = 6000000 },
378         .n = { .min = 1, .max = 7 },
379         .m1 = { .min = 2, .max = 3 },
380         .m2 = { .min = 11, .max = 156 },
381         .p1 = { .min = 2, .max = 3 },
382         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
383 };
384
385 static const intel_limit_t intel_limits_chv = {
386         /*
387          * These are the data rate limits (measured in fast clocks)
388          * since those are the strictest limits we have.  The fast
389          * clock and actual rate limits are more relaxed, so checking
390          * them would make no difference.
391          */
392         .dot = { .min = 25000 * 5, .max = 540000 * 5},
393         .vco = { .min = 4860000, .max = 6700000 },
394         .n = { .min = 1, .max = 1 },
395         .m1 = { .min = 2, .max = 2 },
396         .m2 = { .min = 24 << 22, .max = 175 << 22 },
397         .p1 = { .min = 2, .max = 4 },
398         .p2 = { .p2_slow = 1, .p2_fast = 14 },
399 };
400
401 static void vlv_clock(int refclk, intel_clock_t *clock)
402 {
403         clock->m = clock->m1 * clock->m2;
404         clock->p = clock->p1 * clock->p2;
405         if (WARN_ON(clock->n == 0 || clock->p == 0))
406                 return;
407         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
409 }
410
411 /**
412  * Returns whether any output on the specified pipe is of the specified type
413  */
414 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
415 {
416         struct drm_device *dev = crtc->dev;
417         struct intel_encoder *encoder;
418
419         for_each_encoder_on_crtc(dev, crtc, encoder)
420                 if (encoder->type == type)
421                         return true;
422
423         return false;
424 }
425
426 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
427                                                 int refclk)
428 {
429         struct drm_device *dev = crtc->dev;
430         const intel_limit_t *limit;
431
432         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
433                 if (intel_is_dual_link_lvds(dev)) {
434                         if (refclk == 100000)
435                                 limit = &intel_limits_ironlake_dual_lvds_100m;
436                         else
437                                 limit = &intel_limits_ironlake_dual_lvds;
438                 } else {
439                         if (refclk == 100000)
440                                 limit = &intel_limits_ironlake_single_lvds_100m;
441                         else
442                                 limit = &intel_limits_ironlake_single_lvds;
443                 }
444         } else
445                 limit = &intel_limits_ironlake_dac;
446
447         return limit;
448 }
449
450 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
451 {
452         struct drm_device *dev = crtc->dev;
453         const intel_limit_t *limit;
454
455         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
456                 if (intel_is_dual_link_lvds(dev))
457                         limit = &intel_limits_g4x_dual_channel_lvds;
458                 else
459                         limit = &intel_limits_g4x_single_channel_lvds;
460         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
461                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
462                 limit = &intel_limits_g4x_hdmi;
463         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
464                 limit = &intel_limits_g4x_sdvo;
465         } else /* The option is for other outputs */
466                 limit = &intel_limits_i9xx_sdvo;
467
468         return limit;
469 }
470
471 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
472 {
473         struct drm_device *dev = crtc->dev;
474         const intel_limit_t *limit;
475
476         if (HAS_PCH_SPLIT(dev))
477                 limit = intel_ironlake_limit(crtc, refclk);
478         else if (IS_G4X(dev)) {
479                 limit = intel_g4x_limit(crtc);
480         } else if (IS_PINEVIEW(dev)) {
481                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
482                         limit = &intel_limits_pineview_lvds;
483                 else
484                         limit = &intel_limits_pineview_sdvo;
485         } else if (IS_CHERRYVIEW(dev)) {
486                 limit = &intel_limits_chv;
487         } else if (IS_VALLEYVIEW(dev)) {
488                 limit = &intel_limits_vlv;
489         } else if (!IS_GEN2(dev)) {
490                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
491                         limit = &intel_limits_i9xx_lvds;
492                 else
493                         limit = &intel_limits_i9xx_sdvo;
494         } else {
495                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
496                         limit = &intel_limits_i8xx_lvds;
497                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
498                         limit = &intel_limits_i8xx_dvo;
499                 else
500                         limit = &intel_limits_i8xx_dac;
501         }
502         return limit;
503 }
504
505 /* m1 is reserved as 0 in Pineview, n is a ring counter */
506 static void pineview_clock(int refclk, intel_clock_t *clock)
507 {
508         clock->m = clock->m2 + 2;
509         clock->p = clock->p1 * clock->p2;
510         if (WARN_ON(clock->n == 0 || clock->p == 0))
511                 return;
512         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
513         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
514 }
515
516 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
517 {
518         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
519 }
520
521 static void i9xx_clock(int refclk, intel_clock_t *clock)
522 {
523         clock->m = i9xx_dpll_compute_m(clock);
524         clock->p = clock->p1 * clock->p2;
525         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
526                 return;
527         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
528         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
529 }
530
531 static void chv_clock(int refclk, intel_clock_t *clock)
532 {
533         clock->m = clock->m1 * clock->m2;
534         clock->p = clock->p1 * clock->p2;
535         if (WARN_ON(clock->n == 0 || clock->p == 0))
536                 return;
537         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
538                         clock->n << 22);
539         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
540 }
541
542 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
543 /**
544  * Returns whether the given set of divisors are valid for a given refclk with
545  * the given connectors.
546  */
547
548 static bool intel_PLL_is_valid(struct drm_device *dev,
549                                const intel_limit_t *limit,
550                                const intel_clock_t *clock)
551 {
552         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
553                 INTELPllInvalid("n out of range\n");
554         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
555                 INTELPllInvalid("p1 out of range\n");
556         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
557                 INTELPllInvalid("m2 out of range\n");
558         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
559                 INTELPllInvalid("m1 out of range\n");
560
561         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
562                 if (clock->m1 <= clock->m2)
563                         INTELPllInvalid("m1 <= m2\n");
564
565         if (!IS_VALLEYVIEW(dev)) {
566                 if (clock->p < limit->p.min || limit->p.max < clock->p)
567                         INTELPllInvalid("p out of range\n");
568                 if (clock->m < limit->m.min || limit->m.max < clock->m)
569                         INTELPllInvalid("m out of range\n");
570         }
571
572         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
573                 INTELPllInvalid("vco out of range\n");
574         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
575          * connector, etc., rather than just a single range.
576          */
577         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
578                 INTELPllInvalid("dot out of range\n");
579
580         return true;
581 }
582
583 static bool
584 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
585                     int target, int refclk, intel_clock_t *match_clock,
586                     intel_clock_t *best_clock)
587 {
588         struct drm_device *dev = crtc->dev;
589         intel_clock_t clock;
590         int err = target;
591
592         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
593                 /*
594                  * For LVDS just rely on its current settings for dual-channel.
595                  * We haven't figured out how to reliably set up different
596                  * single/dual channel state, if we even can.
597                  */
598                 if (intel_is_dual_link_lvds(dev))
599                         clock.p2 = limit->p2.p2_fast;
600                 else
601                         clock.p2 = limit->p2.p2_slow;
602         } else {
603                 if (target < limit->p2.dot_limit)
604                         clock.p2 = limit->p2.p2_slow;
605                 else
606                         clock.p2 = limit->p2.p2_fast;
607         }
608
609         memset(best_clock, 0, sizeof(*best_clock));
610
611         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
612              clock.m1++) {
613                 for (clock.m2 = limit->m2.min;
614                      clock.m2 <= limit->m2.max; clock.m2++) {
615                         if (clock.m2 >= clock.m1)
616                                 break;
617                         for (clock.n = limit->n.min;
618                              clock.n <= limit->n.max; clock.n++) {
619                                 for (clock.p1 = limit->p1.min;
620                                         clock.p1 <= limit->p1.max; clock.p1++) {
621                                         int this_err;
622
623                                         i9xx_clock(refclk, &clock);
624                                         if (!intel_PLL_is_valid(dev, limit,
625                                                                 &clock))
626                                                 continue;
627                                         if (match_clock &&
628                                             clock.p != match_clock->p)
629                                                 continue;
630
631                                         this_err = abs(clock.dot - target);
632                                         if (this_err < err) {
633                                                 *best_clock = clock;
634                                                 err = this_err;
635                                         }
636                                 }
637                         }
638                 }
639         }
640
641         return (err != target);
642 }
643
644 static bool
645 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
646                    int target, int refclk, intel_clock_t *match_clock,
647                    intel_clock_t *best_clock)
648 {
649         struct drm_device *dev = crtc->dev;
650         intel_clock_t clock;
651         int err = target;
652
653         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
654                 /*
655                  * For LVDS just rely on its current settings for dual-channel.
656                  * We haven't figured out how to reliably set up different
657                  * single/dual channel state, if we even can.
658                  */
659                 if (intel_is_dual_link_lvds(dev))
660                         clock.p2 = limit->p2.p2_fast;
661                 else
662                         clock.p2 = limit->p2.p2_slow;
663         } else {
664                 if (target < limit->p2.dot_limit)
665                         clock.p2 = limit->p2.p2_slow;
666                 else
667                         clock.p2 = limit->p2.p2_fast;
668         }
669
670         memset(best_clock, 0, sizeof(*best_clock));
671
672         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
673              clock.m1++) {
674                 for (clock.m2 = limit->m2.min;
675                      clock.m2 <= limit->m2.max; clock.m2++) {
676                         for (clock.n = limit->n.min;
677                              clock.n <= limit->n.max; clock.n++) {
678                                 for (clock.p1 = limit->p1.min;
679                                         clock.p1 <= limit->p1.max; clock.p1++) {
680                                         int this_err;
681
682                                         pineview_clock(refclk, &clock);
683                                         if (!intel_PLL_is_valid(dev, limit,
684                                                                 &clock))
685                                                 continue;
686                                         if (match_clock &&
687                                             clock.p != match_clock->p)
688                                                 continue;
689
690                                         this_err = abs(clock.dot - target);
691                                         if (this_err < err) {
692                                                 *best_clock = clock;
693                                                 err = this_err;
694                                         }
695                                 }
696                         }
697                 }
698         }
699
700         return (err != target);
701 }
702
703 static bool
704 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
705                    int target, int refclk, intel_clock_t *match_clock,
706                    intel_clock_t *best_clock)
707 {
708         struct drm_device *dev = crtc->dev;
709         intel_clock_t clock;
710         int max_n;
711         bool found;
712         /* approximately equals target * 0.00585 */
713         int err_most = (target >> 8) + (target >> 9);
714         found = false;
715
716         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
717                 if (intel_is_dual_link_lvds(dev))
718                         clock.p2 = limit->p2.p2_fast;
719                 else
720                         clock.p2 = limit->p2.p2_slow;
721         } else {
722                 if (target < limit->p2.dot_limit)
723                         clock.p2 = limit->p2.p2_slow;
724                 else
725                         clock.p2 = limit->p2.p2_fast;
726         }
727
728         memset(best_clock, 0, sizeof(*best_clock));
729         max_n = limit->n.max;
730         /* based on hardware requirement, prefer smaller n to precision */
731         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
732                 /* based on hardware requirement, prefere larger m1,m2 */
733                 for (clock.m1 = limit->m1.max;
734                      clock.m1 >= limit->m1.min; clock.m1--) {
735                         for (clock.m2 = limit->m2.max;
736                              clock.m2 >= limit->m2.min; clock.m2--) {
737                                 for (clock.p1 = limit->p1.max;
738                                      clock.p1 >= limit->p1.min; clock.p1--) {
739                                         int this_err;
740
741                                         i9xx_clock(refclk, &clock);
742                                         if (!intel_PLL_is_valid(dev, limit,
743                                                                 &clock))
744                                                 continue;
745
746                                         this_err = abs(clock.dot - target);
747                                         if (this_err < err_most) {
748                                                 *best_clock = clock;
749                                                 err_most = this_err;
750                                                 max_n = clock.n;
751                                                 found = true;
752                                         }
753                                 }
754                         }
755                 }
756         }
757         return found;
758 }
759
760 static bool
761 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
762                    int target, int refclk, intel_clock_t *match_clock,
763                    intel_clock_t *best_clock)
764 {
765         struct drm_device *dev = crtc->dev;
766         intel_clock_t clock;
767         unsigned int bestppm = 1000000;
768         /* min update 19.2 MHz */
769         int max_n = min(limit->n.max, refclk / 19200);
770         bool found = false;
771
772         target *= 5; /* fast clock */
773
774         memset(best_clock, 0, sizeof(*best_clock));
775
776         /* based on hardware requirement, prefer smaller n to precision */
777         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
778                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
779                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
780                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
781                                 clock.p = clock.p1 * clock.p2;
782                                 /* based on hardware requirement, prefer bigger m1,m2 values */
783                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
784                                         unsigned int ppm, diff;
785
786                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
787                                                                      refclk * clock.m1);
788
789                                         vlv_clock(refclk, &clock);
790
791                                         if (!intel_PLL_is_valid(dev, limit,
792                                                                 &clock))
793                                                 continue;
794
795                                         diff = abs(clock.dot - target);
796                                         ppm = div_u64(1000000ULL * diff, target);
797
798                                         if (ppm < 100 && clock.p > best_clock->p) {
799                                                 bestppm = 0;
800                                                 *best_clock = clock;
801                                                 found = true;
802                                         }
803
804                                         if (bestppm >= 10 && ppm < bestppm - 10) {
805                                                 bestppm = ppm;
806                                                 *best_clock = clock;
807                                                 found = true;
808                                         }
809                                 }
810                         }
811                 }
812         }
813
814         return found;
815 }
816
817 static bool
818 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
819                    int target, int refclk, intel_clock_t *match_clock,
820                    intel_clock_t *best_clock)
821 {
822         struct drm_device *dev = crtc->dev;
823         intel_clock_t clock;
824         uint64_t m2;
825         int found = false;
826
827         memset(best_clock, 0, sizeof(*best_clock));
828
829         /*
830          * Based on hardware doc, the n always set to 1, and m1 always
831          * set to 2.  If requires to support 200Mhz refclk, we need to
832          * revisit this because n may not 1 anymore.
833          */
834         clock.n = 1, clock.m1 = 2;
835         target *= 5;    /* fast clock */
836
837         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
838                 for (clock.p2 = limit->p2.p2_fast;
839                                 clock.p2 >= limit->p2.p2_slow;
840                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
841
842                         clock.p = clock.p1 * clock.p2;
843
844                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
845                                         clock.n) << 22, refclk * clock.m1);
846
847                         if (m2 > INT_MAX/clock.m1)
848                                 continue;
849
850                         clock.m2 = m2;
851
852                         chv_clock(refclk, &clock);
853
854                         if (!intel_PLL_is_valid(dev, limit, &clock))
855                                 continue;
856
857                         /* based on hardware requirement, prefer bigger p
858                          */
859                         if (clock.p > best_clock->p) {
860                                 *best_clock = clock;
861                                 found = true;
862                         }
863                 }
864         }
865
866         return found;
867 }
868
869 bool intel_crtc_active(struct drm_crtc *crtc)
870 {
871         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
872
873         /* Be paranoid as we can arrive here with only partial
874          * state retrieved from the hardware during setup.
875          *
876          * We can ditch the adjusted_mode.crtc_clock check as soon
877          * as Haswell has gained clock readout/fastboot support.
878          *
879          * We can ditch the crtc->primary->fb check as soon as we can
880          * properly reconstruct framebuffers.
881          */
882         return intel_crtc->active && crtc->primary->fb &&
883                 intel_crtc->config.adjusted_mode.crtc_clock;
884 }
885
886 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
887                                              enum pipe pipe)
888 {
889         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
890         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
891
892         return intel_crtc->config.cpu_transcoder;
893 }
894
895 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
896 {
897         struct drm_i915_private *dev_priv = dev->dev_private;
898         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
899
900         frame = I915_READ(frame_reg);
901
902         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
903                 WARN(1, "vblank wait on pipe %c timed out\n",
904                      pipe_name(pipe));
905 }
906
907 /**
908  * intel_wait_for_vblank - wait for vblank on a given pipe
909  * @dev: drm device
910  * @pipe: pipe to wait for
911  *
912  * Wait for vblank to occur on a given pipe.  Needed for various bits of
913  * mode setting code.
914  */
915 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
916 {
917         struct drm_i915_private *dev_priv = dev->dev_private;
918         int pipestat_reg = PIPESTAT(pipe);
919
920         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
921                 g4x_wait_for_vblank(dev, pipe);
922                 return;
923         }
924
925         /* Clear existing vblank status. Note this will clear any other
926          * sticky status fields as well.
927          *
928          * This races with i915_driver_irq_handler() with the result
929          * that either function could miss a vblank event.  Here it is not
930          * fatal, as we will either wait upon the next vblank interrupt or
931          * timeout.  Generally speaking intel_wait_for_vblank() is only
932          * called during modeset at which time the GPU should be idle and
933          * should *not* be performing page flips and thus not waiting on
934          * vblanks...
935          * Currently, the result of us stealing a vblank from the irq
936          * handler is that a single frame will be skipped during swapbuffers.
937          */
938         I915_WRITE(pipestat_reg,
939                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
940
941         /* Wait for vblank interrupt bit to set */
942         if (wait_for(I915_READ(pipestat_reg) &
943                      PIPE_VBLANK_INTERRUPT_STATUS,
944                      50))
945                 DRM_DEBUG_KMS("vblank wait on pipe %c timed out\n",
946                               pipe_name(pipe));
947 }
948
949 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
950 {
951         struct drm_i915_private *dev_priv = dev->dev_private;
952         u32 reg = PIPEDSL(pipe);
953         u32 line1, line2;
954         u32 line_mask;
955
956         if (IS_GEN2(dev))
957                 line_mask = DSL_LINEMASK_GEN2;
958         else
959                 line_mask = DSL_LINEMASK_GEN3;
960
961         line1 = I915_READ(reg) & line_mask;
962         mdelay(5);
963         line2 = I915_READ(reg) & line_mask;
964
965         return line1 == line2;
966 }
967
968 /*
969  * intel_wait_for_pipe_off - wait for pipe to turn off
970  * @crtc: crtc whose pipe to wait for
971  *
972  * After disabling a pipe, we can't wait for vblank in the usual way,
973  * spinning on the vblank interrupt status bit, since we won't actually
974  * see an interrupt when the pipe is disabled.
975  *
976  * On Gen4 and above:
977  *   wait for the pipe register state bit to turn off
978  *
979  * Otherwise:
980  *   wait for the display line value to settle (it usually
981  *   ends up stopping at the start of the next frame).
982  *
983  */
984 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
985 {
986         struct drm_device *dev = crtc->base.dev;
987         struct drm_i915_private *dev_priv = dev->dev_private;
988         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
989         enum pipe pipe = crtc->pipe;
990
991         if (INTEL_INFO(dev)->gen >= 4) {
992                 int reg = PIPECONF(cpu_transcoder);
993
994                 /* Wait for the Pipe State to go off */
995                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
996                              100))
997                         WARN(1, "pipe_off wait timed out\n");
998         } else {
999                 /* Wait for the display line to settle */
1000                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1001                         WARN(1, "pipe_off wait timed out\n");
1002         }
1003 }
1004
1005 /*
1006  * ibx_digital_port_connected - is the specified port connected?
1007  * @dev_priv: i915 private structure
1008  * @port: the port to test
1009  *
1010  * Returns true if @port is connected, false otherwise.
1011  */
1012 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1013                                 struct intel_digital_port *port)
1014 {
1015         u32 bit;
1016
1017         if (HAS_PCH_IBX(dev_priv->dev)) {
1018                 switch (port->port) {
1019                 case PORT_B:
1020                         bit = SDE_PORTB_HOTPLUG;
1021                         break;
1022                 case PORT_C:
1023                         bit = SDE_PORTC_HOTPLUG;
1024                         break;
1025                 case PORT_D:
1026                         bit = SDE_PORTD_HOTPLUG;
1027                         break;
1028                 default:
1029                         return true;
1030                 }
1031         } else {
1032                 switch (port->port) {
1033                 case PORT_B:
1034                         bit = SDE_PORTB_HOTPLUG_CPT;
1035                         break;
1036                 case PORT_C:
1037                         bit = SDE_PORTC_HOTPLUG_CPT;
1038                         break;
1039                 case PORT_D:
1040                         bit = SDE_PORTD_HOTPLUG_CPT;
1041                         break;
1042                 default:
1043                         return true;
1044                 }
1045         }
1046
1047         return I915_READ(SDEISR) & bit;
1048 }
1049
1050 static const char *state_string(bool enabled)
1051 {
1052         return enabled ? "on" : "off";
1053 }
1054
1055 /* Only for pre-ILK configs */
1056 void assert_pll(struct drm_i915_private *dev_priv,
1057                 enum pipe pipe, bool state)
1058 {
1059         int reg;
1060         u32 val;
1061         bool cur_state;
1062
1063         reg = DPLL(pipe);
1064         val = I915_READ(reg);
1065         cur_state = !!(val & DPLL_VCO_ENABLE);
1066         WARN(cur_state != state,
1067              "PLL state assertion failure (expected %s, current %s)\n",
1068              state_string(state), state_string(cur_state));
1069 }
1070
1071 /* XXX: the dsi pll is shared between MIPI DSI ports */
1072 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1073 {
1074         u32 val;
1075         bool cur_state;
1076
1077         mutex_lock(&dev_priv->dpio_lock);
1078         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1079         mutex_unlock(&dev_priv->dpio_lock);
1080
1081         cur_state = val & DSI_PLL_VCO_EN;
1082         WARN(cur_state != state,
1083              "DSI PLL state assertion failure (expected %s, current %s)\n",
1084              state_string(state), state_string(cur_state));
1085 }
1086 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1087 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1088
1089 struct intel_shared_dpll *
1090 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1091 {
1092         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1093
1094         if (crtc->config.shared_dpll < 0)
1095                 return NULL;
1096
1097         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1098 }
1099
1100 /* For ILK+ */
1101 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1102                         struct intel_shared_dpll *pll,
1103                         bool state)
1104 {
1105         bool cur_state;
1106         struct intel_dpll_hw_state hw_state;
1107
1108         if (WARN (!pll,
1109                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1110                 return;
1111
1112         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1113         WARN(cur_state != state,
1114              "%s assertion failure (expected %s, current %s)\n",
1115              pll->name, state_string(state), state_string(cur_state));
1116 }
1117
1118 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1119                           enum pipe pipe, bool state)
1120 {
1121         int reg;
1122         u32 val;
1123         bool cur_state;
1124         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1125                                                                       pipe);
1126
1127         if (HAS_DDI(dev_priv->dev)) {
1128                 /* DDI does not have a specific FDI_TX register */
1129                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1130                 val = I915_READ(reg);
1131                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1132         } else {
1133                 reg = FDI_TX_CTL(pipe);
1134                 val = I915_READ(reg);
1135                 cur_state = !!(val & FDI_TX_ENABLE);
1136         }
1137         WARN(cur_state != state,
1138              "FDI TX state assertion failure (expected %s, current %s)\n",
1139              state_string(state), state_string(cur_state));
1140 }
1141 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1142 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1143
1144 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1145                           enum pipe pipe, bool state)
1146 {
1147         int reg;
1148         u32 val;
1149         bool cur_state;
1150
1151         reg = FDI_RX_CTL(pipe);
1152         val = I915_READ(reg);
1153         cur_state = !!(val & FDI_RX_ENABLE);
1154         WARN(cur_state != state,
1155              "FDI RX state assertion failure (expected %s, current %s)\n",
1156              state_string(state), state_string(cur_state));
1157 }
1158 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1159 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1160
1161 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1162                                       enum pipe pipe)
1163 {
1164         int reg;
1165         u32 val;
1166
1167         /* ILK FDI PLL is always enabled */
1168         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1169                 return;
1170
1171         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1172         if (HAS_DDI(dev_priv->dev))
1173                 return;
1174
1175         reg = FDI_TX_CTL(pipe);
1176         val = I915_READ(reg);
1177         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1178 }
1179
1180 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1181                        enum pipe pipe, bool state)
1182 {
1183         int reg;
1184         u32 val;
1185         bool cur_state;
1186
1187         reg = FDI_RX_CTL(pipe);
1188         val = I915_READ(reg);
1189         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1190         WARN(cur_state != state,
1191              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1192              state_string(state), state_string(cur_state));
1193 }
1194
1195 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1196                                   enum pipe pipe)
1197 {
1198         struct drm_device *dev = dev_priv->dev;
1199         int pp_reg;
1200         u32 val;
1201         enum pipe panel_pipe = PIPE_A;
1202         bool locked = true;
1203
1204         if (WARN_ON(HAS_DDI(dev)))
1205                 return;
1206
1207         if (HAS_PCH_SPLIT(dev)) {
1208                 u32 port_sel;
1209
1210                 pp_reg = PCH_PP_CONTROL;
1211                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1212
1213                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1214                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1215                         panel_pipe = PIPE_B;
1216                 /* XXX: else fix for eDP */
1217         } else if (IS_VALLEYVIEW(dev)) {
1218                 /* presumably write lock depends on pipe, not port select */
1219                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1220                 panel_pipe = pipe;
1221         } else {
1222                 pp_reg = PP_CONTROL;
1223                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1224                         panel_pipe = PIPE_B;
1225         }
1226
1227         val = I915_READ(pp_reg);
1228         if (!(val & PANEL_POWER_ON) ||
1229             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1230                 locked = false;
1231
1232         WARN(panel_pipe == pipe && locked,
1233              "panel assertion failure, pipe %c regs locked\n",
1234              pipe_name(pipe));
1235 }
1236
1237 static void assert_cursor(struct drm_i915_private *dev_priv,
1238                           enum pipe pipe, bool state)
1239 {
1240         struct drm_device *dev = dev_priv->dev;
1241         bool cur_state;
1242
1243         if (IS_845G(dev) || IS_I865G(dev))
1244                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1245         else
1246                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1247
1248         WARN(cur_state != state,
1249              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1250              pipe_name(pipe), state_string(state), state_string(cur_state));
1251 }
1252 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1253 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1254
1255 void assert_pipe(struct drm_i915_private *dev_priv,
1256                  enum pipe pipe, bool state)
1257 {
1258         int reg;
1259         u32 val;
1260         bool cur_state;
1261         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1262                                                                       pipe);
1263
1264         /* if we need the pipe quirk it must be always on */
1265         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1266             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1267                 state = true;
1268
1269         if (!intel_display_power_enabled(dev_priv,
1270                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1271                 cur_state = false;
1272         } else {
1273                 reg = PIPECONF(cpu_transcoder);
1274                 val = I915_READ(reg);
1275                 cur_state = !!(val & PIPECONF_ENABLE);
1276         }
1277
1278         WARN(cur_state != state,
1279              "pipe %c assertion failure (expected %s, current %s)\n",
1280              pipe_name(pipe), state_string(state), state_string(cur_state));
1281 }
1282
1283 static void assert_plane(struct drm_i915_private *dev_priv,
1284                          enum plane plane, bool state)
1285 {
1286         int reg;
1287         u32 val;
1288         bool cur_state;
1289
1290         reg = DSPCNTR(plane);
1291         val = I915_READ(reg);
1292         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1293         WARN(cur_state != state,
1294              "plane %c assertion failure (expected %s, current %s)\n",
1295              plane_name(plane), state_string(state), state_string(cur_state));
1296 }
1297
1298 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1299 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1300
1301 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1302                                    enum pipe pipe)
1303 {
1304         struct drm_device *dev = dev_priv->dev;
1305         int reg, i;
1306         u32 val;
1307         int cur_pipe;
1308
1309         /* Primary planes are fixed to pipes on gen4+ */
1310         if (INTEL_INFO(dev)->gen >= 4) {
1311                 reg = DSPCNTR(pipe);
1312                 val = I915_READ(reg);
1313                 WARN(val & DISPLAY_PLANE_ENABLE,
1314                      "plane %c assertion failure, should be disabled but not\n",
1315                      plane_name(pipe));
1316                 return;
1317         }
1318
1319         /* Need to check both planes against the pipe */
1320         for_each_pipe(dev_priv, i) {
1321                 reg = DSPCNTR(i);
1322                 val = I915_READ(reg);
1323                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1324                         DISPPLANE_SEL_PIPE_SHIFT;
1325                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1326                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1327                      plane_name(i), pipe_name(pipe));
1328         }
1329 }
1330
1331 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1332                                     enum pipe pipe)
1333 {
1334         struct drm_device *dev = dev_priv->dev;
1335         int reg, sprite;
1336         u32 val;
1337
1338         if (IS_VALLEYVIEW(dev)) {
1339                 for_each_sprite(pipe, sprite) {
1340                         reg = SPCNTR(pipe, sprite);
1341                         val = I915_READ(reg);
1342                         WARN(val & SP_ENABLE,
1343                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1344                              sprite_name(pipe, sprite), pipe_name(pipe));
1345                 }
1346         } else if (INTEL_INFO(dev)->gen >= 7) {
1347                 reg = SPRCTL(pipe);
1348                 val = I915_READ(reg);
1349                 WARN(val & SPRITE_ENABLE,
1350                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1351                      plane_name(pipe), pipe_name(pipe));
1352         } else if (INTEL_INFO(dev)->gen >= 5) {
1353                 reg = DVSCNTR(pipe);
1354                 val = I915_READ(reg);
1355                 WARN(val & DVS_ENABLE,
1356                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1357                      plane_name(pipe), pipe_name(pipe));
1358         }
1359 }
1360
1361 static void assert_vblank_disabled(struct drm_crtc *crtc)
1362 {
1363         if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1364                 drm_crtc_vblank_put(crtc);
1365 }
1366
1367 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1368 {
1369         u32 val;
1370         bool enabled;
1371
1372         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1373
1374         val = I915_READ(PCH_DREF_CONTROL);
1375         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1376                             DREF_SUPERSPREAD_SOURCE_MASK));
1377         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1378 }
1379
1380 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1381                                            enum pipe pipe)
1382 {
1383         int reg;
1384         u32 val;
1385         bool enabled;
1386
1387         reg = PCH_TRANSCONF(pipe);
1388         val = I915_READ(reg);
1389         enabled = !!(val & TRANS_ENABLE);
1390         WARN(enabled,
1391              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1392              pipe_name(pipe));
1393 }
1394
1395 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1396                             enum pipe pipe, u32 port_sel, u32 val)
1397 {
1398         if ((val & DP_PORT_EN) == 0)
1399                 return false;
1400
1401         if (HAS_PCH_CPT(dev_priv->dev)) {
1402                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1403                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1404                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1405                         return false;
1406         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1407                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1408                         return false;
1409         } else {
1410                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1411                         return false;
1412         }
1413         return true;
1414 }
1415
1416 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1417                               enum pipe pipe, u32 val)
1418 {
1419         if ((val & SDVO_ENABLE) == 0)
1420                 return false;
1421
1422         if (HAS_PCH_CPT(dev_priv->dev)) {
1423                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1424                         return false;
1425         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1426                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1427                         return false;
1428         } else {
1429                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1430                         return false;
1431         }
1432         return true;
1433 }
1434
1435 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1436                               enum pipe pipe, u32 val)
1437 {
1438         if ((val & LVDS_PORT_EN) == 0)
1439                 return false;
1440
1441         if (HAS_PCH_CPT(dev_priv->dev)) {
1442                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1443                         return false;
1444         } else {
1445                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1446                         return false;
1447         }
1448         return true;
1449 }
1450
1451 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1452                               enum pipe pipe, u32 val)
1453 {
1454         if ((val & ADPA_DAC_ENABLE) == 0)
1455                 return false;
1456         if (HAS_PCH_CPT(dev_priv->dev)) {
1457                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1458                         return false;
1459         } else {
1460                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1461                         return false;
1462         }
1463         return true;
1464 }
1465
1466 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1467                                    enum pipe pipe, int reg, u32 port_sel)
1468 {
1469         u32 val = I915_READ(reg);
1470         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1471              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1472              reg, pipe_name(pipe));
1473
1474         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1475              && (val & DP_PIPEB_SELECT),
1476              "IBX PCH dp port still using transcoder B\n");
1477 }
1478
1479 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1480                                      enum pipe pipe, int reg)
1481 {
1482         u32 val = I915_READ(reg);
1483         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1484              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1485              reg, pipe_name(pipe));
1486
1487         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1488              && (val & SDVO_PIPE_B_SELECT),
1489              "IBX PCH hdmi port still using transcoder B\n");
1490 }
1491
1492 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1493                                       enum pipe pipe)
1494 {
1495         int reg;
1496         u32 val;
1497
1498         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1499         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1500         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1501
1502         reg = PCH_ADPA;
1503         val = I915_READ(reg);
1504         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1505              "PCH VGA enabled on transcoder %c, should be disabled\n",
1506              pipe_name(pipe));
1507
1508         reg = PCH_LVDS;
1509         val = I915_READ(reg);
1510         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1511              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1512              pipe_name(pipe));
1513
1514         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1515         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1516         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1517 }
1518
1519 static void intel_init_dpio(struct drm_device *dev)
1520 {
1521         struct drm_i915_private *dev_priv = dev->dev_private;
1522
1523         if (!IS_VALLEYVIEW(dev))
1524                 return;
1525
1526         /*
1527          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1528          * CHV x1 PHY (DP/HDMI D)
1529          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1530          */
1531         if (IS_CHERRYVIEW(dev)) {
1532                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1533                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1534         } else {
1535                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1536         }
1537 }
1538
1539 static void vlv_enable_pll(struct intel_crtc *crtc)
1540 {
1541         struct drm_device *dev = crtc->base.dev;
1542         struct drm_i915_private *dev_priv = dev->dev_private;
1543         int reg = DPLL(crtc->pipe);
1544         u32 dpll = crtc->config.dpll_hw_state.dpll;
1545
1546         assert_pipe_disabled(dev_priv, crtc->pipe);
1547
1548         /* No really, not for ILK+ */
1549         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1550
1551         /* PLL is protected by panel, make sure we can write it */
1552         if (IS_MOBILE(dev_priv->dev))
1553                 assert_panel_unlocked(dev_priv, crtc->pipe);
1554
1555         I915_WRITE(reg, dpll);
1556         POSTING_READ(reg);
1557         udelay(150);
1558
1559         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1560                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1561
1562         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1563         POSTING_READ(DPLL_MD(crtc->pipe));
1564
1565         /* We do this three times for luck */
1566         I915_WRITE(reg, dpll);
1567         POSTING_READ(reg);
1568         udelay(150); /* wait for warmup */
1569         I915_WRITE(reg, dpll);
1570         POSTING_READ(reg);
1571         udelay(150); /* wait for warmup */
1572         I915_WRITE(reg, dpll);
1573         POSTING_READ(reg);
1574         udelay(150); /* wait for warmup */
1575 }
1576
1577 static void chv_enable_pll(struct intel_crtc *crtc)
1578 {
1579         struct drm_device *dev = crtc->base.dev;
1580         struct drm_i915_private *dev_priv = dev->dev_private;
1581         int pipe = crtc->pipe;
1582         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1583         u32 tmp;
1584
1585         assert_pipe_disabled(dev_priv, crtc->pipe);
1586
1587         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1588
1589         mutex_lock(&dev_priv->dpio_lock);
1590
1591         /* Enable back the 10bit clock to display controller */
1592         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1593         tmp |= DPIO_DCLKP_EN;
1594         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1595
1596         /*
1597          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1598          */
1599         udelay(1);
1600
1601         /* Enable PLL */
1602         I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
1603
1604         /* Check PLL is locked */
1605         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1606                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1607
1608         /* not sure when this should be written */
1609         I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1610         POSTING_READ(DPLL_MD(pipe));
1611
1612         mutex_unlock(&dev_priv->dpio_lock);
1613 }
1614
1615 static int intel_num_dvo_pipes(struct drm_device *dev)
1616 {
1617         struct intel_crtc *crtc;
1618         int count = 0;
1619
1620         for_each_intel_crtc(dev, crtc)
1621                 count += crtc->active &&
1622                         intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO);
1623
1624         return count;
1625 }
1626
1627 static void i9xx_enable_pll(struct intel_crtc *crtc)
1628 {
1629         struct drm_device *dev = crtc->base.dev;
1630         struct drm_i915_private *dev_priv = dev->dev_private;
1631         int reg = DPLL(crtc->pipe);
1632         u32 dpll = crtc->config.dpll_hw_state.dpll;
1633
1634         assert_pipe_disabled(dev_priv, crtc->pipe);
1635
1636         /* No really, not for ILK+ */
1637         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1638
1639         /* PLL is protected by panel, make sure we can write it */
1640         if (IS_MOBILE(dev) && !IS_I830(dev))
1641                 assert_panel_unlocked(dev_priv, crtc->pipe);
1642
1643         /* Enable DVO 2x clock on both PLLs if necessary */
1644         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1645                 /*
1646                  * It appears to be important that we don't enable this
1647                  * for the current pipe before otherwise configuring the
1648                  * PLL. No idea how this should be handled if multiple
1649                  * DVO outputs are enabled simultaneosly.
1650                  */
1651                 dpll |= DPLL_DVO_2X_MODE;
1652                 I915_WRITE(DPLL(!crtc->pipe),
1653                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1654         }
1655
1656         /* Wait for the clocks to stabilize. */
1657         POSTING_READ(reg);
1658         udelay(150);
1659
1660         if (INTEL_INFO(dev)->gen >= 4) {
1661                 I915_WRITE(DPLL_MD(crtc->pipe),
1662                            crtc->config.dpll_hw_state.dpll_md);
1663         } else {
1664                 /* The pixel multiplier can only be updated once the
1665                  * DPLL is enabled and the clocks are stable.
1666                  *
1667                  * So write it again.
1668                  */
1669                 I915_WRITE(reg, dpll);
1670         }
1671
1672         /* We do this three times for luck */
1673         I915_WRITE(reg, dpll);
1674         POSTING_READ(reg);
1675         udelay(150); /* wait for warmup */
1676         I915_WRITE(reg, dpll);
1677         POSTING_READ(reg);
1678         udelay(150); /* wait for warmup */
1679         I915_WRITE(reg, dpll);
1680         POSTING_READ(reg);
1681         udelay(150); /* wait for warmup */
1682 }
1683
1684 /**
1685  * i9xx_disable_pll - disable a PLL
1686  * @dev_priv: i915 private structure
1687  * @pipe: pipe PLL to disable
1688  *
1689  * Disable the PLL for @pipe, making sure the pipe is off first.
1690  *
1691  * Note!  This is for pre-ILK only.
1692  */
1693 static void i9xx_disable_pll(struct intel_crtc *crtc)
1694 {
1695         struct drm_device *dev = crtc->base.dev;
1696         struct drm_i915_private *dev_priv = dev->dev_private;
1697         enum pipe pipe = crtc->pipe;
1698
1699         /* Disable DVO 2x clock on both PLLs if necessary */
1700         if (IS_I830(dev) &&
1701             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO) &&
1702             intel_num_dvo_pipes(dev) == 1) {
1703                 I915_WRITE(DPLL(PIPE_B),
1704                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1705                 I915_WRITE(DPLL(PIPE_A),
1706                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1707         }
1708
1709         /* Don't disable pipe or pipe PLLs if needed */
1710         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1711             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1712                 return;
1713
1714         /* Make sure the pipe isn't still relying on us */
1715         assert_pipe_disabled(dev_priv, pipe);
1716
1717         I915_WRITE(DPLL(pipe), 0);
1718         POSTING_READ(DPLL(pipe));
1719 }
1720
1721 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1722 {
1723         u32 val = 0;
1724
1725         /* Make sure the pipe isn't still relying on us */
1726         assert_pipe_disabled(dev_priv, pipe);
1727
1728         /*
1729          * Leave integrated clock source and reference clock enabled for pipe B.
1730          * The latter is needed for VGA hotplug / manual detection.
1731          */
1732         if (pipe == PIPE_B)
1733                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1734         I915_WRITE(DPLL(pipe), val);
1735         POSTING_READ(DPLL(pipe));
1736
1737 }
1738
1739 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1740 {
1741         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1742         u32 val;
1743
1744         /* Make sure the pipe isn't still relying on us */
1745         assert_pipe_disabled(dev_priv, pipe);
1746
1747         /* Set PLL en = 0 */
1748         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1749         if (pipe != PIPE_A)
1750                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1751         I915_WRITE(DPLL(pipe), val);
1752         POSTING_READ(DPLL(pipe));
1753
1754         mutex_lock(&dev_priv->dpio_lock);
1755
1756         /* Disable 10bit clock to display controller */
1757         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1758         val &= ~DPIO_DCLKP_EN;
1759         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1760
1761         /* disable left/right clock distribution */
1762         if (pipe != PIPE_B) {
1763                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1764                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1765                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1766         } else {
1767                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1768                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1769                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1770         }
1771
1772         mutex_unlock(&dev_priv->dpio_lock);
1773 }
1774
1775 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1776                 struct intel_digital_port *dport)
1777 {
1778         u32 port_mask;
1779         int dpll_reg;
1780
1781         switch (dport->port) {
1782         case PORT_B:
1783                 port_mask = DPLL_PORTB_READY_MASK;
1784                 dpll_reg = DPLL(0);
1785                 break;
1786         case PORT_C:
1787                 port_mask = DPLL_PORTC_READY_MASK;
1788                 dpll_reg = DPLL(0);
1789                 break;
1790         case PORT_D:
1791                 port_mask = DPLL_PORTD_READY_MASK;
1792                 dpll_reg = DPIO_PHY_STATUS;
1793                 break;
1794         default:
1795                 BUG();
1796         }
1797
1798         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1799                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1800                      port_name(dport->port), I915_READ(dpll_reg));
1801 }
1802
1803 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1804 {
1805         struct drm_device *dev = crtc->base.dev;
1806         struct drm_i915_private *dev_priv = dev->dev_private;
1807         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1808
1809         if (WARN_ON(pll == NULL))
1810                 return;
1811
1812         WARN_ON(!pll->refcount);
1813         if (pll->active == 0) {
1814                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1815                 WARN_ON(pll->on);
1816                 assert_shared_dpll_disabled(dev_priv, pll);
1817
1818                 pll->mode_set(dev_priv, pll);
1819         }
1820 }
1821
1822 /**
1823  * intel_enable_shared_dpll - enable PCH PLL
1824  * @dev_priv: i915 private structure
1825  * @pipe: pipe PLL to enable
1826  *
1827  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1828  * drives the transcoder clock.
1829  */
1830 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1831 {
1832         struct drm_device *dev = crtc->base.dev;
1833         struct drm_i915_private *dev_priv = dev->dev_private;
1834         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1835
1836         if (WARN_ON(pll == NULL))
1837                 return;
1838
1839         if (WARN_ON(pll->refcount == 0))
1840                 return;
1841
1842         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1843                       pll->name, pll->active, pll->on,
1844                       crtc->base.base.id);
1845
1846         if (pll->active++) {
1847                 WARN_ON(!pll->on);
1848                 assert_shared_dpll_enabled(dev_priv, pll);
1849                 return;
1850         }
1851         WARN_ON(pll->on);
1852
1853         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1854
1855         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1856         pll->enable(dev_priv, pll);
1857         pll->on = true;
1858 }
1859
1860 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1861 {
1862         struct drm_device *dev = crtc->base.dev;
1863         struct drm_i915_private *dev_priv = dev->dev_private;
1864         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1865
1866         /* PCH only available on ILK+ */
1867         BUG_ON(INTEL_INFO(dev)->gen < 5);
1868         if (WARN_ON(pll == NULL))
1869                return;
1870
1871         if (WARN_ON(pll->refcount == 0))
1872                 return;
1873
1874         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1875                       pll->name, pll->active, pll->on,
1876                       crtc->base.base.id);
1877
1878         if (WARN_ON(pll->active == 0)) {
1879                 assert_shared_dpll_disabled(dev_priv, pll);
1880                 return;
1881         }
1882
1883         assert_shared_dpll_enabled(dev_priv, pll);
1884         WARN_ON(!pll->on);
1885         if (--pll->active)
1886                 return;
1887
1888         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1889         pll->disable(dev_priv, pll);
1890         pll->on = false;
1891
1892         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1893 }
1894
1895 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1896                                            enum pipe pipe)
1897 {
1898         struct drm_device *dev = dev_priv->dev;
1899         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1900         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1901         uint32_t reg, val, pipeconf_val;
1902
1903         /* PCH only available on ILK+ */
1904         BUG_ON(!HAS_PCH_SPLIT(dev));
1905
1906         /* Make sure PCH DPLL is enabled */
1907         assert_shared_dpll_enabled(dev_priv,
1908                                    intel_crtc_to_shared_dpll(intel_crtc));
1909
1910         /* FDI must be feeding us bits for PCH ports */
1911         assert_fdi_tx_enabled(dev_priv, pipe);
1912         assert_fdi_rx_enabled(dev_priv, pipe);
1913
1914         if (HAS_PCH_CPT(dev)) {
1915                 /* Workaround: Set the timing override bit before enabling the
1916                  * pch transcoder. */
1917                 reg = TRANS_CHICKEN2(pipe);
1918                 val = I915_READ(reg);
1919                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1920                 I915_WRITE(reg, val);
1921         }
1922
1923         reg = PCH_TRANSCONF(pipe);
1924         val = I915_READ(reg);
1925         pipeconf_val = I915_READ(PIPECONF(pipe));
1926
1927         if (HAS_PCH_IBX(dev_priv->dev)) {
1928                 /*
1929                  * make the BPC in transcoder be consistent with
1930                  * that in pipeconf reg.
1931                  */
1932                 val &= ~PIPECONF_BPC_MASK;
1933                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1934         }
1935
1936         val &= ~TRANS_INTERLACE_MASK;
1937         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1938                 if (HAS_PCH_IBX(dev_priv->dev) &&
1939                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1940                         val |= TRANS_LEGACY_INTERLACED_ILK;
1941                 else
1942                         val |= TRANS_INTERLACED;
1943         else
1944                 val |= TRANS_PROGRESSIVE;
1945
1946         I915_WRITE(reg, val | TRANS_ENABLE);
1947         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1948                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1949 }
1950
1951 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1952                                       enum transcoder cpu_transcoder)
1953 {
1954         u32 val, pipeconf_val;
1955
1956         /* PCH only available on ILK+ */
1957         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1958
1959         /* FDI must be feeding us bits for PCH ports */
1960         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1961         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1962
1963         /* Workaround: set timing override bit. */
1964         val = I915_READ(_TRANSA_CHICKEN2);
1965         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1966         I915_WRITE(_TRANSA_CHICKEN2, val);
1967
1968         val = TRANS_ENABLE;
1969         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1970
1971         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1972             PIPECONF_INTERLACED_ILK)
1973                 val |= TRANS_INTERLACED;
1974         else
1975                 val |= TRANS_PROGRESSIVE;
1976
1977         I915_WRITE(LPT_TRANSCONF, val);
1978         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1979                 DRM_ERROR("Failed to enable PCH transcoder\n");
1980 }
1981
1982 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1983                                             enum pipe pipe)
1984 {
1985         struct drm_device *dev = dev_priv->dev;
1986         uint32_t reg, val;
1987
1988         /* FDI relies on the transcoder */
1989         assert_fdi_tx_disabled(dev_priv, pipe);
1990         assert_fdi_rx_disabled(dev_priv, pipe);
1991
1992         /* Ports must be off as well */
1993         assert_pch_ports_disabled(dev_priv, pipe);
1994
1995         reg = PCH_TRANSCONF(pipe);
1996         val = I915_READ(reg);
1997         val &= ~TRANS_ENABLE;
1998         I915_WRITE(reg, val);
1999         /* wait for PCH transcoder off, transcoder state */
2000         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2001                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2002
2003         if (!HAS_PCH_IBX(dev)) {
2004                 /* Workaround: Clear the timing override chicken bit again. */
2005                 reg = TRANS_CHICKEN2(pipe);
2006                 val = I915_READ(reg);
2007                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2008                 I915_WRITE(reg, val);
2009         }
2010 }
2011
2012 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2013 {
2014         u32 val;
2015
2016         val = I915_READ(LPT_TRANSCONF);
2017         val &= ~TRANS_ENABLE;
2018         I915_WRITE(LPT_TRANSCONF, val);
2019         /* wait for PCH transcoder off, transcoder state */
2020         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2021                 DRM_ERROR("Failed to disable PCH transcoder\n");
2022
2023         /* Workaround: clear timing override bit. */
2024         val = I915_READ(_TRANSA_CHICKEN2);
2025         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2026         I915_WRITE(_TRANSA_CHICKEN2, val);
2027 }
2028
2029 /**
2030  * intel_enable_pipe - enable a pipe, asserting requirements
2031  * @crtc: crtc responsible for the pipe
2032  *
2033  * Enable @crtc's pipe, making sure that various hardware specific requirements
2034  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2035  */
2036 static void intel_enable_pipe(struct intel_crtc *crtc)
2037 {
2038         struct drm_device *dev = crtc->base.dev;
2039         struct drm_i915_private *dev_priv = dev->dev_private;
2040         enum pipe pipe = crtc->pipe;
2041         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2042                                                                       pipe);
2043         enum pipe pch_transcoder;
2044         int reg;
2045         u32 val;
2046
2047         assert_planes_disabled(dev_priv, pipe);
2048         assert_cursor_disabled(dev_priv, pipe);
2049         assert_sprites_disabled(dev_priv, pipe);
2050
2051         if (HAS_PCH_LPT(dev_priv->dev))
2052                 pch_transcoder = TRANSCODER_A;
2053         else
2054                 pch_transcoder = pipe;
2055
2056         /*
2057          * A pipe without a PLL won't actually be able to drive bits from
2058          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2059          * need the check.
2060          */
2061         if (!HAS_PCH_SPLIT(dev_priv->dev))
2062                 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
2063                         assert_dsi_pll_enabled(dev_priv);
2064                 else
2065                         assert_pll_enabled(dev_priv, pipe);
2066         else {
2067                 if (crtc->config.has_pch_encoder) {
2068                         /* if driving the PCH, we need FDI enabled */
2069                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2070                         assert_fdi_tx_pll_enabled(dev_priv,
2071                                                   (enum pipe) cpu_transcoder);
2072                 }
2073                 /* FIXME: assert CPU port conditions for SNB+ */
2074         }
2075
2076         reg = PIPECONF(cpu_transcoder);
2077         val = I915_READ(reg);
2078         if (val & PIPECONF_ENABLE) {
2079                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2080                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2081                 return;
2082         }
2083
2084         I915_WRITE(reg, val | PIPECONF_ENABLE);
2085         POSTING_READ(reg);
2086 }
2087
2088 /**
2089  * intel_disable_pipe - disable a pipe, asserting requirements
2090  * @crtc: crtc whose pipes is to be disabled
2091  *
2092  * Disable the pipe of @crtc, making sure that various hardware
2093  * specific requirements are met, if applicable, e.g. plane
2094  * disabled, panel fitter off, etc.
2095  *
2096  * Will wait until the pipe has shut down before returning.
