drm/i915: s/mdelay/msleep/
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50         DRM_FORMAT_C8,
51         DRM_FORMAT_RGB565,
52         DRM_FORMAT_XRGB1555,
53         DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58         DRM_FORMAT_C8,
59         DRM_FORMAT_RGB565,
60         DRM_FORMAT_XRGB8888,
61         DRM_FORMAT_XBGR8888,
62         DRM_FORMAT_XRGB2101010,
63         DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67         DRM_FORMAT_C8,
68         DRM_FORMAT_RGB565,
69         DRM_FORMAT_XRGB8888,
70         DRM_FORMAT_XBGR8888,
71         DRM_FORMAT_ARGB8888,
72         DRM_FORMAT_ABGR8888,
73         DRM_FORMAT_XRGB2101010,
74         DRM_FORMAT_XBGR2101010,
75 };
76
77 /* Cursor formats */
78 static const uint32_t intel_cursor_formats[] = {
79         DRM_FORMAT_ARGB8888,
80 };
81
82 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
83
84 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
85                                 struct intel_crtc_state *pipe_config);
86 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
87                                    struct intel_crtc_state *pipe_config);
88
89 static int intel_set_mode(struct drm_atomic_state *state);
90 static int intel_framebuffer_init(struct drm_device *dev,
91                                   struct intel_framebuffer *ifb,
92                                   struct drm_mode_fb_cmd2 *mode_cmd,
93                                   struct drm_i915_gem_object *obj);
94 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
96 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
97                                          struct intel_link_m_n *m_n,
98                                          struct intel_link_m_n *m2_n2);
99 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
100 static void haswell_set_pipeconf(struct drm_crtc *crtc);
101 static void intel_set_pipe_csc(struct drm_crtc *crtc);
102 static void vlv_prepare_pll(struct intel_crtc *crtc,
103                             const struct intel_crtc_state *pipe_config);
104 static void chv_prepare_pll(struct intel_crtc *crtc,
105                             const struct intel_crtc_state *pipe_config);
106 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
107 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
108 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
109         struct intel_crtc_state *crtc_state);
110 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
111                            int num_connectors);
112
113 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
114 {
115         if (!connector->mst_port)
116                 return connector->encoder;
117         else
118                 return &connector->mst_port->mst_encoders[pipe]->base;
119 }
120
121 typedef struct {
122         int     min, max;
123 } intel_range_t;
124
125 typedef struct {
126         int     dot_limit;
127         int     p2_slow, p2_fast;
128 } intel_p2_t;
129
130 typedef struct intel_limit intel_limit_t;
131 struct intel_limit {
132         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
133         intel_p2_t          p2;
134 };
135
136 int
137 intel_pch_rawclk(struct drm_device *dev)
138 {
139         struct drm_i915_private *dev_priv = dev->dev_private;
140
141         WARN_ON(!HAS_PCH_SPLIT(dev));
142
143         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
144 }
145
146 static inline u32 /* units of 100MHz */
147 intel_fdi_link_freq(struct drm_device *dev)
148 {
149         if (IS_GEN5(dev)) {
150                 struct drm_i915_private *dev_priv = dev->dev_private;
151                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
152         } else
153                 return 27;
154 }
155
156 static const intel_limit_t intel_limits_i8xx_dac = {
157         .dot = { .min = 25000, .max = 350000 },
158         .vco = { .min = 908000, .max = 1512000 },
159         .n = { .min = 2, .max = 16 },
160         .m = { .min = 96, .max = 140 },
161         .m1 = { .min = 18, .max = 26 },
162         .m2 = { .min = 6, .max = 16 },
163         .p = { .min = 4, .max = 128 },
164         .p1 = { .min = 2, .max = 33 },
165         .p2 = { .dot_limit = 165000,
166                 .p2_slow = 4, .p2_fast = 2 },
167 };
168
169 static const intel_limit_t intel_limits_i8xx_dvo = {
170         .dot = { .min = 25000, .max = 350000 },
171         .vco = { .min = 908000, .max = 1512000 },
172         .n = { .min = 2, .max = 16 },
173         .m = { .min = 96, .max = 140 },
174         .m1 = { .min = 18, .max = 26 },
175         .m2 = { .min = 6, .max = 16 },
176         .p = { .min = 4, .max = 128 },
177         .p1 = { .min = 2, .max = 33 },
178         .p2 = { .dot_limit = 165000,
179                 .p2_slow = 4, .p2_fast = 4 },
180 };
181
182 static const intel_limit_t intel_limits_i8xx_lvds = {
183         .dot = { .min = 25000, .max = 350000 },
184         .vco = { .min = 908000, .max = 1512000 },
185         .n = { .min = 2, .max = 16 },
186         .m = { .min = 96, .max = 140 },
187         .m1 = { .min = 18, .max = 26 },
188         .m2 = { .min = 6, .max = 16 },
189         .p = { .min = 4, .max = 128 },
190         .p1 = { .min = 1, .max = 6 },
191         .p2 = { .dot_limit = 165000,
192                 .p2_slow = 14, .p2_fast = 7 },
193 };
194
195 static const intel_limit_t intel_limits_i9xx_sdvo = {
196         .dot = { .min = 20000, .max = 400000 },
197         .vco = { .min = 1400000, .max = 2800000 },
198         .n = { .min = 1, .max = 6 },
199         .m = { .min = 70, .max = 120 },
200         .m1 = { .min = 8, .max = 18 },
201         .m2 = { .min = 3, .max = 7 },
202         .p = { .min = 5, .max = 80 },
203         .p1 = { .min = 1, .max = 8 },
204         .p2 = { .dot_limit = 200000,
205                 .p2_slow = 10, .p2_fast = 5 },
206 };
207
208 static const intel_limit_t intel_limits_i9xx_lvds = {
209         .dot = { .min = 20000, .max = 400000 },
210         .vco = { .min = 1400000, .max = 2800000 },
211         .n = { .min = 1, .max = 6 },
212         .m = { .min = 70, .max = 120 },
213         .m1 = { .min = 8, .max = 18 },
214         .m2 = { .min = 3, .max = 7 },
215         .p = { .min = 7, .max = 98 },
216         .p1 = { .min = 1, .max = 8 },
217         .p2 = { .dot_limit = 112000,
218                 .p2_slow = 14, .p2_fast = 7 },
219 };
220
221
222 static const intel_limit_t intel_limits_g4x_sdvo = {
223         .dot = { .min = 25000, .max = 270000 },
224         .vco = { .min = 1750000, .max = 3500000},
225         .n = { .min = 1, .max = 4 },
226         .m = { .min = 104, .max = 138 },
227         .m1 = { .min = 17, .max = 23 },
228         .m2 = { .min = 5, .max = 11 },
229         .p = { .min = 10, .max = 30 },
230         .p1 = { .min = 1, .max = 3},
231         .p2 = { .dot_limit = 270000,
232                 .p2_slow = 10,
233                 .p2_fast = 10
234         },
235 };
236
237 static const intel_limit_t intel_limits_g4x_hdmi = {
238         .dot = { .min = 22000, .max = 400000 },
239         .vco = { .min = 1750000, .max = 3500000},
240         .n = { .min = 1, .max = 4 },
241         .m = { .min = 104, .max = 138 },
242         .m1 = { .min = 16, .max = 23 },
243         .m2 = { .min = 5, .max = 11 },
244         .p = { .min = 5, .max = 80 },
245         .p1 = { .min = 1, .max = 8},
246         .p2 = { .dot_limit = 165000,
247                 .p2_slow = 10, .p2_fast = 5 },
248 };
249
250 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
251         .dot = { .min = 20000, .max = 115000 },
252         .vco = { .min = 1750000, .max = 3500000 },
253         .n = { .min = 1, .max = 3 },
254         .m = { .min = 104, .max = 138 },
255         .m1 = { .min = 17, .max = 23 },
256         .m2 = { .min = 5, .max = 11 },
257         .p = { .min = 28, .max = 112 },
258         .p1 = { .min = 2, .max = 8 },
259         .p2 = { .dot_limit = 0,
260                 .p2_slow = 14, .p2_fast = 14
261         },
262 };
263
264 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
265         .dot = { .min = 80000, .max = 224000 },
266         .vco = { .min = 1750000, .max = 3500000 },
267         .n = { .min = 1, .max = 3 },
268         .m = { .min = 104, .max = 138 },
269         .m1 = { .min = 17, .max = 23 },
270         .m2 = { .min = 5, .max = 11 },
271         .p = { .min = 14, .max = 42 },
272         .p1 = { .min = 2, .max = 6 },
273         .p2 = { .dot_limit = 0,
274                 .p2_slow = 7, .p2_fast = 7
275         },
276 };
277
278 static const intel_limit_t intel_limits_pineview_sdvo = {
279         .dot = { .min = 20000, .max = 400000},
280         .vco = { .min = 1700000, .max = 3500000 },
281         /* Pineview's Ncounter is a ring counter */
282         .n = { .min = 3, .max = 6 },
283         .m = { .min = 2, .max = 256 },
284         /* Pineview only has one combined m divider, which we treat as m2. */
285         .m1 = { .min = 0, .max = 0 },
286         .m2 = { .min = 0, .max = 254 },
287         .p = { .min = 5, .max = 80 },
288         .p1 = { .min = 1, .max = 8 },
289         .p2 = { .dot_limit = 200000,
290                 .p2_slow = 10, .p2_fast = 5 },
291 };
292
293 static const intel_limit_t intel_limits_pineview_lvds = {
294         .dot = { .min = 20000, .max = 400000 },
295         .vco = { .min = 1700000, .max = 3500000 },
296         .n = { .min = 3, .max = 6 },
297         .m = { .min = 2, .max = 256 },
298         .m1 = { .min = 0, .max = 0 },
299         .m2 = { .min = 0, .max = 254 },
300         .p = { .min = 7, .max = 112 },
301         .p1 = { .min = 1, .max = 8 },
302         .p2 = { .dot_limit = 112000,
303                 .p2_slow = 14, .p2_fast = 14 },
304 };
305
306 /* Ironlake / Sandybridge
307  *
308  * We calculate clock using (register_value + 2) for N/M1/M2, so here
309  * the range value for them is (actual_value - 2).
310  */
311 static const intel_limit_t intel_limits_ironlake_dac = {
312         .dot = { .min = 25000, .max = 350000 },
313         .vco = { .min = 1760000, .max = 3510000 },
314         .n = { .min = 1, .max = 5 },
315         .m = { .min = 79, .max = 127 },
316         .m1 = { .min = 12, .max = 22 },
317         .m2 = { .min = 5, .max = 9 },
318         .p = { .min = 5, .max = 80 },
319         .p1 = { .min = 1, .max = 8 },
320         .p2 = { .dot_limit = 225000,
321                 .p2_slow = 10, .p2_fast = 5 },
322 };
323
324 static const intel_limit_t intel_limits_ironlake_single_lvds = {
325         .dot = { .min = 25000, .max = 350000 },
326         .vco = { .min = 1760000, .max = 3510000 },
327         .n = { .min = 1, .max = 3 },
328         .m = { .min = 79, .max = 118 },
329         .m1 = { .min = 12, .max = 22 },
330         .m2 = { .min = 5, .max = 9 },
331         .p = { .min = 28, .max = 112 },
332         .p1 = { .min = 2, .max = 8 },
333         .p2 = { .dot_limit = 225000,
334                 .p2_slow = 14, .p2_fast = 14 },
335 };
336
337 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
338         .dot = { .min = 25000, .max = 350000 },
339         .vco = { .min = 1760000, .max = 3510000 },
340         .n = { .min = 1, .max = 3 },
341         .m = { .min = 79, .max = 127 },
342         .m1 = { .min = 12, .max = 22 },
343         .m2 = { .min = 5, .max = 9 },
344         .p = { .min = 14, .max = 56 },
345         .p1 = { .min = 2, .max = 8 },
346         .p2 = { .dot_limit = 225000,
347                 .p2_slow = 7, .p2_fast = 7 },
348 };
349
350 /* LVDS 100mhz refclk limits. */
351 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
352         .dot = { .min = 25000, .max = 350000 },
353         .vco = { .min = 1760000, .max = 3510000 },
354         .n = { .min = 1, .max = 2 },
355         .m = { .min = 79, .max = 126 },
356         .m1 = { .min = 12, .max = 22 },
357         .m2 = { .min = 5, .max = 9 },
358         .p = { .min = 28, .max = 112 },
359         .p1 = { .min = 2, .max = 8 },
360         .p2 = { .dot_limit = 225000,
361                 .p2_slow = 14, .p2_fast = 14 },
362 };
363
364 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
365         .dot = { .min = 25000, .max = 350000 },
366         .vco = { .min = 1760000, .max = 3510000 },
367         .n = { .min = 1, .max = 3 },
368         .m = { .min = 79, .max = 126 },
369         .m1 = { .min = 12, .max = 22 },
370         .m2 = { .min = 5, .max = 9 },
371         .p = { .min = 14, .max = 42 },
372         .p1 = { .min = 2, .max = 6 },
373         .p2 = { .dot_limit = 225000,
374                 .p2_slow = 7, .p2_fast = 7 },
375 };
376
377 static const intel_limit_t intel_limits_vlv = {
378          /*
379           * These are the data rate limits (measured in fast clocks)
380           * since those are the strictest limits we have. The fast
381           * clock and actual rate limits are more relaxed, so checking
382           * them would make no difference.
383           */
384         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
385         .vco = { .min = 4000000, .max = 6000000 },
386         .n = { .min = 1, .max = 7 },
387         .m1 = { .min = 2, .max = 3 },
388         .m2 = { .min = 11, .max = 156 },
389         .p1 = { .min = 2, .max = 3 },
390         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
391 };
392
393 static const intel_limit_t intel_limits_chv = {
394         /*
395          * These are the data rate limits (measured in fast clocks)
396          * since those are the strictest limits we have.  The fast
397          * clock and actual rate limits are more relaxed, so checking
398          * them would make no difference.
399          */
400         .dot = { .min = 25000 * 5, .max = 540000 * 5},
401         .vco = { .min = 4800000, .max = 6480000 },
402         .n = { .min = 1, .max = 1 },
403         .m1 = { .min = 2, .max = 2 },
404         .m2 = { .min = 24 << 22, .max = 175 << 22 },
405         .p1 = { .min = 2, .max = 4 },
406         .p2 = { .p2_slow = 1, .p2_fast = 14 },
407 };
408
409 static const intel_limit_t intel_limits_bxt = {
410         /* FIXME: find real dot limits */
411         .dot = { .min = 0, .max = INT_MAX },
412         .vco = { .min = 4800000, .max = 6700000 },
413         .n = { .min = 1, .max = 1 },
414         .m1 = { .min = 2, .max = 2 },
415         /* FIXME: find real m2 limits */
416         .m2 = { .min = 2 << 22, .max = 255 << 22 },
417         .p1 = { .min = 2, .max = 4 },
418         .p2 = { .p2_slow = 1, .p2_fast = 20 },
419 };
420
421 static bool
422 needs_modeset(struct drm_crtc_state *state)
423 {
424         return state->mode_changed || state->active_changed;
425 }
426
427 /**
428  * Returns whether any output on the specified pipe is of the specified type
429  */
430 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
431 {
432         struct drm_device *dev = crtc->base.dev;
433         struct intel_encoder *encoder;
434
435         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
436                 if (encoder->type == type)
437                         return true;
438
439         return false;
440 }
441
442 /**
443  * Returns whether any output on the specified pipe will have the specified
444  * type after a staged modeset is complete, i.e., the same as
445  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
446  * encoder->crtc.
447  */
448 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
449                                       int type)
450 {
451         struct drm_atomic_state *state = crtc_state->base.state;
452         struct drm_connector *connector;
453         struct drm_connector_state *connector_state;
454         struct intel_encoder *encoder;
455         int i, num_connectors = 0;
456
457         for_each_connector_in_state(state, connector, connector_state, i) {
458                 if (connector_state->crtc != crtc_state->base.crtc)
459                         continue;
460
461                 num_connectors++;
462
463                 encoder = to_intel_encoder(connector_state->best_encoder);
464                 if (encoder->type == type)
465                         return true;
466         }
467
468         WARN_ON(num_connectors == 0);
469
470         return false;
471 }
472
473 static const intel_limit_t *
474 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
475 {
476         struct drm_device *dev = crtc_state->base.crtc->dev;
477         const intel_limit_t *limit;
478
479         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
480                 if (intel_is_dual_link_lvds(dev)) {
481                         if (refclk == 100000)
482                                 limit = &intel_limits_ironlake_dual_lvds_100m;
483                         else
484                                 limit = &intel_limits_ironlake_dual_lvds;
485                 } else {
486                         if (refclk == 100000)
487                                 limit = &intel_limits_ironlake_single_lvds_100m;
488                         else
489                                 limit = &intel_limits_ironlake_single_lvds;
490                 }
491         } else
492                 limit = &intel_limits_ironlake_dac;
493
494         return limit;
495 }
496
497 static const intel_limit_t *
498 intel_g4x_limit(struct intel_crtc_state *crtc_state)
499 {
500         struct drm_device *dev = crtc_state->base.crtc->dev;
501         const intel_limit_t *limit;
502
503         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
504                 if (intel_is_dual_link_lvds(dev))
505                         limit = &intel_limits_g4x_dual_channel_lvds;
506                 else
507                         limit = &intel_limits_g4x_single_channel_lvds;
508         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
509                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
510                 limit = &intel_limits_g4x_hdmi;
511         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
512                 limit = &intel_limits_g4x_sdvo;
513         } else /* The option is for other outputs */
514                 limit = &intel_limits_i9xx_sdvo;
515
516         return limit;
517 }
518
519 static const intel_limit_t *
520 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
521 {
522         struct drm_device *dev = crtc_state->base.crtc->dev;
523         const intel_limit_t *limit;
524
525         if (IS_BROXTON(dev))
526                 limit = &intel_limits_bxt;
527         else if (HAS_PCH_SPLIT(dev))
528                 limit = intel_ironlake_limit(crtc_state, refclk);
529         else if (IS_G4X(dev)) {
530                 limit = intel_g4x_limit(crtc_state);
531         } else if (IS_PINEVIEW(dev)) {
532                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
533                         limit = &intel_limits_pineview_lvds;
534                 else
535                         limit = &intel_limits_pineview_sdvo;
536         } else if (IS_CHERRYVIEW(dev)) {
537                 limit = &intel_limits_chv;
538         } else if (IS_VALLEYVIEW(dev)) {
539                 limit = &intel_limits_vlv;
540         } else if (!IS_GEN2(dev)) {
541                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
542                         limit = &intel_limits_i9xx_lvds;
543                 else
544                         limit = &intel_limits_i9xx_sdvo;
545         } else {
546                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
547                         limit = &intel_limits_i8xx_lvds;
548                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
549                         limit = &intel_limits_i8xx_dvo;
550                 else
551                         limit = &intel_limits_i8xx_dac;
552         }
553         return limit;
554 }
555
556 /*
557  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
558  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
559  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
560  * The helpers' return value is the rate of the clock that is fed to the
561  * display engine's pipe which can be the above fast dot clock rate or a
562  * divided-down version of it.
563  */
564 /* m1 is reserved as 0 in Pineview, n is a ring counter */
565 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
566 {
567         clock->m = clock->m2 + 2;
568         clock->p = clock->p1 * clock->p2;
569         if (WARN_ON(clock->n == 0 || clock->p == 0))
570                 return 0;
571         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
572         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
573
574         return clock->dot;
575 }
576
577 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
578 {
579         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
580 }
581
582 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
583 {
584         clock->m = i9xx_dpll_compute_m(clock);
585         clock->p = clock->p1 * clock->p2;
586         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
587                 return 0;
588         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
589         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
590
591         return clock->dot;
592 }
593
594 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
595 {
596         clock->m = clock->m1 * clock->m2;
597         clock->p = clock->p1 * clock->p2;
598         if (WARN_ON(clock->n == 0 || clock->p == 0))
599                 return 0;
600         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
601         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
602
603         return clock->dot / 5;
604 }
605
606 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
607 {
608         clock->m = clock->m1 * clock->m2;
609         clock->p = clock->p1 * clock->p2;
610         if (WARN_ON(clock->n == 0 || clock->p == 0))
611                 return 0;
612         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
613                         clock->n << 22);
614         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
615
616         return clock->dot / 5;
617 }
618
619 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
620 /**
621  * Returns whether the given set of divisors are valid for a given refclk with
622  * the given connectors.
623  */
624
625 static bool intel_PLL_is_valid(struct drm_device *dev,
626                                const intel_limit_t *limit,
627                                const intel_clock_t *clock)
628 {
629         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
630                 INTELPllInvalid("n out of range\n");
631         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
632                 INTELPllInvalid("p1 out of range\n");
633         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
634                 INTELPllInvalid("m2 out of range\n");
635         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
636                 INTELPllInvalid("m1 out of range\n");
637
638         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
639                 if (clock->m1 <= clock->m2)
640                         INTELPllInvalid("m1 <= m2\n");
641
642         if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
643                 if (clock->p < limit->p.min || limit->p.max < clock->p)
644                         INTELPllInvalid("p out of range\n");
645                 if (clock->m < limit->m.min || limit->m.max < clock->m)
646                         INTELPllInvalid("m out of range\n");
647         }
648
649         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
650                 INTELPllInvalid("vco out of range\n");
651         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
652          * connector, etc., rather than just a single range.
653          */
654         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
655                 INTELPllInvalid("dot out of range\n");
656
657         return true;
658 }
659
660 static int
661 i9xx_select_p2_div(const intel_limit_t *limit,
662                    const struct intel_crtc_state *crtc_state,
663                    int target)
664 {
665         struct drm_device *dev = crtc_state->base.crtc->dev;
666
667         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
668                 /*
669                  * For LVDS just rely on its current settings for dual-channel.
670                  * We haven't figured out how to reliably set up different
671                  * single/dual channel state, if we even can.
672                  */
673                 if (intel_is_dual_link_lvds(dev))
674                         return limit->p2.p2_fast;
675                 else
676                         return limit->p2.p2_slow;
677         } else {
678                 if (target < limit->p2.dot_limit)
679                         return limit->p2.p2_slow;
680                 else
681                         return limit->p2.p2_fast;
682         }
683 }
684
685 static bool
686 i9xx_find_best_dpll(const intel_limit_t *limit,
687                     struct intel_crtc_state *crtc_state,
688                     int target, int refclk, intel_clock_t *match_clock,
689                     intel_clock_t *best_clock)
690 {
691         struct drm_device *dev = crtc_state->base.crtc->dev;
692         intel_clock_t clock;
693         int err = target;
694
695         memset(best_clock, 0, sizeof(*best_clock));
696
697         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
698
699         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
700              clock.m1++) {
701                 for (clock.m2 = limit->m2.min;
702                      clock.m2 <= limit->m2.max; clock.m2++) {
703                         if (clock.m2 >= clock.m1)
704                                 break;
705                         for (clock.n = limit->n.min;
706                              clock.n <= limit->n.max; clock.n++) {
707                                 for (clock.p1 = limit->p1.min;
708                                         clock.p1 <= limit->p1.max; clock.p1++) {
709                                         int this_err;
710
711                                         i9xx_calc_dpll_params(refclk, &clock);
712                                         if (!intel_PLL_is_valid(dev, limit,
713                                                                 &clock))
714                                                 continue;
715                                         if (match_clock &&
716                                             clock.p != match_clock->p)
717                                                 continue;
718
719                                         this_err = abs(clock.dot - target);
720                                         if (this_err < err) {
721                                                 *best_clock = clock;
722                                                 err = this_err;
723                                         }
724                                 }
725                         }
726                 }
727         }
728
729         return (err != target);
730 }
731
732 static bool
733 pnv_find_best_dpll(const intel_limit_t *limit,
734                    struct intel_crtc_state *crtc_state,
735                    int target, int refclk, intel_clock_t *match_clock,
736                    intel_clock_t *best_clock)
737 {
738         struct drm_device *dev = crtc_state->base.crtc->dev;
739         intel_clock_t clock;
740         int err = target;
741
742         memset(best_clock, 0, sizeof(*best_clock));
743
744         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
745
746         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
747              clock.m1++) {
748                 for (clock.m2 = limit->m2.min;
749                      clock.m2 <= limit->m2.max; clock.m2++) {
750                         for (clock.n = limit->n.min;
751                              clock.n <= limit->n.max; clock.n++) {
752                                 for (clock.p1 = limit->p1.min;
753                                         clock.p1 <= limit->p1.max; clock.p1++) {
754                                         int this_err;
755
756                                         pnv_calc_dpll_params(refclk, &clock);
757                                         if (!intel_PLL_is_valid(dev, limit,
758                                                                 &clock))
759                                                 continue;
760                                         if (match_clock &&
761                                             clock.p != match_clock->p)
762                                                 continue;
763
764                                         this_err = abs(clock.dot - target);
765                                         if (this_err < err) {
766                                                 *best_clock = clock;
767                                                 err = this_err;
768                                         }
769                                 }
770                         }
771                 }
772         }
773
774         return (err != target);
775 }
776
777 static bool
778 g4x_find_best_dpll(const intel_limit_t *limit,
779                    struct intel_crtc_state *crtc_state,
780                    int target, int refclk, intel_clock_t *match_clock,
781                    intel_clock_t *best_clock)
782 {
783         struct drm_device *dev = crtc_state->base.crtc->dev;
784         intel_clock_t clock;
785         int max_n;
786         bool found = false;
787         /* approximately equals target * 0.00585 */
788         int err_most = (target >> 8) + (target >> 9);
789
790         memset(best_clock, 0, sizeof(*best_clock));
791
792         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
793
794         max_n = limit->n.max;
795         /* based on hardware requirement, prefer smaller n to precision */
796         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
797                 /* based on hardware requirement, prefere larger m1,m2 */
798                 for (clock.m1 = limit->m1.max;
799                      clock.m1 >= limit->m1.min; clock.m1--) {
800                         for (clock.m2 = limit->m2.max;
801                              clock.m2 >= limit->m2.min; clock.m2--) {
802                                 for (clock.p1 = limit->p1.max;
803                                      clock.p1 >= limit->p1.min; clock.p1--) {
804                                         int this_err;
805
806                                         i9xx_calc_dpll_params(refclk, &clock);
807                                         if (!intel_PLL_is_valid(dev, limit,
808                                                                 &clock))
809                                                 continue;
810
811                                         this_err = abs(clock.dot - target);
812                                         if (this_err < err_most) {
813                                                 *best_clock = clock;
814                                                 err_most = this_err;
815                                                 max_n = clock.n;
816                                                 found = true;
817                                         }
818                                 }
819                         }
820                 }
821         }
822         return found;
823 }
824
825 /*
826  * Check if the calculated PLL configuration is more optimal compared to the
827  * best configuration and error found so far. Return the calculated error.
828  */
829 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
830                                const intel_clock_t *calculated_clock,
831                                const intel_clock_t *best_clock,
832                                unsigned int best_error_ppm,
833                                unsigned int *error_ppm)
834 {
835         /*
836          * For CHV ignore the error and consider only the P value.
837          * Prefer a bigger P value based on HW requirements.
838          */
839         if (IS_CHERRYVIEW(dev)) {
840                 *error_ppm = 0;
841
842                 return calculated_clock->p > best_clock->p;
843         }
844
845         if (WARN_ON_ONCE(!target_freq))
846                 return false;
847
848         *error_ppm = div_u64(1000000ULL *
849                                 abs(target_freq - calculated_clock->dot),
850                              target_freq);
851         /*
852          * Prefer a better P value over a better (smaller) error if the error
853          * is small. Ensure this preference for future configurations too by
854          * setting the error to 0.
855          */
856         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
857                 *error_ppm = 0;
858
859                 return true;
860         }
861
862         return *error_ppm + 10 < best_error_ppm;
863 }
864
865 static bool
866 vlv_find_best_dpll(const intel_limit_t *limit,
867                    struct intel_crtc_state *crtc_state,
868                    int target, int refclk, intel_clock_t *match_clock,
869                    intel_clock_t *best_clock)
870 {
871         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
872         struct drm_device *dev = crtc->base.dev;
873         intel_clock_t clock;
874         unsigned int bestppm = 1000000;
875         /* min update 19.2 MHz */
876         int max_n = min(limit->n.max, refclk / 19200);
877         bool found = false;
878
879         target *= 5; /* fast clock */
880
881         memset(best_clock, 0, sizeof(*best_clock));
882
883         /* based on hardware requirement, prefer smaller n to precision */
884         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
885                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
886                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
887                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
888                                 clock.p = clock.p1 * clock.p2;
889                                 /* based on hardware requirement, prefer bigger m1,m2 values */
890                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
891                                         unsigned int ppm;
892
893                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
894                                                                      refclk * clock.m1);
895
896                                         vlv_calc_dpll_params(refclk, &clock);
897
898                                         if (!intel_PLL_is_valid(dev, limit,
899                                                                 &clock))
900                                                 continue;
901
902                                         if (!vlv_PLL_is_optimal(dev, target,
903                                                                 &clock,
904                                                                 best_clock,
905                                                                 bestppm, &ppm))
906                                                 continue;
907
908                                         *best_clock = clock;
909                                         bestppm = ppm;
910                                         found = true;
911                                 }
912                         }
913                 }
914         }
915
916         return found;
917 }
918
919 static bool
920 chv_find_best_dpll(const intel_limit_t *limit,
921                    struct intel_crtc_state *crtc_state,
922                    int target, int refclk, intel_clock_t *match_clock,
923                    intel_clock_t *best_clock)
924 {
925         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
926         struct drm_device *dev = crtc->base.dev;
927         unsigned int best_error_ppm;
928         intel_clock_t clock;
929         uint64_t m2;
930         int found = false;
931
932         memset(best_clock, 0, sizeof(*best_clock));
933         best_error_ppm = 1000000;
934
935         /*
936          * Based on hardware doc, the n always set to 1, and m1 always
937          * set to 2.  If requires to support 200Mhz refclk, we need to
938          * revisit this because n may not 1 anymore.
939          */
940         clock.n = 1, clock.m1 = 2;
941         target *= 5;    /* fast clock */
942
943         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
944                 for (clock.p2 = limit->p2.p2_fast;
945                                 clock.p2 >= limit->p2.p2_slow;
946                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
947                         unsigned int error_ppm;
948
949                         clock.p = clock.p1 * clock.p2;
950
951                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
952                                         clock.n) << 22, refclk * clock.m1);
953
954                         if (m2 > INT_MAX/clock.m1)
955                                 continue;
956
957                         clock.m2 = m2;
958
959                         chv_calc_dpll_params(refclk, &clock);
960
961                         if (!intel_PLL_is_valid(dev, limit, &clock))
962                                 continue;
963
964                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
965                                                 best_error_ppm, &error_ppm))
966                                 continue;
967
968                         *best_clock = clock;
969                         best_error_ppm = error_ppm;
970                         found = true;
971                 }
972         }
973
974         return found;
975 }
976
977 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
978                         intel_clock_t *best_clock)
979 {
980         int refclk = i9xx_get_refclk(crtc_state, 0);
981
982         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
983                                   target_clock, refclk, NULL, best_clock);
984 }
985
986 bool intel_crtc_active(struct drm_crtc *crtc)
987 {
988         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
989
990         /* Be paranoid as we can arrive here with only partial
991          * state retrieved from the hardware during setup.
992          *
993          * We can ditch the adjusted_mode.crtc_clock check as soon
994          * as Haswell has gained clock readout/fastboot support.
995          *
996          * We can ditch the crtc->primary->fb check as soon as we can
997          * properly reconstruct framebuffers.
998          *
999          * FIXME: The intel_crtc->active here should be switched to
1000          * crtc->state->active once we have proper CRTC states wired up
1001          * for atomic.
1002          */
1003         return intel_crtc->active && crtc->primary->state->fb &&
1004                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1005 }
1006
1007 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1008                                              enum pipe pipe)
1009 {
1010         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1011         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1012
1013         return intel_crtc->config->cpu_transcoder;
1014 }
1015
1016 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1017 {
1018         struct drm_i915_private *dev_priv = dev->dev_private;
1019         u32 reg = PIPEDSL(pipe);
1020         u32 line1, line2;
1021         u32 line_mask;
1022
1023         if (IS_GEN2(dev))
1024                 line_mask = DSL_LINEMASK_GEN2;
1025         else
1026                 line_mask = DSL_LINEMASK_GEN3;
1027
1028         line1 = I915_READ(reg) & line_mask;
1029         msleep(5);
1030         line2 = I915_READ(reg) & line_mask;
1031
1032         return line1 == line2;
1033 }
1034
1035 /*
1036  * intel_wait_for_pipe_off - wait for pipe to turn off
1037  * @crtc: crtc whose pipe to wait for
1038  *
1039  * After disabling a pipe, we can't wait for vblank in the usual way,
1040  * spinning on the vblank interrupt status bit, since we won't actually
1041  * see an interrupt when the pipe is disabled.
1042  *
1043  * On Gen4 and above:
1044  *   wait for the pipe register state bit to turn off
1045  *
1046  * Otherwise:
1047  *   wait for the display line value to settle (it usually
1048  *   ends up stopping at the start of the next frame).
1049  *
1050  */
1051 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1052 {
1053         struct drm_device *dev = crtc->base.dev;
1054         struct drm_i915_private *dev_priv = dev->dev_private;
1055         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1056         enum pipe pipe = crtc->pipe;
1057
1058         if (INTEL_INFO(dev)->gen >= 4) {
1059                 int reg = PIPECONF(cpu_transcoder);
1060
1061                 /* Wait for the Pipe State to go off */
1062                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1063                              100))
1064                         WARN(1, "pipe_off wait timed out\n");
1065         } else {
1066                 /* Wait for the display line to settle */
1067                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1068                         WARN(1, "pipe_off wait timed out\n");
1069         }
1070 }
1071
1072 /*
1073  * ibx_digital_port_connected - is the specified port connected?
1074  * @dev_priv: i915 private structure
1075  * @port: the port to test
1076  *
1077  * Returns true if @port is connected, false otherwise.
1078  */
1079 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1080                                 struct intel_digital_port *port)
1081 {
1082         u32 bit;
1083
1084         if (HAS_PCH_IBX(dev_priv->dev)) {
1085                 switch (port->port) {
1086                 case PORT_B:
1087                         bit = SDE_PORTB_HOTPLUG;
1088                         break;
1089                 case PORT_C:
1090                         bit = SDE_PORTC_HOTPLUG;
1091                         break;
1092                 case PORT_D:
1093                         bit = SDE_PORTD_HOTPLUG;
1094                         break;
1095                 default:
1096                         return true;
1097                 }
1098         } else {
1099                 switch (port->port) {
1100                 case PORT_B:
1101                         bit = SDE_PORTB_HOTPLUG_CPT;
1102                         break;
1103                 case PORT_C:
1104                         bit = SDE_PORTC_HOTPLUG_CPT;
1105                         break;
1106                 case PORT_D:
1107                         bit = SDE_PORTD_HOTPLUG_CPT;
1108                         break;
1109                 default:
1110                         return true;
1111                 }
1112         }
1113
1114         return I915_READ(SDEISR) & bit;
1115 }
1116
1117 static const char *state_string(bool enabled)
1118 {
1119         return enabled ? "on" : "off";
1120 }
1121
1122 /* Only for pre-ILK configs */
1123 void assert_pll(struct drm_i915_private *dev_priv,
1124                 enum pipe pipe, bool state)
1125 {
1126         int reg;
1127         u32 val;
1128         bool cur_state;
1129
1130         reg = DPLL(pipe);
1131         val = I915_READ(reg);
1132         cur_state = !!(val & DPLL_VCO_ENABLE);
1133         I915_STATE_WARN(cur_state != state,
1134              "PLL state assertion failure (expected %s, current %s)\n",
1135              state_string(state), state_string(cur_state));
1136 }
1137
1138 /* XXX: the dsi pll is shared between MIPI DSI ports */
1139 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1140 {
1141         u32 val;
1142         bool cur_state;
1143
1144         mutex_lock(&dev_priv->sb_lock);
1145         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1146         mutex_unlock(&dev_priv->sb_lock);
1147
1148         cur_state = val & DSI_PLL_VCO_EN;
1149         I915_STATE_WARN(cur_state != state,
1150              "DSI PLL state assertion failure (expected %s, current %s)\n",
1151              state_string(state), state_string(cur_state));
1152 }
1153 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1154 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1155
1156 struct intel_shared_dpll *
1157 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1158 {
1159         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1160
1161         if (crtc->config->shared_dpll < 0)
1162                 return NULL;
1163
1164         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1165 }
1166
1167 /* For ILK+ */
1168 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1169                         struct intel_shared_dpll *pll,
1170                         bool state)
1171 {
1172         bool cur_state;
1173         struct intel_dpll_hw_state hw_state;
1174
1175         if (WARN (!pll,
1176                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1177                 return;
1178
1179         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1180         I915_STATE_WARN(cur_state != state,
1181              "%s assertion failure (expected %s, current %s)\n",
1182              pll->name, state_string(state), state_string(cur_state));
1183 }
1184
1185 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1186                           enum pipe pipe, bool state)
1187 {
1188         int reg;
1189         u32 val;
1190         bool cur_state;
1191         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1192                                                                       pipe);
1193
1194         if (HAS_DDI(dev_priv->dev)) {
1195                 /* DDI does not have a specific FDI_TX register */
1196                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1197                 val = I915_READ(reg);
1198                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1199         } else {
1200                 reg = FDI_TX_CTL(pipe);
1201                 val = I915_READ(reg);
1202                 cur_state = !!(val & FDI_TX_ENABLE);
1203         }
1204         I915_STATE_WARN(cur_state != state,
1205              "FDI TX state assertion failure (expected %s, current %s)\n",
1206              state_string(state), state_string(cur_state));
1207 }
1208 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1209 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1210
1211 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1212                           enum pipe pipe, bool state)
1213 {
1214         int reg;
1215         u32 val;
1216         bool cur_state;
1217
1218         reg = FDI_RX_CTL(pipe);
1219         val = I915_READ(reg);
1220         cur_state = !!(val & FDI_RX_ENABLE);
1221         I915_STATE_WARN(cur_state != state,
1222              "FDI RX state assertion failure (expected %s, current %s)\n",
1223              state_string(state), state_string(cur_state));
1224 }
1225 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1226 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1227
1228 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1229                                       enum pipe pipe)
1230 {
1231         int reg;
1232         u32 val;
1233
1234         /* ILK FDI PLL is always enabled */
1235         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1236                 return;
1237
1238         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1239         if (HAS_DDI(dev_priv->dev))
1240                 return;
1241
1242         reg = FDI_TX_CTL(pipe);
1243         val = I915_READ(reg);
1244         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1245 }
1246
1247 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1248                        enum pipe pipe, bool state)
1249 {
1250         int reg;
1251         u32 val;
1252         bool cur_state;
1253
1254         reg = FDI_RX_CTL(pipe);
1255         val = I915_READ(reg);
1256         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1257         I915_STATE_WARN(cur_state != state,
1258              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1259              state_string(state), state_string(cur_state));
1260 }
1261
1262 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1263                            enum pipe pipe)
1264 {
1265         struct drm_device *dev = dev_priv->dev;
1266         int pp_reg;
1267         u32 val;
1268         enum pipe panel_pipe = PIPE_A;
1269         bool locked = true;
1270
1271         if (WARN_ON(HAS_DDI(dev)))
1272                 return;
1273
1274         if (HAS_PCH_SPLIT(dev)) {
1275                 u32 port_sel;
1276
1277                 pp_reg = PCH_PP_CONTROL;
1278                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1279
1280                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1281                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1282                         panel_pipe = PIPE_B;
1283                 /* XXX: else fix for eDP */
1284         } else if (IS_VALLEYVIEW(dev)) {
1285                 /* presumably write lock depends on pipe, not port select */
1286                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1287                 panel_pipe = pipe;
1288         } else {
1289                 pp_reg = PP_CONTROL;
1290                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1291                         panel_pipe = PIPE_B;
1292         }
1293
1294         val = I915_READ(pp_reg);
1295         if (!(val & PANEL_POWER_ON) ||
1296             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1297                 locked = false;
1298
1299         I915_STATE_WARN(panel_pipe == pipe && locked,
1300              "panel assertion failure, pipe %c regs locked\n",
1301              pipe_name(pipe));
1302 }
1303
1304 static void assert_cursor(struct drm_i915_private *dev_priv,
1305                           enum pipe pipe, bool state)
1306 {
1307         struct drm_device *dev = dev_priv->dev;
1308         bool cur_state;
1309
1310         if (IS_845G(dev) || IS_I865G(dev))
1311                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1312         else
1313                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1314
1315         I915_STATE_WARN(cur_state != state,
1316              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1317              pipe_name(pipe), state_string(state), state_string(cur_state));
1318 }
1319 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1320 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1321
1322 void assert_pipe(struct drm_i915_private *dev_priv,
1323                  enum pipe pipe, bool state)
1324 {
1325         int reg;
1326         u32 val;
1327         bool cur_state;
1328         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1329                                                                       pipe);
1330
1331         /* if we need the pipe quirk it must be always on */
1332         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1333             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1334                 state = true;
1335
1336         if (!intel_display_power_is_enabled(dev_priv,
1337                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1338                 cur_state = false;
1339         } else {
1340                 reg = PIPECONF(cpu_transcoder);
1341                 val = I915_READ(reg);
1342                 cur_state = !!(val & PIPECONF_ENABLE);
1343         }
1344
1345         I915_STATE_WARN(cur_state != state,
1346              "pipe %c assertion failure (expected %s, current %s)\n",
1347              pipe_name(pipe), state_string(state), state_string(cur_state));
1348 }
1349
1350 static void assert_plane(struct drm_i915_private *dev_priv,
1351                          enum plane plane, bool state)
1352 {
1353         int reg;
1354         u32 val;
1355         bool cur_state;
1356
1357         reg = DSPCNTR(plane);
1358         val = I915_READ(reg);
1359         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1360         I915_STATE_WARN(cur_state != state,
1361              "plane %c assertion failure (expected %s, current %s)\n",
1362              plane_name(plane), state_string(state), state_string(cur_state));
1363 }
1364
1365 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1366 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1367
1368 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1369                                    enum pipe pipe)
1370 {
1371         struct drm_device *dev = dev_priv->dev;
1372         int reg, i;
1373         u32 val;
1374         int cur_pipe;
1375
1376         /* Primary planes are fixed to pipes on gen4+ */
1377         if (INTEL_INFO(dev)->gen >= 4) {
1378                 reg = DSPCNTR(pipe);
1379                 val = I915_READ(reg);
1380                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1381                      "plane %c assertion failure, should be disabled but not\n",
1382                      plane_name(pipe));
1383                 return;
1384         }
1385
1386         /* Need to check both planes against the pipe */
1387         for_each_pipe(dev_priv, i) {
1388                 reg = DSPCNTR(i);
1389                 val = I915_READ(reg);
1390                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1391                         DISPPLANE_SEL_PIPE_SHIFT;
1392                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1393                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1394                      plane_name(i), pipe_name(pipe));
1395         }
1396 }
1397
1398 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1399                                     enum pipe pipe)
1400 {
1401         struct drm_device *dev = dev_priv->dev;
1402         int reg, sprite;
1403         u32 val;
1404
1405         if (INTEL_INFO(dev)->gen >= 9) {
1406                 for_each_sprite(dev_priv, pipe, sprite) {
1407                         val = I915_READ(PLANE_CTL(pipe, sprite));
1408                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1409                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1410                              sprite, pipe_name(pipe));
1411                 }
1412         } else if (IS_VALLEYVIEW(dev)) {
1413                 for_each_sprite(dev_priv, pipe, sprite) {
1414                         reg = SPCNTR(pipe, sprite);
1415                         val = I915_READ(reg);
1416                         I915_STATE_WARN(val & SP_ENABLE,
1417                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1418                              sprite_name(pipe, sprite), pipe_name(pipe));
1419                 }
1420         } else if (INTEL_INFO(dev)->gen >= 7) {
1421                 reg = SPRCTL(pipe);
1422                 val = I915_READ(reg);
1423                 I915_STATE_WARN(val & SPRITE_ENABLE,
1424                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1425                      plane_name(pipe), pipe_name(pipe));
1426         } else if (INTEL_INFO(dev)->gen >= 5) {
1427                 reg = DVSCNTR(pipe);
1428                 val = I915_READ(reg);
1429                 I915_STATE_WARN(val & DVS_ENABLE,
1430                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1431                      plane_name(pipe), pipe_name(pipe));
1432         }
1433 }
1434
1435 static void assert_vblank_disabled(struct drm_crtc *crtc)
1436 {
1437         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1438                 drm_crtc_vblank_put(crtc);
1439 }
1440
1441 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1442 {
1443         u32 val;
1444         bool enabled;
1445
1446         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1447
1448         val = I915_READ(PCH_DREF_CONTROL);
1449         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1450                             DREF_SUPERSPREAD_SOURCE_MASK));
1451         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1452 }
1453
1454 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1455                                            enum pipe pipe)
1456 {
1457         int reg;
1458         u32 val;
1459         bool enabled;
1460
1461         reg = PCH_TRANSCONF(pipe);
1462         val = I915_READ(reg);
1463         enabled = !!(val & TRANS_ENABLE);
1464         I915_STATE_WARN(enabled,
1465              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1466              pipe_name(pipe));
1467 }
1468
1469 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1470                             enum pipe pipe, u32 port_sel, u32 val)
1471 {
1472         if ((val & DP_PORT_EN) == 0)
1473                 return false;
1474
1475         if (HAS_PCH_CPT(dev_priv->dev)) {
1476                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1477                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1478                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1479                         return false;
1480         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1481                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1482                         return false;
1483         } else {
1484                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1485                         return false;
1486         }
1487         return true;
1488 }
1489
1490 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1491                               enum pipe pipe, u32 val)
1492 {
1493         if ((val & SDVO_ENABLE) == 0)
1494                 return false;
1495
1496         if (HAS_PCH_CPT(dev_priv->dev)) {
1497                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1498                         return false;
1499         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1500                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1501                         return false;
1502         } else {
1503                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1504                         return false;
1505         }
1506         return true;
1507 }
1508
1509 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1510                               enum pipe pipe, u32 val)
1511 {
1512         if ((val & LVDS_PORT_EN) == 0)
1513                 return false;
1514
1515         if (HAS_PCH_CPT(dev_priv->dev)) {
1516                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1517                         return false;
1518         } else {
1519                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1520                         return false;
1521         }
1522         return true;
1523 }
1524
1525 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1526                               enum pipe pipe, u32 val)
1527 {
1528         if ((val & ADPA_DAC_ENABLE) == 0)
1529                 return false;
1530         if (HAS_PCH_CPT(dev_priv->dev)) {
1531                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1532                         return false;
1533         } else {
1534                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1535                         return false;
1536         }
1537         return true;
1538 }
1539
1540 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1541                                    enum pipe pipe, int reg, u32 port_sel)
1542 {
1543         u32 val = I915_READ(reg);
1544         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1545              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1546              reg, pipe_name(pipe));
1547
1548         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1549              && (val & DP_PIPEB_SELECT),
1550              "IBX PCH dp port still using transcoder B\n");
1551 }
1552
1553 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1554                                      enum pipe pipe, int reg)
1555 {
1556         u32 val = I915_READ(reg);
1557         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1558              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1559              reg, pipe_name(pipe));
1560
1561         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1562              && (val & SDVO_PIPE_B_SELECT),
1563              "IBX PCH hdmi port still using transcoder B\n");
1564 }
1565
1566 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1567                                       enum pipe pipe)
1568 {
1569         int reg;
1570         u32 val;
1571
1572         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1573         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1574         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1575
1576         reg = PCH_ADPA;
1577         val = I915_READ(reg);
1578         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1579              "PCH VGA enabled on transcoder %c, should be disabled\n",
1580              pipe_name(pipe));
1581
1582         reg = PCH_LVDS;
1583         val = I915_READ(reg);
1584         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1585              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1586              pipe_name(pipe));
1587
1588         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1589         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1590         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1591 }
1592
1593 static void intel_init_dpio(struct drm_device *dev)
1594 {
1595         struct drm_i915_private *dev_priv = dev->dev_private;
1596
1597         if (!IS_VALLEYVIEW(dev))
1598                 return;
1599
1600         /*
1601          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1602          * CHV x1 PHY (DP/HDMI D)
1603          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1604          */
1605         if (IS_CHERRYVIEW(dev)) {
1606                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1607                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1608         } else {
1609                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1610         }
1611 }
1612
1613 static void vlv_enable_pll(struct intel_crtc *crtc,
1614                            const struct intel_crtc_state *pipe_config)
1615 {
1616         struct drm_device *dev = crtc->base.dev;
1617         struct drm_i915_private *dev_priv = dev->dev_private;
1618         int reg = DPLL(crtc->pipe);
1619         u32 dpll = pipe_config->dpll_hw_state.dpll;
1620
1621         assert_pipe_disabled(dev_priv, crtc->pipe);
1622
1623         /* No really, not for ILK+ */
1624         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1625
1626         /* PLL is protected by panel, make sure we can write it */
1627         if (IS_MOBILE(dev_priv->dev))
1628                 assert_panel_unlocked(dev_priv, crtc->pipe);
1629
1630         I915_WRITE(reg, dpll);
1631         POSTING_READ(reg);
1632         udelay(150);
1633
1634         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1635                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1636
1637         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1638         POSTING_READ(DPLL_MD(crtc->pipe));
1639
1640         /* We do this three times for luck */
1641         I915_WRITE(reg, dpll);
1642         POSTING_READ(reg);
1643         udelay(150); /* wait for warmup */
1644         I915_WRITE(reg, dpll);
1645         POSTING_READ(reg);
1646         udelay(150); /* wait for warmup */
1647         I915_WRITE(reg, dpll);
1648         POSTING_READ(reg);
1649         udelay(150); /* wait for warmup */
1650 }
1651
1652 static void chv_enable_pll(struct intel_crtc *crtc,
1653                            const struct intel_crtc_state *pipe_config)
1654 {
1655         struct drm_device *dev = crtc->base.dev;
1656         struct drm_i915_private *dev_priv = dev->dev_private;
1657         int pipe = crtc->pipe;
1658         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1659         u32 tmp;
1660
1661         assert_pipe_disabled(dev_priv, crtc->pipe);
1662
1663         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1664
1665         mutex_lock(&dev_priv->sb_lock);
1666
1667         /* Enable back the 10bit clock to display controller */
1668         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1669         tmp |= DPIO_DCLKP_EN;
1670         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1671
1672         mutex_unlock(&dev_priv->sb_lock);
1673
1674         /*
1675          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1676          */
1677         udelay(1);
1678
1679         /* Enable PLL */
1680         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1681
1682         /* Check PLL is locked */
1683         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1684                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1685
1686         /* not sure when this should be written */
1687         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1688         POSTING_READ(DPLL_MD(pipe));
1689 }
1690
1691 static int intel_num_dvo_pipes(struct drm_device *dev)
1692 {
1693         struct intel_crtc *crtc;
1694         int count = 0;
1695
1696         for_each_intel_crtc(dev, crtc)
1697                 count += crtc->base.state->active &&
1698                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1699
1700         return count;
1701 }
1702
1703 static void i9xx_enable_pll(struct intel_crtc *crtc)
1704 {
1705         struct drm_device *dev = crtc->base.dev;
1706         struct drm_i915_private *dev_priv = dev->dev_private;
1707         int reg = DPLL(crtc->pipe);
1708         u32 dpll = crtc->config->dpll_hw_state.dpll;
1709
1710         assert_pipe_disabled(dev_priv, crtc->pipe);
1711
1712         /* No really, not for ILK+ */
1713         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1714
1715         /* PLL is protected by panel, make sure we can write it */
1716         if (IS_MOBILE(dev) && !IS_I830(dev))
1717                 assert_panel_unlocked(dev_priv, crtc->pipe);
1718
1719         /* Enable DVO 2x clock on both PLLs if necessary */
1720         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1721                 /*
1722                  * It appears to be important that we don't enable this
1723                  * for the current pipe before otherwise configuring the
1724                  * PLL. No idea how this should be handled if multiple
1725                  * DVO outputs are enabled simultaneosly.
1726                  */
1727                 dpll |= DPLL_DVO_2X_MODE;
1728                 I915_WRITE(DPLL(!crtc->pipe),
1729                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1730         }
1731
1732         /* Wait for the clocks to stabilize. */
1733         POSTING_READ(reg);
1734         udelay(150);
1735
1736         if (INTEL_INFO(dev)->gen >= 4) {
1737                 I915_WRITE(DPLL_MD(crtc->pipe),
1738                            crtc->config->dpll_hw_state.dpll_md);
1739         } else {
1740                 /* The pixel multiplier can only be updated once the
1741                  * DPLL is enabled and the clocks are stable.
1742                  *
1743                  * So write it again.
1744                  */
1745                 I915_WRITE(reg, dpll);
1746         }
1747
1748         /* We do this three times for luck */
1749         I915_WRITE(reg, dpll);
1750         POSTING_READ(reg);
1751         udelay(150); /* wait for warmup */
1752         I915_WRITE(reg, dpll);
1753         POSTING_READ(reg);
1754         udelay(150); /* wait for warmup */
1755         I915_WRITE(reg, dpll);
1756         POSTING_READ(reg);
1757         udelay(150); /* wait for warmup */
1758 }
1759
1760 /**
1761  * i9xx_disable_pll - disable a PLL
1762  * @dev_priv: i915 private structure
1763  * @pipe: pipe PLL to disable
1764  *
1765  * Disable the PLL for @pipe, making sure the pipe is off first.
1766  *
1767  * Note!  This is for pre-ILK only.
1768  */
1769 static void i9xx_disable_pll(struct intel_crtc *crtc)
1770 {
1771         struct drm_device *dev = crtc->base.dev;
1772         struct drm_i915_private *dev_priv = dev->dev_private;
1773         enum pipe pipe = crtc->pipe;
1774
1775         /* Disable DVO 2x clock on both PLLs if necessary */
1776         if (IS_I830(dev) &&
1777             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1778             !intel_num_dvo_pipes(dev)) {
1779                 I915_WRITE(DPLL(PIPE_B),
1780                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1781                 I915_WRITE(DPLL(PIPE_A),
1782                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1783         }
1784
1785         /* Don't disable pipe or pipe PLLs if needed */
1786         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1787             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1788                 return;
1789
1790         /* Make sure the pipe isn't still relying on us */
1791         assert_pipe_disabled(dev_priv, pipe);
1792
1793         I915_WRITE(DPLL(pipe), 0);
1794         POSTING_READ(DPLL(pipe));
1795 }
1796
1797 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1798 {
1799         u32 val = 0;
1800
1801         /* Make sure the pipe isn't still relying on us */
1802         assert_pipe_disabled(dev_priv, pipe);
1803
1804         /*
1805          * Leave integrated clock source and reference clock enabled for pipe B.
1806          * The latter is needed for VGA hotplug / manual detection.
1807          */
1808         if (pipe == PIPE_B)
1809                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1810         I915_WRITE(DPLL(pipe), val);
1811         POSTING_READ(DPLL(pipe));
1812
1813 }
1814
1815 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1816 {
1817         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1818         u32 val;
1819
1820         /* Make sure the pipe isn't still relying on us */
1821         assert_pipe_disabled(dev_priv, pipe);
1822
1823         /* Set PLL en = 0 */
1824         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1825         if (pipe != PIPE_A)
1826                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1827         I915_WRITE(DPLL(pipe), val);
1828         POSTING_READ(DPLL(pipe));
1829
1830         mutex_lock(&dev_priv->sb_lock);
1831
1832         /* Disable 10bit clock to display controller */
1833         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1834         val &= ~DPIO_DCLKP_EN;
1835         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1836
1837         /* disable left/right clock distribution */
1838         if (pipe != PIPE_B) {
1839                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1840                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1841                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1842         } else {
1843                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1844                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1845                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1846         }
1847
1848         mutex_unlock(&dev_priv->sb_lock);
1849 }
1850
1851 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1852                          struct intel_digital_port *dport,
1853                          unsigned int expected_mask)
1854 {
1855         u32 port_mask;
1856         int dpll_reg;
1857
1858         switch (dport->port) {
1859         case PORT_B:
1860                 port_mask = DPLL_PORTB_READY_MASK;
1861                 dpll_reg = DPLL(0);
1862                 break;
1863         case PORT_C:
1864                 port_mask = DPLL_PORTC_READY_MASK;
1865                 dpll_reg = DPLL(0);
1866                 expected_mask <<= 4;
1867                 break;
1868         case PORT_D:
1869                 port_mask = DPLL_PORTD_READY_MASK;
1870                 dpll_reg = DPIO_PHY_STATUS;
1871                 break;
1872         default:
1873                 BUG();
1874         }
1875
1876         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1877                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1878                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1879 }
1880
1881 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1882 {
1883         struct drm_device *dev = crtc->base.dev;
1884         struct drm_i915_private *dev_priv = dev->dev_private;
1885         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1886
1887         if (WARN_ON(pll == NULL))
1888                 return;
1889
1890         WARN_ON(!pll->config.crtc_mask);
1891         if (pll->active == 0) {
1892                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1893                 WARN_ON(pll->on);
1894                 assert_shared_dpll_disabled(dev_priv, pll);
1895
1896                 pll->mode_set(dev_priv, pll);
1897         }
1898 }
1899
1900 /**
1901  * intel_enable_shared_dpll - enable PCH PLL
1902  * @dev_priv: i915 private structure
1903  * @pipe: pipe PLL to enable
1904  *
1905  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1906  * drives the transcoder clock.
1907  */
1908 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1909 {
1910         struct drm_device *dev = crtc->base.dev;
1911         struct drm_i915_private *dev_priv = dev->dev_private;
1912         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1913
1914         if (WARN_ON(pll == NULL))
1915                 return;
1916
1917         if (WARN_ON(pll->config.crtc_mask == 0))
1918                 return;
1919
1920         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1921                       pll->name, pll->active, pll->on,
1922                       crtc->base.base.id);
1923
1924         if (pll->active++) {
1925                 WARN_ON(!pll->on);
1926                 assert_shared_dpll_enabled(dev_priv, pll);
1927                 return;
1928         }
1929         WARN_ON(pll->on);
1930
1931         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1932
1933         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1934         pll->enable(dev_priv, pll);
1935         pll->on = true;
1936 }
1937
1938 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1939 {
1940         struct drm_device *dev = crtc->base.dev;
1941         struct drm_i915_private *dev_priv = dev->dev_private;
1942         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1943
1944         /* PCH only available on ILK+ */
1945         BUG_ON(INTEL_INFO(dev)->gen < 5);
1946         if (pll == NULL)
1947                 return;
1948
1949         if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1950                 return;
1951
1952         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1953                       pll->name, pll->active, pll->on,
1954                       crtc->base.base.id);
1955
1956         if (WARN_ON(pll->active == 0)) {
1957                 assert_shared_dpll_disabled(dev_priv, pll);
1958                 return;
1959         }
1960
1961         assert_shared_dpll_enabled(dev_priv, pll);
1962         WARN_ON(!pll->on);
1963         if (--pll->active)
1964                 return;
1965
1966         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1967         pll->disable(dev_priv, pll);
1968         pll->on = false;
1969
1970         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1971 }
1972
1973 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1974                                            enum pipe pipe)
1975 {
1976         struct drm_device *dev = dev_priv->dev;
1977         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1978         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1979         uint32_t reg, val, pipeconf_val;
1980
1981         /* PCH only available on ILK+ */
1982         BUG_ON(!HAS_PCH_SPLIT(dev));
1983
1984         /* Make sure PCH DPLL is enabled */
1985         assert_shared_dpll_enabled(dev_priv,
1986                                    intel_crtc_to_shared_dpll(intel_crtc));
1987
1988         /* FDI must be feeding us bits for PCH ports */
1989         assert_fdi_tx_enabled(dev_priv, pipe);
1990         assert_fdi_rx_enabled(dev_priv, pipe);
1991
1992         if (HAS_PCH_CPT(dev)) {
1993                 /* Workaround: Set the timing override bit before enabling the
1994                  * pch transcoder. */
1995                 reg = TRANS_CHICKEN2(pipe);
1996                 val = I915_READ(reg);
1997                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1998                 I915_WRITE(reg, val);
1999         }
2000
2001         reg = PCH_TRANSCONF(pipe);
2002         val = I915_READ(reg);
2003         pipeconf_val = I915_READ(PIPECONF(pipe));
2004
2005         if (HAS_PCH_IBX(dev_priv->dev)) {
2006                 /*
2007                  * Make the BPC in transcoder be consistent with
2008                  * that in pipeconf reg. For HDMI we must use 8bpc
2009                  * here for both 8bpc and 12bpc.
