drm/i915: Replace "INTEL_INFO->gen == x" checks with IS_GENx
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "intel_dsi.h"
40 #include "i915_trace.h"
41 #include <drm/drm_atomic.h>
42 #include <drm/drm_atomic_helper.h>
43 #include <drm/drm_dp_helper.h>
44 #include <drm/drm_crtc_helper.h>
45 #include <drm/drm_plane_helper.h>
46 #include <drm/drm_rect.h>
47 #include <linux/dma_remapping.h>
48 #include <linux/reservation.h>
49 #include <linux/dma-buf.h>
50
51 /* Primary plane formats for gen <= 3 */
52 static const uint32_t i8xx_primary_formats[] = {
53         DRM_FORMAT_C8,
54         DRM_FORMAT_RGB565,
55         DRM_FORMAT_XRGB1555,
56         DRM_FORMAT_XRGB8888,
57 };
58
59 /* Primary plane formats for gen >= 4 */
60 static const uint32_t i965_primary_formats[] = {
61         DRM_FORMAT_C8,
62         DRM_FORMAT_RGB565,
63         DRM_FORMAT_XRGB8888,
64         DRM_FORMAT_XBGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_XBGR2101010,
67 };
68
69 static const uint32_t skl_primary_formats[] = {
70         DRM_FORMAT_C8,
71         DRM_FORMAT_RGB565,
72         DRM_FORMAT_XRGB8888,
73         DRM_FORMAT_XBGR8888,
74         DRM_FORMAT_ARGB8888,
75         DRM_FORMAT_ABGR8888,
76         DRM_FORMAT_XRGB2101010,
77         DRM_FORMAT_XBGR2101010,
78         DRM_FORMAT_YUYV,
79         DRM_FORMAT_YVYU,
80         DRM_FORMAT_UYVY,
81         DRM_FORMAT_VYUY,
82 };
83
84 /* Cursor formats */
85 static const uint32_t intel_cursor_formats[] = {
86         DRM_FORMAT_ARGB8888,
87 };
88
89 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
90                                 struct intel_crtc_state *pipe_config);
91 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
92                                    struct intel_crtc_state *pipe_config);
93
94 static int intel_framebuffer_init(struct drm_device *dev,
95                                   struct intel_framebuffer *ifb,
96                                   struct drm_mode_fb_cmd2 *mode_cmd,
97                                   struct drm_i915_gem_object *obj);
98 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
99 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
100 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
101 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
102                                          struct intel_link_m_n *m_n,
103                                          struct intel_link_m_n *m2_n2);
104 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
105 static void haswell_set_pipeconf(struct drm_crtc *crtc);
106 static void haswell_set_pipemisc(struct drm_crtc *crtc);
107 static void vlv_prepare_pll(struct intel_crtc *crtc,
108                             const struct intel_crtc_state *pipe_config);
109 static void chv_prepare_pll(struct intel_crtc *crtc,
110                             const struct intel_crtc_state *pipe_config);
111 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
112 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
113 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
114         struct intel_crtc_state *crtc_state);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
120
121 typedef struct {
122         int     min, max;
123 } intel_range_t;
124
125 typedef struct {
126         int     dot_limit;
127         int     p2_slow, p2_fast;
128 } intel_p2_t;
129
130 typedef struct intel_limit intel_limit_t;
131 struct intel_limit {
132         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
133         intel_p2_t          p2;
134 };
135
136 /* returns HPLL frequency in kHz */
137 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
138 {
139         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
140
141         /* Obtain SKU information */
142         mutex_lock(&dev_priv->sb_lock);
143         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
144                 CCK_FUSE_HPLL_FREQ_MASK;
145         mutex_unlock(&dev_priv->sb_lock);
146
147         return vco_freq[hpll_freq] * 1000;
148 }
149
150 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
151                       const char *name, u32 reg, int ref_freq)
152 {
153         u32 val;
154         int divider;
155
156         mutex_lock(&dev_priv->sb_lock);
157         val = vlv_cck_read(dev_priv, reg);
158         mutex_unlock(&dev_priv->sb_lock);
159
160         divider = val & CCK_FREQUENCY_VALUES;
161
162         WARN((val & CCK_FREQUENCY_STATUS) !=
163              (divider << CCK_FREQUENCY_STATUS_SHIFT),
164              "%s change in progress\n", name);
165
166         return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
167 }
168
169 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
170                                   const char *name, u32 reg)
171 {
172         if (dev_priv->hpll_freq == 0)
173                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
174
175         return vlv_get_cck_clock(dev_priv, name, reg,
176                                  dev_priv->hpll_freq);
177 }
178
179 static int
180 intel_pch_rawclk(struct drm_i915_private *dev_priv)
181 {
182         return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
183 }
184
185 static int
186 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
187 {
188         /* RAWCLK_FREQ_VLV register updated from power well code */
189         return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
190                                       CCK_DISPLAY_REF_CLOCK_CONTROL);
191 }
192
193 static int
194 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
195 {
196         uint32_t clkcfg;
197
198         /* hrawclock is 1/4 the FSB frequency */
199         clkcfg = I915_READ(CLKCFG);
200         switch (clkcfg & CLKCFG_FSB_MASK) {
201         case CLKCFG_FSB_400:
202                 return 100000;
203         case CLKCFG_FSB_533:
204                 return 133333;
205         case CLKCFG_FSB_667:
206                 return 166667;
207         case CLKCFG_FSB_800:
208                 return 200000;
209         case CLKCFG_FSB_1067:
210                 return 266667;
211         case CLKCFG_FSB_1333:
212                 return 333333;
213         /* these two are just a guess; one of them might be right */
214         case CLKCFG_FSB_1600:
215         case CLKCFG_FSB_1600_ALT:
216                 return 400000;
217         default:
218                 return 133333;
219         }
220 }
221
222 void intel_update_rawclk(struct drm_i915_private *dev_priv)
223 {
224         if (HAS_PCH_SPLIT(dev_priv))
225                 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
226         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
227                 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
228         else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
229                 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
230         else
231                 return; /* no rawclk on other platforms, or no need to know it */
232
233         DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