2097  */
2098 static void intel_disable_pipe(struct intel_crtc *crtc)
2099 {
2100         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2101         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2102         enum pipe pipe = crtc->pipe;
2103         int reg;
2104         u32 val;
2105
2106         /*
2107          * Make sure planes won't keep trying to pump pixels to us,
2108          * or we might hang the display.
2109          */
2110         assert_planes_disabled(dev_priv, pipe);
2111         assert_cursor_disabled(dev_priv, pipe);
2112         assert_sprites_disabled(dev_priv, pipe);
2113
2114         reg = PIPECONF(cpu_transcoder);
2115         val = I915_READ(reg);
2116         if ((val & PIPECONF_ENABLE) == 0)
2117                 return;
2118
2119         /*
2120          * Double wide has implications for planes
2121          * so best keep it disabled when not needed.
2122          */
2123         if (crtc->config.double_wide)
2124                 val &= ~PIPECONF_DOUBLE_WIDE;
2125
2126         /* Don't disable pipe or pipe PLLs if needed */
2127         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2128             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2129                 val &= ~PIPECONF_ENABLE;
2130
2131         I915_WRITE(reg, val);
2132         if ((val & PIPECONF_ENABLE) == 0)
2133                 intel_wait_for_pipe_off(crtc);
2134 }
2135
2136 /*
2137  * Plane regs are double buffered, going from enabled->disabled needs a
2138  * trigger in order to latch.  The display address reg provides this.
2139  */
2140 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2141                                enum plane plane)
2142 {
2143         struct drm_device *dev = dev_priv->dev;
2144         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2145
2146         I915_WRITE(reg, I915_READ(reg));
2147         POSTING_READ(reg);
2148 }
2149
2150 /**
2151  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2152  * @plane:  plane to be enabled
2153  * @crtc: crtc for the plane
2154  *
2155  * Enable @plane on @crtc, making sure that the pipe is running first.
2156  */
2157 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2158                                           struct drm_crtc *crtc)
2159 {
2160         struct drm_device *dev = plane->dev;
2161         struct drm_i915_private *dev_priv = dev->dev_private;
2162         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2163
2164         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2165         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2166
2167         if (intel_crtc->primary_enabled)
2168                 return;
2169
2170         intel_crtc->primary_enabled = true;
2171
2172         dev_priv->display.update_primary_plane(crtc, plane->fb,
2173                                                crtc->x, crtc->y);
2174
2175         /*
2176          * BDW signals flip done immediately if the plane
2177          * is disabled, even if the plane enable is already
2178          * armed to occur at the next vblank :(
2179          */
2180         if (IS_BROADWELL(dev))
2181                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2182 }
2183
2184 /**
2185  * intel_disable_primary_hw_plane - disable the primary hardware plane
2186  * @plane: plane to be disabled
2187  * @crtc: crtc for the plane
2188  *
2189  * Disable @plane on @crtc, making sure that the pipe is running first.
2190  */
2191 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2192                                            struct drm_crtc *crtc)
2193 {
2194         struct drm_device *dev = plane->dev;
2195         struct drm_i915_private *dev_priv = dev->dev_private;
2196         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2197
2198         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2199
2200         if (!intel_crtc->primary_enabled)
2201                 return;
2202
2203         intel_crtc->primary_enabled = false;
2204
2205         dev_priv->display.update_primary_plane(crtc, plane->fb,
2206                                                crtc->x, crtc->y);
2207 }
2208
2209 static bool need_vtd_wa(struct drm_device *dev)
2210 {
2211 #ifdef CONFIG_INTEL_IOMMU
2212         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2213                 return true;
2214 #endif
2215         return false;
2216 }
2217
2218 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2219 {
2220         int tile_height;
2221
2222         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2223         return ALIGN(height, tile_height);
2224 }
2225
2226 int
2227 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2228                            struct drm_i915_gem_object *obj,
2229                            struct intel_engine_cs *pipelined)
2230 {
2231         struct drm_i915_private *dev_priv = dev->dev_private;
2232         u32 alignment;
2233         int ret;
2234
2235         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2236
2237         switch (obj->tiling_mode) {
2238         case I915_TILING_NONE:
2239                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2240                         alignment = 128 * 1024;
2241                 else if (INTEL_INFO(dev)->gen >= 4)
2242                         alignment = 4 * 1024;
2243                 else
2244                         alignment = 64 * 1024;
2245                 break;
2246         case I915_TILING_X:
2247                 /* pin() will align the object as required by fence */
2248                 alignment = 0;
2249                 break;
2250         case I915_TILING_Y:
2251                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2252                 return -EINVAL;
2253         default:
2254                 BUG();
2255         }
2256
2257         /* Note that the w/a also requires 64 PTE of padding following the
2258          * bo. We currently fill all unused PTE with the shadow page and so
2259          * we should always have valid PTE following the scanout preventing
2260          * the VT-d warning.
2261          */
2262         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2263                 alignment = 256 * 1024;
2264
2265         /*
2266          * Global gtt pte registers are special registers which actually forward
2267          * writes to a chunk of system memory. Which means that there is no risk
2268          * that the register values disappear as soon as we call
2269          * intel_runtime_pm_put(), so it is correct to wrap only the
2270          * pin/unpin/fence and not more.
2271          */
2272         intel_runtime_pm_get(dev_priv);
2273
2274         dev_priv->mm.interruptible = false;
2275         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2276         if (ret)
2277                 goto err_interruptible;
2278
2279         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2280          * fence, whereas 965+ only requires a fence if using
2281          * framebuffer compression.  For simplicity, we always install
2282          * a fence as the cost is not that onerous.
2283          */
2284         ret = i915_gem_object_get_fence(obj);
2285         if (ret)
2286                 goto err_unpin;
2287
2288         i915_gem_object_pin_fence(obj);
2289
2290         dev_priv->mm.interruptible = true;
2291         intel_runtime_pm_put(dev_priv);
2292         return 0;
2293
2294 err_unpin:
2295         i915_gem_object_unpin_from_display_plane(obj);
2296 err_interruptible:
2297         dev_priv->mm.interruptible = true;
2298         intel_runtime_pm_put(dev_priv);
2299         return ret;
2300 }
2301
2302 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2303 {
2304         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2305
2306         i915_gem_object_unpin_fence(obj);
2307         i915_gem_object_unpin_from_display_plane(obj);
2308 }
2309
2310 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2311  * is assumed to be a power-of-two. */
2312 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2313                                              unsigned int tiling_mode,
2314                                              unsigned int cpp,
2315                                              unsigned int pitch)
2316 {
2317         if (tiling_mode != I915_TILING_NONE) {
2318                 unsigned int tile_rows, tiles;
2319
2320                 tile_rows = *y / 8;
2321                 *y %= 8;
2322
2323                 tiles = *x / (512/cpp);
2324                 *x %= 512/cpp;
2325
2326                 return tile_rows * pitch * 8 + tiles * 4096;
2327         } else {
2328                 unsigned int offset;
2329
2330                 offset = *y * pitch + *x * cpp;
2331                 *y = 0;
2332                 *x = (offset & 4095) / cpp;
2333                 return offset & -4096;
2334         }
2335 }
2336
2337 int intel_format_to_fourcc(int format)
2338 {
2339         switch (format) {
2340         case DISPPLANE_8BPP:
2341                 return DRM_FORMAT_C8;
2342         case DISPPLANE_BGRX555:
2343                 return DRM_FORMAT_XRGB1555;
2344         case DISPPLANE_BGRX565:
2345                 return DRM_FORMAT_RGB565;
2346         default:
2347         case DISPPLANE_BGRX888:
2348                 return DRM_FORMAT_XRGB8888;
2349         case DISPPLANE_RGBX888:
2350                 return DRM_FORMAT_XBGR8888;
2351         case DISPPLANE_BGRX101010:
2352                 return DRM_FORMAT_XRGB2101010;
2353         case DISPPLANE_RGBX101010:
2354                 return DRM_FORMAT_XBGR2101010;
2355         }
2356 }
2357
2358 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2359                                   struct intel_plane_config *plane_config)
2360 {
2361         struct drm_device *dev = crtc->base.dev;
2362         struct drm_i915_gem_object *obj = NULL;
2363         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2364         u32 base = plane_config->base;
2365
2366         if (plane_config->size == 0)
2367                 return false;
2368
2369         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2370                                                              plane_config->size);
2371         if (!obj)
2372                 return false;
2373
2374         if (plane_config->tiled) {
2375                 obj->tiling_mode = I915_TILING_X;
2376                 obj->stride = crtc->base.primary->fb->pitches[0];
2377         }
2378
2379         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2380         mode_cmd.width = crtc->base.primary->fb->width;
2381         mode_cmd.height = crtc->base.primary->fb->height;
2382         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2383
2384         mutex_lock(&dev->struct_mutex);
2385
2386         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2387                                    &mode_cmd, obj)) {
2388                 DRM_DEBUG_KMS("intel fb init failed\n");
2389                 goto out_unref_obj;
2390         }
2391
2392         obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2393         mutex_unlock(&dev->struct_mutex);
2394
2395         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2396         return true;
2397
2398 out_unref_obj:
2399         drm_gem_object_unreference(&obj->base);
2400         mutex_unlock(&dev->struct_mutex);
2401         return false;
2402 }
2403
2404 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2405                                  struct intel_plane_config *plane_config)
2406 {
2407         struct drm_device *dev = intel_crtc->base.dev;
2408         struct drm_crtc *c;
2409         struct intel_crtc *i;
2410         struct drm_i915_gem_object *obj;
2411
2412         if (!intel_crtc->base.primary->fb)
2413                 return;
2414
2415         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2416                 return;
2417
2418         kfree(intel_crtc->base.primary->fb);
2419         intel_crtc->base.primary->fb = NULL;
2420
2421         /*
2422          * Failed to alloc the obj, check to see if we should share
2423          * an fb with another CRTC instead
2424          */
2425         for_each_crtc(dev, c) {
2426                 i = to_intel_crtc(c);
2427
2428                 if (c == &intel_crtc->base)
2429                         continue;
2430
2431                 if (!i->active)
2432                         continue;
2433
2434                 obj = intel_fb_obj(c->primary->fb);
2435                 if (obj == NULL)
2436                         continue;
2437
2438                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2439                         drm_framebuffer_reference(c->primary->fb);
2440                         intel_crtc->base.primary->fb = c->primary->fb;
2441                         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2442                         break;
2443                 }
2444         }
2445 }
2446
2447 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2448                                       struct drm_framebuffer *fb,
2449                                       int x, int y)
2450 {
2451         struct drm_device *dev = crtc->dev;
2452         struct drm_i915_private *dev_priv = dev->dev_private;
2453         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2454         struct drm_i915_gem_object *obj;
2455         int plane = intel_crtc->plane;
2456         unsigned long linear_offset;
2457         u32 dspcntr;
2458         u32 reg = DSPCNTR(plane);
2459         int pixel_size;
2460
2461         if (!intel_crtc->primary_enabled) {
2462                 I915_WRITE(reg, 0);
2463                 if (INTEL_INFO(dev)->gen >= 4)
2464                         I915_WRITE(DSPSURF(plane), 0);
2465                 else
2466                         I915_WRITE(DSPADDR(plane), 0);
2467                 POSTING_READ(reg);
2468                 return;
2469         }
2470
2471         obj = intel_fb_obj(fb);
2472         if (WARN_ON(obj == NULL))
2473                 return;
2474
2475         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2476
2477         dspcntr = DISPPLANE_GAMMA_ENABLE;
2478
2479         dspcntr |= DISPLAY_PLANE_ENABLE;
2480
2481         if (INTEL_INFO(dev)->gen < 4) {
2482                 if (intel_crtc->pipe == PIPE_B)
2483                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2484
2485                 /* pipesrc and dspsize control the size that is scaled from,
2486                  * which should always be the user's requested size.
2487                  */
2488                 I915_WRITE(DSPSIZE(plane),
2489                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2490                            (intel_crtc->config.pipe_src_w - 1));
2491                 I915_WRITE(DSPPOS(plane), 0);
2492         }
2493
2494         switch (fb->pixel_format) {
2495         case DRM_FORMAT_C8:
2496                 dspcntr |= DISPPLANE_8BPP;
2497                 break;
2498         case DRM_FORMAT_XRGB1555:
2499         case DRM_FORMAT_ARGB1555:
2500                 dspcntr |= DISPPLANE_BGRX555;
2501                 break;
2502         case DRM_FORMAT_RGB565:
2503                 dspcntr |= DISPPLANE_BGRX565;
2504                 break;
2505         case DRM_FORMAT_XRGB8888:
2506         case DRM_FORMAT_ARGB8888:
2507                 dspcntr |= DISPPLANE_BGRX888;
2508                 break;
2509         case DRM_FORMAT_XBGR8888:
2510         case DRM_FORMAT_ABGR8888:
2511                 dspcntr |= DISPPLANE_RGBX888;
2512                 break;
2513         case DRM_FORMAT_XRGB2101010:
2514         case DRM_FORMAT_ARGB2101010:
2515                 dspcntr |= DISPPLANE_BGRX101010;
2516                 break;
2517         case DRM_FORMAT_XBGR2101010:
2518         case DRM_FORMAT_ABGR2101010:
2519                 dspcntr |= DISPPLANE_RGBX101010;
2520                 break;
2521         default:
2522                 BUG();
2523         }
2524
2525         if (INTEL_INFO(dev)->gen >= 4 &&
2526             obj->tiling_mode != I915_TILING_NONE)
2527                 dspcntr |= DISPPLANE_TILED;
2528
2529         if (IS_G4X(dev))
2530                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2531
2532         linear_offset = y * fb->pitches[0] + x * pixel_size;
2533
2534         if (INTEL_INFO(dev)->gen >= 4) {
2535                 intel_crtc->dspaddr_offset =
2536                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2537                                                        pixel_size,
2538                                                        fb->pitches[0]);
2539                 linear_offset -= intel_crtc->dspaddr_offset;
2540         } else {
2541                 intel_crtc->dspaddr_offset = linear_offset;
2542         }
2543
2544         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2545                 dspcntr |= DISPPLANE_ROTATE_180;
2546
2547                 x += (intel_crtc->config.pipe_src_w - 1);
2548                 y += (intel_crtc->config.pipe_src_h - 1);
2549
2550                 /* Finding the last pixel of the last line of the display
2551                 data and adding to linear_offset*/
2552                 linear_offset +=
2553                         (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2554                         (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2555         }
2556
2557         I915_WRITE(reg, dspcntr);
2558
2559         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2560                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2561                       fb->pitches[0]);
2562         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2563         if (INTEL_INFO(dev)->gen >= 4) {
2564                 I915_WRITE(DSPSURF(plane),
2565                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2566                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2567                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2568         } else
2569                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2570         POSTING_READ(reg);
2571 }
2572
2573 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2574                                           struct drm_framebuffer *fb,
2575                                           int x, int y)
2576 {
2577         struct drm_device *dev = crtc->dev;
2578         struct drm_i915_private *dev_priv = dev->dev_private;
2579         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2580         struct drm_i915_gem_object *obj;
2581         int plane = intel_crtc->plane;
2582         unsigned long linear_offset;
2583         u32 dspcntr;
2584         u32 reg = DSPCNTR(plane);
2585         int pixel_size;
2586
2587         if (!intel_crtc->primary_enabled) {
2588                 I915_WRITE(reg, 0);
2589                 I915_WRITE(DSPSURF(plane), 0);
2590                 POSTING_READ(reg);
2591                 return;
2592         }
2593
2594         obj = intel_fb_obj(fb);
2595         if (WARN_ON(obj == NULL))
2596                 return;
2597
2598         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2599
2600         dspcntr = DISPPLANE_GAMMA_ENABLE;
2601
2602         dspcntr |= DISPLAY_PLANE_ENABLE;
2603
2604         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2605                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2606
2607         switch (fb->pixel_format) {
2608         case DRM_FORMAT_C8:
2609                 dspcntr |= DISPPLANE_8BPP;
2610                 break;
2611         case DRM_FORMAT_RGB565:
2612                 dspcntr |= DISPPLANE_BGRX565;
2613                 break;
2614         case DRM_FORMAT_XRGB8888:
2615         case DRM_FORMAT_ARGB8888:
2616                 dspcntr |= DISPPLANE_BGRX888;
2617                 break;
2618         case DRM_FORMAT_XBGR8888:
2619         case DRM_FORMAT_ABGR8888:
2620                 dspcntr |= DISPPLANE_RGBX888;
2621                 break;
2622         case DRM_FORMAT_XRGB2101010:
2623         case DRM_FORMAT_ARGB2101010:
2624                 dspcntr |= DISPPLANE_BGRX101010;
2625                 break;
2626         case DRM_FORMAT_XBGR2101010:
2627         case DRM_FORMAT_ABGR2101010:
2628                 dspcntr |= DISPPLANE_RGBX101010;
2629                 break;
2630         default:
2631                 BUG();
2632         }
2633
2634         if (obj->tiling_mode != I915_TILING_NONE)
2635                 dspcntr |= DISPPLANE_TILED;
2636
2637         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2638                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2639
2640         linear_offset = y * fb->pitches[0] + x * pixel_size;
2641         intel_crtc->dspaddr_offset =
2642                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2643                                                pixel_size,
2644                                                fb->pitches[0]);
2645         linear_offset -= intel_crtc->dspaddr_offset;
2646         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2647                 dspcntr |= DISPPLANE_ROTATE_180;
2648
2649                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2650                         x += (intel_crtc->config.pipe_src_w - 1);
2651                         y += (intel_crtc->config.pipe_src_h - 1);
2652
2653                         /* Finding the last pixel of the last line of the display
2654                         data and adding to linear_offset*/
2655                         linear_offset +=
2656                                 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2657                                 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2658                 }
2659         }
2660
2661         I915_WRITE(reg, dspcntr);
2662
2663         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2664                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2665                       fb->pitches[0]);
2666         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2667         I915_WRITE(DSPSURF(plane),
2668                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2669         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2670                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2671         } else {
2672                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2673                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2674         }
2675         POSTING_READ(reg);
2676 }
2677
2678 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2679 static int
2680 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2681                            int x, int y, enum mode_set_atomic state)
2682 {
2683         struct drm_device *dev = crtc->dev;
2684         struct drm_i915_private *dev_priv = dev->dev_private;
2685
2686         if (dev_priv->display.disable_fbc)
2687                 dev_priv->display.disable_fbc(dev);
2688         intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
2689
2690         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2691
2692         return 0;
2693 }
2694
2695 void intel_display_handle_reset(struct drm_device *dev)
2696 {
2697         struct drm_i915_private *dev_priv = dev->dev_private;
2698         struct drm_crtc *crtc;
2699
2700         /*
2701          * Flips in the rings have been nuked by the reset,
2702          * so complete all pending flips so that user space
2703          * will get its events and not get stuck.
2704          *
2705          * Also update the base address of all primary
2706          * planes to the the last fb to make sure we're
2707          * showing the correct fb after a reset.
2708          *
2709          * Need to make two loops over the crtcs so that we
2710          * don't try to grab a crtc mutex before the
2711          * pending_flip_queue really got woken up.
2712          */
2713
2714         for_each_crtc(dev, crtc) {
2715                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2716                 enum plane plane = intel_crtc->plane;
2717
2718                 intel_prepare_page_flip(dev, plane);
2719                 intel_finish_page_flip_plane(dev, plane);
2720         }
2721
2722         for_each_crtc(dev, crtc) {
2723                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2724
2725                 drm_modeset_lock(&crtc->mutex, NULL);
2726                 /*
2727                  * FIXME: Once we have proper support for primary planes (and
2728                  * disabling them without disabling the entire crtc) allow again
2729                  * a NULL crtc->primary->fb.
2730                  */
2731                 if (intel_crtc->active && crtc->primary->fb)
2732                         dev_priv->display.update_primary_plane(crtc,
2733                                                                crtc->primary->fb,
2734                                                                crtc->x,
2735                                                                crtc->y);
2736                 drm_modeset_unlock(&crtc->mutex);
2737         }
2738 }
2739
2740 static int
2741 intel_finish_fb(struct drm_framebuffer *old_fb)
2742 {
2743         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2744         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2745         bool was_interruptible = dev_priv->mm.interruptible;
2746         int ret;
2747
2748         /* Big Hammer, we also need to ensure that any pending
2749          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2750          * current scanout is retired before unpinning the old
2751          * framebuffer.
2752          *
2753          * This should only fail upon a hung GPU, in which case we
2754          * can safely continue.
2755          */
2756         dev_priv->mm.interruptible = false;
2757         ret = i915_gem_object_finish_gpu(obj);
2758         dev_priv->mm.interruptible = was_interruptible;
2759
2760         return ret;
2761 }
2762
2763 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2764 {
2765         struct drm_device *dev = crtc->dev;
2766         struct drm_i915_private *dev_priv = dev->dev_private;
2767         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2768         unsigned long flags;
2769         bool pending;
2770
2771         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2772             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2773                 return false;
2774
2775         spin_lock_irqsave(&dev->event_lock, flags);
2776         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2777         spin_unlock_irqrestore(&dev->event_lock, flags);
2778
2779         return pending;
2780 }
2781
2782 static int
2783 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2784                     struct drm_framebuffer *fb)
2785 {
2786         struct drm_device *dev = crtc->dev;
2787         struct drm_i915_private *dev_priv = dev->dev_private;
2788         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2789         enum pipe pipe = intel_crtc->pipe;
2790         struct drm_framebuffer *old_fb = crtc->primary->fb;
2791         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2792         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2793         int ret;
2794
2795         if (intel_crtc_has_pending_flip(crtc)) {
2796                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2797                 return -EBUSY;
2798         }
2799
2800         /* no fb bound */
2801         if (!fb) {
2802                 DRM_ERROR("No FB bound\n");
2803                 return 0;
2804         }
2805
2806         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2807                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2808                           plane_name(intel_crtc->plane),
2809                           INTEL_INFO(dev)->num_pipes);
2810                 return -EINVAL;
2811         }
2812
2813         mutex_lock(&dev->struct_mutex);
2814         ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2815         if (ret == 0)
2816                 i915_gem_track_fb(old_obj, obj,
2817                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
2818         mutex_unlock(&dev->struct_mutex);
2819         if (ret != 0) {
2820                 DRM_ERROR("pin & fence failed\n");
2821                 return ret;
2822         }
2823
2824         /*
2825          * Update pipe size and adjust fitter if needed: the reason for this is
2826          * that in compute_mode_changes we check the native mode (not the pfit
2827          * mode) to see if we can flip rather than do a full mode set. In the
2828          * fastboot case, we'll flip, but if we don't update the pipesrc and
2829          * pfit state, we'll end up with a big fb scanned out into the wrong
2830          * sized surface.
2831          *
2832          * To fix this properly, we need to hoist the checks up into
2833          * compute_mode_changes (or above), check the actual pfit state and
2834          * whether the platform allows pfit disable with pipe active, and only
2835          * then update the pipesrc and pfit state, even on the flip path.
2836          */
2837         if (i915.fastboot) {
2838                 const struct drm_display_mode *adjusted_mode =
2839                         &intel_crtc->config.adjusted_mode;
2840
2841                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2842                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2843                            (adjusted_mode->crtc_vdisplay - 1));
2844                 if (!intel_crtc->config.pch_pfit.enabled &&
2845                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2846                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2847                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2848                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2849                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2850                 }
2851                 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2852                 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2853         }
2854
2855         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2856
2857         if (intel_crtc->active)
2858                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2859
2860         crtc->primary->fb = fb;
2861         crtc->x = x;
2862         crtc->y = y;
2863
2864         if (old_fb) {
2865                 if (intel_crtc->active && old_fb != fb)
2866                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2867                 mutex_lock(&dev->struct_mutex);
2868                 intel_unpin_fb_obj(old_obj);
2869                 mutex_unlock(&dev->struct_mutex);
2870         }
2871
2872         mutex_lock(&dev->struct_mutex);
2873         intel_update_fbc(dev);
2874         mutex_unlock(&dev->struct_mutex);
2875
2876         return 0;
2877 }
2878
2879 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2880 {
2881         struct drm_device *dev = crtc->dev;
2882         struct drm_i915_private *dev_priv = dev->dev_private;
2883         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2884         int pipe = intel_crtc->pipe;
2885         u32 reg, temp;
2886
2887         /* enable normal train */
2888         reg = FDI_TX_CTL(pipe);
2889         temp = I915_READ(reg);
2890         if (IS_IVYBRIDGE(dev)) {
2891                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2892                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2893         } else {
2894                 temp &= ~FDI_LINK_TRAIN_NONE;
2895                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2896         }
2897         I915_WRITE(reg, temp);
2898
2899         reg = FDI_RX_CTL(pipe);
2900         temp = I915_READ(reg);
2901         if (HAS_PCH_CPT(dev)) {
2902                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2903                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2904         } else {
2905                 temp &= ~FDI_LINK_TRAIN_NONE;
2906                 temp |= FDI_LINK_TRAIN_NONE;
2907         }
2908         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2909
2910         /* wait one idle pattern time */
2911         POSTING_READ(reg);
2912         udelay(1000);
2913
2914         /* IVB wants error correction enabled */
2915         if (IS_IVYBRIDGE(dev))
2916                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2917                            FDI_FE_ERRC_ENABLE);
2918 }
2919
2920 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2921 {
2922         return crtc->base.enabled && crtc->active &&
2923                 crtc->config.has_pch_encoder;
2924 }
2925
2926 static void ivb_modeset_global_resources(struct drm_device *dev)
2927 {
2928         struct drm_i915_private *dev_priv = dev->dev_private;
2929         struct intel_crtc *pipe_B_crtc =
2930                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2931         struct intel_crtc *pipe_C_crtc =
2932                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2933         uint32_t temp;
2934
2935         /*
2936          * When everything is off disable fdi C so that we could enable fdi B
2937          * with all lanes. Note that we don't care about enabled pipes without
2938          * an enabled pch encoder.
2939          */
2940         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2941             !pipe_has_enabled_pch(pipe_C_crtc)) {
2942                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2943                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2944
2945                 temp = I915_READ(SOUTH_CHICKEN1);
2946                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2947                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2948                 I915_WRITE(SOUTH_CHICKEN1, temp);
2949         }
2950 }
2951
2952 /* The FDI link training functions for ILK/Ibexpeak. */
2953 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2954 {
2955         struct drm_device *dev = crtc->dev;
2956         struct drm_i915_private *dev_priv = dev->dev_private;
2957         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2958         int pipe = intel_crtc->pipe;
2959         u32 reg, temp, tries;
2960
2961         /* FDI needs bits from pipe first */
2962         assert_pipe_enabled(dev_priv, pipe);
2963
2964         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2965            for train result */
2966         reg = FDI_RX_IMR(pipe);
2967         temp = I915_READ(reg);
2968         temp &= ~FDI_RX_SYMBOL_LOCK;
2969         temp &= ~FDI_RX_BIT_LOCK;
2970         I915_WRITE(reg, temp);
2971         I915_READ(reg);
2972         udelay(150);
2973
2974         /* enable CPU FDI TX and PCH FDI RX */
2975         reg = FDI_TX_CTL(pipe);
2976         temp = I915_READ(reg);
2977         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2978         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2979         temp &= ~FDI_LINK_TRAIN_NONE;
2980         temp |= FDI_LINK_TRAIN_PATTERN_1;
2981         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2982
2983         reg = FDI_RX_CTL(pipe);
2984         temp = I915_READ(reg);
2985         temp &= ~FDI_LINK_TRAIN_NONE;
2986         temp |= FDI_LINK_TRAIN_PATTERN_1;
2987         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2988
2989         POSTING_READ(reg);
2990         udelay(150);
2991
2992         /* Ironlake workaround, enable clock pointer after FDI enable*/
2993         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2994         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2995                    FDI_RX_PHASE_SYNC_POINTER_EN);
2996
2997         reg = FDI_RX_IIR(pipe);
2998         for (tries = 0; tries < 5; tries++) {
2999                 temp = I915_READ(reg);
3000                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3001
3002                 if ((temp & FDI_RX_BIT_LOCK)) {
3003                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3004                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3005                         break;
3006                 }
3007         }
3008         if (tries == 5)
3009                 DRM_ERROR("FDI train 1 fail!\n");
3010
3011         /* Train 2 */
3012         reg = FDI_TX_CTL(pipe);
3013         temp = I915_READ(reg);
3014         temp &= ~FDI_LINK_TRAIN_NONE;
3015         temp |= FDI_LINK_TRAIN_PATTERN_2;
3016         I915_WRITE(reg, temp);
3017
3018         reg = FDI_RX_CTL(pipe);
3019         temp = I915_READ(reg);
3020         temp &= ~FDI_LINK_TRAIN_NONE;
3021         temp |= FDI_LINK_TRAIN_PATTERN_2;
3022         I915_WRITE(reg, temp);
3023
3024         POSTING_READ(reg);
3025         udelay(150);
3026
3027         reg = FDI_RX_IIR(pipe);
3028         for (tries = 0; tries < 5; tries++) {
3029                 temp = I915_READ(reg);
3030                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3031
3032                 if (temp & FDI_RX_SYMBOL_LOCK) {
3033                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3034                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3035                         break;
3036                 }
3037         }
3038         if (tries == 5)
3039                 DRM_ERROR("FDI train 2 fail!\n");
3040
3041         DRM_DEBUG_KMS("FDI train done\n");
3042
3043 }
3044
3045 static const int snb_b_fdi_train_param[] = {
3046         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3047         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3048         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3049         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3050 };
3051
3052 /* The FDI link training functions for SNB/Cougarpoint. */
3053 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3054 {
3055         struct drm_device *dev = crtc->dev;
3056         struct drm_i915_private *dev_priv = dev->dev_private;
3057         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3058         int pipe = intel_crtc->pipe;
3059         u32 reg, temp, i, retry;
3060
3061         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3062            for train result */
3063         reg = FDI_RX_IMR(pipe);
3064         temp = I915_READ(reg);
3065         temp &= ~FDI_RX_SYMBOL_LOCK;
3066         temp &= ~FDI_RX_BIT_LOCK;
3067         I915_WRITE(reg, temp);
3068
3069         POSTING_READ(reg);
3070         udelay(150);
3071
3072         /* enable CPU FDI TX and PCH FDI RX */
3073         reg = FDI_TX_CTL(pipe);
3074         temp = I915_READ(reg);
3075         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3076         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3077         temp &= ~FDI_LINK_TRAIN_NONE;
3078         temp |= FDI_LINK_TRAIN_PATTERN_1;
3079         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3080         /* SNB-B */
3081         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3082         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3083
3084         I915_WRITE(FDI_RX_MISC(pipe),
3085                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3086
3087         reg = FDI_RX_CTL(pipe);
3088         temp = I915_READ(reg);
3089         if (HAS_PCH_CPT(dev)) {
3090                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3091                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3092         } else {
3093                 temp &= ~FDI_LINK_TRAIN_NONE;
3094                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3095         }
3096         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3097
3098         POSTING_READ(reg);
3099         udelay(150);
3100
3101         for (i = 0; i < 4; i++) {
3102                 reg = FDI_TX_CTL(pipe);
3103                 temp = I915_READ(reg);
3104                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3105                 temp |= snb_b_fdi_train_param[i];
3106                 I915_WRITE(reg, temp);
3107
3108                 POSTING_READ(reg);
3109                 udelay(500);
3110
3111                 for (retry = 0; retry < 5; retry++) {
3112                         reg = FDI_RX_IIR(pipe);
3113                         temp = I915_READ(reg);
3114                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3115                         if (temp & FDI_RX_BIT_LOCK) {
3116                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3117                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3118                                 break;
3119                         }
3120                         udelay(50);
3121                 }
3122                 if (retry < 5)
3123                         break;
3124         }
3125         if (i == 4)
3126                 DRM_ERROR("FDI train 1 fail!\n");
3127
3128         /* Train 2 */
3129         reg = FDI_TX_CTL(pipe);
3130         temp = I915_READ(reg);
3131         temp &= ~FDI_LINK_TRAIN_NONE;
3132         temp |= FDI_LINK_TRAIN_PATTERN_2;
3133         if (IS_GEN6(dev)) {
3134                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3135                 /* SNB-B */
3136                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3137         }
3138         I915_WRITE(reg, temp);
3139
3140         reg = FDI_RX_CTL(pipe);
3141         temp = I915_READ(reg);
3142         if (HAS_PCH_CPT(dev)) {
3143                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3144                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3145         } else {
3146                 temp &= ~FDI_LINK_TRAIN_NONE;
3147                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3148         }
3149         I915_WRITE(reg, temp);
3150
3151         POSTING_READ(reg);
3152         udelay(150);
3153
3154         for (i = 0; i < 4; i++) {
3155                 reg = FDI_TX_CTL(pipe);
3156                 temp = I915_READ(reg);
3157                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3158                 temp |= snb_b_fdi_train_param[i];
3159                 I915_WRITE(reg, temp);
3160
3161                 POSTING_READ(reg);
3162                 udelay(500);
3163
3164                 for (retry = 0; retry < 5; retry++) {
3165                         reg = FDI_RX_IIR(pipe);
3166                         temp = I915_READ(reg);
3167                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3168                         if (temp & FDI_RX_SYMBOL_LOCK) {
3169                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3170                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3171                                 break;
3172                         }
3173                         udelay(50);
3174                 }
3175                 if (retry < 5)
3176                         break;
3177         }
3178         if (i == 4)
3179                 DRM_ERROR("FDI train 2 fail!\n");
3180
3181         DRM_DEBUG_KMS("FDI train done.\n");
3182 }
3183
3184 /* Manual link training for Ivy Bridge A0 parts */
3185 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3186 {
3187         struct drm_device *dev = crtc->dev;
3188         struct drm_i915_private *dev_priv = dev->dev_private;
3189         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3190         int pipe = intel_crtc->pipe;
3191         u32 reg, temp, i, j;
3192
3193         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3194            for train result */
3195         reg = FDI_RX_IMR(pipe);
3196         temp = I915_READ(reg);
3197         temp &= ~FDI_RX_SYMBOL_LOCK;
3198         temp &= ~FDI_RX_BIT_LOCK;
3199         I915_WRITE(reg, temp);
3200
3201         POSTING_READ(reg);
3202         udelay(150);
3203
3204         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3205                       I915_READ(FDI_RX_IIR(pipe)));
3206
3207         /* Try each vswing and preemphasis setting twice before moving on */
3208         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3209                 /* disable first in case we need to retry */
3210                 reg = FDI_TX_CTL(pipe);
3211                 temp = I915_READ(reg);
3212                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3213                 temp &= ~FDI_TX_ENABLE;
3214                 I915_WRITE(reg, temp);
3215
3216                 reg = FDI_RX_CTL(pipe);
3217                 temp = I915_READ(reg);
3218                 temp &= ~FDI_LINK_TRAIN_AUTO;
3219                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3220                 temp &= ~FDI_RX_ENABLE;
3221                 I915_WRITE(reg, temp);
3222
3223                 /* enable CPU FDI TX and PCH FDI RX */
3224                 reg = FDI_TX_CTL(pipe);
3225                 temp = I915_READ(reg);
3226                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3227                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3228                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3229                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3230                 temp |= snb_b_fdi_train_param[j/2];
3231                 temp |= FDI_COMPOSITE_SYNC;
3232                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3233
3234                 I915_WRITE(FDI_RX_MISC(pipe),
3235                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3236
3237                 reg = FDI_RX_CTL(pipe);
3238                 temp = I915_READ(reg);
3239                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3240                 temp |= FDI_COMPOSITE_SYNC;
3241                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3242
3243                 POSTING_READ(reg);
3244                 udelay(1); /* should be 0.5us */
3245
3246                 for (i = 0; i < 4; i++) {
3247                         reg = FDI_RX_IIR(pipe);
3248                         temp = I915_READ(reg);
3249                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3250
3251                         if (temp & FDI_RX_BIT_LOCK ||
3252                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3253                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3254                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3255                                               i);
3256                                 break;
3257                         }
3258                         udelay(1); /* should be 0.5us */
3259                 }
3260                 if (i == 4) {
3261                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3262                         continue;
3263                 }
3264
3265                 /* Train 2 */
3266                 reg = FDI_TX_CTL(pipe);
3267                 temp = I915_READ(reg);
3268                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3269                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3270                 I915_WRITE(reg, temp);
3271
3272                 reg = FDI_RX_CTL(pipe);
3273                 temp = I915_READ(reg);
3274                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3275                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3276                 I915_WRITE(reg, temp);
3277
3278                 POSTING_READ(reg);
3279                 udelay(2); /* should be 1.5us */
3280
3281                 for (i = 0; i < 4; i++) {
3282                         reg = FDI_RX_IIR(pipe);
3283                         temp = I915_READ(reg);
3284                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3285
3286                         if (temp & FDI_RX_SYMBOL_LOCK ||
3287                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3288                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3289                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3290                                               i);
3291                                 goto train_done;
3292                         }
3293                         udelay(2); /* should be 1.5us */
3294                 }
3295                 if (i == 4)
3296                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3297         }
3298
3299 train_done:
3300         DRM_DEBUG_KMS("FDI train done.\n");
3301 }
3302
3303 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3304 {
3305         struct drm_device *dev = intel_crtc->base.dev;
3306         struct drm_i915_private *dev_priv = dev->dev_private;
3307         int pipe = intel_crtc->pipe;
3308         u32 reg, temp;
3309
3310
3311         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3312         reg = FDI_RX_CTL(pipe);
3313         temp = I915_READ(reg);
3314         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3315         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3316         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3317         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3318
3319         POSTING_READ(reg);
3320         udelay(200);
3321
3322         /* Switch from Rawclk to PCDclk */
3323         temp = I915_READ(reg);
3324         I915_WRITE(reg, temp | FDI_PCDCLK);
3325
3326         POSTING_READ(reg);
3327         udelay(200);
3328
3329         /* Enable CPU FDI TX PLL, always on for Ironlake */
3330         reg = FDI_TX_CTL(pipe);
3331         temp = I915_READ(reg);
3332         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3333                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3334
3335                 POSTING_READ(reg);
3336                 udelay(100);
3337         }
3338 }
3339
3340 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3341 {
3342         struct drm_device *dev = intel_crtc->base.dev;
3343         struct drm_i915_private *dev_priv = dev->dev_private;
3344         int pipe = intel_crtc->pipe;
3345         u32 reg, temp;
3346
3347         /* Switch from PCDclk to Rawclk */
3348         reg = FDI_RX_CTL(pipe);
3349         temp = I915_READ(reg);
3350         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3351
3352         /* Disable CPU FDI TX PLL */
3353         reg = FDI_TX_CTL(pipe);
3354         temp = I915_READ(reg);
3355         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3356
3357         POSTING_READ(reg);
3358         udelay(100);
3359
3360         reg = FDI_RX_CTL(pipe);
3361         temp = I915_READ(reg);
3362         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3363
3364         /* Wait for the clocks to turn off. */
3365         POSTING_READ(reg);
3366         udelay(100);
3367 }
3368
3369 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3370 {
3371         struct drm_device *dev = crtc->dev;
3372         struct drm_i915_private *dev_priv = dev->dev_private;
3373         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3374         int pipe = intel_crtc->pipe;
3375         u32 reg, temp;
3376
3377         /* disable CPU FDI tx and PCH FDI rx */
3378         reg = FDI_TX_CTL(pipe);
3379         temp = I915_READ(reg);
3380         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3381         POSTING_READ(reg);
3382
3383         reg = FDI_RX_CTL(pipe);
3384         temp = I915_READ(reg);
3385         temp &= ~(0x7 << 16);
3386         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3387         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3388
3389         POSTING_READ(reg);
3390         udelay(100);
3391
3392         /* Ironlake workaround, disable clock pointer after downing FDI */
3393         if (HAS_PCH_IBX(dev))
3394                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3395
3396         /* still set train pattern 1 */
3397         reg = FDI_TX_CTL(pipe);
3398         temp = I915_READ(reg);
3399         temp &= ~FDI_LINK_TRAIN_NONE;
3400         temp |= FDI_LINK_TRAIN_PATTERN_1;
3401         I915_WRITE(reg, temp);
3402
3403         reg = FDI_RX_CTL(pipe);
3404         temp = I915_READ(reg);
3405         if (HAS_PCH_CPT(dev)) {
3406                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3407                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3408         } else {
3409                 temp &= ~FDI_LINK_TRAIN_NONE;
3410                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3411         }
3412         /* BPC in FDI rx is consistent with that in PIPECONF */
3413         temp &= ~(0x07 << 16);
3414         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3415         I915_WRITE(reg, temp);
3416
3417         POSTING_READ(reg);
3418         udelay(100);
3419 }
3420
3421 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3422 {
3423         struct intel_crtc *crtc;
3424
3425         /* Note that we don't need to be called with mode_config.lock here
3426          * as our list of CRTC objects is static for the lifetime of the
3427          * device and so cannot disappear as we iterate. Similarly, we can
3428          * happily treat the predicates as racy, atomic checks as userspace
3429          * cannot claim and pin a new fb without at least acquring the
3430          * struct_mutex and so serialising with us.
3431          */
3432         for_each_intel_crtc(dev, crtc) {
3433                 if (atomic_read(&crtc->unpin_work_count) == 0)
3434                         continue;
3435
3436                 if (crtc->unpin_work)
3437                         intel_wait_for_vblank(dev, crtc->pipe);
3438
3439                 return true;
3440         }
3441
3442         return false;
3443 }
3444
3445 static void page_flip_completed(struct intel_crtc *intel_crtc)
3446 {
3447         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3448         struct intel_unpin_work *work = intel_crtc->unpin_work;
3449
3450         /* ensure that the unpin work is consistent wrt ->pending. */
3451         smp_rmb();
3452         intel_crtc->unpin_work = NULL;
3453
3454         if (work->event)
3455                 drm_send_vblank_event(intel_crtc->base.dev,
3456                                       intel_crtc->pipe,
3457                                       work->event);
3458
3459         drm_crtc_vblank_put(&intel_crtc->base);
3460
3461         wake_up_all(&dev_priv->pending_flip_queue);
3462         queue_work(dev_priv->wq, &work->work);
3463
3464         trace_i915_flip_complete(intel_crtc->plane,
3465                                  work->pending_flip_obj);
3466 }
3467
3468 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3469 {
3470         struct drm_device *dev = crtc->dev;
3471         struct drm_i915_private *dev_priv = dev->dev_private;
3472
3473         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3474         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3475                                        !intel_crtc_has_pending_flip(crtc),
3476                                        60*HZ) == 0)) {
3477                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3478                 unsigned long flags;
3479
3480                 spin_lock_irqsave(&dev->event_lock, flags);
3481                 if (intel_crtc->unpin_work) {
3482                         WARN_ONCE(1, "Removing stuck page flip\n");
3483                         page_flip_completed(intel_crtc);
3484                 }
3485                 spin_unlock_irqrestore(&dev->event_lock, flags);
3486         }
3487
3488         if (crtc->primary->fb) {
3489                 mutex_lock(&dev->struct_mutex);
3490                 intel_finish_fb(crtc->primary->fb);
3491                 mutex_unlock(&dev->struct_mutex);
3492         }
3493 }
3494
3495 /* Program iCLKIP clock to the desired frequency */
3496 static void lpt_program_iclkip(struct drm_crtc *crtc)
3497 {
3498         struct drm_device *dev = crtc->dev;
3499         struct drm_i915_private *dev_priv = dev->dev_private;
3500         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3501         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3502         u32 temp;
3503
3504         mutex_lock(&dev_priv->dpio_lock);
3505
3506         /* It is necessary to ungate the pixclk gate prior to programming
3507          * the divisors, and gate it back when it is done.
3508          */
3509         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3510
3511         /* Disable SSCCTL */
3512         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3513                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3514                                 SBI_SSCCTL_DISABLE,
3515                         SBI_ICLK);
3516
3517         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3518         if (clock == 20000) {
3519                 auxdiv = 1;
3520                 divsel = 0x41;
3521                 phaseinc = 0x20;
3522         } else {
3523                 /* The iCLK virtual clock root frequency is in MHz,
3524                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3525                  * divisors, it is necessary to divide one by another, so we
3526                  * convert the virtual clock precision to KHz here for higher
3527                  * precision.
3528                  */
3529                 u32 iclk_virtual_root_freq = 172800 * 1000;
3530                 u32 iclk_pi_range = 64;
3531                 u32 desired_divisor, msb_divisor_value, pi_value;
3532
3533                 desired_divisor = (iclk_virtual_root_freq / clock);
3534                 msb_divisor_value = desired_divisor / iclk_pi_range;
3535                 pi_value = desired_divisor % iclk_pi_range;
3536
3537                 auxdiv = 0;
3538                 divsel = msb_divisor_value - 2;
3539                 phaseinc = pi_value;
3540         }
3541
3542         /* This should not happen with any sane values */
3543         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3544                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3545         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3546                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3547
3548         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3549                         clock,
3550                         auxdiv,
3551                         divsel,
3552                         phasedir,
3553                         phaseinc);
3554
3555         /* Program SSCDIVINTPHASE6 */
3556         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3557         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3558         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3559         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3560         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3561         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3562         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3563         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3564
3565         /* Program SSCAUXDIV */
3566         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3567         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3568         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3569         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3570
3571         /* Enable modulator and associated divider */
3572         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3573         temp &= ~SBI_SSCCTL_DISABLE;
3574         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3575
3576         /* Wait for initialization time */
3577         udelay(24);
3578
3579         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3580
3581         mutex_unlock(&dev_priv->dpio_lock);
3582 }
3583
3584 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3585                                                 enum pipe pch_transcoder)
3586 {
3587         struct drm_device *dev = crtc->base.dev;
3588         struct drm_i915_private *dev_priv = dev->dev_private;
3589         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3590
3591         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3592                    I915_READ(HTOTAL(cpu_transcoder)));
3593         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3594                    I915_READ(HBLANK(cpu_transcoder)));
3595         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3596                    I915_READ(HSYNC(cpu_transcoder)));
3597
3598         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3599                    I915_READ(VTOTAL(cpu_transcoder)));
3600         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3601                    I915_READ(VBLANK(cpu_transcoder)));
3602         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3603                    I915_READ(VSYNC(cpu_transcoder)));
3604         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3605                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3606 }
3607
3608 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3609 {
3610         struct drm_i915_private *dev_priv = dev->dev_private;
3611         uint32_t temp;
3612
3613         temp = I915_READ(SOUTH_CHICKEN1);
3614         if (temp & FDI_BC_BIFURCATION_SELECT)
3615                 return;
3616
3617         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3618         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3619
3620         temp |= FDI_BC_BIFURCATION_SELECT;
3621         DRM_DEBUG_KMS("enabling fdi C rx\n");
3622         I915_WRITE(SOUTH_CHICKEN1, temp);
3623         POSTING_READ(SOUTH_CHICKEN1);
3624 }
3625
3626 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3627 {
3628         struct drm_device *dev = intel_crtc->base.dev;
3629         struct drm_i915_private *dev_priv = dev->dev_private;
3630
3631         switch (intel_crtc->pipe) {
3632         case PIPE_A:
3633                 break;
3634         case PIPE_B:
3635                 if (intel_crtc->config.fdi_lanes > 2)
3636                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3637                 else
3638                         cpt_enable_fdi_bc_bifurcation(dev);
3639
3640                 break;
3641         case PIPE_C:
3642                 cpt_enable_fdi_bc_bifurcation(dev);
3643
3644                 break;
3645         default:
3646                 BUG();
3647         }
3648 }
3649
3650 /*
3651  * Enable PCH resources required for PCH ports:
3652  *   - PCH PLLs
3653  *   - FDI training & RX/TX
3654  *   - update transcoder timings
3655  *   - DP transcoding bits
3656  *   - transcoder
3657  */
3658 static void ironlake_pch_enable(struct drm_crtc *crtc)
3659 {
3660         struct drm_device *dev = crtc->dev;
3661         struct drm_i915_private *dev_priv = dev->dev_private;
3662         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3663         int pipe = intel_crtc->pipe;
3664         u32 reg, temp;
3665
3666         assert_pch_transcoder_disabled(dev_priv, pipe);
3667
3668         if (IS_IVYBRIDGE(dev))
3669                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3670
3671         /* Write the TU size bits before fdi link training, so that error
3672          * detection works. */
3673         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3674                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3675
3676         /* For PCH output, training FDI link */
3677         dev_priv->display.fdi_link_train(crtc);
3678
3679         /* We need to program the right clock selection before writing the pixel
3680          * mutliplier into the DPLL. */
3681         if (HAS_PCH_CPT(dev)) {
3682                 u32 sel;
3683
3684                 temp = I915_READ(PCH_DPLL_SEL);
3685                 temp |= TRANS_DPLL_ENABLE(pipe);
3686                 sel = TRANS_DPLLB_SEL(pipe);
3687                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3688                         temp |= sel;
3689                 else
3690                         temp &= ~sel;
3691                 I915_WRITE(PCH_DPLL_SEL, temp);
3692         }
3693
3694         /* XXX: pch pll's can be enabled any time before we enable the PCH
3695          * transcoder, and we actually should do this to not upset any PCH
3696          * transcoder that already use the clock when we share it.