2010                  */
2011                 val &= ~PIPECONF_BPC_MASK;
2012                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2013                         val |= PIPECONF_8BPC;
2014                 else
2015                         val |= pipeconf_val & PIPECONF_BPC_MASK;
2016         }
2017
2018         val &= ~TRANS_INTERLACE_MASK;
2019         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2020                 if (HAS_PCH_IBX(dev_priv->dev) &&
2021                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2022                         val |= TRANS_LEGACY_INTERLACED_ILK;
2023                 else
2024                         val |= TRANS_INTERLACED;
2025         else
2026                 val |= TRANS_PROGRESSIVE;
2027
2028         I915_WRITE(reg, val | TRANS_ENABLE);
2029         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2030                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2031 }
2032
2033 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2034                                       enum transcoder cpu_transcoder)
2035 {
2036         u32 val, pipeconf_val;
2037
2038         /* PCH only available on ILK+ */
2039         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2040
2041         /* FDI must be feeding us bits for PCH ports */
2042         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2043         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2044
2045         /* Workaround: set timing override bit. */
2046         val = I915_READ(_TRANSA_CHICKEN2);
2047         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2048         I915_WRITE(_TRANSA_CHICKEN2, val);
2049
2050         val = TRANS_ENABLE;
2051         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2052
2053         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2054             PIPECONF_INTERLACED_ILK)
2055                 val |= TRANS_INTERLACED;
2056         else
2057                 val |= TRANS_PROGRESSIVE;
2058
2059         I915_WRITE(LPT_TRANSCONF, val);
2060         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2061                 DRM_ERROR("Failed to enable PCH transcoder\n");
2062 }
2063
2064 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2065                                             enum pipe pipe)
2066 {
2067         struct drm_device *dev = dev_priv->dev;
2068         uint32_t reg, val;
2069
2070         /* FDI relies on the transcoder */
2071         assert_fdi_tx_disabled(dev_priv, pipe);
2072         assert_fdi_rx_disabled(dev_priv, pipe);
2073
2074         /* Ports must be off as well */
2075         assert_pch_ports_disabled(dev_priv, pipe);
2076
2077         reg = PCH_TRANSCONF(pipe);
2078         val = I915_READ(reg);
2079         val &= ~TRANS_ENABLE;
2080         I915_WRITE(reg, val);
2081         /* wait for PCH transcoder off, transcoder state */
2082         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2083                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2084
2085         if (!HAS_PCH_IBX(dev)) {
2086                 /* Workaround: Clear the timing override chicken bit again. */
2087                 reg = TRANS_CHICKEN2(pipe);
2088                 val = I915_READ(reg);
2089                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2090                 I915_WRITE(reg, val);
2091         }
2092 }
2093
2094 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2095 {
2096         u32 val;
2097
2098         val = I915_READ(LPT_TRANSCONF);
2099         val &= ~TRANS_ENABLE;
2100         I915_WRITE(LPT_TRANSCONF, val);
2101         /* wait for PCH transcoder off, transcoder state */
2102         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2103                 DRM_ERROR("Failed to disable PCH transcoder\n");
2104
2105         /* Workaround: clear timing override bit. */
2106         val = I915_READ(_TRANSA_CHICKEN2);
2107         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2108         I915_WRITE(_TRANSA_CHICKEN2, val);
2109 }
2110
2111 /**
2112  * intel_enable_pipe - enable a pipe, asserting requirements
2113  * @crtc: crtc responsible for the pipe
2114  *
2115  * Enable @crtc's pipe, making sure that various hardware specific requirements
2116  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2117  */
2118 static void intel_enable_pipe(struct intel_crtc *crtc)
2119 {
2120         struct drm_device *dev = crtc->base.dev;
2121         struct drm_i915_private *dev_priv = dev->dev_private;
2122         enum pipe pipe = crtc->pipe;
2123         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2124                                                                       pipe);
2125         enum pipe pch_transcoder;
2126         int reg;
2127         u32 val;
2128
2129         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2130
2131         assert_planes_disabled(dev_priv, pipe);
2132         assert_cursor_disabled(dev_priv, pipe);
2133         assert_sprites_disabled(dev_priv, pipe);
2134
2135         if (HAS_PCH_LPT(dev_priv->dev))
2136                 pch_transcoder = TRANSCODER_A;
2137         else
2138                 pch_transcoder = pipe;
2139
2140         /*
2141          * A pipe without a PLL won't actually be able to drive bits from
2142          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2143          * need the check.
2144          */
2145         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2146                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2147                         assert_dsi_pll_enabled(dev_priv);
2148                 else
2149                         assert_pll_enabled(dev_priv, pipe);
2150         else {
2151                 if (crtc->config->has_pch_encoder) {
2152                         /* if driving the PCH, we need FDI enabled */
2153                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2154                         assert_fdi_tx_pll_enabled(dev_priv,
2155                                                   (enum pipe) cpu_transcoder);
2156                 }
2157                 /* FIXME: assert CPU port conditions for SNB+ */
2158         }
2159
2160         reg = PIPECONF(cpu_transcoder);
2161         val = I915_READ(reg);
2162         if (val & PIPECONF_ENABLE) {
2163                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2164                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2165                 return;
2166         }
2167
2168         I915_WRITE(reg, val | PIPECONF_ENABLE);
2169         POSTING_READ(reg);
2170 }
2171
2172 /**
2173  * intel_disable_pipe - disable a pipe, asserting requirements
2174  * @crtc: crtc whose pipes is to be disabled
2175  *
2176  * Disable the pipe of @crtc, making sure that various hardware
2177  * specific requirements are met, if applicable, e.g. plane
2178  * disabled, panel fitter off, etc.
2179  *
2180  * Will wait until the pipe has shut down before returning.
2181  */
2182 static void intel_disable_pipe(struct intel_crtc *crtc)
2183 {
2184         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2185         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2186         enum pipe pipe = crtc->pipe;
2187         int reg;
2188         u32 val;
2189
2190         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2191
2192         /*
2193          * Make sure planes won't keep trying to pump pixels to us,
2194          * or we might hang the display.
2195          */
2196         assert_planes_disabled(dev_priv, pipe);
2197         assert_cursor_disabled(dev_priv, pipe);
2198         assert_sprites_disabled(dev_priv, pipe);
2199
2200         reg = PIPECONF(cpu_transcoder);
2201         val = I915_READ(reg);
2202         if ((val & PIPECONF_ENABLE) == 0)
2203                 return;
2204
2205         /*
2206          * Double wide has implications for planes
2207          * so best keep it disabled when not needed.
2208          */
2209         if (crtc->config->double_wide)
2210                 val &= ~PIPECONF_DOUBLE_WIDE;
2211
2212         /* Don't disable pipe or pipe PLLs if needed */
2213         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2214             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2215                 val &= ~PIPECONF_ENABLE;
2216
2217         I915_WRITE(reg, val);
2218         if ((val & PIPECONF_ENABLE) == 0)
2219                 intel_wait_for_pipe_off(crtc);
2220 }
2221
2222 static bool need_vtd_wa(struct drm_device *dev)
2223 {
2224 #ifdef CONFIG_INTEL_IOMMU
2225         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2226                 return true;
2227 #endif
2228         return false;
2229 }
2230
2231 unsigned int
2232 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2233                   uint64_t fb_format_modifier)
2234 {
2235         unsigned int tile_height;
2236         uint32_t pixel_bytes;
2237
2238         switch (fb_format_modifier) {
2239         case DRM_FORMAT_MOD_NONE:
2240                 tile_height = 1;
2241                 break;
2242         case I915_FORMAT_MOD_X_TILED:
2243                 tile_height = IS_GEN2(dev) ? 16 : 8;
2244                 break;
2245         case I915_FORMAT_MOD_Y_TILED:
2246                 tile_height = 32;
2247                 break;
2248         case I915_FORMAT_MOD_Yf_TILED:
2249                 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2250                 switch (pixel_bytes) {
2251                 default:
2252                 case 1:
2253                         tile_height = 64;
2254                         break;
2255                 case 2:
2256                 case 4:
2257                         tile_height = 32;
2258                         break;
2259                 case 8:
2260                         tile_height = 16;
2261                         break;
2262                 case 16:
2263                         WARN_ONCE(1,
2264                                   "128-bit pixels are not supported for display!");
2265                         tile_height = 16;
2266                         break;
2267                 }
2268                 break;
2269         default:
2270                 MISSING_CASE(fb_format_modifier);
2271                 tile_height = 1;
2272                 break;
2273         }
2274
2275         return tile_height;
2276 }
2277
2278 unsigned int
2279 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2280                       uint32_t pixel_format, uint64_t fb_format_modifier)
2281 {
2282         return ALIGN(height, intel_tile_height(dev, pixel_format,
2283                                                fb_format_modifier));
2284 }
2285
2286 static int
2287 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2288                         const struct drm_plane_state *plane_state)
2289 {
2290         struct intel_rotation_info *info = &view->rotation_info;
2291         unsigned int tile_height, tile_pitch;
2292
2293         *view = i915_ggtt_view_normal;
2294
2295         if (!plane_state)
2296                 return 0;
2297
2298         if (!intel_rotation_90_or_270(plane_state->rotation))
2299                 return 0;
2300
2301         *view = i915_ggtt_view_rotated;
2302
2303         info->height = fb->height;
2304         info->pixel_format = fb->pixel_format;
2305         info->pitch = fb->pitches[0];
2306         info->fb_modifier = fb->modifier[0];
2307
2308         tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2309                                         fb->modifier[0]);
2310         tile_pitch = PAGE_SIZE / tile_height;
2311         info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2312         info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2313         info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2314
2315         return 0;
2316 }
2317
2318 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2319 {
2320         if (INTEL_INFO(dev_priv)->gen >= 9)
2321                 return 256 * 1024;
2322         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2323                  IS_VALLEYVIEW(dev_priv))
2324                 return 128 * 1024;
2325         else if (INTEL_INFO(dev_priv)->gen >= 4)
2326                 return 4 * 1024;
2327         else
2328                 return 0;
2329 }
2330
2331 int
2332 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2333                            struct drm_framebuffer *fb,
2334                            const struct drm_plane_state *plane_state,
2335                            struct intel_engine_cs *pipelined,
2336                            struct drm_i915_gem_request **pipelined_request)
2337 {
2338         struct drm_device *dev = fb->dev;
2339         struct drm_i915_private *dev_priv = dev->dev_private;
2340         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2341         struct i915_ggtt_view view;
2342         u32 alignment;
2343         int ret;
2344
2345         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2346
2347         switch (fb->modifier[0]) {
2348         case DRM_FORMAT_MOD_NONE:
2349                 alignment = intel_linear_alignment(dev_priv);
2350                 break;
2351         case I915_FORMAT_MOD_X_TILED:
2352                 if (INTEL_INFO(dev)->gen >= 9)
2353                         alignment = 256 * 1024;
2354                 else {
2355                         /* pin() will align the object as required by fence */
2356                         alignment = 0;
2357                 }
2358                 break;
2359         case I915_FORMAT_MOD_Y_TILED:
2360         case I915_FORMAT_MOD_Yf_TILED:
2361                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2362                           "Y tiling bo slipped through, driver bug!\n"))
2363                         return -EINVAL;
2364                 alignment = 1 * 1024 * 1024;
2365                 break;
2366         default:
2367                 MISSING_CASE(fb->modifier[0]);
2368                 return -EINVAL;
2369         }
2370
2371         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2372         if (ret)
2373                 return ret;
2374
2375         /* Note that the w/a also requires 64 PTE of padding following the
2376          * bo. We currently fill all unused PTE with the shadow page and so
2377          * we should always have valid PTE following the scanout preventing
2378          * the VT-d warning.
2379          */
2380         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2381                 alignment = 256 * 1024;
2382
2383         /*
2384          * Global gtt pte registers are special registers which actually forward
2385          * writes to a chunk of system memory. Which means that there is no risk
2386          * that the register values disappear as soon as we call
2387          * intel_runtime_pm_put(), so it is correct to wrap only the
2388          * pin/unpin/fence and not more.
2389          */
2390         intel_runtime_pm_get(dev_priv);
2391
2392         dev_priv->mm.interruptible = false;
2393         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2394                                                    pipelined_request, &view);
2395         if (ret)
2396                 goto err_interruptible;
2397
2398         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2399          * fence, whereas 965+ only requires a fence if using
2400          * framebuffer compression.  For simplicity, we always install
2401          * a fence as the cost is not that onerous.
2402          */
2403         ret = i915_gem_object_get_fence(obj);
2404         if (ret)
2405                 goto err_unpin;
2406
2407         i915_gem_object_pin_fence(obj);
2408
2409         dev_priv->mm.interruptible = true;
2410         intel_runtime_pm_put(dev_priv);
2411         return 0;
2412
2413 err_unpin:
2414         i915_gem_object_unpin_from_display_plane(obj, &view);
2415 err_interruptible:
2416         dev_priv->mm.interruptible = true;
2417         intel_runtime_pm_put(dev_priv);
2418         return ret;
2419 }
2420
2421 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2422                                const struct drm_plane_state *plane_state)
2423 {
2424         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2425         struct i915_ggtt_view view;
2426         int ret;
2427
2428         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2429
2430         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2431         WARN_ONCE(ret, "Couldn't get view from plane state!");
2432
2433         i915_gem_object_unpin_fence(obj);
2434         i915_gem_object_unpin_from_display_plane(obj, &view);
2435 }
2436
2437 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2438  * is assumed to be a power-of-two. */
2439 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2440                                              int *x, int *y,
2441                                              unsigned int tiling_mode,
2442                                              unsigned int cpp,
2443                                              unsigned int pitch)
2444 {
2445         if (tiling_mode != I915_TILING_NONE) {
2446                 unsigned int tile_rows, tiles;
2447
2448                 tile_rows = *y / 8;
2449                 *y %= 8;
2450
2451                 tiles = *x / (512/cpp);
2452                 *x %= 512/cpp;
2453
2454                 return tile_rows * pitch * 8 + tiles * 4096;
2455         } else {
2456                 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2457                 unsigned int offset;
2458
2459                 offset = *y * pitch + *x * cpp;
2460                 *y = (offset & alignment) / pitch;
2461                 *x = ((offset & alignment) - *y * pitch) / cpp;
2462                 return offset & ~alignment;
2463         }
2464 }
2465
2466 static int i9xx_format_to_fourcc(int format)
2467 {
2468         switch (format) {
2469         case DISPPLANE_8BPP:
2470                 return DRM_FORMAT_C8;
2471         case DISPPLANE_BGRX555:
2472                 return DRM_FORMAT_XRGB1555;
2473         case DISPPLANE_BGRX565:
2474                 return DRM_FORMAT_RGB565;
2475         default:
2476         case DISPPLANE_BGRX888:
2477                 return DRM_FORMAT_XRGB8888;
2478         case DISPPLANE_RGBX888:
2479                 return DRM_FORMAT_XBGR8888;
2480         case DISPPLANE_BGRX101010:
2481                 return DRM_FORMAT_XRGB2101010;
2482         case DISPPLANE_RGBX101010:
2483                 return DRM_FORMAT_XBGR2101010;
2484         }
2485 }
2486
2487 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2488 {
2489         switch (format) {
2490         case PLANE_CTL_FORMAT_RGB_565:
2491                 return DRM_FORMAT_RGB565;
2492         default:
2493         case PLANE_CTL_FORMAT_XRGB_8888:
2494                 if (rgb_order) {
2495                         if (alpha)
2496                                 return DRM_FORMAT_ABGR8888;
2497                         else
2498                                 return DRM_FORMAT_XBGR8888;
2499                 } else {
2500                         if (alpha)
2501                                 return DRM_FORMAT_ARGB8888;
2502                         else
2503                                 return DRM_FORMAT_XRGB8888;
2504                 }
2505         case PLANE_CTL_FORMAT_XRGB_2101010:
2506                 if (rgb_order)
2507                         return DRM_FORMAT_XBGR2101010;
2508                 else
2509                         return DRM_FORMAT_XRGB2101010;
2510         }
2511 }
2512
2513 static bool
2514 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2515                               struct intel_initial_plane_config *plane_config)
2516 {
2517         struct drm_device *dev = crtc->base.dev;
2518         struct drm_i915_gem_object *obj = NULL;
2519         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2520         struct drm_framebuffer *fb = &plane_config->fb->base;
2521         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2522         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2523                                     PAGE_SIZE);
2524
2525         size_aligned -= base_aligned;
2526
2527         if (plane_config->size == 0)
2528                 return false;
2529
2530         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2531                                                              base_aligned,
2532                                                              base_aligned,
2533                                                              size_aligned);
2534         if (!obj)
2535                 return false;
2536
2537         obj->tiling_mode = plane_config->tiling;
2538         if (obj->tiling_mode == I915_TILING_X)
2539                 obj->stride = fb->pitches[0];
2540
2541         mode_cmd.pixel_format = fb->pixel_format;
2542         mode_cmd.width = fb->width;
2543         mode_cmd.height = fb->height;
2544         mode_cmd.pitches[0] = fb->pitches[0];
2545         mode_cmd.modifier[0] = fb->modifier[0];
2546         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2547
2548         mutex_lock(&dev->struct_mutex);
2549         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2550                                    &mode_cmd, obj)) {
2551                 DRM_DEBUG_KMS("intel fb init failed\n");
2552                 goto out_unref_obj;
2553         }
2554         mutex_unlock(&dev->struct_mutex);
2555
2556         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2557         return true;
2558
2559 out_unref_obj:
2560         drm_gem_object_unreference(&obj->base);
2561         mutex_unlock(&dev->struct_mutex);
2562         return false;
2563 }
2564
2565 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2566 static void
2567 update_state_fb(struct drm_plane *plane)
2568 {
2569         if (plane->fb == plane->state->fb)
2570                 return;
2571
2572         if (plane->state->fb)
2573                 drm_framebuffer_unreference(plane->state->fb);
2574         plane->state->fb = plane->fb;
2575         if (plane->state->fb)
2576                 drm_framebuffer_reference(plane->state->fb);
2577 }
2578
2579 static void
2580 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2581                              struct intel_initial_plane_config *plane_config)
2582 {
2583         struct drm_device *dev = intel_crtc->base.dev;
2584         struct drm_i915_private *dev_priv = dev->dev_private;
2585         struct drm_crtc *c;
2586         struct intel_crtc *i;
2587         struct drm_i915_gem_object *obj;
2588         struct drm_plane *primary = intel_crtc->base.primary;
2589         struct drm_framebuffer *fb;
2590
2591         if (!plane_config->fb)
2592                 return;
2593
2594         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2595                 fb = &plane_config->fb->base;
2596                 goto valid_fb;
2597         }
2598
2599         kfree(plane_config->fb);
2600
2601         /*
2602          * Failed to alloc the obj, check to see if we should share
2603          * an fb with another CRTC instead
2604          */
2605         for_each_crtc(dev, c) {
2606                 i = to_intel_crtc(c);
2607
2608                 if (c == &intel_crtc->base)
2609                         continue;
2610
2611                 if (!i->active)
2612                         continue;
2613
2614                 fb = c->primary->fb;
2615                 if (!fb)
2616                         continue;
2617
2618                 obj = intel_fb_obj(fb);
2619                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2620                         drm_framebuffer_reference(fb);
2621                         goto valid_fb;
2622                 }
2623         }
2624
2625         return;
2626
2627 valid_fb:
2628         obj = intel_fb_obj(fb);
2629         if (obj->tiling_mode != I915_TILING_NONE)
2630                 dev_priv->preserve_bios_swizzle = true;
2631
2632         primary->fb = fb;
2633         primary->crtc = primary->state->crtc = &intel_crtc->base;
2634         update_state_fb(primary);
2635         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2636         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2637 }
2638
2639 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2640                                       struct drm_framebuffer *fb,
2641                                       int x, int y)
2642 {
2643         struct drm_device *dev = crtc->dev;
2644         struct drm_i915_private *dev_priv = dev->dev_private;
2645         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2646         struct drm_plane *primary = crtc->primary;
2647         bool visible = to_intel_plane_state(primary->state)->visible;
2648         struct drm_i915_gem_object *obj;
2649         int plane = intel_crtc->plane;
2650         unsigned long linear_offset;
2651         u32 dspcntr;
2652         u32 reg = DSPCNTR(plane);
2653         int pixel_size;
2654
2655         if (!visible || !fb) {
2656                 I915_WRITE(reg, 0);
2657                 if (INTEL_INFO(dev)->gen >= 4)
2658                         I915_WRITE(DSPSURF(plane), 0);
2659                 else
2660                         I915_WRITE(DSPADDR(plane), 0);
2661                 POSTING_READ(reg);
2662                 return;
2663         }
2664
2665         obj = intel_fb_obj(fb);
2666         if (WARN_ON(obj == NULL))
2667                 return;
2668
2669         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2670
2671         dspcntr = DISPPLANE_GAMMA_ENABLE;
2672
2673         dspcntr |= DISPLAY_PLANE_ENABLE;
2674
2675         if (INTEL_INFO(dev)->gen < 4) {
2676                 if (intel_crtc->pipe == PIPE_B)
2677                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2678
2679                 /* pipesrc and dspsize control the size that is scaled from,
2680                  * which should always be the user's requested size.
2681                  */
2682                 I915_WRITE(DSPSIZE(plane),
2683                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2684                            (intel_crtc->config->pipe_src_w - 1));
2685                 I915_WRITE(DSPPOS(plane), 0);
2686         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2687                 I915_WRITE(PRIMSIZE(plane),
2688                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2689                            (intel_crtc->config->pipe_src_w - 1));
2690                 I915_WRITE(PRIMPOS(plane), 0);
2691                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2692         }
2693
2694         switch (fb->pixel_format) {
2695         case DRM_FORMAT_C8:
2696                 dspcntr |= DISPPLANE_8BPP;
2697                 break;
2698         case DRM_FORMAT_XRGB1555:
2699                 dspcntr |= DISPPLANE_BGRX555;
2700                 break;
2701         case DRM_FORMAT_RGB565:
2702                 dspcntr |= DISPPLANE_BGRX565;
2703                 break;
2704         case DRM_FORMAT_XRGB8888:
2705                 dspcntr |= DISPPLANE_BGRX888;
2706                 break;
2707         case DRM_FORMAT_XBGR8888:
2708                 dspcntr |= DISPPLANE_RGBX888;
2709                 break;
2710         case DRM_FORMAT_XRGB2101010:
2711                 dspcntr |= DISPPLANE_BGRX101010;
2712                 break;
2713         case DRM_FORMAT_XBGR2101010:
2714                 dspcntr |= DISPPLANE_RGBX101010;
2715                 break;
2716         default:
2717                 BUG();
2718         }
2719
2720         if (INTEL_INFO(dev)->gen >= 4 &&
2721             obj->tiling_mode != I915_TILING_NONE)
2722                 dspcntr |= DISPPLANE_TILED;
2723
2724         if (IS_G4X(dev))
2725                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2726
2727         linear_offset = y * fb->pitches[0] + x * pixel_size;
2728
2729         if (INTEL_INFO(dev)->gen >= 4) {
2730                 intel_crtc->dspaddr_offset =
2731                         intel_gen4_compute_page_offset(dev_priv,
2732                                                        &x, &y, obj->tiling_mode,
2733                                                        pixel_size,
2734                                                        fb->pitches[0]);
2735                 linear_offset -= intel_crtc->dspaddr_offset;
2736         } else {
2737                 intel_crtc->dspaddr_offset = linear_offset;
2738         }
2739
2740         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2741                 dspcntr |= DISPPLANE_ROTATE_180;
2742
2743                 x += (intel_crtc->config->pipe_src_w - 1);
2744                 y += (intel_crtc->config->pipe_src_h - 1);
2745
2746                 /* Finding the last pixel of the last line of the display
2747                 data and adding to linear_offset*/
2748                 linear_offset +=
2749                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2750                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2751         }
2752
2753         I915_WRITE(reg, dspcntr);
2754
2755         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2756         if (INTEL_INFO(dev)->gen >= 4) {
2757                 I915_WRITE(DSPSURF(plane),
2758                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2759                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2760                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2761         } else
2762                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2763         POSTING_READ(reg);
2764 }
2765
2766 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2767                                           struct drm_framebuffer *fb,
2768                                           int x, int y)
2769 {
2770         struct drm_device *dev = crtc->dev;
2771         struct drm_i915_private *dev_priv = dev->dev_private;
2772         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2773         struct drm_plane *primary = crtc->primary;
2774         bool visible = to_intel_plane_state(primary->state)->visible;
2775         struct drm_i915_gem_object *obj;
2776         int plane = intel_crtc->plane;
2777         unsigned long linear_offset;
2778         u32 dspcntr;
2779         u32 reg = DSPCNTR(plane);
2780         int pixel_size;
2781
2782         if (!visible || !fb) {
2783                 I915_WRITE(reg, 0);
2784                 I915_WRITE(DSPSURF(plane), 0);
2785                 POSTING_READ(reg);
2786                 return;
2787         }
2788
2789         obj = intel_fb_obj(fb);
2790         if (WARN_ON(obj == NULL))
2791                 return;
2792
2793         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2794
2795         dspcntr = DISPPLANE_GAMMA_ENABLE;
2796
2797         dspcntr |= DISPLAY_PLANE_ENABLE;
2798
2799         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2800                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2801
2802         switch (fb->pixel_format) {
2803         case DRM_FORMAT_C8:
2804                 dspcntr |= DISPPLANE_8BPP;
2805                 break;
2806         case DRM_FORMAT_RGB565:
2807                 dspcntr |= DISPPLANE_BGRX565;
2808                 break;
2809         case DRM_FORMAT_XRGB8888:
2810                 dspcntr |= DISPPLANE_BGRX888;
2811                 break;
2812         case DRM_FORMAT_XBGR8888:
2813                 dspcntr |= DISPPLANE_RGBX888;
2814                 break;
2815         case DRM_FORMAT_XRGB2101010:
2816                 dspcntr |= DISPPLANE_BGRX101010;
2817                 break;
2818         case DRM_FORMAT_XBGR2101010:
2819                 dspcntr |= DISPPLANE_RGBX101010;
2820                 break;
2821         default:
2822                 BUG();
2823         }
2824
2825         if (obj->tiling_mode != I915_TILING_NONE)
2826                 dspcntr |= DISPPLANE_TILED;
2827
2828         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2829                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2830
2831         linear_offset = y * fb->pitches[0] + x * pixel_size;
2832         intel_crtc->dspaddr_offset =
2833                 intel_gen4_compute_page_offset(dev_priv,
2834                                                &x, &y, obj->tiling_mode,
2835                                                pixel_size,
2836                                                fb->pitches[0]);
2837         linear_offset -= intel_crtc->dspaddr_offset;
2838         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2839                 dspcntr |= DISPPLANE_ROTATE_180;
2840
2841                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2842                         x += (intel_crtc->config->pipe_src_w - 1);
2843                         y += (intel_crtc->config->pipe_src_h - 1);
2844
2845                         /* Finding the last pixel of the last line of the display
2846                         data and adding to linear_offset*/
2847                         linear_offset +=
2848                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2849                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2850                 }
2851         }
2852
2853         I915_WRITE(reg, dspcntr);
2854
2855         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2856         I915_WRITE(DSPSURF(plane),
2857                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2858         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2859                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2860         } else {
2861                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2862                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2863         }
2864         POSTING_READ(reg);
2865 }
2866
2867 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2868                               uint32_t pixel_format)
2869 {
2870         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2871
2872         /*
2873          * The stride is either expressed as a multiple of 64 bytes
2874          * chunks for linear buffers or in number of tiles for tiled
2875          * buffers.
2876          */
2877         switch (fb_modifier) {
2878         case DRM_FORMAT_MOD_NONE:
2879                 return 64;
2880         case I915_FORMAT_MOD_X_TILED:
2881                 if (INTEL_INFO(dev)->gen == 2)
2882                         return 128;
2883                 return 512;
2884         case I915_FORMAT_MOD_Y_TILED:
2885                 /* No need to check for old gens and Y tiling since this is
2886                  * about the display engine and those will be blocked before
2887                  * we get here.
2888                  */
2889                 return 128;
2890         case I915_FORMAT_MOD_Yf_TILED:
2891                 if (bits_per_pixel == 8)
2892                         return 64;
2893                 else
2894                         return 128;
2895         default:
2896                 MISSING_CASE(fb_modifier);
2897                 return 64;
2898         }
2899 }
2900
2901 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2902                                      struct drm_i915_gem_object *obj)
2903 {
2904         const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2905
2906         if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2907                 view = &i915_ggtt_view_rotated;
2908
2909         return i915_gem_obj_ggtt_offset_view(obj, view);
2910 }
2911
2912 /*
2913  * This function detaches (aka. unbinds) unused scalers in hardware
2914  */
2915 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2916 {
2917         struct drm_device *dev;
2918         struct drm_i915_private *dev_priv;
2919         struct intel_crtc_scaler_state *scaler_state;
2920         int i;
2921
2922         dev = intel_crtc->base.dev;
2923         dev_priv = dev->dev_private;
2924         scaler_state = &intel_crtc->config->scaler_state;
2925
2926         /* loop through and disable scalers that aren't in use */
2927         for (i = 0; i < intel_crtc->num_scalers; i++) {
2928                 if (!scaler_state->scalers[i].in_use) {
2929                         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, i), 0);
2930                         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, i), 0);
2931                         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, i), 0);
2932                         DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2933                                 intel_crtc->base.base.id, intel_crtc->pipe, i);
2934                 }
2935         }
2936 }
2937
2938 u32 skl_plane_ctl_format(uint32_t pixel_format)
2939 {
2940         switch (pixel_format) {
2941         case DRM_FORMAT_C8:
2942                 return PLANE_CTL_FORMAT_INDEXED;
2943         case DRM_FORMAT_RGB565:
2944                 return PLANE_CTL_FORMAT_RGB_565;
2945         case DRM_FORMAT_XBGR8888:
2946                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2947         case DRM_FORMAT_XRGB8888:
2948                 return PLANE_CTL_FORMAT_XRGB_8888;
2949         /*
2950          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2951          * to be already pre-multiplied. We need to add a knob (or a different
2952          * DRM_FORMAT) for user-space to configure that.
2953          */
2954         case DRM_FORMAT_ABGR8888:
2955                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2956                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2957         case DRM_FORMAT_ARGB8888:
2958                 return PLANE_CTL_FORMAT_XRGB_8888 |
2959                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2960         case DRM_FORMAT_XRGB2101010:
2961                 return PLANE_CTL_FORMAT_XRGB_2101010;
2962         case DRM_FORMAT_XBGR2101010:
2963                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2964         case DRM_FORMAT_YUYV:
2965                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2966         case DRM_FORMAT_YVYU:
2967                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2968         case DRM_FORMAT_UYVY:
2969                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2970         case DRM_FORMAT_VYUY:
2971                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2972         default:
2973                 MISSING_CASE(pixel_format);
2974         }
2975
2976         return 0;
2977 }
2978
2979 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2980 {
2981         switch (fb_modifier) {
2982         case DRM_FORMAT_MOD_NONE:
2983                 break;
2984         case I915_FORMAT_MOD_X_TILED:
2985                 return PLANE_CTL_TILED_X;
2986         case I915_FORMAT_MOD_Y_TILED:
2987                 return PLANE_CTL_TILED_Y;
2988         case I915_FORMAT_MOD_Yf_TILED:
2989                 return PLANE_CTL_TILED_YF;
2990         default:
2991                 MISSING_CASE(fb_modifier);
2992         }
2993
2994         return 0;
2995 }
2996
2997 u32 skl_plane_ctl_rotation(unsigned int rotation)
2998 {
2999         switch (rotation) {
3000         case BIT(DRM_ROTATE_0):
3001                 break;
3002         /*
3003          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3004          * while i915 HW rotation is clockwise, thats why this swapping.
3005          */
3006         case BIT(DRM_ROTATE_90):
3007                 return PLANE_CTL_ROTATE_270;
3008         case BIT(DRM_ROTATE_180):
3009                 return PLANE_CTL_ROTATE_180;
3010         case BIT(DRM_ROTATE_270):
3011                 return PLANE_CTL_ROTATE_90;
3012         default:
3013                 MISSING_CASE(rotation);
3014         }
3015
3016         return 0;
3017 }
3018
3019 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3020                                          struct drm_framebuffer *fb,
3021                                          int x, int y)
3022 {
3023         struct drm_device *dev = crtc->dev;
3024         struct drm_i915_private *dev_priv = dev->dev_private;
3025         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3026         struct drm_plane *plane = crtc->primary;
3027         bool visible = to_intel_plane_state(plane->state)->visible;
3028         struct drm_i915_gem_object *obj;
3029         int pipe = intel_crtc->pipe;
3030         u32 plane_ctl, stride_div, stride;
3031         u32 tile_height, plane_offset, plane_size;
3032         unsigned int rotation;
3033         int x_offset, y_offset;
3034         unsigned long surf_addr;
3035         struct intel_crtc_state *crtc_state = intel_crtc->config;
3036         struct intel_plane_state *plane_state;
3037         int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3038         int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3039         int scaler_id = -1;
3040
3041         plane_state = to_intel_plane_state(plane->state);
3042
3043         if (!visible || !fb) {
3044                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3045                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3046                 POSTING_READ(PLANE_CTL(pipe, 0));
3047                 return;
3048         }
3049
3050         plane_ctl = PLANE_CTL_ENABLE |
3051                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3052                     PLANE_CTL_PIPE_CSC_ENABLE;
3053
3054         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3055         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3056         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3057
3058         rotation = plane->state->rotation;
3059         plane_ctl |= skl_plane_ctl_rotation(rotation);
3060
3061         obj = intel_fb_obj(fb);
3062         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3063                                                fb->pixel_format);
3064         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3065
3066         /*
3067          * FIXME: intel_plane_state->src, dst aren't set when transitional
3068          * update_plane helpers are called from legacy paths.
3069          * Once full atomic crtc is available, below check can be avoided.
3070          */
3071         if (drm_rect_width(&plane_state->src)) {
3072                 scaler_id = plane_state->scaler_id;
3073                 src_x = plane_state->src.x1 >> 16;
3074                 src_y = plane_state->src.y1 >> 16;
3075                 src_w = drm_rect_width(&plane_state->src) >> 16;
3076                 src_h = drm_rect_height(&plane_state->src) >> 16;
3077                 dst_x = plane_state->dst.x1;
3078                 dst_y = plane_state->dst.y1;
3079                 dst_w = drm_rect_width(&plane_state->dst);
3080                 dst_h = drm_rect_height(&plane_state->dst);
3081
3082                 WARN_ON(x != src_x || y != src_y);
3083         } else {
3084                 src_w = intel_crtc->config->pipe_src_w;
3085                 src_h = intel_crtc->config->pipe_src_h;
3086         }
3087
3088         if (intel_rotation_90_or_270(rotation)) {
3089                 /* stride = Surface height in tiles */
3090                 tile_height = intel_tile_height(dev, fb->pixel_format,
3091                                                 fb->modifier[0]);
3092                 stride = DIV_ROUND_UP(fb->height, tile_height);
3093                 x_offset = stride * tile_height - y - src_h;
3094                 y_offset = x;
3095                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3096         } else {
3097                 stride = fb->pitches[0] / stride_div;
3098                 x_offset = x;
3099                 y_offset = y;
3100                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3101         }
3102         plane_offset = y_offset << 16 | x_offset;
3103
3104         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3105         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3106         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3107         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3108
3109         if (scaler_id >= 0) {
3110                 uint32_t ps_ctrl = 0;
3111
3112                 WARN_ON(!dst_w || !dst_h);
3113                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3114                         crtc_state->scaler_state.scalers[scaler_id].mode;
3115                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3116                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3117                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3118                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3119                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3120         } else {
3121                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3122         }
3123
3124         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3125
3126         POSTING_READ(PLANE_SURF(pipe, 0));
3127 }
3128
3129 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3130 static int
3131 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3132                            int x, int y, enum mode_set_atomic state)
3133 {
3134         struct drm_device *dev = crtc->dev;
3135         struct drm_i915_private *dev_priv = dev->dev_private;
3136
3137         if (dev_priv->display.disable_fbc)
3138                 dev_priv->display.disable_fbc(dev);
3139
3140         dev_priv->display.update_primary_plane(crtc, fb, x, y);
3141
3142         return 0;
3143 }
3144
3145 static void intel_complete_page_flips(struct drm_device *dev)
3146 {
3147         struct drm_crtc *crtc;
3148
3149         for_each_crtc(dev, crtc) {
3150                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3151                 enum plane plane = intel_crtc->plane;
3152
3153                 intel_prepare_page_flip(dev, plane);
3154                 intel_finish_page_flip_plane(dev, plane);
3155         }
3156 }
3157
3158 static void intel_update_primary_planes(struct drm_device *dev)
3159 {
3160         struct drm_i915_private *dev_priv = dev->dev_private;
3161         struct drm_crtc *crtc;
3162
3163         for_each_crtc(dev, crtc) {
3164                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3165
3166                 drm_modeset_lock(&crtc->mutex, NULL);
3167                 /*
3168                  * FIXME: Once we have proper support for primary planes (and
3169                  * disabling them without disabling the entire crtc) allow again
3170                  * a NULL crtc->primary->fb.
3171                  */
3172                 if (intel_crtc->active && crtc->primary->fb)
3173                         dev_priv->display.update_primary_plane(crtc,
3174                                                                crtc->primary->fb,
3175                                                                crtc->x,
3176                                                                crtc->y);
3177                 drm_modeset_unlock(&crtc->mutex);
3178         }
3179 }
3180
3181 void intel_prepare_reset(struct drm_device *dev)
3182 {
3183         /* no reset support for gen2 */
3184         if (IS_GEN2(dev))
3185                 return;
3186
3187         /* reset doesn't touch the display */
3188         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3189                 return;
3190
3191         drm_modeset_lock_all(dev);
3192         /*
3193          * Disabling the crtcs gracefully seems nicer. Also the
3194          * g33 docs say we should at least disable all the planes.
3195          */
3196         intel_display_suspend(dev);
3197 }
3198
3199 void intel_finish_reset(struct drm_device *dev)
3200 {
3201         struct drm_i915_private *dev_priv = to_i915(dev);
3202
3203         /*
3204          * Flips in the rings will be nuked by the reset,
3205          * so complete all pending flips so that user space
3206          * will get its events and not get stuck.
3207          */
3208         intel_complete_page_flips(dev);
3209
3210         /* no reset support for gen2 */
3211         if (IS_GEN2(dev))
3212                 return;
3213
3214         /* reset doesn't touch the display */
3215         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3216                 /*
3217                  * Flips in the rings have been nuked by the reset,
3218                  * so update the base address of all primary
3219                  * planes to the the last fb to make sure we're
3220                  * showing the correct fb after a reset.
3221                  */
3222                 intel_update_primary_planes(dev);
3223                 return;
3224         }
3225
3226         /*
3227          * The display has been reset as well,
3228          * so need a full re-initialization.
3229          */
3230         intel_runtime_pm_disable_interrupts(dev_priv);
3231         intel_runtime_pm_enable_interrupts(dev_priv);
3232
3233         intel_modeset_init_hw(dev);
3234
3235         spin_lock_irq(&dev_priv->irq_lock);
3236         if (dev_priv->display.hpd_irq_setup)
3237                 dev_priv->display.hpd_irq_setup(dev);
3238         spin_unlock_irq(&dev_priv->irq_lock);
3239
3240         intel_modeset_setup_hw_state(dev, true);
3241
3242         intel_hpd_init(dev_priv);
3243
3244         drm_modeset_unlock_all(dev);
3245 }
3246
3247 static void
3248 intel_finish_fb(struct drm_framebuffer *old_fb)
3249 {
3250         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3251         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3252         bool was_interruptible = dev_priv->mm.interruptible;
3253         int ret;
3254
3255         /* Big Hammer, we also need to ensure that any pending
3256          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3257          * current scanout is retired before unpinning the old
3258          * framebuffer. Note that we rely on userspace rendering
3259          * into the buffer attached to the pipe they are waiting
3260          * on. If not, userspace generates a GPU hang with IPEHR
3261          * point to the MI_WAIT_FOR_EVENT.
3262          *
3263          * This should only fail upon a hung GPU, in which case we
3264          * can safely continue.
3265          */
3266         dev_priv->mm.interruptible = false;
3267         ret = i915_gem_object_wait_rendering(obj, true);
3268         dev_priv->mm.interruptible = was_interruptible;
3269
3270         WARN_ON(ret);
3271 }
3272
3273 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3274 {
3275         struct drm_device *dev = crtc->dev;
3276         struct drm_i915_private *dev_priv = dev->dev_private;
3277         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3278         bool pending;
3279
3280         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3281             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3282                 return false;
3283
3284         spin_lock_irq(&dev->event_lock);
3285         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3286         spin_unlock_irq(&dev->event_lock);
3287
3288         return pending;
3289 }
3290
3291 static void intel_update_pipe_size(struct intel_crtc *crtc)
3292 {
3293         struct drm_device *dev = crtc->base.dev;
3294         struct drm_i915_private *dev_priv = dev->dev_private;
3295         const struct drm_display_mode *adjusted_mode;
3296
3297         if (!i915.fastboot)
3298                 return;
3299
3300         /*
3301          * Update pipe size and adjust fitter if needed: the reason for this is
3302          * that in compute_mode_changes we check the native mode (not the pfit
3303          * mode) to see if we can flip rather than do a full mode set. In the
3304          * fastboot case, we'll flip, but if we don't update the pipesrc and
3305          * pfit state, we'll end up with a big fb scanned out into the wrong
3306          * sized surface.
3307          *
3308          * To fix this properly, we need to hoist the checks up into
3309          * compute_mode_changes (or above), check the actual pfit state and
3310          * whether the platform allows pfit disable with pipe active, and only
3311          * then update the pipesrc and pfit state, even on the flip path.
3312          */
3313
3314         adjusted_mode = &crtc->config->base.adjusted_mode;
3315
3316         I915_WRITE(PIPESRC(crtc->pipe),
3317                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3318                    (adjusted_mode->crtc_vdisplay - 1));
3319         if (!crtc->config->pch_pfit.enabled &&
3320             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3321              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3322                 I915_WRITE(PF_CTL(crtc->pipe), 0);
3323                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3324                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3325         }
3326         crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3327         crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3328 }
3329
3330 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3331 {
3332         struct drm_device *dev = crtc->dev;
3333         struct drm_i915_private *dev_priv = dev->dev_private;
3334         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3335         int pipe = intel_crtc->pipe;
3336         u32 reg, temp;
3337
3338         /* enable normal train */
3339         reg = FDI_TX_CTL(pipe);
3340         temp = I915_READ(reg);
3341         if (IS_IVYBRIDGE(dev)) {
3342                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3343                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3344         } else {
3345                 temp &= ~FDI_LINK_TRAIN_NONE;
3346                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3347         }
3348         I915_WRITE(reg, temp);
3349
3350         reg = FDI_RX_CTL(pipe);
3351         temp = I915_READ(reg);
3352         if (HAS_PCH_CPT(dev)) {
3353                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3354                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3355         } else {
3356                 temp &= ~FDI_LINK_TRAIN_NONE;
3357                 temp |= FDI_LINK_TRAIN_NONE;
3358         }
3359         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3360
3361         /* wait one idle pattern time */
3362         POSTING_READ(reg);
3363         udelay(1000);
3364
3365         /* IVB wants error correction enabled */
3366         if (IS_IVYBRIDGE(dev))
3367                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3368                            FDI_FE_ERRC_ENABLE);
3369 }
3370
3371 /* The FDI link training functions for ILK/Ibexpeak. */
3372 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3373 {
3374         struct drm_device *dev = crtc->dev;
3375         struct drm_i915_private *dev_priv = dev->dev_private;
3376         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3377         int pipe = intel_crtc->pipe;
3378         u32 reg, temp, tries;
3379
3380         /* FDI needs bits from pipe first */
3381         assert_pipe_enabled(dev_priv, pipe);
3382
3383         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3384            for train result */
3385         reg = FDI_RX_IMR(pipe);
3386         temp = I915_READ(reg);
3387         temp &= ~FDI_RX_SYMBOL_LOCK;
3388         temp &= ~FDI_RX_BIT_LOCK;
3389         I915_WRITE(reg, temp);
3390         I915_READ(reg);
3391         udelay(150);
3392
3393         /* enable CPU FDI TX and PCH FDI RX */
3394         reg = FDI_TX_CTL(pipe);
3395         temp = I915_READ(reg);
3396         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3397         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3398         temp &= ~FDI_LINK_TRAIN_NONE;
3399         temp |= FDI_LINK_TRAIN_PATTERN_1;
3400         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3401
3402         reg = FDI_RX_CTL(pipe);
3403         temp = I915_READ(reg);
3404         temp &= ~FDI_LINK_TRAIN_NONE;
3405         temp |= FDI_LINK_TRAIN_PATTERN_1;
3406         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3407
3408         POSTING_READ(reg);
3409         udelay(150);
3410
3411         /* Ironlake workaround, enable clock pointer after FDI enable*/
3412         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3413         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3414                    FDI_RX_PHASE_SYNC_POINTER_EN);
3415
3416         reg = FDI_RX_IIR(pipe);
3417         for (tries = 0; tries < 5; tries++) {
3418                 temp = I915_READ(reg);
3419                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3420
3421                 if ((temp & FDI_RX_BIT_LOCK)) {
3422                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3423                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3424                         break;
3425                 }
3426         }
3427         if (tries == 5)
3428                 DRM_ERROR("FDI train 1 fail!\n");
3429
3430         /* Train 2 */
3431         reg = FDI_TX_CTL(pipe);
3432         temp = I915_READ(reg);
3433         temp &= ~FDI_LINK_TRAIN_NONE;
3434         temp |= FDI_LINK_TRAIN_PATTERN_2;
3435         I915_WRITE(reg, temp);
3436
3437         reg = FDI_RX_CTL(pipe);
3438         temp = I915_READ(reg);
3439         temp &= ~FDI_LINK_TRAIN_NONE;
3440         temp |= FDI_LINK_TRAIN_PATTERN_2;
3441         I915_WRITE(reg, temp);
3442
3443         POSTING_READ(reg);
3444         udelay(150);
3445
3446         reg = FDI_RX_IIR(pipe);
3447         for (tries = 0; tries < 5; tries++) {
3448                 temp = I915_READ(reg);
3449                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3450
3451                 if (temp & FDI_RX_SYMBOL_LOCK) {
3452                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3453                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3454                         break;
3455                 }
3456         }
3457         if (tries == 5)
3458                 DRM_ERROR("FDI train 2 fail!\n");
3459
3460         DRM_DEBUG_KMS("FDI train done\n");
3461
3462 }
3463
3464 static const int snb_b_fdi_train_param[] = {
3465         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3466         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3467         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3468         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3469 };
3470
3471 /* The FDI link training functions for SNB/Cougarpoint. */
3472 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3473 {
3474         struct drm_device *dev = crtc->dev;
3475         struct drm_i915_private *dev_priv = dev->dev_private;
3476         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3477         int pipe = intel_crtc->pipe;
3478         u32 reg, temp, i, retry;
3479
3480         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3481            for train result */
3482         reg = FDI_RX_IMR(pipe);
3483         temp = I915_READ(reg);
3484         temp &= ~FDI_RX_SYMBOL_LOCK;
3485         temp &= ~FDI_RX_BIT_LOCK;
3486         I915_WRITE(reg, temp);
3487
3488         POSTING_READ(reg);
3489         udelay(150);
3490
3491         /* enable CPU FDI TX and PCH FDI RX */
3492         reg = FDI_TX_CTL(pipe);
3493         temp = I915_READ(reg);
3494         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3495         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3496         temp &= ~FDI_LINK_TRAIN_NONE;
3497         temp |= FDI_LINK_TRAIN_PATTERN_1;
3498         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3499         /* SNB-B */
3500         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3501         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3502
3503         I915_WRITE(FDI_RX_MISC(pipe),
3504                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3505
3506         reg = FDI_RX_CTL(pipe);
3507         temp = I915_READ(reg);
3508         if (HAS_PCH_CPT(dev)) {
3509                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3510                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3511         } else {
3512                 temp &= ~FDI_LINK_TRAIN_NONE;
3513                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3514         }
3515         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3516
3517         POSTING_READ(reg);
3518         udelay(150);
3519
3520         for (i = 0; i < 4; i++) {
3521                 reg = FDI_TX_CTL(pipe);
3522                 temp = I915_READ(reg);
3523                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3524                 temp |= snb_b_fdi_train_param[i];
3525                 I915_WRITE(reg, temp);
3526
3527                 POSTING_READ(reg);
3528                 udelay(500);
3529
3530                 for (retry = 0; retry < 5; retry++) {
3531                         reg = FDI_RX_IIR(pipe);
3532                         temp = I915_READ(reg);
3533                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3534                         if (temp & FDI_RX_BIT_LOCK) {
3535                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3536                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3537                                 break;
3538                         }
3539                         udelay(50);
3540                 }
3541                 if (retry < 5)
3542                         break;
3543         }
3544         if (i == 4)
3545                 DRM_ERROR("FDI train 1 fail!\n");
3546
3547         /* Train 2 */
3548         reg = FDI_TX_CTL(pipe);
3549         temp = I915_READ(reg);
3550         temp &= ~FDI_LINK_TRAIN_NONE;
3551         temp |= FDI_LINK_TRAIN_PATTERN_2;
3552         if (IS_GEN6(dev)) {
3553                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3554                 /* SNB-B */
3555                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3556         }
3557         I915_WRITE(reg, temp);
3558
3559         reg = FDI_RX_CTL(pipe);
3560         temp = I915_READ(reg);
3561         if (HAS_PCH_CPT(dev)) {
3562                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3563                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3564         } else {
3565                 temp &= ~FDI_LINK_TRAIN_NONE;
3566                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3567         }
3568         I915_WRITE(reg, temp);
3569
3570         POSTING_READ(reg);
3571         udelay(150);
3572
3573         for (i = 0; i < 4; i++) {
3574                 reg = FDI_TX_CTL(pipe);
3575                 temp = I915_READ(reg);
3576                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3577                 temp |= snb_b_fdi_train_param[i];
3578                 I915_WRITE(reg, temp);
3579
3580                 POSTING_READ(reg);
3581                 udelay(500);
3582
3583                 for (retry = 0; retry < 5; retry++) {
3584                         reg = FDI_RX_IIR(pipe);
3585                         temp = I915_READ(reg);
3586                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3587                         if (temp & FDI_RX_SYMBOL_LOCK) {
3588                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3589                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3590                                 break;
3591                         }
3592                         udelay(50);
3593                 }
3594                 if (retry < 5)
3595                         break;
3596         }
3597         if (i == 4)
3598                 DRM_ERROR("FDI train 2 fail!\n");
3599
3600         DRM_DEBUG_KMS("FDI train done.\n");
3601 }
3602
3603 /* Manual link training for Ivy Bridge A0 parts */
3604 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3605 {
3606         struct drm_device *dev = crtc->dev;
3607         struct drm_i915_private *dev_priv = dev->dev_private;
3608         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3609         int pipe = intel_crtc->pipe;
3610         u32 reg, temp, i, j;
3611
3612         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3613            for train result */
3614         reg = FDI_RX_IMR(pipe);
3615         temp = I915_READ(reg);
3616         temp &= ~FDI_RX_SYMBOL_LOCK;
3617         temp &= ~FDI_RX_BIT_LOCK;
3618         I915_WRITE(reg, temp);
3619
3620         POSTING_READ(reg);
3621         udelay(150);
3622
3623         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3624                       I915_READ(FDI_RX_IIR(pipe)));
3625
3626         /* Try each vswing and preemphasis setting twice before moving on */
3627         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3628                 /* disable first in case we need to retry */
3629                 reg = FDI_TX_CTL(pipe);
3630                 temp = I915_READ(reg);
3631                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3632                 temp &= ~FDI_TX_ENABLE;
3633                 I915_WRITE(reg, temp);
3634
3635                 reg = FDI_RX_CTL(pipe);
3636                 temp = I915_READ(reg);
3637                 temp &= ~FDI_LINK_TRAIN_AUTO;
3638                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3639                 temp &= ~FDI_RX_ENABLE;
3640                 I915_WRITE(reg, temp);
3641
3642                 /* enable CPU FDI TX and PCH FDI RX */
3643                 reg = FDI_TX_CTL(pipe);
3644                 temp = I915_READ(reg);
3645                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3646                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3647                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3648                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3649                 temp |= snb_b_fdi_train_param[j/2];
3650                 temp |= FDI_COMPOSITE_SYNC;
3651                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3652
3653                 I915_WRITE(FDI_RX_MISC(pipe),
3654                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3655
3656                 reg = FDI_RX_CTL(pipe);
3657                 temp = I915_READ(reg);
3658                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3659                 temp |= FDI_COMPOSITE_SYNC;
3660                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3661
3662                 POSTING_READ(reg);
3663                 udelay(1); /* should be 0.5us */
3664
3665                 for (i = 0; i < 4; i++) {
3666                         reg = FDI_RX_IIR(pipe);
3667                         temp = I915_READ(reg);
3668                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3669
3670                         if (temp & FDI_RX_BIT_LOCK ||
3671                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3672                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3673                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3674                                               i);
3675                                 break;
3676                         }
3677                         udelay(1); /* should be 0.5us */
3678                 }
3679                 if (i == 4) {
3680                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3681                         continue;
3682                 }
3683
3684                 /* Train 2 */
3685                 reg = FDI_TX_CTL(pipe);
3686                 temp = I915_READ(reg);
3687                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3688                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3689                 I915_WRITE(reg, temp);
3690
3691                 reg = FDI_RX_CTL(pipe);
3692                 temp = I915_READ(reg);
3693                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3694                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3695                 I915_WRITE(reg, temp);
3696
3697                 POSTING_READ(reg);
3698                 udelay(2); /* should be 1.5us */
3699
3700                 for (i = 0; i < 4; i++) {
3701                         reg = FDI_RX_IIR(pipe);
3702                         temp = I915_READ(reg);
3703                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3704
3705                         if (temp & FDI_RX_SYMBOL_LOCK ||
3706                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3707                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3708                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3709                                               i);
3710                                 goto train_done;
3711                         }
3712                         udelay(2); /* should be 1.5us */
3713                 }
3714                 if (i == 4)
3715                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3716         }
3717
3718 train_done:
3719         DRM_DEBUG_KMS("FDI train done.\n");
3720 }
3721
3722 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3723 {
3724         struct drm_device *dev = intel_crtc->base.dev;
3725         struct drm_i915_private *dev_priv = dev->dev_private;
3726         int pipe = intel_crtc->pipe;
3727         u32 reg, temp;
3728
3729
3730         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3731         reg = FDI_RX_CTL(pipe);
3732         temp = I915_READ(reg);
3733         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3734         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3735         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3736         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3737
3738         POSTING_READ(reg);
3739         udelay(200);
3740
3741         /* Switch from Rawclk to PCDclk */
3742         temp = I915_READ(reg);
3743         I915_WRITE(reg, temp | FDI_PCDCLK);
3744
3745         POSTING_READ(reg);
3746         udelay(200);
3747
3748         /* Enable CPU FDI TX PLL, always on for Ironlake */
3749         reg = FDI_TX_CTL(pipe);
3750         temp = I915_READ(reg);
3751         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3752                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3753
3754                 POSTING_READ(reg);
3755                 udelay(100);
3756         }
3757 }
3758
3759 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3760 {
3761         struct drm_device *dev = intel_crtc->base.dev;
3762         struct drm_i915_private *dev_priv = dev->dev_private;
3763         int pipe = intel_crtc->pipe;
3764         u32 reg, temp;
3765
3766         /* Switch from PCDclk to Rawclk */
3767         reg = FDI_RX_CTL(pipe);
3768         temp = I915_READ(reg);
3769         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3770
3771         /* Disable CPU FDI TX PLL */
3772         reg = FDI_TX_CTL(pipe);
3773         temp = I915_READ(reg);
3774         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3775
3776         POSTING_READ(reg);
3777         udelay(100);
3778
3779         reg = FDI_RX_CTL(pipe);
3780         temp = I915_READ(reg);
3781         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3782
3783         /* Wait for the clocks to turn off. */
3784         POSTING_READ(reg);
3785         udelay(100);
3786 }
3787
3788 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3789 {
3790         struct drm_device *dev = crtc->dev;
3791         struct drm_i915_private *dev_priv = dev->dev_private;
3792         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3793         int pipe = intel_crtc->pipe;
3794         u32 reg, temp;
3795
3796         /* disable CPU FDI tx and PCH FDI rx */
3797         reg = FDI_TX_CTL(pipe);
3798         temp = I915_READ(reg);
3799         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3800         POSTING_READ(reg);
3801
3802         reg = FDI_RX_CTL(pipe);
3803         temp = I915_READ(reg);
3804         temp &= ~(0x7 << 16);
3805         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3806         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3807
3808         POSTING_READ(reg);
3809         udelay(100);
3810
3811         /* Ironlake workaround, disable clock pointer after downing FDI */
3812         if (HAS_PCH_IBX(dev))
3813                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3814
3815         /* still set train pattern 1 */
3816         reg = FDI_TX_CTL(pipe);
3817         temp = I915_READ(reg);
3818         temp &= ~FDI_LINK_TRAIN_NONE;
3819         temp |= FDI_LINK_TRAIN_PATTERN_1;
3820         I915_WRITE(reg, temp);
3821
3822         reg = FDI_RX_CTL(pipe);
3823         temp = I915_READ(reg);
3824         if (HAS_PCH_CPT(dev)) {
3825                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3826                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3827         } else {
3828                 temp &= ~FDI_LINK_TRAIN_NONE;
3829                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3830         }
3831         /* BPC in FDI rx is consistent with that in PIPECONF */
3832         temp &= ~(0x07 << 16);
3833         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3834         I915_WRITE(reg, temp);
3835
3836         POSTING_READ(reg);
3837         udelay(100);
3838 }
3839
3840 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3841 {
3842         struct intel_crtc *crtc;
3843
3844         /* Note that we don't need to be called with mode_config.lock here
3845          * as our list of CRTC objects is static for the lifetime of the
3846          * device and so cannot disappear as we iterate. Similarly, we can
3847          * happily treat the predicates as racy, atomic checks as userspace
3848          * cannot claim and pin a new fb without at least acquring the
3849          * struct_mutex and so serialising with us.
3850          */
3851         for_each_intel_crtc(dev, crtc) {
3852                 if (atomic_read(&crtc->unpin_work_count) == 0)
3853                         continue;
3854
3855                 if (crtc->unpin_work)
3856                         intel_wait_for_vblank(dev, crtc->pipe);
3857
3858                 return true;
3859         }
3860
3861         return false;
3862 }
3863
3864 static void page_flip_completed(struct intel_crtc *intel_crtc)
3865 {
3866         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3867         struct intel_unpin_work *work = intel_crtc->unpin_work;
3868
3869         /* ensure that the unpin work is consistent wrt ->pending. */
3870         smp_rmb();
3871         intel_crtc->unpin_work = NULL;
3872
3873         if (work->event)
3874                 drm_send_vblank_event(intel_crtc->base.dev,
3875                                       intel_crtc->pipe,
3876                                       work->event);
3877
3878         drm_crtc_vblank_put(&intel_crtc->base);
3879
3880         wake_up_all(&dev_priv->pending_flip_queue);
3881         queue_work(dev_priv->wq, &work->work);
3882
3883         trace_i915_flip_complete(intel_crtc->plane,
3884                                  work->pending_flip_obj);
3885 }
3886
3887 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3888 {
3889         struct drm_device *dev = crtc->dev;
3890         struct drm_i915_private *dev_priv = dev->dev_private;
3891
3892         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3893         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3894                                        !intel_crtc_has_pending_flip(crtc),
3895                                        60*HZ) == 0)) {
3896                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3897
3898                 spin_lock_irq(&dev->event_lock);
3899                 if (intel_crtc->unpin_work) {
3900                         WARN_ONCE(1, "Removing stuck page flip\n");
3901                         page_flip_completed(intel_crtc);
3902                 }
3903                 spin_unlock_irq(&dev->event_lock);
3904         }
3905
3906         if (crtc->primary->fb) {
3907                 mutex_lock(&dev->struct_mutex);
3908                 intel_finish_fb(crtc->primary->fb);
3909                 mutex_unlock(&dev->struct_mutex);
3910         }
3911 }
3912
3913 /* Program iCLKIP clock to the desired frequency */
3914 static void lpt_program_iclkip(struct drm_crtc *crtc)
3915 {
3916         struct drm_device *dev = crtc->dev;
3917         struct drm_i915_private *dev_priv = dev->dev_private;
3918         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3919         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3920         u32 temp;
3921
3922         mutex_lock(&dev_priv->sb_lock);
3923
3924         /* It is necessary to ungate the pixclk gate prior to programming
3925          * the divisors, and gate it back when it is done.