234 }
235
236 static void intel_update_czclk(struct drm_i915_private *dev_priv)
237 {
238         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
239                 return;
240
241         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
242                                                       CCK_CZ_CLOCK_CONTROL);
243
244         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
245 }
246
247 static inline u32 /* units of 100MHz */
248 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
249                     const struct intel_crtc_state *pipe_config)
250 {
251         if (HAS_DDI(dev_priv))
252                 return pipe_config->port_clock; /* SPLL */
253         else if (IS_GEN5(dev_priv))
254                 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
255         else
256                 return 270000;
257 }
258
259 static const intel_limit_t intel_limits_i8xx_dac = {
260         .dot = { .min = 25000, .max = 350000 },
261         .vco = { .min = 908000, .max = 1512000 },
262         .n = { .min = 2, .max = 16 },
263         .m = { .min = 96, .max = 140 },
264         .m1 = { .min = 18, .max = 26 },
265         .m2 = { .min = 6, .max = 16 },
266         .p = { .min = 4, .max = 128 },
267         .p1 = { .min = 2, .max = 33 },
268         .p2 = { .dot_limit = 165000,
269                 .p2_slow = 4, .p2_fast = 2 },
270 };
271
272 static const intel_limit_t intel_limits_i8xx_dvo = {
273         .dot = { .min = 25000, .max = 350000 },
274         .vco = { .min = 908000, .max = 1512000 },
275         .n = { .min = 2, .max = 16 },
276         .m = { .min = 96, .max = 140 },
277         .m1 = { .min = 18, .max = 26 },
278         .m2 = { .min = 6, .max = 16 },
279         .p = { .min = 4, .max = 128 },
280         .p1 = { .min = 2, .max = 33 },
281         .p2 = { .dot_limit = 165000,
282                 .p2_slow = 4, .p2_fast = 4 },
283 };
284
285 static const intel_limit_t intel_limits_i8xx_lvds = {
286         .dot = { .min = 25000, .max = 350000 },
287         .vco = { .min = 908000, .max = 1512000 },
288         .n = { .min = 2, .max = 16 },
289         .m = { .min = 96, .max = 140 },
290         .m1 = { .min = 18, .max = 26 },
291         .m2 = { .min = 6, .max = 16 },
292         .p = { .min = 4, .max = 128 },
293         .p1 = { .min = 1, .max = 6 },
294         .p2 = { .dot_limit = 165000,
295                 .p2_slow = 14, .p2_fast = 7 },
296 };
297
298 static const intel_limit_t intel_limits_i9xx_sdvo = {
299         .dot = { .min = 20000, .max = 400000 },
300         .vco = { .min = 1400000, .max = 2800000 },
301         .n = { .min = 1, .max = 6 },
302         .m = { .min = 70, .max = 120 },
303         .m1 = { .min = 8, .max = 18 },
304         .m2 = { .min = 3, .max = 7 },
305         .p = { .min = 5, .max = 80 },
306         .p1 = { .min = 1, .max = 8 },
307         .p2 = { .dot_limit = 200000,
308                 .p2_slow = 10, .p2_fast = 5 },
309 };
310
311 static const intel_limit_t intel_limits_i9xx_lvds = {
312         .dot = { .min = 20000, .max = 400000 },
313         .vco = { .min = 1400000, .max = 2800000 },
314         .n = { .min = 1, .max = 6 },
315         .m = { .min = 70, .max = 120 },
316         .m1 = { .min = 8, .max = 18 },
317         .m2 = { .min = 3, .max = 7 },
318         .p = { .min = 7, .max = 98 },
319         .p1 = { .min = 1, .max = 8 },
320         .p2 = { .dot_limit = 112000,
321                 .p2_slow = 14, .p2_fast = 7 },
322 };
323
324
325 static const intel_limit_t intel_limits_g4x_sdvo = {
326         .dot = { .min = 25000, .max = 270000 },
327         .vco = { .min = 1750000, .max = 3500000},
328         .n = { .min = 1, .max = 4 },
329         .m = { .min = 104, .max = 138 },
330         .m1 = { .min = 17, .max = 23 },
331         .m2 = { .min = 5, .max = 11 },
332         .p = { .min = 10, .max = 30 },
333         .p1 = { .min = 1, .max = 3},
334         .p2 = { .dot_limit = 270000,
335                 .p2_slow = 10,
336                 .p2_fast = 10
337         },
338 };
339
340 static const intel_limit_t intel_limits_g4x_hdmi = {
341         .dot = { .min = 22000, .max = 400000 },
342         .vco = { .min = 1750000, .max = 3500000},
343         .n = { .min = 1, .max = 4 },
344         .m = { .min = 104, .max = 138 },
345         .m1 = { .min = 16, .max = 23 },
346         .m2 = { .min = 5, .max = 11 },
347         .p = { .min = 5, .max = 80 },
348         .p1 = { .min = 1, .max = 8},
349         .p2 = { .dot_limit = 165000,
350                 .p2_slow = 10, .p2_fast = 5 },
351 };
352
353 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
354         .dot = { .min = 20000, .max = 115000 },
355         .vco = { .min = 1750000, .max = 3500000 },
356         .n = { .min = 1, .max = 3 },
357         .m = { .min = 104, .max = 138 },
358         .m1 = { .min = 17, .max = 23 },
359         .m2 = { .min = 5, .max = 11 },
360         .p = { .min = 28, .max = 112 },
361         .p1 = { .min = 2, .max = 8 },
362         .p2 = { .dot_limit = 0,
363                 .p2_slow = 14, .p2_fast = 14
364         },
365 };
366
367 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
368         .dot = { .min = 80000, .max = 224000 },
369         .vco = { .min = 1750000, .max = 3500000 },
370         .n = { .min = 1, .max = 3 },
371         .m = { .min = 104, .max = 138 },
372         .m1 = { .min = 17, .max = 23 },
373         .m2 = { .min = 5, .max = 11 },
374         .p = { .min = 14, .max = 42 },
375         .p1 = { .min = 2, .max = 6 },
376         .p2 = { .dot_limit = 0,
377                 .p2_slow = 7, .p2_fast = 7
378         },
379 };
380
381 static const intel_limit_t intel_limits_pineview_sdvo = {
382         .dot = { .min = 20000, .max = 400000},
383         .vco = { .min = 1700000, .max = 3500000 },
384         /* Pineview's Ncounter is a ring counter */
385         .n = { .min = 3, .max = 6 },
386         .m = { .min = 2, .max = 256 },
387         /* Pineview only has one combined m divider, which we treat as m2. */
388         .m1 = { .min = 0, .max = 0 },
389         .m2 = { .min = 0, .max = 254 },
390         .p = { .min = 5, .max = 80 },
391         .p1 = { .min = 1, .max = 8 },
392         .p2 = { .dot_limit = 200000,
393                 .p2_slow = 10, .p2_fast = 5 },
394 };
395
396 static const intel_limit_t intel_limits_pineview_lvds = {
397         .dot = { .min = 20000, .max = 400000 },
398         .vco = { .min = 1700000, .max = 3500000 },
399         .n = { .min = 3, .max = 6 },
400         .m = { .min = 2, .max = 256 },
401         .m1 = { .min = 0, .max = 0 },
402         .m2 = { .min = 0, .max = 254 },
403         .p = { .min = 7, .max = 112 },
404         .p1 = { .min = 1, .max = 8 },
405         .p2 = { .dot_limit = 112000,
406                 .p2_slow = 14, .p2_fast = 14 },
407 };
408
409 /* Ironlake / Sandybridge
410  *
411  * We calculate clock using (register_value + 2) for N/M1/M2, so here
412  * the range value for them is (actual_value - 2).