3697          *
3698          * Note that enable_shared_dpll tries to do the right thing, but
3699          * get_shared_dpll unconditionally resets the pll - we need that to have
3700          * the right LVDS enable sequence. */
3701         intel_enable_shared_dpll(intel_crtc);
3702
3703         /* set transcoder timing, panel must allow it */
3704         assert_panel_unlocked(dev_priv, pipe);
3705         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3706
3707         intel_fdi_normal_train(crtc);
3708
3709         /* For PCH DP, enable TRANS_DP_CTL */
3710         if (HAS_PCH_CPT(dev) &&
3711             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3712              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3713                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3714                 reg = TRANS_DP_CTL(pipe);
3715                 temp = I915_READ(reg);
3716                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3717                           TRANS_DP_SYNC_MASK |
3718                           TRANS_DP_BPC_MASK);
3719                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3720                          TRANS_DP_ENH_FRAMING);
3721                 temp |= bpc << 9; /* same format but at 11:9 */
3722
3723                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3724                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3725                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3726                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3727
3728                 switch (intel_trans_dp_port_sel(crtc)) {
3729                 case PCH_DP_B:
3730                         temp |= TRANS_DP_PORT_SEL_B;
3731                         break;
3732                 case PCH_DP_C:
3733                         temp |= TRANS_DP_PORT_SEL_C;
3734                         break;
3735                 case PCH_DP_D:
3736                         temp |= TRANS_DP_PORT_SEL_D;
3737                         break;
3738                 default:
3739                         BUG();
3740                 }
3741
3742                 I915_WRITE(reg, temp);
3743         }
3744
3745         ironlake_enable_pch_transcoder(dev_priv, pipe);
3746 }
3747
3748 static void lpt_pch_enable(struct drm_crtc *crtc)
3749 {
3750         struct drm_device *dev = crtc->dev;
3751         struct drm_i915_private *dev_priv = dev->dev_private;
3752         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3753         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3754
3755         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3756
3757         lpt_program_iclkip(crtc);
3758
3759         /* Set transcoder timing. */
3760         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3761
3762         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3763 }
3764
3765 void intel_put_shared_dpll(struct intel_crtc *crtc)
3766 {
3767         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3768
3769         if (pll == NULL)
3770                 return;
3771
3772         if (pll->refcount == 0) {
3773                 WARN(1, "bad %s refcount\n", pll->name);
3774                 return;
3775         }
3776
3777         if (--pll->refcount == 0) {
3778                 WARN_ON(pll->on);
3779                 WARN_ON(pll->active);
3780         }
3781
3782         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3783 }
3784
3785 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3786 {
3787         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3788         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3789         enum intel_dpll_id i;
3790
3791         if (pll) {
3792                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3793                               crtc->base.base.id, pll->name);
3794                 intel_put_shared_dpll(crtc);
3795         }
3796
3797         if (HAS_PCH_IBX(dev_priv->dev)) {
3798                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3799                 i = (enum intel_dpll_id) crtc->pipe;
3800                 pll = &dev_priv->shared_dplls[i];
3801
3802                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3803                               crtc->base.base.id, pll->name);
3804
3805                 WARN_ON(pll->refcount);
3806
3807                 goto found;
3808         }
3809
3810         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3811                 pll = &dev_priv->shared_dplls[i];
3812
3813                 /* Only want to check enabled timings first */
3814                 if (pll->refcount == 0)
3815                         continue;
3816
3817                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3818                            sizeof(pll->hw_state)) == 0) {
3819                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3820                                       crtc->base.base.id,
3821                                       pll->name, pll->refcount, pll->active);
3822
3823                         goto found;
3824                 }
3825         }
3826
3827         /* Ok no matching timings, maybe there's a free one? */
3828         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3829                 pll = &dev_priv->shared_dplls[i];
3830                 if (pll->refcount == 0) {
3831                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3832                                       crtc->base.base.id, pll->name);
3833                         goto found;
3834                 }
3835         }
3836
3837         return NULL;
3838
3839 found:
3840         if (pll->refcount == 0)
3841                 pll->hw_state = crtc->config.dpll_hw_state;
3842
3843         crtc->config.shared_dpll = i;
3844         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3845                          pipe_name(crtc->pipe));
3846
3847         pll->refcount++;
3848
3849         return pll;
3850 }
3851
3852 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3853 {
3854         struct drm_i915_private *dev_priv = dev->dev_private;
3855         int dslreg = PIPEDSL(pipe);
3856         u32 temp;
3857
3858         temp = I915_READ(dslreg);
3859         udelay(500);
3860         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3861                 if (wait_for(I915_READ(dslreg) != temp, 5))
3862                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3863         }
3864 }
3865
3866 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3867 {
3868         struct drm_device *dev = crtc->base.dev;
3869         struct drm_i915_private *dev_priv = dev->dev_private;
3870         int pipe = crtc->pipe;
3871
3872         if (crtc->config.pch_pfit.enabled) {
3873                 /* Force use of hard-coded filter coefficients
3874                  * as some pre-programmed values are broken,
3875                  * e.g. x201.
3876                  */
3877                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3878                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3879                                                  PF_PIPE_SEL_IVB(pipe));
3880                 else
3881                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3882                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3883                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3884         }
3885 }
3886
3887 static void intel_enable_planes(struct drm_crtc *crtc)
3888 {
3889         struct drm_device *dev = crtc->dev;
3890         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3891         struct drm_plane *plane;
3892         struct intel_plane *intel_plane;
3893
3894         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3895                 intel_plane = to_intel_plane(plane);
3896                 if (intel_plane->pipe == pipe)
3897                         intel_plane_restore(&intel_plane->base);
3898         }
3899 }
3900
3901 static void intel_disable_planes(struct drm_crtc *crtc)
3902 {
3903         struct drm_device *dev = crtc->dev;
3904         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3905         struct drm_plane *plane;
3906         struct intel_plane *intel_plane;
3907
3908         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3909                 intel_plane = to_intel_plane(plane);
3910                 if (intel_plane->pipe == pipe)
3911                         intel_plane_disable(&intel_plane->base);
3912         }
3913 }
3914
3915 void hsw_enable_ips(struct intel_crtc *crtc)
3916 {
3917         struct drm_device *dev = crtc->base.dev;
3918         struct drm_i915_private *dev_priv = dev->dev_private;
3919
3920         if (!crtc->config.ips_enabled)
3921                 return;
3922
3923         /* We can only enable IPS after we enable a plane and wait for a vblank */
3924         intel_wait_for_vblank(dev, crtc->pipe);
3925
3926         assert_plane_enabled(dev_priv, crtc->plane);
3927         if (IS_BROADWELL(dev)) {
3928                 mutex_lock(&dev_priv->rps.hw_lock);
3929                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3930                 mutex_unlock(&dev_priv->rps.hw_lock);
3931                 /* Quoting Art Runyan: "its not safe to expect any particular
3932                  * value in IPS_CTL bit 31 after enabling IPS through the
3933                  * mailbox." Moreover, the mailbox may return a bogus state,
3934                  * so we need to just enable it and continue on.
3935                  */
3936         } else {
3937                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3938                 /* The bit only becomes 1 in the next vblank, so this wait here
3939                  * is essentially intel_wait_for_vblank. If we don't have this
3940                  * and don't wait for vblanks until the end of crtc_enable, then
3941                  * the HW state readout code will complain that the expected
3942                  * IPS_CTL value is not the one we read. */
3943                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3944                         DRM_ERROR("Timed out waiting for IPS enable\n");
3945         }
3946 }
3947
3948 void hsw_disable_ips(struct intel_crtc *crtc)
3949 {
3950         struct drm_device *dev = crtc->base.dev;
3951         struct drm_i915_private *dev_priv = dev->dev_private;
3952
3953         if (!crtc->config.ips_enabled)
3954                 return;
3955
3956         assert_plane_enabled(dev_priv, crtc->plane);
3957         if (IS_BROADWELL(dev)) {
3958                 mutex_lock(&dev_priv->rps.hw_lock);
3959                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3960                 mutex_unlock(&dev_priv->rps.hw_lock);
3961                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3962                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3963                         DRM_ERROR("Timed out waiting for IPS disable\n");
3964         } else {
3965                 I915_WRITE(IPS_CTL, 0);
3966                 POSTING_READ(IPS_CTL);
3967         }
3968
3969         /* We need to wait for a vblank before we can disable the plane. */
3970         intel_wait_for_vblank(dev, crtc->pipe);
3971 }
3972
3973 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3974 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3975 {
3976         struct drm_device *dev = crtc->dev;
3977         struct drm_i915_private *dev_priv = dev->dev_private;
3978         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3979         enum pipe pipe = intel_crtc->pipe;
3980         int palreg = PALETTE(pipe);
3981         int i;
3982         bool reenable_ips = false;
3983
3984         /* The clocks have to be on to load the palette. */
3985         if (!crtc->enabled || !intel_crtc->active)
3986                 return;
3987
3988         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3989                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3990                         assert_dsi_pll_enabled(dev_priv);
3991                 else
3992                         assert_pll_enabled(dev_priv, pipe);
3993         }
3994
3995         /* use legacy palette for Ironlake */
3996         if (!HAS_GMCH_DISPLAY(dev))
3997                 palreg = LGC_PALETTE(pipe);
3998
3999         /* Workaround : Do not read or write the pipe palette/gamma data while
4000          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4001          */
4002         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
4003             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4004              GAMMA_MODE_MODE_SPLIT)) {
4005                 hsw_disable_ips(intel_crtc);
4006                 reenable_ips = true;
4007         }
4008
4009         for (i = 0; i < 256; i++) {
4010                 I915_WRITE(palreg + 4 * i,
4011                            (intel_crtc->lut_r[i] << 16) |
4012                            (intel_crtc->lut_g[i] << 8) |
4013                            intel_crtc->lut_b[i]);
4014         }
4015
4016         if (reenable_ips)
4017                 hsw_enable_ips(intel_crtc);
4018 }
4019
4020 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4021 {
4022         if (!enable && intel_crtc->overlay) {
4023                 struct drm_device *dev = intel_crtc->base.dev;
4024                 struct drm_i915_private *dev_priv = dev->dev_private;
4025
4026                 mutex_lock(&dev->struct_mutex);
4027                 dev_priv->mm.interruptible = false;
4028                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4029                 dev_priv->mm.interruptible = true;
4030                 mutex_unlock(&dev->struct_mutex);
4031         }
4032
4033         /* Let userspace switch the overlay on again. In most cases userspace
4034          * has to recompute where to put it anyway.
4035          */
4036 }
4037
4038 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4039 {
4040         struct drm_device *dev = crtc->dev;
4041         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4042         int pipe = intel_crtc->pipe;
4043
4044         assert_vblank_disabled(crtc);
4045
4046         drm_vblank_on(dev, pipe);
4047
4048         intel_enable_primary_hw_plane(crtc->primary, crtc);
4049         intel_enable_planes(crtc);
4050         intel_crtc_update_cursor(crtc, true);
4051         intel_crtc_dpms_overlay(intel_crtc, true);
4052
4053         hsw_enable_ips(intel_crtc);
4054
4055         mutex_lock(&dev->struct_mutex);
4056         intel_update_fbc(dev);
4057         mutex_unlock(&dev->struct_mutex);
4058
4059         /*
4060          * FIXME: Once we grow proper nuclear flip support out of this we need
4061          * to compute the mask of flip planes precisely. For the time being
4062          * consider this a flip from a NULL plane.
4063          */
4064         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4065 }
4066
4067 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4068 {
4069         struct drm_device *dev = crtc->dev;
4070         struct drm_i915_private *dev_priv = dev->dev_private;
4071         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4072         int pipe = intel_crtc->pipe;
4073         int plane = intel_crtc->plane;
4074
4075         intel_crtc_wait_for_pending_flips(crtc);
4076
4077         if (dev_priv->fbc.plane == plane)
4078                 intel_disable_fbc(dev);
4079
4080         hsw_disable_ips(intel_crtc);
4081
4082         intel_crtc_dpms_overlay(intel_crtc, false);
4083         intel_crtc_update_cursor(crtc, false);
4084         intel_disable_planes(crtc);
4085         intel_disable_primary_hw_plane(crtc->primary, crtc);
4086
4087         /*
4088          * FIXME: Once we grow proper nuclear flip support out of this we need
4089          * to compute the mask of flip planes precisely. For the time being
4090          * consider this a flip to a NULL plane.
4091          */
4092         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4093
4094         drm_vblank_off(dev, pipe);
4095
4096         assert_vblank_disabled(crtc);
4097 }
4098
4099 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4100 {
4101         struct drm_device *dev = crtc->dev;
4102         struct drm_i915_private *dev_priv = dev->dev_private;
4103         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4104         struct intel_encoder *encoder;
4105         int pipe = intel_crtc->pipe;
4106
4107         WARN_ON(!crtc->enabled);
4108
4109         if (intel_crtc->active)
4110                 return;
4111
4112         if (intel_crtc->config.has_pch_encoder)
4113                 intel_prepare_shared_dpll(intel_crtc);
4114
4115         if (intel_crtc->config.has_dp_encoder)
4116                 intel_dp_set_m_n(intel_crtc);
4117
4118         intel_set_pipe_timings(intel_crtc);
4119
4120         if (intel_crtc->config.has_pch_encoder) {
4121                 intel_cpu_transcoder_set_m_n(intel_crtc,
4122                                      &intel_crtc->config.fdi_m_n, NULL);
4123         }
4124
4125         ironlake_set_pipeconf(crtc);
4126
4127         intel_crtc->active = true;
4128
4129         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4130         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4131
4132         for_each_encoder_on_crtc(dev, crtc, encoder)
4133                 if (encoder->pre_enable)
4134                         encoder->pre_enable(encoder);
4135
4136         if (intel_crtc->config.has_pch_encoder) {
4137                 /* Note: FDI PLL enabling _must_ be done before we enable the
4138                  * cpu pipes, hence this is separate from all the other fdi/pch
4139                  * enabling. */
4140                 ironlake_fdi_pll_enable(intel_crtc);
4141         } else {
4142                 assert_fdi_tx_disabled(dev_priv, pipe);
4143                 assert_fdi_rx_disabled(dev_priv, pipe);
4144         }
4145
4146         ironlake_pfit_enable(intel_crtc);
4147
4148         /*
4149          * On ILK+ LUT must be loaded before the pipe is running but with
4150          * clocks enabled
4151          */
4152         intel_crtc_load_lut(crtc);
4153
4154         intel_update_watermarks(crtc);
4155         intel_enable_pipe(intel_crtc);
4156
4157         if (intel_crtc->config.has_pch_encoder)
4158                 ironlake_pch_enable(crtc);
4159
4160         for_each_encoder_on_crtc(dev, crtc, encoder)
4161                 encoder->enable(encoder);
4162
4163         if (HAS_PCH_CPT(dev))
4164                 cpt_verify_modeset(dev, intel_crtc->pipe);
4165
4166         intel_crtc_enable_planes(crtc);
4167 }
4168
4169 /* IPS only exists on ULT machines and is tied to pipe A. */
4170 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4171 {
4172         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4173 }
4174
4175 /*
4176  * This implements the workaround described in the "notes" section of the mode
4177  * set sequence documentation. When going from no pipes or single pipe to
4178  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4179  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4180  */
4181 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4182 {
4183         struct drm_device *dev = crtc->base.dev;
4184         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4185
4186         /* We want to get the other_active_crtc only if there's only 1 other
4187          * active crtc. */
4188         for_each_intel_crtc(dev, crtc_it) {
4189                 if (!crtc_it->active || crtc_it == crtc)
4190                         continue;
4191
4192                 if (other_active_crtc)
4193                         return;
4194
4195                 other_active_crtc = crtc_it;
4196         }
4197         if (!other_active_crtc)
4198                 return;
4199
4200         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4201         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4202 }
4203
4204 static void haswell_crtc_enable(struct drm_crtc *crtc)
4205 {
4206         struct drm_device *dev = crtc->dev;
4207         struct drm_i915_private *dev_priv = dev->dev_private;
4208         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4209         struct intel_encoder *encoder;
4210         int pipe = intel_crtc->pipe;
4211
4212         WARN_ON(!crtc->enabled);
4213
4214         if (intel_crtc->active)
4215                 return;
4216
4217         if (intel_crtc_to_shared_dpll(intel_crtc))
4218                 intel_enable_shared_dpll(intel_crtc);
4219
4220         if (intel_crtc->config.has_dp_encoder)
4221                 intel_dp_set_m_n(intel_crtc);
4222
4223         intel_set_pipe_timings(intel_crtc);
4224
4225         if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4226                 I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4227                            intel_crtc->config.pixel_multiplier - 1);
4228         }
4229
4230         if (intel_crtc->config.has_pch_encoder) {
4231                 intel_cpu_transcoder_set_m_n(intel_crtc,
4232                                      &intel_crtc->config.fdi_m_n, NULL);
4233         }
4234
4235         haswell_set_pipeconf(crtc);
4236
4237         intel_set_pipe_csc(crtc);
4238
4239         intel_crtc->active = true;
4240
4241         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4242         for_each_encoder_on_crtc(dev, crtc, encoder)
4243                 if (encoder->pre_enable)
4244                         encoder->pre_enable(encoder);
4245
4246         if (intel_crtc->config.has_pch_encoder) {
4247                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4248                 dev_priv->display.fdi_link_train(crtc);
4249         }
4250
4251         intel_ddi_enable_pipe_clock(intel_crtc);
4252
4253         ironlake_pfit_enable(intel_crtc);
4254
4255         /*
4256          * On ILK+ LUT must be loaded before the pipe is running but with
4257          * clocks enabled
4258          */
4259         intel_crtc_load_lut(crtc);
4260
4261         intel_ddi_set_pipe_settings(crtc);
4262         intel_ddi_enable_transcoder_func(crtc);
4263
4264         intel_update_watermarks(crtc);
4265         intel_enable_pipe(intel_crtc);
4266
4267         if (intel_crtc->config.has_pch_encoder)
4268                 lpt_pch_enable(crtc);
4269
4270         if (intel_crtc->config.dp_encoder_is_mst)
4271                 intel_ddi_set_vc_payload_alloc(crtc, true);
4272
4273         for_each_encoder_on_crtc(dev, crtc, encoder) {
4274                 encoder->enable(encoder);
4275                 intel_opregion_notify_encoder(encoder, true);
4276         }
4277
4278         /* If we change the relative order between pipe/planes enabling, we need
4279          * to change the workaround. */
4280         haswell_mode_set_planes_workaround(intel_crtc);
4281         intel_crtc_enable_planes(crtc);
4282 }
4283
4284 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4285 {
4286         struct drm_device *dev = crtc->base.dev;
4287         struct drm_i915_private *dev_priv = dev->dev_private;
4288         int pipe = crtc->pipe;
4289
4290         /* To avoid upsetting the power well on haswell only disable the pfit if
4291          * it's in use. The hw state code will make sure we get this right. */
4292         if (crtc->config.pch_pfit.enabled) {
4293                 I915_WRITE(PF_CTL(pipe), 0);
4294                 I915_WRITE(PF_WIN_POS(pipe), 0);
4295                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4296         }
4297 }
4298
4299 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4300 {
4301         struct drm_device *dev = crtc->dev;
4302         struct drm_i915_private *dev_priv = dev->dev_private;
4303         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4304         struct intel_encoder *encoder;
4305         int pipe = intel_crtc->pipe;
4306         u32 reg, temp;
4307
4308         if (!intel_crtc->active)
4309                 return;
4310
4311         intel_crtc_disable_planes(crtc);
4312
4313         for_each_encoder_on_crtc(dev, crtc, encoder)
4314                 encoder->disable(encoder);
4315
4316         if (intel_crtc->config.has_pch_encoder)
4317                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4318
4319         intel_disable_pipe(intel_crtc);
4320
4321         ironlake_pfit_disable(intel_crtc);
4322
4323         for_each_encoder_on_crtc(dev, crtc, encoder)
4324                 if (encoder->post_disable)
4325                         encoder->post_disable(encoder);
4326
4327         if (intel_crtc->config.has_pch_encoder) {
4328                 ironlake_fdi_disable(crtc);
4329
4330                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4331                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4332
4333                 if (HAS_PCH_CPT(dev)) {
4334                         /* disable TRANS_DP_CTL */
4335                         reg = TRANS_DP_CTL(pipe);
4336                         temp = I915_READ(reg);
4337                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4338                                   TRANS_DP_PORT_SEL_MASK);
4339                         temp |= TRANS_DP_PORT_SEL_NONE;
4340                         I915_WRITE(reg, temp);
4341
4342                         /* disable DPLL_SEL */
4343                         temp = I915_READ(PCH_DPLL_SEL);
4344                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4345                         I915_WRITE(PCH_DPLL_SEL, temp);
4346                 }
4347
4348                 /* disable PCH DPLL */
4349                 intel_disable_shared_dpll(intel_crtc);
4350
4351                 ironlake_fdi_pll_disable(intel_crtc);
4352         }
4353
4354         intel_crtc->active = false;
4355         intel_update_watermarks(crtc);
4356
4357         mutex_lock(&dev->struct_mutex);
4358         intel_update_fbc(dev);
4359         mutex_unlock(&dev->struct_mutex);
4360 }
4361
4362 static void haswell_crtc_disable(struct drm_crtc *crtc)
4363 {
4364         struct drm_device *dev = crtc->dev;
4365         struct drm_i915_private *dev_priv = dev->dev_private;
4366         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4367         struct intel_encoder *encoder;
4368         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4369
4370         if (!intel_crtc->active)
4371                 return;
4372
4373         intel_crtc_disable_planes(crtc);
4374
4375         for_each_encoder_on_crtc(dev, crtc, encoder) {
4376                 intel_opregion_notify_encoder(encoder, false);
4377                 encoder->disable(encoder);
4378         }
4379
4380         if (intel_crtc->config.has_pch_encoder)
4381                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4382         intel_disable_pipe(intel_crtc);
4383
4384         if (intel_crtc->config.dp_encoder_is_mst)
4385                 intel_ddi_set_vc_payload_alloc(crtc, false);
4386
4387         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4388
4389         ironlake_pfit_disable(intel_crtc);
4390
4391         intel_ddi_disable_pipe_clock(intel_crtc);
4392
4393         if (intel_crtc->config.has_pch_encoder) {
4394                 lpt_disable_pch_transcoder(dev_priv);
4395                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4396                 intel_ddi_fdi_disable(crtc);
4397         }
4398
4399         for_each_encoder_on_crtc(dev, crtc, encoder)
4400                 if (encoder->post_disable)
4401                         encoder->post_disable(encoder);
4402
4403         intel_crtc->active = false;
4404         intel_update_watermarks(crtc);
4405
4406         mutex_lock(&dev->struct_mutex);
4407         intel_update_fbc(dev);
4408         mutex_unlock(&dev->struct_mutex);
4409
4410         if (intel_crtc_to_shared_dpll(intel_crtc))
4411                 intel_disable_shared_dpll(intel_crtc);
4412 }
4413
4414 static void ironlake_crtc_off(struct drm_crtc *crtc)
4415 {
4416         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4417         intel_put_shared_dpll(intel_crtc);
4418 }
4419
4420
4421 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4422 {
4423         struct drm_device *dev = crtc->base.dev;
4424         struct drm_i915_private *dev_priv = dev->dev_private;
4425         struct intel_crtc_config *pipe_config = &crtc->config;
4426
4427         if (!crtc->config.gmch_pfit.control)
4428                 return;
4429
4430         /*
4431          * The panel fitter should only be adjusted whilst the pipe is disabled,
4432          * according to register description and PRM.
4433          */
4434         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4435         assert_pipe_disabled(dev_priv, crtc->pipe);
4436
4437         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4438         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4439
4440         /* Border color in case we don't scale up to the full screen. Black by
4441          * default, change to something else for debugging. */
4442         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4443 }
4444
4445 static enum intel_display_power_domain port_to_power_domain(enum port port)
4446 {
4447         switch (port) {
4448         case PORT_A:
4449                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4450         case PORT_B:
4451                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4452         case PORT_C:
4453                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4454         case PORT_D:
4455                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4456         default:
4457                 WARN_ON_ONCE(1);
4458                 return POWER_DOMAIN_PORT_OTHER;
4459         }
4460 }
4461
4462 #define for_each_power_domain(domain, mask)                             \
4463         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4464                 if ((1 << (domain)) & (mask))
4465
4466 enum intel_display_power_domain
4467 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4468 {
4469         struct drm_device *dev = intel_encoder->base.dev;
4470         struct intel_digital_port *intel_dig_port;
4471
4472         switch (intel_encoder->type) {
4473         case INTEL_OUTPUT_UNKNOWN:
4474                 /* Only DDI platforms should ever use this output type */
4475                 WARN_ON_ONCE(!HAS_DDI(dev));
4476         case INTEL_OUTPUT_DISPLAYPORT:
4477         case INTEL_OUTPUT_HDMI:
4478         case INTEL_OUTPUT_EDP:
4479                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4480                 return port_to_power_domain(intel_dig_port->port);
4481         case INTEL_OUTPUT_DP_MST:
4482                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4483                 return port_to_power_domain(intel_dig_port->port);
4484         case INTEL_OUTPUT_ANALOG:
4485                 return POWER_DOMAIN_PORT_CRT;
4486         case INTEL_OUTPUT_DSI:
4487                 return POWER_DOMAIN_PORT_DSI;
4488         default:
4489                 return POWER_DOMAIN_PORT_OTHER;
4490         }
4491 }
4492
4493 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4494 {
4495         struct drm_device *dev = crtc->dev;
4496         struct intel_encoder *intel_encoder;
4497         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4498         enum pipe pipe = intel_crtc->pipe;
4499         unsigned long mask;
4500         enum transcoder transcoder;
4501
4502         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4503
4504         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4505         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4506         if (intel_crtc->config.pch_pfit.enabled ||
4507             intel_crtc->config.pch_pfit.force_thru)
4508                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4509
4510         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4511                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4512
4513         return mask;
4514 }
4515
4516 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4517                                   bool enable)
4518 {
4519         if (dev_priv->power_domains.init_power_on == enable)
4520                 return;
4521
4522         if (enable)
4523                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4524         else
4525                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4526
4527         dev_priv->power_domains.init_power_on = enable;
4528 }
4529
4530 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4531 {
4532         struct drm_i915_private *dev_priv = dev->dev_private;
4533         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4534         struct intel_crtc *crtc;
4535
4536         /*
4537          * First get all needed power domains, then put all unneeded, to avoid
4538          * any unnecessary toggling of the power wells.
4539          */
4540         for_each_intel_crtc(dev, crtc) {
4541                 enum intel_display_power_domain domain;
4542
4543                 if (!crtc->base.enabled)
4544                         continue;
4545
4546                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4547
4548                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4549                         intel_display_power_get(dev_priv, domain);
4550         }
4551
4552         for_each_intel_crtc(dev, crtc) {
4553                 enum intel_display_power_domain domain;
4554
4555                 for_each_power_domain(domain, crtc->enabled_power_domains)
4556                         intel_display_power_put(dev_priv, domain);
4557
4558                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4559         }
4560
4561         intel_display_set_init_power(dev_priv, false);
4562 }
4563
4564 /* returns HPLL frequency in kHz */
4565 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4566 {
4567         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4568
4569         /* Obtain SKU information */
4570         mutex_lock(&dev_priv->dpio_lock);
4571         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4572                 CCK_FUSE_HPLL_FREQ_MASK;
4573         mutex_unlock(&dev_priv->dpio_lock);
4574
4575         return vco_freq[hpll_freq] * 1000;
4576 }
4577
4578 static void vlv_update_cdclk(struct drm_device *dev)
4579 {
4580         struct drm_i915_private *dev_priv = dev->dev_private;
4581
4582         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4583         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4584                          dev_priv->vlv_cdclk_freq);
4585
4586         /*
4587          * Program the gmbus_freq based on the cdclk frequency.
4588          * BSpec erroneously claims we should aim for 4MHz, but
4589          * in fact 1MHz is the correct frequency.
4590          */
4591         I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4592 }
4593
4594 /* Adjust CDclk dividers to allow high res or save power if possible */
4595 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4596 {
4597         struct drm_i915_private *dev_priv = dev->dev_private;
4598         u32 val, cmd;
4599
4600         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4601
4602         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4603                 cmd = 2;
4604         else if (cdclk == 266667)
4605                 cmd = 1;
4606         else
4607                 cmd = 0;
4608
4609         mutex_lock(&dev_priv->rps.hw_lock);
4610         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4611         val &= ~DSPFREQGUAR_MASK;
4612         val |= (cmd << DSPFREQGUAR_SHIFT);
4613         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4614         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4615                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4616                      50)) {
4617                 DRM_ERROR("timed out waiting for CDclk change\n");
4618         }
4619         mutex_unlock(&dev_priv->rps.hw_lock);
4620
4621         if (cdclk == 400000) {
4622                 u32 divider, vco;
4623
4624                 vco = valleyview_get_vco(dev_priv);
4625                 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
4626
4627                 mutex_lock(&dev_priv->dpio_lock);
4628                 /* adjust cdclk divider */
4629                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4630                 val &= ~DISPLAY_FREQUENCY_VALUES;
4631                 val |= divider;
4632                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4633
4634                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4635                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4636                              50))
4637                         DRM_ERROR("timed out waiting for CDclk change\n");
4638                 mutex_unlock(&dev_priv->dpio_lock);
4639         }
4640
4641         mutex_lock(&dev_priv->dpio_lock);
4642         /* adjust self-refresh exit latency value */
4643         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4644         val &= ~0x7f;
4645
4646         /*
4647          * For high bandwidth configs, we set a higher latency in the bunit
4648          * so that the core display fetch happens in time to avoid underruns.
4649          */
4650         if (cdclk == 400000)
4651                 val |= 4500 / 250; /* 4.5 usec */
4652         else
4653                 val |= 3000 / 250; /* 3.0 usec */
4654         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4655         mutex_unlock(&dev_priv->dpio_lock);
4656
4657         vlv_update_cdclk(dev);
4658 }
4659
4660 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4661 {
4662         struct drm_i915_private *dev_priv = dev->dev_private;
4663         u32 val, cmd;
4664
4665         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4666
4667         switch (cdclk) {
4668         case 400000:
4669                 cmd = 3;
4670                 break;
4671         case 333333:
4672         case 320000:
4673                 cmd = 2;
4674                 break;
4675         case 266667:
4676                 cmd = 1;
4677                 break;
4678         case 200000:
4679                 cmd = 0;
4680                 break;
4681         default:
4682                 WARN_ON(1);
4683                 return;
4684         }
4685
4686         mutex_lock(&dev_priv->rps.hw_lock);
4687         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4688         val &= ~DSPFREQGUAR_MASK_CHV;
4689         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4690         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4691         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4692                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4693                      50)) {
4694                 DRM_ERROR("timed out waiting for CDclk change\n");
4695         }
4696         mutex_unlock(&dev_priv->rps.hw_lock);
4697
4698         vlv_update_cdclk(dev);
4699 }
4700
4701 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4702                                  int max_pixclk)
4703 {
4704         int vco = valleyview_get_vco(dev_priv);
4705         int freq_320 = (vco <<  1) % 320000 != 0 ? 333333 : 320000;
4706
4707         /* FIXME: Punit isn't quite ready yet */
4708         if (IS_CHERRYVIEW(dev_priv->dev))
4709                 return 400000;
4710
4711         /*
4712          * Really only a few cases to deal with, as only 4 CDclks are supported:
4713          *   200MHz
4714          *   267MHz
4715          *   320/333MHz (depends on HPLL freq)
4716          *   400MHz
4717          * So we check to see whether we're above 90% of the lower bin and
4718          * adjust if needed.
4719          *
4720          * We seem to get an unstable or solid color picture at 200MHz.
4721          * Not sure what's wrong. For now use 200MHz only when all pipes
4722          * are off.
4723          */
4724         if (max_pixclk > freq_320*9/10)
4725                 return 400000;
4726         else if (max_pixclk > 266667*9/10)
4727                 return freq_320;
4728         else if (max_pixclk > 0)
4729                 return 266667;
4730         else
4731                 return 200000;
4732 }
4733
4734 /* compute the max pixel clock for new configuration */
4735 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4736 {
4737         struct drm_device *dev = dev_priv->dev;
4738         struct intel_crtc *intel_crtc;
4739         int max_pixclk = 0;
4740
4741         for_each_intel_crtc(dev, intel_crtc) {
4742                 if (intel_crtc->new_enabled)
4743                         max_pixclk = max(max_pixclk,
4744                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4745         }
4746
4747         return max_pixclk;
4748 }
4749
4750 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4751                                             unsigned *prepare_pipes)
4752 {
4753         struct drm_i915_private *dev_priv = dev->dev_private;
4754         struct intel_crtc *intel_crtc;
4755         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4756
4757         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4758             dev_priv->vlv_cdclk_freq)
4759                 return;
4760
4761         /* disable/enable all currently active pipes while we change cdclk */
4762         for_each_intel_crtc(dev, intel_crtc)
4763                 if (intel_crtc->base.enabled)
4764                         *prepare_pipes |= (1 << intel_crtc->pipe);
4765 }
4766
4767 static void valleyview_modeset_global_resources(struct drm_device *dev)
4768 {
4769         struct drm_i915_private *dev_priv = dev->dev_private;
4770         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4771         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4772
4773         if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4774                 if (IS_CHERRYVIEW(dev))
4775                         cherryview_set_cdclk(dev, req_cdclk);
4776                 else
4777                         valleyview_set_cdclk(dev, req_cdclk);
4778         }
4779
4780         modeset_update_crtc_power_domains(dev);
4781 }
4782
4783 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4784 {
4785         struct drm_device *dev = crtc->dev;
4786         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4787         struct intel_encoder *encoder;
4788         int pipe = intel_crtc->pipe;
4789         bool is_dsi;
4790
4791         WARN_ON(!crtc->enabled);
4792
4793         if (intel_crtc->active)
4794                 return;
4795
4796         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4797
4798         if (!is_dsi) {
4799                 if (IS_CHERRYVIEW(dev))
4800                         chv_prepare_pll(intel_crtc);
4801                 else
4802                         vlv_prepare_pll(intel_crtc);
4803         }
4804
4805         if (intel_crtc->config.has_dp_encoder)
4806                 intel_dp_set_m_n(intel_crtc);
4807
4808         intel_set_pipe_timings(intel_crtc);
4809
4810         i9xx_set_pipeconf(intel_crtc);
4811
4812         intel_crtc->active = true;
4813
4814         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4815
4816         for_each_encoder_on_crtc(dev, crtc, encoder)
4817                 if (encoder->pre_pll_enable)
4818                         encoder->pre_pll_enable(encoder);
4819
4820         if (!is_dsi) {
4821                 if (IS_CHERRYVIEW(dev))
4822                         chv_enable_pll(intel_crtc);
4823                 else
4824                         vlv_enable_pll(intel_crtc);
4825         }
4826
4827         for_each_encoder_on_crtc(dev, crtc, encoder)
4828                 if (encoder->pre_enable)
4829                         encoder->pre_enable(encoder);
4830
4831         i9xx_pfit_enable(intel_crtc);
4832
4833         intel_crtc_load_lut(crtc);
4834
4835         intel_update_watermarks(crtc);
4836         intel_enable_pipe(intel_crtc);
4837
4838         for_each_encoder_on_crtc(dev, crtc, encoder)
4839                 encoder->enable(encoder);
4840
4841         intel_crtc_enable_planes(crtc);
4842
4843         /* Underruns don't raise interrupts, so check manually. */
4844         i9xx_check_fifo_underruns(dev);
4845 }
4846
4847 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4848 {
4849         struct drm_device *dev = crtc->base.dev;
4850         struct drm_i915_private *dev_priv = dev->dev_private;
4851
4852         I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4853         I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4854 }
4855
4856 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4857 {
4858         struct drm_device *dev = crtc->dev;
4859         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4860         struct intel_encoder *encoder;
4861         int pipe = intel_crtc->pipe;
4862
4863         WARN_ON(!crtc->enabled);
4864
4865         if (intel_crtc->active)
4866                 return;
4867
4868         i9xx_set_pll_dividers(intel_crtc);
4869
4870         if (intel_crtc->config.has_dp_encoder)
4871                 intel_dp_set_m_n(intel_crtc);
4872
4873         intel_set_pipe_timings(intel_crtc);
4874
4875         i9xx_set_pipeconf(intel_crtc);
4876
4877         intel_crtc->active = true;
4878
4879         if (!IS_GEN2(dev))
4880                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4881
4882         for_each_encoder_on_crtc(dev, crtc, encoder)
4883                 if (encoder->pre_enable)
4884                         encoder->pre_enable(encoder);
4885
4886         i9xx_enable_pll(intel_crtc);
4887
4888         i9xx_pfit_enable(intel_crtc);
4889
4890         intel_crtc_load_lut(crtc);
4891
4892         intel_update_watermarks(crtc);
4893         intel_enable_pipe(intel_crtc);
4894
4895         for_each_encoder_on_crtc(dev, crtc, encoder)
4896                 encoder->enable(encoder);
4897
4898         intel_crtc_enable_planes(crtc);
4899
4900         /*
4901          * Gen2 reports pipe underruns whenever all planes are disabled.
4902          * So don't enable underrun reporting before at least some planes
4903          * are enabled.
4904          * FIXME: Need to fix the logic to work when we turn off all planes
4905          * but leave the pipe running.
4906          */
4907         if (IS_GEN2(dev))
4908                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4909
4910         /* Underruns don't raise interrupts, so check manually. */
4911         i9xx_check_fifo_underruns(dev);
4912 }
4913
4914 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4915 {
4916         struct drm_device *dev = crtc->base.dev;
4917         struct drm_i915_private *dev_priv = dev->dev_private;
4918
4919         if (!crtc->config.gmch_pfit.control)
4920                 return;
4921
4922         assert_pipe_disabled(dev_priv, crtc->pipe);
4923
4924         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4925                          I915_READ(PFIT_CONTROL));
4926         I915_WRITE(PFIT_CONTROL, 0);
4927 }
4928
4929 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4930 {
4931         struct drm_device *dev = crtc->dev;
4932         struct drm_i915_private *dev_priv = dev->dev_private;
4933         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4934         struct intel_encoder *encoder;
4935         int pipe = intel_crtc->pipe;
4936
4937         if (!intel_crtc->active)
4938                 return;
4939
4940         /*
4941          * Gen2 reports pipe underruns whenever all planes are disabled.
4942          * So diasble underrun reporting before all the planes get disabled.
4943          * FIXME: Need to fix the logic to work when we turn off all planes
4944          * but leave the pipe running.
4945          */
4946         if (IS_GEN2(dev))
4947                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4948
4949         /*
4950          * Vblank time updates from the shadow to live plane control register
4951          * are blocked if the memory self-refresh mode is active at that
4952          * moment. So to make sure the plane gets truly disabled, disable
4953          * first the self-refresh mode. The self-refresh enable bit in turn
4954          * will be checked/applied by the HW only at the next frame start
4955          * event which is after the vblank start event, so we need to have a
4956          * wait-for-vblank between disabling the plane and the pipe.
4957          */
4958         intel_set_memory_cxsr(dev_priv, false);
4959         intel_crtc_disable_planes(crtc);
4960
4961         for_each_encoder_on_crtc(dev, crtc, encoder)
4962                 encoder->disable(encoder);
4963
4964         /*
4965          * On gen2 planes are double buffered but the pipe isn't, so we must
4966          * wait for planes to fully turn off before disabling the pipe.
4967          * We also need to wait on all gmch platforms because of the
4968          * self-refresh mode constraint explained above.
4969          */
4970         intel_wait_for_vblank(dev, pipe);
4971
4972         intel_disable_pipe(intel_crtc);
4973
4974         i9xx_pfit_disable(intel_crtc);
4975
4976         for_each_encoder_on_crtc(dev, crtc, encoder)
4977                 if (encoder->post_disable)
4978                         encoder->post_disable(encoder);
4979
4980         if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4981                 if (IS_CHERRYVIEW(dev))
4982                         chv_disable_pll(dev_priv, pipe);
4983                 else if (IS_VALLEYVIEW(dev))
4984                         vlv_disable_pll(dev_priv, pipe);
4985                 else
4986                         i9xx_disable_pll(intel_crtc);
4987         }
4988
4989         if (!IS_GEN2(dev))
4990                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4991
4992         intel_crtc->active = false;
4993         intel_update_watermarks(crtc);
4994
4995         mutex_lock(&dev->struct_mutex);
4996         intel_update_fbc(dev);
4997         mutex_unlock(&dev->struct_mutex);
4998 }
4999
5000 static void i9xx_crtc_off(struct drm_crtc *crtc)
5001 {
5002 }
5003
5004 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
5005                                     bool enabled)
5006 {
5007         struct drm_device *dev = crtc->dev;
5008         struct drm_i915_master_private *master_priv;
5009         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5010         int pipe = intel_crtc->pipe;
5011
5012         if (!dev->primary->master)
5013                 return;
5014
5015         master_priv = dev->primary->master->driver_priv;
5016         if (!master_priv->sarea_priv)
5017                 return;
5018
5019         switch (pipe) {
5020         case 0:
5021                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
5022                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
5023                 break;
5024         case 1:
5025                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
5026                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
5027                 break;
5028         default:
5029                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
5030                 break;
5031         }
5032 }
5033
5034 /* Master function to enable/disable CRTC and corresponding power wells */
5035 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5036 {
5037         struct drm_device *dev = crtc->dev;
5038         struct drm_i915_private *dev_priv = dev->dev_private;
5039         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5040         enum intel_display_power_domain domain;
5041         unsigned long domains;
5042
5043         if (enable) {
5044                 if (!intel_crtc->active) {
5045                         domains = get_crtc_power_domains(crtc);
5046                         for_each_power_domain(domain, domains)
5047                                 intel_display_power_get(dev_priv, domain);
5048                         intel_crtc->enabled_power_domains = domains;
5049
5050                         dev_priv->display.crtc_enable(crtc);
5051                 }
5052         } else {
5053                 if (intel_crtc->active) {
5054                         dev_priv->display.crtc_disable(crtc);
5055
5056                         domains = intel_crtc->enabled_power_domains;
5057                         for_each_power_domain(domain, domains)
5058                                 intel_display_power_put(dev_priv, domain);
5059                         intel_crtc->enabled_power_domains = 0;
5060                 }
5061         }
5062 }
5063
5064 /**
5065  * Sets the power management mode of the pipe and plane.
5066  */
5067 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5068 {
5069         struct drm_device *dev = crtc->dev;
5070         struct intel_encoder *intel_encoder;
5071         bool enable = false;
5072
5073         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5074                 enable |= intel_encoder->connectors_active;
5075
5076         intel_crtc_control(crtc, enable);
5077
5078         intel_crtc_update_sarea(crtc, enable);
5079 }
5080
5081 static void intel_crtc_disable(struct drm_crtc *crtc)
5082 {
5083         struct drm_device *dev = crtc->dev;
5084         struct drm_connector *connector;
5085         struct drm_i915_private *dev_priv = dev->dev_private;
5086         struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
5087         enum pipe pipe = to_intel_crtc(crtc)->pipe;
5088
5089         /* crtc should still be enabled when we disable it. */
5090         WARN_ON(!crtc->enabled);
5091
5092         dev_priv->display.crtc_disable(crtc);
5093         intel_crtc_update_sarea(crtc, false);
5094         dev_priv->display.off(crtc);
5095
5096         if (crtc->primary->fb) {
5097                 mutex_lock(&dev->struct_mutex);
5098                 intel_unpin_fb_obj(old_obj);
5099                 i915_gem_track_fb(old_obj, NULL,
5100                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
5101                 mutex_unlock(&dev->struct_mutex);
5102                 crtc->primary->fb = NULL;
5103         }
5104
5105         /* Update computed state. */
5106         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5107                 if (!connector->encoder || !connector->encoder->crtc)
5108                         continue;
5109
5110                 if (connector->encoder->crtc != crtc)
5111                         continue;
5112
5113                 connector->dpms = DRM_MODE_DPMS_OFF;
5114                 to_intel_encoder(connector->encoder)->connectors_active = false;
5115         }
5116 }
5117
5118 void intel_encoder_destroy(struct drm_encoder *encoder)
5119 {
5120         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5121
5122         drm_encoder_cleanup(encoder);
5123         kfree(intel_encoder);
5124 }
5125
5126 /* Simple dpms helper for encoders with just one connector, no cloning and only
5127  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5128  * state of the entire output pipe. */
5129 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5130 {
5131         if (mode == DRM_MODE_DPMS_ON) {
5132                 encoder->connectors_active = true;
5133
5134                 intel_crtc_update_dpms(encoder->base.crtc);
5135         } else {
5136                 encoder->connectors_active = false;
5137
5138                 intel_crtc_update_dpms(encoder->base.crtc);
5139         }
5140 }
5141
5142 /* Cross check the actual hw state with our own modeset state tracking (and it's
5143  * internal consistency). */
5144 static void intel_connector_check_state(struct intel_connector *connector)
5145 {
5146         if (connector->get_hw_state(connector)) {
5147                 struct intel_encoder *encoder = connector->encoder;
5148                 struct drm_crtc *crtc;
5149                 bool encoder_enabled;
5150                 enum pipe pipe;
5151
5152                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5153                               connector->base.base.id,
5154                               connector->base.name);
5155
5156                 /* there is no real hw state for MST connectors */
5157                 if (connector->mst_port)
5158                         return;
5159
5160                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5161                      "wrong connector dpms state\n");
5162                 WARN(connector->base.encoder != &encoder->base,
5163                      "active connector not linked to encoder\n");
5164
5165                 if (encoder) {
5166                         WARN(!encoder->connectors_active,
5167                              "encoder->connectors_active not set\n");
5168
5169                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5170                         WARN(!encoder_enabled, "encoder not enabled\n");
5171                         if (WARN_ON(!encoder->base.crtc))
5172                                 return;
5173
5174                         crtc = encoder->base.crtc;
5175
5176                         WARN(!crtc->enabled, "crtc not enabled\n");
5177                         WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5178                         WARN(pipe != to_intel_crtc(crtc)->pipe,
5179                              "encoder active on the wrong pipe\n");
5180                 }
5181         }
5182 }
5183
5184 /* Even simpler default implementation, if there's really no special case to
5185  * consider. */
5186 void intel_connector_dpms(struct drm_connector *connector, int mode)
5187 {
5188         /* All the simple cases only support two dpms states. */
5189         if (mode != DRM_MODE_DPMS_ON)
5190                 mode = DRM_MODE_DPMS_OFF;
5191
5192         if (mode == connector->dpms)
5193                 return;
5194
5195         connector->dpms = mode;
5196
5197         /* Only need to change hw state when actually enabled */
5198         if (connector->encoder)
5199                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5200
5201         intel_modeset_check_state(connector->dev);
5202 }
5203
5204 /* Simple connector->get_hw_state implementation for encoders that support only
5205  * one connector and no cloning and hence the encoder state determines the state
5206  * of the connector. */
5207 bool intel_connector_get_hw_state(struct intel_connector *connector)
5208 {
5209         enum pipe pipe = 0;
5210         struct intel_encoder *encoder = connector->encoder;
5211
5212         return encoder->get_hw_state(encoder, &pipe);
5213 }
5214
5215 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5216                                      struct intel_crtc_config *pipe_config)
5217 {
5218         struct drm_i915_private *dev_priv = dev->dev_private;
5219         struct intel_crtc *pipe_B_crtc =
5220                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5221
5222         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5223                       pipe_name(pipe), pipe_config->fdi_lanes);
5224         if (pipe_config->fdi_lanes > 4) {
5225                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5226                               pipe_name(pipe), pipe_config->fdi_lanes);
5227                 return false;
5228         }
5229
5230         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5231                 if (pipe_config->fdi_lanes > 2) {
5232                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5233                                       pipe_config->fdi_lanes);
5234                         return false;
5235                 } else {
5236                         return true;
5237                 }
5238         }
5239
5240         if (INTEL_INFO(dev)->num_pipes == 2)
5241                 return true;
5242
5243         /* Ivybridge 3 pipe is really complicated */
5244         switch (pipe) {
5245         case PIPE_A:
5246                 return true;
5247         case PIPE_B:
5248                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5249                     pipe_config->fdi_lanes > 2) {
5250                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5251                                       pipe_name(pipe), pipe_config->fdi_lanes);
5252                         return false;
5253                 }
5254                 return true;
5255         case PIPE_C:
5256                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5257                     pipe_B_crtc->config.fdi_lanes <= 2) {
5258                         if (pipe_config->fdi_lanes > 2) {
5259                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5260                                               pipe_name(pipe), pipe_config->fdi_lanes);
5261                                 return false;
5262                         }
5263                 } else {
5264                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5265                         return false;
5266                 }
5267                 return true;
5268         default:
5269                 BUG();
5270         }
5271 }
5272
5273 #define RETRY 1
5274 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5275                                        struct intel_crtc_config *pipe_config)
5276 {
5277         struct drm_device *dev = intel_crtc->base.dev;
5278         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5279         int lane, link_bw, fdi_dotclock;
5280         bool setup_ok, needs_recompute = false;
5281
5282 retry:
5283         /* FDI is a binary signal running at ~2.7GHz, encoding
5284          * each output octet as 10 bits. The actual frequency
5285          * is stored as a divider into a 100MHz clock, and the
5286          * mode pixel clock is stored in units of 1KHz.
5287          * Hence the bw of each lane in terms of the mode signal
5288          * is:
5289          */
5290         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5291
5292         fdi_dotclock = adjusted_mode->crtc_clock;
5293
5294         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5295                                            pipe_config->pipe_bpp);
5296
5297         pipe_config->fdi_lanes = lane;
5298
5299         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5300                                link_bw, &pipe_config->fdi_m_n);
5301
5302         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5303                                             intel_crtc->pipe, pipe_config);
5304         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5305                 pipe_config->pipe_bpp -= 2*3;
5306                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5307                               pipe_config->pipe_bpp);
5308                 needs_recompute = true;
5309                 pipe_config->bw_constrained = true;
5310
5311                 goto retry;
5312         }
5313
5314         if (needs_recompute)
5315                 return RETRY;
5316
5317         return setup_ok ? 0 : -EINVAL;
5318 }
5319
5320 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5321                                    struct intel_crtc_config *pipe_config)
5322 {
5323         pipe_config->ips_enabled = i915.enable_ips &&
5324                                    hsw_crtc_supports_ips(crtc) &&
5325                                    pipe_config->pipe_bpp <= 24;
5326 }
5327
5328 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5329                                      struct intel_crtc_config *pipe_config)
5330 {
5331         struct drm_device *dev = crtc->base.dev;
5332         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5333
5334         /* FIXME should check pixel clock limits on all platforms */
5335         if (INTEL_INFO(dev)->gen < 4) {
5336                 struct drm_i915_private *dev_priv = dev->dev_private;
5337                 int clock_limit =
5338                         dev_priv->display.get_display_clock_speed(dev);
5339
5340                 /*
5341                  * Enable pixel doubling when the dot clock
5342                  * is > 90% of the (display) core speed.
5343                  *
5344                  * GDG double wide on either pipe,
5345                  * otherwise pipe A only.
5346                  */
5347                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5348                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5349                         clock_limit *= 2;
5350                         pipe_config->double_wide = true;
5351                 }
5352
5353                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5354                         return -EINVAL;
5355         }
5356
5357         /*
5358          * Pipe horizontal size must be even in:
5359          * - DVO ganged mode
5360          * - LVDS dual channel mode
5361          * - Double wide pipe
5362          */
5363         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5364              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5365                 pipe_config->pipe_src_w &= ~1;
5366
5367         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5368          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5369          */
5370         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5371                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5372                 return -EINVAL;
5373
5374         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5375                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5376         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5377                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5378                  * for lvds. */
5379                 pipe_config->pipe_bpp = 8*3;
5380         }
5381
5382         if (HAS_IPS(dev))
5383                 hsw_compute_ips_config(crtc, pipe_config);
5384
5385         /*
5386          * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5387          * old clock survives for now.