3926          */
3927         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3928
3929         /* Disable SSCCTL */
3930         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3931                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3932                                 SBI_SSCCTL_DISABLE,
3933                         SBI_ICLK);
3934
3935         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3936         if (clock == 20000) {
3937                 auxdiv = 1;
3938                 divsel = 0x41;
3939                 phaseinc = 0x20;
3940         } else {
3941                 /* The iCLK virtual clock root frequency is in MHz,
3942                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3943                  * divisors, it is necessary to divide one by another, so we
3944                  * convert the virtual clock precision to KHz here for higher
3945                  * precision.
3946                  */
3947                 u32 iclk_virtual_root_freq = 172800 * 1000;
3948                 u32 iclk_pi_range = 64;
3949                 u32 desired_divisor, msb_divisor_value, pi_value;
3950
3951                 desired_divisor = (iclk_virtual_root_freq / clock);
3952                 msb_divisor_value = desired_divisor / iclk_pi_range;
3953                 pi_value = desired_divisor % iclk_pi_range;
3954
3955                 auxdiv = 0;
3956                 divsel = msb_divisor_value - 2;
3957                 phaseinc = pi_value;
3958         }
3959
3960         /* This should not happen with any sane values */
3961         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3962                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3963         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3964                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3965
3966         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3967                         clock,
3968                         auxdiv,
3969                         divsel,
3970                         phasedir,
3971                         phaseinc);
3972
3973         /* Program SSCDIVINTPHASE6 */
3974         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3975         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3976         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3977         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3978         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3979         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3980         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3981         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3982
3983         /* Program SSCAUXDIV */
3984         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3985         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3986         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3987         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3988
3989         /* Enable modulator and associated divider */
3990         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3991         temp &= ~SBI_SSCCTL_DISABLE;
3992         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3993
3994         /* Wait for initialization time */
3995         udelay(24);
3996
3997         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3998
3999         mutex_unlock(&dev_priv->sb_lock);
4000 }
4001
4002 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4003                                                 enum pipe pch_transcoder)
4004 {
4005         struct drm_device *dev = crtc->base.dev;
4006         struct drm_i915_private *dev_priv = dev->dev_private;
4007         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4008
4009         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4010                    I915_READ(HTOTAL(cpu_transcoder)));
4011         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4012                    I915_READ(HBLANK(cpu_transcoder)));
4013         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4014                    I915_READ(HSYNC(cpu_transcoder)));
4015
4016         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4017                    I915_READ(VTOTAL(cpu_transcoder)));
4018         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4019                    I915_READ(VBLANK(cpu_transcoder)));
4020         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4021                    I915_READ(VSYNC(cpu_transcoder)));
4022         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4023                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4024 }
4025
4026 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4027 {
4028         struct drm_i915_private *dev_priv = dev->dev_private;
4029         uint32_t temp;
4030
4031         temp = I915_READ(SOUTH_CHICKEN1);
4032         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4033                 return;
4034
4035         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4036         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4037
4038         temp &= ~FDI_BC_BIFURCATION_SELECT;
4039         if (enable)
4040                 temp |= FDI_BC_BIFURCATION_SELECT;
4041
4042         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4043         I915_WRITE(SOUTH_CHICKEN1, temp);
4044         POSTING_READ(SOUTH_CHICKEN1);
4045 }
4046
4047 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4048 {
4049         struct drm_device *dev = intel_crtc->base.dev;
4050
4051         switch (intel_crtc->pipe) {
4052         case PIPE_A:
4053                 break;
4054         case PIPE_B:
4055                 if (intel_crtc->config->fdi_lanes > 2)
4056                         cpt_set_fdi_bc_bifurcation(dev, false);
4057                 else
4058                         cpt_set_fdi_bc_bifurcation(dev, true);
4059
4060                 break;
4061         case PIPE_C:
4062                 cpt_set_fdi_bc_bifurcation(dev, true);
4063
4064                 break;
4065         default:
4066                 BUG();
4067         }
4068 }
4069
4070 /*
4071  * Enable PCH resources required for PCH ports:
4072  *   - PCH PLLs
4073  *   - FDI training & RX/TX
4074  *   - update transcoder timings
4075  *   - DP transcoding bits
4076  *   - transcoder
4077  */
4078 static void ironlake_pch_enable(struct drm_crtc *crtc)
4079 {
4080         struct drm_device *dev = crtc->dev;
4081         struct drm_i915_private *dev_priv = dev->dev_private;
4082         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4083         int pipe = intel_crtc->pipe;
4084         u32 reg, temp;
4085
4086         assert_pch_transcoder_disabled(dev_priv, pipe);
4087
4088         if (IS_IVYBRIDGE(dev))
4089                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4090
4091         /* Write the TU size bits before fdi link training, so that error
4092          * detection works. */
4093         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4094                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4095
4096         /* For PCH output, training FDI link */
4097         dev_priv->display.fdi_link_train(crtc);
4098
4099         /* We need to program the right clock selection before writing the pixel
4100          * mutliplier into the DPLL. */
4101         if (HAS_PCH_CPT(dev)) {
4102                 u32 sel;
4103
4104                 temp = I915_READ(PCH_DPLL_SEL);
4105                 temp |= TRANS_DPLL_ENABLE(pipe);
4106                 sel = TRANS_DPLLB_SEL(pipe);
4107                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4108                         temp |= sel;
4109                 else
4110                         temp &= ~sel;
4111                 I915_WRITE(PCH_DPLL_SEL, temp);
4112         }
4113
4114         /* XXX: pch pll's can be enabled any time before we enable the PCH
4115          * transcoder, and we actually should do this to not upset any PCH
4116          * transcoder that already use the clock when we share it.
4117          *
4118          * Note that enable_shared_dpll tries to do the right thing, but
4119          * get_shared_dpll unconditionally resets the pll - we need that to have
4120          * the right LVDS enable sequence. */
4121         intel_enable_shared_dpll(intel_crtc);
4122
4123         /* set transcoder timing, panel must allow it */
4124         assert_panel_unlocked(dev_priv, pipe);
4125         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4126
4127         intel_fdi_normal_train(crtc);
4128
4129         /* For PCH DP, enable TRANS_DP_CTL */
4130         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4131                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4132                 reg = TRANS_DP_CTL(pipe);
4133                 temp = I915_READ(reg);
4134                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4135                           TRANS_DP_SYNC_MASK |
4136                           TRANS_DP_BPC_MASK);
4137                 temp |= TRANS_DP_OUTPUT_ENABLE;
4138                 temp |= bpc << 9; /* same format but at 11:9 */
4139
4140                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4141                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4142                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4143                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4144
4145                 switch (intel_trans_dp_port_sel(crtc)) {
4146                 case PCH_DP_B:
4147                         temp |= TRANS_DP_PORT_SEL_B;
4148                         break;
4149                 case PCH_DP_C:
4150                         temp |= TRANS_DP_PORT_SEL_C;
4151                         break;
4152                 case PCH_DP_D:
4153                         temp |= TRANS_DP_PORT_SEL_D;
4154                         break;
4155                 default:
4156                         BUG();
4157                 }
4158
4159                 I915_WRITE(reg, temp);
4160         }
4161
4162         ironlake_enable_pch_transcoder(dev_priv, pipe);
4163 }
4164
4165 static void lpt_pch_enable(struct drm_crtc *crtc)
4166 {
4167         struct drm_device *dev = crtc->dev;
4168         struct drm_i915_private *dev_priv = dev->dev_private;
4169         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4170         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4171
4172         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4173
4174         lpt_program_iclkip(crtc);
4175
4176         /* Set transcoder timing. */
4177         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4178
4179         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4180 }
4181
4182 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4183                                                 struct intel_crtc_state *crtc_state)
4184 {
4185         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4186         struct intel_shared_dpll *pll;
4187         struct intel_shared_dpll_config *shared_dpll;
4188         enum intel_dpll_id i;
4189
4190         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4191
4192         if (HAS_PCH_IBX(dev_priv->dev)) {
4193                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4194                 i = (enum intel_dpll_id) crtc->pipe;
4195                 pll = &dev_priv->shared_dplls[i];
4196
4197                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4198                               crtc->base.base.id, pll->name);
4199
4200                 WARN_ON(shared_dpll[i].crtc_mask);
4201
4202                 goto found;
4203         }
4204
4205         if (IS_BROXTON(dev_priv->dev)) {
4206                 /* PLL is attached to port in bxt */
4207                 struct intel_encoder *encoder;
4208                 struct intel_digital_port *intel_dig_port;
4209
4210                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4211                 if (WARN_ON(!encoder))
4212                         return NULL;
4213
4214                 intel_dig_port = enc_to_dig_port(&encoder->base);
4215                 /* 1:1 mapping between ports and PLLs */
4216                 i = (enum intel_dpll_id)intel_dig_port->port;
4217                 pll = &dev_priv->shared_dplls[i];
4218                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4219                         crtc->base.base.id, pll->name);
4220                 WARN_ON(shared_dpll[i].crtc_mask);
4221
4222                 goto found;
4223         }
4224
4225         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4226                 pll = &dev_priv->shared_dplls[i];
4227
4228                 /* Only want to check enabled timings first */
4229                 if (shared_dpll[i].crtc_mask == 0)
4230                         continue;
4231
4232                 if (memcmp(&crtc_state->dpll_hw_state,
4233                            &shared_dpll[i].hw_state,
4234                            sizeof(crtc_state->dpll_hw_state)) == 0) {
4235                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4236                                       crtc->base.base.id, pll->name,
4237                                       shared_dpll[i].crtc_mask,
4238                                       pll->active);
4239                         goto found;
4240                 }
4241         }
4242
4243         /* Ok no matching timings, maybe there's a free one? */
4244         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4245                 pll = &dev_priv->shared_dplls[i];
4246                 if (shared_dpll[i].crtc_mask == 0) {
4247                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4248                                       crtc->base.base.id, pll->name);
4249                         goto found;
4250                 }
4251         }
4252
4253         return NULL;
4254
4255 found:
4256         if (shared_dpll[i].crtc_mask == 0)
4257                 shared_dpll[i].hw_state =
4258                         crtc_state->dpll_hw_state;
4259
4260         crtc_state->shared_dpll = i;
4261         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4262                          pipe_name(crtc->pipe));
4263
4264         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4265
4266         return pll;
4267 }
4268
4269 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4270 {
4271         struct drm_i915_private *dev_priv = to_i915(state->dev);
4272         struct intel_shared_dpll_config *shared_dpll;
4273         struct intel_shared_dpll *pll;
4274         enum intel_dpll_id i;
4275
4276         if (!to_intel_atomic_state(state)->dpll_set)
4277                 return;
4278
4279         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4280         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4281                 pll = &dev_priv->shared_dplls[i];
4282                 pll->config = shared_dpll[i];
4283         }
4284 }
4285
4286 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4287 {
4288         struct drm_i915_private *dev_priv = dev->dev_private;
4289         int dslreg = PIPEDSL(pipe);
4290         u32 temp;
4291
4292         temp = I915_READ(dslreg);
4293         udelay(500);
4294         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4295                 if (wait_for(I915_READ(dslreg) != temp, 5))
4296                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4297         }
4298 }
4299
4300 static int
4301 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4302                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4303                   int src_w, int src_h, int dst_w, int dst_h)
4304 {
4305         struct intel_crtc_scaler_state *scaler_state =
4306                 &crtc_state->scaler_state;
4307         struct intel_crtc *intel_crtc =
4308                 to_intel_crtc(crtc_state->base.crtc);
4309         int need_scaling;
4310
4311         need_scaling = intel_rotation_90_or_270(rotation) ?
4312                 (src_h != dst_w || src_w != dst_h):
4313                 (src_w != dst_w || src_h != dst_h);
4314
4315         /*
4316          * if plane is being disabled or scaler is no more required or force detach
4317          *  - free scaler binded to this plane/crtc
4318          *  - in order to do this, update crtc->scaler_usage
4319          *
4320          * Here scaler state in crtc_state is set free so that
4321          * scaler can be assigned to other user. Actual register
4322          * update to free the scaler is done in plane/panel-fit programming.
4323          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4324          */
4325         if (force_detach || !need_scaling) {
4326                 if (*scaler_id >= 0) {
4327                         scaler_state->scaler_users &= ~(1 << scaler_user);
4328                         scaler_state->scalers[*scaler_id].in_use = 0;
4329
4330                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4331                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4332                                 intel_crtc->pipe, scaler_user, *scaler_id,
4333                                 scaler_state->scaler_users);
4334                         *scaler_id = -1;
4335                 }
4336                 return 0;
4337         }
4338
4339         /* range checks */
4340         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4341                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4342
4343                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4344                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4345                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4346                         "size is out of scaler range\n",
4347                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4348                 return -EINVAL;
4349         }
4350
4351         /* mark this plane as a scaler user in crtc_state */
4352         scaler_state->scaler_users |= (1 << scaler_user);
4353         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4354                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4355                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4356                 scaler_state->scaler_users);
4357
4358         return 0;
4359 }
4360
4361 /**
4362  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4363  *
4364  * @state: crtc's scaler state
4365  * @force_detach: whether to forcibly disable scaler
4366  *
4367  * Return
4368  *     0 - scaler_usage updated successfully
4369  *    error - requested scaling cannot be supported or other error condition
4370  */
4371 int skl_update_scaler_crtc(struct intel_crtc_state *state, int force_detach)
4372 {
4373         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4374         struct drm_display_mode *adjusted_mode =
4375                 &state->base.adjusted_mode;
4376
4377         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4378                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4379
4380         return skl_update_scaler(state, force_detach, SKL_CRTC_INDEX,
4381                 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4382                 state->pipe_src_w, state->pipe_src_h,
4383                 adjusted_mode->hdisplay, adjusted_mode->vdisplay);
4384 }
4385
4386 /**
4387  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4388  *
4389  * @state: crtc's scaler state
4390  * @plane_state: atomic plane state to update
4391  *
4392  * Return
4393  *     0 - scaler_usage updated successfully
4394  *    error - requested scaling cannot be supported or other error condition
4395  */
4396 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4397                                    struct intel_plane_state *plane_state)
4398 {
4399
4400         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4401         struct intel_plane *intel_plane =
4402                 to_intel_plane(plane_state->base.plane);
4403         struct drm_framebuffer *fb = plane_state->base.fb;
4404         int ret;
4405
4406         bool force_detach = !fb || !plane_state->visible;
4407
4408         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4409                       intel_plane->base.base.id, intel_crtc->pipe,
4410                       drm_plane_index(&intel_plane->base));
4411
4412         ret = skl_update_scaler(crtc_state, force_detach,
4413                                 drm_plane_index(&intel_plane->base),
4414                                 &plane_state->scaler_id,
4415                                 plane_state->base.rotation,
4416                                 drm_rect_width(&plane_state->src) >> 16,
4417                                 drm_rect_height(&plane_state->src) >> 16,
4418                                 drm_rect_width(&plane_state->dst),
4419                                 drm_rect_height(&plane_state->dst));
4420
4421         if (ret || plane_state->scaler_id < 0)
4422                 return ret;
4423
4424         /* check colorkey */
4425         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4426                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4427                               intel_plane->base.base.id);
4428                 return -EINVAL;
4429         }
4430
4431         /* Check src format */
4432         switch (fb->pixel_format) {
4433         case DRM_FORMAT_RGB565:
4434         case DRM_FORMAT_XBGR8888:
4435         case DRM_FORMAT_XRGB8888:
4436         case DRM_FORMAT_ABGR8888:
4437         case DRM_FORMAT_ARGB8888:
4438         case DRM_FORMAT_XRGB2101010:
4439         case DRM_FORMAT_XBGR2101010:
4440         case DRM_FORMAT_YUYV:
4441         case DRM_FORMAT_YVYU:
4442         case DRM_FORMAT_UYVY:
4443         case DRM_FORMAT_VYUY:
4444                 break;
4445         default:
4446                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4447                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4448                 return -EINVAL;
4449         }
4450
4451         return 0;
4452 }
4453
4454 static void skylake_pfit_update(struct intel_crtc *crtc, int enable)
4455 {
4456         struct drm_device *dev = crtc->base.dev;
4457         struct drm_i915_private *dev_priv = dev->dev_private;
4458         int pipe = crtc->pipe;
4459         struct intel_crtc_scaler_state *scaler_state =
4460                 &crtc->config->scaler_state;
4461
4462         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4463
4464         /* To update pfit, first update scaler state */
4465         skl_update_scaler_crtc(crtc->config, !enable);
4466         intel_atomic_setup_scalers(crtc->base.dev, crtc, crtc->config);
4467         skl_detach_scalers(crtc);
4468         if (!enable)
4469                 return;
4470
4471         if (crtc->config->pch_pfit.enabled) {
4472                 int id;
4473
4474                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4475                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4476                         return;
4477                 }
4478
4479                 id = scaler_state->scaler_id;
4480                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4481                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4482                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4483                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4484
4485                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4486         }
4487 }
4488
4489 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4490 {
4491         struct drm_device *dev = crtc->base.dev;
4492         struct drm_i915_private *dev_priv = dev->dev_private;
4493         int pipe = crtc->pipe;
4494
4495         if (crtc->config->pch_pfit.enabled) {
4496                 /* Force use of hard-coded filter coefficients
4497                  * as some pre-programmed values are broken,
4498                  * e.g. x201.
4499                  */
4500                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4501                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4502                                                  PF_PIPE_SEL_IVB(pipe));
4503                 else
4504                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4505                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4506                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4507         }
4508 }
4509
4510 void hsw_enable_ips(struct intel_crtc *crtc)
4511 {
4512         struct drm_device *dev = crtc->base.dev;
4513         struct drm_i915_private *dev_priv = dev->dev_private;
4514
4515         if (!crtc->config->ips_enabled)
4516                 return;
4517
4518         /* We can only enable IPS after we enable a plane and wait for a vblank */
4519         intel_wait_for_vblank(dev, crtc->pipe);
4520
4521         assert_plane_enabled(dev_priv, crtc->plane);
4522         if (IS_BROADWELL(dev)) {
4523                 mutex_lock(&dev_priv->rps.hw_lock);
4524                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4525                 mutex_unlock(&dev_priv->rps.hw_lock);
4526                 /* Quoting Art Runyan: "its not safe to expect any particular
4527                  * value in IPS_CTL bit 31 after enabling IPS through the
4528                  * mailbox." Moreover, the mailbox may return a bogus state,
4529                  * so we need to just enable it and continue on.
4530                  */
4531         } else {
4532                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4533                 /* The bit only becomes 1 in the next vblank, so this wait here
4534                  * is essentially intel_wait_for_vblank. If we don't have this
4535                  * and don't wait for vblanks until the end of crtc_enable, then
4536                  * the HW state readout code will complain that the expected
4537                  * IPS_CTL value is not the one we read. */
4538                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4539                         DRM_ERROR("Timed out waiting for IPS enable\n");
4540         }
4541 }
4542
4543 void hsw_disable_ips(struct intel_crtc *crtc)
4544 {
4545         struct drm_device *dev = crtc->base.dev;
4546         struct drm_i915_private *dev_priv = dev->dev_private;
4547
4548         if (!crtc->config->ips_enabled)
4549                 return;
4550
4551         assert_plane_enabled(dev_priv, crtc->plane);
4552         if (IS_BROADWELL(dev)) {
4553                 mutex_lock(&dev_priv->rps.hw_lock);
4554                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4555                 mutex_unlock(&dev_priv->rps.hw_lock);
4556                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4557                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4558                         DRM_ERROR("Timed out waiting for IPS disable\n");
4559         } else {
4560                 I915_WRITE(IPS_CTL, 0);
4561                 POSTING_READ(IPS_CTL);
4562         }
4563
4564         /* We need to wait for a vblank before we can disable the plane. */
4565         intel_wait_for_vblank(dev, crtc->pipe);
4566 }
4567
4568 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4569 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4570 {
4571         struct drm_device *dev = crtc->dev;
4572         struct drm_i915_private *dev_priv = dev->dev_private;
4573         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4574         enum pipe pipe = intel_crtc->pipe;
4575         int palreg = PALETTE(pipe);
4576         int i;
4577         bool reenable_ips = false;
4578
4579         /* The clocks have to be on to load the palette. */
4580         if (!crtc->state->active)
4581                 return;
4582
4583         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4584                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4585                         assert_dsi_pll_enabled(dev_priv);
4586                 else
4587                         assert_pll_enabled(dev_priv, pipe);
4588         }
4589
4590         /* use legacy palette for Ironlake */
4591         if (!HAS_GMCH_DISPLAY(dev))
4592                 palreg = LGC_PALETTE(pipe);
4593
4594         /* Workaround : Do not read or write the pipe palette/gamma data while
4595          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4596          */
4597         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4598             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4599              GAMMA_MODE_MODE_SPLIT)) {
4600                 hsw_disable_ips(intel_crtc);
4601                 reenable_ips = true;
4602         }
4603
4604         for (i = 0; i < 256; i++) {
4605                 I915_WRITE(palreg + 4 * i,
4606                            (intel_crtc->lut_r[i] << 16) |
4607                            (intel_crtc->lut_g[i] << 8) |
4608                            intel_crtc->lut_b[i]);
4609         }
4610
4611         if (reenable_ips)
4612                 hsw_enable_ips(intel_crtc);
4613 }
4614
4615 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4616 {
4617         if (intel_crtc->overlay) {
4618                 struct drm_device *dev = intel_crtc->base.dev;
4619                 struct drm_i915_private *dev_priv = dev->dev_private;
4620
4621                 mutex_lock(&dev->struct_mutex);
4622                 dev_priv->mm.interruptible = false;
4623                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4624                 dev_priv->mm.interruptible = true;
4625                 mutex_unlock(&dev->struct_mutex);
4626         }
4627
4628         /* Let userspace switch the overlay on again. In most cases userspace
4629          * has to recompute where to put it anyway.
4630          */
4631 }
4632
4633 /**
4634  * intel_post_enable_primary - Perform operations after enabling primary plane
4635  * @crtc: the CRTC whose primary plane was just enabled
4636  *
4637  * Performs potentially sleeping operations that must be done after the primary
4638  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4639  * called due to an explicit primary plane update, or due to an implicit
4640  * re-enable that is caused when a sprite plane is updated to no longer
4641  * completely hide the primary plane.
4642  */
4643 static void
4644 intel_post_enable_primary(struct drm_crtc *crtc)
4645 {
4646         struct drm_device *dev = crtc->dev;
4647         struct drm_i915_private *dev_priv = dev->dev_private;
4648         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4649         int pipe = intel_crtc->pipe;
4650
4651         /*
4652          * BDW signals flip done immediately if the plane
4653          * is disabled, even if the plane enable is already
4654          * armed to occur at the next vblank :(
4655          */
4656         if (IS_BROADWELL(dev))
4657                 intel_wait_for_vblank(dev, pipe);
4658
4659         /*
4660          * FIXME IPS should be fine as long as one plane is
4661          * enabled, but in practice it seems to have problems
4662          * when going from primary only to sprite only and vice
4663          * versa.
4664          */
4665         hsw_enable_ips(intel_crtc);
4666
4667         /*
4668          * Gen2 reports pipe underruns whenever all planes are disabled.
4669          * So don't enable underrun reporting before at least some planes
4670          * are enabled.
4671          * FIXME: Need to fix the logic to work when we turn off all planes
4672          * but leave the pipe running.
4673          */
4674         if (IS_GEN2(dev))
4675                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4676
4677         /* Underruns don't raise interrupts, so check manually. */
4678         if (HAS_GMCH_DISPLAY(dev))
4679                 i9xx_check_fifo_underruns(dev_priv);
4680 }
4681
4682 /**
4683  * intel_pre_disable_primary - Perform operations before disabling primary plane
4684  * @crtc: the CRTC whose primary plane is to be disabled
4685  *
4686  * Performs potentially sleeping operations that must be done before the
4687  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4688  * be called due to an explicit primary plane update, or due to an implicit
4689  * disable that is caused when a sprite plane completely hides the primary
4690  * plane.
4691  */
4692 static void
4693 intel_pre_disable_primary(struct drm_crtc *crtc)
4694 {
4695         struct drm_device *dev = crtc->dev;
4696         struct drm_i915_private *dev_priv = dev->dev_private;
4697         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4698         int pipe = intel_crtc->pipe;
4699
4700         /*
4701          * Gen2 reports pipe underruns whenever all planes are disabled.
4702          * So diasble underrun reporting before all the planes get disabled.
4703          * FIXME: Need to fix the logic to work when we turn off all planes
4704          * but leave the pipe running.
4705          */
4706         if (IS_GEN2(dev))
4707                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4708
4709         /*
4710          * Vblank time updates from the shadow to live plane control register
4711          * are blocked if the memory self-refresh mode is active at that
4712          * moment. So to make sure the plane gets truly disabled, disable
4713          * first the self-refresh mode. The self-refresh enable bit in turn
4714          * will be checked/applied by the HW only at the next frame start
4715          * event which is after the vblank start event, so we need to have a
4716          * wait-for-vblank between disabling the plane and the pipe.
4717          */
4718         if (HAS_GMCH_DISPLAY(dev)) {
4719                 intel_set_memory_cxsr(dev_priv, false);
4720                 dev_priv->wm.vlv.cxsr = false;
4721                 intel_wait_for_vblank(dev, pipe);
4722         }
4723
4724         /*
4725          * FIXME IPS should be fine as long as one plane is
4726          * enabled, but in practice it seems to have problems
4727          * when going from primary only to sprite only and vice
4728          * versa.
4729          */
4730         hsw_disable_ips(intel_crtc);
4731 }
4732
4733 static void intel_post_plane_update(struct intel_crtc *crtc)
4734 {
4735         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4736         struct drm_device *dev = crtc->base.dev;
4737         struct drm_plane *plane;
4738
4739         if (atomic->wait_vblank)
4740                 intel_wait_for_vblank(dev, crtc->pipe);
4741
4742         intel_frontbuffer_flip(dev, atomic->fb_bits);
4743
4744         if (atomic->disable_cxsr)
4745                 crtc->wm.cxsr_allowed = true;
4746
4747         if (crtc->atomic.update_wm_post)
4748                 intel_update_watermarks(&crtc->base);
4749
4750         if (atomic->update_fbc)
4751                 intel_fbc_update(dev);
4752
4753         if (atomic->post_enable_primary)
4754                 intel_post_enable_primary(&crtc->base);
4755
4756         drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4757                 intel_update_sprite_watermarks(plane, &crtc->base,
4758                                                0, 0, 0, false, false);
4759
4760         memset(atomic, 0, sizeof(*atomic));
4761 }
4762
4763 static void intel_pre_plane_update(struct intel_crtc *crtc)
4764 {
4765         struct drm_device *dev = crtc->base.dev;
4766         struct drm_i915_private *dev_priv = dev->dev_private;
4767         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4768         struct drm_plane *p;
4769
4770         /* Track fb's for any planes being disabled */
4771         drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4772                 struct intel_plane *plane = to_intel_plane(p);
4773
4774                 mutex_lock(&dev->struct_mutex);
4775                 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4776                                   plane->frontbuffer_bit);
4777                 mutex_unlock(&dev->struct_mutex);
4778         }
4779
4780         if (atomic->wait_for_flips)
4781                 intel_crtc_wait_for_pending_flips(&crtc->base);
4782
4783         if (atomic->disable_fbc)
4784                 intel_fbc_disable_crtc(crtc);
4785
4786         if (crtc->atomic.disable_ips)
4787                 hsw_disable_ips(crtc);
4788
4789         if (atomic->pre_disable_primary)
4790                 intel_pre_disable_primary(&crtc->base);
4791
4792         if (atomic->disable_cxsr) {
4793                 crtc->wm.cxsr_allowed = false;
4794                 intel_set_memory_cxsr(dev_priv, false);
4795         }
4796 }
4797
4798 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4799 {
4800         struct drm_device *dev = crtc->dev;
4801         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4802         struct drm_plane *p;
4803         int pipe = intel_crtc->pipe;
4804
4805         intel_crtc_dpms_overlay_disable(intel_crtc);
4806
4807         drm_for_each_plane_mask(p, dev, plane_mask)
4808                 to_intel_plane(p)->disable_plane(p, crtc);
4809
4810         /*
4811          * FIXME: Once we grow proper nuclear flip support out of this we need
4812          * to compute the mask of flip planes precisely. For the time being
4813          * consider this a flip to a NULL plane.
4814          */
4815         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4816 }
4817
4818 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4819 {
4820         struct drm_device *dev = crtc->dev;
4821         struct drm_i915_private *dev_priv = dev->dev_private;
4822         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4823         struct intel_encoder *encoder;
4824         int pipe = intel_crtc->pipe;
4825
4826         if (WARN_ON(intel_crtc->active))
4827                 return;
4828
4829         if (intel_crtc->config->has_pch_encoder)
4830                 intel_prepare_shared_dpll(intel_crtc);
4831
4832         if (intel_crtc->config->has_dp_encoder)
4833                 intel_dp_set_m_n(intel_crtc, M1_N1);
4834
4835         intel_set_pipe_timings(intel_crtc);
4836
4837         if (intel_crtc->config->has_pch_encoder) {
4838                 intel_cpu_transcoder_set_m_n(intel_crtc,
4839                                      &intel_crtc->config->fdi_m_n, NULL);
4840         }
4841
4842         ironlake_set_pipeconf(crtc);
4843
4844         intel_crtc->active = true;
4845
4846         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4847         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4848
4849         for_each_encoder_on_crtc(dev, crtc, encoder)
4850                 if (encoder->pre_enable)
4851                         encoder->pre_enable(encoder);
4852
4853         if (intel_crtc->config->has_pch_encoder) {
4854                 /* Note: FDI PLL enabling _must_ be done before we enable the
4855                  * cpu pipes, hence this is separate from all the other fdi/pch
4856                  * enabling. */
4857                 ironlake_fdi_pll_enable(intel_crtc);
4858         } else {
4859                 assert_fdi_tx_disabled(dev_priv, pipe);
4860                 assert_fdi_rx_disabled(dev_priv, pipe);
4861         }
4862
4863         ironlake_pfit_enable(intel_crtc);
4864
4865         /*
4866          * On ILK+ LUT must be loaded before the pipe is running but with
4867          * clocks enabled
4868          */
4869         intel_crtc_load_lut(crtc);
4870
4871         intel_update_watermarks(crtc);
4872         intel_enable_pipe(intel_crtc);
4873
4874         if (intel_crtc->config->has_pch_encoder)
4875                 ironlake_pch_enable(crtc);
4876
4877         assert_vblank_disabled(crtc);
4878         drm_crtc_vblank_on(crtc);
4879
4880         for_each_encoder_on_crtc(dev, crtc, encoder)
4881                 encoder->enable(encoder);
4882
4883         if (HAS_PCH_CPT(dev))
4884                 cpt_verify_modeset(dev, intel_crtc->pipe);
4885 }
4886
4887 /* IPS only exists on ULT machines and is tied to pipe A. */
4888 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4889 {
4890         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4891 }
4892
4893 static void haswell_crtc_enable(struct drm_crtc *crtc)
4894 {
4895         struct drm_device *dev = crtc->dev;
4896         struct drm_i915_private *dev_priv = dev->dev_private;
4897         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4898         struct intel_encoder *encoder;
4899         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4900         struct intel_crtc_state *pipe_config =
4901                 to_intel_crtc_state(crtc->state);
4902
4903         if (WARN_ON(intel_crtc->active))
4904                 return;
4905
4906         if (intel_crtc_to_shared_dpll(intel_crtc))
4907                 intel_enable_shared_dpll(intel_crtc);
4908
4909         if (intel_crtc->config->has_dp_encoder)
4910                 intel_dp_set_m_n(intel_crtc, M1_N1);
4911
4912         intel_set_pipe_timings(intel_crtc);
4913
4914         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4915                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4916                            intel_crtc->config->pixel_multiplier - 1);
4917         }
4918
4919         if (intel_crtc->config->has_pch_encoder) {
4920                 intel_cpu_transcoder_set_m_n(intel_crtc,
4921                                      &intel_crtc->config->fdi_m_n, NULL);
4922         }
4923
4924         haswell_set_pipeconf(crtc);
4925
4926         intel_set_pipe_csc(crtc);
4927
4928         intel_crtc->active = true;
4929
4930         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4931         for_each_encoder_on_crtc(dev, crtc, encoder)
4932                 if (encoder->pre_enable)
4933                         encoder->pre_enable(encoder);
4934
4935         if (intel_crtc->config->has_pch_encoder) {
4936                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4937                                                       true);
4938                 dev_priv->display.fdi_link_train(crtc);
4939         }
4940
4941         intel_ddi_enable_pipe_clock(intel_crtc);
4942
4943         if (INTEL_INFO(dev)->gen == 9)
4944                 skylake_pfit_update(intel_crtc, 1);
4945         else if (INTEL_INFO(dev)->gen < 9)
4946                 ironlake_pfit_enable(intel_crtc);
4947         else
4948                 MISSING_CASE(INTEL_INFO(dev)->gen);
4949
4950         /*
4951          * On ILK+ LUT must be loaded before the pipe is running but with
4952          * clocks enabled
4953          */
4954         intel_crtc_load_lut(crtc);
4955
4956         intel_ddi_set_pipe_settings(crtc);
4957         intel_ddi_enable_transcoder_func(crtc);
4958
4959         intel_update_watermarks(crtc);
4960         intel_enable_pipe(intel_crtc);
4961
4962         if (intel_crtc->config->has_pch_encoder)
4963                 lpt_pch_enable(crtc);
4964
4965         if (intel_crtc->config->dp_encoder_is_mst)
4966                 intel_ddi_set_vc_payload_alloc(crtc, true);
4967
4968         assert_vblank_disabled(crtc);
4969         drm_crtc_vblank_on(crtc);
4970
4971         for_each_encoder_on_crtc(dev, crtc, encoder) {
4972                 encoder->enable(encoder);
4973                 intel_opregion_notify_encoder(encoder, true);
4974         }
4975
4976         /* If we change the relative order between pipe/planes enabling, we need
4977          * to change the workaround. */
4978         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4979         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4980                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4981                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4982         }
4983 }
4984
4985 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4986 {
4987         struct drm_device *dev = crtc->base.dev;
4988         struct drm_i915_private *dev_priv = dev->dev_private;
4989         int pipe = crtc->pipe;
4990
4991         /* To avoid upsetting the power well on haswell only disable the pfit if
4992          * it's in use. The hw state code will make sure we get this right. */
4993         if (crtc->config->pch_pfit.enabled) {
4994                 I915_WRITE(PF_CTL(pipe), 0);
4995                 I915_WRITE(PF_WIN_POS(pipe), 0);
4996                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4997         }
4998 }
4999
5000 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5001 {
5002         struct drm_device *dev = crtc->dev;
5003         struct drm_i915_private *dev_priv = dev->dev_private;
5004         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5005         struct intel_encoder *encoder;
5006         int pipe = intel_crtc->pipe;
5007         u32 reg, temp;
5008
5009         for_each_encoder_on_crtc(dev, crtc, encoder)
5010                 encoder->disable(encoder);
5011
5012         drm_crtc_vblank_off(crtc);
5013         assert_vblank_disabled(crtc);
5014
5015         if (intel_crtc->config->has_pch_encoder)
5016                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5017
5018         intel_disable_pipe(intel_crtc);
5019
5020         ironlake_pfit_disable(intel_crtc);
5021
5022         if (intel_crtc->config->has_pch_encoder)
5023                 ironlake_fdi_disable(crtc);
5024
5025         for_each_encoder_on_crtc(dev, crtc, encoder)
5026                 if (encoder->post_disable)
5027                         encoder->post_disable(encoder);
5028
5029         if (intel_crtc->config->has_pch_encoder) {
5030                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5031
5032                 if (HAS_PCH_CPT(dev)) {
5033                         /* disable TRANS_DP_CTL */
5034                         reg = TRANS_DP_CTL(pipe);
5035                         temp = I915_READ(reg);
5036                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5037                                   TRANS_DP_PORT_SEL_MASK);
5038                         temp |= TRANS_DP_PORT_SEL_NONE;
5039                         I915_WRITE(reg, temp);
5040
5041                         /* disable DPLL_SEL */
5042                         temp = I915_READ(PCH_DPLL_SEL);
5043                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5044                         I915_WRITE(PCH_DPLL_SEL, temp);
5045                 }
5046
5047                 ironlake_fdi_pll_disable(intel_crtc);
5048         }
5049 }
5050
5051 static void haswell_crtc_disable(struct drm_crtc *crtc)
5052 {
5053         struct drm_device *dev = crtc->dev;
5054         struct drm_i915_private *dev_priv = dev->dev_private;
5055         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5056         struct intel_encoder *encoder;
5057         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5058
5059         for_each_encoder_on_crtc(dev, crtc, encoder) {
5060                 intel_opregion_notify_encoder(encoder, false);
5061                 encoder->disable(encoder);
5062         }
5063
5064         drm_crtc_vblank_off(crtc);
5065         assert_vblank_disabled(crtc);
5066
5067         if (intel_crtc->config->has_pch_encoder)
5068                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5069                                                       false);
5070         intel_disable_pipe(intel_crtc);
5071
5072         if (intel_crtc->config->dp_encoder_is_mst)
5073                 intel_ddi_set_vc_payload_alloc(crtc, false);
5074
5075         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5076
5077         if (INTEL_INFO(dev)->gen == 9)
5078                 skylake_pfit_update(intel_crtc, 0);
5079         else if (INTEL_INFO(dev)->gen < 9)
5080                 ironlake_pfit_disable(intel_crtc);
5081         else
5082                 MISSING_CASE(INTEL_INFO(dev)->gen);
5083
5084         intel_ddi_disable_pipe_clock(intel_crtc);
5085
5086         if (intel_crtc->config->has_pch_encoder) {
5087                 lpt_disable_pch_transcoder(dev_priv);
5088                 intel_ddi_fdi_disable(crtc);
5089         }
5090
5091         for_each_encoder_on_crtc(dev, crtc, encoder)
5092                 if (encoder->post_disable)
5093                         encoder->post_disable(encoder);
5094 }
5095
5096 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5097 {
5098         struct drm_device *dev = crtc->base.dev;
5099         struct drm_i915_private *dev_priv = dev->dev_private;
5100         struct intel_crtc_state *pipe_config = crtc->config;
5101
5102         if (!pipe_config->gmch_pfit.control)
5103                 return;
5104
5105         /*
5106          * The panel fitter should only be adjusted whilst the pipe is disabled,
5107          * according to register description and PRM.
5108          */
5109         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5110         assert_pipe_disabled(dev_priv, crtc->pipe);
5111
5112         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5113         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5114
5115         /* Border color in case we don't scale up to the full screen. Black by
5116          * default, change to something else for debugging. */
5117         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5118 }
5119
5120 static enum intel_display_power_domain port_to_power_domain(enum port port)
5121 {
5122         switch (port) {
5123         case PORT_A:
5124                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5125         case PORT_B:
5126                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5127         case PORT_C:
5128                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5129         case PORT_D:
5130                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5131         default:
5132                 WARN_ON_ONCE(1);
5133                 return POWER_DOMAIN_PORT_OTHER;
5134         }
5135 }
5136
5137 #define for_each_power_domain(domain, mask)                             \
5138         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
5139                 if ((1 << (domain)) & (mask))
5140
5141 enum intel_display_power_domain
5142 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5143 {
5144         struct drm_device *dev = intel_encoder->base.dev;
5145         struct intel_digital_port *intel_dig_port;
5146
5147         switch (intel_encoder->type) {
5148         case INTEL_OUTPUT_UNKNOWN:
5149                 /* Only DDI platforms should ever use this output type */
5150                 WARN_ON_ONCE(!HAS_DDI(dev));
5151         case INTEL_OUTPUT_DISPLAYPORT:
5152         case INTEL_OUTPUT_HDMI:
5153         case INTEL_OUTPUT_EDP:
5154                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5155                 return port_to_power_domain(intel_dig_port->port);
5156         case INTEL_OUTPUT_DP_MST:
5157                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5158                 return port_to_power_domain(intel_dig_port->port);
5159         case INTEL_OUTPUT_ANALOG:
5160                 return POWER_DOMAIN_PORT_CRT;
5161         case INTEL_OUTPUT_DSI:
5162                 return POWER_DOMAIN_PORT_DSI;
5163         default:
5164                 return POWER_DOMAIN_PORT_OTHER;
5165         }
5166 }
5167
5168 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5169 {
5170         struct drm_device *dev = crtc->dev;
5171         struct intel_encoder *intel_encoder;
5172         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5173         enum pipe pipe = intel_crtc->pipe;
5174         unsigned long mask;
5175         enum transcoder transcoder;
5176
5177         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5178
5179         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5180         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5181         if (intel_crtc->config->pch_pfit.enabled ||
5182             intel_crtc->config->pch_pfit.force_thru)
5183                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5184
5185         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5186                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5187
5188         return mask;
5189 }
5190
5191 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5192 {
5193         struct drm_device *dev = state->dev;
5194         struct drm_i915_private *dev_priv = dev->dev_private;
5195         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
5196         struct intel_crtc *crtc;
5197
5198         /*
5199          * First get all needed power domains, then put all unneeded, to avoid
5200          * any unnecessary toggling of the power wells.
5201          */
5202         for_each_intel_crtc(dev, crtc) {
5203                 enum intel_display_power_domain domain;
5204
5205                 if (!crtc->base.state->enable)
5206                         continue;
5207
5208                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
5209
5210                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
5211                         intel_display_power_get(dev_priv, domain);
5212         }
5213
5214         if (dev_priv->display.modeset_commit_cdclk) {
5215                 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5216
5217                 if (cdclk != dev_priv->cdclk_freq &&
5218                     !WARN_ON(!state->allow_modeset))
5219                         dev_priv->display.modeset_commit_cdclk(state);
5220         }
5221
5222         for_each_intel_crtc(dev, crtc) {
5223                 enum intel_display_power_domain domain;
5224
5225                 for_each_power_domain(domain, crtc->enabled_power_domains)
5226                         intel_display_power_put(dev_priv, domain);
5227
5228                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
5229         }
5230
5231         intel_display_set_init_power(dev_priv, false);
5232 }
5233
5234 static void intel_update_max_cdclk(struct drm_device *dev)
5235 {
5236         struct drm_i915_private *dev_priv = dev->dev_private;
5237
5238         if (IS_SKYLAKE(dev)) {
5239                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5240
5241                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5242                         dev_priv->max_cdclk_freq = 675000;
5243                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5244                         dev_priv->max_cdclk_freq = 540000;
5245                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5246                         dev_priv->max_cdclk_freq = 450000;
5247                 else
5248                         dev_priv->max_cdclk_freq = 337500;
5249         } else if (IS_BROADWELL(dev))  {
5250                 /*
5251                  * FIXME with extra cooling we can allow
5252                  * 540 MHz for ULX and 675 Mhz for ULT.
5253                  * How can we know if extra cooling is
5254                  * available? PCI ID, VTB, something else?
5255                  */
5256                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5257                         dev_priv->max_cdclk_freq = 450000;
5258                 else if (IS_BDW_ULX(dev))
5259                         dev_priv->max_cdclk_freq = 450000;
5260                 else if (IS_BDW_ULT(dev))
5261                         dev_priv->max_cdclk_freq = 540000;
5262                 else
5263                         dev_priv->max_cdclk_freq = 675000;
5264         } else if (IS_CHERRYVIEW(dev)) {
5265                 dev_priv->max_cdclk_freq = 320000;
5266         } else if (IS_VALLEYVIEW(dev)) {
5267                 dev_priv->max_cdclk_freq = 400000;
5268         } else {
5269                 /* otherwise assume cdclk is fixed */
5270                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5271         }
5272
5273         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5274                          dev_priv->max_cdclk_freq);
5275 }
5276
5277 static void intel_update_cdclk(struct drm_device *dev)
5278 {
5279         struct drm_i915_private *dev_priv = dev->dev_private;
5280
5281         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5282         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5283                          dev_priv->cdclk_freq);
5284
5285         /*
5286          * Program the gmbus_freq based on the cdclk frequency.
5287          * BSpec erroneously claims we should aim for 4MHz, but
5288          * in fact 1MHz is the correct frequency.
5289          */
5290         if (IS_VALLEYVIEW(dev)) {
5291                 /*
5292                  * Program the gmbus_freq based on the cdclk frequency.
5293                  * BSpec erroneously claims we should aim for 4MHz, but
5294                  * in fact 1MHz is the correct frequency.
5295                  */
5296                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5297         }
5298
5299         if (dev_priv->max_cdclk_freq == 0)
5300                 intel_update_max_cdclk(dev);
5301 }
5302
5303 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5304 {
5305         struct drm_i915_private *dev_priv = dev->dev_private;
5306         uint32_t divider;
5307         uint32_t ratio;
5308         uint32_t current_freq;
5309         int ret;
5310
5311         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5312         switch (frequency) {
5313         case 144000:
5314                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5315                 ratio = BXT_DE_PLL_RATIO(60);
5316                 break;
5317         case 288000:
5318                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5319                 ratio = BXT_DE_PLL_RATIO(60);
5320                 break;
5321         case 384000:
5322                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5323                 ratio = BXT_DE_PLL_RATIO(60);
5324                 break;
5325         case 576000:
5326                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5327                 ratio = BXT_DE_PLL_RATIO(60);
5328                 break;
5329         case 624000:
5330                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5331                 ratio = BXT_DE_PLL_RATIO(65);
5332                 break;
5333         case 19200:
5334                 /*
5335                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5336                  * to suppress GCC warning.
5337                  */
5338                 ratio = 0;
5339                 divider = 0;
5340                 break;
5341         default:
5342                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5343
5344                 return;
5345         }
5346
5347         mutex_lock(&dev_priv->rps.hw_lock);
5348         /* Inform power controller of upcoming frequency change */
5349         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5350                                       0x80000000);
5351         mutex_unlock(&dev_priv->rps.hw_lock);
5352
5353         if (ret) {
5354                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5355                           ret, frequency);
5356                 return;
5357         }
5358
5359         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5360         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5361         current_freq = current_freq * 500 + 1000;
5362
5363         /*
5364          * DE PLL has to be disabled when
5365          * - setting to 19.2MHz (bypass, PLL isn't used)
5366          * - before setting to 624MHz (PLL needs toggling)
5367          * - before setting to any frequency from 624MHz (PLL needs toggling)
5368          */
5369         if (frequency == 19200 || frequency == 624000 ||
5370             current_freq == 624000) {
5371                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5372                 /* Timeout 200us */
5373                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5374                              1))
5375                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5376         }
5377
5378         if (frequency != 19200) {
5379                 uint32_t val;
5380
5381                 val = I915_READ(BXT_DE_PLL_CTL);
5382                 val &= ~BXT_DE_PLL_RATIO_MASK;
5383                 val |= ratio;
5384                 I915_WRITE(BXT_DE_PLL_CTL, val);
5385
5386                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5387                 /* Timeout 200us */
5388                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5389                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5390
5391                 val = I915_READ(CDCLK_CTL);
5392                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5393                 val |= divider;
5394                 /*
5395                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5396                  * enable otherwise.
5397                  */
5398                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5399                 if (frequency >= 500000)
5400                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5401
5402                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5403                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5404                 val |= (frequency - 1000) / 500;
5405                 I915_WRITE(CDCLK_CTL, val);
5406         }
5407
5408         mutex_lock(&dev_priv->rps.hw_lock);
5409         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5410                                       DIV_ROUND_UP(frequency, 25000));
5411         mutex_unlock(&dev_priv->rps.hw_lock);
5412
5413         if (ret) {
5414                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5415                           ret, frequency);
5416                 return;
5417         }
5418
5419         intel_update_cdclk(dev);
5420 }
5421
5422 void broxton_init_cdclk(struct drm_device *dev)
5423 {
5424         struct drm_i915_private *dev_priv = dev->dev_private;
5425         uint32_t val;
5426
5427         /*
5428          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5429          * or else the reset will hang because there is no PCH to respond.
5430          * Move the handshake programming to initialization sequence.
5431          * Previously was left up to BIOS.
5432          */
5433         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5434         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5435         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5436
5437         /* Enable PG1 for cdclk */
5438         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5439
5440         /* check if cd clock is enabled */
5441         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5442                 DRM_DEBUG_KMS("Display already initialized\n");
5443                 return;
5444         }
5445
5446         /*
5447          * FIXME:
5448          * - The initial CDCLK needs to be read from VBT.
5449          *   Need to make this change after VBT has changes for BXT.
5450          * - check if setting the max (or any) cdclk freq is really necessary
5451          *   here, it belongs to modeset time
5452          */
5453         broxton_set_cdclk(dev, 624000);
5454
5455         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5456         POSTING_READ(DBUF_CTL);
5457
5458         udelay(10);
5459
5460         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5461                 DRM_ERROR("DBuf power enable timeout!\n");
5462 }
5463
5464 void broxton_uninit_cdclk(struct drm_device *dev)
5465 {
5466         struct drm_i915_private *dev_priv = dev->dev_private;
5467
5468         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5469         POSTING_READ(DBUF_CTL);
5470
5471         udelay(10);
5472
5473         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5474                 DRM_ERROR("DBuf power disable timeout!\n");
5475
5476         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5477         broxton_set_cdclk(dev, 19200);
5478
5479         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5480 }
5481
5482 static const struct skl_cdclk_entry {
5483         unsigned int freq;
5484         unsigned int vco;
5485 } skl_cdclk_frequencies[] = {
5486         { .freq = 308570, .vco = 8640 },
5487         { .freq = 337500, .vco = 8100 },
5488         { .freq = 432000, .vco = 8640 },
5489         { .freq = 450000, .vco = 8100 },
5490         { .freq = 540000, .vco = 8100 },
5491         { .freq = 617140, .vco = 8640 },
5492         { .freq = 675000, .vco = 8100 },
5493 };
5494
5495 static unsigned int skl_cdclk_decimal(unsigned int freq)
5496 {
5497         return (freq - 1000) / 500;
5498 }
5499
5500 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5501 {
5502         unsigned int i;
5503
5504         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5505                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5506
5507                 if (e->freq == freq)
5508                         return e->vco;
5509         }
5510
5511         return 8100;
5512 }
5513
5514 static void
5515 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5516 {
5517         unsigned int min_freq;
5518         u32 val;
5519
5520         /* select the minimum CDCLK before enabling DPLL 0 */
5521         val = I915_READ(CDCLK_CTL);
5522         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5523         val |= CDCLK_FREQ_337_308;
5524
5525         if (required_vco == 8640)
5526                 min_freq = 308570;
5527         else
5528                 min_freq = 337500;
5529
5530         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5531
5532         I915_WRITE(CDCLK_CTL, val);
5533         POSTING_READ(CDCLK_CTL);
5534
5535         /*
5536          * We always enable DPLL0 with the lowest link rate possible, but still
5537          * taking into account the VCO required to operate the eDP panel at the
5538          * desired frequency. The usual DP link rates operate with a VCO of
5539          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5540          * The modeset code is responsible for the selection of the exact link
5541          * rate later on, with the constraint of choosing a frequency that
5542          * works with required_vco.
5543          */
5544         val = I915_READ(DPLL_CTRL1);
5545
5546         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5547                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5548         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5549         if (required_vco == 8640)
5550                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5551                                             SKL_DPLL0);
5552         else
5553                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5554                                             SKL_DPLL0);
5555
5556         I915_WRITE(DPLL_CTRL1, val);
5557         POSTING_READ(DPLL_CTRL1);
5558
5559         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5560
5561         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5562                 DRM_ERROR("DPLL0 not locked\n");
5563 }
5564
5565 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5566 {
5567         int ret;
5568         u32 val;
5569
5570         /* inform PCU we want to change CDCLK */
5571         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5572         mutex_lock(&dev_priv->rps.hw_lock);
5573         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5574         mutex_unlock(&dev_priv->rps.hw_lock);
5575
5576         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5577 }
5578
5579 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5580 {
5581         unsigned int i;
5582
5583         for (i = 0; i < 15; i++) {
5584                 if (skl_cdclk_pcu_ready(dev_priv))
5585                         return true;
5586                 udelay(10);
5587         }
5588
5589         return false;
5590 }
5591
5592 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5593 {
5594         struct drm_device *dev = dev_priv->dev;
5595         u32 freq_select, pcu_ack;
5596
5597         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5598
5599         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5600                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5601                 return;
5602         }
5603
5604         /* set CDCLK_CTL */
5605         switch(freq) {
5606         case 450000:
5607         case 432000:
5608                 freq_select = CDCLK_FREQ_450_432;
5609                 pcu_ack = 1;
5610                 break;
5611         case 540000:
5612                 freq_select = CDCLK_FREQ_540;
5613                 pcu_ack = 2;
5614                 break;
5615         case 308570:
5616         case 337500:
5617         default:
5618                 freq_select = CDCLK_FREQ_337_308;
5619                 pcu_ack = 0;
5620                 break;
5621         case 617140:
5622         case 675000:
5623                 freq_select = CDCLK_FREQ_675_617;
5624                 pcu_ack = 3;
5625                 break;
5626         }
5627
5628         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5629         POSTING_READ(CDCLK_CTL);
5630
5631         /* inform PCU of the change */
5632         mutex_lock(&dev_priv->rps.hw_lock);
5633         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5634         mutex_unlock(&dev_priv->rps.hw_lock);
5635
5636         intel_update_cdclk(dev);
5637 }
5638
5639 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5640 {
5641         /* disable DBUF power */
5642         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5643         POSTING_READ(DBUF_CTL);
5644
5645         udelay(10);
5646
5647         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5648                 DRM_ERROR("DBuf power disable timeout\n");
5649
5650         /* disable DPLL0 */
5651         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5652         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5653                 DRM_ERROR("Couldn't disable DPLL0\n");
5654
5655         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5656 }
5657
5658 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5659 {
5660         u32 val;
5661         unsigned int required_vco;
5662
5663         /* enable PCH reset handshake */
5664         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5665         I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5666
5667         /* enable PG1 and Misc I/O */
5668         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5669
5670         /* DPLL0 already enabed !? */
5671         if (I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE) {
5672                 DRM_DEBUG_DRIVER("DPLL0 already running\n");
5673                 return;
5674         }
5675
5676         /* enable DPLL0 */
5677         required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5678         skl_dpll0_enable(dev_priv, required_vco);
5679
5680         /* set CDCLK to the frequency the BIOS chose */
5681         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5682
5683         /* enable DBUF power */
5684         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5685         POSTING_READ(DBUF_CTL);
5686
5687         udelay(10);
5688
5689         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5690                 DRM_ERROR("DBuf power enable timeout\n");
5691 }
5692
5693 /* returns HPLL frequency in kHz */
5694 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5695 {
5696         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5697
5698         /* Obtain SKU information */
5699         mutex_lock(&dev_priv->sb_lock);
5700         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5701                 CCK_FUSE_HPLL_FREQ_MASK;
5702         mutex_unlock(&dev_priv->sb_lock);
5703
5704         return vco_freq[hpll_freq] * 1000;
5705 }
5706
5707 /* Adjust CDclk dividers to allow high res or save power if possible */
5708 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5709 {
5710         struct drm_i915_private *dev_priv = dev->dev_private;
5711         u32 val, cmd;
5712
5713         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5714                                         != dev_priv->cdclk_freq);
5715
5716         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5717                 cmd = 2;
5718         else if (cdclk == 266667)
5719                 cmd = 1;
5720         else
5721                 cmd = 0;
5722
5723         mutex_lock(&dev_priv->rps.hw_lock);
5724         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5725         val &= ~DSPFREQGUAR_MASK;
5726         val |= (cmd << DSPFREQGUAR_SHIFT);
5727         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5728         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5729                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5730                      50)) {
5731                 DRM_ERROR("timed out waiting for CDclk change\n");
5732         }
5733         mutex_unlock(&dev_priv->rps.hw_lock);
5734
5735         mutex_lock(&dev_priv->sb_lock);
5736
5737         if (cdclk == 400000) {
5738                 u32 divider;
5739
5740                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5741
5742                 /* adjust cdclk divider */
5743                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5744                 val &= ~DISPLAY_FREQUENCY_VALUES;
5745                 val |= divider;
5746                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5747
5748                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5749                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5750                              50))
5751                         DRM_ERROR("timed out waiting for CDclk change\n");
5752         }
5753
5754         /* adjust self-refresh exit latency value */
5755         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5756         val &= ~0x7f;
5757
5758         /*
5759          * For high bandwidth configs, we set a higher latency in the bunit
5760          * so that the core display fetch happens in time to avoid underruns.
5761          */
5762         if (cdclk == 400000)
5763                 val |= 4500 / 250; /* 4.5 usec */
5764         else
5765                 val |= 3000 / 250; /* 3.0 usec */
5766         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5767
5768         mutex_unlock(&dev_priv->sb_lock);
5769
5770         intel_update_cdclk(dev);
5771 }
5772
5773 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5774 {
5775         struct drm_i915_private *dev_priv = dev->dev_private;
5776         u32 val, cmd;
5777
5778         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5779                                                 != dev_priv->cdclk_freq);
5780
5781         switch (cdclk) {
5782         case 333333:
5783         case 320000:
5784         case 266667:
5785         case 200000:
5786                 break;
5787         default:
5788                 MISSING_CASE(cdclk);
5789                 return;
5790         }
5791
5792         /*
5793          * Specs are full of misinformation, but testing on actual
5794          * hardware has shown that we just need to write the desired
5795          * CCK divider into the Punit register.
5796          */
5797         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5798
5799         mutex_lock(&dev_priv->rps.hw_lock);
5800         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5801         val &= ~DSPFREQGUAR_MASK_CHV;
5802         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5803         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5804         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5805                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5806                      50)) {
5807                 DRM_ERROR("timed out waiting for CDclk change\n");
5808         }
5809         mutex_unlock(&dev_priv->rps.hw_lock);
5810
5811         intel_update_cdclk(dev);
5812 }
5813
5814 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5815                                  int max_pixclk)
5816 {
5817         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5818         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5819
5820         /*
5821          * Really only a few cases to deal with, as only 4 CDclks are supported:
5822          *   200MHz
5823          *   267MHz
5824          *   320/333MHz (depends on HPLL freq)
5825          *   400MHz (VLV only)
5826          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5827          * of the lower bin and adjust if needed.
5828          *
5829          * We seem to get an unstable or solid color picture at 200MHz.
5830          * Not sure what's wrong. For now use 200MHz only when all pipes
5831          * are off.
5832          */
5833         if (!IS_CHERRYVIEW(dev_priv) &&
5834             max_pixclk > freq_320*limit/100)
5835                 return 400000;
5836         else if (max_pixclk > 266667*limit/100)
5837                 return freq_320;
5838         else if (max_pixclk > 0)
5839                 return 266667;
5840         else
5841                 return 200000;
5842 }
5843
5844 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5845                               int max_pixclk)
5846 {
5847         /*
5848          * FIXME:
5849          * - remove the guardband, it's not needed on BXT
5850          * - set 19.2MHz bypass frequency if there are no active pipes
5851          */
5852         if (max_pixclk > 576000*9/10)
5853                 return 624000;
5854         else if (max_pixclk > 384000*9/10)
5855                 return 576000;
5856         else if (max_pixclk > 288000*9/10)
5857                 return 384000;
5858         else if (max_pixclk > 144000*9/10)
5859                 return 288000;
5860         else
5861                 return 144000;
5862 }
5863
5864 /* Compute the max pixel clock for new configuration. Uses atomic state if
5865  * that's non-NULL, look at current state otherwise. */
5866 static int intel_mode_max_pixclk(struct drm_device *dev,
5867                                  struct drm_atomic_state *state)
5868 {
5869         struct intel_crtc *intel_crtc;
5870         struct intel_crtc_state *crtc_state;
5871         int max_pixclk = 0;
5872
5873         for_each_intel_crtc(dev, intel_crtc) {
5874                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5875                 if (IS_ERR(crtc_state))
5876                         return PTR_ERR(crtc_state);
5877
5878                 if (!crtc_state->base.enable)
5879                         continue;
5880
5881                 max_pixclk = max(max_pixclk,
5882                                  crtc_state->base.adjusted_mode.crtc_clock);
5883         }
5884
5885         return max_pixclk;
5886 }
5887
5888 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5889 {
5890         struct drm_device *dev = state->dev;
5891         struct drm_i915_private *dev_priv = dev->dev_private;
5892         int max_pixclk = intel_mode_max_pixclk(dev, state);
5893
5894         if (max_pixclk < 0)
5895                 return max_pixclk;
5896
5897         to_intel_atomic_state(state)->cdclk =
5898                 valleyview_calc_cdclk(dev_priv, max_pixclk);
5899
5900         return 0;
5901 }
5902
5903 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5904 {
5905         struct drm_device *dev = state->dev;
5906         struct drm_i915_private *dev_priv = dev->dev_private;
5907         int max_pixclk = intel_mode_max_pixclk(dev, state);
5908
5909         if (max_pixclk < 0)
5910                 return max_pixclk;
5911
5912         to_intel_atomic_state(state)->cdclk =
5913                 broxton_calc_cdclk(dev_priv, max_pixclk);
5914
5915         return 0;
5916 }
5917
5918 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5919 {
5920         unsigned int credits, default_credits;
5921
5922         if (IS_CHERRYVIEW(dev_priv))
5923                 default_credits = PFI_CREDIT(12);
5924         else
5925                 default_credits = PFI_CREDIT(8);
5926
5927         if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5928                 /* CHV suggested value is 31 or 63 */
5929                 if (IS_CHERRYVIEW(dev_priv))
5930                         credits = PFI_CREDIT_63;
5931                 else
5932                         credits = PFI_CREDIT(15);
5933         } else {
5934                 credits = default_credits;
5935         }
5936
5937         /*
5938          * WA - write default credits before re-programming
5939          * FIXME: should we also set the resend bit here?