413  */
414 static const intel_limit_t intel_limits_ironlake_dac = {
415         .dot = { .min = 25000, .max = 350000 },
416         .vco = { .min = 1760000, .max = 3510000 },
417         .n = { .min = 1, .max = 5 },
418         .m = { .min = 79, .max = 127 },
419         .m1 = { .min = 12, .max = 22 },
420         .m2 = { .min = 5, .max = 9 },
421         .p = { .min = 5, .max = 80 },
422         .p1 = { .min = 1, .max = 8 },
423         .p2 = { .dot_limit = 225000,
424                 .p2_slow = 10, .p2_fast = 5 },
425 };
426
427 static const intel_limit_t intel_limits_ironlake_single_lvds = {
428         .dot = { .min = 25000, .max = 350000 },
429         .vco = { .min = 1760000, .max = 3510000 },
430         .n = { .min = 1, .max = 3 },
431         .m = { .min = 79, .max = 118 },
432         .m1 = { .min = 12, .max = 22 },
433         .m2 = { .min = 5, .max = 9 },
434         .p = { .min = 28, .max = 112 },
435         .p1 = { .min = 2, .max = 8 },
436         .p2 = { .dot_limit = 225000,
437                 .p2_slow = 14, .p2_fast = 14 },
438 };
439
440 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
441         .dot = { .min = 25000, .max = 350000 },
442         .vco = { .min = 1760000, .max = 3510000 },
443         .n = { .min = 1, .max = 3 },
444         .m = { .min = 79, .max = 127 },
445         .m1 = { .min = 12, .max = 22 },
446         .m2 = { .min = 5, .max = 9 },
447         .p = { .min = 14, .max = 56 },
448         .p1 = { .min = 2, .max = 8 },
449         .p2 = { .dot_limit = 225000,
450                 .p2_slow = 7, .p2_fast = 7 },
451 };
452
453 /* LVDS 100mhz refclk limits. */
454 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
455         .dot = { .min = 25000, .max = 350000 },
456         .vco = { .min = 1760000, .max = 3510000 },
457         .n = { .min = 1, .max = 2 },
458         .m = { .min = 79, .max = 126 },
459         .m1 = { .min = 12, .max = 22 },
460         .m2 = { .min = 5, .max = 9 },
461         .p = { .min = 28, .max = 112 },
462         .p1 = { .min = 2, .max = 8 },
463         .p2 = { .dot_limit = 225000,
464                 .p2_slow = 14, .p2_fast = 14 },
465 };
466
467 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
468         .dot = { .min = 25000, .max = 350000 },
469         .vco = { .min = 1760000, .max = 3510000 },
470         .n = { .min = 1, .max = 3 },
471         .m = { .min = 79, .max = 126 },
472         .m1 = { .min = 12, .max = 22 },
473         .m2 = { .min = 5, .max = 9 },
474         .p = { .min = 14, .max = 42 },
475         .p1 = { .min = 2, .max = 6 },
476         .p2 = { .dot_limit = 225000,
477                 .p2_slow = 7, .p2_fast = 7 },
478 };
479
480 static const intel_limit_t intel_limits_vlv = {
481          /*
482           * These are the data rate limits (measured in fast clocks)
483           * since those are the strictest limits we have. The fast
484           * clock and actual rate limits are more relaxed, so checking
485           * them would make no difference.
486           */
487         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
488         .vco = { .min = 4000000, .max = 6000000 },
489         .n = { .min = 1, .max = 7 },
490         .m1 = { .min = 2, .max = 3 },
491         .m2 = { .min = 11, .max = 156 },
492         .p1 = { .min = 2, .max = 3 },
493         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
494 };
495
496 static const intel_limit_t intel_limits_chv = {
497         /*
498          * These are the data rate limits (measured in fast clocks)
499          * since those are the strictest limits we have.  The fast
500          * clock and actual rate limits are more relaxed, so checking
501          * them would make no difference.
502          */
503         .dot = { .min = 25000 * 5, .max = 540000 * 5},
504         .vco = { .min = 4800000, .max = 6480000 },
505         .n = { .min = 1, .max = 1 },
506         .m1 = { .min = 2, .max = 2 },
507         .m2 = { .min = 24 << 22, .max = 175 << 22 },
508         .p1 = { .min = 2, .max = 4 },
509         .p2 = { .p2_slow = 1, .p2_fast = 14 },
510 };
511
512 static const intel_limit_t intel_limits_bxt = {
513         /* FIXME: find real dot limits */
514         .dot = { .min = 0, .max = INT_MAX },
515         .vco = { .min = 4800000, .max = 6700000 },
516         .n = { .min = 1, .max = 1 },
517         .m1 = { .min = 2, .max = 2 },
518         /* FIXME: find real m2 limits */
519         .m2 = { .min = 2 << 22, .max = 255 << 22 },
520         .p1 = { .min = 2, .max = 4 },
521         .p2 = { .p2_slow = 1, .p2_fast = 20 },
522 };
523
524 static bool
525 needs_modeset(struct drm_crtc_state *state)
526 {
527         return drm_atomic_crtc_needs_modeset(state);
528 }
529
530 /**
531  * Returns whether any output on the specified pipe is of the specified type
532  */
533 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
534 {
535         struct drm_device *dev = crtc->base.dev;
536         struct intel_encoder *encoder;
537
538         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
539                 if (encoder->type == type)
540                         return true;
541
542         return false;
543 }
544
545 /**
546  * Returns whether any output on the specified pipe will have the specified
547  * type after a staged modeset is complete, i.e., the same as
548  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
549  * encoder->crtc.
550  */
551 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
552                                       int type)
553 {
554         struct drm_atomic_state *state = crtc_state->base.state;
555         struct drm_connector *connector;
556         struct drm_connector_state *connector_state;
557         struct intel_encoder *encoder;
558         int i, num_connectors = 0;
559
560         for_each_connector_in_state(state, connector, connector_state, i) {
561                 if (connector_state->crtc != crtc_state->base.crtc)
562                         continue;
563
564                 num_connectors++;
565
566                 encoder = to_intel_encoder(connector_state->best_encoder);
567                 if (encoder->type == type)
568                         return true;
569         }
570
571         WARN_ON(num_connectors == 0);
572
573         return false;
574 }
575
576 /*
577  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
578  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
579  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
580  * The helpers' return value is the rate of the clock that is fed to the
581  * display engine's pipe which can be the above fast dot clock rate or a
582  * divided-down version of it.