5388          */
5389         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
5390                 pipe_config->shared_dpll = crtc->config.shared_dpll;
5391
5392         if (pipe_config->has_pch_encoder)
5393                 return ironlake_fdi_compute_config(crtc, pipe_config);
5394
5395         return 0;
5396 }
5397
5398 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5399 {
5400         struct drm_i915_private *dev_priv = dev->dev_private;
5401         int vco = valleyview_get_vco(dev_priv);
5402         u32 val;
5403         int divider;
5404
5405         /* FIXME: Punit isn't quite ready yet */
5406         if (IS_CHERRYVIEW(dev))
5407                 return 400000;
5408
5409         mutex_lock(&dev_priv->dpio_lock);
5410         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5411         mutex_unlock(&dev_priv->dpio_lock);
5412
5413         divider = val & DISPLAY_FREQUENCY_VALUES;
5414
5415         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5416              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5417              "cdclk change in progress\n");
5418
5419         return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
5420 }
5421
5422 static int i945_get_display_clock_speed(struct drm_device *dev)
5423 {
5424         return 400000;
5425 }
5426
5427 static int i915_get_display_clock_speed(struct drm_device *dev)
5428 {
5429         return 333000;
5430 }
5431
5432 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5433 {
5434         return 200000;
5435 }
5436
5437 static int pnv_get_display_clock_speed(struct drm_device *dev)
5438 {
5439         u16 gcfgc = 0;
5440
5441         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5442
5443         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5444         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5445                 return 267000;
5446         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5447                 return 333000;
5448         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5449                 return 444000;
5450         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5451                 return 200000;
5452         default:
5453                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5454         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5455                 return 133000;
5456         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5457                 return 167000;
5458         }
5459 }
5460
5461 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5462 {
5463         u16 gcfgc = 0;
5464
5465         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5466
5467         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5468                 return 133000;
5469         else {
5470                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5471                 case GC_DISPLAY_CLOCK_333_MHZ:
5472                         return 333000;
5473                 default:
5474                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5475                         return 190000;
5476                 }
5477         }
5478 }
5479
5480 static int i865_get_display_clock_speed(struct drm_device *dev)
5481 {
5482         return 266000;
5483 }
5484
5485 static int i855_get_display_clock_speed(struct drm_device *dev)
5486 {
5487         u16 hpllcc = 0;
5488         /* Assume that the hardware is in the high speed state.  This
5489          * should be the default.
5490          */
5491         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5492         case GC_CLOCK_133_200:
5493         case GC_CLOCK_100_200:
5494                 return 200000;
5495         case GC_CLOCK_166_250:
5496                 return 250000;
5497         case GC_CLOCK_100_133:
5498                 return 133000;
5499         }
5500
5501         /* Shouldn't happen */
5502         return 0;
5503 }
5504
5505 static int i830_get_display_clock_speed(struct drm_device *dev)
5506 {
5507         return 133000;
5508 }
5509
5510 static void
5511 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5512 {
5513         while (*num > DATA_LINK_M_N_MASK ||
5514                *den > DATA_LINK_M_N_MASK) {
5515                 *num >>= 1;
5516                 *den >>= 1;
5517         }
5518 }
5519
5520 static void compute_m_n(unsigned int m, unsigned int n,
5521                         uint32_t *ret_m, uint32_t *ret_n)
5522 {
5523         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5524         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5525         intel_reduce_m_n_ratio(ret_m, ret_n);
5526 }
5527
5528 void
5529 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5530                        int pixel_clock, int link_clock,
5531                        struct intel_link_m_n *m_n)
5532 {
5533         m_n->tu = 64;
5534
5535         compute_m_n(bits_per_pixel * pixel_clock,
5536                     link_clock * nlanes * 8,
5537                     &m_n->gmch_m, &m_n->gmch_n);
5538
5539         compute_m_n(pixel_clock, link_clock,
5540                     &m_n->link_m, &m_n->link_n);
5541 }
5542
5543 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5544 {
5545         if (i915.panel_use_ssc >= 0)
5546                 return i915.panel_use_ssc != 0;
5547         return dev_priv->vbt.lvds_use_ssc
5548                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5549 }
5550
5551 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5552 {
5553         struct drm_device *dev = crtc->dev;
5554         struct drm_i915_private *dev_priv = dev->dev_private;
5555         int refclk;
5556
5557         if (IS_VALLEYVIEW(dev)) {
5558                 refclk = 100000;
5559         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5560             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5561                 refclk = dev_priv->vbt.lvds_ssc_freq;
5562                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5563         } else if (!IS_GEN2(dev)) {
5564                 refclk = 96000;
5565         } else {
5566                 refclk = 48000;
5567         }
5568
5569         return refclk;
5570 }
5571
5572 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5573 {
5574         return (1 << dpll->n) << 16 | dpll->m2;
5575 }
5576
5577 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5578 {
5579         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5580 }
5581
5582 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5583                                      intel_clock_t *reduced_clock)
5584 {
5585         struct drm_device *dev = crtc->base.dev;
5586         u32 fp, fp2 = 0;
5587
5588         if (IS_PINEVIEW(dev)) {
5589                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5590                 if (reduced_clock)
5591                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5592         } else {
5593                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5594                 if (reduced_clock)
5595                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5596         }
5597
5598         crtc->config.dpll_hw_state.fp0 = fp;
5599
5600         crtc->lowfreq_avail = false;
5601         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5602             reduced_clock && i915.powersave) {
5603                 crtc->config.dpll_hw_state.fp1 = fp2;
5604                 crtc->lowfreq_avail = true;
5605         } else {
5606                 crtc->config.dpll_hw_state.fp1 = fp;
5607         }
5608 }
5609
5610 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5611                 pipe)
5612 {
5613         u32 reg_val;
5614
5615         /*
5616          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5617          * and set it to a reasonable value instead.
5618          */
5619         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5620         reg_val &= 0xffffff00;
5621         reg_val |= 0x00000030;
5622         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5623
5624         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5625         reg_val &= 0x8cffffff;
5626         reg_val = 0x8c000000;
5627         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5628
5629         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5630         reg_val &= 0xffffff00;
5631         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5632
5633         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5634         reg_val &= 0x00ffffff;
5635         reg_val |= 0xb0000000;
5636         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5637 }
5638
5639 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5640                                          struct intel_link_m_n *m_n)
5641 {
5642         struct drm_device *dev = crtc->base.dev;
5643         struct drm_i915_private *dev_priv = dev->dev_private;
5644         int pipe = crtc->pipe;
5645
5646         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5647         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5648         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5649         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5650 }
5651
5652 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5653                                          struct intel_link_m_n *m_n,
5654                                          struct intel_link_m_n *m2_n2)
5655 {
5656         struct drm_device *dev = crtc->base.dev;
5657         struct drm_i915_private *dev_priv = dev->dev_private;
5658         int pipe = crtc->pipe;
5659         enum transcoder transcoder = crtc->config.cpu_transcoder;
5660
5661         if (INTEL_INFO(dev)->gen >= 5) {
5662                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5663                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5664                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5665                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5666                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5667                  * for gen < 8) and if DRRS is supported (to make sure the
5668                  * registers are not unnecessarily accessed).
5669                  */
5670                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5671                         crtc->config.has_drrs) {
5672                         I915_WRITE(PIPE_DATA_M2(transcoder),
5673                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5674                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5675                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5676                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5677                 }
5678         } else {
5679                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5680                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5681                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5682                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5683         }
5684 }
5685
5686 void intel_dp_set_m_n(struct intel_crtc *crtc)
5687 {
5688         if (crtc->config.has_pch_encoder)
5689                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5690         else
5691                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5692                                                    &crtc->config.dp_m2_n2);
5693 }
5694
5695 static void vlv_update_pll(struct intel_crtc *crtc)
5696 {
5697         u32 dpll, dpll_md;
5698
5699         /*
5700          * Enable DPIO clock input. We should never disable the reference
5701          * clock for pipe B, since VGA hotplug / manual detection depends
5702          * on it.
5703          */
5704         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5705                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5706         /* We should never disable this, set it here for state tracking */
5707         if (crtc->pipe == PIPE_B)
5708                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5709         dpll |= DPLL_VCO_ENABLE;
5710         crtc->config.dpll_hw_state.dpll = dpll;
5711
5712         dpll_md = (crtc->config.pixel_multiplier - 1)
5713                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5714         crtc->config.dpll_hw_state.dpll_md = dpll_md;
5715 }
5716
5717 static void vlv_prepare_pll(struct intel_crtc *crtc)
5718 {
5719         struct drm_device *dev = crtc->base.dev;
5720         struct drm_i915_private *dev_priv = dev->dev_private;
5721         int pipe = crtc->pipe;
5722         u32 mdiv;
5723         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5724         u32 coreclk, reg_val;
5725
5726         mutex_lock(&dev_priv->dpio_lock);
5727
5728         bestn = crtc->config.dpll.n;
5729         bestm1 = crtc->config.dpll.m1;
5730         bestm2 = crtc->config.dpll.m2;
5731         bestp1 = crtc->config.dpll.p1;
5732         bestp2 = crtc->config.dpll.p2;
5733
5734         /* See eDP HDMI DPIO driver vbios notes doc */
5735
5736         /* PLL B needs special handling */
5737         if (pipe == PIPE_B)
5738                 vlv_pllb_recal_opamp(dev_priv, pipe);
5739
5740         /* Set up Tx target for periodic Rcomp update */
5741         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5742
5743         /* Disable target IRef on PLL */
5744         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5745         reg_val &= 0x00ffffff;
5746         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5747
5748         /* Disable fast lock */
5749         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5750
5751         /* Set idtafcrecal before PLL is enabled */
5752         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5753         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5754         mdiv |= ((bestn << DPIO_N_SHIFT));
5755         mdiv |= (1 << DPIO_K_SHIFT);
5756
5757         /*
5758          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5759          * but we don't support that).
5760          * Note: don't use the DAC post divider as it seems unstable.
5761          */
5762         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5763         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5764
5765         mdiv |= DPIO_ENABLE_CALIBRATION;
5766         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5767
5768         /* Set HBR and RBR LPF coefficients */
5769         if (crtc->config.port_clock == 162000 ||
5770             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5771             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5772                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5773                                  0x009f0003);
5774         else
5775                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5776                                  0x00d0000f);
5777
5778         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5779             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5780                 /* Use SSC source */
5781                 if (pipe == PIPE_A)
5782                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5783                                          0x0df40000);
5784                 else
5785                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5786                                          0x0df70000);
5787         } else { /* HDMI or VGA */
5788                 /* Use bend source */
5789                 if (pipe == PIPE_A)
5790                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5791                                          0x0df70000);
5792                 else
5793                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5794                                          0x0df40000);
5795         }
5796
5797         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5798         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5799         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5800             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5801                 coreclk |= 0x01000000;
5802         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5803
5804         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5805         mutex_unlock(&dev_priv->dpio_lock);
5806 }
5807
5808 static void chv_update_pll(struct intel_crtc *crtc)
5809 {
5810         crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5811                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5812                 DPLL_VCO_ENABLE;
5813         if (crtc->pipe != PIPE_A)
5814                 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5815
5816         crtc->config.dpll_hw_state.dpll_md =
5817                 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5818 }
5819
5820 static void chv_prepare_pll(struct intel_crtc *crtc)
5821 {
5822         struct drm_device *dev = crtc->base.dev;
5823         struct drm_i915_private *dev_priv = dev->dev_private;
5824         int pipe = crtc->pipe;
5825         int dpll_reg = DPLL(crtc->pipe);
5826         enum dpio_channel port = vlv_pipe_to_channel(pipe);
5827         u32 loopfilter, intcoeff;
5828         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5829         int refclk;
5830
5831         bestn = crtc->config.dpll.n;
5832         bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5833         bestm1 = crtc->config.dpll.m1;
5834         bestm2 = crtc->config.dpll.m2 >> 22;
5835         bestp1 = crtc->config.dpll.p1;
5836         bestp2 = crtc->config.dpll.p2;
5837
5838         /*
5839          * Enable Refclk and SSC
5840          */
5841         I915_WRITE(dpll_reg,
5842                    crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5843
5844         mutex_lock(&dev_priv->dpio_lock);
5845
5846         /* p1 and p2 divider */
5847         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5848                         5 << DPIO_CHV_S1_DIV_SHIFT |
5849                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5850                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5851                         1 << DPIO_CHV_K_DIV_SHIFT);
5852
5853         /* Feedback post-divider - m2 */
5854         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5855
5856         /* Feedback refclk divider - n and m1 */
5857         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5858                         DPIO_CHV_M1_DIV_BY_2 |
5859                         1 << DPIO_CHV_N_DIV_SHIFT);
5860
5861         /* M2 fraction division */
5862         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5863
5864         /* M2 fraction division enable */
5865         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5866                        DPIO_CHV_FRAC_DIV_EN |
5867                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5868
5869         /* Loop filter */
5870         refclk = i9xx_get_refclk(&crtc->base, 0);
5871         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5872                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5873         if (refclk == 100000)
5874                 intcoeff = 11;
5875         else if (refclk == 38400)
5876                 intcoeff = 10;
5877         else
5878                 intcoeff = 9;
5879         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5880         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5881
5882         /* AFC Recal */
5883         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5884                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5885                         DPIO_AFC_RECAL);
5886
5887         mutex_unlock(&dev_priv->dpio_lock);
5888 }
5889
5890 static void i9xx_update_pll(struct intel_crtc *crtc,
5891                             intel_clock_t *reduced_clock,
5892                             int num_connectors)
5893 {
5894         struct drm_device *dev = crtc->base.dev;
5895         struct drm_i915_private *dev_priv = dev->dev_private;
5896         u32 dpll;
5897         bool is_sdvo;
5898         struct dpll *clock = &crtc->config.dpll;
5899
5900         i9xx_update_pll_dividers(crtc, reduced_clock);
5901
5902         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5903                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5904
5905         dpll = DPLL_VGA_MODE_DIS;
5906
5907         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5908                 dpll |= DPLLB_MODE_LVDS;
5909         else
5910                 dpll |= DPLLB_MODE_DAC_SERIAL;
5911
5912         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5913                 dpll |= (crtc->config.pixel_multiplier - 1)
5914                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5915         }
5916
5917         if (is_sdvo)
5918                 dpll |= DPLL_SDVO_HIGH_SPEED;
5919
5920         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5921                 dpll |= DPLL_SDVO_HIGH_SPEED;
5922
5923         /* compute bitmask from p1 value */
5924         if (IS_PINEVIEW(dev))
5925                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5926         else {
5927                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5928                 if (IS_G4X(dev) && reduced_clock)
5929                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5930         }
5931         switch (clock->p2) {
5932         case 5:
5933                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5934                 break;
5935         case 7:
5936                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5937                 break;
5938         case 10:
5939                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5940                 break;
5941         case 14:
5942                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5943                 break;
5944         }
5945         if (INTEL_INFO(dev)->gen >= 4)
5946                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5947
5948         if (crtc->config.sdvo_tv_clock)
5949                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5950         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5951                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5952                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5953         else
5954                 dpll |= PLL_REF_INPUT_DREFCLK;
5955
5956         dpll |= DPLL_VCO_ENABLE;
5957         crtc->config.dpll_hw_state.dpll = dpll;
5958
5959         if (INTEL_INFO(dev)->gen >= 4) {
5960                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5961                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5962                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5963         }
5964 }
5965
5966 static void i8xx_update_pll(struct intel_crtc *crtc,
5967                             intel_clock_t *reduced_clock,
5968                             int num_connectors)
5969 {
5970         struct drm_device *dev = crtc->base.dev;
5971         struct drm_i915_private *dev_priv = dev->dev_private;
5972         u32 dpll;
5973         struct dpll *clock = &crtc->config.dpll;
5974
5975         i9xx_update_pll_dividers(crtc, reduced_clock);
5976
5977         dpll = DPLL_VGA_MODE_DIS;
5978
5979         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5980                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5981         } else {
5982                 if (clock->p1 == 2)
5983                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5984                 else
5985                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5986                 if (clock->p2 == 4)
5987                         dpll |= PLL_P2_DIVIDE_BY_4;
5988         }
5989
5990         if (!IS_I830(dev) && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5991                 dpll |= DPLL_DVO_2X_MODE;
5992
5993         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5994                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5995                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5996         else
5997                 dpll |= PLL_REF_INPUT_DREFCLK;
5998
5999         dpll |= DPLL_VCO_ENABLE;
6000         crtc->config.dpll_hw_state.dpll = dpll;
6001 }
6002
6003 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6004 {
6005         struct drm_device *dev = intel_crtc->base.dev;
6006         struct drm_i915_private *dev_priv = dev->dev_private;
6007         enum pipe pipe = intel_crtc->pipe;
6008         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6009         struct drm_display_mode *adjusted_mode =
6010                 &intel_crtc->config.adjusted_mode;
6011         uint32_t crtc_vtotal, crtc_vblank_end;
6012         int vsyncshift = 0;
6013
6014         /* We need to be careful not to changed the adjusted mode, for otherwise
6015          * the hw state checker will get angry at the mismatch. */
6016         crtc_vtotal = adjusted_mode->crtc_vtotal;
6017         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6018
6019         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6020                 /* the chip adds 2 halflines automatically */
6021                 crtc_vtotal -= 1;
6022                 crtc_vblank_end -= 1;
6023
6024                 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6025                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6026                 else
6027                         vsyncshift = adjusted_mode->crtc_hsync_start -
6028                                 adjusted_mode->crtc_htotal / 2;
6029                 if (vsyncshift < 0)
6030                         vsyncshift += adjusted_mode->crtc_htotal;
6031         }
6032
6033         if (INTEL_INFO(dev)->gen > 3)
6034                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6035
6036         I915_WRITE(HTOTAL(cpu_transcoder),
6037                    (adjusted_mode->crtc_hdisplay - 1) |
6038                    ((adjusted_mode->crtc_htotal - 1) << 16));
6039         I915_WRITE(HBLANK(cpu_transcoder),
6040                    (adjusted_mode->crtc_hblank_start - 1) |
6041                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6042         I915_WRITE(HSYNC(cpu_transcoder),
6043                    (adjusted_mode->crtc_hsync_start - 1) |
6044                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6045
6046         I915_WRITE(VTOTAL(cpu_transcoder),
6047                    (adjusted_mode->crtc_vdisplay - 1) |
6048                    ((crtc_vtotal - 1) << 16));
6049         I915_WRITE(VBLANK(cpu_transcoder),
6050                    (adjusted_mode->crtc_vblank_start - 1) |
6051                    ((crtc_vblank_end - 1) << 16));
6052         I915_WRITE(VSYNC(cpu_transcoder),
6053                    (adjusted_mode->crtc_vsync_start - 1) |
6054                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6055
6056         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6057          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6058          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6059          * bits. */
6060         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6061             (pipe == PIPE_B || pipe == PIPE_C))
6062                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6063
6064         /* pipesrc controls the size that is scaled from, which should
6065          * always be the user's requested size.
6066          */
6067         I915_WRITE(PIPESRC(pipe),
6068                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
6069                    (intel_crtc->config.pipe_src_h - 1));
6070 }
6071
6072 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6073                                    struct intel_crtc_config *pipe_config)
6074 {
6075         struct drm_device *dev = crtc->base.dev;
6076         struct drm_i915_private *dev_priv = dev->dev_private;
6077         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6078         uint32_t tmp;
6079
6080         tmp = I915_READ(HTOTAL(cpu_transcoder));
6081         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6082         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6083         tmp = I915_READ(HBLANK(cpu_transcoder));
6084         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6085         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6086         tmp = I915_READ(HSYNC(cpu_transcoder));
6087         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6088         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6089
6090         tmp = I915_READ(VTOTAL(cpu_transcoder));
6091         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6092         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6093         tmp = I915_READ(VBLANK(cpu_transcoder));
6094         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6095         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6096         tmp = I915_READ(VSYNC(cpu_transcoder));
6097         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6098         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6099
6100         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6101                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6102                 pipe_config->adjusted_mode.crtc_vtotal += 1;
6103                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6104         }
6105
6106         tmp = I915_READ(PIPESRC(crtc->pipe));
6107         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6108         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6109
6110         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6111         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
6112 }
6113
6114 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6115                                  struct intel_crtc_config *pipe_config)
6116 {
6117         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6118         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6119         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6120         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
6121
6122         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6123         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6124         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6125         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
6126
6127         mode->flags = pipe_config->adjusted_mode.flags;
6128
6129         mode->clock = pipe_config->adjusted_mode.crtc_clock;
6130         mode->flags |= pipe_config->adjusted_mode.flags;
6131 }
6132
6133 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6134 {
6135         struct drm_device *dev = intel_crtc->base.dev;
6136         struct drm_i915_private *dev_priv = dev->dev_private;
6137         uint32_t pipeconf;
6138
6139         pipeconf = 0;
6140
6141         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6142             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6143                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6144
6145         if (intel_crtc->config.double_wide)
6146                 pipeconf |= PIPECONF_DOUBLE_WIDE;
6147
6148         /* only g4x and later have fancy bpc/dither controls */
6149         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6150                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6151                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6152                         pipeconf |= PIPECONF_DITHER_EN |
6153                                     PIPECONF_DITHER_TYPE_SP;
6154
6155                 switch (intel_crtc->config.pipe_bpp) {
6156                 case 18:
6157                         pipeconf |= PIPECONF_6BPC;
6158                         break;
6159                 case 24:
6160                         pipeconf |= PIPECONF_8BPC;
6161                         break;
6162                 case 30:
6163                         pipeconf |= PIPECONF_10BPC;
6164                         break;
6165                 default:
6166                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6167                         BUG();
6168                 }
6169         }
6170
6171         if (HAS_PIPE_CXSR(dev)) {
6172                 if (intel_crtc->lowfreq_avail) {
6173                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6174                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6175                 } else {
6176                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6177                 }
6178         }
6179
6180         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6181                 if (INTEL_INFO(dev)->gen < 4 ||
6182                     intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6183                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6184                 else
6185                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6186         } else
6187                 pipeconf |= PIPECONF_PROGRESSIVE;
6188
6189         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6190                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6191
6192         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6193         POSTING_READ(PIPECONF(intel_crtc->pipe));
6194 }
6195
6196 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
6197                               int x, int y,
6198                               struct drm_framebuffer *fb)
6199 {
6200         struct drm_device *dev = crtc->dev;
6201         struct drm_i915_private *dev_priv = dev->dev_private;
6202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6203         int refclk, num_connectors = 0;
6204         intel_clock_t clock, reduced_clock;
6205         bool ok, has_reduced_clock = false;
6206         bool is_lvds = false, is_dsi = false;
6207         struct intel_encoder *encoder;
6208         const intel_limit_t *limit;
6209
6210         for_each_encoder_on_crtc(dev, crtc, encoder) {
6211                 switch (encoder->type) {
6212                 case INTEL_OUTPUT_LVDS:
6213                         is_lvds = true;
6214                         break;
6215                 case INTEL_OUTPUT_DSI:
6216                         is_dsi = true;
6217                         break;
6218                 }
6219
6220                 num_connectors++;
6221         }
6222
6223         if (is_dsi)
6224                 return 0;
6225
6226         if (!intel_crtc->config.clock_set) {
6227                 refclk = i9xx_get_refclk(crtc, num_connectors);
6228
6229                 /*
6230                  * Returns a set of divisors for the desired target clock with
6231                  * the given refclk, or FALSE.  The returned values represent
6232                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6233                  * 2) / p1 / p2.
6234                  */
6235                 limit = intel_limit(crtc, refclk);
6236                 ok = dev_priv->display.find_dpll(limit, crtc,
6237                                                  intel_crtc->config.port_clock,
6238                                                  refclk, NULL, &clock);
6239                 if (!ok) {
6240                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6241                         return -EINVAL;
6242                 }
6243
6244                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6245                         /*
6246                          * Ensure we match the reduced clock's P to the target
6247                          * clock.  If the clocks don't match, we can't switch
6248                          * the display clock by using the FP0/FP1. In such case
6249                          * we will disable the LVDS downclock feature.
6250                          */
6251                         has_reduced_clock =
6252                                 dev_priv->display.find_dpll(limit, crtc,
6253                                                             dev_priv->lvds_downclock,
6254                                                             refclk, &clock,
6255                                                             &reduced_clock);
6256                 }
6257                 /* Compat-code for transition, will disappear. */
6258                 intel_crtc->config.dpll.n = clock.n;
6259                 intel_crtc->config.dpll.m1 = clock.m1;
6260                 intel_crtc->config.dpll.m2 = clock.m2;
6261                 intel_crtc->config.dpll.p1 = clock.p1;
6262                 intel_crtc->config.dpll.p2 = clock.p2;
6263         }
6264
6265         if (IS_GEN2(dev)) {
6266                 i8xx_update_pll(intel_crtc,
6267                                 has_reduced_clock ? &reduced_clock : NULL,
6268                                 num_connectors);
6269         } else if (IS_CHERRYVIEW(dev)) {
6270                 chv_update_pll(intel_crtc);
6271         } else if (IS_VALLEYVIEW(dev)) {
6272                 vlv_update_pll(intel_crtc);
6273         } else {
6274                 i9xx_update_pll(intel_crtc,
6275                                 has_reduced_clock ? &reduced_clock : NULL,
6276                                 num_connectors);
6277         }
6278
6279         return 0;
6280 }
6281
6282 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6283                                  struct intel_crtc_config *pipe_config)
6284 {
6285         struct drm_device *dev = crtc->base.dev;
6286         struct drm_i915_private *dev_priv = dev->dev_private;
6287         uint32_t tmp;
6288
6289         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6290                 return;
6291
6292         tmp = I915_READ(PFIT_CONTROL);
6293         if (!(tmp & PFIT_ENABLE))
6294                 return;
6295
6296         /* Check whether the pfit is attached to our pipe. */
6297         if (INTEL_INFO(dev)->gen < 4) {
6298                 if (crtc->pipe != PIPE_B)
6299                         return;
6300         } else {
6301                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6302                         return;
6303         }
6304
6305         pipe_config->gmch_pfit.control = tmp;
6306         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6307         if (INTEL_INFO(dev)->gen < 5)
6308                 pipe_config->gmch_pfit.lvds_border_bits =
6309                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6310 }
6311
6312 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6313                                struct intel_crtc_config *pipe_config)
6314 {
6315         struct drm_device *dev = crtc->base.dev;
6316         struct drm_i915_private *dev_priv = dev->dev_private;
6317         int pipe = pipe_config->cpu_transcoder;
6318         intel_clock_t clock;
6319         u32 mdiv;
6320         int refclk = 100000;
6321
6322         /* In case of MIPI DPLL will not even be used */
6323         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6324                 return;
6325
6326         mutex_lock(&dev_priv->dpio_lock);
6327         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6328         mutex_unlock(&dev_priv->dpio_lock);
6329
6330         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6331         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6332         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6333         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6334         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6335
6336         vlv_clock(refclk, &clock);
6337
6338         /* clock.dot is the fast clock */
6339         pipe_config->port_clock = clock.dot / 5;
6340 }
6341
6342 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6343                                   struct intel_plane_config *plane_config)
6344 {
6345         struct drm_device *dev = crtc->base.dev;
6346         struct drm_i915_private *dev_priv = dev->dev_private;
6347         u32 val, base, offset;
6348         int pipe = crtc->pipe, plane = crtc->plane;
6349         int fourcc, pixel_format;
6350         int aligned_height;
6351
6352         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6353         if (!crtc->base.primary->fb) {
6354                 DRM_DEBUG_KMS("failed to alloc fb\n");
6355                 return;
6356         }
6357
6358         val = I915_READ(DSPCNTR(plane));
6359
6360         if (INTEL_INFO(dev)->gen >= 4)
6361                 if (val & DISPPLANE_TILED)
6362                         plane_config->tiled = true;
6363
6364         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6365         fourcc = intel_format_to_fourcc(pixel_format);
6366         crtc->base.primary->fb->pixel_format = fourcc;
6367         crtc->base.primary->fb->bits_per_pixel =
6368                 drm_format_plane_cpp(fourcc, 0) * 8;
6369
6370         if (INTEL_INFO(dev)->gen >= 4) {
6371                 if (plane_config->tiled)
6372                         offset = I915_READ(DSPTILEOFF(plane));
6373                 else
6374                         offset = I915_READ(DSPLINOFF(plane));
6375                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6376         } else {
6377                 base = I915_READ(DSPADDR(plane));
6378         }
6379         plane_config->base = base;
6380
6381         val = I915_READ(PIPESRC(pipe));
6382         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6383         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6384
6385         val = I915_READ(DSPSTRIDE(pipe));
6386         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6387
6388         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6389                                             plane_config->tiled);
6390
6391         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6392                                         aligned_height);
6393
6394         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6395                       pipe, plane, crtc->base.primary->fb->width,
6396                       crtc->base.primary->fb->height,
6397                       crtc->base.primary->fb->bits_per_pixel, base,
6398                       crtc->base.primary->fb->pitches[0],
6399                       plane_config->size);
6400
6401 }
6402
6403 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6404                                struct intel_crtc_config *pipe_config)
6405 {
6406         struct drm_device *dev = crtc->base.dev;
6407         struct drm_i915_private *dev_priv = dev->dev_private;
6408         int pipe = pipe_config->cpu_transcoder;
6409         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6410         intel_clock_t clock;
6411         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6412         int refclk = 100000;
6413
6414         mutex_lock(&dev_priv->dpio_lock);
6415         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6416         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6417         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6418         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6419         mutex_unlock(&dev_priv->dpio_lock);
6420
6421         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6422         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6423         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6424         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6425         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6426
6427         chv_clock(refclk, &clock);
6428
6429         /* clock.dot is the fast clock */
6430         pipe_config->port_clock = clock.dot / 5;
6431 }
6432
6433 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6434                                  struct intel_crtc_config *pipe_config)
6435 {
6436         struct drm_device *dev = crtc->base.dev;
6437         struct drm_i915_private *dev_priv = dev->dev_private;
6438         uint32_t tmp;
6439
6440         if (!intel_display_power_enabled(dev_priv,
6441                                          POWER_DOMAIN_PIPE(crtc->pipe)))
6442                 return false;
6443
6444         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6445         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6446
6447         tmp = I915_READ(PIPECONF(crtc->pipe));
6448         if (!(tmp & PIPECONF_ENABLE))
6449                 return false;
6450
6451         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6452                 switch (tmp & PIPECONF_BPC_MASK) {
6453                 case PIPECONF_6BPC:
6454                         pipe_config->pipe_bpp = 18;
6455                         break;
6456                 case PIPECONF_8BPC:
6457                         pipe_config->pipe_bpp = 24;
6458                         break;
6459                 case PIPECONF_10BPC:
6460                         pipe_config->pipe_bpp = 30;
6461                         break;
6462                 default:
6463                         break;
6464                 }
6465         }
6466
6467         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6468                 pipe_config->limited_color_range = true;
6469
6470         if (INTEL_INFO(dev)->gen < 4)
6471                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6472
6473         intel_get_pipe_timings(crtc, pipe_config);
6474
6475         i9xx_get_pfit_config(crtc, pipe_config);
6476
6477         if (INTEL_INFO(dev)->gen >= 4) {
6478                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6479                 pipe_config->pixel_multiplier =
6480                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6481                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6482                 pipe_config->dpll_hw_state.dpll_md = tmp;
6483         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6484                 tmp = I915_READ(DPLL(crtc->pipe));
6485                 pipe_config->pixel_multiplier =
6486                         ((tmp & SDVO_MULTIPLIER_MASK)
6487                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6488         } else {
6489                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6490                  * port and will be fixed up in the encoder->get_config
6491                  * function. */
6492                 pipe_config->pixel_multiplier = 1;
6493         }
6494         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6495         if (!IS_VALLEYVIEW(dev)) {
6496                 /*
6497                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6498                  * on 830. Filter it out here so that we don't
6499                  * report errors due to that.
6500                  */
6501                 if (IS_I830(dev))
6502                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6503
6504                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6505                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6506         } else {
6507                 /* Mask out read-only status bits. */
6508                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6509                                                      DPLL_PORTC_READY_MASK |
6510                                                      DPLL_PORTB_READY_MASK);
6511         }
6512
6513         if (IS_CHERRYVIEW(dev))
6514                 chv_crtc_clock_get(crtc, pipe_config);
6515         else if (IS_VALLEYVIEW(dev))
6516                 vlv_crtc_clock_get(crtc, pipe_config);
6517         else
6518                 i9xx_crtc_clock_get(crtc, pipe_config);
6519
6520         return true;
6521 }
6522
6523 static void ironlake_init_pch_refclk(struct drm_device *dev)
6524 {
6525         struct drm_i915_private *dev_priv = dev->dev_private;
6526         struct intel_encoder *encoder;
6527         u32 val, final;
6528         bool has_lvds = false;
6529         bool has_cpu_edp = false;
6530         bool has_panel = false;
6531         bool has_ck505 = false;
6532         bool can_ssc = false;
6533
6534         /* We need to take the global config into account */
6535         for_each_intel_encoder(dev, encoder) {
6536                 switch (encoder->type) {
6537                 case INTEL_OUTPUT_LVDS:
6538                         has_panel = true;
6539                         has_lvds = true;
6540                         break;
6541                 case INTEL_OUTPUT_EDP:
6542                         has_panel = true;
6543                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6544                                 has_cpu_edp = true;
6545                         break;
6546                 }
6547         }
6548
6549         if (HAS_PCH_IBX(dev)) {
6550                 has_ck505 = dev_priv->vbt.display_clock_mode;
6551                 can_ssc = has_ck505;
6552         } else {
6553                 has_ck505 = false;
6554                 can_ssc = true;
6555         }
6556
6557         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6558                       has_panel, has_lvds, has_ck505);
6559
6560         /* Ironlake: try to setup display ref clock before DPLL
6561          * enabling. This is only under driver's control after
6562          * PCH B stepping, previous chipset stepping should be
6563          * ignoring this setting.
6564          */
6565         val = I915_READ(PCH_DREF_CONTROL);
6566
6567         /* As we must carefully and slowly disable/enable each source in turn,
6568          * compute the final state we want first and check if we need to
6569          * make any changes at all.
6570          */
6571         final = val;
6572         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6573         if (has_ck505)
6574                 final |= DREF_NONSPREAD_CK505_ENABLE;
6575         else
6576                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6577
6578         final &= ~DREF_SSC_SOURCE_MASK;
6579         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6580         final &= ~DREF_SSC1_ENABLE;
6581
6582         if (has_panel) {
6583                 final |= DREF_SSC_SOURCE_ENABLE;
6584
6585                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6586                         final |= DREF_SSC1_ENABLE;
6587
6588                 if (has_cpu_edp) {
6589                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6590                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6591                         else
6592                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6593                 } else
6594                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6595         } else {
6596                 final |= DREF_SSC_SOURCE_DISABLE;
6597                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6598         }
6599
6600         if (final == val)
6601                 return;
6602
6603         /* Always enable nonspread source */
6604         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6605
6606         if (has_ck505)
6607                 val |= DREF_NONSPREAD_CK505_ENABLE;
6608         else
6609                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6610
6611         if (has_panel) {
6612                 val &= ~DREF_SSC_SOURCE_MASK;
6613                 val |= DREF_SSC_SOURCE_ENABLE;
6614
6615                 /* SSC must be turned on before enabling the CPU output  */
6616                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6617                         DRM_DEBUG_KMS("Using SSC on panel\n");
6618                         val |= DREF_SSC1_ENABLE;
6619                 } else
6620                         val &= ~DREF_SSC1_ENABLE;
6621
6622                 /* Get SSC going before enabling the outputs */
6623                 I915_WRITE(PCH_DREF_CONTROL, val);
6624                 POSTING_READ(PCH_DREF_CONTROL);
6625                 udelay(200);
6626
6627                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6628
6629                 /* Enable CPU source on CPU attached eDP */
6630                 if (has_cpu_edp) {
6631                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6632                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6633                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6634                         } else
6635                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6636                 } else
6637                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6638
6639                 I915_WRITE(PCH_DREF_CONTROL, val);
6640                 POSTING_READ(PCH_DREF_CONTROL);
6641                 udelay(200);
6642         } else {
6643                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6644
6645                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6646
6647                 /* Turn off CPU output */
6648                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6649
6650                 I915_WRITE(PCH_DREF_CONTROL, val);
6651                 POSTING_READ(PCH_DREF_CONTROL);
6652                 udelay(200);
6653
6654                 /* Turn off the SSC source */
6655                 val &= ~DREF_SSC_SOURCE_MASK;
6656                 val |= DREF_SSC_SOURCE_DISABLE;
6657
6658                 /* Turn off SSC1 */
6659                 val &= ~DREF_SSC1_ENABLE;
6660
6661                 I915_WRITE(PCH_DREF_CONTROL, val);
6662                 POSTING_READ(PCH_DREF_CONTROL);
6663                 udelay(200);
6664         }
6665
6666         BUG_ON(val != final);
6667 }
6668
6669 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6670 {
6671         uint32_t tmp;
6672
6673         tmp = I915_READ(SOUTH_CHICKEN2);
6674         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6675         I915_WRITE(SOUTH_CHICKEN2, tmp);
6676
6677         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6678                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6679                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6680
6681         tmp = I915_READ(SOUTH_CHICKEN2);
6682         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6683         I915_WRITE(SOUTH_CHICKEN2, tmp);
6684
6685         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6686                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6687                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6688 }
6689
6690 /* WaMPhyProgramming:hsw */
6691 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6692 {
6693         uint32_t tmp;
6694
6695         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6696         tmp &= ~(0xFF << 24);
6697         tmp |= (0x12 << 24);
6698         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6699
6700         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6701         tmp |= (1 << 11);
6702         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6703
6704         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6705         tmp |= (1 << 11);
6706         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6707
6708         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6709         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6710         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6711
6712         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6713         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6714         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6715
6716         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6717         tmp &= ~(7 << 13);
6718         tmp |= (5 << 13);
6719         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6720
6721         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6722         tmp &= ~(7 << 13);
6723         tmp |= (5 << 13);
6724         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6725
6726         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6727         tmp &= ~0xFF;
6728         tmp |= 0x1C;
6729         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6730
6731         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6732         tmp &= ~0xFF;
6733         tmp |= 0x1C;
6734         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6735
6736         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6737         tmp &= ~(0xFF << 16);
6738         tmp |= (0x1C << 16);
6739         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6740
6741         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6742         tmp &= ~(0xFF << 16);
6743         tmp |= (0x1C << 16);
6744         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6745
6746         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6747         tmp |= (1 << 27);
6748         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6749
6750         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6751         tmp |= (1 << 27);
6752         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6753
6754         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6755         tmp &= ~(0xF << 28);
6756         tmp |= (4 << 28);
6757         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6758
6759         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6760         tmp &= ~(0xF << 28);
6761         tmp |= (4 << 28);
6762         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6763 }
6764
6765 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6766  * Programming" based on the parameters passed:
6767  * - Sequence to enable CLKOUT_DP
6768  * - Sequence to enable CLKOUT_DP without spread
6769  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6770  */
6771 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6772                                  bool with_fdi)
6773 {
6774         struct drm_i915_private *dev_priv = dev->dev_private;
6775         uint32_t reg, tmp;
6776
6777         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6778                 with_spread = true;
6779         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6780                  with_fdi, "LP PCH doesn't have FDI\n"))
6781                 with_fdi = false;
6782
6783         mutex_lock(&dev_priv->dpio_lock);
6784
6785         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6786         tmp &= ~SBI_SSCCTL_DISABLE;
6787         tmp |= SBI_SSCCTL_PATHALT;
6788         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6789
6790         udelay(24);
6791
6792         if (with_spread) {
6793                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6794                 tmp &= ~SBI_SSCCTL_PATHALT;
6795                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6796
6797                 if (with_fdi) {
6798                         lpt_reset_fdi_mphy(dev_priv);
6799                         lpt_program_fdi_mphy(dev_priv);
6800                 }
6801         }
6802
6803         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6804                SBI_GEN0 : SBI_DBUFF0;
6805         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6806         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6807         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6808
6809         mutex_unlock(&dev_priv->dpio_lock);
6810 }
6811
6812 /* Sequence to disable CLKOUT_DP */
6813 static void lpt_disable_clkout_dp(struct drm_device *dev)
6814 {
6815         struct drm_i915_private *dev_priv = dev->dev_private;
6816         uint32_t reg, tmp;
6817
6818         mutex_lock(&dev_priv->dpio_lock);
6819
6820         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6821                SBI_GEN0 : SBI_DBUFF0;
6822         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6823         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6824         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6825
6826         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6827         if (!(tmp & SBI_SSCCTL_DISABLE)) {
6828                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6829                         tmp |= SBI_SSCCTL_PATHALT;
6830                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6831                         udelay(32);
6832                 }
6833                 tmp |= SBI_SSCCTL_DISABLE;
6834                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6835         }
6836
6837         mutex_unlock(&dev_priv->dpio_lock);
6838 }
6839
6840 static void lpt_init_pch_refclk(struct drm_device *dev)
6841 {
6842         struct intel_encoder *encoder;
6843         bool has_vga = false;
6844
6845         for_each_intel_encoder(dev, encoder) {
6846                 switch (encoder->type) {
6847                 case INTEL_OUTPUT_ANALOG:
6848                         has_vga = true;
6849                         break;
6850                 }
6851         }
6852
6853         if (has_vga)
6854                 lpt_enable_clkout_dp(dev, true, true);
6855         else
6856                 lpt_disable_clkout_dp(dev);
6857 }
6858
6859 /*
6860  * Initialize reference clocks when the driver loads
6861  */
6862 void intel_init_pch_refclk(struct drm_device *dev)
6863 {
6864         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6865                 ironlake_init_pch_refclk(dev);
6866         else if (HAS_PCH_LPT(dev))
6867                 lpt_init_pch_refclk(dev);
6868 }
6869
6870 static int ironlake_get_refclk(struct drm_crtc *crtc)
6871 {
6872         struct drm_device *dev = crtc->dev;
6873         struct drm_i915_private *dev_priv = dev->dev_private;
6874         struct intel_encoder *encoder;
6875         int num_connectors = 0;
6876         bool is_lvds = false;
6877
6878         for_each_encoder_on_crtc(dev, crtc, encoder) {
6879                 switch (encoder->type) {
6880                 case INTEL_OUTPUT_LVDS:
6881                         is_lvds = true;
6882                         break;
6883                 }
6884                 num_connectors++;
6885         }
6886
6887         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6888                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6889                               dev_priv->vbt.lvds_ssc_freq);
6890                 return dev_priv->vbt.lvds_ssc_freq;
6891         }
6892
6893         return 120000;
6894 }
6895
6896 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6897 {
6898         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6899         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6900         int pipe = intel_crtc->pipe;
6901         uint32_t val;
6902
6903         val = 0;
6904
6905         switch (intel_crtc->config.pipe_bpp) {
6906         case 18:
6907                 val |= PIPECONF_6BPC;
6908                 break;
6909         case 24:
6910                 val |= PIPECONF_8BPC;
6911                 break;
6912         case 30:
6913                 val |= PIPECONF_10BPC;
6914                 break;
6915         case 36:
6916                 val |= PIPECONF_12BPC;
6917                 break;
6918         default:
6919                 /* Case prevented by intel_choose_pipe_bpp_dither. */
6920                 BUG();
6921         }
6922
6923         if (intel_crtc->config.dither)
6924                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6925
6926         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6927                 val |= PIPECONF_INTERLACED_ILK;
6928         else
6929                 val |= PIPECONF_PROGRESSIVE;
6930
6931         if (intel_crtc->config.limited_color_range)
6932                 val |= PIPECONF_COLOR_RANGE_SELECT;
6933
6934         I915_WRITE(PIPECONF(pipe), val);
6935         POSTING_READ(PIPECONF(pipe));
6936 }
6937
6938 /*
6939  * Set up the pipe CSC unit.
6940  *
6941  * Currently only full range RGB to limited range RGB conversion
6942  * is supported, but eventually this should handle various
6943  * RGB<->YCbCr scenarios as well.
6944  */
6945 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6946 {
6947         struct drm_device *dev = crtc->dev;
6948         struct drm_i915_private *dev_priv = dev->dev_private;
6949         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6950         int pipe = intel_crtc->pipe;
6951         uint16_t coeff = 0x7800; /* 1.0 */
6952
6953         /*
6954          * TODO: Check what kind of values actually come out of the pipe
6955          * with these coeff/postoff values and adjust to get the best
6956          * accuracy. Perhaps we even need to take the bpc value into
6957          * consideration.
6958          */
6959
6960         if (intel_crtc->config.limited_color_range)
6961                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6962
6963         /*
6964          * GY/GU and RY/RU should be the other way around according
6965          * to BSpec, but reality doesn't agree. Just set them up in
6966          * a way that results in the correct picture.
6967          */
6968         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6969         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6970
6971         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6972         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6973
6974         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6975         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6976
6977         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6978         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6979         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6980
6981         if (INTEL_INFO(dev)->gen > 6) {
6982                 uint16_t postoff = 0;
6983
6984                 if (intel_crtc->config.limited_color_range)
6985                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
6986
6987                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6988                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6989                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6990
6991                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6992         } else {
6993                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6994
6995                 if (intel_crtc->config.limited_color_range)
6996                         mode |= CSC_BLACK_SCREEN_OFFSET;
6997
6998                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6999         }
7000 }
7001
7002 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7003 {
7004         struct drm_device *dev = crtc->dev;
7005         struct drm_i915_private *dev_priv = dev->dev_private;
7006         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7007         enum pipe pipe = intel_crtc->pipe;
7008         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7009         uint32_t val;
7010
7011         val = 0;
7012
7013         if (IS_HASWELL(dev) && intel_crtc->config.dither)
7014                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7015
7016         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7017                 val |= PIPECONF_INTERLACED_ILK;
7018         else
7019                 val |= PIPECONF_PROGRESSIVE;
7020
7021         I915_WRITE(PIPECONF(cpu_transcoder), val);
7022         POSTING_READ(PIPECONF(cpu_transcoder));
7023
7024         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7025         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7026
7027         if (IS_BROADWELL(dev)) {
7028                 val = 0;
7029
7030                 switch (intel_crtc->config.pipe_bpp) {
7031                 case 18:
7032                         val |= PIPEMISC_DITHER_6_BPC;
7033                         break;
7034                 case 24:
7035                         val |= PIPEMISC_DITHER_8_BPC;
7036                         break;
7037                 case 30:
7038                         val |= PIPEMISC_DITHER_10_BPC;
7039                         break;
7040                 case 36:
7041                         val |= PIPEMISC_DITHER_12_BPC;
7042                         break;
7043                 default:
7044                         /* Case prevented by pipe_config_set_bpp. */
7045                         BUG();
7046                 }
7047
7048                 if (intel_crtc->config.dither)
7049                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7050
7051                 I915_WRITE(PIPEMISC(pipe), val);
7052         }
7053 }
7054
7055 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7056                                     intel_clock_t *clock,
7057                                     bool *has_reduced_clock,
7058                                     intel_clock_t *reduced_clock)
7059 {
7060         struct drm_device *dev = crtc->dev;
7061         struct drm_i915_private *dev_priv = dev->dev_private;
7062         struct intel_encoder *intel_encoder;
7063         int refclk;
7064         const intel_limit_t *limit;
7065         bool ret, is_lvds = false;
7066
7067         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7068                 switch (intel_encoder->type) {
7069                 case INTEL_OUTPUT_LVDS:
7070                         is_lvds = true;
7071                         break;
7072                 }
7073         }
7074
7075         refclk = ironlake_get_refclk(crtc);
7076
7077         /*
7078          * Returns a set of divisors for the desired target clock with the given
7079          * refclk, or FALSE.  The returned values represent the clock equation:
7080          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7081          */
7082         limit = intel_limit(crtc, refclk);
7083         ret = dev_priv->display.find_dpll(limit, crtc,
7084                                           to_intel_crtc(crtc)->config.port_clock,
7085                                           refclk, NULL, clock);
7086         if (!ret)
7087                 return false;
7088
7089         if (is_lvds && dev_priv->lvds_downclock_avail) {
7090                 /*
7091                  * Ensure we match the reduced clock's P to the target clock.
7092                  * If the clocks don't match, we can't switch the display clock
7093                  * by using the FP0/FP1. In such case we will disable the LVDS
7094                  * downclock feature.
7095                 */
7096                 *has_reduced_clock =
7097                         dev_priv->display.find_dpll(limit, crtc,
7098                                                     dev_priv->lvds_downclock,
7099                                                     refclk, clock,
7100                                                     reduced_clock);
7101         }
7102
7103         return true;
7104 }
7105
7106 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7107 {
7108         /*
7109          * Account for spread spectrum to avoid
7110          * oversubscribing the link. Max center spread
7111          * is 2.5%; use 5% for safety's sake.