5940          */
5941         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5942                    default_credits);
5943
5944         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5945                    credits | PFI_CREDIT_RESEND);
5946
5947         /*
5948          * FIXME is this guaranteed to clear
5949          * immediately or should we poll for it?
5950          */
5951         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5952 }
5953
5954 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
5955 {
5956         struct drm_device *dev = old_state->dev;
5957         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
5958         struct drm_i915_private *dev_priv = dev->dev_private;
5959
5960         /*
5961          * FIXME: We can end up here with all power domains off, yet
5962          * with a CDCLK frequency other than the minimum. To account
5963          * for this take the PIPE-A power domain, which covers the HW
5964          * blocks needed for the following programming. This can be
5965          * removed once it's guaranteed that we get here either with
5966          * the minimum CDCLK set, or the required power domains
5967          * enabled.
5968          */
5969         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5970
5971         if (IS_CHERRYVIEW(dev))
5972                 cherryview_set_cdclk(dev, req_cdclk);
5973         else
5974                 valleyview_set_cdclk(dev, req_cdclk);
5975
5976         vlv_program_pfi_credits(dev_priv);
5977
5978         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5979 }
5980
5981 static void valleyview_crtc_enable(struct drm_crtc *crtc)
5982 {
5983         struct drm_device *dev = crtc->dev;
5984         struct drm_i915_private *dev_priv = to_i915(dev);
5985         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5986         struct intel_encoder *encoder;
5987         int pipe = intel_crtc->pipe;
5988         bool is_dsi;
5989
5990         if (WARN_ON(intel_crtc->active))
5991                 return;
5992
5993         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5994
5995         if (!is_dsi) {
5996                 if (IS_CHERRYVIEW(dev))
5997                         chv_prepare_pll(intel_crtc, intel_crtc->config);
5998                 else
5999                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6000         }
6001
6002         if (intel_crtc->config->has_dp_encoder)
6003                 intel_dp_set_m_n(intel_crtc, M1_N1);
6004
6005         intel_set_pipe_timings(intel_crtc);
6006
6007         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6008                 struct drm_i915_private *dev_priv = dev->dev_private;
6009
6010                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6011                 I915_WRITE(CHV_CANVAS(pipe), 0);
6012         }
6013
6014         i9xx_set_pipeconf(intel_crtc);
6015
6016         intel_crtc->active = true;
6017
6018         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6019
6020         for_each_encoder_on_crtc(dev, crtc, encoder)
6021                 if (encoder->pre_pll_enable)
6022                         encoder->pre_pll_enable(encoder);
6023
6024         if (!is_dsi) {
6025                 if (IS_CHERRYVIEW(dev))
6026                         chv_enable_pll(intel_crtc, intel_crtc->config);
6027                 else
6028                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6029         }
6030
6031         for_each_encoder_on_crtc(dev, crtc, encoder)
6032                 if (encoder->pre_enable)
6033                         encoder->pre_enable(encoder);
6034
6035         i9xx_pfit_enable(intel_crtc);
6036
6037         intel_crtc_load_lut(crtc);
6038
6039         intel_enable_pipe(intel_crtc);
6040
6041         assert_vblank_disabled(crtc);
6042         drm_crtc_vblank_on(crtc);
6043
6044         for_each_encoder_on_crtc(dev, crtc, encoder)
6045                 encoder->enable(encoder);
6046 }
6047
6048 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6049 {
6050         struct drm_device *dev = crtc->base.dev;
6051         struct drm_i915_private *dev_priv = dev->dev_private;
6052
6053         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6054         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6055 }
6056
6057 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6058 {
6059         struct drm_device *dev = crtc->dev;
6060         struct drm_i915_private *dev_priv = to_i915(dev);
6061         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6062         struct intel_encoder *encoder;
6063         int pipe = intel_crtc->pipe;
6064
6065         if (WARN_ON(intel_crtc->active))
6066                 return;
6067
6068         i9xx_set_pll_dividers(intel_crtc);
6069
6070         if (intel_crtc->config->has_dp_encoder)
6071                 intel_dp_set_m_n(intel_crtc, M1_N1);
6072
6073         intel_set_pipe_timings(intel_crtc);
6074
6075         i9xx_set_pipeconf(intel_crtc);
6076
6077         intel_crtc->active = true;
6078
6079         if (!IS_GEN2(dev))
6080                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6081
6082         for_each_encoder_on_crtc(dev, crtc, encoder)
6083                 if (encoder->pre_enable)
6084                         encoder->pre_enable(encoder);
6085
6086         i9xx_enable_pll(intel_crtc);
6087
6088         i9xx_pfit_enable(intel_crtc);
6089
6090         intel_crtc_load_lut(crtc);
6091
6092         intel_update_watermarks(crtc);
6093         intel_enable_pipe(intel_crtc);
6094
6095         assert_vblank_disabled(crtc);
6096         drm_crtc_vblank_on(crtc);
6097
6098         for_each_encoder_on_crtc(dev, crtc, encoder)
6099                 encoder->enable(encoder);
6100 }
6101
6102 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6103 {
6104         struct drm_device *dev = crtc->base.dev;
6105         struct drm_i915_private *dev_priv = dev->dev_private;
6106
6107         if (!crtc->config->gmch_pfit.control)
6108                 return;
6109
6110         assert_pipe_disabled(dev_priv, crtc->pipe);
6111
6112         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6113                          I915_READ(PFIT_CONTROL));
6114         I915_WRITE(PFIT_CONTROL, 0);
6115 }
6116
6117 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6118 {
6119         struct drm_device *dev = crtc->dev;
6120         struct drm_i915_private *dev_priv = dev->dev_private;
6121         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6122         struct intel_encoder *encoder;
6123         int pipe = intel_crtc->pipe;
6124
6125         /*
6126          * On gen2 planes are double buffered but the pipe isn't, so we must
6127          * wait for planes to fully turn off before disabling the pipe.
6128          * We also need to wait on all gmch platforms because of the
6129          * self-refresh mode constraint explained above.
6130          */
6131         intel_wait_for_vblank(dev, pipe);
6132
6133         for_each_encoder_on_crtc(dev, crtc, encoder)
6134                 encoder->disable(encoder);
6135
6136         drm_crtc_vblank_off(crtc);
6137         assert_vblank_disabled(crtc);
6138
6139         intel_disable_pipe(intel_crtc);
6140
6141         i9xx_pfit_disable(intel_crtc);
6142
6143         for_each_encoder_on_crtc(dev, crtc, encoder)
6144                 if (encoder->post_disable)
6145                         encoder->post_disable(encoder);
6146
6147         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6148                 if (IS_CHERRYVIEW(dev))
6149                         chv_disable_pll(dev_priv, pipe);
6150                 else if (IS_VALLEYVIEW(dev))
6151                         vlv_disable_pll(dev_priv, pipe);
6152                 else
6153                         i9xx_disable_pll(intel_crtc);
6154         }
6155
6156         if (!IS_GEN2(dev))
6157                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6158 }
6159
6160 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6161 {
6162         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6163         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6164         enum intel_display_power_domain domain;
6165         unsigned long domains;
6166
6167         if (!intel_crtc->active)
6168                 return;
6169
6170         if (to_intel_plane_state(crtc->primary->state)->visible) {
6171                 intel_crtc_wait_for_pending_flips(crtc);
6172                 intel_pre_disable_primary(crtc);
6173         }
6174
6175         intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
6176         dev_priv->display.crtc_disable(crtc);
6177
6178         domains = intel_crtc->enabled_power_domains;
6179         for_each_power_domain(domain, domains)
6180                 intel_display_power_put(dev_priv, domain);
6181         intel_crtc->enabled_power_domains = 0;
6182 }
6183
6184 /*
6185  * turn all crtc's off, but do not adjust state
6186  * This has to be paired with a call to intel_modeset_setup_hw_state.
6187  */
6188 void intel_display_suspend(struct drm_device *dev)
6189 {
6190         struct drm_crtc *crtc;
6191
6192         for_each_crtc(dev, crtc)
6193                 intel_crtc_disable_noatomic(crtc);
6194 }
6195
6196 /* Master function to enable/disable CRTC and corresponding power wells */
6197 int intel_crtc_control(struct drm_crtc *crtc, bool enable)
6198 {
6199         struct drm_device *dev = crtc->dev;
6200         struct drm_mode_config *config = &dev->mode_config;
6201         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6203         struct intel_crtc_state *pipe_config;
6204         struct drm_atomic_state *state;
6205         int ret;
6206
6207         if (enable == intel_crtc->active)
6208                 return 0;
6209
6210         if (enable && !crtc->state->enable)
6211                 return 0;
6212
6213         /* this function should be called with drm_modeset_lock_all for now */
6214         if (WARN_ON(!ctx))
6215                 return -EIO;
6216         lockdep_assert_held(&ctx->ww_ctx);
6217
6218         state = drm_atomic_state_alloc(dev);
6219         if (WARN_ON(!state))
6220                 return -ENOMEM;
6221
6222         state->acquire_ctx = ctx;
6223         state->allow_modeset = true;
6224
6225         pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
6226         if (IS_ERR(pipe_config)) {
6227                 ret = PTR_ERR(pipe_config);
6228                 goto err;
6229         }
6230         pipe_config->base.active = enable;
6231
6232         ret = intel_set_mode(state);
6233         if (!ret)
6234                 return ret;
6235
6236 err:
6237         DRM_ERROR("Updating crtc active failed with %i\n", ret);
6238         drm_atomic_state_free(state);
6239         return ret;
6240 }
6241
6242 /**
6243  * Sets the power management mode of the pipe and plane.
6244  */
6245 void intel_crtc_update_dpms(struct drm_crtc *crtc)
6246 {
6247         struct drm_device *dev = crtc->dev;
6248         struct intel_encoder *intel_encoder;
6249         bool enable = false;
6250
6251         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6252                 enable |= intel_encoder->connectors_active;
6253
6254         intel_crtc_control(crtc, enable);
6255 }
6256
6257 void intel_encoder_destroy(struct drm_encoder *encoder)
6258 {
6259         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6260
6261         drm_encoder_cleanup(encoder);
6262         kfree(intel_encoder);
6263 }
6264
6265 /* Simple dpms helper for encoders with just one connector, no cloning and only
6266  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6267  * state of the entire output pipe. */
6268 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
6269 {
6270         if (mode == DRM_MODE_DPMS_ON) {
6271                 encoder->connectors_active = true;
6272
6273                 intel_crtc_update_dpms(encoder->base.crtc);
6274         } else {
6275                 encoder->connectors_active = false;
6276
6277                 intel_crtc_update_dpms(encoder->base.crtc);
6278         }
6279 }
6280
6281 /* Cross check the actual hw state with our own modeset state tracking (and it's
6282  * internal consistency). */
6283 static void intel_connector_check_state(struct intel_connector *connector)
6284 {
6285         if (connector->get_hw_state(connector)) {
6286                 struct intel_encoder *encoder = connector->encoder;
6287                 struct drm_crtc *crtc;
6288                 bool encoder_enabled;
6289                 enum pipe pipe;
6290
6291                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6292                               connector->base.base.id,
6293                               connector->base.name);
6294
6295                 /* there is no real hw state for MST connectors */
6296                 if (connector->mst_port)
6297                         return;
6298
6299                 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
6300                      "wrong connector dpms state\n");
6301                 I915_STATE_WARN(connector->base.encoder != &encoder->base,
6302                      "active connector not linked to encoder\n");
6303
6304                 if (encoder) {
6305                         I915_STATE_WARN(!encoder->connectors_active,
6306                              "encoder->connectors_active not set\n");
6307
6308                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
6309                         I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6310                         if (I915_STATE_WARN_ON(!encoder->base.crtc))
6311                                 return;
6312
6313                         crtc = encoder->base.crtc;
6314
6315                         I915_STATE_WARN(!crtc->state->enable,
6316                                         "crtc not enabled\n");
6317                         I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6318                         I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
6319                              "encoder active on the wrong pipe\n");
6320                 }
6321         }
6322 }
6323
6324 int intel_connector_init(struct intel_connector *connector)
6325 {
6326         struct drm_connector_state *connector_state;
6327
6328         connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6329         if (!connector_state)
6330                 return -ENOMEM;
6331
6332         connector->base.state = connector_state;
6333         return 0;
6334 }
6335
6336 struct intel_connector *intel_connector_alloc(void)
6337 {
6338         struct intel_connector *connector;
6339
6340         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6341         if (!connector)
6342                 return NULL;
6343
6344         if (intel_connector_init(connector) < 0) {
6345                 kfree(connector);
6346                 return NULL;
6347         }
6348
6349         return connector;
6350 }
6351
6352 /* Even simpler default implementation, if there's really no special case to
6353  * consider. */
6354 void intel_connector_dpms(struct drm_connector *connector, int mode)
6355 {
6356         /* All the simple cases only support two dpms states. */
6357         if (mode != DRM_MODE_DPMS_ON)
6358                 mode = DRM_MODE_DPMS_OFF;
6359
6360         if (mode == connector->dpms)
6361                 return;
6362
6363         connector->dpms = mode;
6364
6365         /* Only need to change hw state when actually enabled */
6366         if (connector->encoder)
6367                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
6368
6369         intel_modeset_check_state(connector->dev);
6370 }
6371
6372 /* Simple connector->get_hw_state implementation for encoders that support only
6373  * one connector and no cloning and hence the encoder state determines the state
6374  * of the connector. */
6375 bool intel_connector_get_hw_state(struct intel_connector *connector)
6376 {
6377         enum pipe pipe = 0;
6378         struct intel_encoder *encoder = connector->encoder;
6379
6380         return encoder->get_hw_state(encoder, &pipe);
6381 }
6382
6383 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6384 {
6385         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6386                 return crtc_state->fdi_lanes;
6387
6388         return 0;
6389 }
6390
6391 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6392                                      struct intel_crtc_state *pipe_config)
6393 {
6394         struct drm_atomic_state *state = pipe_config->base.state;
6395         struct intel_crtc *other_crtc;
6396         struct intel_crtc_state *other_crtc_state;
6397
6398         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6399                       pipe_name(pipe), pipe_config->fdi_lanes);
6400         if (pipe_config->fdi_lanes > 4) {
6401                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6402                               pipe_name(pipe), pipe_config->fdi_lanes);
6403                 return -EINVAL;
6404         }
6405
6406         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6407                 if (pipe_config->fdi_lanes > 2) {
6408                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6409                                       pipe_config->fdi_lanes);
6410                         return -EINVAL;
6411                 } else {
6412                         return 0;
6413                 }
6414         }
6415
6416         if (INTEL_INFO(dev)->num_pipes == 2)
6417                 return 0;
6418
6419         /* Ivybridge 3 pipe is really complicated */
6420         switch (pipe) {
6421         case PIPE_A:
6422                 return 0;
6423         case PIPE_B:
6424                 if (pipe_config->fdi_lanes <= 2)
6425                         return 0;
6426
6427                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6428                 other_crtc_state =
6429                         intel_atomic_get_crtc_state(state, other_crtc);
6430                 if (IS_ERR(other_crtc_state))
6431                         return PTR_ERR(other_crtc_state);
6432
6433                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6434                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6435                                       pipe_name(pipe), pipe_config->fdi_lanes);
6436                         return -EINVAL;
6437                 }
6438                 return 0;
6439         case PIPE_C:
6440                 if (pipe_config->fdi_lanes > 2) {
6441                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6442                                       pipe_name(pipe), pipe_config->fdi_lanes);
6443                         return -EINVAL;
6444                 }
6445
6446                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6447                 other_crtc_state =
6448                         intel_atomic_get_crtc_state(state, other_crtc);
6449                 if (IS_ERR(other_crtc_state))
6450                         return PTR_ERR(other_crtc_state);
6451
6452                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6453                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6454                         return -EINVAL;
6455                 }
6456                 return 0;
6457         default:
6458                 BUG();
6459         }
6460 }
6461
6462 #define RETRY 1
6463 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6464                                        struct intel_crtc_state *pipe_config)
6465 {
6466         struct drm_device *dev = intel_crtc->base.dev;
6467         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6468         int lane, link_bw, fdi_dotclock, ret;
6469         bool needs_recompute = false;
6470
6471 retry:
6472         /* FDI is a binary signal running at ~2.7GHz, encoding
6473          * each output octet as 10 bits. The actual frequency
6474          * is stored as a divider into a 100MHz clock, and the
6475          * mode pixel clock is stored in units of 1KHz.
6476          * Hence the bw of each lane in terms of the mode signal
6477          * is:
6478          */
6479         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6480
6481         fdi_dotclock = adjusted_mode->crtc_clock;
6482
6483         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6484                                            pipe_config->pipe_bpp);
6485
6486         pipe_config->fdi_lanes = lane;
6487
6488         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6489                                link_bw, &pipe_config->fdi_m_n);
6490
6491         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6492                                        intel_crtc->pipe, pipe_config);
6493         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6494                 pipe_config->pipe_bpp -= 2*3;
6495                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6496                               pipe_config->pipe_bpp);
6497                 needs_recompute = true;
6498                 pipe_config->bw_constrained = true;
6499
6500                 goto retry;
6501         }
6502
6503         if (needs_recompute)
6504                 return RETRY;
6505
6506         return ret;
6507 }
6508
6509 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6510                                      struct intel_crtc_state *pipe_config)
6511 {
6512         if (pipe_config->pipe_bpp > 24)
6513                 return false;
6514
6515         /* HSW can handle pixel rate up to cdclk? */
6516         if (IS_HASWELL(dev_priv->dev))
6517                 return true;
6518
6519         /*
6520          * We compare against max which means we must take
6521          * the increased cdclk requirement into account when
6522          * calculating the new cdclk.
6523          *
6524          * Should measure whether using a lower cdclk w/o IPS
6525          */
6526         return ilk_pipe_pixel_rate(pipe_config) <=
6527                 dev_priv->max_cdclk_freq * 95 / 100;
6528 }
6529
6530 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6531                                    struct intel_crtc_state *pipe_config)
6532 {
6533         struct drm_device *dev = crtc->base.dev;
6534         struct drm_i915_private *dev_priv = dev->dev_private;
6535
6536         pipe_config->ips_enabled = i915.enable_ips &&
6537                 hsw_crtc_supports_ips(crtc) &&
6538                 pipe_config_supports_ips(dev_priv, pipe_config);
6539 }
6540
6541 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6542                                      struct intel_crtc_state *pipe_config)
6543 {
6544         struct drm_device *dev = crtc->base.dev;
6545         struct drm_i915_private *dev_priv = dev->dev_private;
6546         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6547
6548         /* FIXME should check pixel clock limits on all platforms */
6549         if (INTEL_INFO(dev)->gen < 4) {
6550                 int clock_limit = dev_priv->max_cdclk_freq;
6551
6552                 /*
6553                  * Enable pixel doubling when the dot clock
6554                  * is > 90% of the (display) core speed.
6555                  *
6556                  * GDG double wide on either pipe,
6557                  * otherwise pipe A only.
6558                  */
6559                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6560                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6561                         clock_limit *= 2;
6562                         pipe_config->double_wide = true;
6563                 }
6564
6565                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6566                         return -EINVAL;
6567         }
6568
6569         /*
6570          * Pipe horizontal size must be even in:
6571          * - DVO ganged mode
6572          * - LVDS dual channel mode
6573          * - Double wide pipe
6574          */
6575         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6576              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6577                 pipe_config->pipe_src_w &= ~1;
6578
6579         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6580          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6581          */
6582         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6583                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6584                 return -EINVAL;
6585
6586         if (HAS_IPS(dev))
6587                 hsw_compute_ips_config(crtc, pipe_config);
6588
6589         if (pipe_config->has_pch_encoder)
6590                 return ironlake_fdi_compute_config(crtc, pipe_config);
6591
6592         return 0;
6593 }
6594
6595 static int skylake_get_display_clock_speed(struct drm_device *dev)
6596 {
6597         struct drm_i915_private *dev_priv = to_i915(dev);
6598         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6599         uint32_t cdctl = I915_READ(CDCLK_CTL);
6600         uint32_t linkrate;
6601
6602         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6603                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6604
6605         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6606                 return 540000;
6607
6608         linkrate = (I915_READ(DPLL_CTRL1) &
6609                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6610
6611         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6612             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6613                 /* vco 8640 */
6614                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6615                 case CDCLK_FREQ_450_432:
6616                         return 432000;
6617                 case CDCLK_FREQ_337_308:
6618                         return 308570;
6619                 case CDCLK_FREQ_675_617:
6620                         return 617140;
6621                 default:
6622                         WARN(1, "Unknown cd freq selection\n");
6623                 }
6624         } else {
6625                 /* vco 8100 */
6626                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6627                 case CDCLK_FREQ_450_432:
6628                         return 450000;
6629                 case CDCLK_FREQ_337_308:
6630                         return 337500;
6631                 case CDCLK_FREQ_675_617:
6632                         return 675000;
6633                 default:
6634                         WARN(1, "Unknown cd freq selection\n");
6635                 }
6636         }
6637
6638         /* error case, do as if DPLL0 isn't enabled */
6639         return 24000;
6640 }
6641
6642 static int broxton_get_display_clock_speed(struct drm_device *dev)
6643 {
6644         struct drm_i915_private *dev_priv = to_i915(dev);
6645         uint32_t cdctl = I915_READ(CDCLK_CTL);
6646         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6647         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6648         int cdclk;
6649
6650         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6651                 return 19200;
6652
6653         cdclk = 19200 * pll_ratio / 2;
6654
6655         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6656         case BXT_CDCLK_CD2X_DIV_SEL_1:
6657                 return cdclk;  /* 576MHz or 624MHz */
6658         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6659                 return cdclk * 2 / 3; /* 384MHz */
6660         case BXT_CDCLK_CD2X_DIV_SEL_2:
6661                 return cdclk / 2; /* 288MHz */
6662         case BXT_CDCLK_CD2X_DIV_SEL_4:
6663                 return cdclk / 4; /* 144MHz */
6664         }
6665
6666         /* error case, do as if DE PLL isn't enabled */
6667         return 19200;
6668 }
6669
6670 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6671 {
6672         struct drm_i915_private *dev_priv = dev->dev_private;
6673         uint32_t lcpll = I915_READ(LCPLL_CTL);
6674         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6675
6676         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6677                 return 800000;
6678         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6679                 return 450000;
6680         else if (freq == LCPLL_CLK_FREQ_450)
6681                 return 450000;
6682         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6683                 return 540000;
6684         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6685                 return 337500;
6686         else
6687                 return 675000;
6688 }
6689
6690 static int haswell_get_display_clock_speed(struct drm_device *dev)
6691 {
6692         struct drm_i915_private *dev_priv = dev->dev_private;
6693         uint32_t lcpll = I915_READ(LCPLL_CTL);
6694         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6695
6696         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6697                 return 800000;
6698         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6699                 return 450000;
6700         else if (freq == LCPLL_CLK_FREQ_450)
6701                 return 450000;
6702         else if (IS_HSW_ULT(dev))
6703                 return 337500;
6704         else
6705                 return 540000;
6706 }
6707
6708 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6709 {
6710         struct drm_i915_private *dev_priv = dev->dev_private;
6711         u32 val;
6712         int divider;
6713
6714         if (dev_priv->hpll_freq == 0)
6715                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6716
6717         mutex_lock(&dev_priv->sb_lock);
6718         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6719         mutex_unlock(&dev_priv->sb_lock);
6720
6721         divider = val & DISPLAY_FREQUENCY_VALUES;
6722
6723         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6724              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6725              "cdclk change in progress\n");
6726
6727         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6728 }
6729
6730 static int ilk_get_display_clock_speed(struct drm_device *dev)
6731 {
6732         return 450000;
6733 }
6734
6735 static int i945_get_display_clock_speed(struct drm_device *dev)
6736 {
6737         return 400000;
6738 }
6739
6740 static int i915_get_display_clock_speed(struct drm_device *dev)
6741 {
6742         return 333333;
6743 }
6744
6745 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6746 {
6747         return 200000;
6748 }
6749
6750 static int pnv_get_display_clock_speed(struct drm_device *dev)
6751 {
6752         u16 gcfgc = 0;
6753
6754         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6755
6756         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6757         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6758                 return 266667;
6759         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6760                 return 333333;
6761         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6762                 return 444444;
6763         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6764                 return 200000;
6765         default:
6766                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6767         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6768                 return 133333;
6769         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6770                 return 166667;
6771         }
6772 }
6773
6774 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6775 {
6776         u16 gcfgc = 0;
6777
6778         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6779
6780         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6781                 return 133333;
6782         else {
6783                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6784                 case GC_DISPLAY_CLOCK_333_MHZ:
6785                         return 333333;
6786                 default:
6787                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6788                         return 190000;
6789                 }
6790         }
6791 }
6792
6793 static int i865_get_display_clock_speed(struct drm_device *dev)
6794 {
6795         return 266667;
6796 }
6797
6798 static int i85x_get_display_clock_speed(struct drm_device *dev)
6799 {
6800         u16 hpllcc = 0;
6801
6802         /*
6803          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6804          * encoding is different :(
6805          * FIXME is this the right way to detect 852GM/852GMV?
6806          */
6807         if (dev->pdev->revision == 0x1)
6808                 return 133333;
6809
6810         pci_bus_read_config_word(dev->pdev->bus,
6811                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6812
6813         /* Assume that the hardware is in the high speed state.  This
6814          * should be the default.
6815          */
6816         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6817         case GC_CLOCK_133_200:
6818         case GC_CLOCK_133_200_2:
6819         case GC_CLOCK_100_200:
6820                 return 200000;
6821         case GC_CLOCK_166_250:
6822                 return 250000;
6823         case GC_CLOCK_100_133:
6824                 return 133333;
6825         case GC_CLOCK_133_266:
6826         case GC_CLOCK_133_266_2:
6827         case GC_CLOCK_166_266:
6828                 return 266667;
6829         }
6830
6831         /* Shouldn't happen */
6832         return 0;
6833 }
6834
6835 static int i830_get_display_clock_speed(struct drm_device *dev)
6836 {
6837         return 133333;
6838 }
6839
6840 static unsigned int intel_hpll_vco(struct drm_device *dev)
6841 {
6842         struct drm_i915_private *dev_priv = dev->dev_private;
6843         static const unsigned int blb_vco[8] = {
6844                 [0] = 3200000,
6845                 [1] = 4000000,
6846                 [2] = 5333333,
6847                 [3] = 4800000,
6848                 [4] = 6400000,
6849         };
6850         static const unsigned int pnv_vco[8] = {
6851                 [0] = 3200000,
6852                 [1] = 4000000,
6853                 [2] = 5333333,
6854                 [3] = 4800000,
6855                 [4] = 2666667,
6856         };
6857         static const unsigned int cl_vco[8] = {
6858                 [0] = 3200000,
6859                 [1] = 4000000,
6860                 [2] = 5333333,
6861                 [3] = 6400000,
6862                 [4] = 3333333,
6863                 [5] = 3566667,
6864                 [6] = 4266667,
6865         };
6866         static const unsigned int elk_vco[8] = {
6867                 [0] = 3200000,
6868                 [1] = 4000000,
6869                 [2] = 5333333,
6870                 [3] = 4800000,
6871         };
6872         static const unsigned int ctg_vco[8] = {
6873                 [0] = 3200000,
6874                 [1] = 4000000,
6875                 [2] = 5333333,
6876                 [3] = 6400000,
6877                 [4] = 2666667,
6878                 [5] = 4266667,
6879         };
6880         const unsigned int *vco_table;
6881         unsigned int vco;
6882         uint8_t tmp = 0;
6883
6884         /* FIXME other chipsets? */
6885         if (IS_GM45(dev))
6886                 vco_table = ctg_vco;
6887         else if (IS_G4X(dev))
6888                 vco_table = elk_vco;
6889         else if (IS_CRESTLINE(dev))
6890                 vco_table = cl_vco;
6891         else if (IS_PINEVIEW(dev))
6892                 vco_table = pnv_vco;
6893         else if (IS_G33(dev))
6894                 vco_table = blb_vco;
6895         else
6896                 return 0;
6897
6898         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6899
6900         vco = vco_table[tmp & 0x7];
6901         if (vco == 0)
6902                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6903         else
6904                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6905
6906         return vco;
6907 }
6908
6909 static int gm45_get_display_clock_speed(struct drm_device *dev)
6910 {
6911         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6912         uint16_t tmp = 0;
6913
6914         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6915
6916         cdclk_sel = (tmp >> 12) & 0x1;
6917
6918         switch (vco) {
6919         case 2666667:
6920         case 4000000:
6921         case 5333333:
6922                 return cdclk_sel ? 333333 : 222222;
6923         case 3200000:
6924                 return cdclk_sel ? 320000 : 228571;
6925         default:
6926                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6927                 return 222222;
6928         }
6929 }
6930
6931 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6932 {
6933         static const uint8_t div_3200[] = { 16, 10,  8 };
6934         static const uint8_t div_4000[] = { 20, 12, 10 };
6935         static const uint8_t div_5333[] = { 24, 16, 14 };
6936         const uint8_t *div_table;
6937         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6938         uint16_t tmp = 0;
6939
6940         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6941
6942         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6943
6944         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6945                 goto fail;
6946
6947         switch (vco) {
6948         case 3200000:
6949                 div_table = div_3200;
6950                 break;
6951         case 4000000:
6952                 div_table = div_4000;
6953                 break;
6954         case 5333333:
6955                 div_table = div_5333;
6956                 break;
6957         default:
6958                 goto fail;
6959         }
6960
6961         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6962
6963 fail:
6964         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6965         return 200000;
6966 }
6967
6968 static int g33_get_display_clock_speed(struct drm_device *dev)
6969 {
6970         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
6971         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
6972         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6973         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6974         const uint8_t *div_table;
6975         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6976         uint16_t tmp = 0;
6977
6978         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6979
6980         cdclk_sel = (tmp >> 4) & 0x7;
6981
6982         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6983                 goto fail;
6984
6985         switch (vco) {
6986         case 3200000:
6987                 div_table = div_3200;
6988                 break;
6989         case 4000000:
6990                 div_table = div_4000;
6991                 break;
6992         case 4800000:
6993                 div_table = div_4800;
6994                 break;
6995         case 5333333:
6996                 div_table = div_5333;
6997                 break;
6998         default:
6999                 goto fail;
7000         }
7001
7002         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7003
7004 fail:
7005         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7006         return 190476;
7007 }
7008
7009 static void
7010 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7011 {
7012         while (*num > DATA_LINK_M_N_MASK ||
7013                *den > DATA_LINK_M_N_MASK) {
7014                 *num >>= 1;
7015                 *den >>= 1;
7016         }
7017 }
7018
7019 static void compute_m_n(unsigned int m, unsigned int n,
7020                         uint32_t *ret_m, uint32_t *ret_n)
7021 {
7022         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7023         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7024         intel_reduce_m_n_ratio(ret_m, ret_n);
7025 }
7026
7027 void
7028 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7029                        int pixel_clock, int link_clock,
7030                        struct intel_link_m_n *m_n)
7031 {
7032         m_n->tu = 64;
7033
7034         compute_m_n(bits_per_pixel * pixel_clock,
7035                     link_clock * nlanes * 8,
7036                     &m_n->gmch_m, &m_n->gmch_n);
7037
7038         compute_m_n(pixel_clock, link_clock,
7039                     &m_n->link_m, &m_n->link_n);
7040 }
7041
7042 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7043 {
7044         if (i915.panel_use_ssc >= 0)
7045                 return i915.panel_use_ssc != 0;
7046         return dev_priv->vbt.lvds_use_ssc
7047                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7048 }
7049
7050 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7051                            int num_connectors)
7052 {
7053         struct drm_device *dev = crtc_state->base.crtc->dev;
7054         struct drm_i915_private *dev_priv = dev->dev_private;
7055         int refclk;
7056
7057         WARN_ON(!crtc_state->base.state);
7058
7059         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7060                 refclk = 100000;
7061         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7062             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7063                 refclk = dev_priv->vbt.lvds_ssc_freq;
7064                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7065         } else if (!IS_GEN2(dev)) {
7066                 refclk = 96000;
7067         } else {
7068                 refclk = 48000;
7069         }
7070
7071         return refclk;
7072 }
7073
7074 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7075 {
7076         return (1 << dpll->n) << 16 | dpll->m2;
7077 }
7078
7079 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7080 {
7081         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7082 }
7083
7084 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7085                                      struct intel_crtc_state *crtc_state,
7086                                      intel_clock_t *reduced_clock)
7087 {
7088         struct drm_device *dev = crtc->base.dev;
7089         u32 fp, fp2 = 0;
7090
7091         if (IS_PINEVIEW(dev)) {
7092                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7093                 if (reduced_clock)
7094                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7095         } else {
7096                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7097                 if (reduced_clock)
7098                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7099         }
7100
7101         crtc_state->dpll_hw_state.fp0 = fp;
7102
7103         crtc->lowfreq_avail = false;
7104         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7105             reduced_clock) {
7106                 crtc_state->dpll_hw_state.fp1 = fp2;
7107                 crtc->lowfreq_avail = true;
7108         } else {
7109                 crtc_state->dpll_hw_state.fp1 = fp;
7110         }
7111 }
7112
7113 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7114                 pipe)
7115 {
7116         u32 reg_val;
7117
7118         /*
7119          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7120          * and set it to a reasonable value instead.
7121          */
7122         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7123         reg_val &= 0xffffff00;
7124         reg_val |= 0x00000030;
7125         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7126
7127         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7128         reg_val &= 0x8cffffff;
7129         reg_val = 0x8c000000;
7130         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7131
7132         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7133         reg_val &= 0xffffff00;
7134         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7135
7136         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7137         reg_val &= 0x00ffffff;
7138         reg_val |= 0xb0000000;
7139         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7140 }
7141
7142 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7143                                          struct intel_link_m_n *m_n)
7144 {
7145         struct drm_device *dev = crtc->base.dev;
7146         struct drm_i915_private *dev_priv = dev->dev_private;
7147         int pipe = crtc->pipe;
7148
7149         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7150         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7151         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7152         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7153 }
7154
7155 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7156                                          struct intel_link_m_n *m_n,
7157                                          struct intel_link_m_n *m2_n2)
7158 {
7159         struct drm_device *dev = crtc->base.dev;
7160         struct drm_i915_private *dev_priv = dev->dev_private;
7161         int pipe = crtc->pipe;
7162         enum transcoder transcoder = crtc->config->cpu_transcoder;
7163
7164         if (INTEL_INFO(dev)->gen >= 5) {
7165                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7166                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7167                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7168                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7169                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7170                  * for gen < 8) and if DRRS is supported (to make sure the
7171                  * registers are not unnecessarily accessed).
7172                  */
7173                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7174                         crtc->config->has_drrs) {
7175                         I915_WRITE(PIPE_DATA_M2(transcoder),
7176                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7177                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7178                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7179                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7180                 }
7181         } else {
7182                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7183                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7184                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7185                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7186         }
7187 }
7188
7189 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7190 {
7191         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7192
7193         if (m_n == M1_N1) {
7194                 dp_m_n = &crtc->config->dp_m_n;
7195                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7196         } else if (m_n == M2_N2) {
7197
7198                 /*
7199                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7200                  * needs to be programmed into M1_N1.
7201                  */
7202                 dp_m_n = &crtc->config->dp_m2_n2;
7203         } else {
7204                 DRM_ERROR("Unsupported divider value\n");
7205                 return;
7206         }
7207
7208         if (crtc->config->has_pch_encoder)
7209                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7210         else
7211                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7212 }
7213
7214 static void vlv_compute_dpll(struct intel_crtc *crtc,
7215                              struct intel_crtc_state *pipe_config)
7216 {
7217         u32 dpll, dpll_md;
7218
7219         /*
7220          * Enable DPIO clock input. We should never disable the reference
7221          * clock for pipe B, since VGA hotplug / manual detection depends
7222          * on it.
7223          */
7224         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
7225                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
7226         /* We should never disable this, set it here for state tracking */
7227         if (crtc->pipe == PIPE_B)
7228                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7229         dpll |= DPLL_VCO_ENABLE;
7230         pipe_config->dpll_hw_state.dpll = dpll;
7231
7232         dpll_md = (pipe_config->pixel_multiplier - 1)
7233                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7234         pipe_config->dpll_hw_state.dpll_md = dpll_md;
7235 }
7236
7237 static void vlv_prepare_pll(struct intel_crtc *crtc,
7238                             const struct intel_crtc_state *pipe_config)
7239 {
7240         struct drm_device *dev = crtc->base.dev;
7241         struct drm_i915_private *dev_priv = dev->dev_private;
7242         int pipe = crtc->pipe;
7243         u32 mdiv;
7244         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7245         u32 coreclk, reg_val;
7246
7247         mutex_lock(&dev_priv->sb_lock);
7248
7249         bestn = pipe_config->dpll.n;
7250         bestm1 = pipe_config->dpll.m1;
7251         bestm2 = pipe_config->dpll.m2;
7252         bestp1 = pipe_config->dpll.p1;
7253         bestp2 = pipe_config->dpll.p2;
7254
7255         /* See eDP HDMI DPIO driver vbios notes doc */
7256
7257         /* PLL B needs special handling */
7258         if (pipe == PIPE_B)
7259                 vlv_pllb_recal_opamp(dev_priv, pipe);
7260
7261         /* Set up Tx target for periodic Rcomp update */
7262         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7263
7264         /* Disable target IRef on PLL */
7265         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7266         reg_val &= 0x00ffffff;
7267         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7268
7269         /* Disable fast lock */
7270         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7271
7272         /* Set idtafcrecal before PLL is enabled */
7273         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7274         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7275         mdiv |= ((bestn << DPIO_N_SHIFT));
7276         mdiv |= (1 << DPIO_K_SHIFT);
7277
7278         /*
7279          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7280          * but we don't support that).
7281          * Note: don't use the DAC post divider as it seems unstable.
7282          */
7283         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7284         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7285
7286         mdiv |= DPIO_ENABLE_CALIBRATION;
7287         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7288
7289         /* Set HBR and RBR LPF coefficients */
7290         if (pipe_config->port_clock == 162000 ||
7291             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7292             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7293                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7294                                  0x009f0003);
7295         else
7296                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7297                                  0x00d0000f);
7298
7299         if (pipe_config->has_dp_encoder) {
7300                 /* Use SSC source */
7301                 if (pipe == PIPE_A)
7302                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7303                                          0x0df40000);
7304                 else
7305                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7306                                          0x0df70000);
7307         } else { /* HDMI or VGA */
7308                 /* Use bend source */
7309                 if (pipe == PIPE_A)
7310                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7311                                          0x0df70000);
7312                 else
7313                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7314                                          0x0df40000);
7315         }
7316
7317         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7318         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7319         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7320             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7321                 coreclk |= 0x01000000;
7322         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7323
7324         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7325         mutex_unlock(&dev_priv->sb_lock);
7326 }
7327
7328 static void chv_compute_dpll(struct intel_crtc *crtc,
7329                              struct intel_crtc_state *pipe_config)
7330 {
7331         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
7332                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7333                 DPLL_VCO_ENABLE;
7334         if (crtc->pipe != PIPE_A)
7335                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7336
7337         pipe_config->dpll_hw_state.dpll_md =
7338                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7339 }
7340
7341 static void chv_prepare_pll(struct intel_crtc *crtc,
7342                             const struct intel_crtc_state *pipe_config)
7343 {
7344         struct drm_device *dev = crtc->base.dev;
7345         struct drm_i915_private *dev_priv = dev->dev_private;
7346         int pipe = crtc->pipe;
7347         int dpll_reg = DPLL(crtc->pipe);
7348         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7349         u32 loopfilter, tribuf_calcntr;
7350         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7351         u32 dpio_val;
7352         int vco;
7353
7354         bestn = pipe_config->dpll.n;
7355         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7356         bestm1 = pipe_config->dpll.m1;
7357         bestm2 = pipe_config->dpll.m2 >> 22;
7358         bestp1 = pipe_config->dpll.p1;
7359         bestp2 = pipe_config->dpll.p2;
7360         vco = pipe_config->dpll.vco;
7361         dpio_val = 0;
7362         loopfilter = 0;
7363
7364         /*
7365          * Enable Refclk and SSC
7366          */
7367         I915_WRITE(dpll_reg,
7368                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7369
7370         mutex_lock(&dev_priv->sb_lock);
7371
7372         /* p1 and p2 divider */
7373         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7374                         5 << DPIO_CHV_S1_DIV_SHIFT |
7375                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7376                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7377                         1 << DPIO_CHV_K_DIV_SHIFT);
7378
7379         /* Feedback post-divider - m2 */
7380         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7381
7382         /* Feedback refclk divider - n and m1 */
7383         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7384                         DPIO_CHV_M1_DIV_BY_2 |
7385                         1 << DPIO_CHV_N_DIV_SHIFT);
7386
7387         /* M2 fraction division */
7388         if (bestm2_frac)
7389                 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7390
7391         /* M2 fraction division enable */
7392         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7393         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7394         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7395         if (bestm2_frac)
7396                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7397         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7398
7399         /* Program digital lock detect threshold */
7400         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7401         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7402                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7403         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7404         if (!bestm2_frac)
7405                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7406         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7407
7408         /* Loop filter */
7409         if (vco == 5400000) {
7410                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7411                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7412                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7413                 tribuf_calcntr = 0x9;
7414         } else if (vco <= 6200000) {
7415                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7416                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7417                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7418                 tribuf_calcntr = 0x9;
7419         } else if (vco <= 6480000) {
7420                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7421                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7422                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7423                 tribuf_calcntr = 0x8;
7424         } else {
7425                 /* Not supported. Apply the same limits as in the max case */
7426                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7427                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7428                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7429                 tribuf_calcntr = 0;
7430         }
7431         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7432
7433         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7434         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7435         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7436         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7437
7438         /* AFC Recal */
7439         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7440                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7441                         DPIO_AFC_RECAL);
7442
7443         mutex_unlock(&dev_priv->sb_lock);
7444 }
7445
7446 /**
7447  * vlv_force_pll_on - forcibly enable just the PLL
7448  * @dev_priv: i915 private structure
7449  * @pipe: pipe PLL to enable
7450  * @dpll: PLL configuration
7451  *
7452  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7453  * in cases where we need the PLL enabled even when @pipe is not going to
7454  * be enabled.
7455  */
7456 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7457                       const struct dpll *dpll)
7458 {
7459         struct intel_crtc *crtc =
7460                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7461         struct intel_crtc_state pipe_config = {
7462                 .base.crtc = &crtc->base,
7463                 .pixel_multiplier = 1,
7464                 .dpll = *dpll,
7465         };
7466
7467         if (IS_CHERRYVIEW(dev)) {
7468                 chv_compute_dpll(crtc, &pipe_config);
7469                 chv_prepare_pll(crtc, &pipe_config);
7470                 chv_enable_pll(crtc, &pipe_config);
7471         } else {
7472                 vlv_compute_dpll(crtc, &pipe_config);
7473                 vlv_prepare_pll(crtc, &pipe_config);
7474                 vlv_enable_pll(crtc, &pipe_config);
7475         }
7476 }
7477
7478 /**
7479  * vlv_force_pll_off - forcibly disable just the PLL
7480  * @dev_priv: i915 private structure
7481  * @pipe: pipe PLL to disable
7482  *
7483  * Disable the PLL for @pipe. To be used in cases where we need
7484  * the PLL enabled even when @pipe is not going to be enabled.
7485  */
7486 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7487 {
7488         if (IS_CHERRYVIEW(dev))
7489                 chv_disable_pll(to_i915(dev), pipe);
7490         else
7491                 vlv_disable_pll(to_i915(dev), pipe);
7492 }
7493
7494 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7495                               struct intel_crtc_state *crtc_state,
7496                               intel_clock_t *reduced_clock,
7497                               int num_connectors)
7498 {
7499         struct drm_device *dev = crtc->base.dev;
7500         struct drm_i915_private *dev_priv = dev->dev_private;
7501         u32 dpll;
7502         bool is_sdvo;
7503         struct dpll *clock = &crtc_state->dpll;
7504
7505         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7506
7507         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7508                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7509
7510         dpll = DPLL_VGA_MODE_DIS;
7511
7512         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7513                 dpll |= DPLLB_MODE_LVDS;
7514         else
7515                 dpll |= DPLLB_MODE_DAC_SERIAL;
7516
7517         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7518                 dpll |= (crtc_state->pixel_multiplier - 1)
7519                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7520         }
7521
7522         if (is_sdvo)
7523                 dpll |= DPLL_SDVO_HIGH_SPEED;
7524
7525         if (crtc_state->has_dp_encoder)
7526                 dpll |= DPLL_SDVO_HIGH_SPEED;
7527
7528         /* compute bitmask from p1 value */
7529         if (IS_PINEVIEW(dev))
7530                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7531         else {
7532                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7533                 if (IS_G4X(dev) && reduced_clock)
7534                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7535         }
7536         switch (clock->p2) {
7537         case 5:
7538                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7539                 break;
7540         case 7:
7541                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7542                 break;
7543         case 10:
7544                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7545                 break;
7546         case 14:
7547                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7548                 break;
7549         }
7550         if (INTEL_INFO(dev)->gen >= 4)
7551                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7552
7553         if (crtc_state->sdvo_tv_clock)
7554                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7555         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7556                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7557                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7558         else
7559                 dpll |= PLL_REF_INPUT_DREFCLK;
7560
7561         dpll |= DPLL_VCO_ENABLE;
7562         crtc_state->dpll_hw_state.dpll = dpll;
7563
7564         if (INTEL_INFO(dev)->gen >= 4) {
7565                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7566                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7567                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7568         }
7569 }
7570
7571 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7572                               struct intel_crtc_state *crtc_state,
7573                               intel_clock_t *reduced_clock,
7574                               int num_connectors)
7575 {
7576         struct drm_device *dev = crtc->base.dev;
7577         struct drm_i915_private *dev_priv = dev->dev_private;
7578         u32 dpll;
7579         struct dpll *clock = &crtc_state->dpll;
7580
7581         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7582
7583         dpll = DPLL_VGA_MODE_DIS;
7584
7585         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7586                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7587         } else {
7588                 if (clock->p1 == 2)
7589                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7590                 else
7591                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7592                 if (clock->p2 == 4)
7593                         dpll |= PLL_P2_DIVIDE_BY_4;
7594         }
7595
7596         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7597                 dpll |= DPLL_DVO_2X_MODE;
7598
7599         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7600                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7601                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7602         else
7603                 dpll |= PLL_REF_INPUT_DREFCLK;
7604
7605         dpll |= DPLL_VCO_ENABLE;
7606         crtc_state->dpll_hw_state.dpll = dpll;
7607 }
7608
7609 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7610 {
7611         struct drm_device *dev = intel_crtc->base.dev;
7612         struct drm_i915_private *dev_priv = dev->dev_private;
7613         enum pipe pipe = intel_crtc->pipe;
7614         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7615         struct drm_display_mode *adjusted_mode =
7616                 &intel_crtc->config->base.adjusted_mode;
7617         uint32_t crtc_vtotal, crtc_vblank_end;
7618         int vsyncshift = 0;
7619
7620         /* We need to be careful not to changed the adjusted mode, for otherwise
7621          * the hw state checker will get angry at the mismatch. */
7622         crtc_vtotal = adjusted_mode->crtc_vtotal;
7623         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7624
7625         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7626                 /* the chip adds 2 halflines automatically */
7627                 crtc_vtotal -= 1;
7628                 crtc_vblank_end -= 1;
7629
7630                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7631                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7632                 else
7633                         vsyncshift = adjusted_mode->crtc_hsync_start -
7634                                 adjusted_mode->crtc_htotal / 2;
7635                 if (vsyncshift < 0)
7636                         vsyncshift += adjusted_mode->crtc_htotal;
7637         }
7638
7639         if (INTEL_INFO(dev)->gen > 3)
7640                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7641
7642         I915_WRITE(HTOTAL(cpu_transcoder),
7643                    (adjusted_mode->crtc_hdisplay - 1) |
7644                    ((adjusted_mode->crtc_htotal - 1) << 16));
7645         I915_WRITE(HBLANK(cpu_transcoder),
7646                    (adjusted_mode->crtc_hblank_start - 1) |
7647                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7648         I915_WRITE(HSYNC(cpu_transcoder),
7649                    (adjusted_mode->crtc_hsync_start - 1) |
7650                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7651
7652         I915_WRITE(VTOTAL(cpu_transcoder),
7653                    (adjusted_mode->crtc_vdisplay - 1) |
7654                    ((crtc_vtotal - 1) << 16));
7655         I915_WRITE(VBLANK(cpu_transcoder),
7656                    (adjusted_mode->crtc_vblank_start - 1) |
7657                    ((crtc_vblank_end - 1) << 16));
7658         I915_WRITE(VSYNC(cpu_transcoder),
7659                    (adjusted_mode->crtc_vsync_start - 1) |
7660                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7661
7662         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7663          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7664          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7665          * bits. */
7666         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7667             (pipe == PIPE_B || pipe == PIPE_C))
7668                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7669
7670         /* pipesrc controls the size that is scaled from, which should
7671          * always be the user's requested size.
7672          */
7673         I915_WRITE(PIPESRC(pipe),
7674                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7675                    (intel_crtc->config->pipe_src_h - 1));
7676 }
7677
7678 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7679                                    struct intel_crtc_state *pipe_config)
7680 {
7681         struct drm_device *dev = crtc->base.dev;
7682         struct drm_i915_private *dev_priv = dev->dev_private;
7683         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7684         uint32_t tmp;
7685
7686         tmp = I915_READ(HTOTAL(cpu_transcoder));
7687         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7688         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7689         tmp = I915_READ(HBLANK(cpu_transcoder));
7690         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7691         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7692         tmp = I915_READ(HSYNC(cpu_transcoder));
7693         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7694         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7695
7696         tmp = I915_READ(VTOTAL(cpu_transcoder));
7697         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7698         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7699         tmp = I915_READ(VBLANK(cpu_transcoder));
7700         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7701         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7702         tmp = I915_READ(VSYNC(cpu_transcoder));
7703         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7704         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7705
7706         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7707                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7708                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7709                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7710         }
7711
7712         tmp = I915_READ(PIPESRC(crtc->pipe));
7713         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7714         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7715
7716         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7717         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7718 }
7719
7720 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7721                                  struct intel_crtc_state *pipe_config)
7722 {
7723         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7724         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7725         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7726         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7727
7728         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7729         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7730         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7731         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7732
7733         mode->flags = pipe_config->base.adjusted_mode.flags;
7734
7735         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7736         mode->flags |= pipe_config->base.adjusted_mode.flags;
7737 }
7738
7739 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7740 {
7741         struct drm_device *dev = intel_crtc->base.dev;
7742         struct drm_i915_private *dev_priv = dev->dev_private;
7743         uint32_t pipeconf;
7744
7745         pipeconf = 0;
7746
7747         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7748             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7749                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7750
7751         if (intel_crtc->config->double_wide)
7752                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7753
7754         /* only g4x and later have fancy bpc/dither controls */
7755         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7756                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7757                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7758                         pipeconf |= PIPECONF_DITHER_EN |
7759                                     PIPECONF_DITHER_TYPE_SP;
7760
7761                 switch (intel_crtc->config->pipe_bpp) {
7762                 case 18:
7763                         pipeconf |= PIPECONF_6BPC;
7764                         break;
7765                 case 24:
7766                         pipeconf |= PIPECONF_8BPC;
7767                         break;
7768                 case 30:
7769                         pipeconf |= PIPECONF_10BPC;
7770                         break;
7771                 default:
7772                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7773                         BUG();
7774                 }
7775         }
7776
7777         if (HAS_PIPE_CXSR(dev)) {
7778                 if (intel_crtc->lowfreq_avail) {
7779                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7780                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7781                 } else {
7782                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7783                 }
7784         }
7785
7786         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7787                 if (INTEL_INFO(dev)->gen < 4 ||
7788                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7789                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7790                 else
7791                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7792         } else
7793                 pipeconf |= PIPECONF_PROGRESSIVE;
7794
7795         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7796                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7797
7798         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7799         POSTING_READ(PIPECONF(intel_crtc->pipe));
7800 }
7801
7802 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7803                                    struct intel_crtc_state *crtc_state)
7804 {
7805         struct drm_device *dev = crtc->base.dev;
7806         struct drm_i915_private *dev_priv = dev->dev_private;
7807         int refclk, num_connectors = 0;
7808         intel_clock_t clock;
7809         bool ok;
7810         bool is_dsi = false;
7811         struct intel_encoder *encoder;
7812         const intel_limit_t *limit;
7813         struct drm_atomic_state *state = crtc_state->base.state;
7814         struct drm_connector *connector;
7815         struct drm_connector_state *connector_state;
7816         int i;
7817
7818         memset(&crtc_state->dpll_hw_state, 0,
7819                sizeof(crtc_state->dpll_hw_state));
7820
7821         for_each_connector_in_state(state, connector, connector_state, i) {
7822                 if (connector_state->crtc != &crtc->base)
7823                         continue;
7824
7825                 encoder = to_intel_encoder(connector_state->best_encoder);
7826
7827                 switch (encoder->type) {
7828                 case INTEL_OUTPUT_DSI:
7829                         is_dsi = true;
7830                         break;
7831                 default:
7832                         break;
7833                 }
7834
7835                 num_connectors++;
7836         }
7837
7838         if (is_dsi)
7839                 return 0;
7840
7841         if (!crtc_state->clock_set) {
7842                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7843
7844                 /*
7845                  * Returns a set of divisors for the desired target clock with
7846                  * the given refclk, or FALSE.  The returned values represent
7847                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7848                  * 2) / p1 / p2.
7849                  */
7850                 limit = intel_limit(crtc_state, refclk);
7851                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7852                                                  crtc_state->port_clock,
7853                                                  refclk, NULL, &clock);
7854                 if (!ok) {
7855                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7856                         return -EINVAL;
7857                 }
7858
7859                 /* Compat-code for transition, will disappear. */
7860                 crtc_state->dpll.n = clock.n;
7861                 crtc_state->dpll.m1 = clock.m1;
7862                 crtc_state->dpll.m2 = clock.m2;
7863                 crtc_state->dpll.p1 = clock.p1;
7864                 crtc_state->dpll.p2 = clock.p2;
7865         }
7866
7867         if (IS_GEN2(dev)) {
7868                 i8xx_compute_dpll(crtc, crtc_state, NULL,
7869                                   num_connectors);
7870         } else if (IS_CHERRYVIEW(dev)) {
7871                 chv_compute_dpll(crtc, crtc_state);
7872         } else if (IS_VALLEYVIEW(dev)) {
7873                 vlv_compute_dpll(crtc, crtc_state);
7874         } else {
7875                 i9xx_compute_dpll(crtc, crtc_state, NULL,
7876                                   num_connectors);
7877         }
7878
7879         return 0;
7880 }
7881
7882 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7883                                  struct intel_crtc_state *pipe_config)
7884 {
7885         struct drm_device *dev = crtc->base.dev;
7886         struct drm_i915_private *dev_priv = dev->dev_private;
7887         uint32_t tmp;
7888
7889         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7890                 return;
7891
7892         tmp = I915_READ(PFIT_CONTROL);
7893         if (!(tmp & PFIT_ENABLE))
7894                 return;
7895
7896         /* Check whether the pfit is attached to our pipe. */
7897         if (INTEL_INFO(dev)->gen < 4) {
7898                 if (crtc->pipe != PIPE_B)
7899                         return;
7900         } else {
7901                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7902                         return;
7903         }
7904
7905         pipe_config->gmch_pfit.control = tmp;
7906         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7907         if (INTEL_INFO(dev)->gen < 5)
7908                 pipe_config->gmch_pfit.lvds_border_bits =
7909                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7910 }
7911
7912 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7913                                struct intel_crtc_state *pipe_config)
7914 {
7915         struct drm_device *dev = crtc->base.dev;
7916         struct drm_i915_private *dev_priv = dev->dev_private;
7917         int pipe = pipe_config->cpu_transcoder;
7918         intel_clock_t clock;
7919         u32 mdiv;
7920         int refclk = 100000;
7921
7922         /* In case of MIPI DPLL will not even be used */
7923         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7924                 return;
7925
7926         mutex_lock(&dev_priv->sb_lock);
7927         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7928         mutex_unlock(&dev_priv->sb_lock);
7929
7930         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7931         clock.m2 = mdiv & DPIO_M2DIV_MASK;
7932         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7933         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7934         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7935
7936         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7937 }
7938
7939 static void
7940 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7941                               struct intel_initial_plane_config *plane_config)
7942 {
7943         struct drm_device *dev = crtc->base.dev;
7944         struct drm_i915_private *dev_priv = dev->dev_private;
7945         u32 val, base, offset;
7946         int pipe = crtc->pipe, plane = crtc->plane;
7947         int fourcc, pixel_format;
7948         unsigned int aligned_height;
7949         struct drm_framebuffer *fb;
7950         struct intel_framebuffer *intel_fb;
7951
7952         val = I915_READ(DSPCNTR(plane));
7953         if (!(val & DISPLAY_PLANE_ENABLE))
7954                 return;
7955
7956         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7957         if (!intel_fb) {
7958                 DRM_DEBUG_KMS("failed to alloc fb\n");
7959                 return;
7960         }
7961
7962         fb = &intel_fb->base;
7963
7964         if (INTEL_INFO(dev)->gen >= 4) {
7965                 if (val & DISPPLANE_TILED) {
7966                         plane_config->tiling = I915_TILING_X;
7967                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7968                 }
7969         }
7970
7971         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7972         fourcc = i9xx_format_to_fourcc(pixel_format);
7973         fb->pixel_format = fourcc;
7974         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7975
7976         if (INTEL_INFO(dev)->gen >= 4) {
7977                 if (plane_config->tiling)
7978                         offset = I915_READ(DSPTILEOFF(plane));
7979                 else
7980                         offset = I915_READ(DSPLINOFF(plane));
7981                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7982         } else {
7983                 base = I915_READ(DSPADDR(plane));
7984         }
7985         plane_config->base = base;
7986
7987         val = I915_READ(PIPESRC(pipe));
7988         fb->width = ((val >> 16) & 0xfff) + 1;
7989         fb->height = ((val >> 0) & 0xfff) + 1;
7990
7991         val = I915_READ(DSPSTRIDE(pipe));
7992         fb->pitches[0] = val & 0xffffffc0;
7993
7994         aligned_height = intel_fb_align_height(dev, fb->height,
7995                                                fb->pixel_format,
7996                                                fb->modifier[0]);
7997
7998         plane_config->size = fb->pitches[0] * aligned_height;
7999
8000         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8001                       pipe_name(pipe), plane, fb->width, fb->height,
8002                       fb->bits_per_pixel, base, fb->pitches[0],
8003                       plane_config->size);
8004
8005         plane_config->fb = intel_fb;
8006 }
8007
8008 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8009                                struct intel_crtc_state *pipe_config)
8010 {
8011         struct drm_device *dev = crtc->base.dev;
8012         struct drm_i915_private *dev_priv = dev->dev_private;
8013         int pipe = pipe_config->cpu_transcoder;
8014         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8015         intel_clock_t clock;
8016         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
8017         int refclk = 100000;
8018
8019         mutex_lock(&dev_priv->sb_lock);
8020         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8021         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8022         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8023         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8024         mutex_unlock(&dev_priv->sb_lock);
8025
8026         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8027         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
8028         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8029         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8030         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8031
8032         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8033 }
8034
8035 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8036                                  struct intel_crtc_state *pipe_config)
8037 {
8038         struct drm_device *dev = crtc->base.dev;
8039         struct drm_i915_private *dev_priv = dev->dev_private;
8040         uint32_t tmp;
8041
8042         if (!intel_display_power_is_enabled(dev_priv,
8043                                             POWER_DOMAIN_PIPE(crtc->pipe)))
8044                 return false;
8045
8046         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8047         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8048
8049         tmp = I915_READ(PIPECONF(crtc->pipe));
8050         if (!(tmp & PIPECONF_ENABLE))
8051                 return false;
8052
8053         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8054                 switch (tmp & PIPECONF_BPC_MASK) {
8055                 case PIPECONF_6BPC:
8056                         pipe_config->pipe_bpp = 18;
8057                         break;
8058                 case PIPECONF_8BPC:
8059                         pipe_config->pipe_bpp = 24;
8060                         break;
8061                 case PIPECONF_10BPC:
8062                         pipe_config->pipe_bpp = 30;
8063                         break;
8064                 default:
8065                         break;
8066                 }
8067         }
8068
8069         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8070                 pipe_config->limited_color_range = true;
8071
8072         if (INTEL_INFO(dev)->gen < 4)
8073                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8074
8075         intel_get_pipe_timings(crtc, pipe_config);
8076
8077         i9xx_get_pfit_config(crtc, pipe_config);
8078
8079         if (INTEL_INFO(dev)->gen >= 4) {
8080                 tmp = I915_READ(DPLL_MD(crtc->pipe));
8081                 pipe_config->pixel_multiplier =
8082                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8083                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8084                 pipe_config->dpll_hw_state.dpll_md = tmp;
8085         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8086                 tmp = I915_READ(DPLL(crtc->pipe));
8087                 pipe_config->pixel_multiplier =
8088                         ((tmp & SDVO_MULTIPLIER_MASK)
8089                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8090         } else {
8091                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8092                  * port and will be fixed up in the encoder->get_config
8093                  * function. */
8094                 pipe_config->pixel_multiplier = 1;
8095         }
8096         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8097         if (!IS_VALLEYVIEW(dev)) {
8098                 /*
8099                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8100                  * on 830. Filter it out here so that we don't
8101                  * report errors due to that.