583  */
584 /* m1 is reserved as 0 in Pineview, n is a ring counter */
585 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
586 {
587         clock->m = clock->m2 + 2;
588         clock->p = clock->p1 * clock->p2;
589         if (WARN_ON(clock->n == 0 || clock->p == 0))
590                 return 0;
591         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
592         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
593
594         return clock->dot;
595 }
596
597 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
598 {
599         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
600 }
601
602 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
603 {
604         clock->m = i9xx_dpll_compute_m(clock);
605         clock->p = clock->p1 * clock->p2;
606         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
607                 return 0;
608         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
609         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
610
611         return clock->dot;
612 }
613
614 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
615 {
616         clock->m = clock->m1 * clock->m2;
617         clock->p = clock->p1 * clock->p2;
618         if (WARN_ON(clock->n == 0 || clock->p == 0))
619                 return 0;
620         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
621         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
622
623         return clock->dot / 5;
624 }
625
626 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
627 {
628         clock->m = clock->m1 * clock->m2;
629         clock->p = clock->p1 * clock->p2;
630         if (WARN_ON(clock->n == 0 || clock->p == 0))
631                 return 0;
632         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
633                         clock->n << 22);
634         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
635
636         return clock->dot / 5;
637 }
638
639 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
640 /**
641  * Returns whether the given set of divisors are valid for a given refclk with
642  * the given connectors.
643  */
644
645 static bool intel_PLL_is_valid(struct drm_device *dev,
646                                const intel_limit_t *limit,
647                                const intel_clock_t *clock)
648 {
649         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
650                 INTELPllInvalid("n out of range\n");
651         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
652                 INTELPllInvalid("p1 out of range\n");
653         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
654                 INTELPllInvalid("m2 out of range\n");
655         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
656                 INTELPllInvalid("m1 out of range\n");
657
658         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
659             !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
660                 if (clock->m1 <= clock->m2)
661                         INTELPllInvalid("m1 <= m2\n");
662
663         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
664                 if (clock->p < limit->p.min || limit->p.max < clock->p)
665                         INTELPllInvalid("p out of range\n");
666                 if (clock->m < limit->m.min || limit->m.max < clock->m)
667                         INTELPllInvalid("m out of range\n");
668         }
669
670         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
671                 INTELPllInvalid("vco out of range\n");
672         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
673          * connector, etc., rather than just a single range.
674          */
675         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
676                 INTELPllInvalid("dot out of range\n");
677
678         return true;
679 }
680
681 static int
682 i9xx_select_p2_div(const intel_limit_t *limit,
683                    const struct intel_crtc_state *crtc_state,
684                    int target)
685 {
686         struct drm_device *dev = crtc_state->base.crtc->dev;
687
688         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
689                 /*
690                  * For LVDS just rely on its current settings for dual-channel.
691                  * We haven't figured out how to reliably set up different
692                  * single/dual channel state, if we even can.
693                  */
694                 if (intel_is_dual_link_lvds(dev))
695                         return limit->p2.p2_fast;
696                 else
697                         return limit->p2.p2_slow;
698         } else {
699                 if (target < limit->p2.dot_limit)
700                         return limit->p2.p2_slow;
701                 else
702                         return limit->p2.p2_fast;
703         }
704 }
705
706 /*
707  * Returns a set of divisors for the desired target clock with the given
708  * refclk, or FALSE.  The returned values represent the clock equation:
709  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
710  *
711  * Target and reference clocks are specified in kHz.
712  *
713  * If match_clock is provided, then best_clock P divider must match the P
714  * divider from @match_clock used for LVDS downclocking.
715  */
716 static bool
717 i9xx_find_best_dpll(const intel_limit_t *limit,
718                     struct intel_crtc_state *crtc_state,
719                     int target, int refclk, intel_clock_t *match_clock,
720                     intel_clock_t *best_clock)
721 {
722         struct drm_device *dev = crtc_state->base.crtc->dev;
723         intel_clock_t clock;
724         int err = target;
725
726         memset(best_clock, 0, sizeof(*best_clock));
727
728         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
729
730         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
731              clock.m1++) {
732                 for (clock.m2 = limit->m2.min;
733                      clock.m2 <= limit->m2.max; clock.m2++) {
734                         if (clock.m2 >= clock.m1)
735                                 break;
736                         for (clock.n = limit->n.min;
737                              clock.n <= limit->n.max; clock.n++) {
738                                 for (clock.p1 = limit->p1.min;
739                                         clock.p1 <= limit->p1.max; clock.p1++) {
740                                         int this_err;
741
742                                         i9xx_calc_dpll_params(refclk, &clock);
743                                         if (!intel_PLL_is_valid(dev, limit,
744                                                                 &clock))
745                                                 continue;
746                                         if (match_clock &&
747                                             clock.p != match_clock->p)
748                                                 continue;
749
750                                         this_err = abs(clock.dot - target);
751                                         if (this_err < err) {
752                                                 *best_clock = clock;
753                                                 err = this_err;
754                                         }
755                                 }
756                         }
757                 }
758         }
759
760         return (err != target);
761 }
762
763 /*
764  * Returns a set of divisors for the desired target clock with the given
765  * refclk, or FALSE.  The returned values represent the clock equation:
766  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
767  *
768  * Target and reference clocks are specified in kHz.
769  *
770  * If match_clock is provided, then best_clock P divider must match the P
771  * divider from @match_clock used for LVDS downclocking.