7112          */
7113         u32 bps = target_clock * bpp * 21 / 20;
7114         return DIV_ROUND_UP(bps, link_bw * 8);
7115 }
7116
7117 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7118 {
7119         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7120 }
7121
7122 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7123                                       u32 *fp,
7124                                       intel_clock_t *reduced_clock, u32 *fp2)
7125 {
7126         struct drm_crtc *crtc = &intel_crtc->base;
7127         struct drm_device *dev = crtc->dev;
7128         struct drm_i915_private *dev_priv = dev->dev_private;
7129         struct intel_encoder *intel_encoder;
7130         uint32_t dpll;
7131         int factor, num_connectors = 0;
7132         bool is_lvds = false, is_sdvo = false;
7133
7134         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7135                 switch (intel_encoder->type) {
7136                 case INTEL_OUTPUT_LVDS:
7137                         is_lvds = true;
7138                         break;
7139                 case INTEL_OUTPUT_SDVO:
7140                 case INTEL_OUTPUT_HDMI:
7141                         is_sdvo = true;
7142                         break;
7143                 }
7144
7145                 num_connectors++;
7146         }
7147
7148         /* Enable autotuning of the PLL clock (if permissible) */
7149         factor = 21;
7150         if (is_lvds) {
7151                 if ((intel_panel_use_ssc(dev_priv) &&
7152                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
7153                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7154                         factor = 25;
7155         } else if (intel_crtc->config.sdvo_tv_clock)
7156                 factor = 20;
7157
7158         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7159                 *fp |= FP_CB_TUNE;
7160
7161         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7162                 *fp2 |= FP_CB_TUNE;
7163
7164         dpll = 0;
7165
7166         if (is_lvds)
7167                 dpll |= DPLLB_MODE_LVDS;
7168         else
7169                 dpll |= DPLLB_MODE_DAC_SERIAL;
7170
7171         dpll |= (intel_crtc->config.pixel_multiplier - 1)
7172                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7173
7174         if (is_sdvo)
7175                 dpll |= DPLL_SDVO_HIGH_SPEED;
7176         if (intel_crtc->config.has_dp_encoder)
7177                 dpll |= DPLL_SDVO_HIGH_SPEED;
7178
7179         /* compute bitmask from p1 value */
7180         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7181         /* also FPA1 */
7182         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7183
7184         switch (intel_crtc->config.dpll.p2) {
7185         case 5:
7186                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7187                 break;
7188         case 7:
7189                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7190                 break;
7191         case 10:
7192                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7193                 break;
7194         case 14:
7195                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7196                 break;
7197         }
7198
7199         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7200                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7201         else
7202                 dpll |= PLL_REF_INPUT_DREFCLK;
7203
7204         return dpll | DPLL_VCO_ENABLE;
7205 }
7206
7207 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
7208                                   int x, int y,
7209                                   struct drm_framebuffer *fb)
7210 {
7211         struct drm_device *dev = crtc->dev;
7212         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7213         int num_connectors = 0;
7214         intel_clock_t clock, reduced_clock;
7215         u32 dpll = 0, fp = 0, fp2 = 0;
7216         bool ok, has_reduced_clock = false;
7217         bool is_lvds = false;
7218         struct intel_encoder *encoder;
7219         struct intel_shared_dpll *pll;
7220
7221         for_each_encoder_on_crtc(dev, crtc, encoder) {
7222                 switch (encoder->type) {
7223                 case INTEL_OUTPUT_LVDS:
7224                         is_lvds = true;
7225                         break;
7226                 }
7227
7228                 num_connectors++;
7229         }
7230
7231         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7232              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7233
7234         ok = ironlake_compute_clocks(crtc, &clock,
7235                                      &has_reduced_clock, &reduced_clock);
7236         if (!ok && !intel_crtc->config.clock_set) {
7237                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7238                 return -EINVAL;
7239         }
7240         /* Compat-code for transition, will disappear. */
7241         if (!intel_crtc->config.clock_set) {
7242                 intel_crtc->config.dpll.n = clock.n;
7243                 intel_crtc->config.dpll.m1 = clock.m1;
7244                 intel_crtc->config.dpll.m2 = clock.m2;
7245                 intel_crtc->config.dpll.p1 = clock.p1;
7246                 intel_crtc->config.dpll.p2 = clock.p2;
7247         }
7248
7249         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7250         if (intel_crtc->config.has_pch_encoder) {
7251                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
7252                 if (has_reduced_clock)
7253                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7254
7255                 dpll = ironlake_compute_dpll(intel_crtc,
7256                                              &fp, &reduced_clock,
7257                                              has_reduced_clock ? &fp2 : NULL);
7258
7259                 intel_crtc->config.dpll_hw_state.dpll = dpll;
7260                 intel_crtc->config.dpll_hw_state.fp0 = fp;
7261                 if (has_reduced_clock)
7262                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
7263                 else
7264                         intel_crtc->config.dpll_hw_state.fp1 = fp;
7265
7266                 pll = intel_get_shared_dpll(intel_crtc);
7267                 if (pll == NULL) {
7268                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7269                                          pipe_name(intel_crtc->pipe));
7270                         return -EINVAL;
7271                 }
7272         } else
7273                 intel_put_shared_dpll(intel_crtc);
7274
7275         if (is_lvds && has_reduced_clock && i915.powersave)
7276                 intel_crtc->lowfreq_avail = true;
7277         else
7278                 intel_crtc->lowfreq_avail = false;
7279
7280         return 0;
7281 }
7282
7283 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7284                                          struct intel_link_m_n *m_n)
7285 {
7286         struct drm_device *dev = crtc->base.dev;
7287         struct drm_i915_private *dev_priv = dev->dev_private;
7288         enum pipe pipe = crtc->pipe;
7289
7290         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7291         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7292         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7293                 & ~TU_SIZE_MASK;
7294         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7295         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7296                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7297 }
7298
7299 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7300                                          enum transcoder transcoder,
7301                                          struct intel_link_m_n *m_n,
7302                                          struct intel_link_m_n *m2_n2)
7303 {
7304         struct drm_device *dev = crtc->base.dev;
7305         struct drm_i915_private *dev_priv = dev->dev_private;
7306         enum pipe pipe = crtc->pipe;
7307
7308         if (INTEL_INFO(dev)->gen >= 5) {
7309                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7310                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7311                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7312                         & ~TU_SIZE_MASK;
7313                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7314                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7315                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7316                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7317                  * gen < 8) and if DRRS is supported (to make sure the
7318                  * registers are not unnecessarily read).
7319                  */
7320                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7321                         crtc->config.has_drrs) {
7322                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7323                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7324                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7325                                         & ~TU_SIZE_MASK;
7326                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7327                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7328                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7329                 }
7330         } else {
7331                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7332                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7333                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7334                         & ~TU_SIZE_MASK;
7335                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7336                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7337                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7338         }
7339 }
7340
7341 void intel_dp_get_m_n(struct intel_crtc *crtc,
7342                       struct intel_crtc_config *pipe_config)
7343 {
7344         if (crtc->config.has_pch_encoder)
7345                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7346         else
7347                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7348                                              &pipe_config->dp_m_n,
7349                                              &pipe_config->dp_m2_n2);
7350 }
7351
7352 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7353                                         struct intel_crtc_config *pipe_config)
7354 {
7355         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7356                                      &pipe_config->fdi_m_n, NULL);
7357 }
7358
7359 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7360                                      struct intel_crtc_config *pipe_config)
7361 {
7362         struct drm_device *dev = crtc->base.dev;
7363         struct drm_i915_private *dev_priv = dev->dev_private;
7364         uint32_t tmp;
7365
7366         tmp = I915_READ(PF_CTL(crtc->pipe));
7367
7368         if (tmp & PF_ENABLE) {
7369                 pipe_config->pch_pfit.enabled = true;
7370                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7371                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7372
7373                 /* We currently do not free assignements of panel fitters on
7374                  * ivb/hsw (since we don't use the higher upscaling modes which
7375                  * differentiates them) so just WARN about this case for now. */
7376                 if (IS_GEN7(dev)) {
7377                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7378                                 PF_PIPE_SEL_IVB(crtc->pipe));
7379                 }
7380         }
7381 }
7382
7383 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7384                                       struct intel_plane_config *plane_config)
7385 {
7386         struct drm_device *dev = crtc->base.dev;
7387         struct drm_i915_private *dev_priv = dev->dev_private;
7388         u32 val, base, offset;
7389         int pipe = crtc->pipe, plane = crtc->plane;
7390         int fourcc, pixel_format;
7391         int aligned_height;
7392
7393         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7394         if (!crtc->base.primary->fb) {
7395                 DRM_DEBUG_KMS("failed to alloc fb\n");
7396                 return;
7397         }
7398
7399         val = I915_READ(DSPCNTR(plane));
7400
7401         if (INTEL_INFO(dev)->gen >= 4)
7402                 if (val & DISPPLANE_TILED)
7403                         plane_config->tiled = true;
7404
7405         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7406         fourcc = intel_format_to_fourcc(pixel_format);
7407         crtc->base.primary->fb->pixel_format = fourcc;
7408         crtc->base.primary->fb->bits_per_pixel =
7409                 drm_format_plane_cpp(fourcc, 0) * 8;
7410
7411         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7412         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7413                 offset = I915_READ(DSPOFFSET(plane));
7414         } else {
7415                 if (plane_config->tiled)
7416                         offset = I915_READ(DSPTILEOFF(plane));
7417                 else
7418                         offset = I915_READ(DSPLINOFF(plane));
7419         }
7420         plane_config->base = base;
7421
7422         val = I915_READ(PIPESRC(pipe));
7423         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7424         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7425
7426         val = I915_READ(DSPSTRIDE(pipe));
7427         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7428
7429         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7430                                             plane_config->tiled);
7431
7432         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7433                                         aligned_height);
7434
7435         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7436                       pipe, plane, crtc->base.primary->fb->width,
7437                       crtc->base.primary->fb->height,
7438                       crtc->base.primary->fb->bits_per_pixel, base,
7439                       crtc->base.primary->fb->pitches[0],
7440                       plane_config->size);
7441 }
7442
7443 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7444                                      struct intel_crtc_config *pipe_config)
7445 {
7446         struct drm_device *dev = crtc->base.dev;
7447         struct drm_i915_private *dev_priv = dev->dev_private;
7448         uint32_t tmp;
7449
7450         if (!intel_display_power_enabled(dev_priv,
7451                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7452                 return false;
7453
7454         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7455         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7456
7457         tmp = I915_READ(PIPECONF(crtc->pipe));
7458         if (!(tmp & PIPECONF_ENABLE))
7459                 return false;
7460
7461         switch (tmp & PIPECONF_BPC_MASK) {
7462         case PIPECONF_6BPC:
7463                 pipe_config->pipe_bpp = 18;
7464                 break;
7465         case PIPECONF_8BPC:
7466                 pipe_config->pipe_bpp = 24;
7467                 break;
7468         case PIPECONF_10BPC:
7469                 pipe_config->pipe_bpp = 30;
7470                 break;
7471         case PIPECONF_12BPC:
7472                 pipe_config->pipe_bpp = 36;
7473                 break;
7474         default:
7475                 break;
7476         }
7477
7478         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7479                 pipe_config->limited_color_range = true;
7480
7481         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7482                 struct intel_shared_dpll *pll;
7483
7484                 pipe_config->has_pch_encoder = true;
7485
7486                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7487                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7488                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7489
7490                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7491
7492                 if (HAS_PCH_IBX(dev_priv->dev)) {
7493                         pipe_config->shared_dpll =
7494                                 (enum intel_dpll_id) crtc->pipe;
7495                 } else {
7496                         tmp = I915_READ(PCH_DPLL_SEL);
7497                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7498                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7499                         else
7500                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7501                 }
7502
7503                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7504
7505                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7506                                            &pipe_config->dpll_hw_state));
7507
7508                 tmp = pipe_config->dpll_hw_state.dpll;
7509                 pipe_config->pixel_multiplier =
7510                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7511                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7512
7513                 ironlake_pch_clock_get(crtc, pipe_config);
7514         } else {
7515                 pipe_config->pixel_multiplier = 1;
7516         }
7517
7518         intel_get_pipe_timings(crtc, pipe_config);
7519
7520         ironlake_get_pfit_config(crtc, pipe_config);
7521
7522         return true;
7523 }
7524
7525 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7526 {
7527         struct drm_device *dev = dev_priv->dev;
7528         struct intel_crtc *crtc;
7529
7530         for_each_intel_crtc(dev, crtc)
7531                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7532                      pipe_name(crtc->pipe));
7533
7534         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7535         WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7536         WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7537         WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7538         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7539         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7540              "CPU PWM1 enabled\n");
7541         if (IS_HASWELL(dev))
7542                 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7543                      "CPU PWM2 enabled\n");
7544         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7545              "PCH PWM1 enabled\n");
7546         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7547              "Utility pin enabled\n");
7548         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7549
7550         /*
7551          * In theory we can still leave IRQs enabled, as long as only the HPD
7552          * interrupts remain enabled. We used to check for that, but since it's
7553          * gen-specific and since we only disable LCPLL after we fully disable
7554          * the interrupts, the check below should be enough.
7555          */
7556         WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7557 }
7558
7559 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7560 {
7561         struct drm_device *dev = dev_priv->dev;
7562
7563         if (IS_HASWELL(dev))
7564                 return I915_READ(D_COMP_HSW);
7565         else
7566                 return I915_READ(D_COMP_BDW);
7567 }
7568
7569 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7570 {
7571         struct drm_device *dev = dev_priv->dev;
7572
7573         if (IS_HASWELL(dev)) {
7574                 mutex_lock(&dev_priv->rps.hw_lock);
7575                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7576                                             val))
7577                         DRM_ERROR("Failed to write to D_COMP\n");
7578                 mutex_unlock(&dev_priv->rps.hw_lock);
7579         } else {
7580                 I915_WRITE(D_COMP_BDW, val);
7581                 POSTING_READ(D_COMP_BDW);
7582         }
7583 }
7584
7585 /*
7586  * This function implements pieces of two sequences from BSpec:
7587  * - Sequence for display software to disable LCPLL
7588  * - Sequence for display software to allow package C8+
7589  * The steps implemented here are just the steps that actually touch the LCPLL
7590  * register. Callers should take care of disabling all the display engine
7591  * functions, doing the mode unset, fixing interrupts, etc.
7592  */
7593 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7594                               bool switch_to_fclk, bool allow_power_down)
7595 {
7596         uint32_t val;
7597
7598         assert_can_disable_lcpll(dev_priv);
7599
7600         val = I915_READ(LCPLL_CTL);
7601
7602         if (switch_to_fclk) {
7603                 val |= LCPLL_CD_SOURCE_FCLK;
7604                 I915_WRITE(LCPLL_CTL, val);
7605
7606                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7607                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7608                         DRM_ERROR("Switching to FCLK failed\n");
7609
7610                 val = I915_READ(LCPLL_CTL);
7611         }
7612
7613         val |= LCPLL_PLL_DISABLE;
7614         I915_WRITE(LCPLL_CTL, val);
7615         POSTING_READ(LCPLL_CTL);
7616
7617         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7618                 DRM_ERROR("LCPLL still locked\n");
7619
7620         val = hsw_read_dcomp(dev_priv);
7621         val |= D_COMP_COMP_DISABLE;
7622         hsw_write_dcomp(dev_priv, val);
7623         ndelay(100);
7624
7625         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7626                      1))
7627                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7628
7629         if (allow_power_down) {
7630                 val = I915_READ(LCPLL_CTL);
7631                 val |= LCPLL_POWER_DOWN_ALLOW;
7632                 I915_WRITE(LCPLL_CTL, val);
7633                 POSTING_READ(LCPLL_CTL);
7634         }
7635 }
7636
7637 /*
7638  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7639  * source.
7640  */
7641 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7642 {
7643         uint32_t val;
7644         unsigned long irqflags;
7645
7646         val = I915_READ(LCPLL_CTL);
7647
7648         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7649                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7650                 return;
7651
7652         /*
7653          * Make sure we're not on PC8 state before disabling PC8, otherwise
7654          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7655          *
7656          * The other problem is that hsw_restore_lcpll() is called as part of
7657          * the runtime PM resume sequence, so we can't just call
7658          * gen6_gt_force_wake_get() because that function calls
7659          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7660          * while we are on the resume sequence. So to solve this problem we have
7661          * to call special forcewake code that doesn't touch runtime PM and
7662          * doesn't enable the forcewake delayed work.
7663          */
7664         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7665         if (dev_priv->uncore.forcewake_count++ == 0)
7666                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7667         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7668
7669         if (val & LCPLL_POWER_DOWN_ALLOW) {
7670                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7671                 I915_WRITE(LCPLL_CTL, val);
7672                 POSTING_READ(LCPLL_CTL);
7673         }
7674
7675         val = hsw_read_dcomp(dev_priv);
7676         val |= D_COMP_COMP_FORCE;
7677         val &= ~D_COMP_COMP_DISABLE;
7678         hsw_write_dcomp(dev_priv, val);
7679
7680         val = I915_READ(LCPLL_CTL);
7681         val &= ~LCPLL_PLL_DISABLE;
7682         I915_WRITE(LCPLL_CTL, val);
7683
7684         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7685                 DRM_ERROR("LCPLL not locked yet\n");
7686
7687         if (val & LCPLL_CD_SOURCE_FCLK) {
7688                 val = I915_READ(LCPLL_CTL);
7689                 val &= ~LCPLL_CD_SOURCE_FCLK;
7690                 I915_WRITE(LCPLL_CTL, val);
7691
7692                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7693                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7694                         DRM_ERROR("Switching back to LCPLL failed\n");
7695         }
7696
7697         /* See the big comment above. */
7698         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7699         if (--dev_priv->uncore.forcewake_count == 0)
7700                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7701         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7702 }
7703
7704 /*
7705  * Package states C8 and deeper are really deep PC states that can only be
7706  * reached when all the devices on the system allow it, so even if the graphics
7707  * device allows PC8+, it doesn't mean the system will actually get to these
7708  * states. Our driver only allows PC8+ when going into runtime PM.
7709  *
7710  * The requirements for PC8+ are that all the outputs are disabled, the power
7711  * well is disabled and most interrupts are disabled, and these are also
7712  * requirements for runtime PM. When these conditions are met, we manually do
7713  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7714  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7715  * hang the machine.
7716  *
7717  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7718  * the state of some registers, so when we come back from PC8+ we need to
7719  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7720  * need to take care of the registers kept by RC6. Notice that this happens even
7721  * if we don't put the device in PCI D3 state (which is what currently happens
7722  * because of the runtime PM support).
7723  *
7724  * For more, read "Display Sequences for Package C8" on the hardware
7725  * documentation.
7726  */
7727 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7728 {
7729         struct drm_device *dev = dev_priv->dev;
7730         uint32_t val;
7731
7732         DRM_DEBUG_KMS("Enabling package C8+\n");
7733
7734         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7735                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7736                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7737                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7738         }
7739
7740         lpt_disable_clkout_dp(dev);
7741         hsw_disable_lcpll(dev_priv, true, true);
7742 }
7743
7744 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7745 {
7746         struct drm_device *dev = dev_priv->dev;
7747         uint32_t val;
7748
7749         DRM_DEBUG_KMS("Disabling package C8+\n");
7750
7751         hsw_restore_lcpll(dev_priv);
7752         lpt_init_pch_refclk(dev);
7753
7754         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7755                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7756                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7757                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7758         }
7759
7760         intel_prepare_ddi(dev);
7761 }
7762
7763 static void snb_modeset_global_resources(struct drm_device *dev)
7764 {
7765         modeset_update_crtc_power_domains(dev);
7766 }
7767
7768 static void haswell_modeset_global_resources(struct drm_device *dev)
7769 {
7770         modeset_update_crtc_power_domains(dev);
7771 }
7772
7773 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7774                                  int x, int y,
7775                                  struct drm_framebuffer *fb)
7776 {
7777         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7778
7779         if (!intel_ddi_pll_select(intel_crtc))
7780                 return -EINVAL;
7781
7782         intel_crtc->lowfreq_avail = false;
7783
7784         return 0;
7785 }
7786
7787 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7788                                 enum port port,
7789                                 struct intel_crtc_config *pipe_config)
7790 {
7791         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7792
7793         switch (pipe_config->ddi_pll_sel) {
7794         case PORT_CLK_SEL_WRPLL1:
7795                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7796                 break;
7797         case PORT_CLK_SEL_WRPLL2:
7798                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7799                 break;
7800         }
7801 }
7802
7803 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7804                                        struct intel_crtc_config *pipe_config)
7805 {
7806         struct drm_device *dev = crtc->base.dev;
7807         struct drm_i915_private *dev_priv = dev->dev_private;
7808         struct intel_shared_dpll *pll;
7809         enum port port;
7810         uint32_t tmp;
7811
7812         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7813
7814         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7815
7816         haswell_get_ddi_pll(dev_priv, port, pipe_config);
7817
7818         if (pipe_config->shared_dpll >= 0) {
7819                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7820
7821                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7822                                            &pipe_config->dpll_hw_state));
7823         }
7824
7825         /*
7826          * Haswell has only FDI/PCH transcoder A. It is which is connected to
7827          * DDI E. So just check whether this pipe is wired to DDI E and whether
7828          * the PCH transcoder is on.
7829          */
7830         if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7831                 pipe_config->has_pch_encoder = true;
7832
7833                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7834                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7835                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7836
7837                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7838         }
7839 }
7840
7841 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7842                                     struct intel_crtc_config *pipe_config)
7843 {
7844         struct drm_device *dev = crtc->base.dev;
7845         struct drm_i915_private *dev_priv = dev->dev_private;
7846         enum intel_display_power_domain pfit_domain;
7847         uint32_t tmp;
7848
7849         if (!intel_display_power_enabled(dev_priv,
7850                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7851                 return false;
7852
7853         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7854         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7855
7856         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7857         if (tmp & TRANS_DDI_FUNC_ENABLE) {
7858                 enum pipe trans_edp_pipe;
7859                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7860                 default:
7861                         WARN(1, "unknown pipe linked to edp transcoder\n");
7862                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7863                 case TRANS_DDI_EDP_INPUT_A_ON:
7864                         trans_edp_pipe = PIPE_A;
7865                         break;
7866                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7867                         trans_edp_pipe = PIPE_B;
7868                         break;
7869                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7870                         trans_edp_pipe = PIPE_C;
7871                         break;
7872                 }
7873
7874                 if (trans_edp_pipe == crtc->pipe)
7875                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
7876         }
7877
7878         if (!intel_display_power_enabled(dev_priv,
7879                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7880                 return false;
7881
7882         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7883         if (!(tmp & PIPECONF_ENABLE))
7884                 return false;
7885
7886         haswell_get_ddi_port_state(crtc, pipe_config);
7887
7888         intel_get_pipe_timings(crtc, pipe_config);
7889
7890         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7891         if (intel_display_power_enabled(dev_priv, pfit_domain))
7892                 ironlake_get_pfit_config(crtc, pipe_config);
7893
7894         if (IS_HASWELL(dev))
7895                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7896                         (I915_READ(IPS_CTL) & IPS_ENABLE);
7897
7898         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
7899                 pipe_config->pixel_multiplier =
7900                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
7901         } else {
7902                 pipe_config->pixel_multiplier = 1;
7903         }
7904
7905         return true;
7906 }
7907
7908 static struct {
7909         int clock;
7910         u32 config;
7911 } hdmi_audio_clock[] = {
7912         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7913         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7914         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7915         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7916         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7917         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7918         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7919         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7920         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7921         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7922 };
7923
7924 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7925 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7926 {
7927         int i;
7928
7929         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7930                 if (mode->clock == hdmi_audio_clock[i].clock)
7931                         break;
7932         }
7933
7934         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7935                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7936                 i = 1;
7937         }
7938
7939         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7940                       hdmi_audio_clock[i].clock,
7941                       hdmi_audio_clock[i].config);
7942
7943         return hdmi_audio_clock[i].config;
7944 }
7945
7946 static bool intel_eld_uptodate(struct drm_connector *connector,
7947                                int reg_eldv, uint32_t bits_eldv,
7948                                int reg_elda, uint32_t bits_elda,
7949                                int reg_edid)
7950 {
7951         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7952         uint8_t *eld = connector->eld;
7953         uint32_t i;
7954
7955         i = I915_READ(reg_eldv);
7956         i &= bits_eldv;
7957
7958         if (!eld[0])
7959                 return !i;
7960
7961         if (!i)
7962                 return false;
7963
7964         i = I915_READ(reg_elda);
7965         i &= ~bits_elda;
7966         I915_WRITE(reg_elda, i);
7967
7968         for (i = 0; i < eld[2]; i++)
7969                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7970                         return false;
7971
7972         return true;
7973 }
7974
7975 static void g4x_write_eld(struct drm_connector *connector,
7976                           struct drm_crtc *crtc,
7977                           struct drm_display_mode *mode)
7978 {
7979         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7980         uint8_t *eld = connector->eld;
7981         uint32_t eldv;
7982         uint32_t len;
7983         uint32_t i;
7984
7985         i = I915_READ(G4X_AUD_VID_DID);
7986
7987         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7988                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7989         else
7990                 eldv = G4X_ELDV_DEVCTG;
7991
7992         if (intel_eld_uptodate(connector,
7993                                G4X_AUD_CNTL_ST, eldv,
7994                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7995                                G4X_HDMIW_HDMIEDID))
7996                 return;
7997
7998         i = I915_READ(G4X_AUD_CNTL_ST);
7999         i &= ~(eldv | G4X_ELD_ADDR);
8000         len = (i >> 9) & 0x1f;          /* ELD buffer size */
8001         I915_WRITE(G4X_AUD_CNTL_ST, i);
8002
8003         if (!eld[0])
8004                 return;
8005
8006         len = min_t(uint8_t, eld[2], len);
8007         DRM_DEBUG_DRIVER("ELD size %d\n", len);
8008         for (i = 0; i < len; i++)
8009                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
8010
8011         i = I915_READ(G4X_AUD_CNTL_ST);
8012         i |= eldv;
8013         I915_WRITE(G4X_AUD_CNTL_ST, i);
8014 }
8015
8016 static void haswell_write_eld(struct drm_connector *connector,
8017                               struct drm_crtc *crtc,
8018                               struct drm_display_mode *mode)
8019 {
8020         struct drm_i915_private *dev_priv = connector->dev->dev_private;
8021         uint8_t *eld = connector->eld;
8022         uint32_t eldv;
8023         uint32_t i;
8024         int len;
8025         int pipe = to_intel_crtc(crtc)->pipe;
8026         int tmp;
8027
8028         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
8029         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
8030         int aud_config = HSW_AUD_CFG(pipe);
8031         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
8032
8033         /* Audio output enable */
8034         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
8035         tmp = I915_READ(aud_cntrl_st2);
8036         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
8037         I915_WRITE(aud_cntrl_st2, tmp);
8038         POSTING_READ(aud_cntrl_st2);
8039
8040         assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
8041
8042         /* Set ELD valid state */
8043         tmp = I915_READ(aud_cntrl_st2);
8044         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
8045         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
8046         I915_WRITE(aud_cntrl_st2, tmp);
8047         tmp = I915_READ(aud_cntrl_st2);
8048         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
8049
8050         /* Enable HDMI mode */
8051         tmp = I915_READ(aud_config);
8052         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
8053         /* clear N_programing_enable and N_value_index */
8054         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
8055         I915_WRITE(aud_config, tmp);
8056
8057         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
8058
8059         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
8060
8061         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8062                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8063                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
8064                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
8065         } else {
8066                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8067         }
8068
8069         if (intel_eld_uptodate(connector,
8070                                aud_cntrl_st2, eldv,
8071                                aud_cntl_st, IBX_ELD_ADDRESS,
8072                                hdmiw_hdmiedid))
8073                 return;
8074
8075         i = I915_READ(aud_cntrl_st2);
8076         i &= ~eldv;
8077         I915_WRITE(aud_cntrl_st2, i);
8078
8079         if (!eld[0])
8080                 return;
8081
8082         i = I915_READ(aud_cntl_st);
8083         i &= ~IBX_ELD_ADDRESS;
8084         I915_WRITE(aud_cntl_st, i);
8085         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
8086         DRM_DEBUG_DRIVER("port num:%d\n", i);
8087
8088         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
8089         DRM_DEBUG_DRIVER("ELD size %d\n", len);
8090         for (i = 0; i < len; i++)
8091                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8092
8093         i = I915_READ(aud_cntrl_st2);
8094         i |= eldv;
8095         I915_WRITE(aud_cntrl_st2, i);
8096
8097 }
8098
8099 static void ironlake_write_eld(struct drm_connector *connector,
8100                                struct drm_crtc *crtc,
8101                                struct drm_display_mode *mode)
8102 {
8103         struct drm_i915_private *dev_priv = connector->dev->dev_private;
8104         uint8_t *eld = connector->eld;
8105         uint32_t eldv;
8106         uint32_t i;
8107         int len;
8108         int hdmiw_hdmiedid;
8109         int aud_config;
8110         int aud_cntl_st;
8111         int aud_cntrl_st2;
8112         int pipe = to_intel_crtc(crtc)->pipe;
8113
8114         if (HAS_PCH_IBX(connector->dev)) {
8115                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
8116                 aud_config = IBX_AUD_CFG(pipe);
8117                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
8118                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
8119         } else if (IS_VALLEYVIEW(connector->dev)) {
8120                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
8121                 aud_config = VLV_AUD_CFG(pipe);
8122                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
8123                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
8124         } else {
8125                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
8126                 aud_config = CPT_AUD_CFG(pipe);
8127                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
8128                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
8129         }
8130
8131         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
8132
8133         if (IS_VALLEYVIEW(connector->dev))  {
8134                 struct intel_encoder *intel_encoder;
8135                 struct intel_digital_port *intel_dig_port;
8136
8137                 intel_encoder = intel_attached_encoder(connector);
8138                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
8139                 i = intel_dig_port->port;
8140         } else {
8141                 i = I915_READ(aud_cntl_st);
8142                 i = (i >> 29) & DIP_PORT_SEL_MASK;
8143                 /* DIP_Port_Select, 0x1 = PortB */
8144         }
8145
8146         if (!i) {
8147                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
8148                 /* operate blindly on all ports */
8149                 eldv = IBX_ELD_VALIDB;
8150                 eldv |= IBX_ELD_VALIDB << 4;
8151                 eldv |= IBX_ELD_VALIDB << 8;
8152         } else {
8153                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
8154                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
8155         }
8156
8157         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8158                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8159                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
8160                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
8161         } else {
8162                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8163         }
8164
8165         if (intel_eld_uptodate(connector,
8166                                aud_cntrl_st2, eldv,
8167                                aud_cntl_st, IBX_ELD_ADDRESS,
8168                                hdmiw_hdmiedid))
8169                 return;
8170
8171         i = I915_READ(aud_cntrl_st2);
8172         i &= ~eldv;
8173         I915_WRITE(aud_cntrl_st2, i);
8174
8175         if (!eld[0])
8176                 return;
8177
8178         i = I915_READ(aud_cntl_st);
8179         i &= ~IBX_ELD_ADDRESS;
8180         I915_WRITE(aud_cntl_st, i);
8181
8182         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
8183         DRM_DEBUG_DRIVER("ELD size %d\n", len);
8184         for (i = 0; i < len; i++)
8185                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8186
8187         i = I915_READ(aud_cntrl_st2);
8188         i |= eldv;
8189         I915_WRITE(aud_cntrl_st2, i);
8190 }
8191
8192 void intel_write_eld(struct drm_encoder *encoder,
8193                      struct drm_display_mode *mode)
8194 {
8195         struct drm_crtc *crtc = encoder->crtc;
8196         struct drm_connector *connector;
8197         struct drm_device *dev = encoder->dev;
8198         struct drm_i915_private *dev_priv = dev->dev_private;
8199
8200         connector = drm_select_eld(encoder, mode);
8201         if (!connector)
8202                 return;
8203
8204         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8205                          connector->base.id,
8206                          connector->name,
8207                          connector->encoder->base.id,
8208                          connector->encoder->name);
8209
8210         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8211
8212         if (dev_priv->display.write_eld)
8213                 dev_priv->display.write_eld(connector, crtc, mode);
8214 }
8215
8216 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8217 {
8218         struct drm_device *dev = crtc->dev;
8219         struct drm_i915_private *dev_priv = dev->dev_private;
8220         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8221         uint32_t cntl = 0, size = 0;
8222
8223         if (base) {
8224                 unsigned int width = intel_crtc->cursor_width;
8225                 unsigned int height = intel_crtc->cursor_height;
8226                 unsigned int stride = roundup_pow_of_two(width) * 4;
8227
8228                 switch (stride) {
8229                 default:
8230                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8231                                   width, stride);
8232                         stride = 256;
8233                         /* fallthrough */
8234                 case 256:
8235                 case 512:
8236                 case 1024:
8237                 case 2048:
8238                         break;
8239                 }
8240
8241                 cntl |= CURSOR_ENABLE |
8242                         CURSOR_GAMMA_ENABLE |
8243                         CURSOR_FORMAT_ARGB |
8244                         CURSOR_STRIDE(stride);
8245
8246                 size = (height << 12) | width;
8247         }
8248
8249         if (intel_crtc->cursor_cntl != 0 &&
8250             (intel_crtc->cursor_base != base ||
8251              intel_crtc->cursor_size != size ||
8252              intel_crtc->cursor_cntl != cntl)) {
8253                 /* On these chipsets we can only modify the base/size/stride
8254                  * whilst the cursor is disabled.
8255                  */
8256                 I915_WRITE(_CURACNTR, 0);
8257                 POSTING_READ(_CURACNTR);
8258                 intel_crtc->cursor_cntl = 0;
8259         }
8260
8261         if (intel_crtc->cursor_base != base)
8262                 I915_WRITE(_CURABASE, base);
8263
8264         if (intel_crtc->cursor_size != size) {
8265                 I915_WRITE(CURSIZE, size);
8266                 intel_crtc->cursor_size = size;
8267         }
8268
8269         if (intel_crtc->cursor_cntl != cntl) {
8270                 I915_WRITE(_CURACNTR, cntl);
8271                 POSTING_READ(_CURACNTR);
8272                 intel_crtc->cursor_cntl = cntl;
8273         }
8274 }
8275
8276 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8277 {
8278         struct drm_device *dev = crtc->dev;
8279         struct drm_i915_private *dev_priv = dev->dev_private;
8280         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8281         int pipe = intel_crtc->pipe;
8282         uint32_t cntl;
8283
8284         cntl = 0;
8285         if (base) {
8286                 cntl = MCURSOR_GAMMA_ENABLE;
8287                 switch (intel_crtc->cursor_width) {
8288                         case 64:
8289                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8290                                 break;
8291                         case 128:
8292                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8293                                 break;
8294                         case 256:
8295                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8296                                 break;
8297                         default:
8298                                 WARN_ON(1);
8299                                 return;
8300                 }
8301                 cntl |= pipe << 28; /* Connect to correct pipe */
8302         }
8303         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8304                 cntl |= CURSOR_PIPE_CSC_ENABLE;
8305
8306         if (intel_crtc->cursor_cntl != cntl) {
8307                 I915_WRITE(CURCNTR(pipe), cntl);
8308                 POSTING_READ(CURCNTR(pipe));
8309                 intel_crtc->cursor_cntl = cntl;
8310         }
8311
8312         /* and commit changes on next vblank */
8313         I915_WRITE(CURBASE(pipe), base);
8314         POSTING_READ(CURBASE(pipe));
8315 }
8316
8317 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8318 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8319                                      bool on)
8320 {
8321         struct drm_device *dev = crtc->dev;
8322         struct drm_i915_private *dev_priv = dev->dev_private;
8323         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8324         int pipe = intel_crtc->pipe;
8325         int x = crtc->cursor_x;
8326         int y = crtc->cursor_y;
8327         u32 base = 0, pos = 0;
8328
8329         if (on)
8330                 base = intel_crtc->cursor_addr;
8331
8332         if (x >= intel_crtc->config.pipe_src_w)
8333                 base = 0;
8334
8335         if (y >= intel_crtc->config.pipe_src_h)
8336                 base = 0;
8337
8338         if (x < 0) {
8339                 if (x + intel_crtc->cursor_width <= 0)
8340                         base = 0;
8341
8342                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8343                 x = -x;
8344         }
8345         pos |= x << CURSOR_X_SHIFT;
8346
8347         if (y < 0) {
8348                 if (y + intel_crtc->cursor_height <= 0)
8349                         base = 0;
8350
8351                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8352                 y = -y;
8353         }
8354         pos |= y << CURSOR_Y_SHIFT;
8355
8356         if (base == 0 && intel_crtc->cursor_base == 0)
8357                 return;
8358
8359         I915_WRITE(CURPOS(pipe), pos);
8360
8361         if (IS_845G(dev) || IS_I865G(dev))
8362                 i845_update_cursor(crtc, base);
8363         else
8364                 i9xx_update_cursor(crtc, base);
8365         intel_crtc->cursor_base = base;
8366 }
8367
8368 static bool cursor_size_ok(struct drm_device *dev,
8369                            uint32_t width, uint32_t height)
8370 {
8371         if (width == 0 || height == 0)
8372                 return false;
8373
8374         /*
8375          * 845g/865g are special in that they are only limited by
8376          * the width of their cursors, the height is arbitrary up to
8377          * the precision of the register. Everything else requires
8378          * square cursors, limited to a few power-of-two sizes.
8379          */
8380         if (IS_845G(dev) || IS_I865G(dev)) {
8381                 if ((width & 63) != 0)
8382                         return false;
8383
8384                 if (width > (IS_845G(dev) ? 64 : 512))
8385                         return false;
8386
8387                 if (height > 1023)
8388                         return false;
8389         } else {
8390                 switch (width | height) {
8391                 case 256:
8392                 case 128:
8393                         if (IS_GEN2(dev))
8394                                 return false;
8395                 case 64:
8396                         break;
8397                 default:
8398                         return false;
8399                 }
8400         }
8401
8402         return true;
8403 }
8404
8405 /*
8406  * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8407  *
8408  * Note that the object's reference will be consumed if the update fails.  If
8409  * the update succeeds, the reference of the old object (if any) will be
8410  * consumed.
8411  */
8412 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8413                                      struct drm_i915_gem_object *obj,
8414                                      uint32_t width, uint32_t height)
8415 {
8416         struct drm_device *dev = crtc->dev;
8417         struct drm_i915_private *dev_priv = dev->dev_private;
8418         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8419         enum pipe pipe = intel_crtc->pipe;
8420         unsigned old_width, stride;
8421         uint32_t addr;
8422         int ret;
8423
8424         /* if we want to turn off the cursor ignore width and height */
8425         if (!obj) {
8426                 DRM_DEBUG_KMS("cursor off\n");
8427                 addr = 0;
8428                 mutex_lock(&dev->struct_mutex);
8429                 goto finish;
8430         }
8431
8432         /* Check for which cursor types we support */
8433         if (!cursor_size_ok(dev, width, height)) {
8434                 DRM_DEBUG("Cursor dimension not supported\n");
8435                 return -EINVAL;
8436         }
8437
8438         stride = roundup_pow_of_two(width) * 4;
8439         if (obj->base.size < stride * height) {
8440                 DRM_DEBUG_KMS("buffer is too small\n");
8441                 ret = -ENOMEM;
8442                 goto fail;
8443         }
8444
8445         /* we only need to pin inside GTT if cursor is non-phy */
8446         mutex_lock(&dev->struct_mutex);
8447         if (!INTEL_INFO(dev)->cursor_needs_physical) {
8448                 unsigned alignment;
8449
8450                 if (obj->tiling_mode) {
8451                         DRM_DEBUG_KMS("cursor cannot be tiled\n");
8452                         ret = -EINVAL;
8453                         goto fail_locked;
8454                 }
8455
8456                 /*
8457                  * Global gtt pte registers are special registers which actually
8458                  * forward writes to a chunk of system memory. Which means that
8459                  * there is no risk that the register values disappear as soon
8460                  * as we call intel_runtime_pm_put(), so it is correct to wrap
8461                  * only the pin/unpin/fence and not more.
8462                  */
8463                 intel_runtime_pm_get(dev_priv);
8464
8465                 /* Note that the w/a also requires 2 PTE of padding following
8466                  * the bo. We currently fill all unused PTE with the shadow
8467                  * page and so we should always have valid PTE following the
8468                  * cursor preventing the VT-d warning.
8469                  */
8470                 alignment = 0;
8471                 if (need_vtd_wa(dev))
8472                         alignment = 64*1024;
8473
8474                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8475                 if (ret) {
8476                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8477                         intel_runtime_pm_put(dev_priv);
8478                         goto fail_locked;
8479                 }
8480
8481                 ret = i915_gem_object_put_fence(obj);
8482                 if (ret) {
8483                         DRM_DEBUG_KMS("failed to release fence for cursor");
8484                         intel_runtime_pm_put(dev_priv);
8485                         goto fail_unpin;
8486                 }
8487
8488                 addr = i915_gem_obj_ggtt_offset(obj);
8489
8490                 intel_runtime_pm_put(dev_priv);
8491         } else {
8492                 int align = IS_I830(dev) ? 16 * 1024 : 256;
8493                 ret = i915_gem_object_attach_phys(obj, align);
8494                 if (ret) {
8495                         DRM_DEBUG_KMS("failed to attach phys object\n");
8496                         goto fail_locked;
8497                 }
8498                 addr = obj->phys_handle->busaddr;
8499         }
8500
8501  finish:
8502         if (intel_crtc->cursor_bo) {
8503                 if (!INTEL_INFO(dev)->cursor_needs_physical)
8504                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8505         }
8506
8507         i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8508                           INTEL_FRONTBUFFER_CURSOR(pipe));
8509         mutex_unlock(&dev->struct_mutex);
8510
8511         old_width = intel_crtc->cursor_width;
8512
8513         intel_crtc->cursor_addr = addr;
8514         intel_crtc->cursor_bo = obj;
8515         intel_crtc->cursor_width = width;
8516         intel_crtc->cursor_height = height;
8517
8518         if (intel_crtc->active) {
8519                 if (old_width != width)
8520                         intel_update_watermarks(crtc);
8521                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8522         }
8523
8524         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8525
8526         return 0;
8527 fail_unpin:
8528         i915_gem_object_unpin_from_display_plane(obj);
8529 fail_locked:
8530         mutex_unlock(&dev->struct_mutex);
8531 fail:
8532         drm_gem_object_unreference_unlocked(&obj->base);
8533         return ret;
8534 }
8535
8536 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8537                                  u16 *blue, uint32_t start, uint32_t size)
8538 {
8539         int end = (start + size > 256) ? 256 : start + size, i;
8540         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8541
8542         for (i = start; i < end; i++) {
8543                 intel_crtc->lut_r[i] = red[i] >> 8;
8544                 intel_crtc->lut_g[i] = green[i] >> 8;
8545                 intel_crtc->lut_b[i] = blue[i] >> 8;
8546         }
8547
8548         intel_crtc_load_lut(crtc);
8549 }
8550
8551 /* VESA 640x480x72Hz mode to set on the pipe */
8552 static struct drm_display_mode load_detect_mode = {
8553         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8554                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8555 };
8556
8557 struct drm_framebuffer *
8558 __intel_framebuffer_create(struct drm_device *dev,
8559                            struct drm_mode_fb_cmd2 *mode_cmd,
8560                            struct drm_i915_gem_object *obj)
8561 {
8562         struct intel_framebuffer *intel_fb;
8563         int ret;
8564
8565         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8566         if (!intel_fb) {
8567                 drm_gem_object_unreference_unlocked(&obj->base);
8568                 return ERR_PTR(-ENOMEM);
8569         }
8570
8571         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8572         if (ret)
8573                 goto err;
8574
8575         return &intel_fb->base;
8576 err:
8577         drm_gem_object_unreference_unlocked(&obj->base);
8578         kfree(intel_fb);
8579
8580         return ERR_PTR(ret);
8581 }
8582
8583 static struct drm_framebuffer *
8584 intel_framebuffer_create(struct drm_device *dev,
8585                          struct drm_mode_fb_cmd2 *mode_cmd,
8586                          struct drm_i915_gem_object *obj)
8587 {
8588         struct drm_framebuffer *fb;
8589         int ret;
8590
8591         ret = i915_mutex_lock_interruptible(dev);
8592         if (ret)
8593                 return ERR_PTR(ret);
8594         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8595         mutex_unlock(&dev->struct_mutex);
8596
8597         return fb;
8598 }
8599
8600 static u32
8601 intel_framebuffer_pitch_for_width(int width, int bpp)
8602 {
8603         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8604         return ALIGN(pitch, 64);
8605 }
8606
8607 static u32
8608 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8609 {
8610         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8611         return PAGE_ALIGN(pitch * mode->vdisplay);
8612 }
8613
8614 static struct drm_framebuffer *
8615 intel_framebuffer_create_for_mode(struct drm_device *dev,
8616                                   struct drm_display_mode *mode,
8617                                   int depth, int bpp)
8618 {
8619         struct drm_i915_gem_object *obj;
8620         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8621
8622         obj = i915_gem_alloc_object(dev,
8623                                     intel_framebuffer_size_for_mode(mode, bpp));
8624         if (obj == NULL)
8625                 return ERR_PTR(-ENOMEM);
8626
8627         mode_cmd.width = mode->hdisplay;
8628         mode_cmd.height = mode->vdisplay;
8629         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8630                                                                 bpp);
8631         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8632
8633         return intel_framebuffer_create(dev, &mode_cmd, obj);
8634 }
8635
8636 static struct drm_framebuffer *
8637 mode_fits_in_fbdev(struct drm_device *dev,
8638                    struct drm_display_mode *mode)
8639 {
8640 #ifdef CONFIG_DRM_I915_FBDEV
8641         struct drm_i915_private *dev_priv = dev->dev_private;
8642         struct drm_i915_gem_object *obj;
8643         struct drm_framebuffer *fb;
8644
8645         if (!dev_priv->fbdev)
8646                 return NULL;
8647
8648         if (!dev_priv->fbdev->fb)
8649                 return NULL;
8650
8651         obj = dev_priv->fbdev->fb->obj;
8652         BUG_ON(!obj);
8653
8654         fb = &dev_priv->fbdev->fb->base;
8655         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8656                                                                fb->bits_per_pixel))
8657                 return NULL;
8658
8659         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8660                 return NULL;
8661
8662         return fb;
8663 #else
8664         return NULL;
8665 #endif
8666 }
8667
8668 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8669                                 struct drm_display_mode *mode,
8670                                 struct intel_load_detect_pipe *old,
8671                                 struct drm_modeset_acquire_ctx *ctx)
8672 {
8673         struct intel_crtc *intel_crtc;
8674         struct intel_encoder *intel_encoder =
8675                 intel_attached_encoder(connector);
8676         struct drm_crtc *possible_crtc;
8677         struct drm_encoder *encoder = &intel_encoder->base;
8678         struct drm_crtc *crtc = NULL;
8679         struct drm_device *dev = encoder->dev;
8680         struct drm_framebuffer *fb;
8681         struct drm_mode_config *config = &dev->mode_config;
8682         int ret, i = -1;
8683
8684         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8685                       connector->base.id, connector->name,
8686                       encoder->base.id, encoder->name);
8687
8688 retry:
8689         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8690         if (ret)
8691                 goto fail_unlock;
8692
8693         /*
8694          * Algorithm gets a little messy:
8695          *
8696          *   - if the connector already has an assigned crtc, use it (but make
8697          *     sure it's on first)
8698          *
8699          *   - try to find the first unused crtc that can drive this connector,
8700          *     and use that if we find one
8701          */
8702
8703         /* See if we already have a CRTC for this connector */
8704         if (encoder->crtc) {
8705                 crtc = encoder->crtc;
8706
8707                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8708                 if (ret)
8709                         goto fail_unlock;
8710
8711                 old->dpms_mode = connector->dpms;
8712                 old->load_detect_temp = false;
8713
8714                 /* Make sure the crtc and connector are running */
8715                 if (connector->dpms != DRM_MODE_DPMS_ON)
8716                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8717
8718                 return true;
8719         }
8720
8721         /* Find an unused one (if possible) */
8722         for_each_crtc(dev, possible_crtc) {
8723                 i++;
8724                 if (!(encoder->possible_crtcs & (1 << i)))
8725                         continue;
8726                 if (possible_crtc->enabled)
8727                         continue;
8728                 /* This can occur when applying the pipe A quirk on resume. */
8729                 if (to_intel_crtc(possible_crtc)->new_enabled)
8730                         continue;
8731
8732                 crtc = possible_crtc;
8733                 break;
8734         }
8735
8736         /*
8737          * If we didn't find an unused CRTC, don't use any.
8738          */
8739         if (!crtc) {
8740                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8741                 goto fail_unlock;
8742         }
8743
8744         ret = drm_modeset_lock(&crtc->mutex, ctx);
8745         if (ret)
8746                 goto fail_unlock;
8747         intel_encoder->new_crtc = to_intel_crtc(crtc);
8748         to_intel_connector(connector)->new_encoder = intel_encoder;
8749
8750         intel_crtc = to_intel_crtc(crtc);
8751         intel_crtc->new_enabled = true;
8752         intel_crtc->new_config = &intel_crtc->config;
8753         old->dpms_mode = connector->dpms;
8754         old->load_detect_temp = true;
8755         old->release_fb = NULL;
8756
8757         if (!mode)
8758                 mode = &load_detect_mode;
8759
8760         /* We need a framebuffer large enough to accommodate all accesses
8761          * that the plane may generate whilst we perform load detection.
8762          * We can not rely on the fbcon either being present (we get called
8763          * during its initialisation to detect all boot displays, or it may
8764          * not even exist) or that it is large enough to satisfy the
8765          * requested mode.
8766          */
8767         fb = mode_fits_in_fbdev(dev, mode);
8768         if (fb == NULL) {
8769                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8770                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8771                 old->release_fb = fb;
8772         } else
8773                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8774         if (IS_ERR(fb)) {
8775                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8776                 goto fail;
8777         }
8778
8779         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8780                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8781                 if (old->release_fb)
8782                         old->release_fb->funcs->destroy(old->release_fb);
8783                 goto fail;
8784         }
8785
8786         /* let the connector get through one full cycle before testing */
8787         intel_wait_for_vblank(dev, intel_crtc->pipe);
8788         return true;
8789
8790  fail:
8791         intel_crtc->new_enabled = crtc->enabled;
8792         if (intel_crtc->new_enabled)
8793                 intel_crtc->new_config = &intel_crtc->config;
8794         else
8795                 intel_crtc->new_config = NULL;
8796 fail_unlock:
8797         if (ret == -EDEADLK) {
8798                 drm_modeset_backoff(ctx);
8799                 goto retry;
8800         }
8801
8802         return false;
8803 }
8804
8805 void intel_release_load_detect_pipe(struct drm_connector *connector,
8806                                     struct intel_load_detect_pipe *old)
8807 {
8808         struct intel_encoder *intel_encoder =
8809                 intel_attached_encoder(connector);
8810         struct drm_encoder *encoder = &intel_encoder->base;
8811         struct drm_crtc *crtc = encoder->crtc;
8812         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8813
8814         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8815                       connector->base.id, connector->name,
8816                       encoder->base.id, encoder->name);
8817
8818         if (old->load_detect_temp) {
8819                 to_intel_connector(connector)->new_encoder = NULL;
8820                 intel_encoder->new_crtc = NULL;
8821                 intel_crtc->new_enabled = false;
8822                 intel_crtc->new_config = NULL;
8823                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8824
8825                 if (old->release_fb) {
8826                         drm_framebuffer_unregister_private(old->release_fb);
8827                         drm_framebuffer_unreference(old->release_fb);
8828                 }
8829
8830                 return;
8831         }
8832
8833         /* Switch crtc and encoder back off if necessary */
8834         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8835                 connector->funcs->dpms(connector, old->dpms_mode);
8836 }
8837
8838 static int i9xx_pll_refclk(struct drm_device *dev,
8839                            const struct intel_crtc_config *pipe_config)
8840 {
8841         struct drm_i915_private *dev_priv = dev->dev_private;
8842         u32 dpll = pipe_config->dpll_hw_state.dpll;
8843
8844         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8845                 return dev_priv->vbt.lvds_ssc_freq;
8846         else if (HAS_PCH_SPLIT(dev))
8847                 return 120000;
8848         else if (!IS_GEN2(dev))
8849                 return 96000;
8850         else
8851                 return 48000;
8852 }
8853
8854 /* Returns the clock of the currently programmed mode of the given pipe. */
8855 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8856                                 struct intel_crtc_config *pipe_config)
8857 {
8858         struct drm_device *dev = crtc->base.dev;
8859         struct drm_i915_private *dev_priv = dev->dev_private;
8860         int pipe = pipe_config->cpu_transcoder;
8861         u32 dpll = pipe_config->dpll_hw_state.dpll;
8862         u32 fp;
8863         intel_clock_t clock;
8864         int refclk = i9xx_pll_refclk(dev, pipe_config);
8865
8866         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8867                 fp = pipe_config->dpll_hw_state.fp0;
8868         else
8869                 fp = pipe_config->dpll_hw_state.fp1;
8870
8871         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8872         if (IS_PINEVIEW(dev)) {
8873                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8874                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8875         } else {
8876                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8877                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8878         }
8879
8880         if (!IS_GEN2(dev)) {
8881                 if (IS_PINEVIEW(dev))
8882                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8883                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8884                 else
8885                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8886                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8887
8888                 switch (dpll & DPLL_MODE_MASK) {
8889                 case DPLLB_MODE_DAC_SERIAL:
8890                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8891                                 5 : 10;
8892                         break;
8893                 case DPLLB_MODE_LVDS:
8894                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8895                                 7 : 14;
8896                         break;
8897                 default:
8898                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8899                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8900                         return;
8901                 }
8902
8903                 if (IS_PINEVIEW(dev))
8904                         pineview_clock(refclk, &clock);
8905                 else
8906                         i9xx_clock(refclk, &clock);
8907         } else {
8908                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8909                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8910
8911                 if (is_lvds) {
8912                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8913                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8914
8915                         if (lvds & LVDS_CLKB_POWER_UP)
8916                                 clock.p2 = 7;
8917                         else
8918                                 clock.p2 = 14;
8919                 } else {
8920                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8921                                 clock.p1 = 2;
8922                         else {
8923                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8924                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8925                         }
8926                         if (dpll & PLL_P2_DIVIDE_BY_4)
8927                                 clock.p2 = 4;
8928                         else
8929                                 clock.p2 = 2;
8930                 }
8931
8932                 i9xx_clock(refclk, &clock);
8933         }
8934
8935         /*
8936          * This value includes pixel_multiplier. We will use
8937          * port_clock to compute adjusted_mode.crtc_clock in the
8938          * encoder's get_config() function.