8102                  */
8103                 if (IS_I830(dev))
8104                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8105
8106                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8107                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8108         } else {
8109                 /* Mask out read-only status bits. */
8110                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8111                                                      DPLL_PORTC_READY_MASK |
8112                                                      DPLL_PORTB_READY_MASK);
8113         }
8114
8115         if (IS_CHERRYVIEW(dev))
8116                 chv_crtc_clock_get(crtc, pipe_config);
8117         else if (IS_VALLEYVIEW(dev))
8118                 vlv_crtc_clock_get(crtc, pipe_config);
8119         else
8120                 i9xx_crtc_clock_get(crtc, pipe_config);
8121
8122         return true;
8123 }
8124
8125 static void ironlake_init_pch_refclk(struct drm_device *dev)
8126 {
8127         struct drm_i915_private *dev_priv = dev->dev_private;
8128         struct intel_encoder *encoder;
8129         u32 val, final;
8130         bool has_lvds = false;
8131         bool has_cpu_edp = false;
8132         bool has_panel = false;
8133         bool has_ck505 = false;
8134         bool can_ssc = false;
8135
8136         /* We need to take the global config into account */
8137         for_each_intel_encoder(dev, encoder) {
8138                 switch (encoder->type) {
8139                 case INTEL_OUTPUT_LVDS:
8140                         has_panel = true;
8141                         has_lvds = true;
8142                         break;
8143                 case INTEL_OUTPUT_EDP:
8144                         has_panel = true;
8145                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8146                                 has_cpu_edp = true;
8147                         break;
8148                 default:
8149                         break;
8150                 }
8151         }
8152
8153         if (HAS_PCH_IBX(dev)) {
8154                 has_ck505 = dev_priv->vbt.display_clock_mode;
8155                 can_ssc = has_ck505;
8156         } else {
8157                 has_ck505 = false;
8158                 can_ssc = true;
8159         }
8160
8161         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8162                       has_panel, has_lvds, has_ck505);
8163
8164         /* Ironlake: try to setup display ref clock before DPLL
8165          * enabling. This is only under driver's control after
8166          * PCH B stepping, previous chipset stepping should be
8167          * ignoring this setting.
8168          */
8169         val = I915_READ(PCH_DREF_CONTROL);
8170
8171         /* As we must carefully and slowly disable/enable each source in turn,
8172          * compute the final state we want first and check if we need to
8173          * make any changes at all.
8174          */
8175         final = val;
8176         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8177         if (has_ck505)
8178                 final |= DREF_NONSPREAD_CK505_ENABLE;
8179         else
8180                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8181
8182         final &= ~DREF_SSC_SOURCE_MASK;
8183         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8184         final &= ~DREF_SSC1_ENABLE;
8185
8186         if (has_panel) {
8187                 final |= DREF_SSC_SOURCE_ENABLE;
8188
8189                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8190                         final |= DREF_SSC1_ENABLE;
8191
8192                 if (has_cpu_edp) {
8193                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8194                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8195                         else
8196                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8197                 } else
8198                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8199         } else {
8200                 final |= DREF_SSC_SOURCE_DISABLE;
8201                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8202         }
8203
8204         if (final == val)
8205                 return;
8206
8207         /* Always enable nonspread source */
8208         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8209
8210         if (has_ck505)
8211                 val |= DREF_NONSPREAD_CK505_ENABLE;
8212         else
8213                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8214
8215         if (has_panel) {
8216                 val &= ~DREF_SSC_SOURCE_MASK;
8217                 val |= DREF_SSC_SOURCE_ENABLE;
8218
8219                 /* SSC must be turned on before enabling the CPU output  */
8220                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8221                         DRM_DEBUG_KMS("Using SSC on panel\n");
8222                         val |= DREF_SSC1_ENABLE;
8223                 } else
8224                         val &= ~DREF_SSC1_ENABLE;
8225
8226                 /* Get SSC going before enabling the outputs */
8227                 I915_WRITE(PCH_DREF_CONTROL, val);
8228                 POSTING_READ(PCH_DREF_CONTROL);
8229                 udelay(200);
8230
8231                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8232
8233                 /* Enable CPU source on CPU attached eDP */
8234                 if (has_cpu_edp) {
8235                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8236                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8237                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8238                         } else
8239                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8240                 } else
8241                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8242
8243                 I915_WRITE(PCH_DREF_CONTROL, val);
8244                 POSTING_READ(PCH_DREF_CONTROL);
8245                 udelay(200);
8246         } else {
8247                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8248
8249                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8250
8251                 /* Turn off CPU output */
8252                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8253
8254                 I915_WRITE(PCH_DREF_CONTROL, val);
8255                 POSTING_READ(PCH_DREF_CONTROL);
8256                 udelay(200);
8257
8258                 /* Turn off the SSC source */
8259                 val &= ~DREF_SSC_SOURCE_MASK;
8260                 val |= DREF_SSC_SOURCE_DISABLE;
8261
8262                 /* Turn off SSC1 */
8263                 val &= ~DREF_SSC1_ENABLE;
8264
8265                 I915_WRITE(PCH_DREF_CONTROL, val);
8266                 POSTING_READ(PCH_DREF_CONTROL);
8267                 udelay(200);
8268         }
8269
8270         BUG_ON(val != final);
8271 }
8272
8273 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8274 {
8275         uint32_t tmp;
8276
8277         tmp = I915_READ(SOUTH_CHICKEN2);
8278         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8279         I915_WRITE(SOUTH_CHICKEN2, tmp);
8280
8281         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8282                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8283                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8284
8285         tmp = I915_READ(SOUTH_CHICKEN2);
8286         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8287         I915_WRITE(SOUTH_CHICKEN2, tmp);
8288
8289         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8290                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8291                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8292 }
8293
8294 /* WaMPhyProgramming:hsw */
8295 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8296 {
8297         uint32_t tmp;
8298
8299         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8300         tmp &= ~(0xFF << 24);
8301         tmp |= (0x12 << 24);
8302         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8303
8304         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8305         tmp |= (1 << 11);
8306         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8307
8308         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8309         tmp |= (1 << 11);
8310         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8311
8312         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8313         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8314         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8315
8316         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8317         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8318         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8319
8320         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8321         tmp &= ~(7 << 13);
8322         tmp |= (5 << 13);
8323         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8324
8325         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8326         tmp &= ~(7 << 13);
8327         tmp |= (5 << 13);
8328         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8329
8330         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8331         tmp &= ~0xFF;
8332         tmp |= 0x1C;
8333         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8334
8335         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8336         tmp &= ~0xFF;
8337         tmp |= 0x1C;
8338         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8339
8340         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8341         tmp &= ~(0xFF << 16);
8342         tmp |= (0x1C << 16);
8343         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8344
8345         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8346         tmp &= ~(0xFF << 16);
8347         tmp |= (0x1C << 16);
8348         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8349
8350         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8351         tmp |= (1 << 27);
8352         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8353
8354         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8355         tmp |= (1 << 27);
8356         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8357
8358         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8359         tmp &= ~(0xF << 28);
8360         tmp |= (4 << 28);
8361         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8362
8363         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8364         tmp &= ~(0xF << 28);
8365         tmp |= (4 << 28);
8366         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8367 }
8368
8369 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8370  * Programming" based on the parameters passed:
8371  * - Sequence to enable CLKOUT_DP
8372  * - Sequence to enable CLKOUT_DP without spread
8373  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8374  */
8375 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8376                                  bool with_fdi)
8377 {
8378         struct drm_i915_private *dev_priv = dev->dev_private;
8379         uint32_t reg, tmp;
8380
8381         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8382                 with_spread = true;
8383         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8384                  with_fdi, "LP PCH doesn't have FDI\n"))
8385                 with_fdi = false;
8386
8387         mutex_lock(&dev_priv->sb_lock);
8388
8389         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8390         tmp &= ~SBI_SSCCTL_DISABLE;
8391         tmp |= SBI_SSCCTL_PATHALT;
8392         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8393
8394         udelay(24);
8395
8396         if (with_spread) {
8397                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8398                 tmp &= ~SBI_SSCCTL_PATHALT;
8399                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8400
8401                 if (with_fdi) {
8402                         lpt_reset_fdi_mphy(dev_priv);
8403                         lpt_program_fdi_mphy(dev_priv);
8404                 }
8405         }
8406
8407         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8408                SBI_GEN0 : SBI_DBUFF0;
8409         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8410         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8411         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8412
8413         mutex_unlock(&dev_priv->sb_lock);
8414 }
8415
8416 /* Sequence to disable CLKOUT_DP */
8417 static void lpt_disable_clkout_dp(struct drm_device *dev)
8418 {
8419         struct drm_i915_private *dev_priv = dev->dev_private;
8420         uint32_t reg, tmp;
8421
8422         mutex_lock(&dev_priv->sb_lock);
8423
8424         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8425                SBI_GEN0 : SBI_DBUFF0;
8426         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8427         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8428         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8429
8430         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8431         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8432                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8433                         tmp |= SBI_SSCCTL_PATHALT;
8434                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8435                         udelay(32);
8436                 }
8437                 tmp |= SBI_SSCCTL_DISABLE;
8438                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8439         }
8440
8441         mutex_unlock(&dev_priv->sb_lock);
8442 }
8443
8444 static void lpt_init_pch_refclk(struct drm_device *dev)
8445 {
8446         struct intel_encoder *encoder;
8447         bool has_vga = false;
8448
8449         for_each_intel_encoder(dev, encoder) {
8450                 switch (encoder->type) {
8451                 case INTEL_OUTPUT_ANALOG:
8452                         has_vga = true;
8453                         break;
8454                 default:
8455                         break;
8456                 }
8457         }
8458
8459         if (has_vga)
8460                 lpt_enable_clkout_dp(dev, true, true);
8461         else
8462                 lpt_disable_clkout_dp(dev);
8463 }
8464
8465 /*
8466  * Initialize reference clocks when the driver loads
8467  */
8468 void intel_init_pch_refclk(struct drm_device *dev)
8469 {
8470         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8471                 ironlake_init_pch_refclk(dev);
8472         else if (HAS_PCH_LPT(dev))
8473                 lpt_init_pch_refclk(dev);
8474 }
8475
8476 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8477 {
8478         struct drm_device *dev = crtc_state->base.crtc->dev;
8479         struct drm_i915_private *dev_priv = dev->dev_private;
8480         struct drm_atomic_state *state = crtc_state->base.state;
8481         struct drm_connector *connector;
8482         struct drm_connector_state *connector_state;
8483         struct intel_encoder *encoder;
8484         int num_connectors = 0, i;
8485         bool is_lvds = false;
8486
8487         for_each_connector_in_state(state, connector, connector_state, i) {
8488                 if (connector_state->crtc != crtc_state->base.crtc)
8489                         continue;
8490
8491                 encoder = to_intel_encoder(connector_state->best_encoder);
8492
8493                 switch (encoder->type) {
8494                 case INTEL_OUTPUT_LVDS:
8495                         is_lvds = true;
8496                         break;
8497                 default:
8498                         break;
8499                 }
8500                 num_connectors++;
8501         }
8502
8503         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8504                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8505                               dev_priv->vbt.lvds_ssc_freq);
8506                 return dev_priv->vbt.lvds_ssc_freq;
8507         }
8508
8509         return 120000;
8510 }
8511
8512 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8513 {
8514         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8515         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8516         int pipe = intel_crtc->pipe;
8517         uint32_t val;
8518
8519         val = 0;
8520
8521         switch (intel_crtc->config->pipe_bpp) {
8522         case 18:
8523                 val |= PIPECONF_6BPC;
8524                 break;
8525         case 24:
8526                 val |= PIPECONF_8BPC;
8527                 break;
8528         case 30:
8529                 val |= PIPECONF_10BPC;
8530                 break;
8531         case 36:
8532                 val |= PIPECONF_12BPC;
8533                 break;
8534         default:
8535                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8536                 BUG();
8537         }
8538
8539         if (intel_crtc->config->dither)
8540                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8541
8542         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8543                 val |= PIPECONF_INTERLACED_ILK;
8544         else
8545                 val |= PIPECONF_PROGRESSIVE;
8546
8547         if (intel_crtc->config->limited_color_range)
8548                 val |= PIPECONF_COLOR_RANGE_SELECT;
8549
8550         I915_WRITE(PIPECONF(pipe), val);
8551         POSTING_READ(PIPECONF(pipe));
8552 }
8553
8554 /*
8555  * Set up the pipe CSC unit.
8556  *
8557  * Currently only full range RGB to limited range RGB conversion
8558  * is supported, but eventually this should handle various
8559  * RGB<->YCbCr scenarios as well.
8560  */
8561 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8562 {
8563         struct drm_device *dev = crtc->dev;
8564         struct drm_i915_private *dev_priv = dev->dev_private;
8565         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8566         int pipe = intel_crtc->pipe;
8567         uint16_t coeff = 0x7800; /* 1.0 */
8568
8569         /*
8570          * TODO: Check what kind of values actually come out of the pipe
8571          * with these coeff/postoff values and adjust to get the best
8572          * accuracy. Perhaps we even need to take the bpc value into
8573          * consideration.
8574          */
8575
8576         if (intel_crtc->config->limited_color_range)
8577                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8578
8579         /*
8580          * GY/GU and RY/RU should be the other way around according
8581          * to BSpec, but reality doesn't agree. Just set them up in
8582          * a way that results in the correct picture.
8583          */
8584         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8585         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8586
8587         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8588         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8589
8590         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8591         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8592
8593         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8594         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8595         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8596
8597         if (INTEL_INFO(dev)->gen > 6) {
8598                 uint16_t postoff = 0;
8599
8600                 if (intel_crtc->config->limited_color_range)
8601                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8602
8603                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8604                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8605                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8606
8607                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8608         } else {
8609                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8610
8611                 if (intel_crtc->config->limited_color_range)
8612                         mode |= CSC_BLACK_SCREEN_OFFSET;
8613
8614                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8615         }
8616 }
8617
8618 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8619 {
8620         struct drm_device *dev = crtc->dev;
8621         struct drm_i915_private *dev_priv = dev->dev_private;
8622         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8623         enum pipe pipe = intel_crtc->pipe;
8624         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8625         uint32_t val;
8626
8627         val = 0;
8628
8629         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8630                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8631
8632         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8633                 val |= PIPECONF_INTERLACED_ILK;
8634         else
8635                 val |= PIPECONF_PROGRESSIVE;
8636
8637         I915_WRITE(PIPECONF(cpu_transcoder), val);
8638         POSTING_READ(PIPECONF(cpu_transcoder));
8639
8640         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8641         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8642
8643         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8644                 val = 0;
8645
8646                 switch (intel_crtc->config->pipe_bpp) {
8647                 case 18:
8648                         val |= PIPEMISC_DITHER_6_BPC;
8649                         break;
8650                 case 24:
8651                         val |= PIPEMISC_DITHER_8_BPC;
8652                         break;
8653                 case 30:
8654                         val |= PIPEMISC_DITHER_10_BPC;
8655                         break;
8656                 case 36:
8657                         val |= PIPEMISC_DITHER_12_BPC;
8658                         break;
8659                 default:
8660                         /* Case prevented by pipe_config_set_bpp. */
8661                         BUG();
8662                 }
8663
8664                 if (intel_crtc->config->dither)
8665                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8666
8667                 I915_WRITE(PIPEMISC(pipe), val);
8668         }
8669 }
8670
8671 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8672                                     struct intel_crtc_state *crtc_state,
8673                                     intel_clock_t *clock,
8674                                     bool *has_reduced_clock,
8675                                     intel_clock_t *reduced_clock)
8676 {
8677         struct drm_device *dev = crtc->dev;
8678         struct drm_i915_private *dev_priv = dev->dev_private;
8679         int refclk;
8680         const intel_limit_t *limit;
8681         bool ret;
8682
8683         refclk = ironlake_get_refclk(crtc_state);
8684
8685         /*
8686          * Returns a set of divisors for the desired target clock with the given
8687          * refclk, or FALSE.  The returned values represent the clock equation:
8688          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8689          */
8690         limit = intel_limit(crtc_state, refclk);
8691         ret = dev_priv->display.find_dpll(limit, crtc_state,
8692                                           crtc_state->port_clock,
8693                                           refclk, NULL, clock);
8694         if (!ret)
8695                 return false;
8696
8697         return true;
8698 }
8699
8700 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8701 {
8702         /*
8703          * Account for spread spectrum to avoid
8704          * oversubscribing the link. Max center spread
8705          * is 2.5%; use 5% for safety's sake.
8706          */
8707         u32 bps = target_clock * bpp * 21 / 20;
8708         return DIV_ROUND_UP(bps, link_bw * 8);
8709 }
8710
8711 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8712 {
8713         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8714 }
8715
8716 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8717                                       struct intel_crtc_state *crtc_state,
8718                                       u32 *fp,
8719                                       intel_clock_t *reduced_clock, u32 *fp2)
8720 {
8721         struct drm_crtc *crtc = &intel_crtc->base;
8722         struct drm_device *dev = crtc->dev;
8723         struct drm_i915_private *dev_priv = dev->dev_private;
8724         struct drm_atomic_state *state = crtc_state->base.state;
8725         struct drm_connector *connector;
8726         struct drm_connector_state *connector_state;
8727         struct intel_encoder *encoder;
8728         uint32_t dpll;
8729         int factor, num_connectors = 0, i;
8730         bool is_lvds = false, is_sdvo = false;
8731
8732         for_each_connector_in_state(state, connector, connector_state, i) {
8733                 if (connector_state->crtc != crtc_state->base.crtc)
8734                         continue;
8735
8736                 encoder = to_intel_encoder(connector_state->best_encoder);
8737
8738                 switch (encoder->type) {
8739                 case INTEL_OUTPUT_LVDS:
8740                         is_lvds = true;
8741                         break;
8742                 case INTEL_OUTPUT_SDVO:
8743                 case INTEL_OUTPUT_HDMI:
8744                         is_sdvo = true;
8745                         break;
8746                 default:
8747                         break;
8748                 }
8749
8750                 num_connectors++;
8751         }
8752
8753         /* Enable autotuning of the PLL clock (if permissible) */
8754         factor = 21;
8755         if (is_lvds) {
8756                 if ((intel_panel_use_ssc(dev_priv) &&
8757                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8758                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8759                         factor = 25;
8760         } else if (crtc_state->sdvo_tv_clock)
8761                 factor = 20;
8762
8763         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8764                 *fp |= FP_CB_TUNE;
8765
8766         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8767                 *fp2 |= FP_CB_TUNE;
8768
8769         dpll = 0;
8770
8771         if (is_lvds)
8772                 dpll |= DPLLB_MODE_LVDS;
8773         else
8774                 dpll |= DPLLB_MODE_DAC_SERIAL;
8775
8776         dpll |= (crtc_state->pixel_multiplier - 1)
8777                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8778
8779         if (is_sdvo)
8780                 dpll |= DPLL_SDVO_HIGH_SPEED;
8781         if (crtc_state->has_dp_encoder)
8782                 dpll |= DPLL_SDVO_HIGH_SPEED;
8783
8784         /* compute bitmask from p1 value */
8785         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8786         /* also FPA1 */
8787         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8788
8789         switch (crtc_state->dpll.p2) {
8790         case 5:
8791                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8792                 break;
8793         case 7:
8794                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8795                 break;
8796         case 10:
8797                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8798                 break;
8799         case 14:
8800                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8801                 break;
8802         }
8803
8804         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8805                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8806         else
8807                 dpll |= PLL_REF_INPUT_DREFCLK;
8808
8809         return dpll | DPLL_VCO_ENABLE;
8810 }
8811
8812 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8813                                        struct intel_crtc_state *crtc_state)
8814 {
8815         struct drm_device *dev = crtc->base.dev;
8816         intel_clock_t clock, reduced_clock;
8817         u32 dpll = 0, fp = 0, fp2 = 0;
8818         bool ok, has_reduced_clock = false;
8819         bool is_lvds = false;
8820         struct intel_shared_dpll *pll;
8821
8822         memset(&crtc_state->dpll_hw_state, 0,
8823                sizeof(crtc_state->dpll_hw_state));
8824
8825         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8826
8827         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8828              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8829
8830         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8831                                      &has_reduced_clock, &reduced_clock);
8832         if (!ok && !crtc_state->clock_set) {
8833                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8834                 return -EINVAL;
8835         }
8836         /* Compat-code for transition, will disappear. */
8837         if (!crtc_state->clock_set) {
8838                 crtc_state->dpll.n = clock.n;
8839                 crtc_state->dpll.m1 = clock.m1;
8840                 crtc_state->dpll.m2 = clock.m2;
8841                 crtc_state->dpll.p1 = clock.p1;
8842                 crtc_state->dpll.p2 = clock.p2;
8843         }
8844
8845         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8846         if (crtc_state->has_pch_encoder) {
8847                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8848                 if (has_reduced_clock)
8849                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8850
8851                 dpll = ironlake_compute_dpll(crtc, crtc_state,
8852                                              &fp, &reduced_clock,
8853                                              has_reduced_clock ? &fp2 : NULL);
8854
8855                 crtc_state->dpll_hw_state.dpll = dpll;
8856                 crtc_state->dpll_hw_state.fp0 = fp;
8857                 if (has_reduced_clock)
8858                         crtc_state->dpll_hw_state.fp1 = fp2;
8859                 else
8860                         crtc_state->dpll_hw_state.fp1 = fp;
8861
8862                 pll = intel_get_shared_dpll(crtc, crtc_state);
8863                 if (pll == NULL) {
8864                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8865                                          pipe_name(crtc->pipe));
8866                         return -EINVAL;
8867                 }
8868         }
8869
8870         if (is_lvds && has_reduced_clock)
8871                 crtc->lowfreq_avail = true;
8872         else
8873                 crtc->lowfreq_avail = false;
8874
8875         return 0;
8876 }
8877
8878 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8879                                          struct intel_link_m_n *m_n)
8880 {
8881         struct drm_device *dev = crtc->base.dev;
8882         struct drm_i915_private *dev_priv = dev->dev_private;
8883         enum pipe pipe = crtc->pipe;
8884
8885         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8886         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8887         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8888                 & ~TU_SIZE_MASK;
8889         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8890         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8891                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8892 }
8893
8894 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8895                                          enum transcoder transcoder,
8896                                          struct intel_link_m_n *m_n,
8897                                          struct intel_link_m_n *m2_n2)
8898 {
8899         struct drm_device *dev = crtc->base.dev;
8900         struct drm_i915_private *dev_priv = dev->dev_private;
8901         enum pipe pipe = crtc->pipe;
8902
8903         if (INTEL_INFO(dev)->gen >= 5) {
8904                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8905                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8906                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8907                         & ~TU_SIZE_MASK;
8908                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8909                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8910                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8911                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8912                  * gen < 8) and if DRRS is supported (to make sure the
8913                  * registers are not unnecessarily read).
8914                  */
8915                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8916                         crtc->config->has_drrs) {
8917                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8918                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8919                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8920                                         & ~TU_SIZE_MASK;
8921                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8922                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8923                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8924                 }
8925         } else {
8926                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8927                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8928                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8929                         & ~TU_SIZE_MASK;
8930                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8931                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8932                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8933         }
8934 }
8935
8936 void intel_dp_get_m_n(struct intel_crtc *crtc,
8937                       struct intel_crtc_state *pipe_config)
8938 {
8939         if (pipe_config->has_pch_encoder)
8940                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8941         else
8942                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8943                                              &pipe_config->dp_m_n,
8944                                              &pipe_config->dp_m2_n2);
8945 }
8946
8947 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8948                                         struct intel_crtc_state *pipe_config)
8949 {
8950         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8951                                      &pipe_config->fdi_m_n, NULL);
8952 }
8953
8954 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8955                                     struct intel_crtc_state *pipe_config)
8956 {
8957         struct drm_device *dev = crtc->base.dev;
8958         struct drm_i915_private *dev_priv = dev->dev_private;
8959         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8960         uint32_t ps_ctrl = 0;
8961         int id = -1;
8962         int i;
8963
8964         /* find scaler attached to this pipe */
8965         for (i = 0; i < crtc->num_scalers; i++) {
8966                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8967                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8968                         id = i;
8969                         pipe_config->pch_pfit.enabled = true;
8970                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8971                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8972                         break;
8973                 }
8974         }
8975
8976         scaler_state->scaler_id = id;
8977         if (id >= 0) {
8978                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8979         } else {
8980                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8981         }
8982 }
8983
8984 static void
8985 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8986                                  struct intel_initial_plane_config *plane_config)
8987 {
8988         struct drm_device *dev = crtc->base.dev;
8989         struct drm_i915_private *dev_priv = dev->dev_private;
8990         u32 val, base, offset, stride_mult, tiling;
8991         int pipe = crtc->pipe;
8992         int fourcc, pixel_format;
8993         unsigned int aligned_height;
8994         struct drm_framebuffer *fb;
8995         struct intel_framebuffer *intel_fb;
8996
8997         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8998         if (!intel_fb) {
8999                 DRM_DEBUG_KMS("failed to alloc fb\n");
9000                 return;
9001         }
9002
9003         fb = &intel_fb->base;
9004
9005         val = I915_READ(PLANE_CTL(pipe, 0));
9006         if (!(val & PLANE_CTL_ENABLE))
9007                 goto error;
9008
9009         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9010         fourcc = skl_format_to_fourcc(pixel_format,
9011                                       val & PLANE_CTL_ORDER_RGBX,
9012                                       val & PLANE_CTL_ALPHA_MASK);
9013         fb->pixel_format = fourcc;
9014         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9015
9016         tiling = val & PLANE_CTL_TILED_MASK;
9017         switch (tiling) {
9018         case PLANE_CTL_TILED_LINEAR:
9019                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9020                 break;
9021         case PLANE_CTL_TILED_X:
9022                 plane_config->tiling = I915_TILING_X;
9023                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9024                 break;
9025         case PLANE_CTL_TILED_Y:
9026                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9027                 break;
9028         case PLANE_CTL_TILED_YF:
9029                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9030                 break;
9031         default:
9032                 MISSING_CASE(tiling);
9033                 goto error;
9034         }
9035
9036         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9037         plane_config->base = base;
9038
9039         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9040
9041         val = I915_READ(PLANE_SIZE(pipe, 0));
9042         fb->height = ((val >> 16) & 0xfff) + 1;
9043         fb->width = ((val >> 0) & 0x1fff) + 1;
9044
9045         val = I915_READ(PLANE_STRIDE(pipe, 0));
9046         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9047                                                 fb->pixel_format);
9048         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9049
9050         aligned_height = intel_fb_align_height(dev, fb->height,
9051                                                fb->pixel_format,
9052                                                fb->modifier[0]);
9053
9054         plane_config->size = fb->pitches[0] * aligned_height;
9055
9056         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9057                       pipe_name(pipe), fb->width, fb->height,
9058                       fb->bits_per_pixel, base, fb->pitches[0],
9059                       plane_config->size);
9060
9061         plane_config->fb = intel_fb;
9062         return;
9063
9064 error:
9065         kfree(fb);
9066 }
9067
9068 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9069                                      struct intel_crtc_state *pipe_config)
9070 {
9071         struct drm_device *dev = crtc->base.dev;
9072         struct drm_i915_private *dev_priv = dev->dev_private;
9073         uint32_t tmp;
9074
9075         tmp = I915_READ(PF_CTL(crtc->pipe));
9076
9077         if (tmp & PF_ENABLE) {
9078                 pipe_config->pch_pfit.enabled = true;
9079                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9080                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9081
9082                 /* We currently do not free assignements of panel fitters on
9083                  * ivb/hsw (since we don't use the higher upscaling modes which
9084                  * differentiates them) so just WARN about this case for now. */
9085                 if (IS_GEN7(dev)) {
9086                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9087                                 PF_PIPE_SEL_IVB(crtc->pipe));
9088                 }
9089         }
9090 }
9091
9092 static void
9093 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9094                                   struct intel_initial_plane_config *plane_config)
9095 {
9096         struct drm_device *dev = crtc->base.dev;
9097         struct drm_i915_private *dev_priv = dev->dev_private;
9098         u32 val, base, offset;
9099         int pipe = crtc->pipe;
9100         int fourcc, pixel_format;
9101         unsigned int aligned_height;
9102         struct drm_framebuffer *fb;
9103         struct intel_framebuffer *intel_fb;
9104
9105         val = I915_READ(DSPCNTR(pipe));
9106         if (!(val & DISPLAY_PLANE_ENABLE))
9107                 return;
9108
9109         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9110         if (!intel_fb) {
9111                 DRM_DEBUG_KMS("failed to alloc fb\n");
9112                 return;
9113         }
9114
9115         fb = &intel_fb->base;
9116
9117         if (INTEL_INFO(dev)->gen >= 4) {
9118                 if (val & DISPPLANE_TILED) {
9119                         plane_config->tiling = I915_TILING_X;
9120                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9121                 }
9122         }
9123
9124         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9125         fourcc = i9xx_format_to_fourcc(pixel_format);
9126         fb->pixel_format = fourcc;
9127         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9128
9129         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9130         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9131                 offset = I915_READ(DSPOFFSET(pipe));
9132         } else {
9133                 if (plane_config->tiling)
9134                         offset = I915_READ(DSPTILEOFF(pipe));
9135                 else
9136                         offset = I915_READ(DSPLINOFF(pipe));
9137         }
9138         plane_config->base = base;
9139
9140         val = I915_READ(PIPESRC(pipe));
9141         fb->width = ((val >> 16) & 0xfff) + 1;
9142         fb->height = ((val >> 0) & 0xfff) + 1;
9143
9144         val = I915_READ(DSPSTRIDE(pipe));
9145         fb->pitches[0] = val & 0xffffffc0;
9146
9147         aligned_height = intel_fb_align_height(dev, fb->height,
9148                                                fb->pixel_format,
9149                                                fb->modifier[0]);
9150
9151         plane_config->size = fb->pitches[0] * aligned_height;
9152
9153         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9154                       pipe_name(pipe), fb->width, fb->height,
9155                       fb->bits_per_pixel, base, fb->pitches[0],
9156                       plane_config->size);
9157
9158         plane_config->fb = intel_fb;
9159 }
9160
9161 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9162                                      struct intel_crtc_state *pipe_config)
9163 {
9164         struct drm_device *dev = crtc->base.dev;
9165         struct drm_i915_private *dev_priv = dev->dev_private;
9166         uint32_t tmp;
9167
9168         if (!intel_display_power_is_enabled(dev_priv,
9169                                             POWER_DOMAIN_PIPE(crtc->pipe)))
9170                 return false;
9171
9172         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9173         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9174
9175         tmp = I915_READ(PIPECONF(crtc->pipe));
9176         if (!(tmp & PIPECONF_ENABLE))
9177                 return false;
9178
9179         switch (tmp & PIPECONF_BPC_MASK) {
9180         case PIPECONF_6BPC:
9181                 pipe_config->pipe_bpp = 18;
9182                 break;
9183         case PIPECONF_8BPC:
9184                 pipe_config->pipe_bpp = 24;
9185                 break;
9186         case PIPECONF_10BPC:
9187                 pipe_config->pipe_bpp = 30;
9188                 break;
9189         case PIPECONF_12BPC:
9190                 pipe_config->pipe_bpp = 36;
9191                 break;
9192         default:
9193                 break;
9194         }
9195
9196         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9197                 pipe_config->limited_color_range = true;
9198
9199         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9200                 struct intel_shared_dpll *pll;
9201
9202                 pipe_config->has_pch_encoder = true;
9203
9204                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9205                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9206                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9207
9208                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9209
9210                 if (HAS_PCH_IBX(dev_priv->dev)) {
9211                         pipe_config->shared_dpll =
9212                                 (enum intel_dpll_id) crtc->pipe;
9213                 } else {
9214                         tmp = I915_READ(PCH_DPLL_SEL);
9215                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9216                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9217                         else
9218                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9219                 }
9220
9221                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9222
9223                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9224                                            &pipe_config->dpll_hw_state));
9225
9226                 tmp = pipe_config->dpll_hw_state.dpll;
9227                 pipe_config->pixel_multiplier =
9228                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9229                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9230
9231                 ironlake_pch_clock_get(crtc, pipe_config);
9232         } else {
9233                 pipe_config->pixel_multiplier = 1;
9234         }
9235
9236         intel_get_pipe_timings(crtc, pipe_config);
9237
9238         ironlake_get_pfit_config(crtc, pipe_config);
9239
9240         return true;
9241 }
9242
9243 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9244 {
9245         struct drm_device *dev = dev_priv->dev;
9246         struct intel_crtc *crtc;
9247
9248         for_each_intel_crtc(dev, crtc)
9249                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9250                      pipe_name(crtc->pipe));
9251
9252         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9253         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9254         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9255         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9256         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9257         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9258              "CPU PWM1 enabled\n");
9259         if (IS_HASWELL(dev))
9260                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9261                      "CPU PWM2 enabled\n");
9262         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9263              "PCH PWM1 enabled\n");
9264         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9265              "Utility pin enabled\n");
9266         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9267
9268         /*
9269          * In theory we can still leave IRQs enabled, as long as only the HPD
9270          * interrupts remain enabled. We used to check for that, but since it's
9271          * gen-specific and since we only disable LCPLL after we fully disable
9272          * the interrupts, the check below should be enough.
9273          */
9274         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9275 }
9276
9277 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9278 {
9279         struct drm_device *dev = dev_priv->dev;
9280
9281         if (IS_HASWELL(dev))
9282                 return I915_READ(D_COMP_HSW);
9283         else
9284                 return I915_READ(D_COMP_BDW);
9285 }
9286
9287 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9288 {
9289         struct drm_device *dev = dev_priv->dev;
9290
9291         if (IS_HASWELL(dev)) {
9292                 mutex_lock(&dev_priv->rps.hw_lock);
9293                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9294                                             val))
9295                         DRM_ERROR("Failed to write to D_COMP\n");
9296                 mutex_unlock(&dev_priv->rps.hw_lock);
9297         } else {
9298                 I915_WRITE(D_COMP_BDW, val);
9299                 POSTING_READ(D_COMP_BDW);
9300         }
9301 }
9302
9303 /*
9304  * This function implements pieces of two sequences from BSpec:
9305  * - Sequence for display software to disable LCPLL
9306  * - Sequence for display software to allow package C8+
9307  * The steps implemented here are just the steps that actually touch the LCPLL
9308  * register. Callers should take care of disabling all the display engine
9309  * functions, doing the mode unset, fixing interrupts, etc.
9310  */
9311 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9312                               bool switch_to_fclk, bool allow_power_down)
9313 {
9314         uint32_t val;
9315
9316         assert_can_disable_lcpll(dev_priv);
9317
9318         val = I915_READ(LCPLL_CTL);
9319
9320         if (switch_to_fclk) {
9321                 val |= LCPLL_CD_SOURCE_FCLK;
9322                 I915_WRITE(LCPLL_CTL, val);
9323
9324                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9325                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9326                         DRM_ERROR("Switching to FCLK failed\n");
9327
9328                 val = I915_READ(LCPLL_CTL);
9329         }
9330
9331         val |= LCPLL_PLL_DISABLE;
9332         I915_WRITE(LCPLL_CTL, val);
9333         POSTING_READ(LCPLL_CTL);
9334
9335         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9336                 DRM_ERROR("LCPLL still locked\n");
9337
9338         val = hsw_read_dcomp(dev_priv);
9339         val |= D_COMP_COMP_DISABLE;
9340         hsw_write_dcomp(dev_priv, val);
9341         ndelay(100);
9342
9343         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9344                      1))
9345                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9346
9347         if (allow_power_down) {
9348                 val = I915_READ(LCPLL_CTL);
9349                 val |= LCPLL_POWER_DOWN_ALLOW;
9350                 I915_WRITE(LCPLL_CTL, val);
9351                 POSTING_READ(LCPLL_CTL);
9352         }
9353 }
9354
9355 /*
9356  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9357  * source.
9358  */
9359 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9360 {
9361         uint32_t val;
9362
9363         val = I915_READ(LCPLL_CTL);
9364
9365         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9366                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9367                 return;
9368
9369         /*
9370          * Make sure we're not on PC8 state before disabling PC8, otherwise
9371          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9372          */
9373         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9374
9375         if (val & LCPLL_POWER_DOWN_ALLOW) {
9376                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9377                 I915_WRITE(LCPLL_CTL, val);
9378                 POSTING_READ(LCPLL_CTL);
9379         }
9380
9381         val = hsw_read_dcomp(dev_priv);
9382         val |= D_COMP_COMP_FORCE;
9383         val &= ~D_COMP_COMP_DISABLE;
9384         hsw_write_dcomp(dev_priv, val);
9385
9386         val = I915_READ(LCPLL_CTL);
9387         val &= ~LCPLL_PLL_DISABLE;
9388         I915_WRITE(LCPLL_CTL, val);
9389
9390         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9391                 DRM_ERROR("LCPLL not locked yet\n");
9392
9393         if (val & LCPLL_CD_SOURCE_FCLK) {
9394                 val = I915_READ(LCPLL_CTL);
9395                 val &= ~LCPLL_CD_SOURCE_FCLK;
9396                 I915_WRITE(LCPLL_CTL, val);
9397
9398                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9399                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9400                         DRM_ERROR("Switching back to LCPLL failed\n");
9401         }
9402
9403         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9404         intel_update_cdclk(dev_priv->dev);
9405 }
9406
9407 /*
9408  * Package states C8 and deeper are really deep PC states that can only be
9409  * reached when all the devices on the system allow it, so even if the graphics
9410  * device allows PC8+, it doesn't mean the system will actually get to these
9411  * states. Our driver only allows PC8+ when going into runtime PM.
9412  *
9413  * The requirements for PC8+ are that all the outputs are disabled, the power
9414  * well is disabled and most interrupts are disabled, and these are also
9415  * requirements for runtime PM. When these conditions are met, we manually do
9416  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9417  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9418  * hang the machine.
9419  *
9420  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9421  * the state of some registers, so when we come back from PC8+ we need to
9422  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9423  * need to take care of the registers kept by RC6. Notice that this happens even
9424  * if we don't put the device in PCI D3 state (which is what currently happens
9425  * because of the runtime PM support).
9426  *
9427  * For more, read "Display Sequences for Package C8" on the hardware
9428  * documentation.
9429  */
9430 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9431 {
9432         struct drm_device *dev = dev_priv->dev;
9433         uint32_t val;
9434
9435         DRM_DEBUG_KMS("Enabling package C8+\n");
9436
9437         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9438                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9439                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9440                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9441         }
9442
9443         lpt_disable_clkout_dp(dev);
9444         hsw_disable_lcpll(dev_priv, true, true);
9445 }
9446
9447 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9448 {
9449         struct drm_device *dev = dev_priv->dev;
9450         uint32_t val;
9451
9452         DRM_DEBUG_KMS("Disabling package C8+\n");
9453
9454         hsw_restore_lcpll(dev_priv);
9455         lpt_init_pch_refclk(dev);
9456
9457         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9458                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9459                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9460                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9461         }
9462
9463         intel_prepare_ddi(dev);
9464 }
9465
9466 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9467 {
9468         struct drm_device *dev = old_state->dev;
9469         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9470
9471         broxton_set_cdclk(dev, req_cdclk);
9472 }
9473
9474 /* compute the max rate for new configuration */
9475 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9476 {
9477         struct intel_crtc *intel_crtc;
9478         struct intel_crtc_state *crtc_state;
9479         int max_pixel_rate = 0;
9480
9481         for_each_intel_crtc(state->dev, intel_crtc) {
9482                 int pixel_rate;
9483
9484                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9485                 if (IS_ERR(crtc_state))
9486                         return PTR_ERR(crtc_state);
9487
9488                 if (!crtc_state->base.enable)
9489                         continue;
9490
9491                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9492
9493                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9494                 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9495                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9496
9497                 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9498         }
9499
9500         return max_pixel_rate;
9501 }
9502
9503 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9504 {
9505         struct drm_i915_private *dev_priv = dev->dev_private;
9506         uint32_t val, data;
9507         int ret;
9508
9509         if (WARN((I915_READ(LCPLL_CTL) &
9510                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9511                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9512                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9513                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9514                  "trying to change cdclk frequency with cdclk not enabled\n"))
9515                 return;
9516
9517         mutex_lock(&dev_priv->rps.hw_lock);
9518         ret = sandybridge_pcode_write(dev_priv,
9519                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9520         mutex_unlock(&dev_priv->rps.hw_lock);
9521         if (ret) {
9522                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9523                 return;
9524         }
9525
9526         val = I915_READ(LCPLL_CTL);
9527         val |= LCPLL_CD_SOURCE_FCLK;
9528         I915_WRITE(LCPLL_CTL, val);
9529
9530         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9531                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
9532                 DRM_ERROR("Switching to FCLK failed\n");
9533
9534         val = I915_READ(LCPLL_CTL);
9535         val &= ~LCPLL_CLK_FREQ_MASK;
9536
9537         switch (cdclk) {
9538         case 450000:
9539                 val |= LCPLL_CLK_FREQ_450;
9540                 data = 0;
9541                 break;
9542         case 540000:
9543                 val |= LCPLL_CLK_FREQ_54O_BDW;
9544                 data = 1;
9545                 break;
9546         case 337500:
9547                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9548                 data = 2;
9549                 break;
9550         case 675000:
9551                 val |= LCPLL_CLK_FREQ_675_BDW;
9552                 data = 3;
9553                 break;
9554         default:
9555                 WARN(1, "invalid cdclk frequency\n");
9556                 return;
9557         }
9558
9559         I915_WRITE(LCPLL_CTL, val);
9560
9561         val = I915_READ(LCPLL_CTL);
9562         val &= ~LCPLL_CD_SOURCE_FCLK;
9563         I915_WRITE(LCPLL_CTL, val);
9564
9565         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9566                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9567                 DRM_ERROR("Switching back to LCPLL failed\n");
9568
9569         mutex_lock(&dev_priv->rps.hw_lock);
9570         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9571         mutex_unlock(&dev_priv->rps.hw_lock);
9572
9573         intel_update_cdclk(dev);
9574
9575         WARN(cdclk != dev_priv->cdclk_freq,
9576              "cdclk requested %d kHz but got %d kHz\n",
9577              cdclk, dev_priv->cdclk_freq);
9578 }
9579
9580 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9581 {
9582         struct drm_i915_private *dev_priv = to_i915(state->dev);
9583         int max_pixclk = ilk_max_pixel_rate(state);
9584         int cdclk;
9585
9586         /*
9587          * FIXME should also account for plane ratio
9588          * once 64bpp pixel formats are supported.
9589          */
9590         if (max_pixclk > 540000)
9591                 cdclk = 675000;
9592         else if (max_pixclk > 450000)
9593                 cdclk = 540000;
9594         else if (max_pixclk > 337500)
9595                 cdclk = 450000;
9596         else
9597                 cdclk = 337500;
9598
9599         /*
9600          * FIXME move the cdclk caclulation to
9601          * compute_config() so we can fail gracegully.
9602          */
9603         if (cdclk > dev_priv->max_cdclk_freq) {
9604                 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9605                           cdclk, dev_priv->max_cdclk_freq);
9606                 cdclk = dev_priv->max_cdclk_freq;
9607         }
9608
9609         to_intel_atomic_state(state)->cdclk = cdclk;
9610
9611         return 0;
9612 }
9613
9614 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9615 {
9616         struct drm_device *dev = old_state->dev;
9617         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9618
9619         broadwell_set_cdclk(dev, req_cdclk);
9620 }
9621
9622 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9623                                       struct intel_crtc_state *crtc_state)
9624 {
9625         if (!intel_ddi_pll_select(crtc, crtc_state))
9626                 return -EINVAL;
9627
9628         crtc->lowfreq_avail = false;
9629
9630         return 0;
9631 }
9632
9633 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9634                                 enum port port,
9635                                 struct intel_crtc_state *pipe_config)
9636 {
9637         switch (port) {
9638         case PORT_A:
9639                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9640                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9641                 break;
9642         case PORT_B:
9643                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9644                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9645                 break;
9646         case PORT_C:
9647                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9648                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9649                 break;
9650         default:
9651                 DRM_ERROR("Incorrect port type\n");
9652         }
9653 }
9654
9655 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9656                                 enum port port,
9657                                 struct intel_crtc_state *pipe_config)
9658 {
9659         u32 temp, dpll_ctl1;
9660
9661         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9662         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9663
9664         switch (pipe_config->ddi_pll_sel) {
9665         case SKL_DPLL0:
9666                 /*
9667                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9668                  * of the shared DPLL framework and thus needs to be read out
9669                  * separately
9670                  */
9671                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9672                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9673                 break;
9674         case SKL_DPLL1:
9675                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9676                 break;
9677         case SKL_DPLL2:
9678                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9679                 break;
9680         case SKL_DPLL3:
9681                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9682                 break;
9683         }
9684 }
9685
9686 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9687                                 enum port port,
9688                                 struct intel_crtc_state *pipe_config)
9689 {
9690         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9691
9692         switch (pipe_config->ddi_pll_sel) {
9693         case PORT_CLK_SEL_WRPLL1:
9694                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9695                 break;
9696         case PORT_CLK_SEL_WRPLL2:
9697                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9698                 break;
9699         }
9700 }
9701
9702 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9703                                        struct intel_crtc_state *pipe_config)
9704 {
9705         struct drm_device *dev = crtc->base.dev;
9706         struct drm_i915_private *dev_priv = dev->dev_private;
9707         struct intel_shared_dpll *pll;
9708         enum port port;
9709         uint32_t tmp;
9710
9711         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9712
9713         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9714
9715         if (IS_SKYLAKE(dev))
9716                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9717         else if (IS_BROXTON(dev))
9718                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9719         else
9720                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9721
9722         if (pipe_config->shared_dpll >= 0) {
9723                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9724
9725                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9726                                            &pipe_config->dpll_hw_state));
9727         }
9728
9729         /*
9730          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9731          * DDI E. So just check whether this pipe is wired to DDI E and whether
9732          * the PCH transcoder is on.
9733          */
9734         if (INTEL_INFO(dev)->gen < 9 &&
9735             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9736                 pipe_config->has_pch_encoder = true;
9737
9738                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9739                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9740                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9741
9742                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9743         }
9744 }
9745
9746 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9747                                     struct intel_crtc_state *pipe_config)
9748 {
9749         struct drm_device *dev = crtc->base.dev;
9750         struct drm_i915_private *dev_priv = dev->dev_private;
9751         enum intel_display_power_domain pfit_domain;
9752         uint32_t tmp;
9753
9754         if (!intel_display_power_is_enabled(dev_priv,
9755                                          POWER_DOMAIN_PIPE(crtc->pipe)))
9756                 return false;
9757
9758         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9759         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9760
9761         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9762         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9763                 enum pipe trans_edp_pipe;
9764                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9765                 default:
9766                         WARN(1, "unknown pipe linked to edp transcoder\n");
9767                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9768                 case TRANS_DDI_EDP_INPUT_A_ON:
9769                         trans_edp_pipe = PIPE_A;
9770                         break;
9771                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9772                         trans_edp_pipe = PIPE_B;
9773                         break;
9774                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9775                         trans_edp_pipe = PIPE_C;
9776                         break;
9777                 }
9778
9779                 if (trans_edp_pipe == crtc->pipe)
9780                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9781         }
9782
9783         if (!intel_display_power_is_enabled(dev_priv,
9784                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9785                 return false;
9786
9787         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9788         if (!(tmp & PIPECONF_ENABLE))
9789                 return false;
9790
9791         haswell_get_ddi_port_state(crtc, pipe_config);
9792
9793         intel_get_pipe_timings(crtc, pipe_config);
9794
9795         if (INTEL_INFO(dev)->gen >= 9) {
9796                 skl_init_scalers(dev, crtc, pipe_config);
9797         }
9798
9799         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9800
9801         if (INTEL_INFO(dev)->gen >= 9) {
9802                 pipe_config->scaler_state.scaler_id = -1;
9803                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9804         }
9805
9806         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9807                 if (INTEL_INFO(dev)->gen == 9)
9808                         skylake_get_pfit_config(crtc, pipe_config);
9809                 else if (INTEL_INFO(dev)->gen < 9)
9810                         ironlake_get_pfit_config(crtc, pipe_config);
9811                 else
9812                         MISSING_CASE(INTEL_INFO(dev)->gen);
9813         }
9814
9815         if (IS_HASWELL(dev))
9816                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9817                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9818
9819         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9820                 pipe_config->pixel_multiplier =
9821                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9822         } else {
9823                 pipe_config->pixel_multiplier = 1;
9824         }
9825
9826         return true;
9827 }
9828
9829 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9830 {
9831         struct drm_device *dev = crtc->dev;
9832         struct drm_i915_private *dev_priv = dev->dev_private;
9833         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9834         uint32_t cntl = 0, size = 0;
9835
9836         if (base) {
9837                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9838                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9839                 unsigned int stride = roundup_pow_of_two(width) * 4;
9840
9841                 switch (stride) {
9842                 default:
9843                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9844                                   width, stride);
9845                         stride = 256;
9846                         /* fallthrough */
9847                 case 256:
9848                 case 512:
9849                 case 1024:
9850                 case 2048:
9851                         break;
9852                 }
9853
9854                 cntl |= CURSOR_ENABLE |
9855                         CURSOR_GAMMA_ENABLE |
9856                         CURSOR_FORMAT_ARGB |
9857                         CURSOR_STRIDE(stride);
9858
9859                 size = (height << 12) | width;
9860         }
9861
9862         if (intel_crtc->cursor_cntl != 0 &&
9863             (intel_crtc->cursor_base != base ||
9864              intel_crtc->cursor_size != size ||
9865              intel_crtc->cursor_cntl != cntl)) {
9866                 /* On these chipsets we can only modify the base/size/stride
9867                  * whilst the cursor is disabled.
9868                  */
9869                 I915_WRITE(_CURACNTR, 0);
9870                 POSTING_READ(_CURACNTR);
9871                 intel_crtc->cursor_cntl = 0;
9872         }
9873
9874         if (intel_crtc->cursor_base != base) {
9875                 I915_WRITE(_CURABASE, base);
9876                 intel_crtc->cursor_base = base;
9877         }
9878
9879         if (intel_crtc->cursor_size != size) {
9880                 I915_WRITE(CURSIZE, size);
9881                 intel_crtc->cursor_size = size;
9882         }
9883
9884         if (intel_crtc->cursor_cntl != cntl) {
9885                 I915_WRITE(_CURACNTR, cntl);
9886                 POSTING_READ(_CURACNTR);
9887                 intel_crtc->cursor_cntl = cntl;
9888         }
9889 }
9890
9891 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9892 {
9893         struct drm_device *dev = crtc->dev;
9894         struct drm_i915_private *dev_priv = dev->dev_private;
9895         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9896         int pipe = intel_crtc->pipe;
9897         uint32_t cntl;
9898
9899         cntl = 0;
9900         if (base) {
9901                 cntl = MCURSOR_GAMMA_ENABLE;
9902                 switch (intel_crtc->base.cursor->state->crtc_w) {
9903                         case 64:
9904                                 cntl |= CURSOR_MODE_64_ARGB_AX;
9905                                 break;
9906                         case 128:
9907                                 cntl |= CURSOR_MODE_128_ARGB_AX;
9908                                 break;
9909                         case 256:
9910                                 cntl |= CURSOR_MODE_256_ARGB_AX;
9911                                 break;
9912                         default:
9913                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
9914                                 return;
9915                 }
9916                 cntl |= pipe << 28; /* Connect to correct pipe */
9917
9918                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
9919                         cntl |= CURSOR_PIPE_CSC_ENABLE;
9920         }
9921
9922         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
9923                 cntl |= CURSOR_ROTATE_180;
9924
9925         if (intel_crtc->cursor_cntl != cntl) {
9926                 I915_WRITE(CURCNTR(pipe), cntl);
9927                 POSTING_READ(CURCNTR(pipe));
9928                 intel_crtc->cursor_cntl = cntl;
9929         }
9930
9931         /* and commit changes on next vblank */
9932         I915_WRITE(CURBASE(pipe), base);
9933         POSTING_READ(CURBASE(pipe));
9934
9935         intel_crtc->cursor_base = base;
9936 }
9937
9938 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9939 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9940                                      bool on)
9941 {
9942         struct drm_device *dev = crtc->dev;
9943         struct drm_i915_private *dev_priv = dev->dev_private;
9944         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9945         int pipe = intel_crtc->pipe;
9946         int x = crtc->cursor_x;
9947         int y = crtc->cursor_y;
9948         u32 base = 0, pos = 0;
9949
9950         if (on)
9951                 base = intel_crtc->cursor_addr;
9952
9953         if (x >= intel_crtc->config->pipe_src_w)
9954                 base = 0;
9955
9956         if (y >= intel_crtc->config->pipe_src_h)
9957                 base = 0;
9958
9959         if (x < 0) {
9960                 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
9961                         base = 0;
9962
9963                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9964                 x = -x;
9965         }
9966         pos |= x << CURSOR_X_SHIFT;
9967
9968         if (y < 0) {
9969                 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
9970                         base = 0;
9971
9972                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9973                 y = -y;
9974         }
9975         pos |= y << CURSOR_Y_SHIFT;
9976
9977         if (base == 0 && intel_crtc->cursor_base == 0)
9978                 return;
9979
9980         I915_WRITE(CURPOS(pipe), pos);
9981
9982         /* ILK+ do this automagically */
9983         if (HAS_GMCH_DISPLAY(dev) &&
9984             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
9985                 base += (intel_crtc->base.cursor->state->crtc_h *
9986                         intel_crtc->base.cursor->state->crtc_w - 1) * 4;
9987         }
9988
9989         if (IS_845G(dev) || IS_I865G(dev))
9990                 i845_update_cursor(crtc, base);
9991         else
9992                 i9xx_update_cursor(crtc, base);
9993 }
9994
9995 static bool cursor_size_ok(struct drm_device *dev,
9996                            uint32_t width, uint32_t height)
9997 {
9998         if (width == 0 || height == 0)
9999                 return false;
10000
10001         /*
10002          * 845g/865g are special in that they are only limited by
10003          * the width of their cursors, the height is arbitrary up to
10004          * the precision of the register. Everything else requires
10005          * square cursors, limited to a few power-of-two sizes.