772  */
773 static bool
774 pnv_find_best_dpll(const intel_limit_t *limit,
775                    struct intel_crtc_state *crtc_state,
776                    int target, int refclk, intel_clock_t *match_clock,
777                    intel_clock_t *best_clock)
778 {
779         struct drm_device *dev = crtc_state->base.crtc->dev;
780         intel_clock_t clock;
781         int err = target;
782
783         memset(best_clock, 0, sizeof(*best_clock));
784
785         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
786
787         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
788              clock.m1++) {
789                 for (clock.m2 = limit->m2.min;
790                      clock.m2 <= limit->m2.max; clock.m2++) {
791                         for (clock.n = limit->n.min;
792                              clock.n <= limit->n.max; clock.n++) {
793                                 for (clock.p1 = limit->p1.min;
794                                         clock.p1 <= limit->p1.max; clock.p1++) {
795                                         int this_err;
796
797                                         pnv_calc_dpll_params(refclk, &clock);
798                                         if (!intel_PLL_is_valid(dev, limit,
799                                                                 &clock))
800                                                 continue;
801                                         if (match_clock &&
802                                             clock.p != match_clock->p)
803                                                 continue;
804
805                                         this_err = abs(clock.dot - target);
806                                         if (this_err < err) {
807                                                 *best_clock = clock;
808                                                 err = this_err;
809                                         }
810                                 }
811                         }
812                 }
813         }
814
815         return (err != target);
816 }
817
818 /*
819  * Returns a set of divisors for the desired target clock with the given
820  * refclk, or FALSE.  The returned values represent the clock equation:
821  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
822  *
823  * Target and reference clocks are specified in kHz.
824  *
825  * If match_clock is provided, then best_clock P divider must match the P
826  * divider from @match_clock used for LVDS downclocking.
827  */
828 static bool
829 g4x_find_best_dpll(const intel_limit_t *limit,
830                    struct intel_crtc_state *crtc_state,
831                    int target, int refclk, intel_clock_t *match_clock,
832                    intel_clock_t *best_clock)
833 {
834         struct drm_device *dev = crtc_state->base.crtc->dev;
835         intel_clock_t clock;
836         int max_n;
837         bool found = false;
838         /* approximately equals target * 0.00585 */
839         int err_most = (target >> 8) + (target >> 9);
840
841         memset(best_clock, 0, sizeof(*best_clock));
842
843         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
844
845         max_n = limit->n.max;
846         /* based on hardware requirement, prefer smaller n to precision */
847         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
848                 /* based on hardware requirement, prefere larger m1,m2 */
849                 for (clock.m1 = limit->m1.max;
850                      clock.m1 >= limit->m1.min; clock.m1--) {
851                         for (clock.m2 = limit->m2.max;
852                              clock.m2 >= limit->m2.min; clock.m2--) {
853                                 for (clock.p1 = limit->p1.max;
854                                      clock.p1 >= limit->p1.min; clock.p1--) {
855                                         int this_err;
856
857                                         i9xx_calc_dpll_params(refclk, &clock);
858                                         if (!intel_PLL_is_valid(dev, limit,
859                                                                 &clock))
860                                                 continue;
861
862                                         this_err = abs(clock.dot - target);
863                                         if (this_err < err_most) {
864                                                 *best_clock = clock;
865                                                 err_most = this_err;
866                                                 max_n = clock.n;
867                                                 found = true;
868                                         }
869                                 }
870                         }
871                 }
872         }
873         return found;
874 }
875
876 /*
877  * Check if the calculated PLL configuration is more optimal compared to the
878  * best configuration and error found so far. Return the calculated error.
879  */
880 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
881                                const intel_clock_t *calculated_clock,
882                                const intel_clock_t *best_clock,
883                                unsigned int best_error_ppm,
884                                unsigned int *error_ppm)
885 {
886         /*
887          * For CHV ignore the error and consider only the P value.
888          * Prefer a bigger P value based on HW requirements.
889          */
890         if (IS_CHERRYVIEW(dev)) {
891                 *error_ppm = 0;
892
893                 return calculated_clock->p > best_clock->p;
894         }
895
896         if (WARN_ON_ONCE(!target_freq))
897                 return false;
898
899         *error_ppm = div_u64(1000000ULL *
900                                 abs(target_freq - calculated_clock->dot),
901                              target_freq);
902         /*
903          * Prefer a better P value over a better (smaller) error if the error
904          * is small. Ensure this preference for future configurations too by
905          * setting the error to 0.
906          */
907         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
908                 *error_ppm = 0;
909
910                 return true;
911         }
912
913         return *error_ppm + 10 < best_error_ppm;
914 }
915
916 /*
917  * Returns a set of divisors for the desired target clock with the given
918  * refclk, or FALSE.  The returned values represent the clock equation:
919  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
920  */
921 static bool
922 vlv_find_best_dpll(const intel_limit_t *limit,
923                    struct intel_crtc_state *crtc_state,
924                    int target, int refclk, intel_clock_t *match_clock,
925                    intel_clock_t *best_clock)
926 {
927         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
928         struct drm_device *dev = crtc->base.dev;
929         intel_clock_t clock;
930         unsigned int bestppm = 1000000;
931         /* min update 19.2 MHz */
932         int max_n = min(limit->n.max, refclk / 19200);
933         bool found = false;
934
935         target *= 5; /* fast clock */
936
937         memset(best_clock, 0, sizeof(*best_clock));
938
939         /* based on hardware requirement, prefer smaller n to precision */
940         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
941                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
942                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
943                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
944                                 clock.p = clock.p1 * clock.p2;
945                                 /* based on hardware requirement, prefer bigger m1,m2 values */
946                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
947                                         unsigned int ppm;
948
949                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
950                                                                      refclk * clock.m1);
951
952                                         vlv_calc_dpll_params(refclk, &clock);
953
954                                         if (!intel_PLL_is_valid(dev, limit,
955                                                                 &clock))
956                                                 continue;
957
958                                         if (!vlv_PLL_is_optimal(dev, target,
959                                                                 &clock,
960                                                                 best_clock,
961                                                                 bestppm, &ppm))
962                                                 continue;
963
964                                         *best_clock = clock;
965                                         bestppm = ppm;
966                                         found = true;
967                                 }
968                         }
969                 }
970         }
971
972         return found;
973 }
974
975 /*
976  * Returns a set of divisors for the desired target clock with the given
977  * refclk, or FALSE.  The returned values represent the clock equation:
978  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
979  */
980 static bool
981 chv_find_best_dpll(const intel_limit_t *limit,
982                    struct intel_crtc_state *crtc_state,
983                    int target, int refclk, intel_clock_t *match_clock,
984                    intel_clock_t *best_clock)
985 {
986         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
987         struct drm_device *dev = crtc->base.dev;
988         unsigned int best_error_ppm;
989         intel_clock_t clock;
990         uint64_t m2;
991         int found = false;
992
993         memset(best_clock, 0, sizeof(*best_clock));
994         best_error_ppm = 1000000;
995
996         /*
997          * Based on hardware doc, the n always set to 1, and m1 always
998          * set to 2.  If requires to support 200Mhz refclk, we need to
999          * revisit this because n may not 1 anymore.