8939          */
8940         pipe_config->port_clock = clock.dot;
8941 }
8942
8943 int intel_dotclock_calculate(int link_freq,
8944                              const struct intel_link_m_n *m_n)
8945 {
8946         /*
8947          * The calculation for the data clock is:
8948          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8949          * But we want to avoid losing precison if possible, so:
8950          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8951          *
8952          * and the link clock is simpler:
8953          * link_clock = (m * link_clock) / n
8954          */
8955
8956         if (!m_n->link_n)
8957                 return 0;
8958
8959         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8960 }
8961
8962 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8963                                    struct intel_crtc_config *pipe_config)
8964 {
8965         struct drm_device *dev = crtc->base.dev;
8966
8967         /* read out port_clock from the DPLL */
8968         i9xx_crtc_clock_get(crtc, pipe_config);
8969
8970         /*
8971          * This value does not include pixel_multiplier.
8972          * We will check that port_clock and adjusted_mode.crtc_clock
8973          * agree once we know their relationship in the encoder's
8974          * get_config() function.
8975          */
8976         pipe_config->adjusted_mode.crtc_clock =
8977                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8978                                          &pipe_config->fdi_m_n);
8979 }
8980
8981 /** Returns the currently programmed mode of the given pipe. */
8982 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8983                                              struct drm_crtc *crtc)
8984 {
8985         struct drm_i915_private *dev_priv = dev->dev_private;
8986         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8987         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8988         struct drm_display_mode *mode;
8989         struct intel_crtc_config pipe_config;
8990         int htot = I915_READ(HTOTAL(cpu_transcoder));
8991         int hsync = I915_READ(HSYNC(cpu_transcoder));
8992         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8993         int vsync = I915_READ(VSYNC(cpu_transcoder));
8994         enum pipe pipe = intel_crtc->pipe;
8995
8996         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8997         if (!mode)
8998                 return NULL;
8999
9000         /*
9001          * Construct a pipe_config sufficient for getting the clock info
9002          * back out of crtc_clock_get.
9003          *
9004          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9005          * to use a real value here instead.
9006          */
9007         pipe_config.cpu_transcoder = (enum transcoder) pipe;
9008         pipe_config.pixel_multiplier = 1;
9009         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9010         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9011         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
9012         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9013
9014         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
9015         mode->hdisplay = (htot & 0xffff) + 1;
9016         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9017         mode->hsync_start = (hsync & 0xffff) + 1;
9018         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9019         mode->vdisplay = (vtot & 0xffff) + 1;
9020         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9021         mode->vsync_start = (vsync & 0xffff) + 1;
9022         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9023
9024         drm_mode_set_name(mode);
9025
9026         return mode;
9027 }
9028
9029 static void intel_increase_pllclock(struct drm_device *dev,
9030                                     enum pipe pipe)
9031 {
9032         struct drm_i915_private *dev_priv = dev->dev_private;
9033         int dpll_reg = DPLL(pipe);
9034         int dpll;
9035
9036         if (!HAS_GMCH_DISPLAY(dev))
9037                 return;
9038
9039         if (!dev_priv->lvds_downclock_avail)
9040                 return;
9041
9042         dpll = I915_READ(dpll_reg);
9043         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
9044                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
9045
9046                 assert_panel_unlocked(dev_priv, pipe);
9047
9048                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
9049                 I915_WRITE(dpll_reg, dpll);
9050                 intel_wait_for_vblank(dev, pipe);
9051
9052                 dpll = I915_READ(dpll_reg);
9053                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
9054                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
9055         }
9056 }
9057
9058 static void intel_decrease_pllclock(struct drm_crtc *crtc)
9059 {
9060         struct drm_device *dev = crtc->dev;
9061         struct drm_i915_private *dev_priv = dev->dev_private;
9062         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9063
9064         if (!HAS_GMCH_DISPLAY(dev))
9065                 return;
9066
9067         if (!dev_priv->lvds_downclock_avail)
9068                 return;
9069
9070         /*
9071          * Since this is called by a timer, we should never get here in
9072          * the manual case.
9073          */
9074         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9075                 int pipe = intel_crtc->pipe;
9076                 int dpll_reg = DPLL(pipe);
9077                 int dpll;
9078
9079                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
9080
9081                 assert_panel_unlocked(dev_priv, pipe);
9082
9083                 dpll = I915_READ(dpll_reg);
9084                 dpll |= DISPLAY_RATE_SELECT_FPA1;
9085                 I915_WRITE(dpll_reg, dpll);
9086                 intel_wait_for_vblank(dev, pipe);
9087                 dpll = I915_READ(dpll_reg);
9088                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9089                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9090         }
9091
9092 }
9093
9094 void intel_mark_busy(struct drm_device *dev)
9095 {
9096         struct drm_i915_private *dev_priv = dev->dev_private;
9097
9098         if (dev_priv->mm.busy)
9099                 return;
9100
9101         intel_runtime_pm_get(dev_priv);
9102         i915_update_gfx_val(dev_priv);
9103         dev_priv->mm.busy = true;
9104 }
9105
9106 void intel_mark_idle(struct drm_device *dev)
9107 {
9108         struct drm_i915_private *dev_priv = dev->dev_private;
9109         struct drm_crtc *crtc;
9110
9111         if (!dev_priv->mm.busy)
9112                 return;
9113
9114         dev_priv->mm.busy = false;
9115
9116         if (!i915.powersave)
9117                 goto out;
9118
9119         for_each_crtc(dev, crtc) {
9120                 if (!crtc->primary->fb)
9121                         continue;
9122
9123                 intel_decrease_pllclock(crtc);
9124         }
9125
9126         if (INTEL_INFO(dev)->gen >= 6)
9127                 gen6_rps_idle(dev->dev_private);
9128
9129 out:
9130         intel_runtime_pm_put(dev_priv);
9131 }
9132
9133
9134 /**
9135  * intel_mark_fb_busy - mark given planes as busy
9136  * @dev: DRM device
9137  * @frontbuffer_bits: bits for the affected planes
9138  * @ring: optional ring for asynchronous commands
9139  *
9140  * This function gets called every time the screen contents change. It can be
9141  * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
9142  */
9143 static void intel_mark_fb_busy(struct drm_device *dev,
9144                                unsigned frontbuffer_bits,
9145                                struct intel_engine_cs *ring)
9146 {
9147         struct drm_i915_private *dev_priv = dev->dev_private;
9148         enum pipe pipe;
9149
9150         if (!i915.powersave)
9151                 return;
9152
9153         for_each_pipe(dev_priv, pipe) {
9154                 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
9155                         continue;
9156
9157                 intel_increase_pllclock(dev, pipe);
9158                 if (ring && intel_fbc_enabled(dev))
9159                         ring->fbc_dirty = true;
9160         }
9161 }
9162
9163 /**
9164  * intel_fb_obj_invalidate - invalidate frontbuffer object
9165  * @obj: GEM object to invalidate
9166  * @ring: set for asynchronous rendering
9167  *
9168  * This function gets called every time rendering on the given object starts and
9169  * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
9170  * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
9171  * until the rendering completes or a flip on this frontbuffer plane is
9172  * scheduled.
9173  */
9174 void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
9175                              struct intel_engine_cs *ring)
9176 {
9177         struct drm_device *dev = obj->base.dev;
9178         struct drm_i915_private *dev_priv = dev->dev_private;
9179
9180         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9181
9182         if (!obj->frontbuffer_bits)
9183                 return;
9184
9185         if (ring) {
9186                 mutex_lock(&dev_priv->fb_tracking.lock);
9187                 dev_priv->fb_tracking.busy_bits
9188                         |= obj->frontbuffer_bits;
9189                 dev_priv->fb_tracking.flip_bits
9190                         &= ~obj->frontbuffer_bits;
9191                 mutex_unlock(&dev_priv->fb_tracking.lock);
9192         }
9193
9194         intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
9195
9196         intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
9197 }
9198
9199 /**
9200  * intel_frontbuffer_flush - flush frontbuffer
9201  * @dev: DRM device
9202  * @frontbuffer_bits: frontbuffer plane tracking bits
9203  *
9204  * This function gets called every time rendering on the given planes has
9205  * completed and frontbuffer caching can be started again. Flushes will get
9206  * delayed if they're blocked by some oustanding asynchronous rendering.
9207  *
9208  * Can be called without any locks held.
9209  */
9210 void intel_frontbuffer_flush(struct drm_device *dev,
9211                              unsigned frontbuffer_bits)
9212 {
9213         struct drm_i915_private *dev_priv = dev->dev_private;
9214
9215         /* Delay flushing when rings are still busy.*/
9216         mutex_lock(&dev_priv->fb_tracking.lock);
9217         frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9218         mutex_unlock(&dev_priv->fb_tracking.lock);
9219
9220         intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9221
9222         intel_edp_psr_flush(dev, frontbuffer_bits);
9223
9224         /*
9225          * FIXME: Unconditional fbc flushing here is a rather gross hack and
9226          * needs to be reworked into a proper frontbuffer tracking scheme like
9227          * psr employs.
9228          */
9229         if (IS_BROADWELL(dev))
9230                 gen8_fbc_sw_flush(dev, FBC_REND_CACHE_CLEAN);
9231 }
9232
9233 /**
9234  * intel_fb_obj_flush - flush frontbuffer object
9235  * @obj: GEM object to flush
9236  * @retire: set when retiring asynchronous rendering
9237  *
9238  * This function gets called every time rendering on the given object has
9239  * completed and frontbuffer caching can be started again. If @retire is true
9240  * then any delayed flushes will be unblocked.
9241  */
9242 void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9243                         bool retire)
9244 {
9245         struct drm_device *dev = obj->base.dev;
9246         struct drm_i915_private *dev_priv = dev->dev_private;
9247         unsigned frontbuffer_bits;
9248
9249         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9250
9251         if (!obj->frontbuffer_bits)
9252                 return;
9253
9254         frontbuffer_bits = obj->frontbuffer_bits;
9255
9256         if (retire) {
9257                 mutex_lock(&dev_priv->fb_tracking.lock);
9258                 /* Filter out new bits since rendering started. */
9259                 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9260
9261                 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9262                 mutex_unlock(&dev_priv->fb_tracking.lock);
9263         }
9264
9265         intel_frontbuffer_flush(dev, frontbuffer_bits);
9266 }
9267
9268 /**
9269  * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9270  * @dev: DRM device
9271  * @frontbuffer_bits: frontbuffer plane tracking bits
9272  *
9273  * This function gets called after scheduling a flip on @obj. The actual
9274  * frontbuffer flushing will be delayed until completion is signalled with
9275  * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9276  * flush will be cancelled.
9277  *
9278  * Can be called without any locks held.
9279  */
9280 void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9281                                     unsigned frontbuffer_bits)
9282 {
9283         struct drm_i915_private *dev_priv = dev->dev_private;
9284
9285         mutex_lock(&dev_priv->fb_tracking.lock);
9286         dev_priv->fb_tracking.flip_bits
9287                 |= frontbuffer_bits;
9288         mutex_unlock(&dev_priv->fb_tracking.lock);
9289 }
9290
9291 /**
9292  * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9293  * @dev: DRM device
9294  * @frontbuffer_bits: frontbuffer plane tracking bits
9295  *
9296  * This function gets called after the flip has been latched and will complete
9297  * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9298  *
9299  * Can be called without any locks held.
9300  */
9301 void intel_frontbuffer_flip_complete(struct drm_device *dev,
9302                                      unsigned frontbuffer_bits)
9303 {
9304         struct drm_i915_private *dev_priv = dev->dev_private;
9305
9306         mutex_lock(&dev_priv->fb_tracking.lock);
9307         /* Mask any cancelled flips. */
9308         frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9309         dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9310         mutex_unlock(&dev_priv->fb_tracking.lock);
9311
9312         intel_frontbuffer_flush(dev, frontbuffer_bits);
9313 }
9314
9315 static void intel_crtc_destroy(struct drm_crtc *crtc)
9316 {
9317         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9318         struct drm_device *dev = crtc->dev;
9319         struct intel_unpin_work *work;
9320         unsigned long flags;
9321
9322         spin_lock_irqsave(&dev->event_lock, flags);
9323         work = intel_crtc->unpin_work;
9324         intel_crtc->unpin_work = NULL;
9325         spin_unlock_irqrestore(&dev->event_lock, flags);
9326
9327         if (work) {
9328                 cancel_work_sync(&work->work);
9329                 kfree(work);
9330         }
9331
9332         drm_crtc_cleanup(crtc);
9333
9334         kfree(intel_crtc);
9335 }
9336
9337 static void intel_unpin_work_fn(struct work_struct *__work)
9338 {
9339         struct intel_unpin_work *work =
9340                 container_of(__work, struct intel_unpin_work, work);
9341         struct drm_device *dev = work->crtc->dev;
9342         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9343
9344         mutex_lock(&dev->struct_mutex);
9345         intel_unpin_fb_obj(work->old_fb_obj);
9346         drm_gem_object_unreference(&work->pending_flip_obj->base);
9347         drm_gem_object_unreference(&work->old_fb_obj->base);
9348
9349         intel_update_fbc(dev);
9350         mutex_unlock(&dev->struct_mutex);
9351
9352         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9353
9354         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9355         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9356
9357         kfree(work);
9358 }
9359
9360 static void do_intel_finish_page_flip(struct drm_device *dev,
9361                                       struct drm_crtc *crtc)
9362 {
9363         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9364         struct intel_unpin_work *work;
9365         unsigned long flags;
9366
9367         /* Ignore early vblank irqs */
9368         if (intel_crtc == NULL)
9369                 return;
9370
9371         spin_lock_irqsave(&dev->event_lock, flags);
9372         work = intel_crtc->unpin_work;
9373
9374         /* Ensure we don't miss a work->pending update ... */
9375         smp_rmb();
9376
9377         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9378                 spin_unlock_irqrestore(&dev->event_lock, flags);
9379                 return;
9380         }
9381
9382         page_flip_completed(intel_crtc);
9383
9384         spin_unlock_irqrestore(&dev->event_lock, flags);
9385 }
9386
9387 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9388 {
9389         struct drm_i915_private *dev_priv = dev->dev_private;
9390         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9391
9392         do_intel_finish_page_flip(dev, crtc);
9393 }
9394
9395 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9396 {
9397         struct drm_i915_private *dev_priv = dev->dev_private;
9398         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9399
9400         do_intel_finish_page_flip(dev, crtc);
9401 }
9402
9403 /* Is 'a' after or equal to 'b'? */
9404 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9405 {
9406         return !((a - b) & 0x80000000);
9407 }
9408
9409 static bool page_flip_finished(struct intel_crtc *crtc)
9410 {
9411         struct drm_device *dev = crtc->base.dev;
9412         struct drm_i915_private *dev_priv = dev->dev_private;
9413
9414         /*
9415          * The relevant registers doen't exist on pre-ctg.
9416          * As the flip done interrupt doesn't trigger for mmio
9417          * flips on gmch platforms, a flip count check isn't
9418          * really needed there. But since ctg has the registers,
9419          * include it in the check anyway.
9420          */
9421         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9422                 return true;
9423
9424         /*
9425          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9426          * used the same base address. In that case the mmio flip might
9427          * have completed, but the CS hasn't even executed the flip yet.
9428          *
9429          * A flip count check isn't enough as the CS might have updated
9430          * the base address just after start of vblank, but before we
9431          * managed to process the interrupt. This means we'd complete the
9432          * CS flip too soon.
9433          *
9434          * Combining both checks should get us a good enough result. It may
9435          * still happen that the CS flip has been executed, but has not
9436          * yet actually completed. But in case the base address is the same
9437          * anyway, we don't really care.
9438          */
9439         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9440                 crtc->unpin_work->gtt_offset &&
9441                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9442                                     crtc->unpin_work->flip_count);
9443 }
9444
9445 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9446 {
9447         struct drm_i915_private *dev_priv = dev->dev_private;
9448         struct intel_crtc *intel_crtc =
9449                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9450         unsigned long flags;
9451
9452         /* NB: An MMIO update of the plane base pointer will also
9453          * generate a page-flip completion irq, i.e. every modeset
9454          * is also accompanied by a spurious intel_prepare_page_flip().
9455          */
9456         spin_lock_irqsave(&dev->event_lock, flags);
9457         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9458                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9459         spin_unlock_irqrestore(&dev->event_lock, flags);
9460 }
9461
9462 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9463 {
9464         /* Ensure that the work item is consistent when activating it ... */
9465         smp_wmb();
9466         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9467         /* and that it is marked active as soon as the irq could fire. */
9468         smp_wmb();
9469 }
9470
9471 static int intel_gen2_queue_flip(struct drm_device *dev,
9472                                  struct drm_crtc *crtc,
9473                                  struct drm_framebuffer *fb,
9474                                  struct drm_i915_gem_object *obj,
9475                                  struct intel_engine_cs *ring,
9476                                  uint32_t flags)
9477 {
9478         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9479         u32 flip_mask;
9480         int ret;
9481
9482         ret = intel_ring_begin(ring, 6);
9483         if (ret)
9484                 return ret;
9485
9486         /* Can't queue multiple flips, so wait for the previous
9487          * one to finish before executing the next.
9488          */
9489         if (intel_crtc->plane)
9490                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9491         else
9492                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9493         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9494         intel_ring_emit(ring, MI_NOOP);
9495         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9496                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9497         intel_ring_emit(ring, fb->pitches[0]);
9498         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9499         intel_ring_emit(ring, 0); /* aux display base address, unused */
9500
9501         intel_mark_page_flip_active(intel_crtc);
9502         __intel_ring_advance(ring);
9503         return 0;
9504 }
9505
9506 static int intel_gen3_queue_flip(struct drm_device *dev,
9507                                  struct drm_crtc *crtc,
9508                                  struct drm_framebuffer *fb,
9509                                  struct drm_i915_gem_object *obj,
9510                                  struct intel_engine_cs *ring,
9511                                  uint32_t flags)
9512 {
9513         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9514         u32 flip_mask;
9515         int ret;
9516
9517         ret = intel_ring_begin(ring, 6);
9518         if (ret)
9519                 return ret;
9520
9521         if (intel_crtc->plane)
9522                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9523         else
9524                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9525         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9526         intel_ring_emit(ring, MI_NOOP);
9527         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9528                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9529         intel_ring_emit(ring, fb->pitches[0]);
9530         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9531         intel_ring_emit(ring, MI_NOOP);
9532
9533         intel_mark_page_flip_active(intel_crtc);
9534         __intel_ring_advance(ring);
9535         return 0;
9536 }
9537
9538 static int intel_gen4_queue_flip(struct drm_device *dev,
9539                                  struct drm_crtc *crtc,
9540                                  struct drm_framebuffer *fb,
9541                                  struct drm_i915_gem_object *obj,
9542                                  struct intel_engine_cs *ring,
9543                                  uint32_t flags)
9544 {
9545         struct drm_i915_private *dev_priv = dev->dev_private;
9546         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9547         uint32_t pf, pipesrc;
9548         int ret;
9549
9550         ret = intel_ring_begin(ring, 4);
9551         if (ret)
9552                 return ret;
9553
9554         /* i965+ uses the linear or tiled offsets from the
9555          * Display Registers (which do not change across a page-flip)
9556          * so we need only reprogram the base address.
9557          */
9558         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9559                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9560         intel_ring_emit(ring, fb->pitches[0]);
9561         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9562                         obj->tiling_mode);
9563
9564         /* XXX Enabling the panel-fitter across page-flip is so far
9565          * untested on non-native modes, so ignore it for now.
9566          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9567          */
9568         pf = 0;
9569         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9570         intel_ring_emit(ring, pf | pipesrc);
9571
9572         intel_mark_page_flip_active(intel_crtc);
9573         __intel_ring_advance(ring);
9574         return 0;
9575 }
9576
9577 static int intel_gen6_queue_flip(struct drm_device *dev,
9578                                  struct drm_crtc *crtc,
9579                                  struct drm_framebuffer *fb,
9580                                  struct drm_i915_gem_object *obj,
9581                                  struct intel_engine_cs *ring,
9582                                  uint32_t flags)
9583 {
9584         struct drm_i915_private *dev_priv = dev->dev_private;
9585         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9586         uint32_t pf, pipesrc;
9587         int ret;
9588
9589         ret = intel_ring_begin(ring, 4);
9590         if (ret)
9591                 return ret;
9592
9593         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9594                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9595         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9596         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9597
9598         /* Contrary to the suggestions in the documentation,
9599          * "Enable Panel Fitter" does not seem to be required when page
9600          * flipping with a non-native mode, and worse causes a normal
9601          * modeset to fail.
9602          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9603          */
9604         pf = 0;
9605         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9606         intel_ring_emit(ring, pf | pipesrc);
9607
9608         intel_mark_page_flip_active(intel_crtc);
9609         __intel_ring_advance(ring);
9610         return 0;
9611 }
9612
9613 static int intel_gen7_queue_flip(struct drm_device *dev,
9614                                  struct drm_crtc *crtc,
9615                                  struct drm_framebuffer *fb,
9616                                  struct drm_i915_gem_object *obj,
9617                                  struct intel_engine_cs *ring,
9618                                  uint32_t flags)
9619 {
9620         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9621         uint32_t plane_bit = 0;
9622         int len, ret;
9623
9624         switch (intel_crtc->plane) {
9625         case PLANE_A:
9626                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9627                 break;
9628         case PLANE_B:
9629                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9630                 break;
9631         case PLANE_C:
9632                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9633                 break;
9634         default:
9635                 WARN_ONCE(1, "unknown plane in flip command\n");
9636                 return -ENODEV;
9637         }
9638
9639         len = 4;
9640         if (ring->id == RCS) {
9641                 len += 6;
9642                 /*
9643                  * On Gen 8, SRM is now taking an extra dword to accommodate
9644                  * 48bits addresses, and we need a NOOP for the batch size to
9645                  * stay even.
9646                  */
9647                 if (IS_GEN8(dev))
9648                         len += 2;
9649         }
9650
9651         /*
9652          * BSpec MI_DISPLAY_FLIP for IVB:
9653          * "The full packet must be contained within the same cache line."
9654          *
9655          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9656          * cacheline, if we ever start emitting more commands before
9657          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9658          * then do the cacheline alignment, and finally emit the
9659          * MI_DISPLAY_FLIP.
9660          */
9661         ret = intel_ring_cacheline_align(ring);
9662         if (ret)
9663                 return ret;
9664
9665         ret = intel_ring_begin(ring, len);
9666         if (ret)
9667                 return ret;
9668
9669         /* Unmask the flip-done completion message. Note that the bspec says that
9670          * we should do this for both the BCS and RCS, and that we must not unmask
9671          * more than one flip event at any time (or ensure that one flip message
9672          * can be sent by waiting for flip-done prior to queueing new flips).
9673          * Experimentation says that BCS works despite DERRMR masking all
9674          * flip-done completion events and that unmasking all planes at once
9675          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9676          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9677          */
9678         if (ring->id == RCS) {
9679                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9680                 intel_ring_emit(ring, DERRMR);
9681                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9682                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9683                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9684                 if (IS_GEN8(dev))
9685                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9686                                               MI_SRM_LRM_GLOBAL_GTT);
9687                 else
9688                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9689                                               MI_SRM_LRM_GLOBAL_GTT);
9690                 intel_ring_emit(ring, DERRMR);
9691                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9692                 if (IS_GEN8(dev)) {
9693                         intel_ring_emit(ring, 0);
9694                         intel_ring_emit(ring, MI_NOOP);
9695                 }
9696         }
9697
9698         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9699         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9700         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9701         intel_ring_emit(ring, (MI_NOOP));
9702
9703         intel_mark_page_flip_active(intel_crtc);
9704         __intel_ring_advance(ring);
9705         return 0;
9706 }
9707
9708 static bool use_mmio_flip(struct intel_engine_cs *ring,
9709                           struct drm_i915_gem_object *obj)
9710 {
9711         /*
9712          * This is not being used for older platforms, because
9713          * non-availability of flip done interrupt forces us to use
9714          * CS flips. Older platforms derive flip done using some clever
9715          * tricks involving the flip_pending status bits and vblank irqs.
9716          * So using MMIO flips there would disrupt this mechanism.
9717          */
9718
9719         if (ring == NULL)
9720                 return true;
9721
9722         if (INTEL_INFO(ring->dev)->gen < 5)
9723                 return false;
9724
9725         if (i915.use_mmio_flip < 0)
9726                 return false;
9727         else if (i915.use_mmio_flip > 0)
9728                 return true;
9729         else if (i915.enable_execlists)
9730                 return true;
9731         else
9732                 return ring != obj->ring;
9733 }
9734
9735 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9736 {
9737         struct drm_device *dev = intel_crtc->base.dev;
9738         struct drm_i915_private *dev_priv = dev->dev_private;
9739         struct intel_framebuffer *intel_fb =
9740                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9741         struct drm_i915_gem_object *obj = intel_fb->obj;
9742         u32 dspcntr;
9743         u32 reg;
9744
9745         intel_mark_page_flip_active(intel_crtc);
9746
9747         reg = DSPCNTR(intel_crtc->plane);
9748         dspcntr = I915_READ(reg);
9749
9750         if (INTEL_INFO(dev)->gen >= 4) {
9751                 if (obj->tiling_mode != I915_TILING_NONE)
9752                         dspcntr |= DISPPLANE_TILED;
9753                 else
9754                         dspcntr &= ~DISPPLANE_TILED;
9755         }
9756         I915_WRITE(reg, dspcntr);
9757
9758         I915_WRITE(DSPSURF(intel_crtc->plane),
9759                    intel_crtc->unpin_work->gtt_offset);
9760         POSTING_READ(DSPSURF(intel_crtc->plane));
9761 }
9762
9763 static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9764 {
9765         struct intel_engine_cs *ring;
9766         int ret;
9767
9768         lockdep_assert_held(&obj->base.dev->struct_mutex);
9769
9770         if (!obj->last_write_seqno)
9771                 return 0;
9772
9773         ring = obj->ring;
9774
9775         if (i915_seqno_passed(ring->get_seqno(ring, true),
9776                               obj->last_write_seqno))
9777                 return 0;
9778
9779         ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9780         if (ret)
9781                 return ret;
9782
9783         if (WARN_ON(!ring->irq_get(ring)))
9784                 return 0;
9785
9786         return 1;
9787 }
9788
9789 void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9790 {
9791         struct drm_i915_private *dev_priv = to_i915(ring->dev);
9792         struct intel_crtc *intel_crtc;
9793         unsigned long irq_flags;
9794         u32 seqno;
9795
9796         seqno = ring->get_seqno(ring, false);
9797
9798         spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9799         for_each_intel_crtc(ring->dev, intel_crtc) {
9800                 struct intel_mmio_flip *mmio_flip;
9801
9802                 mmio_flip = &intel_crtc->mmio_flip;
9803                 if (mmio_flip->seqno == 0)
9804                         continue;
9805
9806                 if (ring->id != mmio_flip->ring_id)
9807                         continue;
9808
9809                 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9810                         intel_do_mmio_flip(intel_crtc);
9811                         mmio_flip->seqno = 0;
9812                         ring->irq_put(ring);
9813                 }
9814         }
9815         spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9816 }
9817
9818 static int intel_queue_mmio_flip(struct drm_device *dev,
9819                                  struct drm_crtc *crtc,
9820                                  struct drm_framebuffer *fb,
9821                                  struct drm_i915_gem_object *obj,
9822                                  struct intel_engine_cs *ring,
9823                                  uint32_t flags)
9824 {
9825         struct drm_i915_private *dev_priv = dev->dev_private;
9826         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9827         unsigned long irq_flags;
9828         int ret;
9829
9830         if (WARN_ON(intel_crtc->mmio_flip.seqno))
9831                 return -EBUSY;
9832
9833         ret = intel_postpone_flip(obj);
9834         if (ret < 0)
9835                 return ret;
9836         if (ret == 0) {
9837                 intel_do_mmio_flip(intel_crtc);
9838                 return 0;
9839         }
9840
9841         spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9842         intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9843         intel_crtc->mmio_flip.ring_id = obj->ring->id;
9844         spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9845
9846         /*
9847          * Double check to catch cases where irq fired before
9848          * mmio flip data was ready
9849          */
9850         intel_notify_mmio_flip(obj->ring);
9851         return 0;
9852 }
9853
9854 static int intel_default_queue_flip(struct drm_device *dev,
9855                                     struct drm_crtc *crtc,
9856                                     struct drm_framebuffer *fb,
9857                                     struct drm_i915_gem_object *obj,
9858                                     struct intel_engine_cs *ring,
9859                                     uint32_t flags)
9860 {
9861         return -ENODEV;
9862 }
9863
9864 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9865                                          struct drm_crtc *crtc)
9866 {
9867         struct drm_i915_private *dev_priv = dev->dev_private;
9868         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9869         struct intel_unpin_work *work = intel_crtc->unpin_work;
9870         u32 addr;
9871
9872         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9873                 return true;
9874
9875         if (!work->enable_stall_check)
9876                 return false;
9877
9878         if (work->flip_ready_vblank == 0) {
9879                 if (work->flip_queued_ring &&
9880                     !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9881                                        work->flip_queued_seqno))
9882                         return false;
9883
9884                 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9885         }
9886
9887         if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9888                 return false;
9889
9890         /* Potential stall - if we see that the flip has happened,
9891          * assume a missed interrupt. */
9892         if (INTEL_INFO(dev)->gen >= 4)
9893                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9894         else
9895                 addr = I915_READ(DSPADDR(intel_crtc->plane));
9896
9897         /* There is a potential issue here with a false positive after a flip
9898          * to the same address. We could address this by checking for a
9899          * non-incrementing frame counter.
9900          */
9901         return addr == work->gtt_offset;
9902 }
9903
9904 void intel_check_page_flip(struct drm_device *dev, int pipe)
9905 {
9906         struct drm_i915_private *dev_priv = dev->dev_private;
9907         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9908         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9909         unsigned long flags;
9910
9911         if (crtc == NULL)
9912                 return;
9913
9914         spin_lock_irqsave(&dev->event_lock, flags);
9915         if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9916                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9917                          intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9918                 page_flip_completed(intel_crtc);
9919         }
9920         spin_unlock_irqrestore(&dev->event_lock, flags);
9921 }
9922
9923 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9924                                 struct drm_framebuffer *fb,
9925                                 struct drm_pending_vblank_event *event,
9926                                 uint32_t page_flip_flags)
9927 {
9928         struct drm_device *dev = crtc->dev;
9929         struct drm_i915_private *dev_priv = dev->dev_private;
9930         struct drm_framebuffer *old_fb = crtc->primary->fb;
9931         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9932         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9933         enum pipe pipe = intel_crtc->pipe;
9934         struct intel_unpin_work *work;
9935         struct intel_engine_cs *ring;
9936         unsigned long flags;
9937         int ret;
9938
9939         /*
9940          * drm_mode_page_flip_ioctl() should already catch this, but double
9941          * check to be safe.  In the future we may enable pageflipping from
9942          * a disabled primary plane.
9943          */
9944         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9945                 return -EBUSY;
9946
9947         /* Can't change pixel format via MI display flips. */
9948         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9949                 return -EINVAL;
9950
9951         /*
9952          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9953          * Note that pitch changes could also affect these register.
9954          */
9955         if (INTEL_INFO(dev)->gen > 3 &&
9956             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9957              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9958                 return -EINVAL;
9959
9960         if (i915_terminally_wedged(&dev_priv->gpu_error))
9961                 goto out_hang;
9962
9963         work = kzalloc(sizeof(*work), GFP_KERNEL);
9964         if (work == NULL)
9965                 return -ENOMEM;
9966
9967         work->event = event;
9968         work->crtc = crtc;
9969         work->old_fb_obj = intel_fb_obj(old_fb);
9970         INIT_WORK(&work->work, intel_unpin_work_fn);
9971
9972         ret = drm_crtc_vblank_get(crtc);
9973         if (ret)
9974                 goto free_work;
9975
9976         /* We borrow the event spin lock for protecting unpin_work */
9977         spin_lock_irqsave(&dev->event_lock, flags);
9978         if (intel_crtc->unpin_work) {
9979                 /* Before declaring the flip queue wedged, check if
9980                  * the hardware completed the operation behind our backs.
9981                  */
9982                 if (__intel_pageflip_stall_check(dev, crtc)) {
9983                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9984                         page_flip_completed(intel_crtc);
9985                 } else {
9986                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9987                         spin_unlock_irqrestore(&dev->event_lock, flags);
9988
9989                         drm_crtc_vblank_put(crtc);
9990                         kfree(work);
9991                         return -EBUSY;
9992                 }
9993         }
9994         intel_crtc->unpin_work = work;
9995         spin_unlock_irqrestore(&dev->event_lock, flags);
9996
9997         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9998                 flush_workqueue(dev_priv->wq);
9999
10000         ret = i915_mutex_lock_interruptible(dev);
10001         if (ret)
10002                 goto cleanup;
10003
10004         /* Reference the objects for the scheduled work. */
10005         drm_gem_object_reference(&work->old_fb_obj->base);
10006         drm_gem_object_reference(&obj->base);
10007
10008         crtc->primary->fb = fb;
10009
10010         work->pending_flip_obj = obj;
10011
10012         atomic_inc(&intel_crtc->unpin_work_count);
10013         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
10014
10015         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
10016                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
10017
10018         if (IS_VALLEYVIEW(dev)) {
10019                 ring = &dev_priv->ring[BCS];
10020                 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
10021                         /* vlv: DISPLAY_FLIP fails to change tiling */
10022                         ring = NULL;
10023         } else if (IS_IVYBRIDGE(dev)) {
10024                 ring = &dev_priv->ring[BCS];
10025         } else if (INTEL_INFO(dev)->gen >= 7) {
10026                 ring = obj->ring;
10027                 if (ring == NULL || ring->id != RCS)
10028                         ring = &dev_priv->ring[BCS];
10029         } else {
10030                 ring = &dev_priv->ring[RCS];
10031         }
10032
10033         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
10034         if (ret)
10035                 goto cleanup_pending;
10036
10037         work->gtt_offset =
10038                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
10039
10040         if (use_mmio_flip(ring, obj)) {
10041                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10042                                             page_flip_flags);
10043                 if (ret)
10044                         goto cleanup_unpin;
10045
10046                 work->flip_queued_seqno = obj->last_write_seqno;
10047                 work->flip_queued_ring = obj->ring;
10048         } else {
10049                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
10050                                                    page_flip_flags);
10051                 if (ret)
10052                         goto cleanup_unpin;
10053
10054                 work->flip_queued_seqno = intel_ring_get_seqno(ring);
10055                 work->flip_queued_ring = ring;
10056         }
10057
10058         work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
10059         work->enable_stall_check = true;
10060
10061         i915_gem_track_fb(work->old_fb_obj, obj,
10062                           INTEL_FRONTBUFFER_PRIMARY(pipe));
10063
10064         intel_disable_fbc(dev);
10065         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10066         mutex_unlock(&dev->struct_mutex);
10067
10068         trace_i915_flip_request(intel_crtc->plane, obj);
10069
10070         return 0;
10071
10072 cleanup_unpin:
10073         intel_unpin_fb_obj(obj);
10074 cleanup_pending:
10075         atomic_dec(&intel_crtc->unpin_work_count);
10076         crtc->primary->fb = old_fb;
10077         drm_gem_object_unreference(&work->old_fb_obj->base);
10078         drm_gem_object_unreference(&obj->base);
10079         mutex_unlock(&dev->struct_mutex);
10080
10081 cleanup:
10082         spin_lock_irqsave(&dev->event_lock, flags);
10083         intel_crtc->unpin_work = NULL;
10084         spin_unlock_irqrestore(&dev->event_lock, flags);
10085
10086         drm_crtc_vblank_put(crtc);
10087 free_work:
10088         kfree(work);
10089
10090         if (ret == -EIO) {
10091 out_hang:
10092                 intel_crtc_wait_for_pending_flips(crtc);
10093                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
10094                 if (ret == 0 && event) {
10095                         spin_lock_irqsave(&dev->event_lock, flags);
10096                         drm_send_vblank_event(dev, pipe, event);
10097                         spin_unlock_irqrestore(&dev->event_lock, flags);
10098                 }
10099         }
10100         return ret;
10101 }
10102
10103 static struct drm_crtc_helper_funcs intel_helper_funcs = {
10104         .mode_set_base_atomic = intel_pipe_set_base_atomic,
10105         .load_lut = intel_crtc_load_lut,
10106 };
10107
10108 /**
10109  * intel_modeset_update_staged_output_state
10110  *
10111  * Updates the staged output configuration state, e.g. after we've read out the
10112  * current hw state.
10113  */
10114 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
10115 {
10116         struct intel_crtc *crtc;
10117         struct intel_encoder *encoder;
10118         struct intel_connector *connector;
10119
10120         list_for_each_entry(connector, &dev->mode_config.connector_list,
10121                             base.head) {
10122                 connector->new_encoder =
10123                         to_intel_encoder(connector->base.encoder);
10124         }
10125
10126         for_each_intel_encoder(dev, encoder) {
10127                 encoder->new_crtc =
10128                         to_intel_crtc(encoder->base.crtc);
10129         }
10130
10131         for_each_intel_crtc(dev, crtc) {
10132                 crtc->new_enabled = crtc->base.enabled;
10133
10134                 if (crtc->new_enabled)
10135                         crtc->new_config = &crtc->config;
10136                 else
10137                         crtc->new_config = NULL;
10138         }
10139 }
10140
10141 /**
10142  * intel_modeset_commit_output_state
10143  *
10144  * This function copies the stage display pipe configuration to the real one.
10145  */
10146 static void intel_modeset_commit_output_state(struct drm_device *dev)
10147 {
10148         struct intel_crtc *crtc;
10149         struct intel_encoder *encoder;
10150         struct intel_connector *connector;
10151
10152         list_for_each_entry(connector, &dev->mode_config.connector_list,
10153                             base.head) {
10154                 connector->base.encoder = &connector->new_encoder->base;
10155         }
10156
10157         for_each_intel_encoder(dev, encoder) {
10158                 encoder->base.crtc = &encoder->new_crtc->base;
10159         }
10160
10161         for_each_intel_crtc(dev, crtc) {
10162                 crtc->base.enabled = crtc->new_enabled;
10163         }
10164 }
10165
10166 static void
10167 connected_sink_compute_bpp(struct intel_connector *connector,
10168                            struct intel_crtc_config *pipe_config)
10169 {
10170         int bpp = pipe_config->pipe_bpp;
10171
10172         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10173                 connector->base.base.id,
10174                 connector->base.name);
10175
10176         /* Don't use an invalid EDID bpc value */
10177         if (connector->base.display_info.bpc &&
10178             connector->base.display_info.bpc * 3 < bpp) {
10179                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10180                               bpp, connector->base.display_info.bpc*3);
10181                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10182         }
10183
10184         /* Clamp bpp to 8 on screens without EDID 1.4 */
10185         if (connector->base.display_info.bpc == 0 && bpp > 24) {
10186                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10187                               bpp);
10188                 pipe_config->pipe_bpp = 24;
10189         }
10190 }
10191
10192 static int
10193 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10194                           struct drm_framebuffer *fb,
10195                           struct intel_crtc_config *pipe_config)
10196 {
10197         struct drm_device *dev = crtc->base.dev;
10198         struct intel_connector *connector;
10199         int bpp;
10200
10201         switch (fb->pixel_format) {
10202         case DRM_FORMAT_C8:
10203                 bpp = 8*3; /* since we go through a colormap */
10204                 break;
10205         case DRM_FORMAT_XRGB1555:
10206         case DRM_FORMAT_ARGB1555:
10207                 /* checked in intel_framebuffer_init already */
10208                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10209                         return -EINVAL;
10210         case DRM_FORMAT_RGB565:
10211                 bpp = 6*3; /* min is 18bpp */
10212                 break;
10213         case DRM_FORMAT_XBGR8888:
10214         case DRM_FORMAT_ABGR8888:
10215                 /* checked in intel_framebuffer_init already */
10216                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10217                         return -EINVAL;
10218         case DRM_FORMAT_XRGB8888:
10219         case DRM_FORMAT_ARGB8888:
10220                 bpp = 8*3;
10221                 break;
10222         case DRM_FORMAT_XRGB2101010:
10223         case DRM_FORMAT_ARGB2101010:
10224         case DRM_FORMAT_XBGR2101010:
10225         case DRM_FORMAT_ABGR2101010:
10226                 /* checked in intel_framebuffer_init already */
10227                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10228                         return -EINVAL;
10229                 bpp = 10*3;
10230                 break;
10231         /* TODO: gen4+ supports 16 bpc floating point, too. */
10232         default:
10233                 DRM_DEBUG_KMS("unsupported depth\n");
10234                 return -EINVAL;
10235         }
10236
10237         pipe_config->pipe_bpp = bpp;
10238
10239         /* Clamp display bpp to EDID value */
10240         list_for_each_entry(connector, &dev->mode_config.connector_list,
10241                             base.head) {
10242                 if (!connector->new_encoder ||
10243                     connector->new_encoder->new_crtc != crtc)
10244                         continue;
10245
10246                 connected_sink_compute_bpp(connector, pipe_config);
10247         }
10248
10249         return bpp;
10250 }
10251
10252 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10253 {
10254         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10255                         "type: 0x%x flags: 0x%x\n",
10256                 mode->crtc_clock,
10257                 mode->crtc_hdisplay, mode->crtc_hsync_start,
10258                 mode->crtc_hsync_end, mode->crtc_htotal,
10259                 mode->crtc_vdisplay, mode->crtc_vsync_start,
10260                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10261 }
10262
10263 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10264                                    struct intel_crtc_config *pipe_config,
10265                                    const char *context)
10266 {
10267         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10268                       context, pipe_name(crtc->pipe));
10269
10270         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10271         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10272                       pipe_config->pipe_bpp, pipe_config->dither);
10273         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10274                       pipe_config->has_pch_encoder,
10275                       pipe_config->fdi_lanes,
10276                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10277                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10278                       pipe_config->fdi_m_n.tu);
10279         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10280                       pipe_config->has_dp_encoder,
10281                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10282                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10283                       pipe_config->dp_m_n.tu);
10284
10285         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10286                       pipe_config->has_dp_encoder,
10287                       pipe_config->dp_m2_n2.gmch_m,
10288                       pipe_config->dp_m2_n2.gmch_n,
10289                       pipe_config->dp_m2_n2.link_m,
10290                       pipe_config->dp_m2_n2.link_n,
10291                       pipe_config->dp_m2_n2.tu);
10292
10293         DRM_DEBUG_KMS("requested mode:\n");
10294         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10295         DRM_DEBUG_KMS("adjusted mode:\n");
10296         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
10297         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
10298         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10299         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10300                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10301         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10302                       pipe_config->gmch_pfit.control,
10303                       pipe_config->gmch_pfit.pgm_ratios,
10304                       pipe_config->gmch_pfit.lvds_border_bits);
10305         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10306                       pipe_config->pch_pfit.pos,
10307                       pipe_config->pch_pfit.size,
10308                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10309         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10310         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10311 }
10312
10313 static bool encoders_cloneable(const struct intel_encoder *a,
10314                                const struct intel_encoder *b)
10315 {
10316         /* masks could be asymmetric, so check both ways */
10317         return a == b || (a->cloneable & (1 << b->type) &&
10318                           b->cloneable & (1 << a->type));
10319 }
10320
10321 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10322                                          struct intel_encoder *encoder)
10323 {
10324         struct drm_device *dev = crtc->base.dev;
10325         struct intel_encoder *source_encoder;
10326
10327         for_each_intel_encoder(dev, source_encoder) {
10328                 if (source_encoder->new_crtc != crtc)
10329                         continue;
10330
10331                 if (!encoders_cloneable(encoder, source_encoder))
10332                         return false;
10333         }
10334
10335         return true;
10336 }
10337
10338 static bool check_encoder_cloning(struct intel_crtc *crtc)
10339 {
10340         struct drm_device *dev = crtc->base.dev;
10341         struct intel_encoder *encoder;
10342
10343         for_each_intel_encoder(dev, encoder) {
10344                 if (encoder->new_crtc != crtc)
10345                         continue;
10346
10347                 if (!check_single_encoder_cloning(crtc, encoder))
10348                         return false;
10349         }
10350
10351         return true;
10352 }
10353
10354 static struct intel_crtc_config *
10355 intel_modeset_pipe_config(struct drm_crtc *crtc,
10356                           struct drm_framebuffer *fb,
10357                           struct drm_display_mode *mode)
10358 {
10359         struct drm_device *dev = crtc->dev;
10360         struct intel_encoder *encoder;
10361         struct intel_crtc_config *pipe_config;
10362         int plane_bpp, ret = -EINVAL;
10363         bool retry = true;
10364
10365         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10366                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10367                 return ERR_PTR(-EINVAL);
10368         }
10369
10370         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10371         if (!pipe_config)
10372                 return ERR_PTR(-ENOMEM);
10373
10374         drm_mode_copy(&pipe_config->adjusted_mode, mode);
10375         drm_mode_copy(&pipe_config->requested_mode, mode);
10376
10377         pipe_config->cpu_transcoder =
10378                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10379         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10380
10381         /*
10382          * Sanitize sync polarity flags based on requested ones. If neither
10383          * positive or negative polarity is requested, treat this as meaning
10384          * negative polarity.
10385          */
10386         if (!(pipe_config->adjusted_mode.flags &
10387               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10388                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10389
10390         if (!(pipe_config->adjusted_mode.flags &
10391               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10392                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10393
10394         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10395          * plane pixel format and any sink constraints into account. Returns the
10396          * source plane bpp so that dithering can be selected on mismatches
10397          * after encoders and crtc also have had their say. */
10398         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10399                                               fb, pipe_config);
10400         if (plane_bpp < 0)
10401                 goto fail;
10402
10403         /*
10404          * Determine the real pipe dimensions. Note that stereo modes can
10405          * increase the actual pipe size due to the frame doubling and
10406          * insertion of additional space for blanks between the frame. This
10407          * is stored in the crtc timings. We use the requested mode to do this
10408          * computation to clearly distinguish it from the adjusted mode, which
10409          * can be changed by the connectors in the below retry loop.
10410          */
10411         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10412         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10413         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10414
10415 encoder_retry:
10416         /* Ensure the port clock defaults are reset when retrying. */
10417         pipe_config->port_clock = 0;
10418         pipe_config->pixel_multiplier = 1;
10419
10420         /* Fill in default crtc timings, allow encoders to overwrite them. */
10421         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10422
10423         /* Pass our mode to the connectors and the CRTC to give them a chance to
10424          * adjust it according to limitations or connector properties, and also
10425          * a chance to reject the mode entirely.
10426          */
10427         for_each_intel_encoder(dev, encoder) {
10428
10429                 if (&encoder->new_crtc->base != crtc)
10430                         continue;
10431
10432                 if (!(encoder->compute_config(encoder, pipe_config))) {
10433                         DRM_DEBUG_KMS("Encoder config failure\n");
10434                         goto fail;
10435                 }
10436         }
10437
10438         /* Set default port clock if not overwritten by the encoder. Needs to be
10439          * done afterwards in case the encoder adjusts the mode. */
10440         if (!pipe_config->port_clock)
10441                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10442                         * pipe_config->pixel_multiplier;
10443
10444         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10445         if (ret < 0) {
10446                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10447                 goto fail;
10448         }
10449
10450         if (ret == RETRY) {
10451                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10452                         ret = -EINVAL;
10453                         goto fail;
10454                 }
10455
10456                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10457                 retry = false;
10458                 goto encoder_retry;
10459         }
10460
10461         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10462         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10463                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10464
10465         return pipe_config;
10466 fail:
10467         kfree(pipe_config);
10468         return ERR_PTR(ret);
10469 }
10470
10471 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10472  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10473 static void
10474 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10475                              unsigned *prepare_pipes, unsigned *disable_pipes)
10476 {
10477         struct intel_crtc *intel_crtc;
10478         struct drm_device *dev = crtc->dev;
10479         struct intel_encoder *encoder;
10480         struct intel_connector *connector;
10481         struct drm_crtc *tmp_crtc;
10482
10483         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10484
10485         /* Check which crtcs have changed outputs connected to them, these need
10486          * to be part of the prepare_pipes mask. We don't (yet) support global
10487          * modeset across multiple crtcs, so modeset_pipes will only have one
10488          * bit set at most. */
10489         list_for_each_entry(connector, &dev->mode_config.connector_list,
10490                             base.head) {
10491                 if (connector->base.encoder == &connector->new_encoder->base)
10492                         continue;
10493
10494                 if (connector->base.encoder) {
10495                         tmp_crtc = connector->base.encoder->crtc;
10496
10497                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10498                 }
10499
10500                 if (connector->new_encoder)
10501                         *prepare_pipes |=
10502                                 1 << connector->new_encoder->new_crtc->pipe;
10503         }
10504
10505         for_each_intel_encoder(dev, encoder) {
10506                 if (encoder->base.crtc == &encoder->new_crtc->base)
10507                         continue;
10508
10509                 if (encoder->base.crtc) {
10510                         tmp_crtc = encoder->base.crtc;
10511
10512                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10513                 }
10514
10515                 if (encoder->new_crtc)
10516                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10517         }
10518
10519         /* Check for pipes that will be enabled/disabled ... */
10520         for_each_intel_crtc(dev, intel_crtc) {
10521                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10522                         continue;
10523
10524                 if (!intel_crtc->new_enabled)
10525                         *disable_pipes |= 1 << intel_crtc->pipe;
10526                 else
10527                         *prepare_pipes |= 1 << intel_crtc->pipe;
10528         }
10529
10530
10531         /* set_mode is also used to update properties on life display pipes. */
10532         intel_crtc = to_intel_crtc(crtc);
10533         if (intel_crtc->new_enabled)
10534                 *prepare_pipes |= 1 << intel_crtc->pipe;
10535
10536         /*
10537          * For simplicity do a full modeset on any pipe where the output routing
10538          * changed. We could be more clever, but that would require us to be
10539          * more careful with calling the relevant encoder->mode_set functions.