10006          */
10007         if (IS_845G(dev) || IS_I865G(dev)) {
10008                 if ((width & 63) != 0)
10009                         return false;
10010
10011                 if (width > (IS_845G(dev) ? 64 : 512))
10012                         return false;
10013
10014                 if (height > 1023)
10015                         return false;
10016         } else {
10017                 switch (width | height) {
10018                 case 256:
10019                 case 128:
10020                         if (IS_GEN2(dev))
10021                                 return false;
10022                 case 64:
10023                         break;
10024                 default:
10025                         return false;
10026                 }
10027         }
10028
10029         return true;
10030 }
10031
10032 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10033                                  u16 *blue, uint32_t start, uint32_t size)
10034 {
10035         int end = (start + size > 256) ? 256 : start + size, i;
10036         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10037
10038         for (i = start; i < end; i++) {
10039                 intel_crtc->lut_r[i] = red[i] >> 8;
10040                 intel_crtc->lut_g[i] = green[i] >> 8;
10041                 intel_crtc->lut_b[i] = blue[i] >> 8;
10042         }
10043
10044         intel_crtc_load_lut(crtc);
10045 }
10046
10047 /* VESA 640x480x72Hz mode to set on the pipe */
10048 static struct drm_display_mode load_detect_mode = {
10049         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10050                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10051 };
10052
10053 struct drm_framebuffer *
10054 __intel_framebuffer_create(struct drm_device *dev,
10055                            struct drm_mode_fb_cmd2 *mode_cmd,
10056                            struct drm_i915_gem_object *obj)
10057 {
10058         struct intel_framebuffer *intel_fb;
10059         int ret;
10060
10061         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10062         if (!intel_fb) {
10063                 drm_gem_object_unreference(&obj->base);
10064                 return ERR_PTR(-ENOMEM);
10065         }
10066
10067         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10068         if (ret)
10069                 goto err;
10070
10071         return &intel_fb->base;
10072 err:
10073         drm_gem_object_unreference(&obj->base);
10074         kfree(intel_fb);
10075
10076         return ERR_PTR(ret);
10077 }
10078
10079 static struct drm_framebuffer *
10080 intel_framebuffer_create(struct drm_device *dev,
10081                          struct drm_mode_fb_cmd2 *mode_cmd,
10082                          struct drm_i915_gem_object *obj)
10083 {
10084         struct drm_framebuffer *fb;
10085         int ret;
10086
10087         ret = i915_mutex_lock_interruptible(dev);
10088         if (ret)
10089                 return ERR_PTR(ret);
10090         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10091         mutex_unlock(&dev->struct_mutex);
10092
10093         return fb;
10094 }
10095
10096 static u32
10097 intel_framebuffer_pitch_for_width(int width, int bpp)
10098 {
10099         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10100         return ALIGN(pitch, 64);
10101 }
10102
10103 static u32
10104 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10105 {
10106         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10107         return PAGE_ALIGN(pitch * mode->vdisplay);
10108 }
10109
10110 static struct drm_framebuffer *
10111 intel_framebuffer_create_for_mode(struct drm_device *dev,
10112                                   struct drm_display_mode *mode,
10113                                   int depth, int bpp)
10114 {
10115         struct drm_i915_gem_object *obj;
10116         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10117
10118         obj = i915_gem_alloc_object(dev,
10119                                     intel_framebuffer_size_for_mode(mode, bpp));
10120         if (obj == NULL)
10121                 return ERR_PTR(-ENOMEM);
10122
10123         mode_cmd.width = mode->hdisplay;
10124         mode_cmd.height = mode->vdisplay;
10125         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10126                                                                 bpp);
10127         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10128
10129         return intel_framebuffer_create(dev, &mode_cmd, obj);
10130 }
10131
10132 static struct drm_framebuffer *
10133 mode_fits_in_fbdev(struct drm_device *dev,
10134                    struct drm_display_mode *mode)
10135 {
10136 #ifdef CONFIG_DRM_I915_FBDEV
10137         struct drm_i915_private *dev_priv = dev->dev_private;
10138         struct drm_i915_gem_object *obj;
10139         struct drm_framebuffer *fb;
10140
10141         if (!dev_priv->fbdev)
10142                 return NULL;
10143
10144         if (!dev_priv->fbdev->fb)
10145                 return NULL;
10146
10147         obj = dev_priv->fbdev->fb->obj;
10148         BUG_ON(!obj);
10149
10150         fb = &dev_priv->fbdev->fb->base;
10151         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10152                                                                fb->bits_per_pixel))
10153                 return NULL;
10154
10155         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10156                 return NULL;
10157
10158         return fb;
10159 #else
10160         return NULL;
10161 #endif
10162 }
10163
10164 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10165                                            struct drm_crtc *crtc,
10166                                            struct drm_display_mode *mode,
10167                                            struct drm_framebuffer *fb,
10168                                            int x, int y)
10169 {
10170         struct drm_plane_state *plane_state;
10171         int hdisplay, vdisplay;
10172         int ret;
10173
10174         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10175         if (IS_ERR(plane_state))
10176                 return PTR_ERR(plane_state);
10177
10178         if (mode)
10179                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10180         else
10181                 hdisplay = vdisplay = 0;
10182
10183         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10184         if (ret)
10185                 return ret;
10186         drm_atomic_set_fb_for_plane(plane_state, fb);
10187         plane_state->crtc_x = 0;
10188         plane_state->crtc_y = 0;
10189         plane_state->crtc_w = hdisplay;
10190         plane_state->crtc_h = vdisplay;
10191         plane_state->src_x = x << 16;
10192         plane_state->src_y = y << 16;
10193         plane_state->src_w = hdisplay << 16;
10194         plane_state->src_h = vdisplay << 16;
10195
10196         return 0;
10197 }
10198
10199 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10200                                 struct drm_display_mode *mode,
10201                                 struct intel_load_detect_pipe *old,
10202                                 struct drm_modeset_acquire_ctx *ctx)
10203 {
10204         struct intel_crtc *intel_crtc;
10205         struct intel_encoder *intel_encoder =
10206                 intel_attached_encoder(connector);
10207         struct drm_crtc *possible_crtc;
10208         struct drm_encoder *encoder = &intel_encoder->base;
10209         struct drm_crtc *crtc = NULL;
10210         struct drm_device *dev = encoder->dev;
10211         struct drm_framebuffer *fb;
10212         struct drm_mode_config *config = &dev->mode_config;
10213         struct drm_atomic_state *state = NULL;
10214         struct drm_connector_state *connector_state;
10215         struct intel_crtc_state *crtc_state;
10216         int ret, i = -1;
10217
10218         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10219                       connector->base.id, connector->name,
10220                       encoder->base.id, encoder->name);
10221
10222 retry:
10223         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10224         if (ret)
10225                 goto fail_unlock;
10226
10227         /*
10228          * Algorithm gets a little messy:
10229          *
10230          *   - if the connector already has an assigned crtc, use it (but make
10231          *     sure it's on first)
10232          *
10233          *   - try to find the first unused crtc that can drive this connector,
10234          *     and use that if we find one
10235          */
10236
10237         /* See if we already have a CRTC for this connector */
10238         if (encoder->crtc) {
10239                 crtc = encoder->crtc;
10240
10241                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10242                 if (ret)
10243                         goto fail_unlock;
10244                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10245                 if (ret)
10246                         goto fail_unlock;
10247
10248                 old->dpms_mode = connector->dpms;
10249                 old->load_detect_temp = false;
10250
10251                 /* Make sure the crtc and connector are running */
10252                 if (connector->dpms != DRM_MODE_DPMS_ON)
10253                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10254
10255                 return true;
10256         }
10257
10258         /* Find an unused one (if possible) */
10259         for_each_crtc(dev, possible_crtc) {
10260                 i++;
10261                 if (!(encoder->possible_crtcs & (1 << i)))
10262                         continue;
10263                 if (possible_crtc->state->enable)
10264                         continue;
10265                 /* This can occur when applying the pipe A quirk on resume. */
10266                 if (to_intel_crtc(possible_crtc)->new_enabled)
10267                         continue;
10268
10269                 crtc = possible_crtc;
10270                 break;
10271         }
10272
10273         /*
10274          * If we didn't find an unused CRTC, don't use any.
10275          */
10276         if (!crtc) {
10277                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10278                 goto fail_unlock;
10279         }
10280
10281         ret = drm_modeset_lock(&crtc->mutex, ctx);
10282         if (ret)
10283                 goto fail_unlock;
10284         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10285         if (ret)
10286                 goto fail_unlock;
10287         intel_encoder->new_crtc = to_intel_crtc(crtc);
10288         to_intel_connector(connector)->new_encoder = intel_encoder;
10289
10290         intel_crtc = to_intel_crtc(crtc);
10291         intel_crtc->new_enabled = true;
10292         old->dpms_mode = connector->dpms;
10293         old->load_detect_temp = true;
10294         old->release_fb = NULL;
10295
10296         state = drm_atomic_state_alloc(dev);
10297         if (!state)
10298                 return false;
10299
10300         state->acquire_ctx = ctx;
10301
10302         connector_state = drm_atomic_get_connector_state(state, connector);
10303         if (IS_ERR(connector_state)) {
10304                 ret = PTR_ERR(connector_state);
10305                 goto fail;
10306         }
10307
10308         connector_state->crtc = crtc;
10309         connector_state->best_encoder = &intel_encoder->base;
10310
10311         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10312         if (IS_ERR(crtc_state)) {
10313                 ret = PTR_ERR(crtc_state);
10314                 goto fail;
10315         }
10316
10317         crtc_state->base.active = crtc_state->base.enable = true;
10318
10319         if (!mode)
10320                 mode = &load_detect_mode;
10321
10322         /* We need a framebuffer large enough to accommodate all accesses
10323          * that the plane may generate whilst we perform load detection.
10324          * We can not rely on the fbcon either being present (we get called
10325          * during its initialisation to detect all boot displays, or it may
10326          * not even exist) or that it is large enough to satisfy the
10327          * requested mode.
10328          */
10329         fb = mode_fits_in_fbdev(dev, mode);
10330         if (fb == NULL) {
10331                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10332                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10333                 old->release_fb = fb;
10334         } else
10335                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10336         if (IS_ERR(fb)) {
10337                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10338                 goto fail;
10339         }
10340
10341         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10342         if (ret)
10343                 goto fail;
10344
10345         drm_mode_copy(&crtc_state->base.mode, mode);
10346
10347         if (intel_set_mode(state)) {
10348                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10349                 if (old->release_fb)
10350                         old->release_fb->funcs->destroy(old->release_fb);
10351                 goto fail;
10352         }
10353         crtc->primary->crtc = crtc;
10354
10355         /* let the connector get through one full cycle before testing */
10356         intel_wait_for_vblank(dev, intel_crtc->pipe);
10357         return true;
10358
10359  fail:
10360         intel_crtc->new_enabled = crtc->state->enable;
10361 fail_unlock:
10362         drm_atomic_state_free(state);
10363         state = NULL;
10364
10365         if (ret == -EDEADLK) {
10366                 drm_modeset_backoff(ctx);
10367                 goto retry;
10368         }
10369
10370         return false;
10371 }
10372
10373 void intel_release_load_detect_pipe(struct drm_connector *connector,
10374                                     struct intel_load_detect_pipe *old,
10375                                     struct drm_modeset_acquire_ctx *ctx)
10376 {
10377         struct drm_device *dev = connector->dev;
10378         struct intel_encoder *intel_encoder =
10379                 intel_attached_encoder(connector);
10380         struct drm_encoder *encoder = &intel_encoder->base;
10381         struct drm_crtc *crtc = encoder->crtc;
10382         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10383         struct drm_atomic_state *state;
10384         struct drm_connector_state *connector_state;
10385         struct intel_crtc_state *crtc_state;
10386         int ret;
10387
10388         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10389                       connector->base.id, connector->name,
10390                       encoder->base.id, encoder->name);
10391
10392         if (old->load_detect_temp) {
10393                 state = drm_atomic_state_alloc(dev);
10394                 if (!state)
10395                         goto fail;
10396
10397                 state->acquire_ctx = ctx;
10398
10399                 connector_state = drm_atomic_get_connector_state(state, connector);
10400                 if (IS_ERR(connector_state))
10401                         goto fail;
10402
10403                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10404                 if (IS_ERR(crtc_state))
10405                         goto fail;
10406
10407                 to_intel_connector(connector)->new_encoder = NULL;
10408                 intel_encoder->new_crtc = NULL;
10409                 intel_crtc->new_enabled = false;
10410
10411                 connector_state->best_encoder = NULL;
10412                 connector_state->crtc = NULL;
10413
10414                 crtc_state->base.enable = crtc_state->base.active = false;
10415
10416                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10417                                                       0, 0);
10418                 if (ret)
10419                         goto fail;
10420
10421                 ret = intel_set_mode(state);
10422                 if (ret)
10423                         goto fail;
10424
10425                 if (old->release_fb) {
10426                         drm_framebuffer_unregister_private(old->release_fb);
10427                         drm_framebuffer_unreference(old->release_fb);
10428                 }
10429
10430                 return;
10431         }
10432
10433         /* Switch crtc and encoder back off if necessary */
10434         if (old->dpms_mode != DRM_MODE_DPMS_ON)
10435                 connector->funcs->dpms(connector, old->dpms_mode);
10436
10437         return;
10438 fail:
10439         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10440         drm_atomic_state_free(state);
10441 }
10442
10443 static int i9xx_pll_refclk(struct drm_device *dev,
10444                            const struct intel_crtc_state *pipe_config)
10445 {
10446         struct drm_i915_private *dev_priv = dev->dev_private;
10447         u32 dpll = pipe_config->dpll_hw_state.dpll;
10448
10449         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10450                 return dev_priv->vbt.lvds_ssc_freq;
10451         else if (HAS_PCH_SPLIT(dev))
10452                 return 120000;
10453         else if (!IS_GEN2(dev))
10454                 return 96000;
10455         else
10456                 return 48000;
10457 }
10458
10459 /* Returns the clock of the currently programmed mode of the given pipe. */
10460 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10461                                 struct intel_crtc_state *pipe_config)
10462 {
10463         struct drm_device *dev = crtc->base.dev;
10464         struct drm_i915_private *dev_priv = dev->dev_private;
10465         int pipe = pipe_config->cpu_transcoder;
10466         u32 dpll = pipe_config->dpll_hw_state.dpll;
10467         u32 fp;
10468         intel_clock_t clock;
10469         int port_clock;
10470         int refclk = i9xx_pll_refclk(dev, pipe_config);
10471
10472         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10473                 fp = pipe_config->dpll_hw_state.fp0;
10474         else
10475                 fp = pipe_config->dpll_hw_state.fp1;
10476
10477         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10478         if (IS_PINEVIEW(dev)) {
10479                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10480                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10481         } else {
10482                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10483                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10484         }
10485
10486         if (!IS_GEN2(dev)) {
10487                 if (IS_PINEVIEW(dev))
10488                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10489                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10490                 else
10491                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10492                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10493
10494                 switch (dpll & DPLL_MODE_MASK) {
10495                 case DPLLB_MODE_DAC_SERIAL:
10496                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10497                                 5 : 10;
10498                         break;
10499                 case DPLLB_MODE_LVDS:
10500                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10501                                 7 : 14;
10502                         break;
10503                 default:
10504                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10505                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10506                         return;
10507                 }
10508
10509                 if (IS_PINEVIEW(dev))
10510                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10511                 else
10512                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10513         } else {
10514                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10515                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10516
10517                 if (is_lvds) {
10518                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10519                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10520
10521                         if (lvds & LVDS_CLKB_POWER_UP)
10522                                 clock.p2 = 7;
10523                         else
10524                                 clock.p2 = 14;
10525                 } else {
10526                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10527                                 clock.p1 = 2;
10528                         else {
10529                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10530                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10531                         }
10532                         if (dpll & PLL_P2_DIVIDE_BY_4)
10533                                 clock.p2 = 4;
10534                         else
10535                                 clock.p2 = 2;
10536                 }
10537
10538                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10539         }
10540
10541         /*
10542          * This value includes pixel_multiplier. We will use
10543          * port_clock to compute adjusted_mode.crtc_clock in the
10544          * encoder's get_config() function.
10545          */
10546         pipe_config->port_clock = port_clock;
10547 }
10548
10549 int intel_dotclock_calculate(int link_freq,
10550                              const struct intel_link_m_n *m_n)
10551 {
10552         /*
10553          * The calculation for the data clock is:
10554          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10555          * But we want to avoid losing precison if possible, so:
10556          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10557          *
10558          * and the link clock is simpler:
10559          * link_clock = (m * link_clock) / n
10560          */
10561
10562         if (!m_n->link_n)
10563                 return 0;
10564
10565         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10566 }
10567
10568 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10569                                    struct intel_crtc_state *pipe_config)
10570 {
10571         struct drm_device *dev = crtc->base.dev;
10572
10573         /* read out port_clock from the DPLL */
10574         i9xx_crtc_clock_get(crtc, pipe_config);
10575
10576         /*
10577          * This value does not include pixel_multiplier.
10578          * We will check that port_clock and adjusted_mode.crtc_clock
10579          * agree once we know their relationship in the encoder's
10580          * get_config() function.
10581          */
10582         pipe_config->base.adjusted_mode.crtc_clock =
10583                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10584                                          &pipe_config->fdi_m_n);
10585 }
10586
10587 /** Returns the currently programmed mode of the given pipe. */
10588 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10589                                              struct drm_crtc *crtc)
10590 {
10591         struct drm_i915_private *dev_priv = dev->dev_private;
10592         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10593         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10594         struct drm_display_mode *mode;
10595         struct intel_crtc_state pipe_config;
10596         int htot = I915_READ(HTOTAL(cpu_transcoder));
10597         int hsync = I915_READ(HSYNC(cpu_transcoder));
10598         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10599         int vsync = I915_READ(VSYNC(cpu_transcoder));
10600         enum pipe pipe = intel_crtc->pipe;
10601
10602         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10603         if (!mode)
10604                 return NULL;
10605
10606         /*
10607          * Construct a pipe_config sufficient for getting the clock info
10608          * back out of crtc_clock_get.
10609          *
10610          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10611          * to use a real value here instead.
10612          */
10613         pipe_config.cpu_transcoder = (enum transcoder) pipe;
10614         pipe_config.pixel_multiplier = 1;
10615         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10616         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10617         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10618         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10619
10620         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10621         mode->hdisplay = (htot & 0xffff) + 1;
10622         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10623         mode->hsync_start = (hsync & 0xffff) + 1;
10624         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10625         mode->vdisplay = (vtot & 0xffff) + 1;
10626         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10627         mode->vsync_start = (vsync & 0xffff) + 1;
10628         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10629
10630         drm_mode_set_name(mode);
10631
10632         return mode;
10633 }
10634
10635 void intel_mark_busy(struct drm_device *dev)
10636 {
10637         struct drm_i915_private *dev_priv = dev->dev_private;
10638
10639         if (dev_priv->mm.busy)
10640                 return;
10641
10642         intel_runtime_pm_get(dev_priv);
10643         i915_update_gfx_val(dev_priv);
10644         if (INTEL_INFO(dev)->gen >= 6)
10645                 gen6_rps_busy(dev_priv);
10646         dev_priv->mm.busy = true;
10647 }
10648
10649 void intel_mark_idle(struct drm_device *dev)
10650 {
10651         struct drm_i915_private *dev_priv = dev->dev_private;
10652
10653         if (!dev_priv->mm.busy)
10654                 return;
10655
10656         dev_priv->mm.busy = false;
10657
10658         if (INTEL_INFO(dev)->gen >= 6)
10659                 gen6_rps_idle(dev->dev_private);
10660
10661         intel_runtime_pm_put(dev_priv);
10662 }
10663
10664 static void intel_crtc_destroy(struct drm_crtc *crtc)
10665 {
10666         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10667         struct drm_device *dev = crtc->dev;
10668         struct intel_unpin_work *work;
10669
10670         spin_lock_irq(&dev->event_lock);
10671         work = intel_crtc->unpin_work;
10672         intel_crtc->unpin_work = NULL;
10673         spin_unlock_irq(&dev->event_lock);
10674
10675         if (work) {
10676                 cancel_work_sync(&work->work);
10677                 kfree(work);
10678         }
10679
10680         drm_crtc_cleanup(crtc);
10681
10682         kfree(intel_crtc);
10683 }
10684
10685 static void intel_unpin_work_fn(struct work_struct *__work)
10686 {
10687         struct intel_unpin_work *work =
10688                 container_of(__work, struct intel_unpin_work, work);
10689         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10690         struct drm_device *dev = crtc->base.dev;
10691         struct drm_plane *primary = crtc->base.primary;
10692
10693         mutex_lock(&dev->struct_mutex);
10694         intel_unpin_fb_obj(work->old_fb, primary->state);
10695         drm_gem_object_unreference(&work->pending_flip_obj->base);
10696
10697         intel_fbc_update(dev);
10698
10699         if (work->flip_queued_req)
10700                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10701         mutex_unlock(&dev->struct_mutex);
10702
10703         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10704         drm_framebuffer_unreference(work->old_fb);
10705
10706         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10707         atomic_dec(&crtc->unpin_work_count);
10708
10709         kfree(work);
10710 }
10711
10712 static void do_intel_finish_page_flip(struct drm_device *dev,
10713                                       struct drm_crtc *crtc)
10714 {
10715         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10716         struct intel_unpin_work *work;
10717         unsigned long flags;
10718
10719         /* Ignore early vblank irqs */
10720         if (intel_crtc == NULL)
10721                 return;
10722
10723         /*
10724          * This is called both by irq handlers and the reset code (to complete
10725          * lost pageflips) so needs the full irqsave spinlocks.
10726          */
10727         spin_lock_irqsave(&dev->event_lock, flags);
10728         work = intel_crtc->unpin_work;
10729
10730         /* Ensure we don't miss a work->pending update ... */
10731         smp_rmb();
10732
10733         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10734                 spin_unlock_irqrestore(&dev->event_lock, flags);
10735                 return;
10736         }
10737
10738         page_flip_completed(intel_crtc);
10739
10740         spin_unlock_irqrestore(&dev->event_lock, flags);
10741 }
10742
10743 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10744 {
10745         struct drm_i915_private *dev_priv = dev->dev_private;
10746         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10747
10748         do_intel_finish_page_flip(dev, crtc);
10749 }
10750
10751 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10752 {
10753         struct drm_i915_private *dev_priv = dev->dev_private;
10754         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10755
10756         do_intel_finish_page_flip(dev, crtc);
10757 }
10758
10759 /* Is 'a' after or equal to 'b'? */
10760 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10761 {
10762         return !((a - b) & 0x80000000);
10763 }
10764
10765 static bool page_flip_finished(struct intel_crtc *crtc)
10766 {
10767         struct drm_device *dev = crtc->base.dev;
10768         struct drm_i915_private *dev_priv = dev->dev_private;
10769
10770         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10771             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10772                 return true;
10773
10774         /*
10775          * The relevant registers doen't exist on pre-ctg.
10776          * As the flip done interrupt doesn't trigger for mmio
10777          * flips on gmch platforms, a flip count check isn't
10778          * really needed there. But since ctg has the registers,
10779          * include it in the check anyway.
10780          */
10781         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10782                 return true;
10783
10784         /*
10785          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10786          * used the same base address. In that case the mmio flip might
10787          * have completed, but the CS hasn't even executed the flip yet.
10788          *
10789          * A flip count check isn't enough as the CS might have updated
10790          * the base address just after start of vblank, but before we
10791          * managed to process the interrupt. This means we'd complete the
10792          * CS flip too soon.
10793          *
10794          * Combining both checks should get us a good enough result. It may
10795          * still happen that the CS flip has been executed, but has not
10796          * yet actually completed. But in case the base address is the same
10797          * anyway, we don't really care.
10798          */
10799         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10800                 crtc->unpin_work->gtt_offset &&
10801                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10802                                     crtc->unpin_work->flip_count);
10803 }
10804
10805 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10806 {
10807         struct drm_i915_private *dev_priv = dev->dev_private;
10808         struct intel_crtc *intel_crtc =
10809                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10810         unsigned long flags;
10811
10812
10813         /*
10814          * This is called both by irq handlers and the reset code (to complete
10815          * lost pageflips) so needs the full irqsave spinlocks.
10816          *
10817          * NB: An MMIO update of the plane base pointer will also
10818          * generate a page-flip completion irq, i.e. every modeset
10819          * is also accompanied by a spurious intel_prepare_page_flip().
10820          */
10821         spin_lock_irqsave(&dev->event_lock, flags);
10822         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10823                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10824         spin_unlock_irqrestore(&dev->event_lock, flags);
10825 }
10826
10827 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10828 {
10829         /* Ensure that the work item is consistent when activating it ... */
10830         smp_wmb();
10831         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10832         /* and that it is marked active as soon as the irq could fire. */
10833         smp_wmb();
10834 }
10835
10836 static int intel_gen2_queue_flip(struct drm_device *dev,
10837                                  struct drm_crtc *crtc,
10838                                  struct drm_framebuffer *fb,
10839                                  struct drm_i915_gem_object *obj,
10840                                  struct drm_i915_gem_request *req,
10841                                  uint32_t flags)
10842 {
10843         struct intel_engine_cs *ring = req->ring;
10844         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10845         u32 flip_mask;
10846         int ret;
10847
10848         ret = intel_ring_begin(req, 6);
10849         if (ret)
10850                 return ret;
10851
10852         /* Can't queue multiple flips, so wait for the previous
10853          * one to finish before executing the next.
10854          */
10855         if (intel_crtc->plane)
10856                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10857         else
10858                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10859         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10860         intel_ring_emit(ring, MI_NOOP);
10861         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10862                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10863         intel_ring_emit(ring, fb->pitches[0]);
10864         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10865         intel_ring_emit(ring, 0); /* aux display base address, unused */
10866
10867         intel_mark_page_flip_active(intel_crtc);
10868         return 0;
10869 }
10870
10871 static int intel_gen3_queue_flip(struct drm_device *dev,
10872                                  struct drm_crtc *crtc,
10873                                  struct drm_framebuffer *fb,
10874                                  struct drm_i915_gem_object *obj,
10875                                  struct drm_i915_gem_request *req,
10876                                  uint32_t flags)
10877 {
10878         struct intel_engine_cs *ring = req->ring;
10879         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10880         u32 flip_mask;
10881         int ret;
10882
10883         ret = intel_ring_begin(req, 6);
10884         if (ret)
10885                 return ret;
10886
10887         if (intel_crtc->plane)
10888                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10889         else
10890                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10891         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10892         intel_ring_emit(ring, MI_NOOP);
10893         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10894                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10895         intel_ring_emit(ring, fb->pitches[0]);
10896         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10897         intel_ring_emit(ring, MI_NOOP);
10898
10899         intel_mark_page_flip_active(intel_crtc);
10900         return 0;
10901 }
10902
10903 static int intel_gen4_queue_flip(struct drm_device *dev,
10904                                  struct drm_crtc *crtc,
10905                                  struct drm_framebuffer *fb,
10906                                  struct drm_i915_gem_object *obj,
10907                                  struct drm_i915_gem_request *req,
10908                                  uint32_t flags)
10909 {
10910         struct intel_engine_cs *ring = req->ring;
10911         struct drm_i915_private *dev_priv = dev->dev_private;
10912         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10913         uint32_t pf, pipesrc;
10914         int ret;
10915
10916         ret = intel_ring_begin(req, 4);
10917         if (ret)
10918                 return ret;
10919
10920         /* i965+ uses the linear or tiled offsets from the
10921          * Display Registers (which do not change across a page-flip)
10922          * so we need only reprogram the base address.
10923          */
10924         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10925                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10926         intel_ring_emit(ring, fb->pitches[0]);
10927         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
10928                         obj->tiling_mode);
10929
10930         /* XXX Enabling the panel-fitter across page-flip is so far
10931          * untested on non-native modes, so ignore it for now.
10932          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10933          */
10934         pf = 0;
10935         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10936         intel_ring_emit(ring, pf | pipesrc);
10937
10938         intel_mark_page_flip_active(intel_crtc);
10939         return 0;
10940 }
10941
10942 static int intel_gen6_queue_flip(struct drm_device *dev,
10943                                  struct drm_crtc *crtc,
10944                                  struct drm_framebuffer *fb,
10945                                  struct drm_i915_gem_object *obj,
10946                                  struct drm_i915_gem_request *req,
10947                                  uint32_t flags)
10948 {
10949         struct intel_engine_cs *ring = req->ring;
10950         struct drm_i915_private *dev_priv = dev->dev_private;
10951         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10952         uint32_t pf, pipesrc;
10953         int ret;
10954
10955         ret = intel_ring_begin(req, 4);
10956         if (ret)
10957                 return ret;
10958
10959         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10960                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10961         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
10962         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10963
10964         /* Contrary to the suggestions in the documentation,
10965          * "Enable Panel Fitter" does not seem to be required when page
10966          * flipping with a non-native mode, and worse causes a normal
10967          * modeset to fail.
10968          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10969          */
10970         pf = 0;
10971         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10972         intel_ring_emit(ring, pf | pipesrc);
10973
10974         intel_mark_page_flip_active(intel_crtc);
10975         return 0;
10976 }
10977
10978 static int intel_gen7_queue_flip(struct drm_device *dev,
10979                                  struct drm_crtc *crtc,
10980                                  struct drm_framebuffer *fb,
10981                                  struct drm_i915_gem_object *obj,
10982                                  struct drm_i915_gem_request *req,
10983                                  uint32_t flags)
10984 {
10985         struct intel_engine_cs *ring = req->ring;
10986         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10987         uint32_t plane_bit = 0;
10988         int len, ret;
10989
10990         switch (intel_crtc->plane) {
10991         case PLANE_A:
10992                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10993                 break;
10994         case PLANE_B:
10995                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10996                 break;
10997         case PLANE_C:
10998                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10999                 break;
11000         default:
11001                 WARN_ONCE(1, "unknown plane in flip command\n");
11002                 return -ENODEV;
11003         }
11004
11005         len = 4;
11006         if (ring->id == RCS) {
11007                 len += 6;
11008                 /*
11009                  * On Gen 8, SRM is now taking an extra dword to accommodate
11010                  * 48bits addresses, and we need a NOOP for the batch size to
11011                  * stay even.
11012                  */
11013                 if (IS_GEN8(dev))
11014                         len += 2;
11015         }
11016
11017         /*
11018          * BSpec MI_DISPLAY_FLIP for IVB:
11019          * "The full packet must be contained within the same cache line."
11020          *
11021          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11022          * cacheline, if we ever start emitting more commands before
11023          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11024          * then do the cacheline alignment, and finally emit the
11025          * MI_DISPLAY_FLIP.
11026          */
11027         ret = intel_ring_cacheline_align(req);
11028         if (ret)
11029                 return ret;
11030
11031         ret = intel_ring_begin(req, len);
11032         if (ret)
11033                 return ret;
11034
11035         /* Unmask the flip-done completion message. Note that the bspec says that
11036          * we should do this for both the BCS and RCS, and that we must not unmask
11037          * more than one flip event at any time (or ensure that one flip message
11038          * can be sent by waiting for flip-done prior to queueing new flips).
11039          * Experimentation says that BCS works despite DERRMR masking all
11040          * flip-done completion events and that unmasking all planes at once
11041          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11042          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11043          */
11044         if (ring->id == RCS) {
11045                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11046                 intel_ring_emit(ring, DERRMR);
11047                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11048                                         DERRMR_PIPEB_PRI_FLIP_DONE |
11049                                         DERRMR_PIPEC_PRI_FLIP_DONE));
11050                 if (IS_GEN8(dev))
11051                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
11052                                               MI_SRM_LRM_GLOBAL_GTT);
11053                 else
11054                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
11055                                               MI_SRM_LRM_GLOBAL_GTT);
11056                 intel_ring_emit(ring, DERRMR);
11057                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11058                 if (IS_GEN8(dev)) {
11059                         intel_ring_emit(ring, 0);
11060                         intel_ring_emit(ring, MI_NOOP);
11061                 }
11062         }
11063
11064         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11065         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11066         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11067         intel_ring_emit(ring, (MI_NOOP));
11068
11069         intel_mark_page_flip_active(intel_crtc);
11070         return 0;
11071 }
11072
11073 static bool use_mmio_flip(struct intel_engine_cs *ring,
11074                           struct drm_i915_gem_object *obj)
11075 {
11076         /*
11077          * This is not being used for older platforms, because
11078          * non-availability of flip done interrupt forces us to use
11079          * CS flips. Older platforms derive flip done using some clever
11080          * tricks involving the flip_pending status bits and vblank irqs.
11081          * So using MMIO flips there would disrupt this mechanism.
11082          */
11083
11084         if (ring == NULL)
11085                 return true;
11086
11087         if (INTEL_INFO(ring->dev)->gen < 5)
11088                 return false;
11089
11090         if (i915.use_mmio_flip < 0)
11091                 return false;
11092         else if (i915.use_mmio_flip > 0)
11093                 return true;
11094         else if (i915.enable_execlists)
11095                 return true;
11096         else
11097                 return ring != i915_gem_request_get_ring(obj->last_write_req);
11098 }
11099
11100 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
11101 {
11102         struct drm_device *dev = intel_crtc->base.dev;
11103         struct drm_i915_private *dev_priv = dev->dev_private;
11104         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11105         const enum pipe pipe = intel_crtc->pipe;
11106         u32 ctl, stride;
11107
11108         ctl = I915_READ(PLANE_CTL(pipe, 0));
11109         ctl &= ~PLANE_CTL_TILED_MASK;
11110         switch (fb->modifier[0]) {
11111         case DRM_FORMAT_MOD_NONE:
11112                 break;
11113         case I915_FORMAT_MOD_X_TILED:
11114                 ctl |= PLANE_CTL_TILED_X;
11115                 break;
11116         case I915_FORMAT_MOD_Y_TILED:
11117                 ctl |= PLANE_CTL_TILED_Y;
11118                 break;
11119         case I915_FORMAT_MOD_Yf_TILED:
11120                 ctl |= PLANE_CTL_TILED_YF;
11121                 break;
11122         default:
11123                 MISSING_CASE(fb->modifier[0]);
11124         }
11125
11126         /*
11127          * The stride is either expressed as a multiple of 64 bytes chunks for
11128          * linear buffers or in number of tiles for tiled buffers.
11129          */
11130         stride = fb->pitches[0] /
11131                  intel_fb_stride_alignment(dev, fb->modifier[0],
11132                                            fb->pixel_format);
11133
11134         /*
11135          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11136          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11137          */
11138         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11139         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11140
11141         I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
11142         POSTING_READ(PLANE_SURF(pipe, 0));
11143 }
11144
11145 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
11146 {
11147         struct drm_device *dev = intel_crtc->base.dev;
11148         struct drm_i915_private *dev_priv = dev->dev_private;
11149         struct intel_framebuffer *intel_fb =
11150                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11151         struct drm_i915_gem_object *obj = intel_fb->obj;
11152         u32 dspcntr;
11153         u32 reg;
11154
11155         reg = DSPCNTR(intel_crtc->plane);
11156         dspcntr = I915_READ(reg);
11157
11158         if (obj->tiling_mode != I915_TILING_NONE)
11159                 dspcntr |= DISPPLANE_TILED;
11160         else
11161                 dspcntr &= ~DISPPLANE_TILED;
11162
11163         I915_WRITE(reg, dspcntr);
11164
11165         I915_WRITE(DSPSURF(intel_crtc->plane),
11166                    intel_crtc->unpin_work->gtt_offset);
11167         POSTING_READ(DSPSURF(intel_crtc->plane));
11168
11169 }
11170
11171 /*
11172  * XXX: This is the temporary way to update the plane registers until we get
11173  * around to using the usual plane update functions for MMIO flips
11174  */
11175 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
11176 {
11177         struct drm_device *dev = intel_crtc->base.dev;
11178         bool atomic_update;
11179         u32 start_vbl_count;
11180
11181         intel_mark_page_flip_active(intel_crtc);
11182
11183         atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
11184
11185         if (INTEL_INFO(dev)->gen >= 9)
11186                 skl_do_mmio_flip(intel_crtc);
11187         else
11188                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11189                 ilk_do_mmio_flip(intel_crtc);
11190
11191         if (atomic_update)
11192                 intel_pipe_update_end(intel_crtc, start_vbl_count);
11193 }
11194
11195 static void intel_mmio_flip_work_func(struct work_struct *work)
11196 {
11197         struct intel_mmio_flip *mmio_flip =
11198                 container_of(work, struct intel_mmio_flip, work);
11199
11200         if (mmio_flip->req)
11201                 WARN_ON(__i915_wait_request(mmio_flip->req,
11202                                             mmio_flip->crtc->reset_counter,
11203                                             false, NULL,
11204                                             &mmio_flip->i915->rps.mmioflips));
11205
11206         intel_do_mmio_flip(mmio_flip->crtc);
11207
11208         i915_gem_request_unreference__unlocked(mmio_flip->req);
11209         kfree(mmio_flip);
11210 }
11211
11212 static int intel_queue_mmio_flip(struct drm_device *dev,
11213                                  struct drm_crtc *crtc,
11214                                  struct drm_framebuffer *fb,
11215                                  struct drm_i915_gem_object *obj,
11216                                  struct intel_engine_cs *ring,
11217                                  uint32_t flags)
11218 {
11219         struct intel_mmio_flip *mmio_flip;
11220
11221         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11222         if (mmio_flip == NULL)
11223                 return -ENOMEM;
11224
11225         mmio_flip->i915 = to_i915(dev);
11226         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11227         mmio_flip->crtc = to_intel_crtc(crtc);
11228
11229         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11230         schedule_work(&mmio_flip->work);
11231
11232         return 0;
11233 }
11234
11235 static int intel_default_queue_flip(struct drm_device *dev,
11236                                     struct drm_crtc *crtc,
11237                                     struct drm_framebuffer *fb,
11238                                     struct drm_i915_gem_object *obj,
11239                                     struct drm_i915_gem_request *req,
11240                                     uint32_t flags)
11241 {
11242         return -ENODEV;
11243 }
11244
11245 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11246                                          struct drm_crtc *crtc)
11247 {
11248         struct drm_i915_private *dev_priv = dev->dev_private;
11249         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11250         struct intel_unpin_work *work = intel_crtc->unpin_work;
11251         u32 addr;
11252
11253         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11254                 return true;
11255
11256         if (!work->enable_stall_check)
11257                 return false;
11258
11259         if (work->flip_ready_vblank == 0) {
11260                 if (work->flip_queued_req &&
11261                     !i915_gem_request_completed(work->flip_queued_req, true))
11262                         return false;
11263
11264                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11265         }
11266
11267         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11268                 return false;
11269
11270         /* Potential stall - if we see that the flip has happened,
11271          * assume a missed interrupt. */
11272         if (INTEL_INFO(dev)->gen >= 4)
11273                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11274         else
11275                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11276
11277         /* There is a potential issue here with a false positive after a flip
11278          * to the same address. We could address this by checking for a
11279          * non-incrementing frame counter.
11280          */
11281         return addr == work->gtt_offset;
11282 }
11283
11284 void intel_check_page_flip(struct drm_device *dev, int pipe)
11285 {
11286         struct drm_i915_private *dev_priv = dev->dev_private;
11287         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11288         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11289         struct intel_unpin_work *work;
11290
11291         WARN_ON(!in_interrupt());
11292
11293         if (crtc == NULL)
11294                 return;
11295
11296         spin_lock(&dev->event_lock);
11297         work = intel_crtc->unpin_work;
11298         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11299                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11300                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11301                 page_flip_completed(intel_crtc);
11302                 work = NULL;
11303         }
11304         if (work != NULL &&
11305             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11306                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11307         spin_unlock(&dev->event_lock);
11308 }
11309
11310 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11311                                 struct drm_framebuffer *fb,
11312                                 struct drm_pending_vblank_event *event,
11313                                 uint32_t page_flip_flags)
11314 {
11315         struct drm_device *dev = crtc->dev;
11316         struct drm_i915_private *dev_priv = dev->dev_private;
11317         struct drm_framebuffer *old_fb = crtc->primary->fb;
11318         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11319         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11320         struct drm_plane *primary = crtc->primary;
11321         enum pipe pipe = intel_crtc->pipe;
11322         struct intel_unpin_work *work;
11323         struct intel_engine_cs *ring;
11324         bool mmio_flip;
11325         struct drm_i915_gem_request *request = NULL;
11326         int ret;
11327
11328         /*
11329          * drm_mode_page_flip_ioctl() should already catch this, but double
11330          * check to be safe.  In the future we may enable pageflipping from
11331          * a disabled primary plane.
11332          */
11333         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11334                 return -EBUSY;
11335
11336         /* Can't change pixel format via MI display flips. */
11337         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11338                 return -EINVAL;
11339
11340         /*
11341          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11342          * Note that pitch changes could also affect these register.
11343          */
11344         if (INTEL_INFO(dev)->gen > 3 &&
11345             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11346              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11347                 return -EINVAL;
11348
11349         if (i915_terminally_wedged(&dev_priv->gpu_error))
11350                 goto out_hang;
11351
11352         work = kzalloc(sizeof(*work), GFP_KERNEL);
11353         if (work == NULL)
11354                 return -ENOMEM;
11355
11356         work->event = event;
11357         work->crtc = crtc;
11358         work->old_fb = old_fb;
11359         INIT_WORK(&work->work, intel_unpin_work_fn);
11360
11361         ret = drm_crtc_vblank_get(crtc);
11362         if (ret)
11363                 goto free_work;
11364
11365         /* We borrow the event spin lock for protecting unpin_work */
11366         spin_lock_irq(&dev->event_lock);
11367         if (intel_crtc->unpin_work) {
11368                 /* Before declaring the flip queue wedged, check if
11369                  * the hardware completed the operation behind our backs.
11370                  */
11371                 if (__intel_pageflip_stall_check(dev, crtc)) {
11372                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11373                         page_flip_completed(intel_crtc);
11374                 } else {
11375                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11376                         spin_unlock_irq(&dev->event_lock);
11377
11378                         drm_crtc_vblank_put(crtc);
11379                         kfree(work);
11380                         return -EBUSY;
11381                 }
11382         }
11383         intel_crtc->unpin_work = work;
11384         spin_unlock_irq(&dev->event_lock);
11385
11386         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11387                 flush_workqueue(dev_priv->wq);
11388
11389         /* Reference the objects for the scheduled work. */
11390         drm_framebuffer_reference(work->old_fb);
11391         drm_gem_object_reference(&obj->base);
11392
11393         crtc->primary->fb = fb;
11394         update_state_fb(crtc->primary);
11395
11396         work->pending_flip_obj = obj;
11397
11398         ret = i915_mutex_lock_interruptible(dev);
11399         if (ret)
11400                 goto cleanup;
11401
11402         atomic_inc(&intel_crtc->unpin_work_count);
11403         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11404
11405         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11406                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11407
11408         if (IS_VALLEYVIEW(dev)) {
11409                 ring = &dev_priv->ring[BCS];
11410                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11411                         /* vlv: DISPLAY_FLIP fails to change tiling */
11412                         ring = NULL;
11413         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11414                 ring = &dev_priv->ring[BCS];
11415         } else if (INTEL_INFO(dev)->gen >= 7) {
11416                 ring = i915_gem_request_get_ring(obj->last_write_req);
11417                 if (ring == NULL || ring->id != RCS)
11418                         ring = &dev_priv->ring[BCS];
11419         } else {
11420                 ring = &dev_priv->ring[RCS];
11421         }
11422
11423         mmio_flip = use_mmio_flip(ring, obj);
11424
11425         /* When using CS flips, we want to emit semaphores between rings.
11426          * However, when using mmio flips we will create a task to do the
11427          * synchronisation, so all we want here is to pin the framebuffer
11428          * into the display plane and skip any waits.
11429          */
11430         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11431                                          crtc->primary->state,
11432                                          mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
11433         if (ret)
11434                 goto cleanup_pending;
11435
11436         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11437                                                   + intel_crtc->dspaddr_offset;
11438
11439         if (mmio_flip) {
11440                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11441                                             page_flip_flags);
11442                 if (ret)
11443                         goto cleanup_unpin;
11444
11445                 i915_gem_request_assign(&work->flip_queued_req,
11446                                         obj->last_write_req);
11447         } else {
11448                 if (!request) {
11449                         ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11450                         if (ret)
11451                                 goto cleanup_unpin;
11452                 }
11453
11454                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11455                                                    page_flip_flags);
11456                 if (ret)
11457                         goto cleanup_unpin;
11458
11459                 i915_gem_request_assign(&work->flip_queued_req, request);
11460         }
11461
11462         if (request)
11463                 i915_add_request_no_flush(request);
11464
11465         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11466         work->enable_stall_check = true;
11467
11468         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11469                           to_intel_plane(primary)->frontbuffer_bit);
11470         mutex_unlock(&dev->struct_mutex);
11471
11472         intel_fbc_disable(dev);
11473         intel_frontbuffer_flip_prepare(dev,
11474                                        to_intel_plane(primary)->frontbuffer_bit);
11475
11476         trace_i915_flip_request(intel_crtc->plane, obj);
11477
11478         return 0;
11479
11480 cleanup_unpin:
11481         intel_unpin_fb_obj(fb, crtc->primary->state);
11482 cleanup_pending:
11483         if (request)
11484                 i915_gem_request_cancel(request);
11485         atomic_dec(&intel_crtc->unpin_work_count);
11486         mutex_unlock(&dev->struct_mutex);
11487 cleanup:
11488         crtc->primary->fb = old_fb;
11489         update_state_fb(crtc->primary);
11490
11491         drm_gem_object_unreference_unlocked(&obj->base);
11492         drm_framebuffer_unreference(work->old_fb);
11493
11494         spin_lock_irq(&dev->event_lock);
11495         intel_crtc->unpin_work = NULL;
11496         spin_unlock_irq(&dev->event_lock);
11497
11498         drm_crtc_vblank_put(crtc);
11499 free_work:
11500         kfree(work);
11501
11502         if (ret == -EIO) {
11503                 struct drm_atomic_state *state;
11504                 struct drm_plane_state *plane_state;
11505
11506 out_hang:
11507                 state = drm_atomic_state_alloc(dev);
11508                 if (!state)
11509                         return -ENOMEM;
11510                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11511
11512 retry:
11513                 plane_state = drm_atomic_get_plane_state(state, primary);
11514                 ret = PTR_ERR_OR_ZERO(plane_state);
11515                 if (!ret) {
11516                         drm_atomic_set_fb_for_plane(plane_state, fb);
11517
11518                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11519                         if (!ret)
11520                                 ret = drm_atomic_commit(state);
11521                 }
11522
11523                 if (ret == -EDEADLK) {
11524                         drm_modeset_backoff(state->acquire_ctx);
11525                         drm_atomic_state_clear(state);
11526                         goto retry;
11527                 }
11528
11529                 if (ret)
11530                         drm_atomic_state_free(state);
11531
11532                 if (ret == 0 && event) {
11533                         spin_lock_irq(&dev->event_lock);
11534                         drm_send_vblank_event(dev, pipe, event);
11535                         spin_unlock_irq(&dev->event_lock);
11536                 }
11537         }
11538         return ret;
11539 }
11540
11541
11542 /**
11543  * intel_wm_need_update - Check whether watermarks need updating
11544  * @plane: drm plane
11545  * @state: new plane state
11546  *
11547  * Check current plane state versus the new one to determine whether
11548  * watermarks need to be recalculated.
11549  *
11550  * Returns true or false.
11551  */
11552 static bool intel_wm_need_update(struct drm_plane *plane,
11553                                  struct drm_plane_state *state)
11554 {
11555         /* Update watermarks on tiling changes. */
11556         if (!plane->state->fb || !state->fb ||
11557             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11558             plane->state->rotation != state->rotation)
11559                 return true;
11560
11561         if (plane->state->crtc_w != state->crtc_w)
11562                 return true;
11563
11564         return false;
11565 }
11566
11567 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11568                                     struct drm_plane_state *plane_state)
11569 {
11570         struct drm_crtc *crtc = crtc_state->crtc;
11571         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11572         struct drm_plane *plane = plane_state->plane;
11573         struct drm_device *dev = crtc->dev;
11574         struct drm_i915_private *dev_priv = dev->dev_private;
11575         struct intel_plane_state *old_plane_state =
11576                 to_intel_plane_state(plane->state);
11577         int idx = intel_crtc->base.base.id, ret;
11578         int i = drm_plane_index(plane);
11579         bool mode_changed = needs_modeset(crtc_state);
11580         bool was_crtc_enabled = crtc->state->active;
11581         bool is_crtc_enabled = crtc_state->active;
11582
11583         bool turn_off, turn_on, visible, was_visible;
11584         struct drm_framebuffer *fb = plane_state->fb;
11585
11586         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11587             plane->type != DRM_PLANE_TYPE_CURSOR) {
11588                 ret = skl_update_scaler_plane(
11589                         to_intel_crtc_state(crtc_state),
11590                         to_intel_plane_state(plane_state));
11591                 if (ret)
11592                         return ret;
11593         }
11594
11595         /*
11596          * Disabling a plane is always okay; we just need to update
11597          * fb tracking in a special way since cleanup_fb() won't
11598          * get called by the plane helpers.
11599          */
11600         if (old_plane_state->base.fb && !fb)
11601                 intel_crtc->atomic.disabled_planes |= 1 << i;
11602
11603         was_visible = old_plane_state->visible;
11604         visible = to_intel_plane_state(plane_state)->visible;
11605
11606         if (!was_crtc_enabled && WARN_ON(was_visible))
11607                 was_visible = false;
11608
11609         if (!is_crtc_enabled && WARN_ON(visible))
11610                 visible = false;
11611
11612         if (!was_visible && !visible)
11613                 return 0;
11614
11615         turn_off = was_visible && (!visible || mode_changed);
11616         turn_on = visible && (!was_visible || mode_changed);
11617
11618         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11619                          plane->base.id, fb ? fb->base.id : -1);
11620
11621         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11622                          plane->base.id, was_visible, visible,
11623                          turn_off, turn_on, mode_changed);
11624
11625         if (turn_on) {
11626                 intel_crtc->atomic.update_wm_pre = true;
11627                 /* must disable cxsr around plane enable/disable */
11628                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11629                         intel_crtc->atomic.disable_cxsr = true;
11630                         /* to potentially re-enable cxsr */
11631                         intel_crtc->atomic.wait_vblank = true;
11632                         intel_crtc->atomic.update_wm_post = true;
11633                 }
11634         } else if (turn_off) {
11635                 intel_crtc->atomic.update_wm_post = true;
11636                 /* must disable cxsr around plane enable/disable */
11637                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11638                         if (is_crtc_enabled)
11639                                 intel_crtc->atomic.wait_vblank = true;
11640                         intel_crtc->atomic.disable_cxsr = true;
11641                 }
11642         } else if (intel_wm_need_update(plane, plane_state)) {
11643                 intel_crtc->atomic.update_wm_pre = true;
11644         }
11645
11646         if (visible)
11647                 intel_crtc->atomic.fb_bits |=
11648                         to_intel_plane(plane)->frontbuffer_bit;
11649
11650         switch (plane->type) {
11651         case DRM_PLANE_TYPE_PRIMARY:
11652                 intel_crtc->atomic.wait_for_flips = true;
11653                 intel_crtc->atomic.pre_disable_primary = turn_off;
11654                 intel_crtc->atomic.post_enable_primary = turn_on;
11655
11656                 if (turn_off) {
11657                         /*
11658                          * FIXME: Actually if we will still have any other
11659                          * plane enabled on the pipe we could let IPS enabled
11660                          * still, but for now lets consider that when we make
11661                          * primary invisible by setting DSPCNTR to 0 on
11662                          * update_primary_plane function IPS needs to be
11663                          * disable.
11664                          */
11665                         intel_crtc->atomic.disable_ips = true;
11666
11667                         intel_crtc->atomic.disable_fbc = true;
11668                 }
11669
11670                 /*
11671                  * FBC does not work on some platforms for rotated
11672                  * planes, so disable it when rotation is not 0 and
11673                  * update it when rotation is set back to 0.
11674                  *
11675                  * FIXME: This is redundant with the fbc update done in
11676                  * the primary plane enable function except that that
11677                  * one is done too late. We eventually need to unify
11678                  * this.
11679                  */
11680
11681                 if (visible &&
11682                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11683                     dev_priv->fbc.crtc == intel_crtc &&
11684                     plane_state->rotation != BIT(DRM_ROTATE_0))
11685                         intel_crtc->atomic.disable_fbc = true;
11686
11687                 /*
11688                  * BDW signals flip done immediately if the plane
11689                  * is disabled, even if the plane enable is already
11690                  * armed to occur at the next vblank :(
11691                  */
11692                 if (turn_on && IS_BROADWELL(dev))
11693                         intel_crtc->atomic.wait_vblank = true;
11694
11695                 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11696                 break;
11697         case DRM_PLANE_TYPE_CURSOR:
11698                 break;
11699         case DRM_PLANE_TYPE_OVERLAY:
11700                 if (turn_off && !mode_changed) {
11701                         intel_crtc->atomic.wait_vblank = true;
11702                         intel_crtc->atomic.update_sprite_watermarks |=
11703                                 1 << i;
11704                 }
11705         }
11706         return 0;
11707 }
11708
11709 static bool encoders_cloneable(const struct intel_encoder *a,
11710                                const struct intel_encoder *b)
11711 {
11712         /* masks could be asymmetric, so check both ways */
11713         return a == b || (a->cloneable & (1 << b->type) &&
11714                           b->cloneable & (1 << a->type));
11715 }
11716
11717 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11718                                          struct intel_crtc *crtc,
11719                                          struct intel_encoder *encoder)
11720 {
11721         struct intel_encoder *source_encoder;
11722         struct drm_connector *connector;
11723         struct drm_connector_state *connector_state;
11724         int i;
11725
11726         for_each_connector_in_state(state, connector, connector_state, i) {
11727                 if (connector_state->crtc != &crtc->base)
11728                         continue;
11729
11730                 source_encoder =
11731                         to_intel_encoder(connector_state->best_encoder);
11732                 if (!encoders_cloneable(encoder, source_encoder))
11733                         return false;
11734         }
11735
11736         return true;
11737 }
11738
11739 static bool check_encoder_cloning(struct drm_atomic_state *state,
11740                                   struct intel_crtc *crtc)
11741 {
11742         struct intel_encoder *encoder;
11743         struct drm_connector *connector;
11744         struct drm_connector_state *connector_state;
11745         int i;
11746
11747         for_each_connector_in_state(state, connector, connector_state, i) {
11748                 if (connector_state->crtc != &crtc->base)
11749                         continue;
11750
11751                 encoder = to_intel_encoder(connector_state->best_encoder);
11752                 if (!check_single_encoder_cloning(state, crtc, encoder))
11753                         return false;
11754         }
11755
11756         return true;
11757 }
11758
11759 static void intel_crtc_check_initial_planes(struct drm_crtc *crtc,
11760                                             struct drm_crtc_state *crtc_state)
11761 {
11762         struct intel_crtc_state *pipe_config =
11763                 to_intel_crtc_state(crtc_state);
11764         struct drm_plane *p;
11765         unsigned visible_mask = 0;
11766
11767         drm_for_each_plane_mask(p, crtc->dev, crtc_state->plane_mask) {
11768                 struct drm_plane_state *plane_state =
11769                         drm_atomic_get_existing_plane_state(crtc_state->state, p);
11770
11771                 if (WARN_ON(!plane_state))
11772                         continue;
11773
11774                 if (!plane_state->fb)
11775                         crtc_state->plane_mask &=
11776                                 ~(1 << drm_plane_index(p));
11777                 else if (to_intel_plane_state(plane_state)->visible)
11778                         visible_mask |= 1 << drm_plane_index(p);
11779         }
11780
11781         if (!visible_mask)
11782                 return;
11783
11784         pipe_config->quirks &= ~PIPE_CONFIG_QUIRK_INITIAL_PLANES;
11785 }
11786
11787 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11788                                    struct drm_crtc_state *crtc_state)
11789 {
11790         struct drm_device *dev = crtc->dev;
11791         struct drm_i915_private *dev_priv = dev->dev_private;
11792         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11793         struct intel_crtc_state *pipe_config =
11794                 to_intel_crtc_state(crtc_state);
11795         struct drm_atomic_state *state = crtc_state->state;
11796         int ret, idx = crtc->base.id;
11797         bool mode_changed = needs_modeset(crtc_state);
11798
11799         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11800                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11801                 return -EINVAL;
11802         }
11803
11804         I915_STATE_WARN(crtc->state->active != intel_crtc->active,
11805                 "[CRTC:%i] mismatch between state->active(%i) and crtc->active(%i)\n",
11806                 idx, crtc->state->active, intel_crtc->active);
11807
11808         /* plane mask is fixed up after all initial planes are calculated */
11809         if (pipe_config->quirks & PIPE_CONFIG_QUIRK_INITIAL_PLANES)
11810                 intel_crtc_check_initial_planes(crtc, crtc_state);
11811
11812         if (mode_changed && !crtc_state->active)
11813                 intel_crtc->atomic.update_wm_post = true;
11814
11815         if (mode_changed && crtc_state->enable &&
11816             dev_priv->display.crtc_compute_clock &&
11817             !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11818                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11819                                                            pipe_config);
11820                 if (ret)
11821                         return ret;
11822         }
11823
11824         return intel_atomic_setup_scalers(dev, intel_crtc, pipe_config);
11825 }
11826
11827 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11828         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11829         .load_lut = intel_crtc_load_lut,
11830         .atomic_begin = intel_begin_crtc_commit,
11831         .atomic_flush = intel_finish_crtc_commit,
11832         .atomic_check = intel_crtc_atomic_check,
11833 };
11834
11835 /**
11836  * intel_modeset_update_staged_output_state
11837  *
11838  * Updates the staged output configuration state, e.g. after we've read out the
11839  * current hw state.
11840  */
11841 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
11842 {
11843         struct intel_crtc *crtc;
11844         struct intel_encoder *encoder;
11845         struct intel_connector *connector;
11846
11847         for_each_intel_connector(dev, connector) {
11848                 connector->new_encoder =
11849                         to_intel_encoder(connector->base.encoder);
11850         }
11851
11852         for_each_intel_encoder(dev, encoder) {
11853                 encoder->new_crtc =
11854                         to_intel_crtc(encoder->base.crtc);
11855         }
11856
11857         for_each_intel_crtc(dev, crtc) {
11858                 crtc->new_enabled = crtc->base.state->enable;
11859         }
11860 }
11861
11862 /* Transitional helper to copy current connector/encoder state to
11863  * connector->state. This is needed so that code that is partially
11864  * converted to atomic does the right thing.
11865  */
11866 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11867 {
11868         struct intel_connector *connector;
11869
11870         for_each_intel_connector(dev, connector) {
11871                 if (connector->base.encoder) {
11872                         connector->base.state->best_encoder =
11873                                 connector->base.encoder;
11874                         connector->base.state->crtc =
11875                                 connector->base.encoder->crtc;
11876                 } else {
11877                         connector->base.state->best_encoder = NULL;
11878                         connector->base.state->crtc = NULL;
11879                 }
11880         }
11881 }
11882
11883 static void
11884 connected_sink_compute_bpp(struct intel_connector *connector,
11885                            struct intel_crtc_state *pipe_config)
11886 {
11887         int bpp = pipe_config->pipe_bpp;
11888
11889         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11890                 connector->base.base.id,
11891                 connector->base.name);
11892
11893         /* Don't use an invalid EDID bpc value */
11894         if (connector->base.display_info.bpc &&
11895             connector->base.display_info.bpc * 3 < bpp) {
11896                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11897                               bpp, connector->base.display_info.bpc*3);
11898                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11899         }
11900
11901         /* Clamp bpp to 8 on screens without EDID 1.4 */
11902         if (connector->base.display_info.bpc == 0 && bpp > 24) {
11903                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11904                               bpp);
11905                 pipe_config->pipe_bpp = 24;
11906         }
11907 }
11908
11909 static int
11910 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11911                           struct intel_crtc_state *pipe_config)
11912 {
11913         struct drm_device *dev = crtc->base.dev;
11914         struct drm_atomic_state *state;
11915         struct drm_connector *connector;
11916         struct drm_connector_state *connector_state;
11917         int bpp, i;
11918
11919         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11920                 bpp = 10*3;
11921         else if (INTEL_INFO(dev)->gen >= 5)
11922                 bpp = 12*3;
11923         else
11924                 bpp = 8*3;
11925
11926
11927         pipe_config->pipe_bpp = bpp;
11928
11929         state = pipe_config->base.state;
11930
11931         /* Clamp display bpp to EDID value */
11932         for_each_connector_in_state(state, connector, connector_state, i) {
11933                 if (connector_state->crtc != &crtc->base)
11934                         continue;
11935
11936                 connected_sink_compute_bpp(to_intel_connector(connector),
11937                                            pipe_config);
11938         }
11939
11940         return bpp;
11941 }
11942
11943 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11944 {
11945         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11946                         "type: 0x%x flags: 0x%x\n",
11947                 mode->crtc_clock,
11948                 mode->crtc_hdisplay, mode->crtc_hsync_start,
11949                 mode->crtc_hsync_end, mode->crtc_htotal,
11950                 mode->crtc_vdisplay, mode->crtc_vsync_start,
11951                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11952 }
11953
11954 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11955                                    struct intel_crtc_state *pipe_config,
11956                                    const char *context)
11957 {
11958         struct drm_device *dev = crtc->base.dev;
11959         struct drm_plane *plane;
11960         struct intel_plane *intel_plane;
11961         struct intel_plane_state *state;
11962         struct drm_framebuffer *fb;
11963
11964         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11965                       context, pipe_config, pipe_name(crtc->pipe));
11966
11967         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11968         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11969                       pipe_config->pipe_bpp, pipe_config->dither);
11970         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11971                       pipe_config->has_pch_encoder,
11972                       pipe_config->fdi_lanes,
11973                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11974                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11975                       pipe_config->fdi_m_n.tu);
11976         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11977                       pipe_config->has_dp_encoder,
11978                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11979                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11980                       pipe_config->dp_m_n.tu);
11981
11982         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11983                       pipe_config->has_dp_encoder,
11984                       pipe_config->dp_m2_n2.gmch_m,
11985                       pipe_config->dp_m2_n2.gmch_n,
11986                       pipe_config->dp_m2_n2.link_m,
11987                       pipe_config->dp_m2_n2.link_n,
11988                       pipe_config->dp_m2_n2.tu);
11989
11990         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11991                       pipe_config->has_audio,
11992                       pipe_config->has_infoframe);
11993
11994         DRM_DEBUG_KMS("requested mode:\n");
11995         drm_mode_debug_printmodeline(&pipe_config->base.mode);
11996         DRM_DEBUG_KMS("adjusted mode:\n");
11997         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11998         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11999         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12000         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12001                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12002         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12003                       crtc->num_scalers,
12004                       pipe_config->scaler_state.scaler_users,
12005                       pipe_config->scaler_state.scaler_id);
12006         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12007                       pipe_config->gmch_pfit.control,
12008                       pipe_config->gmch_pfit.pgm_ratios,
12009                       pipe_config->gmch_pfit.lvds_border_bits);
12010         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12011                       pipe_config->pch_pfit.pos,
12012                       pipe_config->pch_pfit.size,
12013                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12014         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12015         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12016
12017         if (IS_BROXTON(dev)) {
12018                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12019                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12020                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12021                               pipe_config->ddi_pll_sel,
12022                               pipe_config->dpll_hw_state.ebb0,
12023                               pipe_config->dpll_hw_state.ebb4,
12024                               pipe_config->dpll_hw_state.pll0,
12025                               pipe_config->dpll_hw_state.pll1,
12026                               pipe_config->dpll_hw_state.pll2,
12027                               pipe_config->dpll_hw_state.pll3,
12028                               pipe_config->dpll_hw_state.pll6,
12029                               pipe_config->dpll_hw_state.pll8,
12030                               pipe_config->dpll_hw_state.pll9,
12031                               pipe_config->dpll_hw_state.pll10,
12032                               pipe_config->dpll_hw_state.pcsdw12);
12033         } else if (IS_SKYLAKE(dev)) {
12034                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12035                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12036                               pipe_config->ddi_pll_sel,
12037                               pipe_config->dpll_hw_state.ctrl1,
12038                               pipe_config->dpll_hw_state.cfgcr1,
12039                               pipe_config->dpll_hw_state.cfgcr2);
12040         } else if (HAS_DDI(dev)) {
12041                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
12042                               pipe_config->ddi_pll_sel,
12043                               pipe_config->dpll_hw_state.wrpll);
12044         } else {
12045                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12046                               "fp0: 0x%x, fp1: 0x%x\n",
12047                               pipe_config->dpll_hw_state.dpll,
12048                               pipe_config->dpll_hw_state.dpll_md,
12049                               pipe_config->dpll_hw_state.fp0,
12050                               pipe_config->dpll_hw_state.fp1);
12051         }
12052
12053         DRM_DEBUG_KMS("planes on this crtc\n");
12054         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12055                 intel_plane = to_intel_plane(plane);
12056                 if (intel_plane->pipe != crtc->pipe)
12057                         continue;
12058
12059                 state = to_intel_plane_state(plane->state);
12060                 fb = state->base.fb;
12061                 if (!fb) {
12062                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12063                                 "disabled, scaler_id = %d\n",
12064                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12065                                 plane->base.id, intel_plane->pipe,
12066                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12067                                 drm_plane_index(plane), state->scaler_id);
12068                         continue;
12069                 }
12070
12071                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12072                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12073                         plane->base.id, intel_plane->pipe,
12074                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12075                         drm_plane_index(plane));
12076                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12077                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12078                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12079                         state->scaler_id,
12080                         state->src.x1 >> 16, state->src.y1 >> 16,
12081                         drm_rect_width(&state->src) >> 16,
12082                         drm_rect_height(&state->src) >> 16,
12083                         state->dst.x1, state->dst.y1,
12084                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12085         }
12086 }
12087
12088 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12089 {
12090         struct drm_device *dev = state->dev;
12091         struct intel_encoder *encoder;
12092         struct drm_connector *connector;
12093         struct drm_connector_state *connector_state;
12094         unsigned int used_ports = 0;
12095         int i;
12096
12097         /*
12098          * Walk the connector list instead of the encoder
12099          * list to detect the problem on ddi platforms
12100          * where there's just one encoder per digital port.