1000          */
1001         clock.n = 1, clock.m1 = 2;
1002         target *= 5;    /* fast clock */
1003
1004         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1005                 for (clock.p2 = limit->p2.p2_fast;
1006                                 clock.p2 >= limit->p2.p2_slow;
1007                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1008                         unsigned int error_ppm;
1009
1010                         clock.p = clock.p1 * clock.p2;
1011
1012                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1013                                         clock.n) << 22, refclk * clock.m1);
1014
1015                         if (m2 > INT_MAX/clock.m1)
1016                                 continue;
1017
1018                         clock.m2 = m2;
1019
1020                         chv_calc_dpll_params(refclk, &clock);
1021
1022                         if (!intel_PLL_is_valid(dev, limit, &clock))
1023                                 continue;
1024
1025                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1026                                                 best_error_ppm, &error_ppm))
1027                                 continue;
1028
1029                         *best_clock = clock;
1030                         best_error_ppm = error_ppm;
1031                         found = true;
1032                 }
1033         }
1034
1035         return found;
1036 }
1037
1038 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1039                         intel_clock_t *best_clock)
1040 {
1041         int refclk = 100000;
1042         const intel_limit_t *limit = &intel_limits_bxt;
1043
1044         return chv_find_best_dpll(limit, crtc_state,
1045                                   target_clock, refclk, NULL, best_clock);
1046 }
1047
1048 bool intel_crtc_active(struct drm_crtc *crtc)
1049 {
1050         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1051
1052         /* Be paranoid as we can arrive here with only partial
1053          * state retrieved from the hardware during setup.
1054          *
1055          * We can ditch the adjusted_mode.crtc_clock check as soon
1056          * as Haswell has gained clock readout/fastboot support.
1057          *
1058          * We can ditch the crtc->primary->fb check as soon as we can
1059          * properly reconstruct framebuffers.
1060          *
1061          * FIXME: The intel_crtc->active here should be switched to
1062          * crtc->state->active once we have proper CRTC states wired up
1063          * for atomic.
1064          */
1065         return intel_crtc->active && crtc->primary->state->fb &&
1066                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1067 }
1068
1069 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1070                                              enum pipe pipe)
1071 {
1072         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1073         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1074
1075         return intel_crtc->config->cpu_transcoder;
1076 }
1077
1078 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1079 {
1080         struct drm_i915_private *dev_priv = dev->dev_private;
1081         i915_reg_t reg = PIPEDSL(pipe);
1082         u32 line1, line2;
1083         u32 line_mask;
1084
1085         if (IS_GEN2(dev))
1086                 line_mask = DSL_LINEMASK_GEN2;
1087         else
1088                 line_mask = DSL_LINEMASK_GEN3;
1089
1090         line1 = I915_READ(reg) & line_mask;
1091         msleep(5);
1092         line2 = I915_READ(reg) & line_mask;
1093
1094         return line1 == line2;
1095 }
1096
1097 /*
1098  * intel_wait_for_pipe_off - wait for pipe to turn off
1099  * @crtc: crtc whose pipe to wait for
1100  *
1101  * After disabling a pipe, we can't wait for vblank in the usual way,
1102  * spinning on the vblank interrupt status bit, since we won't actually
1103  * see an interrupt when the pipe is disabled.
1104  *
1105  * On Gen4 and above:
1106  *   wait for the pipe register state bit to turn off
1107  *
1108  * Otherwise:
1109  *   wait for the display line value to settle (it usually
1110  *   ends up stopping at the start of the next frame).
1111  *
1112  */
1113 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1114 {
1115         struct drm_device *dev = crtc->base.dev;
1116         struct drm_i915_private *dev_priv = dev->dev_private;
1117         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1118         enum pipe pipe = crtc->pipe;
1119
1120         if (INTEL_INFO(dev)->gen >= 4) {
1121                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1122
1123                 /* Wait for the Pipe State to go off */
1124                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1125                              100))
1126                         WARN(1, "pipe_off wait timed out\n");
1127         } else {
1128                 /* Wait for the display line to settle */
1129                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1130                         WARN(1, "pipe_off wait timed out\n");
1131         }
1132 }
1133
1134 /* Only for pre-ILK configs */
1135 void assert_pll(struct drm_i915_private *dev_priv,
1136                 enum pipe pipe, bool state)
1137 {
1138         u32 val;
1139         bool cur_state;
1140
1141         val = I915_READ(DPLL(pipe));
1142         cur_state = !!(val & DPLL_VCO_ENABLE);
1143         I915_STATE_WARN(cur_state != state,
1144              "PLL state assertion failure (expected %s, current %s)\n",
1145                         onoff(state), onoff(cur_state));
1146 }
1147
1148 /* XXX: the dsi pll is shared between MIPI DSI ports */
1149 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1150 {
1151         u32 val;
1152         bool cur_state;
1153
1154         mutex_lock(&dev_priv->sb_lock);
1155         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1156         mutex_unlock(&dev_priv->sb_lock);
1157
1158         cur_state = val & DSI_PLL_VCO_EN;
1159         I915_STATE_WARN(cur_state != state,
1160              "DSI PLL state assertion failure (expected %s, current %s)\n",
1161                         onoff(state), onoff(cur_state));
1162 }
1163
1164 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1165                           enum pipe pipe, bool state)
1166 {
1167         bool cur_state;
1168         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1169                                                                       pipe);
1170
1171         if (HAS_DDI(dev_priv)) {
1172                 /* DDI does not have a specific FDI_TX register */
1173                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1174                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1175         } else {
1176                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1177                 cur_state = !!(val & FDI_TX_ENABLE);
1178         }
1179         I915_STATE_WARN(cur_state != state,
1180              "FDI TX state assertion failure (expected %s, current %s)\n",
1181                         onoff(state), onoff(cur_state));
1182 }
1183 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1184 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1185
1186 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1187                           enum pipe pipe, bool state)
1188 {
1189         u32 val;
1190         bool cur_state;
1191
1192         val = I915_READ(FDI_RX_CTL(pipe));
1193         cur_state = !!(val & FDI_RX_ENABLE);
1194         I915_STATE_WARN(cur_state != state,
1195              "FDI RX state assertion failure (expected %s, current %s)\n",
1196                         onoff(state), onoff(cur_state));
1197 }
1198 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1199 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1200
1201 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1202                                       enum pipe pipe)
1203 {
1204         u32 val;
1205
1206         /* ILK FDI PLL is always enabled */
1207         if (IS_GEN5(dev_priv))
1208                 return;
1209
1210         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1211         if (HAS_DDI(dev_priv))
1212                 return;
1213
1214         val = I915_READ(FDI_TX_CTL(pipe));
1215         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1216 }
1217
1218 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1219                        enum pipe pipe, bool state)
1220 {
1221         u32 val;
1222         bool cur_state;
1223
1224         val = I915_READ(FDI_RX_CTL(pipe));
1225         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1226         I915_STATE_WARN(cur_state != state,
1227              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1228                         onoff(state), onoff(cur_state));
1229 }
1230
1231 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1232                            enum pipe pipe)
1233 {
1234         struct drm_device *dev = dev_priv->dev;