10540          */
10541         if (*prepare_pipes)
10542                 *modeset_pipes = *prepare_pipes;
10543
10544         /* ... and mask these out. */
10545         *modeset_pipes &= ~(*disable_pipes);
10546         *prepare_pipes &= ~(*disable_pipes);
10547
10548         /*
10549          * HACK: We don't (yet) fully support global modesets. intel_set_config
10550          * obies this rule, but the modeset restore mode of
10551          * intel_modeset_setup_hw_state does not.
10552          */
10553         *modeset_pipes &= 1 << intel_crtc->pipe;
10554         *prepare_pipes &= 1 << intel_crtc->pipe;
10555
10556         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10557                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10558 }
10559
10560 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10561 {
10562         struct drm_encoder *encoder;
10563         struct drm_device *dev = crtc->dev;
10564
10565         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10566                 if (encoder->crtc == crtc)
10567                         return true;
10568
10569         return false;
10570 }
10571
10572 static void
10573 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10574 {
10575         struct intel_encoder *intel_encoder;
10576         struct intel_crtc *intel_crtc;
10577         struct drm_connector *connector;
10578
10579         for_each_intel_encoder(dev, intel_encoder) {
10580                 if (!intel_encoder->base.crtc)
10581                         continue;
10582
10583                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10584
10585                 if (prepare_pipes & (1 << intel_crtc->pipe))
10586                         intel_encoder->connectors_active = false;
10587         }
10588
10589         intel_modeset_commit_output_state(dev);
10590
10591         /* Double check state. */
10592         for_each_intel_crtc(dev, intel_crtc) {
10593                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10594                 WARN_ON(intel_crtc->new_config &&
10595                         intel_crtc->new_config != &intel_crtc->config);
10596                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10597         }
10598
10599         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10600                 if (!connector->encoder || !connector->encoder->crtc)
10601                         continue;
10602
10603                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10604
10605                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10606                         struct drm_property *dpms_property =
10607                                 dev->mode_config.dpms_property;
10608
10609                         connector->dpms = DRM_MODE_DPMS_ON;
10610                         drm_object_property_set_value(&connector->base,
10611                                                          dpms_property,
10612                                                          DRM_MODE_DPMS_ON);
10613
10614                         intel_encoder = to_intel_encoder(connector->encoder);
10615                         intel_encoder->connectors_active = true;
10616                 }
10617         }
10618
10619 }
10620
10621 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10622 {
10623         int diff;
10624
10625         if (clock1 == clock2)
10626                 return true;
10627
10628         if (!clock1 || !clock2)
10629                 return false;
10630
10631         diff = abs(clock1 - clock2);
10632
10633         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10634                 return true;
10635
10636         return false;
10637 }
10638
10639 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10640         list_for_each_entry((intel_crtc), \
10641                             &(dev)->mode_config.crtc_list, \
10642                             base.head) \
10643                 if (mask & (1 <<(intel_crtc)->pipe))
10644
10645 static bool
10646 intel_pipe_config_compare(struct drm_device *dev,
10647                           struct intel_crtc_config *current_config,
10648                           struct intel_crtc_config *pipe_config)
10649 {
10650 #define PIPE_CONF_CHECK_X(name) \
10651         if (current_config->name != pipe_config->name) { \
10652                 DRM_ERROR("mismatch in " #name " " \
10653                           "(expected 0x%08x, found 0x%08x)\n", \
10654                           current_config->name, \
10655                           pipe_config->name); \
10656                 return false; \
10657         }
10658
10659 #define PIPE_CONF_CHECK_I(name) \
10660         if (current_config->name != pipe_config->name) { \
10661                 DRM_ERROR("mismatch in " #name " " \
10662                           "(expected %i, found %i)\n", \
10663                           current_config->name, \
10664                           pipe_config->name); \
10665                 return false; \
10666         }
10667
10668 /* This is required for BDW+ where there is only one set of registers for
10669  * switching between high and low RR.
10670  * This macro can be used whenever a comparison has to be made between one
10671  * hw state and multiple sw state variables.
10672  */
10673 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10674         if ((current_config->name != pipe_config->name) && \
10675                 (current_config->alt_name != pipe_config->name)) { \
10676                         DRM_ERROR("mismatch in " #name " " \
10677                                   "(expected %i or %i, found %i)\n", \
10678                                   current_config->name, \
10679                                   current_config->alt_name, \
10680                                   pipe_config->name); \
10681                         return false; \
10682         }
10683
10684 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10685         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10686                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10687                           "(expected %i, found %i)\n", \
10688                           current_config->name & (mask), \
10689                           pipe_config->name & (mask)); \
10690                 return false; \
10691         }
10692
10693 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10694         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10695                 DRM_ERROR("mismatch in " #name " " \
10696                           "(expected %i, found %i)\n", \
10697                           current_config->name, \
10698                           pipe_config->name); \
10699                 return false; \
10700         }
10701
10702 #define PIPE_CONF_QUIRK(quirk)  \
10703         ((current_config->quirks | pipe_config->quirks) & (quirk))
10704
10705         PIPE_CONF_CHECK_I(cpu_transcoder);
10706
10707         PIPE_CONF_CHECK_I(has_pch_encoder);
10708         PIPE_CONF_CHECK_I(fdi_lanes);
10709         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10710         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10711         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10712         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10713         PIPE_CONF_CHECK_I(fdi_m_n.tu);
10714
10715         PIPE_CONF_CHECK_I(has_dp_encoder);
10716
10717         if (INTEL_INFO(dev)->gen < 8) {
10718                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10719                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10720                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10721                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10722                 PIPE_CONF_CHECK_I(dp_m_n.tu);
10723
10724                 if (current_config->has_drrs) {
10725                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10726                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10727                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10728                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10729                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10730                 }
10731         } else {
10732                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10733                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10734                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10735                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10736                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10737         }
10738
10739         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10740         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10741         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10742         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10743         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10744         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10745
10746         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10747         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10748         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10749         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10750         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10751         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10752
10753         PIPE_CONF_CHECK_I(pixel_multiplier);
10754         PIPE_CONF_CHECK_I(has_hdmi_sink);
10755         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10756             IS_VALLEYVIEW(dev))
10757                 PIPE_CONF_CHECK_I(limited_color_range);
10758
10759         PIPE_CONF_CHECK_I(has_audio);
10760
10761         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10762                               DRM_MODE_FLAG_INTERLACE);
10763
10764         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10765                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10766                                       DRM_MODE_FLAG_PHSYNC);
10767                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10768                                       DRM_MODE_FLAG_NHSYNC);
10769                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10770                                       DRM_MODE_FLAG_PVSYNC);
10771                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10772                                       DRM_MODE_FLAG_NVSYNC);
10773         }
10774
10775         PIPE_CONF_CHECK_I(pipe_src_w);
10776         PIPE_CONF_CHECK_I(pipe_src_h);
10777
10778         /*
10779          * FIXME: BIOS likes to set up a cloned config with lvds+external
10780          * screen. Since we don't yet re-compute the pipe config when moving
10781          * just the lvds port away to another pipe the sw tracking won't match.
10782          *
10783          * Proper atomic modesets with recomputed global state will fix this.
10784          * Until then just don't check gmch state for inherited modes.
10785          */
10786         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10787                 PIPE_CONF_CHECK_I(gmch_pfit.control);
10788                 /* pfit ratios are autocomputed by the hw on gen4+ */
10789                 if (INTEL_INFO(dev)->gen < 4)
10790                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10791                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10792         }
10793
10794         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10795         if (current_config->pch_pfit.enabled) {
10796                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10797                 PIPE_CONF_CHECK_I(pch_pfit.size);
10798         }
10799
10800         /* BDW+ don't expose a synchronous way to read the state */
10801         if (IS_HASWELL(dev))
10802                 PIPE_CONF_CHECK_I(ips_enabled);
10803
10804         PIPE_CONF_CHECK_I(double_wide);
10805
10806         PIPE_CONF_CHECK_X(ddi_pll_sel);
10807
10808         PIPE_CONF_CHECK_I(shared_dpll);
10809         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10810         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10811         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10812         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10813         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10814
10815         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10816                 PIPE_CONF_CHECK_I(pipe_bpp);
10817
10818         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10819         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10820
10821 #undef PIPE_CONF_CHECK_X
10822 #undef PIPE_CONF_CHECK_I
10823 #undef PIPE_CONF_CHECK_I_ALT
10824 #undef PIPE_CONF_CHECK_FLAGS
10825 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10826 #undef PIPE_CONF_QUIRK
10827
10828         return true;
10829 }
10830
10831 static void
10832 check_connector_state(struct drm_device *dev)
10833 {
10834         struct intel_connector *connector;
10835
10836         list_for_each_entry(connector, &dev->mode_config.connector_list,
10837                             base.head) {
10838                 /* This also checks the encoder/connector hw state with the
10839                  * ->get_hw_state callbacks. */
10840                 intel_connector_check_state(connector);
10841
10842                 WARN(&connector->new_encoder->base != connector->base.encoder,
10843                      "connector's staged encoder doesn't match current encoder\n");
10844         }
10845 }
10846
10847 static void
10848 check_encoder_state(struct drm_device *dev)
10849 {
10850         struct intel_encoder *encoder;
10851         struct intel_connector *connector;
10852
10853         for_each_intel_encoder(dev, encoder) {
10854                 bool enabled = false;
10855                 bool active = false;
10856                 enum pipe pipe, tracked_pipe;
10857
10858                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10859                               encoder->base.base.id,
10860                               encoder->base.name);
10861
10862                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10863                      "encoder's stage crtc doesn't match current crtc\n");
10864                 WARN(encoder->connectors_active && !encoder->base.crtc,
10865                      "encoder's active_connectors set, but no crtc\n");
10866
10867                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10868                                     base.head) {
10869                         if (connector->base.encoder != &encoder->base)
10870                                 continue;
10871                         enabled = true;
10872                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10873                                 active = true;
10874                 }
10875                 /*
10876                  * for MST connectors if we unplug the connector is gone
10877                  * away but the encoder is still connected to a crtc
10878                  * until a modeset happens in response to the hotplug.
10879                  */
10880                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10881                         continue;
10882
10883                 WARN(!!encoder->base.crtc != enabled,
10884                      "encoder's enabled state mismatch "
10885                      "(expected %i, found %i)\n",
10886                      !!encoder->base.crtc, enabled);
10887                 WARN(active && !encoder->base.crtc,
10888                      "active encoder with no crtc\n");
10889
10890                 WARN(encoder->connectors_active != active,
10891                      "encoder's computed active state doesn't match tracked active state "
10892                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10893
10894                 active = encoder->get_hw_state(encoder, &pipe);
10895                 WARN(active != encoder->connectors_active,
10896                      "encoder's hw state doesn't match sw tracking "
10897                      "(expected %i, found %i)\n",
10898                      encoder->connectors_active, active);
10899
10900                 if (!encoder->base.crtc)
10901                         continue;
10902
10903                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10904                 WARN(active && pipe != tracked_pipe,
10905                      "active encoder's pipe doesn't match"
10906                      "(expected %i, found %i)\n",
10907                      tracked_pipe, pipe);
10908
10909         }
10910 }
10911
10912 static void
10913 check_crtc_state(struct drm_device *dev)
10914 {
10915         struct drm_i915_private *dev_priv = dev->dev_private;
10916         struct intel_crtc *crtc;
10917         struct intel_encoder *encoder;
10918         struct intel_crtc_config pipe_config;
10919
10920         for_each_intel_crtc(dev, crtc) {
10921                 bool enabled = false;
10922                 bool active = false;
10923
10924                 memset(&pipe_config, 0, sizeof(pipe_config));
10925
10926                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10927                               crtc->base.base.id);
10928
10929                 WARN(crtc->active && !crtc->base.enabled,
10930                      "active crtc, but not enabled in sw tracking\n");
10931
10932                 for_each_intel_encoder(dev, encoder) {
10933                         if (encoder->base.crtc != &crtc->base)
10934                                 continue;
10935                         enabled = true;
10936                         if (encoder->connectors_active)
10937                                 active = true;
10938                 }
10939
10940                 WARN(active != crtc->active,
10941                      "crtc's computed active state doesn't match tracked active state "
10942                      "(expected %i, found %i)\n", active, crtc->active);
10943                 WARN(enabled != crtc->base.enabled,
10944                      "crtc's computed enabled state doesn't match tracked enabled state "
10945                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10946
10947                 active = dev_priv->display.get_pipe_config(crtc,
10948                                                            &pipe_config);
10949
10950                 /* hw state is inconsistent with the pipe quirk */
10951                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10952                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10953                         active = crtc->active;
10954
10955                 for_each_intel_encoder(dev, encoder) {
10956                         enum pipe pipe;
10957                         if (encoder->base.crtc != &crtc->base)
10958                                 continue;
10959                         if (encoder->get_hw_state(encoder, &pipe))
10960                                 encoder->get_config(encoder, &pipe_config);
10961                 }
10962
10963                 WARN(crtc->active != active,
10964                      "crtc active state doesn't match with hw state "
10965                      "(expected %i, found %i)\n", crtc->active, active);
10966
10967                 if (active &&
10968                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10969                         WARN(1, "pipe state doesn't match!\n");
10970                         intel_dump_pipe_config(crtc, &pipe_config,
10971                                                "[hw state]");
10972                         intel_dump_pipe_config(crtc, &crtc->config,
10973                                                "[sw state]");
10974                 }
10975         }
10976 }
10977
10978 static void
10979 check_shared_dpll_state(struct drm_device *dev)
10980 {
10981         struct drm_i915_private *dev_priv = dev->dev_private;
10982         struct intel_crtc *crtc;
10983         struct intel_dpll_hw_state dpll_hw_state;
10984         int i;
10985
10986         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10987                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10988                 int enabled_crtcs = 0, active_crtcs = 0;
10989                 bool active;
10990
10991                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10992
10993                 DRM_DEBUG_KMS("%s\n", pll->name);
10994
10995                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10996
10997                 WARN(pll->active > pll->refcount,
10998                      "more active pll users than references: %i vs %i\n",
10999                      pll->active, pll->refcount);
11000                 WARN(pll->active && !pll->on,
11001                      "pll in active use but not on in sw tracking\n");
11002                 WARN(pll->on && !pll->active,
11003                      "pll in on but not on in use in sw tracking\n");
11004                 WARN(pll->on != active,
11005                      "pll on state mismatch (expected %i, found %i)\n",
11006                      pll->on, active);
11007
11008                 for_each_intel_crtc(dev, crtc) {
11009                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
11010                                 enabled_crtcs++;
11011                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11012                                 active_crtcs++;
11013                 }
11014                 WARN(pll->active != active_crtcs,
11015                      "pll active crtcs mismatch (expected %i, found %i)\n",
11016                      pll->active, active_crtcs);
11017                 WARN(pll->refcount != enabled_crtcs,
11018                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
11019                      pll->refcount, enabled_crtcs);
11020
11021                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
11022                                        sizeof(dpll_hw_state)),
11023                      "pll hw state mismatch\n");
11024         }
11025 }
11026
11027 void
11028 intel_modeset_check_state(struct drm_device *dev)
11029 {
11030         check_connector_state(dev);
11031         check_encoder_state(dev);
11032         check_crtc_state(dev);
11033         check_shared_dpll_state(dev);
11034 }
11035
11036 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
11037                                      int dotclock)
11038 {
11039         /*
11040          * FDI already provided one idea for the dotclock.
11041          * Yell if the encoder disagrees.
11042          */
11043         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
11044              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11045              pipe_config->adjusted_mode.crtc_clock, dotclock);
11046 }
11047
11048 static void update_scanline_offset(struct intel_crtc *crtc)
11049 {
11050         struct drm_device *dev = crtc->base.dev;
11051
11052         /*
11053          * The scanline counter increments at the leading edge of hsync.
11054          *
11055          * On most platforms it starts counting from vtotal-1 on the
11056          * first active line. That means the scanline counter value is
11057          * always one less than what we would expect. Ie. just after
11058          * start of vblank, which also occurs at start of hsync (on the
11059          * last active line), the scanline counter will read vblank_start-1.
11060          *
11061          * On gen2 the scanline counter starts counting from 1 instead
11062          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11063          * to keep the value positive), instead of adding one.
11064          *
11065          * On HSW+ the behaviour of the scanline counter depends on the output
11066          * type. For DP ports it behaves like most other platforms, but on HDMI
11067          * there's an extra 1 line difference. So we need to add two instead of
11068          * one to the value.
11069          */
11070         if (IS_GEN2(dev)) {
11071                 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
11072                 int vtotal;
11073
11074                 vtotal = mode->crtc_vtotal;
11075                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11076                         vtotal /= 2;
11077
11078                 crtc->scanline_offset = vtotal - 1;
11079         } else if (HAS_DDI(dev) &&
11080                    intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
11081                 crtc->scanline_offset = 2;
11082         } else
11083                 crtc->scanline_offset = 1;
11084 }
11085
11086 static int __intel_set_mode(struct drm_crtc *crtc,
11087                             struct drm_display_mode *mode,
11088                             int x, int y, struct drm_framebuffer *fb)
11089 {
11090         struct drm_device *dev = crtc->dev;
11091         struct drm_i915_private *dev_priv = dev->dev_private;
11092         struct drm_display_mode *saved_mode;
11093         struct intel_crtc_config *pipe_config = NULL;
11094         struct intel_crtc *intel_crtc;
11095         unsigned disable_pipes, prepare_pipes, modeset_pipes;
11096         int ret = 0;
11097
11098         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11099         if (!saved_mode)
11100                 return -ENOMEM;
11101
11102         intel_modeset_affected_pipes(crtc, &modeset_pipes,
11103                                      &prepare_pipes, &disable_pipes);
11104
11105         *saved_mode = crtc->mode;
11106
11107         /* Hack: Because we don't (yet) support global modeset on multiple
11108          * crtcs, we don't keep track of the new mode for more than one crtc.
11109          * Hence simply check whether any bit is set in modeset_pipes in all the
11110          * pieces of code that are not yet converted to deal with mutliple crtcs
11111          * changing their mode at the same time. */
11112         if (modeset_pipes) {
11113                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11114                 if (IS_ERR(pipe_config)) {
11115                         ret = PTR_ERR(pipe_config);
11116                         pipe_config = NULL;
11117
11118                         goto out;
11119                 }
11120                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11121                                        "[modeset]");
11122                 to_intel_crtc(crtc)->new_config = pipe_config;
11123         }
11124
11125         /*
11126          * See if the config requires any additional preparation, e.g.
11127          * to adjust global state with pipes off.  We need to do this
11128          * here so we can get the modeset_pipe updated config for the new
11129          * mode set on this crtc.  For other crtcs we need to use the
11130          * adjusted_mode bits in the crtc directly.
11131          */
11132         if (IS_VALLEYVIEW(dev)) {
11133                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11134
11135                 /* may have added more to prepare_pipes than we should */
11136                 prepare_pipes &= ~disable_pipes;
11137         }
11138
11139         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11140                 intel_crtc_disable(&intel_crtc->base);
11141
11142         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11143                 if (intel_crtc->base.enabled)
11144                         dev_priv->display.crtc_disable(&intel_crtc->base);
11145         }
11146
11147         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11148          * to set it here already despite that we pass it down the callchain.
11149          */
11150         if (modeset_pipes) {
11151                 crtc->mode = *mode;
11152                 /* mode_set/enable/disable functions rely on a correct pipe
11153                  * config. */
11154                 to_intel_crtc(crtc)->config = *pipe_config;
11155                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
11156
11157                 /*
11158                  * Calculate and store various constants which
11159                  * are later needed by vblank and swap-completion
11160                  * timestamping. They are derived from true hwmode.
11161                  */
11162                 drm_calc_timestamping_constants(crtc,
11163                                                 &pipe_config->adjusted_mode);
11164         }
11165
11166         /* Only after disabling all output pipelines that will be changed can we
11167          * update the the output configuration. */
11168         intel_modeset_update_state(dev, prepare_pipes);
11169
11170         if (dev_priv->display.modeset_global_resources)
11171                 dev_priv->display.modeset_global_resources(dev);
11172
11173         /* Set up the DPLL and any encoders state that needs to adjust or depend
11174          * on the DPLL.
11175          */
11176         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11177                 struct drm_framebuffer *old_fb = crtc->primary->fb;
11178                 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
11179                 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11180
11181                 mutex_lock(&dev->struct_mutex);
11182                 ret = intel_pin_and_fence_fb_obj(dev,
11183                                                  obj,
11184                                                  NULL);
11185                 if (ret != 0) {
11186                         DRM_ERROR("pin & fence failed\n");
11187                         mutex_unlock(&dev->struct_mutex);
11188                         goto done;
11189                 }
11190                 if (old_fb)
11191                         intel_unpin_fb_obj(old_obj);
11192                 i915_gem_track_fb(old_obj, obj,
11193                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11194                 mutex_unlock(&dev->struct_mutex);
11195
11196                 crtc->primary->fb = fb;
11197                 crtc->x = x;
11198                 crtc->y = y;
11199
11200                 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
11201                                                       x, y, fb);
11202                 if (ret)
11203                         goto done;
11204         }
11205
11206         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11207         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11208                 update_scanline_offset(intel_crtc);
11209
11210                 dev_priv->display.crtc_enable(&intel_crtc->base);
11211         }
11212
11213         /* FIXME: add subpixel order */
11214 done:
11215         if (ret && crtc->enabled)
11216                 crtc->mode = *saved_mode;
11217
11218 out:
11219         kfree(pipe_config);
11220         kfree(saved_mode);
11221         return ret;
11222 }
11223
11224 static int intel_set_mode(struct drm_crtc *crtc,
11225                           struct drm_display_mode *mode,
11226                           int x, int y, struct drm_framebuffer *fb)
11227 {
11228         int ret;
11229
11230         ret = __intel_set_mode(crtc, mode, x, y, fb);
11231
11232         if (ret == 0)
11233                 intel_modeset_check_state(crtc->dev);
11234
11235         return ret;
11236 }
11237
11238 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11239 {
11240         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11241 }
11242
11243 #undef for_each_intel_crtc_masked
11244
11245 static void intel_set_config_free(struct intel_set_config *config)
11246 {
11247         if (!config)
11248                 return;
11249
11250         kfree(config->save_connector_encoders);
11251         kfree(config->save_encoder_crtcs);
11252         kfree(config->save_crtc_enabled);
11253         kfree(config);
11254 }
11255
11256 static int intel_set_config_save_state(struct drm_device *dev,
11257                                        struct intel_set_config *config)
11258 {
11259         struct drm_crtc *crtc;
11260         struct drm_encoder *encoder;
11261         struct drm_connector *connector;
11262         int count;
11263
11264         config->save_crtc_enabled =
11265                 kcalloc(dev->mode_config.num_crtc,
11266                         sizeof(bool), GFP_KERNEL);
11267         if (!config->save_crtc_enabled)
11268                 return -ENOMEM;
11269
11270         config->save_encoder_crtcs =
11271                 kcalloc(dev->mode_config.num_encoder,
11272                         sizeof(struct drm_crtc *), GFP_KERNEL);
11273         if (!config->save_encoder_crtcs)
11274                 return -ENOMEM;
11275
11276         config->save_connector_encoders =
11277                 kcalloc(dev->mode_config.num_connector,
11278                         sizeof(struct drm_encoder *), GFP_KERNEL);
11279         if (!config->save_connector_encoders)
11280                 return -ENOMEM;
11281
11282         /* Copy data. Note that driver private data is not affected.
11283          * Should anything bad happen only the expected state is
11284          * restored, not the drivers personal bookkeeping.
11285          */
11286         count = 0;
11287         for_each_crtc(dev, crtc) {
11288                 config->save_crtc_enabled[count++] = crtc->enabled;
11289         }
11290
11291         count = 0;
11292         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11293                 config->save_encoder_crtcs[count++] = encoder->crtc;
11294         }
11295
11296         count = 0;
11297         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11298                 config->save_connector_encoders[count++] = connector->encoder;
11299         }
11300
11301         return 0;
11302 }
11303
11304 static void intel_set_config_restore_state(struct drm_device *dev,
11305                                            struct intel_set_config *config)
11306 {
11307         struct intel_crtc *crtc;
11308         struct intel_encoder *encoder;
11309         struct intel_connector *connector;
11310         int count;
11311
11312         count = 0;
11313         for_each_intel_crtc(dev, crtc) {
11314                 crtc->new_enabled = config->save_crtc_enabled[count++];
11315
11316                 if (crtc->new_enabled)
11317                         crtc->new_config = &crtc->config;
11318                 else
11319                         crtc->new_config = NULL;
11320         }
11321
11322         count = 0;
11323         for_each_intel_encoder(dev, encoder) {
11324                 encoder->new_crtc =
11325                         to_intel_crtc(config->save_encoder_crtcs[count++]);
11326         }
11327
11328         count = 0;
11329         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11330                 connector->new_encoder =
11331                         to_intel_encoder(config->save_connector_encoders[count++]);
11332         }
11333 }
11334
11335 static bool
11336 is_crtc_connector_off(struct drm_mode_set *set)
11337 {
11338         int i;
11339
11340         if (set->num_connectors == 0)
11341                 return false;
11342
11343         if (WARN_ON(set->connectors == NULL))
11344                 return false;
11345
11346         for (i = 0; i < set->num_connectors; i++)
11347                 if (set->connectors[i]->encoder &&
11348                     set->connectors[i]->encoder->crtc == set->crtc &&
11349                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11350                         return true;
11351
11352         return false;
11353 }
11354
11355 static void
11356 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11357                                       struct intel_set_config *config)
11358 {
11359
11360         /* We should be able to check here if the fb has the same properties
11361          * and then just flip_or_move it */
11362         if (is_crtc_connector_off(set)) {
11363                 config->mode_changed = true;
11364         } else if (set->crtc->primary->fb != set->fb) {
11365                 /*
11366                  * If we have no fb, we can only flip as long as the crtc is
11367                  * active, otherwise we need a full mode set.  The crtc may
11368                  * be active if we've only disabled the primary plane, or
11369                  * in fastboot situations.
11370                  */
11371                 if (set->crtc->primary->fb == NULL) {
11372                         struct intel_crtc *intel_crtc =
11373                                 to_intel_crtc(set->crtc);
11374
11375                         if (intel_crtc->active) {
11376                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11377                                 config->fb_changed = true;
11378                         } else {
11379                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11380                                 config->mode_changed = true;
11381                         }
11382                 } else if (set->fb == NULL) {
11383                         config->mode_changed = true;
11384                 } else if (set->fb->pixel_format !=
11385                            set->crtc->primary->fb->pixel_format) {
11386                         config->mode_changed = true;
11387                 } else {
11388                         config->fb_changed = true;
11389                 }
11390         }
11391
11392         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11393                 config->fb_changed = true;
11394
11395         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11396                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11397                 drm_mode_debug_printmodeline(&set->crtc->mode);
11398                 drm_mode_debug_printmodeline(set->mode);
11399                 config->mode_changed = true;
11400         }
11401
11402         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11403                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11404 }
11405
11406 static int
11407 intel_modeset_stage_output_state(struct drm_device *dev,
11408                                  struct drm_mode_set *set,
11409                                  struct intel_set_config *config)
11410 {
11411         struct intel_connector *connector;
11412         struct intel_encoder *encoder;
11413         struct intel_crtc *crtc;
11414         int ro;
11415
11416         /* The upper layers ensure that we either disable a crtc or have a list
11417          * of connectors. For paranoia, double-check this. */
11418         WARN_ON(!set->fb && (set->num_connectors != 0));
11419         WARN_ON(set->fb && (set->num_connectors == 0));
11420
11421         list_for_each_entry(connector, &dev->mode_config.connector_list,
11422                             base.head) {
11423                 /* Otherwise traverse passed in connector list and get encoders
11424                  * for them. */
11425                 for (ro = 0; ro < set->num_connectors; ro++) {
11426                         if (set->connectors[ro] == &connector->base) {
11427                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11428                                 break;
11429                         }
11430                 }
11431
11432                 /* If we disable the crtc, disable all its connectors. Also, if
11433                  * the connector is on the changing crtc but not on the new
11434                  * connector list, disable it. */
11435                 if ((!set->fb || ro == set->num_connectors) &&
11436                     connector->base.encoder &&
11437                     connector->base.encoder->crtc == set->crtc) {
11438                         connector->new_encoder = NULL;
11439
11440                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11441                                 connector->base.base.id,
11442                                 connector->base.name);
11443                 }
11444
11445
11446                 if (&connector->new_encoder->base != connector->base.encoder) {
11447                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11448                         config->mode_changed = true;
11449                 }
11450         }
11451         /* connector->new_encoder is now updated for all connectors. */
11452
11453         /* Update crtc of enabled connectors. */
11454         list_for_each_entry(connector, &dev->mode_config.connector_list,
11455                             base.head) {
11456                 struct drm_crtc *new_crtc;
11457
11458                 if (!connector->new_encoder)
11459                         continue;
11460
11461                 new_crtc = connector->new_encoder->base.crtc;
11462
11463                 for (ro = 0; ro < set->num_connectors; ro++) {
11464                         if (set->connectors[ro] == &connector->base)
11465                                 new_crtc = set->crtc;
11466                 }
11467
11468                 /* Make sure the new CRTC will work with the encoder */
11469                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11470                                          new_crtc)) {
11471                         return -EINVAL;
11472                 }
11473                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11474
11475                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11476                         connector->base.base.id,
11477                         connector->base.name,
11478                         new_crtc->base.id);
11479         }
11480
11481         /* Check for any encoders that needs to be disabled. */
11482         for_each_intel_encoder(dev, encoder) {
11483                 int num_connectors = 0;
11484                 list_for_each_entry(connector,
11485                                     &dev->mode_config.connector_list,
11486                                     base.head) {
11487                         if (connector->new_encoder == encoder) {
11488                                 WARN_ON(!connector->new_encoder->new_crtc);
11489                                 num_connectors++;
11490                         }
11491                 }
11492
11493                 if (num_connectors == 0)
11494                         encoder->new_crtc = NULL;
11495                 else if (num_connectors > 1)
11496                         return -EINVAL;
11497
11498                 /* Only now check for crtc changes so we don't miss encoders
11499                  * that will be disabled. */
11500                 if (&encoder->new_crtc->base != encoder->base.crtc) {
11501                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11502                         config->mode_changed = true;
11503                 }
11504         }
11505         /* Now we've also updated encoder->new_crtc for all encoders. */
11506         list_for_each_entry(connector, &dev->mode_config.connector_list,
11507                             base.head) {
11508                 if (connector->new_encoder)
11509                         if (connector->new_encoder != connector->encoder)
11510                                 connector->encoder = connector->new_encoder;
11511         }
11512         for_each_intel_crtc(dev, crtc) {
11513                 crtc->new_enabled = false;
11514
11515                 for_each_intel_encoder(dev, encoder) {
11516                         if (encoder->new_crtc == crtc) {
11517                                 crtc->new_enabled = true;
11518                                 break;
11519                         }
11520                 }
11521
11522                 if (crtc->new_enabled != crtc->base.enabled) {
11523                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11524                                       crtc->new_enabled ? "en" : "dis");
11525                         config->mode_changed = true;
11526                 }
11527
11528                 if (crtc->new_enabled)
11529                         crtc->new_config = &crtc->config;
11530                 else
11531                         crtc->new_config = NULL;
11532         }
11533
11534         return 0;
11535 }
11536
11537 static void disable_crtc_nofb(struct intel_crtc *crtc)
11538 {
11539         struct drm_device *dev = crtc->base.dev;
11540         struct intel_encoder *encoder;
11541         struct intel_connector *connector;
11542
11543         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11544                       pipe_name(crtc->pipe));
11545
11546         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11547                 if (connector->new_encoder &&
11548                     connector->new_encoder->new_crtc == crtc)
11549                         connector->new_encoder = NULL;
11550         }
11551
11552         for_each_intel_encoder(dev, encoder) {
11553                 if (encoder->new_crtc == crtc)
11554                         encoder->new_crtc = NULL;
11555         }
11556
11557         crtc->new_enabled = false;
11558         crtc->new_config = NULL;
11559 }
11560
11561 static int intel_crtc_set_config(struct drm_mode_set *set)
11562 {
11563         struct drm_device *dev;
11564         struct drm_mode_set save_set;
11565         struct intel_set_config *config;
11566         int ret;
11567
11568         BUG_ON(!set);
11569         BUG_ON(!set->crtc);
11570         BUG_ON(!set->crtc->helper_private);
11571
11572         /* Enforce sane interface api - has been abused by the fb helper. */
11573         BUG_ON(!set->mode && set->fb);
11574         BUG_ON(set->fb && set->num_connectors == 0);
11575
11576         if (set->fb) {
11577                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11578                                 set->crtc->base.id, set->fb->base.id,
11579                                 (int)set->num_connectors, set->x, set->y);
11580         } else {
11581                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11582         }
11583
11584         dev = set->crtc->dev;
11585
11586         ret = -ENOMEM;
11587         config = kzalloc(sizeof(*config), GFP_KERNEL);
11588         if (!config)
11589                 goto out_config;
11590
11591         ret = intel_set_config_save_state(dev, config);
11592         if (ret)
11593                 goto out_config;
11594
11595         save_set.crtc = set->crtc;
11596         save_set.mode = &set->crtc->mode;
11597         save_set.x = set->crtc->x;
11598         save_set.y = set->crtc->y;
11599         save_set.fb = set->crtc->primary->fb;
11600
11601         /* Compute whether we need a full modeset, only an fb base update or no
11602          * change at all. In the future we might also check whether only the
11603          * mode changed, e.g. for LVDS where we only change the panel fitter in
11604          * such cases. */
11605         intel_set_config_compute_mode_changes(set, config);
11606
11607         ret = intel_modeset_stage_output_state(dev, set, config);
11608         if (ret)
11609                 goto fail;
11610
11611         if (config->mode_changed) {
11612                 ret = intel_set_mode(set->crtc, set->mode,
11613                                      set->x, set->y, set->fb);
11614         } else if (config->fb_changed) {
11615                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11616
11617                 intel_crtc_wait_for_pending_flips(set->crtc);
11618
11619                 ret = intel_pipe_set_base(set->crtc,
11620                                           set->x, set->y, set->fb);
11621
11622                 /*
11623                  * We need to make sure the primary plane is re-enabled if it
11624                  * has previously been turned off.
11625                  */
11626                 if (!intel_crtc->primary_enabled && ret == 0) {
11627                         WARN_ON(!intel_crtc->active);
11628                         intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11629                 }
11630
11631                 /*
11632                  * In the fastboot case this may be our only check of the
11633                  * state after boot.  It would be better to only do it on
11634                  * the first update, but we don't have a nice way of doing that
11635                  * (and really, set_config isn't used much for high freq page
11636                  * flipping, so increasing its cost here shouldn't be a big
11637                  * deal).
11638                  */
11639                 if (i915.fastboot && ret == 0)
11640                         intel_modeset_check_state(set->crtc->dev);
11641         }
11642
11643         if (ret) {
11644                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11645                               set->crtc->base.id, ret);
11646 fail:
11647                 intel_set_config_restore_state(dev, config);
11648
11649                 /*
11650                  * HACK: if the pipe was on, but we didn't have a framebuffer,
11651                  * force the pipe off to avoid oopsing in the modeset code
11652                  * due to fb==NULL. This should only happen during boot since
11653                  * we don't yet reconstruct the FB from the hardware state.
11654                  */
11655                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11656                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11657
11658                 /* Try to restore the config */
11659                 if (config->mode_changed &&
11660                     intel_set_mode(save_set.crtc, save_set.mode,
11661                                    save_set.x, save_set.y, save_set.fb))
11662                         DRM_ERROR("failed to restore config after modeset failure\n");
11663         }
11664
11665 out_config:
11666         intel_set_config_free(config);
11667         return ret;
11668 }
11669
11670 static const struct drm_crtc_funcs intel_crtc_funcs = {
11671         .gamma_set = intel_crtc_gamma_set,
11672         .set_config = intel_crtc_set_config,
11673         .destroy = intel_crtc_destroy,
11674         .page_flip = intel_crtc_page_flip,
11675 };
11676
11677 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11678                                       struct intel_shared_dpll *pll,
11679                                       struct intel_dpll_hw_state *hw_state)
11680 {
11681         uint32_t val;
11682
11683         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11684                 return false;
11685
11686         val = I915_READ(PCH_DPLL(pll->id));
11687         hw_state->dpll = val;
11688         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11689         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11690
11691         return val & DPLL_VCO_ENABLE;
11692 }
11693
11694 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11695                                   struct intel_shared_dpll *pll)
11696 {
11697         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11698         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11699 }
11700
11701 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11702                                 struct intel_shared_dpll *pll)
11703 {
11704         /* PCH refclock must be enabled first */
11705         ibx_assert_pch_refclk_enabled(dev_priv);
11706
11707         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11708
11709         /* Wait for the clocks to stabilize. */
11710         POSTING_READ(PCH_DPLL(pll->id));
11711         udelay(150);
11712
11713         /* The pixel multiplier can only be updated once the
11714          * DPLL is enabled and the clocks are stable.
11715          *
11716          * So write it again.
11717          */
11718         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11719         POSTING_READ(PCH_DPLL(pll->id));
11720         udelay(200);
11721 }
11722
11723 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11724                                  struct intel_shared_dpll *pll)
11725 {
11726         struct drm_device *dev = dev_priv->dev;
11727         struct intel_crtc *crtc;
11728
11729         /* Make sure no transcoder isn't still depending on us. */
11730         for_each_intel_crtc(dev, crtc) {
11731                 if (intel_crtc_to_shared_dpll(crtc) == pll)
11732                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11733         }
11734
11735         I915_WRITE(PCH_DPLL(pll->id), 0);
11736         POSTING_READ(PCH_DPLL(pll->id));
11737         udelay(200);
11738 }
11739
11740 static char *ibx_pch_dpll_names[] = {
11741         "PCH DPLL A",
11742         "PCH DPLL B",
11743 };
11744
11745 static void ibx_pch_dpll_init(struct drm_device *dev)
11746 {
11747         struct drm_i915_private *dev_priv = dev->dev_private;
11748         int i;
11749
11750         dev_priv->num_shared_dpll = 2;
11751
11752         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11753                 dev_priv->shared_dplls[i].id = i;
11754                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11755                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11756                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11757                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11758                 dev_priv->shared_dplls[i].get_hw_state =
11759                         ibx_pch_dpll_get_hw_state;
11760         }
11761 }
11762
11763 static void intel_shared_dpll_init(struct drm_device *dev)
11764 {
11765         struct drm_i915_private *dev_priv = dev->dev_private;
11766
11767         if (HAS_DDI(dev))
11768                 intel_ddi_pll_init(dev);
11769         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11770                 ibx_pch_dpll_init(dev);
11771         else
11772                 dev_priv->num_shared_dpll = 0;
11773
11774         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11775 }
11776
11777 static int
11778 intel_primary_plane_disable(struct drm_plane *plane)
11779 {
11780         struct drm_device *dev = plane->dev;
11781         struct intel_crtc *intel_crtc;
11782
11783         if (!plane->fb)
11784                 return 0;
11785
11786         BUG_ON(!plane->crtc);
11787
11788         intel_crtc = to_intel_crtc(plane->crtc);
11789
11790         /*
11791          * Even though we checked plane->fb above, it's still possible that
11792          * the primary plane has been implicitly disabled because the crtc
11793          * coordinates given weren't visible, or because we detected
11794          * that it was 100% covered by a sprite plane.  Or, the CRTC may be
11795          * off and we've set a fb, but haven't actually turned on the CRTC yet.
11796          * In either case, we need to unpin the FB and let the fb pointer get
11797          * updated, but otherwise we don't need to touch the hardware.
11798          */
11799         if (!intel_crtc->primary_enabled)
11800                 goto disable_unpin;
11801
11802         intel_crtc_wait_for_pending_flips(plane->crtc);
11803         intel_disable_primary_hw_plane(plane, plane->crtc);
11804
11805 disable_unpin:
11806         mutex_lock(&dev->struct_mutex);
11807         i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11808                           INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11809         intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11810         mutex_unlock(&dev->struct_mutex);
11811         plane->fb = NULL;
11812
11813         return 0;
11814 }
11815
11816 static int
11817 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11818                              struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11819                              unsigned int crtc_w, unsigned int crtc_h,
11820                              uint32_t src_x, uint32_t src_y,
11821                              uint32_t src_w, uint32_t src_h)
11822 {
11823         struct drm_device *dev = crtc->dev;
11824         struct drm_i915_private *dev_priv = dev->dev_private;
11825         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11826         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11827         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11828         struct drm_rect dest = {
11829                 /* integer pixels */
11830                 .x1 = crtc_x,
11831                 .y1 = crtc_y,
11832                 .x2 = crtc_x + crtc_w,
11833                 .y2 = crtc_y + crtc_h,
11834         };
11835         struct drm_rect src = {
11836                 /* 16.16 fixed point */
11837                 .x1 = src_x,
11838                 .y1 = src_y,
11839                 .x2 = src_x + src_w,
11840                 .y2 = src_y + src_h,
11841         };
11842         const struct drm_rect clip = {
11843                 /* integer pixels */
11844                 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11845                 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11846         };
11847         const struct {
11848                 int crtc_x, crtc_y;
11849                 unsigned int crtc_w, crtc_h;
11850                 uint32_t src_x, src_y, src_w, src_h;
11851         } orig = {
11852                 .crtc_x = crtc_x,
11853                 .crtc_y = crtc_y,
11854                 .crtc_w = crtc_w,
11855                 .crtc_h = crtc_h,
11856                 .src_x = src_x,
11857                 .src_y = src_y,
11858                 .src_w = src_w,
11859                 .src_h = src_h,
11860         };
11861         struct intel_plane *intel_plane = to_intel_plane(plane);
11862         bool visible;
11863         int ret;
11864
11865         ret = drm_plane_helper_check_update(plane, crtc, fb,
11866                                             &src, &dest, &clip,
11867                                             DRM_PLANE_HELPER_NO_SCALING,
11868                                             DRM_PLANE_HELPER_NO_SCALING,
11869                                             false, true, &visible);
11870
11871         if (ret)
11872                 return ret;
11873
11874         /*
11875          * If the CRTC isn't enabled, we're just pinning the framebuffer,
11876          * updating the fb pointer, and returning without touching the
11877          * hardware.  This allows us to later do a drmModeSetCrtc with fb=-1 to
11878          * turn on the display with all planes setup as desired.
11879          */
11880         if (!crtc->enabled) {
11881                 mutex_lock(&dev->struct_mutex);
11882
11883                 /*
11884                  * If we already called setplane while the crtc was disabled,
11885                  * we may have an fb pinned; unpin it.
11886                  */
11887                 if (plane->fb)
11888                         intel_unpin_fb_obj(old_obj);
11889
11890                 i915_gem_track_fb(old_obj, obj,
11891                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11892
11893                 /* Pin and return without programming hardware */
11894                 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11895                 mutex_unlock(&dev->struct_mutex);
11896
11897                 return ret;
11898         }
11899
11900         intel_crtc_wait_for_pending_flips(crtc);
11901
11902         /*
11903          * If clipping results in a non-visible primary plane, we'll disable
11904          * the primary plane.  Note that this is a bit different than what
11905          * happens if userspace explicitly disables the plane by passing fb=0
11906          * because plane->fb still gets set and pinned.
11907          */
11908         if (!visible) {
11909                 mutex_lock(&dev->struct_mutex);
11910
11911                 /*
11912                  * Try to pin the new fb first so that we can bail out if we
11913                  * fail.
11914                  */
11915                 if (plane->fb != fb) {
11916                         ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11917                         if (ret) {
11918                                 mutex_unlock(&dev->struct_mutex);
11919                                 return ret;
11920                         }
11921                 }
11922
11923                 i915_gem_track_fb(old_obj, obj,
11924                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11925
11926                 if (intel_crtc->primary_enabled)
11927                         intel_disable_primary_hw_plane(plane, crtc);
11928
11929
11930                 if (plane->fb != fb)
11931                         if (plane->fb)
11932                                 intel_unpin_fb_obj(old_obj);
11933
11934                 mutex_unlock(&dev->struct_mutex);
11935
11936         } else {
11937                 if (intel_crtc && intel_crtc->active &&
11938                     intel_crtc->primary_enabled) {
11939                         /*
11940                          * FBC does not work on some platforms for rotated
11941                          * planes, so disable it when rotation is not 0 and
11942                          * update it when rotation is set back to 0.
11943                          *
11944                          * FIXME: This is redundant with the fbc update done in
11945                          * the primary plane enable function except that that
11946                          * one is done too late. We eventually need to unify
11947                          * this.
11948                          */
11949                         if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11950                             dev_priv->fbc.plane == intel_crtc->plane &&
11951                             intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11952                                 intel_disable_fbc(dev);
11953                         }
11954                 }
11955                 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11956                 if (ret)
11957                         return ret;
11958
11959                 if (!intel_crtc->primary_enabled)
11960                         intel_enable_primary_hw_plane(plane, crtc);
11961         }
11962
11963         intel_plane->crtc_x = orig.crtc_x;
11964         intel_plane->crtc_y = orig.crtc_y;
11965         intel_plane->crtc_w = orig.crtc_w;
11966         intel_plane->crtc_h = orig.crtc_h;
11967         intel_plane->src_x = orig.src_x;
11968         intel_plane->src_y = orig.src_y;
11969         intel_plane->src_w = orig.src_w;
11970         intel_plane->src_h = orig.src_h;
11971         intel_plane->obj = obj;
11972
11973         return 0;
11974 }
11975
11976 /* Common destruction function for both primary and cursor planes */
11977 static void intel_plane_destroy(struct drm_plane *plane)
11978 {
11979         struct intel_plane *intel_plane = to_intel_plane(plane);
11980         drm_plane_cleanup(plane);
11981         kfree(intel_plane);
11982 }
11983
11984 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11985         .update_plane = intel_primary_plane_setplane,
11986         .disable_plane = intel_primary_plane_disable,
11987         .destroy = intel_plane_destroy,
11988         .set_property = intel_plane_set_property
11989 };
11990
11991 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11992                                                     int pipe)
11993 {
11994         struct intel_plane *primary;
11995         const uint32_t *intel_primary_formats;
11996         int num_formats;
11997
11998         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11999         if (primary == NULL)
12000                 return NULL;
12001
12002         primary->can_scale = false;
12003         primary->max_downscale = 1;
12004         primary->pipe = pipe;
12005         primary->plane = pipe;
12006         primary->rotation = BIT(DRM_ROTATE_0);
12007         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12008                 primary->plane = !pipe;
12009
12010         if (INTEL_INFO(dev)->gen <= 3) {
12011                 intel_primary_formats = intel_primary_formats_gen2;
12012                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12013         } else {
12014                 intel_primary_formats = intel_primary_formats_gen4;
12015                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12016         }
12017
12018         drm_universal_plane_init(dev, &primary->base, 0,
12019                                  &intel_primary_plane_funcs,
12020                                  intel_primary_formats, num_formats,
12021                                  DRM_PLANE_TYPE_PRIMARY);
12022
12023         if (INTEL_INFO(dev)->gen >= 4) {
12024                 if (!dev->mode_config.rotation_property)
12025                         dev->mode_config.rotation_property =
12026                                 drm_mode_create_rotation_property(dev,
12027                                                         BIT(DRM_ROTATE_0) |
12028                                                         BIT(DRM_ROTATE_180));
12029                 if (dev->mode_config.rotation_property)
12030                         drm_object_attach_property(&primary->base.base,
12031                                 dev->mode_config.rotation_property,
12032                                 primary->rotation);
12033         }
12034
12035         return &primary->base;
12036 }
12037
12038 static int
12039 intel_cursor_plane_disable(struct drm_plane *plane)
12040 {
12041         if (!plane->fb)
12042                 return 0;
12043
12044         BUG_ON(!plane->crtc);
12045
12046         return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
12047 }
12048
12049 static int
12050 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
12051                           struct drm_framebuffer *fb, int crtc_x, int crtc_y,
12052                           unsigned int crtc_w, unsigned int crtc_h,
12053                           uint32_t src_x, uint32_t src_y,
12054                           uint32_t src_w, uint32_t src_h)
12055 {
12056         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12057         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12058         struct drm_i915_gem_object *obj = intel_fb->obj;
12059         struct drm_rect dest = {
12060                 /* integer pixels */
12061                 .x1 = crtc_x,
12062                 .y1 = crtc_y,
12063                 .x2 = crtc_x + crtc_w,
12064                 .y2 = crtc_y + crtc_h,
12065         };
12066         struct drm_rect src = {
12067                 /* 16.16 fixed point */
12068                 .x1 = src_x,
12069                 .y1 = src_y,
12070                 .x2 = src_x + src_w,
12071                 .y2 = src_y + src_h,
12072         };
12073         const struct drm_rect clip = {
12074                 /* integer pixels */
12075                 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
12076                 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
12077         };
12078         bool visible;
12079         int ret;
12080
12081         ret = drm_plane_helper_check_update(plane, crtc, fb,
12082                                             &src, &dest, &clip,
12083                                             DRM_PLANE_HELPER_NO_SCALING,
12084                                             DRM_PLANE_HELPER_NO_SCALING,
12085                                             true, true, &visible);
12086         if (ret)
12087                 return ret;
12088
12089         crtc->cursor_x = crtc_x;
12090         crtc->cursor_y = crtc_y;
12091         if (fb != crtc->cursor->fb) {
12092                 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
12093         } else {
12094                 intel_crtc_update_cursor(crtc, visible);
12095
12096                 intel_frontbuffer_flip(crtc->dev,
12097                                        INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
12098
12099                 return 0;
12100         }
12101 }
12102 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12103         .update_plane = intel_cursor_plane_update,
12104         .disable_plane = intel_cursor_plane_disable,
12105         .destroy = intel_plane_destroy,
12106 };
12107
12108 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12109                                                    int pipe)
12110 {
12111         struct intel_plane *cursor;
12112
12113         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12114         if (cursor == NULL)
12115                 return NULL;
12116
12117         cursor->can_scale = false;
12118         cursor->max_downscale = 1;
12119         cursor->pipe = pipe;
12120         cursor->plane = pipe;
12121
12122         drm_universal_plane_init(dev, &cursor->base, 0,
12123                                  &intel_cursor_plane_funcs,
12124                                  intel_cursor_formats,
12125                                  ARRAY_SIZE(intel_cursor_formats),
12126                                  DRM_PLANE_TYPE_CURSOR);
12127         return &cursor->base;
12128 }
12129
12130 static void intel_crtc_init(struct drm_device *dev, int pipe)
12131 {
12132         struct drm_i915_private *dev_priv = dev->dev_private;
12133         struct intel_crtc *intel_crtc;
12134         struct drm_plane *primary = NULL;
12135         struct drm_plane *cursor = NULL;
12136         int i, ret;
12137
12138         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12139         if (intel_crtc == NULL)
12140                 return;
12141
12142         primary = intel_primary_plane_create(dev, pipe);
12143         if (!primary)
12144                 goto fail;
12145
12146         cursor = intel_cursor_plane_create(dev, pipe);
12147         if (!cursor)
12148                 goto fail;
12149
12150         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12151                                         cursor, &intel_crtc_funcs);
12152         if (ret)
12153                 goto fail;
12154
12155         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12156         for (i = 0; i < 256; i++) {
12157                 intel_crtc->lut_r[i] = i;
12158                 intel_crtc->lut_g[i] = i;
12159                 intel_crtc->lut_b[i] = i;
12160         }
12161
12162         /*
12163          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12164          * is hooked to pipe B. Hence we want plane A feeding pipe B.