12101          */
12102         for_each_connector_in_state(state, connector, connector_state, i) {
12103                 if (!connector_state->best_encoder)
12104                         continue;
12105
12106                 encoder = to_intel_encoder(connector_state->best_encoder);
12107
12108                 WARN_ON(!connector_state->crtc);
12109
12110                 switch (encoder->type) {
12111                         unsigned int port_mask;
12112                 case INTEL_OUTPUT_UNKNOWN:
12113                         if (WARN_ON(!HAS_DDI(dev)))
12114                                 break;
12115                 case INTEL_OUTPUT_DISPLAYPORT:
12116                 case INTEL_OUTPUT_HDMI:
12117                 case INTEL_OUTPUT_EDP:
12118                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12119
12120                         /* the same port mustn't appear more than once */
12121                         if (used_ports & port_mask)
12122                                 return false;
12123
12124                         used_ports |= port_mask;
12125                 default:
12126                         break;
12127                 }
12128         }
12129
12130         return true;
12131 }
12132
12133 static void
12134 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12135 {
12136         struct drm_crtc_state tmp_state;
12137         struct intel_crtc_scaler_state scaler_state;
12138         struct intel_dpll_hw_state dpll_hw_state;
12139         enum intel_dpll_id shared_dpll;
12140         uint32_t ddi_pll_sel;
12141
12142         /* FIXME: before the switch to atomic started, a new pipe_config was
12143          * kzalloc'd. Code that depends on any field being zero should be
12144          * fixed, so that the crtc_state can be safely duplicated. For now,
12145          * only fields that are know to not cause problems are preserved. */
12146
12147         tmp_state = crtc_state->base;
12148         scaler_state = crtc_state->scaler_state;
12149         shared_dpll = crtc_state->shared_dpll;
12150         dpll_hw_state = crtc_state->dpll_hw_state;
12151         ddi_pll_sel = crtc_state->ddi_pll_sel;
12152
12153         memset(crtc_state, 0, sizeof *crtc_state);
12154
12155         crtc_state->base = tmp_state;
12156         crtc_state->scaler_state = scaler_state;
12157         crtc_state->shared_dpll = shared_dpll;
12158         crtc_state->dpll_hw_state = dpll_hw_state;
12159         crtc_state->ddi_pll_sel = ddi_pll_sel;
12160 }
12161
12162 static int
12163 intel_modeset_pipe_config(struct drm_crtc *crtc,
12164                           struct intel_crtc_state *pipe_config)
12165 {
12166         struct drm_atomic_state *state = pipe_config->base.state;
12167         struct intel_encoder *encoder;
12168         struct drm_connector *connector;
12169         struct drm_connector_state *connector_state;
12170         int base_bpp, ret = -EINVAL;
12171         int i;
12172         bool retry = true;
12173
12174         clear_intel_crtc_state(pipe_config);
12175
12176         pipe_config->cpu_transcoder =
12177                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12178
12179         /*
12180          * Sanitize sync polarity flags based on requested ones. If neither
12181          * positive or negative polarity is requested, treat this as meaning
12182          * negative polarity.
12183          */
12184         if (!(pipe_config->base.adjusted_mode.flags &
12185               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12186                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12187
12188         if (!(pipe_config->base.adjusted_mode.flags &
12189               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12190                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12191
12192         /* Compute a starting value for pipe_config->pipe_bpp taking the source
12193          * plane pixel format and any sink constraints into account. Returns the
12194          * source plane bpp so that dithering can be selected on mismatches
12195          * after encoders and crtc also have had their say. */
12196         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12197                                              pipe_config);
12198         if (base_bpp < 0)
12199                 goto fail;
12200
12201         /*
12202          * Determine the real pipe dimensions. Note that stereo modes can
12203          * increase the actual pipe size due to the frame doubling and
12204          * insertion of additional space for blanks between the frame. This
12205          * is stored in the crtc timings. We use the requested mode to do this
12206          * computation to clearly distinguish it from the adjusted mode, which
12207          * can be changed by the connectors in the below retry loop.
12208          */
12209         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12210                                &pipe_config->pipe_src_w,
12211                                &pipe_config->pipe_src_h);
12212
12213 encoder_retry:
12214         /* Ensure the port clock defaults are reset when retrying. */
12215         pipe_config->port_clock = 0;
12216         pipe_config->pixel_multiplier = 1;
12217
12218         /* Fill in default crtc timings, allow encoders to overwrite them. */
12219         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12220                               CRTC_STEREO_DOUBLE);
12221
12222         /* Pass our mode to the connectors and the CRTC to give them a chance to
12223          * adjust it according to limitations or connector properties, and also
12224          * a chance to reject the mode entirely.
12225          */
12226         for_each_connector_in_state(state, connector, connector_state, i) {
12227                 if (connector_state->crtc != crtc)
12228                         continue;
12229
12230                 encoder = to_intel_encoder(connector_state->best_encoder);
12231
12232                 if (!(encoder->compute_config(encoder, pipe_config))) {
12233                         DRM_DEBUG_KMS("Encoder config failure\n");
12234                         goto fail;
12235                 }
12236         }
12237
12238         /* Set default port clock if not overwritten by the encoder. Needs to be
12239          * done afterwards in case the encoder adjusts the mode. */
12240         if (!pipe_config->port_clock)
12241                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12242                         * pipe_config->pixel_multiplier;
12243
12244         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12245         if (ret < 0) {
12246                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12247                 goto fail;
12248         }
12249
12250         if (ret == RETRY) {
12251                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12252                         ret = -EINVAL;
12253                         goto fail;
12254                 }
12255
12256                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12257                 retry = false;
12258                 goto encoder_retry;
12259         }
12260
12261         pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
12262         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
12263                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12264
12265         /* Check if we need to force a modeset */
12266         if (pipe_config->has_audio !=
12267             to_intel_crtc_state(crtc->state)->has_audio) {
12268                 pipe_config->base.mode_changed = true;
12269                 ret = drm_atomic_add_affected_planes(state, crtc);
12270         }
12271
12272         /*
12273          * Note we have an issue here with infoframes: current code
12274          * only updates them on the full mode set path per hw
12275          * requirements.  So here we should be checking for any
12276          * required changes and forcing a mode set.
12277          */
12278 fail:
12279         return ret;
12280 }
12281
12282 static bool intel_crtc_in_use(struct drm_crtc *crtc)
12283 {
12284         struct drm_encoder *encoder;
12285         struct drm_device *dev = crtc->dev;
12286
12287         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
12288                 if (encoder->crtc == crtc)
12289                         return true;
12290
12291         return false;
12292 }
12293
12294 static void
12295 intel_modeset_update_state(struct drm_atomic_state *state)
12296 {
12297         struct drm_device *dev = state->dev;
12298         struct intel_encoder *intel_encoder;
12299         struct drm_crtc *crtc;
12300         struct drm_crtc_state *crtc_state;
12301         struct drm_connector *connector;
12302
12303         intel_shared_dpll_commit(state);
12304
12305         for_each_intel_encoder(dev, intel_encoder) {
12306                 if (!intel_encoder->base.crtc)
12307                         continue;
12308
12309                 crtc = intel_encoder->base.crtc;
12310                 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12311                 if (!crtc_state || !needs_modeset(crtc->state))
12312                         continue;
12313
12314                 intel_encoder->connectors_active = false;
12315         }
12316
12317         drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
12318         intel_modeset_update_staged_output_state(state->dev);
12319
12320         /* Double check state. */
12321         for_each_crtc(dev, crtc) {
12322                 WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
12323
12324                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12325
12326                 /* Update hwmode for vblank functions */
12327                 if (crtc->state->active)
12328                         crtc->hwmode = crtc->state->adjusted_mode;
12329                 else
12330                         crtc->hwmode.crtc_clock = 0;
12331         }
12332
12333         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12334                 if (!connector->encoder || !connector->encoder->crtc)
12335                         continue;
12336
12337                 crtc = connector->encoder->crtc;
12338                 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12339                 if (!crtc_state || !needs_modeset(crtc->state))
12340                         continue;
12341
12342                 if (crtc->state->active) {
12343                         struct drm_property *dpms_property =
12344                                 dev->mode_config.dpms_property;
12345
12346                         connector->dpms = DRM_MODE_DPMS_ON;
12347                         drm_object_property_set_value(&connector->base, dpms_property, DRM_MODE_DPMS_ON);
12348
12349                         intel_encoder = to_intel_encoder(connector->encoder);
12350                         intel_encoder->connectors_active = true;
12351                 } else
12352                         connector->dpms = DRM_MODE_DPMS_OFF;
12353         }
12354 }
12355
12356 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12357 {
12358         int diff;
12359
12360         if (clock1 == clock2)
12361                 return true;
12362
12363         if (!clock1 || !clock2)
12364                 return false;
12365
12366         diff = abs(clock1 - clock2);
12367
12368         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12369                 return true;
12370
12371         return false;
12372 }
12373
12374 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12375         list_for_each_entry((intel_crtc), \
12376                             &(dev)->mode_config.crtc_list, \
12377                             base.head) \
12378                 if (mask & (1 <<(intel_crtc)->pipe))
12379
12380 static bool
12381 intel_pipe_config_compare(struct drm_device *dev,
12382                           struct intel_crtc_state *current_config,
12383                           struct intel_crtc_state *pipe_config)
12384 {
12385 #define PIPE_CONF_CHECK_X(name) \
12386         if (current_config->name != pipe_config->name) { \
12387                 DRM_ERROR("mismatch in " #name " " \
12388                           "(expected 0x%08x, found 0x%08x)\n", \
12389                           current_config->name, \
12390                           pipe_config->name); \
12391                 return false; \
12392         }
12393
12394 #define PIPE_CONF_CHECK_I(name) \
12395         if (current_config->name != pipe_config->name) { \
12396                 DRM_ERROR("mismatch in " #name " " \
12397                           "(expected %i, found %i)\n", \
12398                           current_config->name, \
12399                           pipe_config->name); \
12400                 return false; \
12401         }
12402
12403 /* This is required for BDW+ where there is only one set of registers for
12404  * switching between high and low RR.
12405  * This macro can be used whenever a comparison has to be made between one
12406  * hw state and multiple sw state variables.
12407  */
12408 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12409         if ((current_config->name != pipe_config->name) && \
12410                 (current_config->alt_name != pipe_config->name)) { \
12411                         DRM_ERROR("mismatch in " #name " " \
12412                                   "(expected %i or %i, found %i)\n", \
12413                                   current_config->name, \
12414                                   current_config->alt_name, \
12415                                   pipe_config->name); \
12416                         return false; \
12417         }
12418
12419 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12420         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12421                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
12422                           "(expected %i, found %i)\n", \
12423                           current_config->name & (mask), \
12424                           pipe_config->name & (mask)); \
12425                 return false; \
12426         }
12427
12428 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12429         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12430                 DRM_ERROR("mismatch in " #name " " \
12431                           "(expected %i, found %i)\n", \
12432                           current_config->name, \
12433                           pipe_config->name); \
12434                 return false; \
12435         }
12436
12437 #define PIPE_CONF_QUIRK(quirk)  \
12438         ((current_config->quirks | pipe_config->quirks) & (quirk))
12439
12440         PIPE_CONF_CHECK_I(cpu_transcoder);
12441
12442         PIPE_CONF_CHECK_I(has_pch_encoder);
12443         PIPE_CONF_CHECK_I(fdi_lanes);
12444         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
12445         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
12446         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
12447         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
12448         PIPE_CONF_CHECK_I(fdi_m_n.tu);
12449
12450         PIPE_CONF_CHECK_I(has_dp_encoder);
12451
12452         if (INTEL_INFO(dev)->gen < 8) {
12453                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
12454                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
12455                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
12456                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
12457                 PIPE_CONF_CHECK_I(dp_m_n.tu);
12458
12459                 if (current_config->has_drrs) {
12460                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
12461                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
12462                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
12463                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
12464                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
12465                 }
12466         } else {
12467                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
12468                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
12469                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
12470                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
12471                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
12472         }
12473
12474         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12475         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12476         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12477         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12478         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12479         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12480
12481         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12482         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12483         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12484         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12485         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12486         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12487
12488         PIPE_CONF_CHECK_I(pixel_multiplier);
12489         PIPE_CONF_CHECK_I(has_hdmi_sink);
12490         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12491             IS_VALLEYVIEW(dev))
12492                 PIPE_CONF_CHECK_I(limited_color_range);
12493         PIPE_CONF_CHECK_I(has_infoframe);
12494
12495         PIPE_CONF_CHECK_I(has_audio);
12496
12497         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12498                               DRM_MODE_FLAG_INTERLACE);
12499
12500         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12501                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12502                                       DRM_MODE_FLAG_PHSYNC);
12503                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12504                                       DRM_MODE_FLAG_NHSYNC);
12505                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12506                                       DRM_MODE_FLAG_PVSYNC);
12507                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12508                                       DRM_MODE_FLAG_NVSYNC);
12509         }
12510
12511         PIPE_CONF_CHECK_I(pipe_src_w);
12512         PIPE_CONF_CHECK_I(pipe_src_h);
12513
12514         /*
12515          * FIXME: BIOS likes to set up a cloned config with lvds+external
12516          * screen. Since we don't yet re-compute the pipe config when moving
12517          * just the lvds port away to another pipe the sw tracking won't match.
12518          *
12519          * Proper atomic modesets with recomputed global state will fix this.
12520          * Until then just don't check gmch state for inherited modes.
12521          */
12522         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
12523                 PIPE_CONF_CHECK_I(gmch_pfit.control);
12524                 /* pfit ratios are autocomputed by the hw on gen4+ */
12525                 if (INTEL_INFO(dev)->gen < 4)
12526                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12527                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
12528         }
12529
12530         PIPE_CONF_CHECK_I(pch_pfit.enabled);
12531         if (current_config->pch_pfit.enabled) {
12532                 PIPE_CONF_CHECK_I(pch_pfit.pos);
12533                 PIPE_CONF_CHECK_I(pch_pfit.size);
12534         }
12535
12536         PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12537
12538         /* BDW+ don't expose a synchronous way to read the state */
12539         if (IS_HASWELL(dev))
12540                 PIPE_CONF_CHECK_I(ips_enabled);
12541
12542         PIPE_CONF_CHECK_I(double_wide);
12543
12544         PIPE_CONF_CHECK_X(ddi_pll_sel);
12545
12546         PIPE_CONF_CHECK_I(shared_dpll);
12547         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12548         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12549         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12550         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12551         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12552         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12553         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12554         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12555
12556         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12557                 PIPE_CONF_CHECK_I(pipe_bpp);
12558
12559         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12560         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12561
12562 #undef PIPE_CONF_CHECK_X
12563 #undef PIPE_CONF_CHECK_I
12564 #undef PIPE_CONF_CHECK_I_ALT
12565 #undef PIPE_CONF_CHECK_FLAGS
12566 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12567 #undef PIPE_CONF_QUIRK
12568
12569         return true;
12570 }
12571
12572 static void check_wm_state(struct drm_device *dev)
12573 {
12574         struct drm_i915_private *dev_priv = dev->dev_private;
12575         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12576         struct intel_crtc *intel_crtc;
12577         int plane;
12578
12579         if (INTEL_INFO(dev)->gen < 9)
12580                 return;
12581
12582         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12583         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12584
12585         for_each_intel_crtc(dev, intel_crtc) {
12586                 struct skl_ddb_entry *hw_entry, *sw_entry;
12587                 const enum pipe pipe = intel_crtc->pipe;
12588
12589                 if (!intel_crtc->active)
12590                         continue;
12591
12592                 /* planes */
12593                 for_each_plane(dev_priv, pipe, plane) {
12594                         hw_entry = &hw_ddb.plane[pipe][plane];
12595                         sw_entry = &sw_ddb->plane[pipe][plane];
12596
12597                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12598                                 continue;
12599
12600                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12601                                   "(expected (%u,%u), found (%u,%u))\n",
12602                                   pipe_name(pipe), plane + 1,
12603                                   sw_entry->start, sw_entry->end,
12604                                   hw_entry->start, hw_entry->end);
12605                 }
12606
12607                 /* cursor */
12608                 hw_entry = &hw_ddb.cursor[pipe];
12609                 sw_entry = &sw_ddb->cursor[pipe];
12610
12611                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12612                         continue;
12613
12614                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12615                           "(expected (%u,%u), found (%u,%u))\n",
12616                           pipe_name(pipe),
12617                           sw_entry->start, sw_entry->end,
12618                           hw_entry->start, hw_entry->end);
12619         }
12620 }
12621
12622 static void
12623 check_connector_state(struct drm_device *dev)
12624 {
12625         struct intel_connector *connector;
12626
12627         for_each_intel_connector(dev, connector) {
12628                 /* This also checks the encoder/connector hw state with the
12629                  * ->get_hw_state callbacks. */
12630                 intel_connector_check_state(connector);
12631
12632                 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
12633                      "connector's staged encoder doesn't match current encoder\n");
12634         }
12635 }
12636
12637 static void
12638 check_encoder_state(struct drm_device *dev)
12639 {
12640         struct intel_encoder *encoder;
12641         struct intel_connector *connector;
12642
12643         for_each_intel_encoder(dev, encoder) {
12644                 bool enabled = false;
12645                 bool active = false;
12646                 enum pipe pipe, tracked_pipe;
12647
12648                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12649                               encoder->base.base.id,
12650                               encoder->base.name);
12651
12652                 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
12653                      "encoder's stage crtc doesn't match current crtc\n");
12654                 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
12655                      "encoder's active_connectors set, but no crtc\n");
12656
12657                 for_each_intel_connector(dev, connector) {
12658                         if (connector->base.encoder != &encoder->base)
12659                                 continue;
12660                         enabled = true;
12661                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
12662                                 active = true;
12663                 }
12664                 /*
12665                  * for MST connectors if we unplug the connector is gone
12666                  * away but the encoder is still connected to a crtc
12667                  * until a modeset happens in response to the hotplug.
12668                  */
12669                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
12670                         continue;
12671
12672                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12673                      "encoder's enabled state mismatch "
12674                      "(expected %i, found %i)\n",
12675                      !!encoder->base.crtc, enabled);
12676                 I915_STATE_WARN(active && !encoder->base.crtc,
12677                      "active encoder with no crtc\n");
12678
12679                 I915_STATE_WARN(encoder->connectors_active != active,
12680                      "encoder's computed active state doesn't match tracked active state "
12681                      "(expected %i, found %i)\n", active, encoder->connectors_active);
12682
12683                 active = encoder->get_hw_state(encoder, &pipe);
12684                 I915_STATE_WARN(active != encoder->connectors_active,
12685                      "encoder's hw state doesn't match sw tracking "
12686                      "(expected %i, found %i)\n",
12687                      encoder->connectors_active, active);
12688
12689                 if (!encoder->base.crtc)
12690                         continue;
12691
12692                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
12693                 I915_STATE_WARN(active && pipe != tracked_pipe,
12694                      "active encoder's pipe doesn't match"
12695                      "(expected %i, found %i)\n",
12696                      tracked_pipe, pipe);
12697
12698         }
12699 }
12700
12701 static void
12702 check_crtc_state(struct drm_device *dev)
12703 {
12704         struct drm_i915_private *dev_priv = dev->dev_private;
12705         struct intel_crtc *crtc;
12706         struct intel_encoder *encoder;
12707         struct intel_crtc_state pipe_config;
12708
12709         for_each_intel_crtc(dev, crtc) {
12710                 bool enabled = false;
12711                 bool active = false;
12712
12713                 memset(&pipe_config, 0, sizeof(pipe_config));
12714
12715                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12716                               crtc->base.base.id);
12717
12718                 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
12719                      "active crtc, but not enabled in sw tracking\n");
12720
12721                 for_each_intel_encoder(dev, encoder) {
12722                         if (encoder->base.crtc != &crtc->base)
12723                                 continue;
12724                         enabled = true;
12725                         if (encoder->connectors_active)
12726                                 active = true;
12727                 }
12728
12729                 I915_STATE_WARN(active != crtc->active,
12730                      "crtc's computed active state doesn't match tracked active state "
12731                      "(expected %i, found %i)\n", active, crtc->active);
12732                 I915_STATE_WARN(enabled != crtc->base.state->enable,
12733                      "crtc's computed enabled state doesn't match tracked enabled state "
12734                      "(expected %i, found %i)\n", enabled,
12735                                 crtc->base.state->enable);
12736
12737                 active = dev_priv->display.get_pipe_config(crtc,
12738                                                            &pipe_config);
12739
12740                 /* hw state is inconsistent with the pipe quirk */
12741                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12742                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12743                         active = crtc->active;
12744
12745                 for_each_intel_encoder(dev, encoder) {
12746                         enum pipe pipe;
12747                         if (encoder->base.crtc != &crtc->base)
12748                                 continue;
12749                         if (encoder->get_hw_state(encoder, &pipe))
12750                                 encoder->get_config(encoder, &pipe_config);
12751                 }
12752
12753                 I915_STATE_WARN(crtc->active != active,
12754                      "crtc active state doesn't match with hw state "
12755                      "(expected %i, found %i)\n", crtc->active, active);
12756
12757                 I915_STATE_WARN(crtc->active != crtc->base.state->active,
12758                      "transitional active state does not match atomic hw state "
12759                      "(expected %i, found %i)\n", crtc->base.state->active, crtc->active);
12760
12761                 if (active &&
12762                     !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
12763                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12764                         intel_dump_pipe_config(crtc, &pipe_config,
12765                                                "[hw state]");
12766                         intel_dump_pipe_config(crtc, crtc->config,
12767                                                "[sw state]");
12768                 }
12769         }
12770 }
12771
12772 static void
12773 check_shared_dpll_state(struct drm_device *dev)
12774 {
12775         struct drm_i915_private *dev_priv = dev->dev_private;
12776         struct intel_crtc *crtc;
12777         struct intel_dpll_hw_state dpll_hw_state;
12778         int i;
12779
12780         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12781                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12782                 int enabled_crtcs = 0, active_crtcs = 0;
12783                 bool active;
12784
12785                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12786
12787                 DRM_DEBUG_KMS("%s\n", pll->name);
12788
12789                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12790
12791                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12792                      "more active pll users than references: %i vs %i\n",
12793                      pll->active, hweight32(pll->config.crtc_mask));
12794                 I915_STATE_WARN(pll->active && !pll->on,
12795                      "pll in active use but not on in sw tracking\n");
12796                 I915_STATE_WARN(pll->on && !pll->active,
12797                      "pll in on but not on in use in sw tracking\n");
12798                 I915_STATE_WARN(pll->on != active,
12799                      "pll on state mismatch (expected %i, found %i)\n",
12800                      pll->on, active);
12801
12802                 for_each_intel_crtc(dev, crtc) {
12803                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12804                                 enabled_crtcs++;
12805                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12806                                 active_crtcs++;
12807                 }
12808                 I915_STATE_WARN(pll->active != active_crtcs,
12809                      "pll active crtcs mismatch (expected %i, found %i)\n",
12810                      pll->active, active_crtcs);
12811                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12812                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
12813                      hweight32(pll->config.crtc_mask), enabled_crtcs);
12814
12815                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12816                                        sizeof(dpll_hw_state)),
12817                      "pll hw state mismatch\n");
12818         }
12819 }
12820
12821 void
12822 intel_modeset_check_state(struct drm_device *dev)
12823 {
12824         check_wm_state(dev);
12825         check_connector_state(dev);
12826         check_encoder_state(dev);
12827         check_crtc_state(dev);
12828         check_shared_dpll_state(dev);
12829 }
12830
12831 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12832                                      int dotclock)
12833 {
12834         /*
12835          * FDI already provided one idea for the dotclock.
12836          * Yell if the encoder disagrees.
12837          */
12838         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12839              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12840              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12841 }
12842
12843 static void update_scanline_offset(struct intel_crtc *crtc)
12844 {
12845         struct drm_device *dev = crtc->base.dev;
12846
12847         /*
12848          * The scanline counter increments at the leading edge of hsync.
12849          *
12850          * On most platforms it starts counting from vtotal-1 on the
12851          * first active line. That means the scanline counter value is
12852          * always one less than what we would expect. Ie. just after
12853          * start of vblank, which also occurs at start of hsync (on the
12854          * last active line), the scanline counter will read vblank_start-1.
12855          *
12856          * On gen2 the scanline counter starts counting from 1 instead
12857          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12858          * to keep the value positive), instead of adding one.
12859          *
12860          * On HSW+ the behaviour of the scanline counter depends on the output
12861          * type. For DP ports it behaves like most other platforms, but on HDMI
12862          * there's an extra 1 line difference. So we need to add two instead of
12863          * one to the value.
12864          */
12865         if (IS_GEN2(dev)) {
12866                 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12867                 int vtotal;
12868
12869                 vtotal = mode->crtc_vtotal;
12870                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12871                         vtotal /= 2;
12872
12873                 crtc->scanline_offset = vtotal - 1;
12874         } else if (HAS_DDI(dev) &&
12875                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12876                 crtc->scanline_offset = 2;
12877         } else
12878                 crtc->scanline_offset = 1;
12879 }
12880
12881 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12882 {
12883         struct drm_device *dev = state->dev;
12884         struct drm_i915_private *dev_priv = to_i915(dev);
12885         struct intel_shared_dpll_config *shared_dpll = NULL;
12886         struct intel_crtc *intel_crtc;
12887         struct intel_crtc_state *intel_crtc_state;
12888         struct drm_crtc *crtc;
12889         struct drm_crtc_state *crtc_state;
12890         int i;
12891
12892         if (!dev_priv->display.crtc_compute_clock)
12893                 return;
12894
12895         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12896                 int dpll;
12897
12898                 intel_crtc = to_intel_crtc(crtc);
12899                 intel_crtc_state = to_intel_crtc_state(crtc_state);
12900                 dpll = intel_crtc_state->shared_dpll;
12901
12902                 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12903                         continue;
12904
12905                 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12906
12907                 if (!shared_dpll)
12908                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
12909
12910                 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12911         }
12912 }
12913
12914 /*
12915  * This implements the workaround described in the "notes" section of the mode
12916  * set sequence documentation. When going from no pipes or single pipe to
12917  * multiple pipes, and planes are enabled after the pipe, we need to wait at
12918  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12919  */
12920 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12921 {
12922         struct drm_crtc_state *crtc_state;
12923         struct intel_crtc *intel_crtc;
12924         struct drm_crtc *crtc;
12925         struct intel_crtc_state *first_crtc_state = NULL;
12926         struct intel_crtc_state *other_crtc_state = NULL;
12927         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12928         int i;
12929
12930         /* look at all crtc's that are going to be enabled in during modeset */
12931         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12932                 intel_crtc = to_intel_crtc(crtc);
12933
12934                 if (!crtc_state->active || !needs_modeset(crtc_state))
12935                         continue;
12936
12937                 if (first_crtc_state) {
12938                         other_crtc_state = to_intel_crtc_state(crtc_state);
12939                         break;
12940                 } else {
12941                         first_crtc_state = to_intel_crtc_state(crtc_state);
12942                         first_pipe = intel_crtc->pipe;
12943                 }
12944         }
12945
12946         /* No workaround needed? */
12947         if (!first_crtc_state)
12948                 return 0;
12949
12950         /* w/a possibly needed, check how many crtc's are already enabled. */
12951         for_each_intel_crtc(state->dev, intel_crtc) {
12952                 struct intel_crtc_state *pipe_config;
12953
12954                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12955                 if (IS_ERR(pipe_config))
12956                         return PTR_ERR(pipe_config);
12957
12958                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12959
12960                 if (!pipe_config->base.active ||
12961                     needs_modeset(&pipe_config->base))
12962                         continue;
12963
12964                 /* 2 or more enabled crtcs means no need for w/a */
12965                 if (enabled_pipe != INVALID_PIPE)
12966                         return 0;
12967
12968                 enabled_pipe = intel_crtc->pipe;
12969         }
12970
12971         if (enabled_pipe != INVALID_PIPE)
12972                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12973         else if (other_crtc_state)
12974                 other_crtc_state->hsw_workaround_pipe = first_pipe;
12975
12976         return 0;
12977 }
12978
12979 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12980 {
12981         struct drm_crtc *crtc;
12982         struct drm_crtc_state *crtc_state;
12983         int ret = 0;
12984
12985         /* add all active pipes to the state */
12986         for_each_crtc(state->dev, crtc) {
12987                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12988                 if (IS_ERR(crtc_state))
12989                         return PTR_ERR(crtc_state);
12990
12991                 if (!crtc_state->active || needs_modeset(crtc_state))
12992                         continue;
12993
12994                 crtc_state->mode_changed = true;
12995
12996                 ret = drm_atomic_add_affected_connectors(state, crtc);
12997                 if (ret)
12998                         break;
12999
13000                 ret = drm_atomic_add_affected_planes(state, crtc);
13001                 if (ret)
13002                         break;
13003         }
13004
13005         return ret;
13006 }
13007
13008
13009 /* Code that should eventually be part of atomic_check() */
13010 static int intel_modeset_checks(struct drm_atomic_state *state)
13011 {
13012         struct drm_device *dev = state->dev;
13013         struct drm_i915_private *dev_priv = dev->dev_private;
13014         int ret;
13015
13016         if (!check_digital_port_conflicts(state)) {
13017                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13018                 return -EINVAL;
13019         }
13020
13021         /*
13022          * See if the config requires any additional preparation, e.g.
13023          * to adjust global state with pipes off.  We need to do this
13024          * here so we can get the modeset_pipe updated config for the new
13025          * mode set on this crtc.  For other crtcs we need to use the
13026          * adjusted_mode bits in the crtc directly.
13027          */
13028         if (dev_priv->display.modeset_calc_cdclk) {
13029                 unsigned int cdclk;
13030
13031                 ret = dev_priv->display.modeset_calc_cdclk(state);
13032
13033                 cdclk = to_intel_atomic_state(state)->cdclk;
13034                 if (!ret && cdclk != dev_priv->cdclk_freq)
13035                         ret = intel_modeset_all_pipes(state);
13036
13037                 if (ret < 0)
13038                         return ret;
13039         } else
13040                 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
13041
13042         intel_modeset_clear_plls(state);
13043
13044         if (IS_HASWELL(dev))
13045                 return haswell_mode_set_planes_workaround(state);
13046
13047         return 0;
13048 }
13049
13050 static int
13051 intel_modeset_compute_config(struct drm_atomic_state *state)
13052 {
13053         struct drm_crtc *crtc;
13054         struct drm_crtc_state *crtc_state;
13055         int ret, i;
13056         bool any_ms = false;
13057
13058         ret = drm_atomic_helper_check_modeset(state->dev, state);
13059         if (ret)
13060                 return ret;
13061
13062         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13063                 if (!crtc_state->enable) {
13064                         if (needs_modeset(crtc_state))
13065                                 any_ms = true;
13066                         continue;
13067                 }
13068
13069                 if (to_intel_crtc_state(crtc_state)->quirks &
13070                     PIPE_CONFIG_QUIRK_INITIAL_PLANES) {
13071                         ret = drm_atomic_add_affected_planes(state, crtc);
13072                         if (ret)
13073                                 return ret;
13074
13075                         /*
13076                          * We ought to handle i915.fastboot here.
13077                          * If no modeset is required and the primary plane has
13078                          * a fb, update the members of crtc_state as needed,
13079                          * and run the necessary updates during vblank evasion.
13080                          */
13081                 }
13082
13083                 if (!needs_modeset(crtc_state)) {
13084                         ret = drm_atomic_add_affected_connectors(state, crtc);
13085                         if (ret)
13086                                 return ret;
13087                 }
13088
13089                 ret = intel_modeset_pipe_config(crtc,
13090                                         to_intel_crtc_state(crtc_state));
13091                 if (ret)
13092                         return ret;
13093
13094                 if (needs_modeset(crtc_state))
13095                         any_ms = true;
13096
13097                 intel_dump_pipe_config(to_intel_crtc(crtc),
13098                                        to_intel_crtc_state(crtc_state),
13099                                        "[modeset]");
13100         }
13101
13102         if (any_ms) {
13103                 ret = intel_modeset_checks(state);
13104
13105                 if (ret)
13106                         return ret;
13107         } else
13108                 to_intel_atomic_state(state)->cdclk =
13109                         to_i915(state->dev)->cdclk_freq;
13110
13111         return drm_atomic_helper_check_planes(state->dev, state);
13112 }
13113
13114 static int __intel_set_mode(struct drm_atomic_state *state)
13115 {
13116         struct drm_device *dev = state->dev;
13117         struct drm_i915_private *dev_priv = dev->dev_private;
13118         struct drm_crtc *crtc;
13119         struct drm_crtc_state *crtc_state;
13120         int ret = 0;
13121         int i;
13122         bool any_ms = false;
13123
13124         ret = drm_atomic_helper_prepare_planes(dev, state);
13125         if (ret)
13126                 return ret;
13127
13128         drm_atomic_helper_swap_state(dev, state);
13129
13130         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13131                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13132
13133                 if (!needs_modeset(crtc->state))
13134                         continue;
13135
13136                 any_ms = true;
13137                 intel_pre_plane_update(intel_crtc);
13138
13139                 if (crtc_state->active) {
13140                         intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13141                         dev_priv->display.crtc_disable(crtc);
13142                         intel_crtc->active = false;
13143                         intel_disable_shared_dpll(intel_crtc);
13144                 }
13145         }
13146
13147         /* Only after disabling all output pipelines that will be changed can we
13148          * update the the output configuration. */
13149         intel_modeset_update_state(state);
13150
13151         /* The state has been swaped above, so state actually contains the
13152          * old state now. */
13153         if (any_ms)
13154                 modeset_update_crtc_power_domains(state);
13155
13156         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13157         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13158                 if (needs_modeset(crtc->state) && crtc->state->active) {
13159                         update_scanline_offset(to_intel_crtc(crtc));
13160                         dev_priv->display.crtc_enable(crtc);
13161                 }
13162
13163                 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13164         }
13165
13166         /* FIXME: add subpixel order */
13167
13168         drm_atomic_helper_cleanup_planes(dev, state);
13169
13170         drm_atomic_state_free(state);
13171
13172         return 0;
13173 }
13174
13175 static int intel_set_mode_checked(struct drm_atomic_state *state)
13176 {
13177         struct drm_device *dev = state->dev;
13178         int ret;
13179
13180         ret = __intel_set_mode(state);
13181         if (ret == 0)
13182                 intel_modeset_check_state(dev);
13183
13184         return ret;
13185 }
13186
13187 static int intel_set_mode(struct drm_atomic_state *state)
13188 {
13189         int ret;
13190
13191         ret = intel_modeset_compute_config(state);
13192         if (ret)
13193                 return ret;
13194
13195         return intel_set_mode_checked(state);
13196 }
13197
13198 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13199 {
13200         struct drm_device *dev = crtc->dev;
13201         struct drm_atomic_state *state;
13202         struct intel_encoder *encoder;
13203         struct intel_connector *connector;
13204         struct drm_connector_state *connector_state;
13205         struct intel_crtc_state *crtc_state;
13206         int ret;
13207
13208         state = drm_atomic_state_alloc(dev);
13209         if (!state) {
13210                 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
13211                               crtc->base.id);
13212                 return;
13213         }
13214
13215         state->acquire_ctx = dev->mode_config.acquire_ctx;
13216
13217         /* The force restore path in the HW readout code relies on the staged
13218          * config still keeping the user requested config while the actual
13219          * state has been overwritten by the configuration read from HW. We
13220          * need to copy the staged config to the atomic state, otherwise the
13221          * mode set will just reapply the state the HW is already in. */
13222         for_each_intel_encoder(dev, encoder) {
13223                 if (&encoder->new_crtc->base != crtc)
13224                         continue;
13225
13226                 for_each_intel_connector(dev, connector) {
13227                         if (connector->new_encoder != encoder)
13228                                 continue;
13229
13230                         connector_state = drm_atomic_get_connector_state(state, &connector->base);
13231                         if (IS_ERR(connector_state)) {
13232                                 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
13233                                               connector->base.base.id,
13234                                               connector->base.name,
13235                                               PTR_ERR(connector_state));
13236                                 continue;
13237                         }
13238
13239                         connector_state->crtc = crtc;
13240                         connector_state->best_encoder = &encoder->base;
13241                 }
13242         }
13243
13244         crtc_state = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
13245         if (IS_ERR(crtc_state)) {
13246                 DRM_DEBUG_KMS("Failed to add [CRTC:%d] to state: %ld\n",
13247                               crtc->base.id, PTR_ERR(crtc_state));
13248                 drm_atomic_state_free(state);
13249                 return;
13250         }
13251
13252         crtc_state->base.active = crtc_state->base.enable =
13253                 to_intel_crtc(crtc)->new_enabled;
13254
13255         drm_mode_copy(&crtc_state->base.mode, &crtc->mode);
13256
13257         intel_modeset_setup_plane_state(state, crtc, &crtc->mode,
13258                                         crtc->primary->fb, crtc->x, crtc->y);
13259
13260         ret = intel_set_mode(state);
13261         if (ret)
13262                 drm_atomic_state_free(state);
13263 }
13264
13265 #undef for_each_intel_crtc_masked
13266
13267 static bool intel_connector_in_mode_set(struct intel_connector *connector,
13268                                         struct drm_mode_set *set)
13269 {
13270         int ro;
13271
13272         for (ro = 0; ro < set->num_connectors; ro++)
13273                 if (set->connectors[ro] == &connector->base)
13274                         return true;
13275
13276         return false;
13277 }
13278
13279 static int
13280 intel_modeset_stage_output_state(struct drm_device *dev,
13281                                  struct drm_mode_set *set,
13282                                  struct drm_atomic_state *state)
13283 {
13284         struct intel_connector *connector;
13285         struct drm_connector *drm_connector;
13286         struct drm_connector_state *connector_state;
13287         struct drm_crtc *crtc;
13288         struct drm_crtc_state *crtc_state;
13289         int i, ret;
13290
13291         /* The upper layers ensure that we either disable a crtc or have a list
13292          * of connectors. For paranoia, double-check this. */
13293         WARN_ON(!set->fb && (set->num_connectors != 0));
13294         WARN_ON(set->fb && (set->num_connectors == 0));
13295
13296         for_each_intel_connector(dev, connector) {
13297                 bool in_mode_set = intel_connector_in_mode_set(connector, set);
13298
13299                 if (!in_mode_set && connector->base.state->crtc != set->crtc)
13300                         continue;
13301
13302                 connector_state =
13303                         drm_atomic_get_connector_state(state, &connector->base);
13304                 if (IS_ERR(connector_state))
13305                         return PTR_ERR(connector_state);
13306
13307                 if (in_mode_set) {
13308                         int pipe = to_intel_crtc(set->crtc)->pipe;
13309                         connector_state->best_encoder =
13310                                 &intel_find_encoder(connector, pipe)->base;
13311                 }
13312
13313                 if (connector->base.state->crtc != set->crtc)
13314                         continue;
13315
13316                 /* If we disable the crtc, disable all its connectors. Also, if
13317                  * the connector is on the changing crtc but not on the new
13318                  * connector list, disable it. */
13319                 if (!set->fb || !in_mode_set) {
13320                         connector_state->best_encoder = NULL;
13321
13322                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
13323                                 connector->base.base.id,
13324                                 connector->base.name);
13325                 }
13326         }
13327         /* connector->new_encoder is now updated for all connectors. */
13328
13329         for_each_connector_in_state(state, drm_connector, connector_state, i) {
13330                 connector = to_intel_connector(drm_connector);
13331
13332                 if (!connector_state->best_encoder) {
13333                         ret = drm_atomic_set_crtc_for_connector(connector_state,
13334                                                                 NULL);
13335                         if (ret)
13336                                 return ret;
13337
13338                         continue;
13339                 }
13340
13341                 if (intel_connector_in_mode_set(connector, set)) {
13342                         struct drm_crtc *crtc = connector->base.state->crtc;
13343
13344                         /* If this connector was in a previous crtc, add it
13345                          * to the state. We might need to disable it. */
13346                         if (crtc) {
13347                                 crtc_state =
13348                                         drm_atomic_get_crtc_state(state, crtc);
13349                                 if (IS_ERR(crtc_state))
13350                                         return PTR_ERR(crtc_state);
13351                         }
13352
13353                         ret = drm_atomic_set_crtc_for_connector(connector_state,
13354                                                                 set->crtc);
13355                         if (ret)
13356                                 return ret;
13357                 }
13358
13359                 /* Make sure the new CRTC will work with the encoder */
13360                 if (!drm_encoder_crtc_ok(connector_state->best_encoder,
13361                                          connector_state->crtc)) {
13362                         return -EINVAL;
13363                 }
13364
13365                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
13366                         connector->base.base.id,
13367                         connector->base.name,
13368                         connector_state->crtc->base.id);
13369
13370                 if (connector_state->best_encoder != &connector->encoder->base)
13371                         connector->encoder =
13372                                 to_intel_encoder(connector_state->best_encoder);
13373         }
13374
13375         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13376                 bool has_connectors;
13377
13378                 ret = drm_atomic_add_affected_connectors(state, crtc);
13379                 if (ret)
13380                         return ret;
13381
13382                 has_connectors = !!drm_atomic_connectors_for_crtc(state, crtc);
13383                 if (has_connectors != crtc_state->enable)
13384                         crtc_state->enable =
13385                         crtc_state->active = has_connectors;
13386         }
13387
13388         ret = intel_modeset_setup_plane_state(state, set->crtc, set->mode,
13389                                               set->fb, set->x, set->y);
13390         if (ret)
13391                 return ret;
13392
13393         crtc_state = drm_atomic_get_crtc_state(state, set->crtc);
13394         if (IS_ERR(crtc_state))
13395                 return PTR_ERR(crtc_state);
13396
13397         ret = drm_atomic_set_mode_for_crtc(crtc_state, set->mode);
13398         if (ret)
13399                 return ret;
13400
13401         if (set->num_connectors)
13402                 crtc_state->active = true;
13403
13404         return 0;
13405 }
13406
13407 static int intel_crtc_set_config(struct drm_mode_set *set)
13408 {
13409         struct drm_device *dev;
13410         struct drm_atomic_state *state = NULL;
13411         int ret;
13412
13413         BUG_ON(!set);
13414         BUG_ON(!set->crtc);
13415         BUG_ON(!set->crtc->helper_private);
13416
13417         /* Enforce sane interface api - has been abused by the fb helper. */
13418         BUG_ON(!set->mode && set->fb);
13419         BUG_ON(set->fb && set->num_connectors == 0);
13420
13421         if (set->fb) {
13422                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
13423                                 set->crtc->base.id, set->fb->base.id,
13424                                 (int)set->num_connectors, set->x, set->y);
13425         } else {
13426                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
13427         }
13428
13429         dev = set->crtc->dev;
13430
13431         state = drm_atomic_state_alloc(dev);
13432         if (!state)
13433                 return -ENOMEM;
13434
13435         state->acquire_ctx = dev->mode_config.acquire_ctx;
13436
13437         ret = intel_modeset_stage_output_state(dev, set, state);
13438         if (ret)
13439                 goto out;
13440
13441         ret = intel_modeset_compute_config(state);
13442         if (ret)
13443                 goto out;
13444
13445         intel_update_pipe_size(to_intel_crtc(set->crtc));
13446
13447         ret = intel_set_mode_checked(state);
13448         if (ret) {
13449                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
13450                               set->crtc->base.id, ret);
13451         }
13452
13453 out:
13454         if (ret)
13455                 drm_atomic_state_free(state);
13456         return ret;
13457 }
13458
13459 static const struct drm_crtc_funcs intel_crtc_funcs = {
13460         .gamma_set = intel_crtc_gamma_set,
13461         .set_config = intel_crtc_set_config,
13462         .destroy = intel_crtc_destroy,
13463         .page_flip = intel_crtc_page_flip,
13464         .atomic_duplicate_state = intel_crtc_duplicate_state,
13465         .atomic_destroy_state = intel_crtc_destroy_state,
13466 };
13467
13468 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13469                                       struct intel_shared_dpll *pll,
13470                                       struct intel_dpll_hw_state *hw_state)
13471 {
13472         uint32_t val;
13473
13474         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13475                 return false;
13476
13477         val = I915_READ(PCH_DPLL(pll->id));
13478         hw_state->dpll = val;
13479         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13480         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13481
13482         return val & DPLL_VCO_ENABLE;
13483 }
13484
13485 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13486                                   struct intel_shared_dpll *pll)
13487 {
13488         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13489         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13490 }
13491
13492 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13493                                 struct intel_shared_dpll *pll)
13494 {
13495         /* PCH refclock must be enabled first */
13496         ibx_assert_pch_refclk_enabled(dev_priv);
13497
13498         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13499
13500         /* Wait for the clocks to stabilize. */
13501         POSTING_READ(PCH_DPLL(pll->id));
13502         udelay(150);
13503
13504         /* The pixel multiplier can only be updated once the
13505          * DPLL is enabled and the clocks are stable.
13506          *
13507          * So write it again.
13508          */
13509         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13510         POSTING_READ(PCH_DPLL(pll->id));
13511         udelay(200);
13512 }
13513
13514 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13515                                  struct intel_shared_dpll *pll)
13516 {
13517         struct drm_device *dev = dev_priv->dev;
13518         struct intel_crtc *crtc;
13519
13520         /* Make sure no transcoder isn't still depending on us. */
13521         for_each_intel_crtc(dev, crtc) {
13522                 if (intel_crtc_to_shared_dpll(crtc) == pll)
13523                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13524         }
13525
13526         I915_WRITE(PCH_DPLL(pll->id), 0);
13527         POSTING_READ(PCH_DPLL(pll->id));
13528         udelay(200);
13529 }
13530
13531 static char *ibx_pch_dpll_names[] = {
13532         "PCH DPLL A",
13533         "PCH DPLL B",
13534 };
13535
13536 static void ibx_pch_dpll_init(struct drm_device *dev)
13537 {
13538         struct drm_i915_private *dev_priv = dev->dev_private;
13539         int i;
13540
13541         dev_priv->num_shared_dpll = 2;
13542
13543         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13544                 dev_priv->shared_dplls[i].id = i;
13545                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13546                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13547                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13548                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13549                 dev_priv->shared_dplls[i].get_hw_state =
13550                         ibx_pch_dpll_get_hw_state;
13551         }
13552 }
13553
13554 static void intel_shared_dpll_init(struct drm_device *dev)
13555 {
13556         struct drm_i915_private *dev_priv = dev->dev_private;
13557
13558         intel_update_cdclk(dev);
13559
13560         if (HAS_DDI(dev))
13561                 intel_ddi_pll_init(dev);
13562         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13563                 ibx_pch_dpll_init(dev);
13564         else
13565                 dev_priv->num_shared_dpll = 0;
13566
13567         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13568 }
13569
13570 /**
13571  * intel_prepare_plane_fb - Prepare fb for usage on plane
13572  * @plane: drm plane to prepare for
13573  * @fb: framebuffer to prepare for presentation
13574  *
13575  * Prepares a framebuffer for usage on a display plane.  Generally this
13576  * involves pinning the underlying object and updating the frontbuffer tracking
13577  * bits.  Some older platforms need special physical address handling for
13578  * cursor planes.
13579  *
13580  * Returns 0 on success, negative error code on failure.
13581  */
13582 int
13583 intel_prepare_plane_fb(struct drm_plane *plane,
13584                        struct drm_framebuffer *fb,
13585                        const struct drm_plane_state *new_state)
13586 {
13587         struct drm_device *dev = plane->dev;
13588         struct intel_plane *intel_plane = to_intel_plane(plane);
13589         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13590         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13591         int ret = 0;
13592
13593         if (!obj)
13594                 return 0;
13595
13596         mutex_lock(&dev->struct_mutex);
13597
13598         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13599             INTEL_INFO(dev)->cursor_needs_physical) {
13600                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13601                 ret = i915_gem_object_attach_phys(obj, align);
13602                 if (ret)
13603                         DRM_DEBUG_KMS("failed to attach phys object\n");
13604         } else {
13605                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13606         }
13607
13608         if (ret == 0)
13609                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13610
13611         mutex_unlock(&dev->struct_mutex);
13612
13613         return ret;
13614 }
13615
13616 /**
13617  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13618  * @plane: drm plane to clean up for
13619  * @fb: old framebuffer that was on plane
13620  *
13621  * Cleans up a framebuffer that has just been removed from a plane.
13622  */
13623 void
13624 intel_cleanup_plane_fb(struct drm_plane *plane,
13625                        struct drm_framebuffer *fb,
13626                        const struct drm_plane_state *old_state)
13627 {
13628         struct drm_device *dev = plane->dev;
13629         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13630
13631         if (WARN_ON(!obj))
13632                 return;
13633
13634         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13635             !INTEL_INFO(dev)->cursor_needs_physical) {
13636                 mutex_lock(&dev->struct_mutex);
13637                 intel_unpin_fb_obj(fb, old_state);
13638                 mutex_unlock(&dev->struct_mutex);
13639         }
13640 }
13641
13642 int
13643 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13644 {
13645         int max_scale;
13646         struct drm_device *dev;
13647         struct drm_i915_private *dev_priv;
13648         int crtc_clock, cdclk;
13649
13650         if (!intel_crtc || !crtc_state)
13651                 return DRM_PLANE_HELPER_NO_SCALING;
13652
13653         dev = intel_crtc->base.dev;
13654         dev_priv = dev->dev_private;
13655         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13656         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13657
13658         if (!crtc_clock || !cdclk)
13659                 return DRM_PLANE_HELPER_NO_SCALING;
13660
13661         /*
13662          * skl max scale is lower of:
13663          *    close to 3 but not 3, -1 is for that purpose
13664          *            or
13665          *    cdclk/crtc_clock
13666          */
13667         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13668
13669         return max_scale;
13670 }
13671
13672 static int
13673 intel_check_primary_plane(struct drm_plane *plane,
13674                           struct intel_crtc_state *crtc_state,
13675                           struct intel_plane_state *state)
13676 {
13677         struct drm_crtc *crtc = state->base.crtc;
13678         struct drm_framebuffer *fb = state->base.fb;
13679         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13680         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13681         bool can_position = false;
13682
13683         /* use scaler when colorkey is not required */
13684         if (INTEL_INFO(plane->dev)->gen >= 9 &&
13685             state->ckey.flags == I915_SET_COLORKEY_NONE) {
13686                 min_scale = 1;
13687                 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13688                 can_position = true;
13689         }
13690
13691         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13692                                              &state->dst, &state->clip,
13693                                              min_scale, max_scale,
13694                                              can_position, true,
13695                                              &state->visible);
13696 }
13697
13698 static void
13699 intel_commit_primary_plane(struct drm_plane *plane,
13700                            struct intel_plane_state *state)
13701 {
13702         struct drm_crtc *crtc = state->base.crtc;
13703         struct drm_framebuffer *fb = state->base.fb;
13704         struct drm_device *dev = plane->dev;
13705         struct drm_i915_private *dev_priv = dev->dev_private;
13706         struct intel_crtc *intel_crtc;
13707         struct drm_rect *src = &state->src;
13708
13709         crtc = crtc ? crtc : plane->crtc;
13710         intel_crtc = to_intel_crtc(crtc);
13711
13712         plane->fb = fb;
13713         crtc->x = src->x1 >> 16;
13714         crtc->y = src->y1 >> 16;
13715
13716         if (!crtc->state->active)
13717                 return;
13718
13719         if (state->visible)
13720                 /* FIXME: kill this fastboot hack */
13721                 intel_update_pipe_size(intel_crtc);
13722
13723         dev_priv->display.update_primary_plane(crtc, fb, crtc->x, crtc->y);
13724 }
13725
13726 static void
13727 intel_disable_primary_plane(struct drm_plane *plane,
13728                             struct drm_crtc *crtc)
13729 {
13730         struct drm_device *dev = plane->dev;
13731         struct drm_i915_private *dev_priv = dev->dev_private;
13732
13733         dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13734 }
13735
13736 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
13737 {
13738         struct drm_device *dev = crtc->dev;
13739         struct drm_i915_private *dev_priv = dev->dev_private;
13740         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13741
13742         if (!needs_modeset(crtc->state))
13743                 intel_pre_plane_update(intel_crtc);
13744
13745         if (intel_crtc->atomic.update_wm_pre)
13746                 intel_update_watermarks(crtc);
13747
13748         intel_runtime_pm_get(dev_priv);
13749
13750         /* Perform vblank evasion around commit operation */
13751         if (crtc->state->active)
13752                 intel_crtc->atomic.evade =
13753                         intel_pipe_update_start(intel_crtc,
13754                                                 &intel_crtc->atomic.start_vbl_count);
13755
13756         if (!needs_modeset(crtc->state) && INTEL_INFO(dev)->gen >= 9)
13757                 skl_detach_scalers(intel_crtc);
13758 }
13759
13760 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
13761 {
13762         struct drm_device *dev = crtc->dev;
13763         struct drm_i915_private *dev_priv = dev->dev_private;
13764         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13765
13766         if (intel_crtc->atomic.evade)
13767                 intel_pipe_update_end(intel_crtc,
13768                                       intel_crtc->atomic.start_vbl_count);
13769
13770         intel_runtime_pm_put(dev_priv);
13771
13772         intel_post_plane_update(intel_crtc);
13773 }
13774
13775 /**
13776  * intel_plane_destroy - destroy a plane
13777  * @plane: plane to destroy
13778  *
13779  * Common destruction function for all types of planes (primary, cursor,
13780  * sprite).
13781  */
13782 void intel_plane_destroy(struct drm_plane *plane)
13783 {
13784         struct intel_plane *intel_plane = to_intel_plane(plane);
13785         drm_plane_cleanup(plane);
13786         kfree(intel_plane);
13787 }
13788
13789 const struct drm_plane_funcs intel_plane_funcs = {
13790         .update_plane = drm_atomic_helper_update_plane,
13791         .disable_plane = drm_atomic_helper_disable_plane,
13792         .destroy = intel_plane_destroy,
13793         .set_property = drm_atomic_helper_plane_set_property,
13794         .atomic_get_property = intel_plane_atomic_get_property,
13795         .atomic_set_property = intel_plane_atomic_set_property,
13796         .atomic_duplicate_state = intel_plane_duplicate_state,
13797         .atomic_destroy_state = intel_plane_destroy_state,
13798
13799 };
13800
13801 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13802                                                     int pipe)
13803 {
13804         struct intel_plane *primary;
13805         struct intel_plane_state *state;
13806         const uint32_t *intel_primary_formats;
13807         int num_formats;
13808
13809         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13810         if (primary == NULL)
13811                 return NULL;
13812
13813         state = intel_create_plane_state(&primary->base);
13814         if (!state) {
13815                 kfree(primary);
13816                 return NULL;
13817         }
13818         primary->base.state = &state->base;
13819
13820         primary->can_scale = false;
13821         primary->max_downscale = 1;
13822         if (INTEL_INFO(dev)->gen >= 9) {
13823                 primary->can_scale = true;
13824                 state->scaler_id = -1;
13825         }
13826         primary->pipe = pipe;
13827         primary->plane = pipe;
13828         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13829         primary->check_plane = intel_check_primary_plane;
13830         primary->commit_plane = intel_commit_primary_plane;
13831         primary->disable_plane = intel_disable_primary_plane;
13832         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13833                 primary->plane = !pipe;
13834
13835         if (INTEL_INFO(dev)->gen >= 9) {
13836                 intel_primary_formats = skl_primary_formats;
13837                 num_formats = ARRAY_SIZE(skl_primary_formats);
13838         } else if (INTEL_INFO(dev)->gen >= 4) {
13839                 intel_primary_formats = i965_primary_formats;
13840                 num_formats = ARRAY_SIZE(i965_primary_formats);
13841         } else {
13842                 intel_primary_formats = i8xx_primary_formats;
13843                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13844         }
13845
13846         drm_universal_plane_init(dev, &primary->base, 0,
13847                                  &intel_plane_funcs,
13848                                  intel_primary_formats, num_formats,
13849                                  DRM_PLANE_TYPE_PRIMARY);
13850
13851         if (INTEL_INFO(dev)->gen >= 4)
13852                 intel_create_rotation_property(dev, primary);
13853
13854         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13855
13856         return &primary->base;
13857 }
13858
13859 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13860 {
13861         if (!dev->mode_config.rotation_property) {
13862                 unsigned long flags = BIT(DRM_ROTATE_0) |
13863                         BIT(DRM_ROTATE_180);
13864
13865                 if (INTEL_INFO(dev)->gen >= 9)
13866                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13867
13868                 dev->mode_config.rotation_property =
13869                         drm_mode_create_rotation_property(dev, flags);
13870         }
13871         if (dev->mode_config.rotation_property)
13872                 drm_object_attach_property(&plane->base.base,
13873                                 dev->mode_config.rotation_property,
13874                                 plane->base.state->rotation);
13875 }
13876
13877 static int
13878 intel_check_cursor_plane(struct drm_plane *plane,
13879                          struct intel_crtc_state *crtc_state,
13880                          struct intel_plane_state *state)
13881 {
13882         struct drm_crtc *crtc = crtc_state->base.crtc;
13883         struct drm_framebuffer *fb = state->base.fb;
13884         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13885         unsigned stride;
13886         int ret;
13887
13888         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13889                                             &state->dst, &state->clip,
13890                                             DRM_PLANE_HELPER_NO_SCALING,
13891                                             DRM_PLANE_HELPER_NO_SCALING,
13892                                             true, true, &state->visible);
13893         if (ret)
13894                 return ret;
13895
13896         /* if we want to turn off the cursor ignore width and height */
13897         if (!obj)
13898                 return 0;
13899
13900         /* Check for which cursor types we support */
13901         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13902                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13903                           state->base.crtc_w, state->base.crtc_h);
13904                 return -EINVAL;
13905         }
13906
13907         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13908         if (obj->base.size < stride * state->base.crtc_h) {
13909                 DRM_DEBUG_KMS("buffer is too small\n");
13910                 return -ENOMEM;
13911         }
13912
13913         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13914                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13915                 return -EINVAL;
13916         }
13917
13918         return 0;
13919 }
13920
13921 static void
13922 intel_disable_cursor_plane(struct drm_plane *plane,
13923                            struct drm_crtc *crtc)
13924 {
13925         intel_crtc_update_cursor(crtc, false);
13926 }
13927
13928 static void
13929 intel_commit_cursor_plane(struct drm_plane *plane,
13930                           struct intel_plane_state *state)
13931 {
13932         struct drm_crtc *crtc = state->base.crtc;
13933         struct drm_device *dev = plane->dev;
13934         struct intel_crtc *intel_crtc;
13935         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13936         uint32_t addr;
13937
13938         crtc = crtc ? crtc : plane->crtc;
13939         intel_crtc = to_intel_crtc(crtc);
13940
13941         plane->fb = state->base.fb;
13942         crtc->cursor_x = state->base.crtc_x;
13943         crtc->cursor_y = state->base.crtc_y;
13944
13945         if (intel_crtc->cursor_bo == obj)
13946                 goto update;
13947
13948         if (!obj)
13949                 addr = 0;
13950         else if (!INTEL_INFO(dev)->cursor_needs_physical)
13951                 addr = i915_gem_obj_ggtt_offset(obj);
13952         else
13953                 addr = obj->phys_handle->busaddr;
13954
13955         intel_crtc->cursor_addr = addr;
13956         intel_crtc->cursor_bo = obj;
13957
13958 update:
13959         if (crtc->state->active)
13960                 intel_crtc_update_cursor(crtc, state->visible);
13961 }
13962
13963 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13964                                                    int pipe)
13965 {
13966         struct intel_plane *cursor;
13967         struct intel_plane_state *state;
13968
13969         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13970         if (cursor == NULL)
13971                 return NULL;
13972
13973         state = intel_create_plane_state(&cursor->base);
13974         if (!state) {
13975                 kfree(cursor);
13976                 return NULL;
13977         }
13978         cursor->base.state = &state->base;
13979
13980         cursor->can_scale = false;
13981         cursor->max_downscale = 1;
13982         cursor->pipe = pipe;
13983         cursor->plane = pipe;
13984         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13985         cursor->check_plane = intel_check_cursor_plane;
13986         cursor->commit_plane = intel_commit_cursor_plane;
13987         cursor->disable_plane = intel_disable_cursor_plane;
13988
13989         drm_universal_plane_init(dev, &cursor->base, 0,
13990                                  &intel_plane_funcs,
13991                                  intel_cursor_formats,
13992                                  ARRAY_SIZE(intel_cursor_formats),
13993                                  DRM_PLANE_TYPE_CURSOR);
13994
13995         if (INTEL_INFO(dev)->gen >= 4) {
13996                 if (!dev->mode_config.rotation_property)
13997                         dev->mode_config.rotation_property =
13998                                 drm_mode_create_rotation_property(dev,
13999                                                         BIT(DRM_ROTATE_0) |
14000                                                         BIT(DRM_ROTATE_180));
14001                 if (dev->mode_config.rotation_property)
14002                         drm_object_attach_property(&cursor->base.base,
14003                                 dev->mode_config.rotation_property,
14004                                 state->base.rotation);
14005         }
14006
14007         if (INTEL_INFO(dev)->gen >=9)
14008                 state->scaler_id = -1;
14009
14010         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14011
14012         return &cursor->base;
14013 }
14014
14015 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14016         struct intel_crtc_state *crtc_state)
14017 {
14018         int i;
14019         struct intel_scaler *intel_scaler;
14020         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14021
14022         for (i = 0; i < intel_crtc->num_scalers; i++) {
14023                 intel_scaler = &scaler_state->scalers[i];
14024                 intel_scaler->in_use = 0;
14025                 intel_scaler->mode = PS_SCALER_MODE_DYN;
14026         }
14027
14028         scaler_state->scaler_id = -1;
14029 }
14030
14031 static void intel_crtc_init(struct drm_device *dev, int pipe)
14032 {
14033         struct drm_i915_private *dev_priv = dev->dev_private;
14034         struct intel_crtc *intel_crtc;
14035         struct intel_crtc_state *crtc_state = NULL;
14036         struct drm_plane *primary = NULL;
14037         struct drm_plane *cursor = NULL;
14038         int i, ret;
14039
14040         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14041         if (intel_crtc == NULL)
14042                 return;
14043
14044         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14045         if (!crtc_state)
14046                 goto fail;
14047         intel_crtc->config = crtc_state;
14048         intel_crtc->base.state = &crtc_state->base;
14049         crtc_state->base.crtc = &intel_crtc->base;
14050
14051         /* initialize shared scalers */
14052         if (INTEL_INFO(dev)->gen >= 9) {
14053                 if (pipe == PIPE_C)
14054                         intel_crtc->num_scalers = 1;
14055                 else
14056                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
14057
14058                 skl_init_scalers(dev, intel_crtc, crtc_state);
14059         }
14060
14061         primary = intel_primary_plane_create(dev, pipe);
14062         if (!primary)
14063                 goto fail;
14064
14065         cursor = intel_cursor_plane_create(dev, pipe);
14066         if (!cursor)
14067                 goto fail;
14068
14069         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14070                                         cursor, &intel_crtc_funcs);
14071         if (ret)
14072                 goto fail;
14073
14074         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
14075         for (i = 0; i < 256; i++) {
14076                 intel_crtc->lut_r[i] = i;
14077                 intel_crtc->lut_g[i] = i;
14078                 intel_crtc->lut_b[i] = i;
14079         }
14080
14081         /*
14082          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14083          * is hooked to pipe B. Hence we want plane A feeding pipe B.