1235         i915_reg_t pp_reg;
1236         u32 val;
1237         enum pipe panel_pipe = PIPE_A;
1238         bool locked = true;
1239
1240         if (WARN_ON(HAS_DDI(dev)))
1241                 return;
1242
1243         if (HAS_PCH_SPLIT(dev)) {
1244                 u32 port_sel;
1245
1246                 pp_reg = PCH_PP_CONTROL;
1247                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1248
1249                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1250                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1251                         panel_pipe = PIPE_B;
1252                 /* XXX: else fix for eDP */
1253         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1254                 /* presumably write lock depends on pipe, not port select */
1255                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1256                 panel_pipe = pipe;
1257         } else {
1258                 pp_reg = PP_CONTROL;
1259                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1260                         panel_pipe = PIPE_B;
1261         }
1262
1263         val = I915_READ(pp_reg);
1264         if (!(val & PANEL_POWER_ON) ||
1265             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1266                 locked = false;
1267
1268         I915_STATE_WARN(panel_pipe == pipe && locked,
1269              "panel assertion failure, pipe %c regs locked\n",
1270              pipe_name(pipe));
1271 }
1272
1273 static void assert_cursor(struct drm_i915_private *dev_priv,
1274                           enum pipe pipe, bool state)
1275 {
1276         struct drm_device *dev = dev_priv->dev;
1277         bool cur_state;
1278
1279         if (IS_845G(dev) || IS_I865G(dev))
1280                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1281         else
1282                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1283
1284         I915_STATE_WARN(cur_state != state,
1285              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1286                         pipe_name(pipe), onoff(state), onoff(cur_state));
1287 }
1288 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1289 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1290
1291 void assert_pipe(struct drm_i915_private *dev_priv,
1292                  enum pipe pipe, bool state)
1293 {
1294         bool cur_state;
1295         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1296                                                                       pipe);
1297         enum intel_display_power_domain power_domain;
1298
1299         /* if we need the pipe quirk it must be always on */
1300         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1301             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1302                 state = true;
1303
1304         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1305         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1306                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1307                 cur_state = !!(val & PIPECONF_ENABLE);
1308
1309                 intel_display_power_put(dev_priv, power_domain);
1310         } else {
1311                 cur_state = false;
1312         }
1313
1314         I915_STATE_WARN(cur_state != state,
1315              "pipe %c assertion failure (expected %s, current %s)\n",
1316                         pipe_name(pipe), onoff(state), onoff(cur_state));
1317 }
1318
1319 static void assert_plane(struct drm_i915_private *dev_priv,
1320                          enum plane plane, bool state)
1321 {
1322         u32 val;
1323         bool cur_state;
1324
1325         val = I915_READ(DSPCNTR(plane));
1326         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1327         I915_STATE_WARN(cur_state != state,
1328              "plane %c assertion failure (expected %s, current %s)\n",
1329                         plane_name(plane), onoff(state), onoff(cur_state));
1330 }
1331
1332 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1333 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1334
1335 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1336                                    enum pipe pipe)
1337 {
1338         struct drm_device *dev = dev_priv->dev;
1339         int i;
1340
1341         /* Primary planes are fixed to pipes on gen4+ */
1342         if (INTEL_INFO(dev)->gen >= 4) {
1343                 u32 val = I915_READ(DSPCNTR(pipe));
1344                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1345                      "plane %c assertion failure, should be disabled but not\n",
1346                      plane_name(pipe));
1347                 return;
1348         }
1349
1350         /* Need to check both planes against the pipe */
1351         for_each_pipe(dev_priv, i) {
1352                 u32 val = I915_READ(DSPCNTR(i));
1353                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1354                         DISPPLANE_SEL_PIPE_SHIFT;
1355                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1356                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1357                      plane_name(i), pipe_name(pipe));
1358         }
1359 }
1360
1361 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1362                                     enum pipe pipe)
1363 {
1364         struct drm_device *dev = dev_priv->dev;
1365         int sprite;
1366
1367         if (INTEL_INFO(dev)->gen >= 9) {
1368                 for_each_sprite(dev_priv, pipe, sprite) {
1369                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1370                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1371                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1372                              sprite, pipe_name(pipe));
1373                 }
1374         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1375                 for_each_sprite(dev_priv, pipe, sprite) {
1376                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1377                         I915_STATE_WARN(val & SP_ENABLE,
1378                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1379                              sprite_name(pipe, sprite), pipe_name(pipe));
1380                 }
1381         } else if (INTEL_INFO(dev)->gen >= 7) {
1382                 u32 val = I915_READ(SPRCTL(pipe));
1383                 I915_STATE_WARN(val & SPRITE_ENABLE,
1384                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1385                      plane_name(pipe), pipe_name(pipe));
1386         } else if (INTEL_INFO(dev)->gen >= 5) {
1387                 u32 val = I915_READ(DVSCNTR(pipe));
1388                 I915_STATE_WARN(val & DVS_ENABLE,
1389                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1390                      plane_name(pipe), pipe_name(pipe));
1391         }
1392 }
1393
1394 static void assert_vblank_disabled(struct drm_crtc *crtc)
1395 {
1396         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1397                 drm_crtc_vblank_put(crtc);
1398 }
1399
1400 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1401                                     enum pipe pipe)
1402 {
1403         u32 val;
1404         bool enabled;
1405
1406         val = I915_READ(PCH_TRANSCONF(pipe));
1407         enabled = !!(val & TRANS_ENABLE);
1408         I915_STATE_WARN(enabled,
1409              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1410              pipe_name(pipe));
1411 }
1412
1413 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1414                             enum pipe pipe, u32 port_sel, u32 val)
1415 {
1416         if ((val & DP_PORT_EN) == 0)
1417                 return false;
1418
1419         if (HAS_PCH_CPT(dev_priv)) {
1420                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1421                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1422                         return false;
1423         } else if (IS_CHERRYVIEW(dev_priv)) {
1424                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1425                         return false;
1426         } else {
1427                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1428                         return false;
1429         }
1430         return true;
1431 }
1432
1433 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1434                               enum pipe pipe, u32 val)
1435 {
1436         if ((val & SDVO_ENABLE) == 0)
1437                 return false;
1438
1439         if (HAS_PCH_CPT(dev_priv)) {
1440                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1441                         return false;
1442         } else if (IS_CHERRYVIEW(dev_priv)) {
1443                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1444                         return false;
1445         } else {
1446                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1447                         return false;
1448         }
1449         return true;