12165          */
12166         intel_crtc->pipe = pipe;
12167         intel_crtc->plane = pipe;
12168         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12169                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12170                 intel_crtc->plane = !pipe;
12171         }
12172
12173         intel_crtc->cursor_base = ~0;
12174         intel_crtc->cursor_cntl = ~0;
12175         intel_crtc->cursor_size = ~0;
12176
12177         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12178                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12179         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12180         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12181
12182         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12183
12184         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12185         return;
12186
12187 fail:
12188         if (primary)
12189                 drm_plane_cleanup(primary);
12190         if (cursor)
12191                 drm_plane_cleanup(cursor);
12192         kfree(intel_crtc);
12193 }
12194
12195 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12196 {
12197         struct drm_encoder *encoder = connector->base.encoder;
12198         struct drm_device *dev = connector->base.dev;
12199
12200         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12201
12202         if (!encoder)
12203                 return INVALID_PIPE;
12204
12205         return to_intel_crtc(encoder->crtc)->pipe;
12206 }
12207
12208 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12209                                 struct drm_file *file)
12210 {
12211         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12212         struct drm_crtc *drmmode_crtc;
12213         struct intel_crtc *crtc;
12214
12215         if (!drm_core_check_feature(dev, DRIVER_MODESET))
12216                 return -ENODEV;
12217
12218         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12219
12220         if (!drmmode_crtc) {
12221                 DRM_ERROR("no such CRTC id\n");
12222                 return -ENOENT;
12223         }
12224
12225         crtc = to_intel_crtc(drmmode_crtc);
12226         pipe_from_crtc_id->pipe = crtc->pipe;
12227
12228         return 0;
12229 }
12230
12231 static int intel_encoder_clones(struct intel_encoder *encoder)
12232 {
12233         struct drm_device *dev = encoder->base.dev;
12234         struct intel_encoder *source_encoder;
12235         int index_mask = 0;
12236         int entry = 0;
12237
12238         for_each_intel_encoder(dev, source_encoder) {
12239                 if (encoders_cloneable(encoder, source_encoder))
12240                         index_mask |= (1 << entry);
12241
12242                 entry++;
12243         }
12244
12245         return index_mask;
12246 }
12247
12248 static bool has_edp_a(struct drm_device *dev)
12249 {
12250         struct drm_i915_private *dev_priv = dev->dev_private;
12251
12252         if (!IS_MOBILE(dev))
12253                 return false;
12254
12255         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12256                 return false;
12257
12258         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12259                 return false;
12260
12261         return true;
12262 }
12263
12264 const char *intel_output_name(int output)
12265 {
12266         static const char *names[] = {
12267                 [INTEL_OUTPUT_UNUSED] = "Unused",
12268                 [INTEL_OUTPUT_ANALOG] = "Analog",
12269                 [INTEL_OUTPUT_DVO] = "DVO",
12270                 [INTEL_OUTPUT_SDVO] = "SDVO",
12271                 [INTEL_OUTPUT_LVDS] = "LVDS",
12272                 [INTEL_OUTPUT_TVOUT] = "TV",
12273                 [INTEL_OUTPUT_HDMI] = "HDMI",
12274                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12275                 [INTEL_OUTPUT_EDP] = "eDP",
12276                 [INTEL_OUTPUT_DSI] = "DSI",
12277                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12278         };
12279
12280         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12281                 return "Invalid";
12282
12283         return names[output];
12284 }
12285
12286 static bool intel_crt_present(struct drm_device *dev)
12287 {
12288         struct drm_i915_private *dev_priv = dev->dev_private;
12289
12290         if (IS_ULT(dev))
12291                 return false;
12292
12293         if (IS_CHERRYVIEW(dev))
12294                 return false;
12295
12296         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12297                 return false;
12298
12299         return true;
12300 }
12301
12302 static void intel_setup_outputs(struct drm_device *dev)
12303 {
12304         struct drm_i915_private *dev_priv = dev->dev_private;
12305         struct intel_encoder *encoder;
12306         bool dpd_is_edp = false;
12307
12308         intel_lvds_init(dev);
12309
12310         if (intel_crt_present(dev))
12311                 intel_crt_init(dev);
12312
12313         if (HAS_DDI(dev)) {
12314                 int found;
12315
12316                 /* Haswell uses DDI functions to detect digital outputs */
12317                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12318                 /* DDI A only supports eDP */
12319                 if (found)
12320                         intel_ddi_init(dev, PORT_A);
12321
12322                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12323                  * register */
12324                 found = I915_READ(SFUSE_STRAP);
12325
12326                 if (found & SFUSE_STRAP_DDIB_DETECTED)
12327                         intel_ddi_init(dev, PORT_B);
12328                 if (found & SFUSE_STRAP_DDIC_DETECTED)
12329                         intel_ddi_init(dev, PORT_C);
12330                 if (found & SFUSE_STRAP_DDID_DETECTED)
12331                         intel_ddi_init(dev, PORT_D);
12332         } else if (HAS_PCH_SPLIT(dev)) {
12333                 int found;
12334                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12335
12336                 if (has_edp_a(dev))
12337                         intel_dp_init(dev, DP_A, PORT_A);
12338
12339                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12340                         /* PCH SDVOB multiplex with HDMIB */
12341                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
12342                         if (!found)
12343                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12344                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12345                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
12346                 }
12347
12348                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12349                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12350
12351                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12352                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12353
12354                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12355                         intel_dp_init(dev, PCH_DP_C, PORT_C);
12356
12357                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12358                         intel_dp_init(dev, PCH_DP_D, PORT_D);
12359         } else if (IS_VALLEYVIEW(dev)) {
12360                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
12361                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12362                                         PORT_B);
12363                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
12364                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12365                 }
12366
12367                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
12368                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12369                                         PORT_C);
12370                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
12371                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12372                 }
12373
12374                 if (IS_CHERRYVIEW(dev)) {
12375                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
12376                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12377                                                 PORT_D);
12378                                 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12379                                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12380                         }
12381                 }
12382
12383                 intel_dsi_init(dev);
12384         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12385                 bool found = false;
12386
12387                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12388                         DRM_DEBUG_KMS("probing SDVOB\n");
12389                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12390                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12391                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12392                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12393                         }
12394
12395                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
12396                                 intel_dp_init(dev, DP_B, PORT_B);
12397                 }
12398
12399                 /* Before G4X SDVOC doesn't have its own detect register */
12400
12401                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12402                         DRM_DEBUG_KMS("probing SDVOC\n");
12403                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12404                 }
12405
12406                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12407
12408                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12409                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12410                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12411                         }
12412                         if (SUPPORTS_INTEGRATED_DP(dev))
12413                                 intel_dp_init(dev, DP_C, PORT_C);
12414                 }
12415
12416                 if (SUPPORTS_INTEGRATED_DP(dev) &&
12417                     (I915_READ(DP_D) & DP_DETECTED))
12418                         intel_dp_init(dev, DP_D, PORT_D);
12419         } else if (IS_GEN2(dev))
12420                 intel_dvo_init(dev);
12421
12422         if (SUPPORTS_TV(dev))
12423                 intel_tv_init(dev);
12424
12425         intel_edp_psr_init(dev);
12426
12427         for_each_intel_encoder(dev, encoder) {
12428                 encoder->base.possible_crtcs = encoder->crtc_mask;
12429                 encoder->base.possible_clones =
12430                         intel_encoder_clones(encoder);
12431         }
12432
12433         intel_init_pch_refclk(dev);
12434
12435         drm_helper_move_panel_connectors_to_head(dev);
12436 }
12437
12438 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12439 {
12440         struct drm_device *dev = fb->dev;
12441         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12442
12443         drm_framebuffer_cleanup(fb);
12444         mutex_lock(&dev->struct_mutex);
12445         WARN_ON(!intel_fb->obj->framebuffer_references--);
12446         drm_gem_object_unreference(&intel_fb->obj->base);
12447         mutex_unlock(&dev->struct_mutex);
12448         kfree(intel_fb);
12449 }
12450
12451 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12452                                                 struct drm_file *file,
12453                                                 unsigned int *handle)
12454 {
12455         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12456         struct drm_i915_gem_object *obj = intel_fb->obj;
12457
12458         return drm_gem_handle_create(file, &obj->base, handle);
12459 }
12460
12461 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12462         .destroy = intel_user_framebuffer_destroy,
12463         .create_handle = intel_user_framebuffer_create_handle,
12464 };
12465
12466 static int intel_framebuffer_init(struct drm_device *dev,
12467                                   struct intel_framebuffer *intel_fb,
12468                                   struct drm_mode_fb_cmd2 *mode_cmd,
12469                                   struct drm_i915_gem_object *obj)
12470 {
12471         int aligned_height;
12472         int pitch_limit;
12473         int ret;
12474
12475         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12476
12477         if (obj->tiling_mode == I915_TILING_Y) {
12478                 DRM_DEBUG("hardware does not support tiling Y\n");
12479                 return -EINVAL;
12480         }
12481
12482         if (mode_cmd->pitches[0] & 63) {
12483                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12484                           mode_cmd->pitches[0]);
12485                 return -EINVAL;
12486         }
12487
12488         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12489                 pitch_limit = 32*1024;
12490         } else if (INTEL_INFO(dev)->gen >= 4) {
12491                 if (obj->tiling_mode)
12492                         pitch_limit = 16*1024;
12493                 else
12494                         pitch_limit = 32*1024;
12495         } else if (INTEL_INFO(dev)->gen >= 3) {
12496                 if (obj->tiling_mode)
12497                         pitch_limit = 8*1024;
12498                 else
12499                         pitch_limit = 16*1024;
12500         } else
12501                 /* XXX DSPC is limited to 4k tiled */
12502                 pitch_limit = 8*1024;
12503
12504         if (mode_cmd->pitches[0] > pitch_limit) {
12505                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12506                           obj->tiling_mode ? "tiled" : "linear",
12507                           mode_cmd->pitches[0], pitch_limit);
12508                 return -EINVAL;
12509         }
12510
12511         if (obj->tiling_mode != I915_TILING_NONE &&
12512             mode_cmd->pitches[0] != obj->stride) {
12513                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12514                           mode_cmd->pitches[0], obj->stride);
12515                 return -EINVAL;
12516         }
12517
12518         /* Reject formats not supported by any plane early. */
12519         switch (mode_cmd->pixel_format) {
12520         case DRM_FORMAT_C8:
12521         case DRM_FORMAT_RGB565:
12522         case DRM_FORMAT_XRGB8888:
12523         case DRM_FORMAT_ARGB8888:
12524                 break;
12525         case DRM_FORMAT_XRGB1555:
12526         case DRM_FORMAT_ARGB1555:
12527                 if (INTEL_INFO(dev)->gen > 3) {
12528                         DRM_DEBUG("unsupported pixel format: %s\n",
12529                                   drm_get_format_name(mode_cmd->pixel_format));
12530                         return -EINVAL;
12531                 }
12532                 break;
12533         case DRM_FORMAT_XBGR8888:
12534         case DRM_FORMAT_ABGR8888:
12535         case DRM_FORMAT_XRGB2101010:
12536         case DRM_FORMAT_ARGB2101010:
12537         case DRM_FORMAT_XBGR2101010:
12538         case DRM_FORMAT_ABGR2101010:
12539                 if (INTEL_INFO(dev)->gen < 4) {
12540                         DRM_DEBUG("unsupported pixel format: %s\n",
12541                                   drm_get_format_name(mode_cmd->pixel_format));
12542                         return -EINVAL;
12543                 }
12544                 break;
12545         case DRM_FORMAT_YUYV:
12546         case DRM_FORMAT_UYVY:
12547         case DRM_FORMAT_YVYU:
12548         case DRM_FORMAT_VYUY:
12549                 if (INTEL_INFO(dev)->gen < 5) {
12550                         DRM_DEBUG("unsupported pixel format: %s\n",
12551                                   drm_get_format_name(mode_cmd->pixel_format));
12552                         return -EINVAL;
12553                 }
12554                 break;
12555         default:
12556                 DRM_DEBUG("unsupported pixel format: %s\n",
12557                           drm_get_format_name(mode_cmd->pixel_format));
12558                 return -EINVAL;
12559         }
12560
12561         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12562         if (mode_cmd->offsets[0] != 0)
12563                 return -EINVAL;
12564
12565         aligned_height = intel_align_height(dev, mode_cmd->height,
12566                                             obj->tiling_mode);
12567         /* FIXME drm helper for size checks (especially planar formats)? */
12568         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12569                 return -EINVAL;
12570
12571         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12572         intel_fb->obj = obj;
12573         intel_fb->obj->framebuffer_references++;
12574
12575         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12576         if (ret) {
12577                 DRM_ERROR("framebuffer init failed %d\n", ret);
12578                 return ret;
12579         }
12580
12581         return 0;
12582 }
12583
12584 static struct drm_framebuffer *
12585 intel_user_framebuffer_create(struct drm_device *dev,
12586                               struct drm_file *filp,
12587                               struct drm_mode_fb_cmd2 *mode_cmd)
12588 {
12589         struct drm_i915_gem_object *obj;
12590
12591         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12592                                                 mode_cmd->handles[0]));
12593         if (&obj->base == NULL)
12594                 return ERR_PTR(-ENOENT);
12595
12596         return intel_framebuffer_create(dev, mode_cmd, obj);
12597 }
12598
12599 #ifndef CONFIG_DRM_I915_FBDEV
12600 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12601 {
12602 }
12603 #endif
12604
12605 static const struct drm_mode_config_funcs intel_mode_funcs = {
12606         .fb_create = intel_user_framebuffer_create,
12607         .output_poll_changed = intel_fbdev_output_poll_changed,
12608 };
12609
12610 /* Set up chip specific display functions */
12611 static void intel_init_display(struct drm_device *dev)
12612 {
12613         struct drm_i915_private *dev_priv = dev->dev_private;
12614
12615         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12616                 dev_priv->display.find_dpll = g4x_find_best_dpll;
12617         else if (IS_CHERRYVIEW(dev))
12618                 dev_priv->display.find_dpll = chv_find_best_dpll;
12619         else if (IS_VALLEYVIEW(dev))
12620                 dev_priv->display.find_dpll = vlv_find_best_dpll;
12621         else if (IS_PINEVIEW(dev))
12622                 dev_priv->display.find_dpll = pnv_find_best_dpll;
12623         else
12624                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12625
12626         if (HAS_DDI(dev)) {
12627                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12628                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12629                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
12630                 dev_priv->display.crtc_enable = haswell_crtc_enable;
12631                 dev_priv->display.crtc_disable = haswell_crtc_disable;
12632                 dev_priv->display.off = ironlake_crtc_off;
12633                 dev_priv->display.update_primary_plane =
12634                         ironlake_update_primary_plane;
12635         } else if (HAS_PCH_SPLIT(dev)) {
12636                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12637                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12638                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
12639                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12640                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12641                 dev_priv->display.off = ironlake_crtc_off;
12642                 dev_priv->display.update_primary_plane =
12643                         ironlake_update_primary_plane;
12644         } else if (IS_VALLEYVIEW(dev)) {
12645                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12646                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12647                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12648                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12649                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12650                 dev_priv->display.off = i9xx_crtc_off;
12651                 dev_priv->display.update_primary_plane =
12652                         i9xx_update_primary_plane;
12653         } else {
12654                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12655                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12656                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12657                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12658                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12659                 dev_priv->display.off = i9xx_crtc_off;
12660                 dev_priv->display.update_primary_plane =
12661                         i9xx_update_primary_plane;
12662         }
12663
12664         /* Returns the core display clock speed */
12665         if (IS_VALLEYVIEW(dev))
12666                 dev_priv->display.get_display_clock_speed =
12667                         valleyview_get_display_clock_speed;
12668         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12669                 dev_priv->display.get_display_clock_speed =
12670                         i945_get_display_clock_speed;
12671         else if (IS_I915G(dev))
12672                 dev_priv->display.get_display_clock_speed =
12673                         i915_get_display_clock_speed;
12674         else if (IS_I945GM(dev) || IS_845G(dev))
12675                 dev_priv->display.get_display_clock_speed =
12676                         i9xx_misc_get_display_clock_speed;
12677         else if (IS_PINEVIEW(dev))
12678                 dev_priv->display.get_display_clock_speed =
12679                         pnv_get_display_clock_speed;
12680         else if (IS_I915GM(dev))
12681                 dev_priv->display.get_display_clock_speed =
12682                         i915gm_get_display_clock_speed;
12683         else if (IS_I865G(dev))
12684                 dev_priv->display.get_display_clock_speed =
12685                         i865_get_display_clock_speed;
12686         else if (IS_I85X(dev))
12687                 dev_priv->display.get_display_clock_speed =
12688                         i855_get_display_clock_speed;
12689         else /* 852, 830 */
12690                 dev_priv->display.get_display_clock_speed =
12691                         i830_get_display_clock_speed;
12692
12693         if (IS_G4X(dev)) {
12694                 dev_priv->display.write_eld = g4x_write_eld;
12695         } else if (IS_GEN5(dev)) {
12696                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12697                 dev_priv->display.write_eld = ironlake_write_eld;
12698         } else if (IS_GEN6(dev)) {
12699                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12700                 dev_priv->display.write_eld = ironlake_write_eld;
12701                 dev_priv->display.modeset_global_resources =
12702                         snb_modeset_global_resources;
12703         } else if (IS_IVYBRIDGE(dev)) {
12704                 /* FIXME: detect B0+ stepping and use auto training */
12705                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12706                 dev_priv->display.write_eld = ironlake_write_eld;
12707                 dev_priv->display.modeset_global_resources =
12708                         ivb_modeset_global_resources;
12709         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12710                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12711                 dev_priv->display.write_eld = haswell_write_eld;
12712                 dev_priv->display.modeset_global_resources =
12713                         haswell_modeset_global_resources;
12714         } else if (IS_VALLEYVIEW(dev)) {
12715                 dev_priv->display.modeset_global_resources =
12716                         valleyview_modeset_global_resources;
12717                 dev_priv->display.write_eld = ironlake_write_eld;
12718         }
12719
12720         /* Default just returns -ENODEV to indicate unsupported */
12721         dev_priv->display.queue_flip = intel_default_queue_flip;
12722
12723         switch (INTEL_INFO(dev)->gen) {
12724         case 2:
12725                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12726                 break;
12727
12728         case 3:
12729                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12730                 break;
12731
12732         case 4:
12733         case 5:
12734                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12735                 break;
12736
12737         case 6:
12738                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12739                 break;
12740         case 7:
12741         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12742                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12743                 break;
12744         }
12745
12746         intel_panel_init_backlight_funcs(dev);
12747
12748         mutex_init(&dev_priv->pps_mutex);
12749 }
12750
12751 /*
12752  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12753  * resume, or other times.  This quirk makes sure that's the case for
12754  * affected systems.
12755  */
12756 static void quirk_pipea_force(struct drm_device *dev)
12757 {
12758         struct drm_i915_private *dev_priv = dev->dev_private;
12759
12760         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12761         DRM_INFO("applying pipe a force quirk\n");
12762 }
12763
12764 static void quirk_pipeb_force(struct drm_device *dev)
12765 {
12766         struct drm_i915_private *dev_priv = dev->dev_private;
12767
12768         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12769         DRM_INFO("applying pipe b force quirk\n");
12770 }
12771
12772 /*
12773  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12774  */
12775 static void quirk_ssc_force_disable(struct drm_device *dev)
12776 {
12777         struct drm_i915_private *dev_priv = dev->dev_private;
12778         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12779         DRM_INFO("applying lvds SSC disable quirk\n");
12780 }
12781
12782 /*
12783  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12784  * brightness value
12785  */
12786 static void quirk_invert_brightness(struct drm_device *dev)
12787 {
12788         struct drm_i915_private *dev_priv = dev->dev_private;
12789         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12790         DRM_INFO("applying inverted panel brightness quirk\n");
12791 }
12792
12793 /* Some VBT's incorrectly indicate no backlight is present */
12794 static void quirk_backlight_present(struct drm_device *dev)
12795 {
12796         struct drm_i915_private *dev_priv = dev->dev_private;
12797         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12798         DRM_INFO("applying backlight present quirk\n");
12799 }
12800
12801 struct intel_quirk {
12802         int device;
12803         int subsystem_vendor;
12804         int subsystem_device;
12805         void (*hook)(struct drm_device *dev);
12806 };
12807
12808 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12809 struct intel_dmi_quirk {
12810         void (*hook)(struct drm_device *dev);
12811         const struct dmi_system_id (*dmi_id_list)[];
12812 };
12813
12814 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12815 {
12816         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12817         return 1;
12818 }
12819
12820 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12821         {
12822                 .dmi_id_list = &(const struct dmi_system_id[]) {
12823                         {
12824                                 .callback = intel_dmi_reverse_brightness,
12825                                 .ident = "NCR Corporation",
12826                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12827                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
12828                                 },
12829                         },
12830                         { }  /* terminating entry */
12831                 },
12832                 .hook = quirk_invert_brightness,
12833         },
12834 };
12835
12836 static struct intel_quirk intel_quirks[] = {
12837         /* HP Mini needs pipe A force quirk (LP: #322104) */
12838         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12839
12840         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12841         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12842
12843         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12844         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12845
12846         /* 830 needs to leave pipe A & dpll A up */
12847         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12848
12849         /* 830 needs to leave pipe B & dpll B up */
12850         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12851
12852         /* Lenovo U160 cannot use SSC on LVDS */
12853         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12854
12855         /* Sony Vaio Y cannot use SSC on LVDS */
12856         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12857
12858         /* Acer Aspire 5734Z must invert backlight brightness */
12859         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12860
12861         /* Acer/eMachines G725 */
12862         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12863
12864         /* Acer/eMachines e725 */
12865         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12866
12867         /* Acer/Packard Bell NCL20 */
12868         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12869
12870         /* Acer Aspire 4736Z */
12871         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12872
12873         /* Acer Aspire 5336 */
12874         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12875
12876         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12877         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12878
12879         /* Acer C720 Chromebook (Core i3 4005U) */
12880         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12881
12882         /* Toshiba CB35 Chromebook (Celeron 2955U) */
12883         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12884
12885         /* HP Chromebook 14 (Celeron 2955U) */
12886         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12887 };
12888
12889 static void intel_init_quirks(struct drm_device *dev)
12890 {
12891         struct pci_dev *d = dev->pdev;
12892         int i;
12893
12894         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12895                 struct intel_quirk *q = &intel_quirks[i];
12896
12897                 if (d->device == q->device &&
12898                     (d->subsystem_vendor == q->subsystem_vendor ||
12899                      q->subsystem_vendor == PCI_ANY_ID) &&
12900                     (d->subsystem_device == q->subsystem_device ||
12901                      q->subsystem_device == PCI_ANY_ID))
12902                         q->hook(dev);
12903         }
12904         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12905                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12906                         intel_dmi_quirks[i].hook(dev);
12907         }
12908 }
12909
12910 /* Disable the VGA plane that we never use */
12911 static void i915_disable_vga(struct drm_device *dev)
12912 {
12913         struct drm_i915_private *dev_priv = dev->dev_private;
12914         u8 sr1;
12915         u32 vga_reg = i915_vgacntrl_reg(dev);
12916
12917         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12918         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12919         outb(SR01, VGA_SR_INDEX);
12920         sr1 = inb(VGA_SR_DATA);
12921         outb(sr1 | 1<<5, VGA_SR_DATA);
12922         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12923         udelay(300);
12924
12925         /*
12926          * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12927          * from S3 without preserving (some of?) the other bits.
12928          */
12929         I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
12930         POSTING_READ(vga_reg);
12931 }
12932
12933 void intel_modeset_init_hw(struct drm_device *dev)
12934 {
12935         intel_prepare_ddi(dev);
12936
12937         if (IS_VALLEYVIEW(dev))
12938                 vlv_update_cdclk(dev);
12939
12940         intel_init_clock_gating(dev);
12941
12942         intel_enable_gt_powersave(dev);
12943 }
12944
12945 void intel_modeset_suspend_hw(struct drm_device *dev)
12946 {
12947         intel_suspend_hw(dev);
12948 }
12949
12950 void intel_modeset_init(struct drm_device *dev)
12951 {
12952         struct drm_i915_private *dev_priv = dev->dev_private;
12953         int sprite, ret;
12954         enum pipe pipe;
12955         struct intel_crtc *crtc;
12956
12957         drm_mode_config_init(dev);
12958
12959         dev->mode_config.min_width = 0;
12960         dev->mode_config.min_height = 0;
12961
12962         dev->mode_config.preferred_depth = 24;
12963         dev->mode_config.prefer_shadow = 1;
12964
12965         dev->mode_config.funcs = &intel_mode_funcs;
12966
12967         intel_init_quirks(dev);
12968
12969         intel_init_pm(dev);
12970
12971         if (INTEL_INFO(dev)->num_pipes == 0)
12972                 return;
12973
12974         intel_init_display(dev);
12975
12976         if (IS_GEN2(dev)) {
12977                 dev->mode_config.max_width = 2048;
12978                 dev->mode_config.max_height = 2048;
12979         } else if (IS_GEN3(dev)) {
12980                 dev->mode_config.max_width = 4096;
12981                 dev->mode_config.max_height = 4096;
12982         } else {
12983                 dev->mode_config.max_width = 8192;
12984                 dev->mode_config.max_height = 8192;
12985         }
12986
12987         if (IS_845G(dev) || IS_I865G(dev)) {
12988                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
12989                 dev->mode_config.cursor_height = 1023;
12990         } else if (IS_GEN2(dev)) {
12991                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12992                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12993         } else {
12994                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12995                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12996         }
12997
12998         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
12999
13000         DRM_DEBUG_KMS("%d display pipe%s available.\n",
13001                       INTEL_INFO(dev)->num_pipes,
13002                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13003
13004         for_each_pipe(dev_priv, pipe) {
13005                 intel_crtc_init(dev, pipe);
13006                 for_each_sprite(pipe, sprite) {
13007                         ret = intel_plane_init(dev, pipe, sprite);
13008                         if (ret)
13009                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13010                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
13011                 }
13012         }
13013
13014         intel_init_dpio(dev);
13015
13016         intel_shared_dpll_init(dev);
13017
13018         /* save the BIOS value before clobbering it */
13019         dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
13020         /* Just disable it once at startup */
13021         i915_disable_vga(dev);
13022         intel_setup_outputs(dev);
13023
13024         /* Just in case the BIOS is doing something questionable. */
13025         intel_disable_fbc(dev);
13026
13027         drm_modeset_lock_all(dev);
13028         intel_modeset_setup_hw_state(dev, false);
13029         drm_modeset_unlock_all(dev);
13030
13031         for_each_intel_crtc(dev, crtc) {
13032                 if (!crtc->active)
13033                         continue;
13034
13035                 /*
13036                  * Note that reserving the BIOS fb up front prevents us
13037                  * from stuffing other stolen allocations like the ring
13038                  * on top.  This prevents some ugliness at boot time, and
13039                  * can even allow for smooth boot transitions if the BIOS
13040                  * fb is large enough for the active pipe configuration.
13041                  */
13042                 if (dev_priv->display.get_plane_config) {
13043                         dev_priv->display.get_plane_config(crtc,
13044                                                            &crtc->plane_config);
13045                         /*
13046                          * If the fb is shared between multiple heads, we'll
13047                          * just get the first one.
13048                          */
13049                         intel_find_plane_obj(crtc, &crtc->plane_config);
13050                 }
13051         }
13052 }
13053
13054 static void intel_enable_pipe_a(struct drm_device *dev)
13055 {
13056         struct intel_connector *connector;
13057         struct drm_connector *crt = NULL;
13058         struct intel_load_detect_pipe load_detect_temp;
13059         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13060
13061         /* We can't just switch on the pipe A, we need to set things up with a
13062          * proper mode and output configuration. As a gross hack, enable pipe A
13063          * by enabling the load detect pipe once. */
13064         list_for_each_entry(connector,
13065                             &dev->mode_config.connector_list,
13066                             base.head) {
13067                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13068                         crt = &connector->base;
13069                         break;
13070                 }
13071         }
13072
13073         if (!crt)
13074                 return;
13075
13076         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13077                 intel_release_load_detect_pipe(crt, &load_detect_temp);
13078 }
13079
13080 static bool
13081 intel_check_plane_mapping(struct intel_crtc *crtc)
13082 {
13083         struct drm_device *dev = crtc->base.dev;
13084         struct drm_i915_private *dev_priv = dev->dev_private;
13085         u32 reg, val;
13086
13087         if (INTEL_INFO(dev)->num_pipes == 1)
13088                 return true;
13089
13090         reg = DSPCNTR(!crtc->plane);
13091         val = I915_READ(reg);
13092
13093         if ((val & DISPLAY_PLANE_ENABLE) &&
13094             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13095                 return false;
13096
13097         return true;
13098 }
13099
13100 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13101 {
13102         struct drm_device *dev = crtc->base.dev;
13103         struct drm_i915_private *dev_priv = dev->dev_private;
13104         u32 reg;
13105
13106         /* Clear any frame start delays used for debugging left by the BIOS */
13107         reg = PIPECONF(crtc->config.cpu_transcoder);
13108         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13109
13110         /* restore vblank interrupts to correct state */
13111         if (crtc->active) {
13112                 update_scanline_offset(crtc);
13113                 drm_vblank_on(dev, crtc->pipe);
13114         } else
13115                 drm_vblank_off(dev, crtc->pipe);
13116
13117         /* We need to sanitize the plane -> pipe mapping first because this will
13118          * disable the crtc (and hence change the state) if it is wrong. Note
13119          * that gen4+ has a fixed plane -> pipe mapping.  */
13120         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13121                 struct intel_connector *connector;
13122                 bool plane;
13123
13124                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13125                               crtc->base.base.id);
13126
13127                 /* Pipe has the wrong plane attached and the plane is active.
13128                  * Temporarily change the plane mapping and disable everything
13129                  * ...  */
13130                 plane = crtc->plane;
13131                 crtc->plane = !plane;
13132                 crtc->primary_enabled = true;
13133                 dev_priv->display.crtc_disable(&crtc->base);
13134                 crtc->plane = plane;
13135
13136                 /* ... and break all links. */
13137                 list_for_each_entry(connector, &dev->mode_config.connector_list,
13138                                     base.head) {
13139                         if (connector->encoder->base.crtc != &crtc->base)
13140                                 continue;
13141
13142                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13143                         connector->base.encoder = NULL;
13144                 }
13145                 /* multiple connectors may have the same encoder:
13146                  *  handle them and break crtc link separately */
13147                 list_for_each_entry(connector, &dev->mode_config.connector_list,
13148                                     base.head)
13149                         if (connector->encoder->base.crtc == &crtc->base) {
13150                                 connector->encoder->base.crtc = NULL;
13151                                 connector->encoder->connectors_active = false;
13152                         }
13153
13154                 WARN_ON(crtc->active);
13155                 crtc->base.enabled = false;
13156         }
13157
13158         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13159             crtc->pipe == PIPE_A && !crtc->active) {
13160                 /* BIOS forgot to enable pipe A, this mostly happens after
13161                  * resume. Force-enable the pipe to fix this, the update_dpms
13162                  * call below we restore the pipe to the right state, but leave
13163                  * the required bits on. */
13164                 intel_enable_pipe_a(dev);
13165         }
13166
13167         /* Adjust the state of the output pipe according to whether we
13168          * have active connectors/encoders. */
13169         intel_crtc_update_dpms(&crtc->base);
13170
13171         if (crtc->active != crtc->base.enabled) {
13172                 struct intel_encoder *encoder;
13173
13174                 /* This can happen either due to bugs in the get_hw_state
13175                  * functions or because the pipe is force-enabled due to the
13176                  * pipe A quirk. */
13177                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13178                               crtc->base.base.id,
13179                               crtc->base.enabled ? "enabled" : "disabled",
13180                               crtc->active ? "enabled" : "disabled");
13181
13182                 crtc->base.enabled = crtc->active;
13183
13184                 /* Because we only establish the connector -> encoder ->
13185                  * crtc links if something is active, this means the
13186                  * crtc is now deactivated. Break the links. connector
13187                  * -> encoder links are only establish when things are
13188                  *  actually up, hence no need to break them. */
13189                 WARN_ON(crtc->active);
13190
13191                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13192                         WARN_ON(encoder->connectors_active);
13193                         encoder->base.crtc = NULL;
13194                 }
13195         }
13196
13197         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13198                 /*
13199                  * We start out with underrun reporting disabled to avoid races.
13200                  * For correct bookkeeping mark this on active crtcs.
13201                  *
13202                  * Also on gmch platforms we dont have any hardware bits to
13203                  * disable the underrun reporting. Which means we need to start
13204                  * out with underrun reporting disabled also on inactive pipes,
13205                  * since otherwise we'll complain about the garbage we read when
13206                  * e.g. coming up after runtime pm.
13207                  *
13208                  * No protection against concurrent access is required - at
13209                  * worst a fifo underrun happens which also sets this to false.
13210                  */
13211                 crtc->cpu_fifo_underrun_disabled = true;
13212                 crtc->pch_fifo_underrun_disabled = true;
13213         }
13214 }
13215
13216 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13217 {
13218         struct intel_connector *connector;
13219         struct drm_device *dev = encoder->base.dev;
13220
13221         /* We need to check both for a crtc link (meaning that the
13222          * encoder is active and trying to read from a pipe) and the
13223          * pipe itself being active. */
13224         bool has_active_crtc = encoder->base.crtc &&
13225                 to_intel_crtc(encoder->base.crtc)->active;
13226
13227         if (encoder->connectors_active && !has_active_crtc) {
13228                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13229                               encoder->base.base.id,
13230                               encoder->base.name);
13231
13232                 /* Connector is active, but has no active pipe. This is
13233                  * fallout from our resume register restoring. Disable
13234                  * the encoder manually again. */
13235                 if (encoder->base.crtc) {
13236                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13237                                       encoder->base.base.id,
13238                                       encoder->base.name);
13239                         encoder->disable(encoder);
13240                         if (encoder->post_disable)
13241                                 encoder->post_disable(encoder);
13242                 }
13243                 encoder->base.crtc = NULL;
13244                 encoder->connectors_active = false;
13245
13246                 /* Inconsistent output/port/pipe state happens presumably due to
13247                  * a bug in one of the get_hw_state functions. Or someplace else
13248                  * in our code, like the register restore mess on resume. Clamp
13249                  * things to off as a safer default. */
13250                 list_for_each_entry(connector,
13251                                     &dev->mode_config.connector_list,
13252                                     base.head) {
13253                         if (connector->encoder != encoder)
13254                                 continue;
13255                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13256                         connector->base.encoder = NULL;
13257                 }
13258         }
13259         /* Enabled encoders without active connectors will be fixed in
13260          * the crtc fixup. */
13261 }
13262
13263 void i915_redisable_vga_power_on(struct drm_device *dev)
13264 {
13265         struct drm_i915_private *dev_priv = dev->dev_private;
13266         u32 vga_reg = i915_vgacntrl_reg(dev);
13267
13268         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13269                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13270                 i915_disable_vga(dev);
13271         }
13272 }
13273
13274 void i915_redisable_vga(struct drm_device *dev)
13275 {
13276         struct drm_i915_private *dev_priv = dev->dev_private;
13277
13278         /* This function can be called both from intel_modeset_setup_hw_state or
13279          * at a very early point in our resume sequence, where the power well
13280          * structures are not yet restored. Since this function is at a very
13281          * paranoid "someone might have enabled VGA while we were not looking"
13282          * level, just check if the power well is enabled instead of trying to
13283          * follow the "don't touch the power well if we don't need it" policy
13284          * the rest of the driver uses. */
13285         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
13286                 return;
13287
13288         i915_redisable_vga_power_on(dev);
13289 }
13290
13291 static bool primary_get_hw_state(struct intel_crtc *crtc)
13292 {
13293         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13294
13295         if (!crtc->active)
13296                 return false;
13297
13298         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13299 }
13300
13301 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13302 {
13303         struct drm_i915_private *dev_priv = dev->dev_private;
13304         enum pipe pipe;
13305         struct intel_crtc *crtc;
13306         struct intel_encoder *encoder;
13307         struct intel_connector *connector;
13308         int i;
13309
13310         for_each_intel_crtc(dev, crtc) {
13311                 memset(&crtc->config, 0, sizeof(crtc->config));
13312
13313                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13314
13315                 crtc->active = dev_priv->display.get_pipe_config(crtc,
13316                                                                  &crtc->config);
13317
13318                 crtc->base.enabled = crtc->active;
13319                 crtc->primary_enabled = primary_get_hw_state(crtc);
13320
13321                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13322                               crtc->base.base.id,
13323                               crtc->active ? "enabled" : "disabled");
13324         }
13325
13326         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13327                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13328
13329                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
13330                 pll->active = 0;
13331                 for_each_intel_crtc(dev, crtc) {
13332                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13333                                 pll->active++;
13334                 }
13335                 pll->refcount = pll->active;
13336
13337                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
13338                               pll->name, pll->refcount, pll->on);
13339
13340                 if (pll->refcount)
13341                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13342         }
13343
13344         for_each_intel_encoder(dev, encoder) {
13345                 pipe = 0;
13346
13347                 if (encoder->get_hw_state(encoder, &pipe)) {
13348                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13349                         encoder->base.crtc = &crtc->base;
13350                         encoder->get_config(encoder, &crtc->config);
13351                 } else {
13352                         encoder->base.crtc = NULL;
13353                 }
13354
13355                 encoder->connectors_active = false;
13356                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13357                               encoder->base.base.id,
13358                               encoder->base.name,
13359                               encoder->base.crtc ? "enabled" : "disabled",
13360                               pipe_name(pipe));
13361         }
13362
13363         list_for_each_entry(connector, &dev->mode_config.connector_list,
13364                             base.head) {
13365                 if (connector->get_hw_state(connector)) {
13366                         connector->base.dpms = DRM_MODE_DPMS_ON;
13367                         connector->encoder->connectors_active = true;
13368                         connector->base.encoder = &connector->encoder->base;
13369                 } else {
13370                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13371                         connector->base.encoder = NULL;
13372                 }
13373                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13374                               connector->base.base.id,
13375                               connector->base.name,
13376                               connector->base.encoder ? "enabled" : "disabled");
13377         }
13378 }
13379
13380 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13381  * and i915 state tracking structures. */
13382 void intel_modeset_setup_hw_state(struct drm_device *dev,
13383                                   bool force_restore)
13384 {
13385         struct drm_i915_private *dev_priv = dev->dev_private;
13386         enum pipe pipe;
13387         struct intel_crtc *crtc;
13388         struct intel_encoder *encoder;
13389         int i;
13390
13391         intel_modeset_readout_hw_state(dev);
13392
13393         /*
13394          * Now that we have the config, copy it to each CRTC struct
13395          * Note that this could go away if we move to using crtc_config
13396          * checking everywhere.
13397          */
13398         for_each_intel_crtc(dev, crtc) {
13399                 if (crtc->active && i915.fastboot) {
13400                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13401                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13402                                       crtc->base.base.id);
13403                         drm_mode_debug_printmodeline(&crtc->base.mode);
13404                 }
13405         }
13406
13407         /* HW state is read out, now we need to sanitize this mess. */
13408         for_each_intel_encoder(dev, encoder) {
13409                 intel_sanitize_encoder(encoder);
13410         }
13411
13412         for_each_pipe(dev_priv, pipe) {
13413                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13414                 intel_sanitize_crtc(crtc);
13415                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13416         }
13417
13418         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13419                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13420
13421                 if (!pll->on || pll->active)
13422                         continue;
13423
13424                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13425
13426                 pll->disable(dev_priv, pll);
13427                 pll->on = false;
13428         }
13429
13430         if (HAS_PCH_SPLIT(dev))
13431                 ilk_wm_get_hw_state(dev);
13432
13433         if (force_restore) {
13434                 i915_redisable_vga(dev);
13435
13436                 /*
13437                  * We need to use raw interfaces for restoring state to avoid
13438                  * checking (bogus) intermediate states.
13439                  */
13440                 for_each_pipe(dev_priv, pipe) {
13441                         struct drm_crtc *crtc =
13442                                 dev_priv->pipe_to_crtc_mapping[pipe];
13443
13444                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13445                                          crtc->primary->fb);
13446                 }
13447         } else {
13448                 intel_modeset_update_staged_output_state(dev);
13449         }
13450
13451         intel_modeset_check_state(dev);
13452 }
13453
13454 void intel_modeset_gem_init(struct drm_device *dev)
13455 {
13456         struct drm_crtc *c;
13457         struct drm_i915_gem_object *obj;
13458
13459         mutex_lock(&dev->struct_mutex);
13460         intel_init_gt_powersave(dev);
13461         mutex_unlock(&dev->struct_mutex);
13462
13463         intel_modeset_init_hw(dev);
13464
13465         intel_setup_overlay(dev);
13466
13467         /*
13468          * Make sure any fbs we allocated at startup are properly
13469          * pinned & fenced.  When we do the allocation it's too early
13470          * for this.
13471          */
13472         mutex_lock(&dev->struct_mutex);
13473         for_each_crtc(dev, c) {
13474                 obj = intel_fb_obj(c->primary->fb);
13475                 if (obj == NULL)
13476                         continue;
13477
13478                 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
13479                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
13480                                   to_intel_crtc(c)->pipe);
13481                         drm_framebuffer_unreference(c->primary->fb);
13482                         c->primary->fb = NULL;
13483                 }
13484         }
13485         mutex_unlock(&dev->struct_mutex);
13486 }
13487
13488 void intel_connector_unregister(struct intel_connector *intel_connector)
13489 {
13490         struct drm_connector *connector = &intel_connector->base;
13491
13492         intel_panel_destroy_backlight(connector);
13493         drm_connector_unregister(connector);
13494 }
13495
13496 void intel_modeset_cleanup(struct drm_device *dev)
13497 {
13498         struct drm_i915_private *dev_priv = dev->dev_private;
13499         struct drm_connector *connector;
13500
13501         /*
13502          * Interrupts and polling as the first thing to avoid creating havoc.
13503          * Too much stuff here (turning of rps, connectors, ...) would
13504          * experience fancy races otherwise.
13505          */
13506         drm_irq_uninstall(dev);
13507         intel_hpd_cancel_work(dev_priv);
13508         dev_priv->pm._irqs_disabled = true;
13509
13510         /*
13511          * Due to the hpd irq storm handling the hotplug work can re-arm the
13512          * poll handlers. Hence disable polling after hpd handling is shut down.
13513          */
13514         drm_kms_helper_poll_fini(dev);
13515
13516         mutex_lock(&dev->struct_mutex);
13517
13518         intel_unregister_dsm_handler();
13519
13520         intel_disable_fbc(dev);
13521
13522         intel_disable_gt_powersave(dev);
13523
13524         ironlake_teardown_rc6(dev);
13525
13526         mutex_unlock(&dev->struct_mutex);
13527
13528         /* flush any delayed tasks or pending work */
13529         flush_scheduled_work();
13530
13531         /* destroy the backlight and sysfs files before encoders/connectors */
13532         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13533                 struct intel_connector *intel_connector;
13534
13535                 intel_connector = to_intel_connector(connector);
13536                 intel_connector->unregister(intel_connector);
13537         }
13538
13539         drm_mode_config_cleanup(dev);
13540
13541         intel_cleanup_overlay(dev);
13542
13543         mutex_lock(&dev->struct_mutex);
13544         intel_cleanup_gt_powersave(dev);
13545         mutex_unlock(&dev->struct_mutex);
13546 }
13547
13548 /*
13549  * Return which encoder is currently attached for connector.
13550  */
13551 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13552 {
13553         return &intel_attached_encoder(connector)->base;
13554 }
13555
13556 void intel_connector_attach_encoder(struct intel_connector *connector,
13557                                     struct intel_encoder *encoder)
13558 {
13559         connector->encoder = encoder;
13560         drm_mode_connector_attach_encoder(&connector->base,
13561                                           &encoder->base);
13562 }
13563
13564 /*
13565  * set vga decode state - true == enable VGA decode
13566  */
13567 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13568 {
13569         struct drm_i915_private *dev_priv = dev->dev_private;
13570         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13571         u16 gmch_ctrl;
13572
13573         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13574                 DRM_ERROR("failed to read control word\n");
13575                 return -EIO;
13576         }
13577
13578         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13579                 return 0;
13580
13581         if (state)
13582                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13583         else
13584                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13585
13586         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13587                 DRM_ERROR("failed to write control word\n");
13588                 return -EIO;
13589         }
13590
13591         return 0;
13592 }
13593
13594 struct intel_display_error_state {
13595
13596         u32 power_well_driver;
13597
13598         int num_transcoders;
13599
13600         struct intel_cursor_error_state {
13601                 u32 control;
13602                 u32 position;
13603                 u32 base;
13604                 u32 size;
13605         } cursor[I915_MAX_PIPES];
13606
13607         struct intel_pipe_error_state {
13608                 bool power_domain_on;
13609                 u32 source;
13610                 u32 stat;
13611         } pipe[I915_MAX_PIPES];
13612
13613         struct intel_plane_error_state {
13614                 u32 control;
13615                 u32 stride;
13616                 u32 size;
13617                 u32 pos;
13618                 u32 addr;
13619                 u32 surface;
13620                 u32 tile_offset;
13621         } plane[I915_MAX_PIPES];
13622
13623         struct intel_transcoder_error_state {
13624                 bool power_domain_on;
13625                 enum transcoder cpu_transcoder;
13626
13627                 u32 conf;
13628
13629                 u32 htotal;
13630                 u32 hblank;
13631                 u32 hsync;
13632                 u32 vtotal;
13633                 u32 vblank;
13634                 u32 vsync;
13635         } transcoder[4];
13636 };
13637
13638 struct intel_display_error_state *
13639 intel_display_capture_error_state(struct drm_device *dev)
13640 {
13641         struct drm_i915_private *dev_priv = dev->dev_private;
13642         struct intel_display_error_state *error;
13643         int transcoders[] = {
13644                 TRANSCODER_A,
13645                 TRANSCODER_B,
13646                 TRANSCODER_C,
13647                 TRANSCODER_EDP,
13648         };
13649         int i;
13650
13651         if (INTEL_INFO(dev)->num_pipes == 0)
13652                 return NULL;
13653
13654         error = kzalloc(sizeof(*error), GFP_ATOMIC);
13655         if (error == NULL)
13656                 return NULL;
13657
13658         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13659                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13660
13661         for_each_pipe(dev_priv, i) {
13662                 error->pipe[i].power_domain_on =
13663                         intel_display_power_enabled_unlocked(dev_priv,
13664                                                            POWER_DOMAIN_PIPE(i));
13665                 if (!error->pipe[i].power_domain_on)
13666                         continue;
13667
13668                 error->cursor[i].control = I915_READ(CURCNTR(i));
13669                 error->cursor[i].position = I915_READ(CURPOS(i));
13670                 error->cursor[i].base = I915_READ(CURBASE(i));
13671
13672                 error->plane[i].control = I915_READ(DSPCNTR(i));
13673                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13674                 if (INTEL_INFO(dev)->gen <= 3) {
13675                         error->plane[i].size = I915_READ(DSPSIZE(i));
13676                         error->plane[i].pos = I915_READ(DSPPOS(i));
13677                 }
13678                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13679                         error->plane[i].addr = I915_READ(DSPADDR(i));
13680                 if (INTEL_INFO(dev)->gen >= 4) {
13681                         error->plane[i].surface = I915_READ(DSPSURF(i));
13682                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13683                 }
13684
13685                 error->pipe[i].source = I915_READ(PIPESRC(i));
13686
13687                 if (HAS_GMCH_DISPLAY(dev))
13688                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
13689         }
13690
13691         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13692         if (HAS_DDI(dev_priv->dev))
13693                 error->num_transcoders++; /* Account for eDP. */
13694
13695         for (i = 0; i < error->num_transcoders; i++) {
13696                 enum transcoder cpu_transcoder = transcoders[i];
13697
13698                 error->transcoder[i].power_domain_on =
13699                         intel_display_power_enabled_unlocked(dev_priv,
13700                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13701                 if (!error->transcoder[i].power_domain_on)
13702                         continue;
13703
13704                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13705
13706                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13707                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13708                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13709                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13710                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13711                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13712                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13713         }
13714
13715         return error;
13716 }
13717
13718 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13719
13720 void
13721 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13722                                 struct drm_device *dev,
13723                                 struct intel_display_error_state *error)
13724 {
13725         struct drm_i915_private *dev_priv = dev->dev_private;
13726         int i;
13727
13728         if (!error)
13729                 return;
13730
13731         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13732         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13733                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13734                            error->power_well_driver);
13735         for_each_pipe(dev_priv, i) {
13736                 err_printf(m, "Pipe [%d]:\n", i);
13737                 err_printf(m, "  Power: %s\n",
13738                            error->pipe[i].power_domain_on ? "on" : "off");
13739                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
13740                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
13741
13742                 err_printf(m, "Plane [%d]:\n", i);
13743                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
13744                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
13745                 if (INTEL_INFO(dev)->gen <= 3) {
13746                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
13747                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
13748                 }
13749                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13750                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
13751                 if (INTEL_INFO(dev)->gen >= 4) {
13752                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
13753                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
13754                 }
13755
13756                 err_printf(m, "Cursor [%d]:\n", i);
13757                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
13758                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
13759                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
13760         }
13761
13762         for (i = 0; i < error->num_transcoders; i++) {
13763                 err_printf(m, "CPU transcoder: %c\n",
13764                            transcoder_name(error->transcoder[i].cpu_transcoder));
13765                 err_printf(m, "  Power: %s\n",
13766                            error->transcoder[i].power_domain_on ? "on" : "off");
13767                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
13768                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
13769                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
13770                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
13771                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
13772                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
13773                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
13774         }
13775 }
13776
13777 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13778 {
13779         struct intel_crtc *crtc;
13780
13781         for_each_intel_crtc(dev, crtc) {
13782                 struct intel_unpin_work *work;
13783                 unsigned long irqflags;
13784
13785                 spin_lock_irqsave(&dev->event_lock, irqflags);
13786
13787                 work = crtc->unpin_work;
13788
13789                 if (work && work->event &&
13790                     work->event->base.file_priv == file) {
13791                         kfree(work->event);
13792                         work->event = NULL;
13793                 }
13794
13795                 spin_unlock_irqrestore(&dev->event_lock, irqflags);
13796         }
13797 }