14084          */
14085         intel_crtc->pipe = pipe;
14086         intel_crtc->plane = pipe;
14087         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14088                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14089                 intel_crtc->plane = !pipe;
14090         }
14091
14092         intel_crtc->cursor_base = ~0;
14093         intel_crtc->cursor_cntl = ~0;
14094         intel_crtc->cursor_size = ~0;
14095
14096         intel_crtc->wm.cxsr_allowed = true;
14097
14098         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14099                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14100         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14101         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14102
14103         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14104
14105         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14106         return;
14107
14108 fail:
14109         if (primary)
14110                 drm_plane_cleanup(primary);
14111         if (cursor)
14112                 drm_plane_cleanup(cursor);
14113         kfree(crtc_state);
14114         kfree(intel_crtc);
14115 }
14116
14117 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14118 {
14119         struct drm_encoder *encoder = connector->base.encoder;
14120         struct drm_device *dev = connector->base.dev;
14121
14122         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14123
14124         if (!encoder || WARN_ON(!encoder->crtc))
14125                 return INVALID_PIPE;
14126
14127         return to_intel_crtc(encoder->crtc)->pipe;
14128 }
14129
14130 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14131                                 struct drm_file *file)
14132 {
14133         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14134         struct drm_crtc *drmmode_crtc;
14135         struct intel_crtc *crtc;
14136
14137         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14138
14139         if (!drmmode_crtc) {
14140                 DRM_ERROR("no such CRTC id\n");
14141                 return -ENOENT;
14142         }
14143
14144         crtc = to_intel_crtc(drmmode_crtc);
14145         pipe_from_crtc_id->pipe = crtc->pipe;
14146
14147         return 0;
14148 }
14149
14150 static int intel_encoder_clones(struct intel_encoder *encoder)
14151 {
14152         struct drm_device *dev = encoder->base.dev;
14153         struct intel_encoder *source_encoder;
14154         int index_mask = 0;
14155         int entry = 0;
14156
14157         for_each_intel_encoder(dev, source_encoder) {
14158                 if (encoders_cloneable(encoder, source_encoder))
14159                         index_mask |= (1 << entry);
14160
14161                 entry++;
14162         }
14163
14164         return index_mask;
14165 }
14166
14167 static bool has_edp_a(struct drm_device *dev)
14168 {
14169         struct drm_i915_private *dev_priv = dev->dev_private;
14170
14171         if (!IS_MOBILE(dev))
14172                 return false;
14173
14174         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14175                 return false;
14176
14177         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14178                 return false;
14179
14180         return true;
14181 }
14182
14183 static bool intel_crt_present(struct drm_device *dev)
14184 {
14185         struct drm_i915_private *dev_priv = dev->dev_private;
14186
14187         if (INTEL_INFO(dev)->gen >= 9)
14188                 return false;
14189
14190         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14191                 return false;
14192
14193         if (IS_CHERRYVIEW(dev))
14194                 return false;
14195
14196         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14197                 return false;
14198
14199         return true;
14200 }
14201
14202 static void intel_setup_outputs(struct drm_device *dev)
14203 {
14204         struct drm_i915_private *dev_priv = dev->dev_private;
14205         struct intel_encoder *encoder;
14206         bool dpd_is_edp = false;
14207
14208         intel_lvds_init(dev);
14209
14210         if (intel_crt_present(dev))
14211                 intel_crt_init(dev);
14212
14213         if (IS_BROXTON(dev)) {
14214                 /*
14215                  * FIXME: Broxton doesn't support port detection via the
14216                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14217                  * detect the ports.
14218                  */
14219                 intel_ddi_init(dev, PORT_A);
14220                 intel_ddi_init(dev, PORT_B);
14221                 intel_ddi_init(dev, PORT_C);
14222         } else if (HAS_DDI(dev)) {
14223                 int found;
14224
14225                 /*
14226                  * Haswell uses DDI functions to detect digital outputs.
14227                  * On SKL pre-D0 the strap isn't connected, so we assume
14228                  * it's there.
14229                  */
14230                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
14231                 /* WaIgnoreDDIAStrap: skl */
14232                 if (found ||
14233                     (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
14234                         intel_ddi_init(dev, PORT_A);
14235
14236                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14237                  * register */
14238                 found = I915_READ(SFUSE_STRAP);
14239
14240                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14241                         intel_ddi_init(dev, PORT_B);
14242                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14243                         intel_ddi_init(dev, PORT_C);
14244                 if (found & SFUSE_STRAP_DDID_DETECTED)
14245                         intel_ddi_init(dev, PORT_D);
14246         } else if (HAS_PCH_SPLIT(dev)) {
14247                 int found;
14248                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14249
14250                 if (has_edp_a(dev))
14251                         intel_dp_init(dev, DP_A, PORT_A);
14252
14253                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14254                         /* PCH SDVOB multiplex with HDMIB */
14255                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
14256                         if (!found)
14257                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14258                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14259                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14260                 }
14261
14262                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14263                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14264
14265                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14266                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14267
14268                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14269                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14270
14271                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14272                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14273         } else if (IS_VALLEYVIEW(dev)) {
14274                 /*
14275                  * The DP_DETECTED bit is the latched state of the DDC
14276                  * SDA pin at boot. However since eDP doesn't require DDC
14277                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14278                  * eDP ports may have been muxed to an alternate function.
14279                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14280                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14281                  * detect eDP ports.
14282                  */
14283                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14284                     !intel_dp_is_edp(dev, PORT_B))
14285                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14286                                         PORT_B);
14287                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14288                     intel_dp_is_edp(dev, PORT_B))
14289                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
14290
14291                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14292                     !intel_dp_is_edp(dev, PORT_C))
14293                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14294                                         PORT_C);
14295                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14296                     intel_dp_is_edp(dev, PORT_C))
14297                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
14298
14299                 if (IS_CHERRYVIEW(dev)) {
14300                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
14301                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14302                                                 PORT_D);
14303                         /* eDP not supported on port D, so don't check VBT */
14304                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14305                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
14306                 }
14307
14308                 intel_dsi_init(dev);
14309         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
14310                 bool found = false;
14311
14312                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14313                         DRM_DEBUG_KMS("probing SDVOB\n");
14314                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14315                         if (!found && IS_G4X(dev)) {
14316                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14317                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14318                         }
14319
14320                         if (!found && IS_G4X(dev))
14321                                 intel_dp_init(dev, DP_B, PORT_B);
14322                 }
14323
14324                 /* Before G4X SDVOC doesn't have its own detect register */
14325
14326                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14327                         DRM_DEBUG_KMS("probing SDVOC\n");
14328                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14329                 }
14330
14331                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14332
14333                         if (IS_G4X(dev)) {
14334                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14335                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14336                         }
14337                         if (IS_G4X(dev))
14338                                 intel_dp_init(dev, DP_C, PORT_C);
14339                 }
14340
14341                 if (IS_G4X(dev) &&
14342                     (I915_READ(DP_D) & DP_DETECTED))
14343                         intel_dp_init(dev, DP_D, PORT_D);
14344         } else if (IS_GEN2(dev))
14345                 intel_dvo_init(dev);
14346
14347         if (SUPPORTS_TV(dev))
14348                 intel_tv_init(dev);
14349
14350         intel_psr_init(dev);
14351
14352         for_each_intel_encoder(dev, encoder) {
14353                 encoder->base.possible_crtcs = encoder->crtc_mask;
14354                 encoder->base.possible_clones =
14355                         intel_encoder_clones(encoder);
14356         }
14357
14358         intel_init_pch_refclk(dev);
14359
14360         drm_helper_move_panel_connectors_to_head(dev);
14361 }
14362
14363 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14364 {
14365         struct drm_device *dev = fb->dev;
14366         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14367
14368         drm_framebuffer_cleanup(fb);
14369         mutex_lock(&dev->struct_mutex);
14370         WARN_ON(!intel_fb->obj->framebuffer_references--);
14371         drm_gem_object_unreference(&intel_fb->obj->base);
14372         mutex_unlock(&dev->struct_mutex);
14373         kfree(intel_fb);
14374 }
14375
14376 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14377                                                 struct drm_file *file,
14378                                                 unsigned int *handle)
14379 {
14380         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14381         struct drm_i915_gem_object *obj = intel_fb->obj;
14382
14383         return drm_gem_handle_create(file, &obj->base, handle);
14384 }
14385
14386 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14387         .destroy = intel_user_framebuffer_destroy,
14388         .create_handle = intel_user_framebuffer_create_handle,
14389 };
14390
14391 static
14392 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14393                          uint32_t pixel_format)
14394 {
14395         u32 gen = INTEL_INFO(dev)->gen;
14396
14397         if (gen >= 9) {
14398                 /* "The stride in bytes must not exceed the of the size of 8K
14399                  *  pixels and 32K bytes."
14400                  */
14401                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14402         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14403                 return 32*1024;
14404         } else if (gen >= 4) {
14405                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14406                         return 16*1024;
14407                 else
14408                         return 32*1024;
14409         } else if (gen >= 3) {
14410                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14411                         return 8*1024;
14412                 else
14413                         return 16*1024;
14414         } else {
14415                 /* XXX DSPC is limited to 4k tiled */
14416                 return 8*1024;
14417         }
14418 }
14419
14420 static int intel_framebuffer_init(struct drm_device *dev,
14421                                   struct intel_framebuffer *intel_fb,
14422                                   struct drm_mode_fb_cmd2 *mode_cmd,
14423                                   struct drm_i915_gem_object *obj)
14424 {
14425         unsigned int aligned_height;
14426         int ret;
14427         u32 pitch_limit, stride_alignment;
14428
14429         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14430
14431         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14432                 /* Enforce that fb modifier and tiling mode match, but only for
14433                  * X-tiled. This is needed for FBC. */
14434                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14435                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14436                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14437                         return -EINVAL;
14438                 }
14439         } else {
14440                 if (obj->tiling_mode == I915_TILING_X)
14441                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14442                 else if (obj->tiling_mode == I915_TILING_Y) {
14443                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14444                         return -EINVAL;
14445                 }
14446         }
14447
14448         /* Passed in modifier sanity checking. */
14449         switch (mode_cmd->modifier[0]) {
14450         case I915_FORMAT_MOD_Y_TILED:
14451         case I915_FORMAT_MOD_Yf_TILED:
14452                 if (INTEL_INFO(dev)->gen < 9) {
14453                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14454                                   mode_cmd->modifier[0]);
14455                         return -EINVAL;
14456                 }
14457         case DRM_FORMAT_MOD_NONE:
14458         case I915_FORMAT_MOD_X_TILED:
14459                 break;
14460         default:
14461                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14462                           mode_cmd->modifier[0]);
14463                 return -EINVAL;
14464         }
14465
14466         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14467                                                      mode_cmd->pixel_format);
14468         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14469                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14470                           mode_cmd->pitches[0], stride_alignment);
14471                 return -EINVAL;
14472         }
14473
14474         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14475                                            mode_cmd->pixel_format);
14476         if (mode_cmd->pitches[0] > pitch_limit) {
14477                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14478                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14479                           "tiled" : "linear",
14480                           mode_cmd->pitches[0], pitch_limit);
14481                 return -EINVAL;
14482         }
14483
14484         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14485             mode_cmd->pitches[0] != obj->stride) {
14486                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14487                           mode_cmd->pitches[0], obj->stride);
14488                 return -EINVAL;
14489         }
14490
14491         /* Reject formats not supported by any plane early. */
14492         switch (mode_cmd->pixel_format) {
14493         case DRM_FORMAT_C8:
14494         case DRM_FORMAT_RGB565:
14495         case DRM_FORMAT_XRGB8888:
14496         case DRM_FORMAT_ARGB8888:
14497                 break;
14498         case DRM_FORMAT_XRGB1555:
14499                 if (INTEL_INFO(dev)->gen > 3) {
14500                         DRM_DEBUG("unsupported pixel format: %s\n",
14501                                   drm_get_format_name(mode_cmd->pixel_format));
14502                         return -EINVAL;
14503                 }
14504                 break;
14505         case DRM_FORMAT_ABGR8888:
14506                 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14507                         DRM_DEBUG("unsupported pixel format: %s\n",
14508                                   drm_get_format_name(mode_cmd->pixel_format));
14509                         return -EINVAL;
14510                 }
14511                 break;
14512         case DRM_FORMAT_XBGR8888:
14513         case DRM_FORMAT_XRGB2101010:
14514         case DRM_FORMAT_XBGR2101010:
14515                 if (INTEL_INFO(dev)->gen < 4) {
14516                         DRM_DEBUG("unsupported pixel format: %s\n",
14517                                   drm_get_format_name(mode_cmd->pixel_format));
14518                         return -EINVAL;
14519                 }
14520                 break;
14521         case DRM_FORMAT_ABGR2101010:
14522                 if (!IS_VALLEYVIEW(dev)) {
14523                         DRM_DEBUG("unsupported pixel format: %s\n",
14524                                   drm_get_format_name(mode_cmd->pixel_format));
14525                         return -EINVAL;
14526                 }
14527                 break;
14528         case DRM_FORMAT_YUYV:
14529         case DRM_FORMAT_UYVY:
14530         case DRM_FORMAT_YVYU:
14531         case DRM_FORMAT_VYUY:
14532                 if (INTEL_INFO(dev)->gen < 5) {
14533                         DRM_DEBUG("unsupported pixel format: %s\n",
14534                                   drm_get_format_name(mode_cmd->pixel_format));
14535                         return -EINVAL;
14536                 }
14537                 break;
14538         default:
14539                 DRM_DEBUG("unsupported pixel format: %s\n",
14540                           drm_get_format_name(mode_cmd->pixel_format));
14541                 return -EINVAL;
14542         }
14543
14544         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14545         if (mode_cmd->offsets[0] != 0)
14546                 return -EINVAL;
14547
14548         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14549                                                mode_cmd->pixel_format,
14550                                                mode_cmd->modifier[0]);
14551         /* FIXME drm helper for size checks (especially planar formats)? */
14552         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14553                 return -EINVAL;
14554
14555         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14556         intel_fb->obj = obj;
14557         intel_fb->obj->framebuffer_references++;
14558
14559         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14560         if (ret) {
14561                 DRM_ERROR("framebuffer init failed %d\n", ret);
14562                 return ret;
14563         }
14564
14565         return 0;
14566 }
14567
14568 static struct drm_framebuffer *
14569 intel_user_framebuffer_create(struct drm_device *dev,
14570                               struct drm_file *filp,
14571                               struct drm_mode_fb_cmd2 *mode_cmd)
14572 {
14573         struct drm_i915_gem_object *obj;
14574
14575         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14576                                                 mode_cmd->handles[0]));
14577         if (&obj->base == NULL)
14578                 return ERR_PTR(-ENOENT);
14579
14580         return intel_framebuffer_create(dev, mode_cmd, obj);
14581 }
14582
14583 #ifndef CONFIG_DRM_I915_FBDEV
14584 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14585 {
14586 }
14587 #endif
14588
14589 static const struct drm_mode_config_funcs intel_mode_funcs = {
14590         .fb_create = intel_user_framebuffer_create,
14591         .output_poll_changed = intel_fbdev_output_poll_changed,
14592         .atomic_check = intel_atomic_check,
14593         .atomic_commit = intel_atomic_commit,
14594         .atomic_state_alloc = intel_atomic_state_alloc,
14595         .atomic_state_clear = intel_atomic_state_clear,
14596 };
14597
14598 /* Set up chip specific display functions */
14599 static void intel_init_display(struct drm_device *dev)
14600 {
14601         struct drm_i915_private *dev_priv = dev->dev_private;
14602
14603         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14604                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14605         else if (IS_CHERRYVIEW(dev))
14606                 dev_priv->display.find_dpll = chv_find_best_dpll;
14607         else if (IS_VALLEYVIEW(dev))
14608                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14609         else if (IS_PINEVIEW(dev))
14610                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14611         else
14612                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14613
14614         if (INTEL_INFO(dev)->gen >= 9) {
14615                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14616                 dev_priv->display.get_initial_plane_config =
14617                         skylake_get_initial_plane_config;
14618                 dev_priv->display.crtc_compute_clock =
14619                         haswell_crtc_compute_clock;
14620                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14621                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14622                 dev_priv->display.update_primary_plane =
14623                         skylake_update_primary_plane;
14624         } else if (HAS_DDI(dev)) {
14625                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14626                 dev_priv->display.get_initial_plane_config =
14627                         ironlake_get_initial_plane_config;
14628                 dev_priv->display.crtc_compute_clock =
14629                         haswell_crtc_compute_clock;
14630                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14631                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14632                 dev_priv->display.update_primary_plane =
14633                         ironlake_update_primary_plane;
14634         } else if (HAS_PCH_SPLIT(dev)) {
14635                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14636                 dev_priv->display.get_initial_plane_config =
14637                         ironlake_get_initial_plane_config;
14638                 dev_priv->display.crtc_compute_clock =
14639                         ironlake_crtc_compute_clock;
14640                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14641                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14642                 dev_priv->display.update_primary_plane =
14643                         ironlake_update_primary_plane;
14644         } else if (IS_VALLEYVIEW(dev)) {
14645                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14646                 dev_priv->display.get_initial_plane_config =
14647                         i9xx_get_initial_plane_config;
14648                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14649                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14650                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14651                 dev_priv->display.update_primary_plane =
14652                         i9xx_update_primary_plane;
14653         } else {
14654                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14655                 dev_priv->display.get_initial_plane_config =
14656                         i9xx_get_initial_plane_config;
14657                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14658                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14659                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14660                 dev_priv->display.update_primary_plane =
14661                         i9xx_update_primary_plane;
14662         }
14663
14664         /* Returns the core display clock speed */
14665         if (IS_SKYLAKE(dev))
14666                 dev_priv->display.get_display_clock_speed =
14667                         skylake_get_display_clock_speed;
14668         else if (IS_BROXTON(dev))
14669                 dev_priv->display.get_display_clock_speed =
14670                         broxton_get_display_clock_speed;
14671         else if (IS_BROADWELL(dev))
14672                 dev_priv->display.get_display_clock_speed =
14673                         broadwell_get_display_clock_speed;
14674         else if (IS_HASWELL(dev))
14675                 dev_priv->display.get_display_clock_speed =
14676                         haswell_get_display_clock_speed;
14677         else if (IS_VALLEYVIEW(dev))
14678                 dev_priv->display.get_display_clock_speed =
14679                         valleyview_get_display_clock_speed;
14680         else if (IS_GEN5(dev))
14681                 dev_priv->display.get_display_clock_speed =
14682                         ilk_get_display_clock_speed;
14683         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14684                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14685                 dev_priv->display.get_display_clock_speed =
14686                         i945_get_display_clock_speed;
14687         else if (IS_GM45(dev))
14688                 dev_priv->display.get_display_clock_speed =
14689                         gm45_get_display_clock_speed;
14690         else if (IS_CRESTLINE(dev))
14691                 dev_priv->display.get_display_clock_speed =
14692                         i965gm_get_display_clock_speed;
14693         else if (IS_PINEVIEW(dev))
14694                 dev_priv->display.get_display_clock_speed =
14695                         pnv_get_display_clock_speed;
14696         else if (IS_G33(dev) || IS_G4X(dev))
14697                 dev_priv->display.get_display_clock_speed =
14698                         g33_get_display_clock_speed;
14699         else if (IS_I915G(dev))
14700                 dev_priv->display.get_display_clock_speed =
14701                         i915_get_display_clock_speed;
14702         else if (IS_I945GM(dev) || IS_845G(dev))
14703                 dev_priv->display.get_display_clock_speed =
14704                         i9xx_misc_get_display_clock_speed;
14705         else if (IS_PINEVIEW(dev))
14706                 dev_priv->display.get_display_clock_speed =
14707                         pnv_get_display_clock_speed;
14708         else if (IS_I915GM(dev))
14709                 dev_priv->display.get_display_clock_speed =
14710                         i915gm_get_display_clock_speed;
14711         else if (IS_I865G(dev))
14712                 dev_priv->display.get_display_clock_speed =
14713                         i865_get_display_clock_speed;
14714         else if (IS_I85X(dev))
14715                 dev_priv->display.get_display_clock_speed =
14716                         i85x_get_display_clock_speed;
14717         else { /* 830 */
14718                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14719                 dev_priv->display.get_display_clock_speed =
14720                         i830_get_display_clock_speed;
14721         }
14722
14723         if (IS_GEN5(dev)) {
14724                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14725         } else if (IS_GEN6(dev)) {
14726                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14727         } else if (IS_IVYBRIDGE(dev)) {
14728                 /* FIXME: detect B0+ stepping and use auto training */
14729                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14730         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14731                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14732                 if (IS_BROADWELL(dev)) {
14733                         dev_priv->display.modeset_commit_cdclk =
14734                                 broadwell_modeset_commit_cdclk;
14735                         dev_priv->display.modeset_calc_cdclk =
14736                                 broadwell_modeset_calc_cdclk;
14737                 }
14738         } else if (IS_VALLEYVIEW(dev)) {
14739                 dev_priv->display.modeset_commit_cdclk =
14740                         valleyview_modeset_commit_cdclk;
14741                 dev_priv->display.modeset_calc_cdclk =
14742                         valleyview_modeset_calc_cdclk;
14743         } else if (IS_BROXTON(dev)) {
14744                 dev_priv->display.modeset_commit_cdclk =
14745                         broxton_modeset_commit_cdclk;
14746                 dev_priv->display.modeset_calc_cdclk =
14747                         broxton_modeset_calc_cdclk;
14748         }
14749
14750         switch (INTEL_INFO(dev)->gen) {
14751         case 2:
14752                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14753                 break;
14754
14755         case 3:
14756                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14757                 break;
14758
14759         case 4:
14760         case 5:
14761                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14762                 break;
14763
14764         case 6:
14765                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14766                 break;
14767         case 7:
14768         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14769                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14770                 break;
14771         case 9:
14772                 /* Drop through - unsupported since execlist only. */
14773         default:
14774                 /* Default just returns -ENODEV to indicate unsupported */
14775                 dev_priv->display.queue_flip = intel_default_queue_flip;
14776         }
14777
14778         intel_panel_init_backlight_funcs(dev);
14779
14780         mutex_init(&dev_priv->pps_mutex);
14781 }
14782
14783 /*
14784  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14785  * resume, or other times.  This quirk makes sure that's the case for
14786  * affected systems.
14787  */
14788 static void quirk_pipea_force(struct drm_device *dev)
14789 {
14790         struct drm_i915_private *dev_priv = dev->dev_private;
14791
14792         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14793         DRM_INFO("applying pipe a force quirk\n");
14794 }
14795
14796 static void quirk_pipeb_force(struct drm_device *dev)
14797 {
14798         struct drm_i915_private *dev_priv = dev->dev_private;
14799
14800         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14801         DRM_INFO("applying pipe b force quirk\n");
14802 }
14803
14804 /*
14805  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14806  */
14807 static void quirk_ssc_force_disable(struct drm_device *dev)
14808 {
14809         struct drm_i915_private *dev_priv = dev->dev_private;
14810         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14811         DRM_INFO("applying lvds SSC disable quirk\n");
14812 }
14813
14814 /*
14815  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14816  * brightness value
14817  */
14818 static void quirk_invert_brightness(struct drm_device *dev)
14819 {
14820         struct drm_i915_private *dev_priv = dev->dev_private;
14821         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14822         DRM_INFO("applying inverted panel brightness quirk\n");
14823 }
14824
14825 /* Some VBT's incorrectly indicate no backlight is present */
14826 static void quirk_backlight_present(struct drm_device *dev)
14827 {
14828         struct drm_i915_private *dev_priv = dev->dev_private;
14829         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14830         DRM_INFO("applying backlight present quirk\n");
14831 }
14832
14833 struct intel_quirk {
14834         int device;
14835         int subsystem_vendor;
14836         int subsystem_device;
14837         void (*hook)(struct drm_device *dev);
14838 };
14839
14840 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14841 struct intel_dmi_quirk {
14842         void (*hook)(struct drm_device *dev);
14843         const struct dmi_system_id (*dmi_id_list)[];
14844 };
14845
14846 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14847 {
14848         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14849         return 1;
14850 }
14851
14852 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14853         {
14854                 .dmi_id_list = &(const struct dmi_system_id[]) {
14855                         {
14856                                 .callback = intel_dmi_reverse_brightness,
14857                                 .ident = "NCR Corporation",
14858                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14859                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14860                                 },
14861                         },
14862                         { }  /* terminating entry */
14863                 },
14864                 .hook = quirk_invert_brightness,
14865         },
14866 };
14867
14868 static struct intel_quirk intel_quirks[] = {
14869         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14870         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14871
14872         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14873         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14874
14875         /* 830 needs to leave pipe A & dpll A up */
14876         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14877
14878         /* 830 needs to leave pipe B & dpll B up */
14879         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14880
14881         /* Lenovo U160 cannot use SSC on LVDS */
14882         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14883
14884         /* Sony Vaio Y cannot use SSC on LVDS */
14885         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14886
14887         /* Acer Aspire 5734Z must invert backlight brightness */
14888         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14889
14890         /* Acer/eMachines G725 */
14891         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14892
14893         /* Acer/eMachines e725 */
14894         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14895
14896         /* Acer/Packard Bell NCL20 */
14897         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14898
14899         /* Acer Aspire 4736Z */
14900         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14901
14902         /* Acer Aspire 5336 */
14903         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14904
14905         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14906         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14907
14908         /* Acer C720 Chromebook (Core i3 4005U) */
14909         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14910
14911         /* Apple Macbook 2,1 (Core 2 T7400) */
14912         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14913
14914         /* Toshiba CB35 Chromebook (Celeron 2955U) */
14915         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14916
14917         /* HP Chromebook 14 (Celeron 2955U) */
14918         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14919
14920         /* Dell Chromebook 11 */
14921         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14922 };
14923
14924 static void intel_init_quirks(struct drm_device *dev)
14925 {
14926         struct pci_dev *d = dev->pdev;
14927         int i;
14928
14929         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14930                 struct intel_quirk *q = &intel_quirks[i];
14931
14932                 if (d->device == q->device &&
14933                     (d->subsystem_vendor == q->subsystem_vendor ||
14934                      q->subsystem_vendor == PCI_ANY_ID) &&
14935                     (d->subsystem_device == q->subsystem_device ||
14936                      q->subsystem_device == PCI_ANY_ID))
14937                         q->hook(dev);
14938         }
14939         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14940                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14941                         intel_dmi_quirks[i].hook(dev);
14942         }
14943 }
14944
14945 /* Disable the VGA plane that we never use */
14946 static void i915_disable_vga(struct drm_device *dev)
14947 {
14948         struct drm_i915_private *dev_priv = dev->dev_private;
14949         u8 sr1;
14950         u32 vga_reg = i915_vgacntrl_reg(dev);
14951
14952         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14953         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14954         outb(SR01, VGA_SR_INDEX);
14955         sr1 = inb(VGA_SR_DATA);
14956         outb(sr1 | 1<<5, VGA_SR_DATA);
14957         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14958         udelay(300);
14959
14960         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14961         POSTING_READ(vga_reg);
14962 }
14963
14964 void intel_modeset_init_hw(struct drm_device *dev)
14965 {
14966         intel_update_cdclk(dev);
14967         intel_prepare_ddi(dev);
14968         intel_init_clock_gating(dev);
14969         intel_enable_gt_powersave(dev);
14970 }
14971
14972 void intel_modeset_init(struct drm_device *dev)
14973 {
14974         struct drm_i915_private *dev_priv = dev->dev_private;
14975         int sprite, ret;
14976         enum pipe pipe;
14977         struct intel_crtc *crtc;
14978
14979         drm_mode_config_init(dev);
14980
14981         dev->mode_config.min_width = 0;
14982         dev->mode_config.min_height = 0;
14983
14984         dev->mode_config.preferred_depth = 24;
14985         dev->mode_config.prefer_shadow = 1;
14986
14987         dev->mode_config.allow_fb_modifiers = true;
14988
14989         dev->mode_config.funcs = &intel_mode_funcs;
14990
14991         intel_init_quirks(dev);
14992
14993         intel_init_pm(dev);
14994
14995         if (INTEL_INFO(dev)->num_pipes == 0)
14996                 return;
14997
14998         intel_init_display(dev);
14999         intel_init_audio(dev);
15000
15001         if (IS_GEN2(dev)) {
15002                 dev->mode_config.max_width = 2048;
15003                 dev->mode_config.max_height = 2048;
15004         } else if (IS_GEN3(dev)) {
15005                 dev->mode_config.max_width = 4096;
15006                 dev->mode_config.max_height = 4096;
15007         } else {
15008                 dev->mode_config.max_width = 8192;
15009                 dev->mode_config.max_height = 8192;
15010         }
15011
15012         if (IS_845G(dev) || IS_I865G(dev)) {
15013                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15014                 dev->mode_config.cursor_height = 1023;
15015         } else if (IS_GEN2(dev)) {
15016                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15017                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15018         } else {
15019                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15020                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15021         }
15022
15023         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
15024
15025         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15026                       INTEL_INFO(dev)->num_pipes,
15027                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15028
15029         for_each_pipe(dev_priv, pipe) {
15030                 intel_crtc_init(dev, pipe);
15031                 for_each_sprite(dev_priv, pipe, sprite) {
15032                         ret = intel_plane_init(dev, pipe, sprite);
15033                         if (ret)
15034                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15035                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
15036                 }
15037         }
15038
15039         intel_init_dpio(dev);
15040
15041         intel_shared_dpll_init(dev);
15042
15043         /* Just disable it once at startup */
15044         i915_disable_vga(dev);
15045         intel_setup_outputs(dev);
15046
15047         /* Just in case the BIOS is doing something questionable. */
15048         intel_fbc_disable(dev);
15049
15050         drm_modeset_lock_all(dev);
15051         intel_modeset_setup_hw_state(dev, false);
15052         drm_modeset_unlock_all(dev);
15053
15054         for_each_intel_crtc(dev, crtc) {
15055                 if (!crtc->active)
15056                         continue;
15057
15058                 /*
15059                  * Note that reserving the BIOS fb up front prevents us
15060                  * from stuffing other stolen allocations like the ring
15061                  * on top.  This prevents some ugliness at boot time, and
15062                  * can even allow for smooth boot transitions if the BIOS
15063                  * fb is large enough for the active pipe configuration.
15064                  */
15065                 if (dev_priv->display.get_initial_plane_config) {
15066                         dev_priv->display.get_initial_plane_config(crtc,
15067                                                            &crtc->plane_config);
15068                         /*
15069                          * If the fb is shared between multiple heads, we'll
15070                          * just get the first one.
15071                          */
15072                         intel_find_initial_plane_obj(crtc, &crtc->plane_config);
15073                 }
15074         }
15075 }
15076
15077 static void intel_enable_pipe_a(struct drm_device *dev)
15078 {
15079         struct intel_connector *connector;
15080         struct drm_connector *crt = NULL;
15081         struct intel_load_detect_pipe load_detect_temp;
15082         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15083
15084         /* We can't just switch on the pipe A, we need to set things up with a
15085          * proper mode and output configuration. As a gross hack, enable pipe A
15086          * by enabling the load detect pipe once. */
15087         for_each_intel_connector(dev, connector) {
15088                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15089                         crt = &connector->base;
15090                         break;
15091                 }
15092         }
15093
15094         if (!crt)
15095                 return;
15096
15097         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15098                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15099 }
15100
15101 static bool
15102 intel_check_plane_mapping(struct intel_crtc *crtc)
15103 {
15104         struct drm_device *dev = crtc->base.dev;
15105         struct drm_i915_private *dev_priv = dev->dev_private;
15106         u32 reg, val;
15107
15108         if (INTEL_INFO(dev)->num_pipes == 1)
15109                 return true;
15110
15111         reg = DSPCNTR(!crtc->plane);
15112         val = I915_READ(reg);
15113
15114         if ((val & DISPLAY_PLANE_ENABLE) &&
15115             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15116                 return false;
15117
15118         return true;
15119 }
15120
15121 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15122 {
15123         struct drm_device *dev = crtc->base.dev;
15124         struct drm_i915_private *dev_priv = dev->dev_private;
15125         struct intel_encoder *encoder;
15126         u32 reg;
15127         bool enable;
15128
15129         /* Clear any frame start delays used for debugging left by the BIOS */
15130         reg = PIPECONF(crtc->config->cpu_transcoder);
15131         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15132
15133         /* restore vblank interrupts to correct state */
15134         drm_crtc_vblank_reset(&crtc->base);
15135         if (crtc->active) {
15136                 update_scanline_offset(crtc);
15137                 drm_crtc_vblank_on(&crtc->base);
15138         }
15139
15140         /* We need to sanitize the plane -> pipe mapping first because this will
15141          * disable the crtc (and hence change the state) if it is wrong. Note
15142          * that gen4+ has a fixed plane -> pipe mapping.  */
15143         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15144                 bool plane;
15145
15146                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15147                               crtc->base.base.id);
15148
15149                 /* Pipe has the wrong plane attached and the plane is active.
15150                  * Temporarily change the plane mapping and disable everything
15151                  * ...  */
15152                 plane = crtc->plane;
15153                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15154                 crtc->plane = !plane;
15155                 intel_crtc_disable_noatomic(&crtc->base);
15156                 crtc->plane = plane;
15157         }
15158
15159         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15160             crtc->pipe == PIPE_A && !crtc->active) {
15161                 /* BIOS forgot to enable pipe A, this mostly happens after
15162                  * resume. Force-enable the pipe to fix this, the update_dpms
15163                  * call below we restore the pipe to the right state, but leave
15164                  * the required bits on. */
15165                 intel_enable_pipe_a(dev);
15166         }
15167
15168         /* Adjust the state of the output pipe according to whether we
15169          * have active connectors/encoders. */
15170         enable = false;
15171         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15172                 enable |= encoder->connectors_active;
15173
15174         if (!enable)
15175                 intel_crtc_disable_noatomic(&crtc->base);
15176
15177         if (crtc->active != crtc->base.state->active) {
15178
15179                 /* This can happen either due to bugs in the get_hw_state
15180                  * functions or because of calls to intel_crtc_disable_noatomic,
15181                  * or because the pipe is force-enabled due to the
15182                  * pipe A quirk. */
15183                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15184                               crtc->base.base.id,
15185                               crtc->base.state->enable ? "enabled" : "disabled",
15186                               crtc->active ? "enabled" : "disabled");
15187
15188                 crtc->base.state->enable = crtc->active;
15189                 crtc->base.state->active = crtc->active;
15190                 crtc->base.enabled = crtc->active;
15191
15192                 /* Because we only establish the connector -> encoder ->
15193                  * crtc links if something is active, this means the
15194                  * crtc is now deactivated. Break the links. connector
15195                  * -> encoder links are only establish when things are
15196                  *  actually up, hence no need to break them. */
15197                 WARN_ON(crtc->active);
15198
15199                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
15200                         WARN_ON(encoder->connectors_active);
15201                         encoder->base.crtc = NULL;
15202                 }
15203         }
15204
15205         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15206                 /*
15207                  * We start out with underrun reporting disabled to avoid races.
15208                  * For correct bookkeeping mark this on active crtcs.
15209                  *
15210                  * Also on gmch platforms we dont have any hardware bits to
15211                  * disable the underrun reporting. Which means we need to start
15212                  * out with underrun reporting disabled also on inactive pipes,
15213                  * since otherwise we'll complain about the garbage we read when
15214                  * e.g. coming up after runtime pm.
15215                  *
15216                  * No protection against concurrent access is required - at
15217                  * worst a fifo underrun happens which also sets this to false.
15218                  */
15219                 crtc->cpu_fifo_underrun_disabled = true;
15220                 crtc->pch_fifo_underrun_disabled = true;
15221         }
15222 }
15223
15224 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15225 {
15226         struct intel_connector *connector;
15227         struct drm_device *dev = encoder->base.dev;
15228
15229         /* We need to check both for a crtc link (meaning that the
15230          * encoder is active and trying to read from a pipe) and the
15231          * pipe itself being active. */
15232         bool has_active_crtc = encoder->base.crtc &&
15233                 to_intel_crtc(encoder->base.crtc)->active;
15234
15235         if (encoder->connectors_active && !has_active_crtc) {
15236                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15237                               encoder->base.base.id,
15238                               encoder->base.name);
15239
15240                 /* Connector is active, but has no active pipe. This is
15241                  * fallout from our resume register restoring. Disable
15242                  * the encoder manually again. */
15243                 if (encoder->base.crtc) {
15244                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15245                                       encoder->base.base.id,
15246                                       encoder->base.name);
15247                         encoder->disable(encoder);
15248                         if (encoder->post_disable)
15249                                 encoder->post_disable(encoder);
15250                 }
15251                 encoder->base.crtc = NULL;
15252                 encoder->connectors_active = false;
15253
15254                 /* Inconsistent output/port/pipe state happens presumably due to
15255                  * a bug in one of the get_hw_state functions. Or someplace else
15256                  * in our code, like the register restore mess on resume. Clamp
15257                  * things to off as a safer default. */
15258                 for_each_intel_connector(dev, connector) {
15259                         if (connector->encoder != encoder)
15260                                 continue;
15261                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15262                         connector->base.encoder = NULL;
15263                 }
15264         }
15265         /* Enabled encoders without active connectors will be fixed in
15266          * the crtc fixup. */
15267 }
15268
15269 void i915_redisable_vga_power_on(struct drm_device *dev)
15270 {
15271         struct drm_i915_private *dev_priv = dev->dev_private;
15272         u32 vga_reg = i915_vgacntrl_reg(dev);
15273
15274         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15275                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15276                 i915_disable_vga(dev);
15277         }
15278 }
15279
15280 void i915_redisable_vga(struct drm_device *dev)
15281 {
15282         struct drm_i915_private *dev_priv = dev->dev_private;
15283
15284         /* This function can be called both from intel_modeset_setup_hw_state or
15285          * at a very early point in our resume sequence, where the power well
15286          * structures are not yet restored. Since this function is at a very
15287          * paranoid "someone might have enabled VGA while we were not looking"
15288          * level, just check if the power well is enabled instead of trying to
15289          * follow the "don't touch the power well if we don't need it" policy
15290          * the rest of the driver uses. */
15291         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15292                 return;
15293
15294         i915_redisable_vga_power_on(dev);
15295 }
15296
15297 static bool primary_get_hw_state(struct intel_crtc *crtc)
15298 {
15299         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
15300
15301         return !!(I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE);
15302 }
15303
15304 static void readout_plane_state(struct intel_crtc *crtc,
15305                                 struct intel_crtc_state *crtc_state)
15306 {
15307         struct intel_plane *p;
15308         struct drm_plane_state *drm_plane_state;
15309         bool active = crtc_state->base.active;
15310
15311         if (active) {
15312                 crtc_state->quirks |= PIPE_CONFIG_QUIRK_INITIAL_PLANES;
15313
15314                 /* apply to previous sw state too */
15315                 to_intel_crtc_state(crtc->base.state)->quirks |=
15316                         PIPE_CONFIG_QUIRK_INITIAL_PLANES;
15317         }
15318
15319         for_each_intel_plane(crtc->base.dev, p) {
15320                 bool visible = active;
15321
15322                 if (crtc->pipe != p->pipe)
15323                         continue;
15324
15325                 drm_plane_state = p->base.state;
15326                 if (active && p->base.type == DRM_PLANE_TYPE_PRIMARY) {
15327                         visible = primary_get_hw_state(crtc);
15328                         to_intel_plane_state(drm_plane_state)->visible = visible;
15329                 } else {
15330                         /*
15331                          * unknown state, assume it's off to force a transition
15332                          * to on when calculating state changes.
15333                          */
15334                         to_intel_plane_state(drm_plane_state)->visible = false;
15335                 }
15336
15337                 if (visible) {
15338                         crtc_state->base.plane_mask |=
15339                                 1 << drm_plane_index(&p->base);
15340                 } else if (crtc_state->base.state) {
15341                         /* Make this unconditional for atomic hw readout. */
15342                         crtc_state->base.plane_mask &=
15343                                 ~(1 << drm_plane_index(&p->base));
15344                 }
15345         }
15346 }
15347
15348 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15349 {
15350         struct drm_i915_private *dev_priv = dev->dev_private;
15351         enum pipe pipe;
15352         struct intel_crtc *crtc;
15353         struct intel_encoder *encoder;
15354         struct intel_connector *connector;
15355         int i;
15356
15357         for_each_intel_crtc(dev, crtc) {
15358                 memset(crtc->config, 0, sizeof(*crtc->config));
15359                 crtc->config->base.crtc = &crtc->base;
15360
15361                 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
15362
15363                 crtc->active = dev_priv->display.get_pipe_config(crtc,
15364                                                                  crtc->config);
15365
15366                 crtc->base.state->enable = crtc->active;
15367                 crtc->base.state->active = crtc->active;
15368                 crtc->base.enabled = crtc->active;
15369                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15370
15371                 readout_plane_state(crtc, to_intel_crtc_state(crtc->base.state));
15372
15373                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15374                               crtc->base.base.id,
15375                               crtc->active ? "enabled" : "disabled");
15376         }
15377
15378         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15379                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15380
15381                 pll->on = pll->get_hw_state(dev_priv, pll,
15382                                             &pll->config.hw_state);
15383                 pll->active = 0;
15384                 pll->config.crtc_mask = 0;
15385                 for_each_intel_crtc(dev, crtc) {
15386                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15387                                 pll->active++;
15388                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15389                         }
15390                 }
15391
15392                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15393                               pll->name, pll->config.crtc_mask, pll->on);
15394
15395                 if (pll->config.crtc_mask)
15396                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15397         }
15398
15399         for_each_intel_encoder(dev, encoder) {
15400                 pipe = 0;
15401
15402                 if (encoder->get_hw_state(encoder, &pipe)) {
15403                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15404                         encoder->base.crtc = &crtc->base;
15405                         encoder->get_config(encoder, crtc->config);
15406                 } else {
15407                         encoder->base.crtc = NULL;
15408                 }
15409
15410                 encoder->connectors_active = false;
15411                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15412                               encoder->base.base.id,
15413                               encoder->base.name,
15414                               encoder->base.crtc ? "enabled" : "disabled",
15415                               pipe_name(pipe));
15416         }
15417
15418         for_each_intel_connector(dev, connector) {
15419                 if (connector->get_hw_state(connector)) {
15420                         connector->base.dpms = DRM_MODE_DPMS_ON;
15421                         connector->encoder->connectors_active = true;
15422                         connector->base.encoder = &connector->encoder->base;
15423                 } else {
15424                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15425                         connector->base.encoder = NULL;
15426                 }
15427                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15428                               connector->base.base.id,
15429                               connector->base.name,
15430                               connector->base.encoder ? "enabled" : "disabled");
15431         }
15432 }
15433
15434 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
15435  * and i915 state tracking structures. */
15436 void intel_modeset_setup_hw_state(struct drm_device *dev,
15437                                   bool force_restore)
15438 {
15439         struct drm_i915_private *dev_priv = dev->dev_private;
15440         enum pipe pipe;
15441         struct intel_crtc *crtc;
15442         struct intel_encoder *encoder;
15443         int i;
15444
15445         intel_modeset_readout_hw_state(dev);
15446
15447         /*
15448          * Now that we have the config, copy it to each CRTC struct
15449          * Note that this could go away if we move to using crtc_config
15450          * checking everywhere.
15451          */
15452         for_each_intel_crtc(dev, crtc) {
15453                 if (crtc->active && i915.fastboot) {
15454                         intel_mode_from_pipe_config(&crtc->base.mode,
15455                                                     crtc->config);
15456                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
15457                                       crtc->base.base.id);
15458                         drm_mode_debug_printmodeline(&crtc->base.mode);
15459                 }
15460         }
15461
15462         /* HW state is read out, now we need to sanitize this mess. */
15463         for_each_intel_encoder(dev, encoder) {
15464                 intel_sanitize_encoder(encoder);
15465         }
15466
15467         for_each_pipe(dev_priv, pipe) {
15468                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15469                 intel_sanitize_crtc(crtc);
15470                 intel_dump_pipe_config(crtc, crtc->config,
15471                                        "[setup_hw_state]");
15472         }
15473
15474         intel_modeset_update_connector_atomic_state(dev);
15475
15476         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15477                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15478
15479                 if (!pll->on || pll->active)
15480                         continue;
15481
15482                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15483
15484                 pll->disable(dev_priv, pll);
15485                 pll->on = false;
15486         }
15487
15488         if (IS_VALLEYVIEW(dev))
15489                 vlv_wm_get_hw_state(dev);
15490         else if (IS_GEN9(dev))
15491                 skl_wm_get_hw_state(dev);
15492         else if (HAS_PCH_SPLIT(dev))
15493                 ilk_wm_get_hw_state(dev);
15494
15495         if (force_restore) {
15496                 i915_redisable_vga(dev);
15497
15498                 /*
15499                  * We need to use raw interfaces for restoring state to avoid
15500                  * checking (bogus) intermediate states.
15501                  */
15502                 for_each_pipe(dev_priv, pipe) {
15503                         struct drm_crtc *crtc =
15504                                 dev_priv->pipe_to_crtc_mapping[pipe];
15505
15506                         intel_crtc_restore_mode(crtc);
15507                 }
15508         } else {
15509                 intel_modeset_update_staged_output_state(dev);
15510         }
15511
15512         intel_modeset_check_state(dev);
15513 }
15514
15515 void intel_modeset_gem_init(struct drm_device *dev)
15516 {
15517         struct drm_i915_private *dev_priv = dev->dev_private;
15518         struct drm_crtc *c;
15519         struct drm_i915_gem_object *obj;
15520         int ret;
15521
15522         mutex_lock(&dev->struct_mutex);
15523         intel_init_gt_powersave(dev);
15524         mutex_unlock(&dev->struct_mutex);
15525
15526         /*
15527          * There may be no VBT; and if the BIOS enabled SSC we can
15528          * just keep using it to avoid unnecessary flicker.  Whereas if the
15529          * BIOS isn't using it, don't assume it will work even if the VBT
15530          * indicates as much.
15531          */
15532         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15533                 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15534                                                 DREF_SSC1_ENABLE);
15535
15536         intel_modeset_init_hw(dev);
15537
15538         intel_setup_overlay(dev);
15539
15540         /*
15541          * Make sure any fbs we allocated at startup are properly
15542          * pinned & fenced.  When we do the allocation it's too early
15543          * for this.
15544          */
15545         for_each_crtc(dev, c) {
15546                 obj = intel_fb_obj(c->primary->fb);
15547                 if (obj == NULL)
15548                         continue;
15549
15550                 mutex_lock(&dev->struct_mutex);
15551                 ret = intel_pin_and_fence_fb_obj(c->primary,
15552                                                  c->primary->fb,
15553                                                  c->primary->state,
15554                                                  NULL, NULL);
15555                 mutex_unlock(&dev->struct_mutex);
15556                 if (ret) {
15557                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
15558                                   to_intel_crtc(c)->pipe);
15559                         drm_framebuffer_unreference(c->primary->fb);
15560                         c->primary->fb = NULL;
15561                         c->primary->crtc = c->primary->state->crtc = NULL;
15562                         update_state_fb(c->primary);
15563                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15564                 }
15565         }
15566
15567         intel_backlight_register(dev);
15568 }
15569
15570 void intel_connector_unregister(struct intel_connector *intel_connector)
15571 {
15572         struct drm_connector *connector = &intel_connector->base;
15573
15574         intel_panel_destroy_backlight(connector);
15575         drm_connector_unregister(connector);
15576 }
15577
15578 void intel_modeset_cleanup(struct drm_device *dev)
15579 {
15580         struct drm_i915_private *dev_priv = dev->dev_private;
15581         struct drm_connector *connector;
15582
15583         intel_disable_gt_powersave(dev);
15584
15585         intel_backlight_unregister(dev);
15586
15587         /*
15588          * Interrupts and polling as the first thing to avoid creating havoc.
15589          * Too much stuff here (turning of connectors, ...) would
15590          * experience fancy races otherwise.
15591          */
15592         intel_irq_uninstall(dev_priv);
15593
15594         /*
15595          * Due to the hpd irq storm handling the hotplug work can re-arm the
15596          * poll handlers. Hence disable polling after hpd handling is shut down.
15597          */
15598         drm_kms_helper_poll_fini(dev);
15599
15600         intel_unregister_dsm_handler();
15601
15602         intel_fbc_disable(dev);
15603
15604         /* flush any delayed tasks or pending work */
15605         flush_scheduled_work();
15606
15607         /* destroy the backlight and sysfs files before encoders/connectors */
15608         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15609                 struct intel_connector *intel_connector;
15610
15611                 intel_connector = to_intel_connector(connector);
15612                 intel_connector->unregister(intel_connector);
15613         }
15614
15615         drm_mode_config_cleanup(dev);
15616
15617         intel_cleanup_overlay(dev);
15618
15619         mutex_lock(&dev->struct_mutex);
15620         intel_cleanup_gt_powersave(dev);
15621         mutex_unlock(&dev->struct_mutex);
15622 }
15623
15624 /*
15625  * Return which encoder is currently attached for connector.
15626  */
15627 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15628 {
15629         return &intel_attached_encoder(connector)->base;
15630 }
15631
15632 void intel_connector_attach_encoder(struct intel_connector *connector,
15633                                     struct intel_encoder *encoder)
15634 {
15635         connector->encoder = encoder;
15636         drm_mode_connector_attach_encoder(&connector->base,
15637                                           &encoder->base);
15638 }
15639
15640 /*
15641  * set vga decode state - true == enable VGA decode
15642  */
15643 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15644 {
15645         struct drm_i915_private *dev_priv = dev->dev_private;
15646         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15647         u16 gmch_ctrl;
15648
15649         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15650                 DRM_ERROR("failed to read control word\n");
15651                 return -EIO;
15652         }
15653
15654         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15655                 return 0;
15656
15657         if (state)
15658                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15659         else
15660                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15661
15662         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15663                 DRM_ERROR("failed to write control word\n");
15664                 return -EIO;
15665         }
15666
15667         return 0;
15668 }
15669
15670 struct intel_display_error_state {
15671
15672         u32 power_well_driver;
15673
15674         int num_transcoders;
15675
15676         struct intel_cursor_error_state {
15677                 u32 control;
15678                 u32 position;
15679                 u32 base;
15680                 u32 size;
15681         } cursor[I915_MAX_PIPES];
15682
15683         struct intel_pipe_error_state {
15684                 bool power_domain_on;
15685                 u32 source;
15686                 u32 stat;
15687         } pipe[I915_MAX_PIPES];
15688
15689         struct intel_plane_error_state {
15690                 u32 control;
15691                 u32 stride;
15692                 u32 size;
15693                 u32 pos;
15694                 u32 addr;
15695                 u32 surface;
15696                 u32 tile_offset;
15697         } plane[I915_MAX_PIPES];
15698
15699         struct intel_transcoder_error_state {
15700                 bool power_domain_on;
15701                 enum transcoder cpu_transcoder;
15702
15703                 u32 conf;
15704
15705                 u32 htotal;
15706                 u32 hblank;
15707                 u32 hsync;
15708                 u32 vtotal;
15709                 u32 vblank;
15710                 u32 vsync;
15711         } transcoder[4];
15712 };
15713
15714 struct intel_display_error_state *
15715 intel_display_capture_error_state(struct drm_device *dev)
15716 {
15717         struct drm_i915_private *dev_priv = dev->dev_private;
15718         struct intel_display_error_state *error;
15719         int transcoders[] = {
15720                 TRANSCODER_A,
15721                 TRANSCODER_B,
15722                 TRANSCODER_C,
15723                 TRANSCODER_EDP,
15724         };
15725         int i;
15726
15727         if (INTEL_INFO(dev)->num_pipes == 0)
15728                 return NULL;
15729
15730         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15731         if (error == NULL)
15732                 return NULL;
15733
15734         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15735                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15736
15737         for_each_pipe(dev_priv, i) {
15738                 error->pipe[i].power_domain_on =
15739                         __intel_display_power_is_enabled(dev_priv,
15740                                                          POWER_DOMAIN_PIPE(i));
15741                 if (!error->pipe[i].power_domain_on)
15742                         continue;
15743
15744                 error->cursor[i].control = I915_READ(CURCNTR(i));
15745                 error->cursor[i].position = I915_READ(CURPOS(i));
15746                 error->cursor[i].base = I915_READ(CURBASE(i));
15747
15748                 error->plane[i].control = I915_READ(DSPCNTR(i));
15749                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15750                 if (INTEL_INFO(dev)->gen <= 3) {
15751                         error->plane[i].size = I915_READ(DSPSIZE(i));
15752                         error->plane[i].pos = I915_READ(DSPPOS(i));
15753                 }
15754                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15755                         error->plane[i].addr = I915_READ(DSPADDR(i));
15756                 if (INTEL_INFO(dev)->gen >= 4) {
15757                         error->plane[i].surface = I915_READ(DSPSURF(i));
15758                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15759                 }
15760
15761                 error->pipe[i].source = I915_READ(PIPESRC(i));
15762
15763                 if (HAS_GMCH_DISPLAY(dev))
15764                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15765         }
15766
15767         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15768         if (HAS_DDI(dev_priv->dev))
15769                 error->num_transcoders++; /* Account for eDP. */
15770
15771         for (i = 0; i < error->num_transcoders; i++) {
15772                 enum transcoder cpu_transcoder = transcoders[i];
15773
15774                 error->transcoder[i].power_domain_on =
15775                         __intel_display_power_is_enabled(dev_priv,
15776                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15777                 if (!error->transcoder[i].power_domain_on)
15778                         continue;
15779
15780                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15781
15782                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15783                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15784                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15785                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15786                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15787                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15788                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15789         }
15790
15791         return error;
15792 }
15793
15794 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15795
15796 void
15797 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15798                                 struct drm_device *dev,
15799                                 struct intel_display_error_state *error)
15800 {
15801         struct drm_i915_private *dev_priv = dev->dev_private;
15802         int i;
15803
15804         if (!error)
15805                 return;
15806
15807         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15808         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15809                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15810                            error->power_well_driver);
15811         for_each_pipe(dev_priv, i) {
15812                 err_printf(m, "Pipe [%d]:\n", i);
15813                 err_printf(m, "  Power: %s\n",
15814                            error->pipe[i].power_domain_on ? "on" : "off");
15815                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15816                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15817
15818                 err_printf(m, "Plane [%d]:\n", i);
15819                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15820                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15821                 if (INTEL_INFO(dev)->gen <= 3) {
15822                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15823                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15824                 }
15825                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15826                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15827                 if (INTEL_INFO(dev)->gen >= 4) {
15828                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15829                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15830                 }
15831
15832                 err_printf(m, "Cursor [%d]:\n", i);
15833                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15834                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15835                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15836         }
15837
15838         for (i = 0; i < error->num_transcoders; i++) {
15839                 err_printf(m, "CPU transcoder: %c\n",
15840                            transcoder_name(error->transcoder[i].cpu_transcoder));
15841                 err_printf(m, "  Power: %s\n",
15842                            error->transcoder[i].power_domain_on ? "on" : "off");
15843                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15844                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15845                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15846                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15847                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15848                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15849                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15850         }
15851 }
15852
15853 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15854 {
15855         struct intel_crtc *crtc;
15856
15857         for_each_intel_crtc(dev, crtc) {
15858                 struct intel_unpin_work *work;
15859
15860                 spin_lock_irq(&dev->event_lock);
15861
15862                 work = crtc->unpin_work;
15863
15864                 if (work && work->event &&
15865                     work->event->base.file_priv == file) {
15866                         kfree(work->event);
15867                         work->event = NULL;
15868                 }
15869
15870                 spin_unlock_irq(&dev->event_lock);
15871         }
15872 }