1450 }
1451
1452 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1453                               enum pipe pipe, u32 val)
1454 {
1455         if ((val & LVDS_PORT_EN) == 0)
1456                 return false;
1457
1458         if (HAS_PCH_CPT(dev_priv)) {
1459                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1460                         return false;
1461         } else {
1462                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1463                         return false;
1464         }
1465         return true;
1466 }
1467
1468 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1469                               enum pipe pipe, u32 val)
1470 {
1471         if ((val & ADPA_DAC_ENABLE) == 0)
1472                 return false;
1473         if (HAS_PCH_CPT(dev_priv)) {
1474                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1475                         return false;
1476         } else {
1477                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1478                         return false;
1479         }
1480         return true;
1481 }
1482
1483 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1484                                    enum pipe pipe, i915_reg_t reg,
1485                                    u32 port_sel)
1486 {
1487         u32 val = I915_READ(reg);
1488         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1489              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1490              i915_mmio_reg_offset(reg), pipe_name(pipe));
1491
1492         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1493              && (val & DP_PIPEB_SELECT),
1494              "IBX PCH dp port still using transcoder B\n");
1495 }
1496
1497 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1498                                      enum pipe pipe, i915_reg_t reg)
1499 {
1500         u32 val = I915_READ(reg);
1501         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1502              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1503              i915_mmio_reg_offset(reg), pipe_name(pipe));
1504
1505         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1506              && (val & SDVO_PIPE_B_SELECT),
1507              "IBX PCH hdmi port still using transcoder B\n");
1508 }
1509
1510 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1511                                       enum pipe pipe)
1512 {
1513         u32 val;
1514
1515         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1516         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1517         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1518
1519         val = I915_READ(PCH_ADPA);
1520         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1521              "PCH VGA enabled on transcoder %c, should be disabled\n",
1522              pipe_name(pipe));
1523
1524         val = I915_READ(PCH_LVDS);
1525         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1526              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1527              pipe_name(pipe));
1528
1529         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1530         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1531         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1532 }
1533
1534 static void _vlv_enable_pll(struct intel_crtc *crtc,
1535                             const struct intel_crtc_state *pipe_config)
1536 {
1537         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1538         enum pipe pipe = crtc->pipe;
1539
1540         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1541         POSTING_READ(DPLL(pipe));
1542         udelay(150);
1543
1544         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1545                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1546 }
1547
1548 static void vlv_enable_pll(struct intel_crtc *crtc,
1549                            const struct intel_crtc_state *pipe_config)
1550 {
1551         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1552         enum pipe pipe = crtc->pipe;
1553
1554         assert_pipe_disabled(dev_priv, pipe);
1555
1556         /* PLL is protected by panel, make sure we can write it */
1557         assert_panel_unlocked(dev_priv, pipe);
1558
1559         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1560                 _vlv_enable_pll(crtc, pipe_config);
1561
1562         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1563         POSTING_READ(DPLL_MD(pipe));
1564 }
1565
1566
1567 static void _chv_enable_pll(struct intel_crtc *crtc,
1568                             const struct intel_crtc_state *pipe_config)
1569 {
1570         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1571         enum pipe pipe = crtc->pipe;
1572         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1573         u32 tmp;
1574
1575         mutex_lock(&dev_priv->sb_lock);
1576
1577         /* Enable back the 10bit clock to display controller */
1578         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1579         tmp |= DPIO_DCLKP_EN;
1580         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1581
1582         mutex_unlock(&dev_priv->sb_lock);
1583
1584         /*
1585          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1586          */
1587         udelay(1);
1588
1589         /* Enable PLL */
1590         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1591
1592         /* Check PLL is locked */
1593         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1594                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1595 }
1596
1597 static void chv_enable_pll(struct intel_crtc *crtc,
1598                            const struct intel_crtc_state *pipe_config)
1599 {
1600         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1601         enum pipe pipe = crtc->pipe;
1602
1603         assert_pipe_disabled(dev_priv, pipe);
1604
1605         /* PLL is protected by panel, make sure we can write it */
1606         assert_panel_unlocked(dev_priv, pipe);
1607
1608         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1609                 _chv_enable_pll(crtc, pipe_config);
1610
1611         if (pipe != PIPE_A) {
1612                 /*
1613                  * WaPixelRepeatModeFixForC0:chv
1614                  *
1615                  * DPLLCMD is AWOL. Use chicken bits to propagate
1616                  * the value from DPLLBMD to either pipe B or C.
1617                  */
1618                 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1619                 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1620                 I915_WRITE(CBR4_VLV, 0);
1621                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1622
1623                 /*
1624                  * DPLLB VGA mode also seems to cause problems.
1625                  * We should always have it disabled.
1626                  */
1627                 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1628         } else {
1629                 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1630                 POSTING_READ(DPLL_MD(pipe));
1631         }
1632 }
1633
1634 static int intel_num_dvo_pipes(struct drm_device *dev)
1635 {
1636         struct intel_crtc *crtc;
1637         int count = 0;
1638
1639         for_each_intel_crtc(dev, crtc)
1640                 count += crtc->base.state->active &&
1641                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1642
1643         return count;
1644 }
1645
1646 static void i9xx_enable_pll(struct intel_crtc *crtc)
1647 {
1648         struct drm_device *dev = crtc->base.dev;
1649         struct drm_i915_private *dev_priv = dev->dev_private;
1650         i915_reg_t reg = DPLL(crtc->pipe);
1651         u32 dpll = crtc->config->dpll_hw_state.dpll;
1652
1653         assert_pipe_disabled(dev_priv, crtc->pipe);
1654
1655         /* PLL is protected by panel, make sure we can write it */
1656         if (IS_MOBILE(dev) && !IS_I830(dev))
1657                 assert_panel_unlocked(dev_priv, crtc->pipe);
1658
1659         /* Enable DVO 2x clock on both PLLs if necessary */
1660         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1661                 /*
1662                  * It appears to be important that we don't enable this
1663                  * for the current pipe before otherwise configuring the
1664                  * PLL. No idea how this should be handled if multiple
1665                  * DVO outputs are enabled simultaneosly.
1666                  */
1667                 dpll |= DPLL_DVO_2X_MODE;
1668                 I915_WRITE(DPLL(!crtc->pipe),
1669                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1670         }
1671
1672         /*
1673          * Apparently we need to have VGA mode enabled prior to changing
1674          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1675          * dividers, even though the register value does change.
1676          */
1677         I915_WRITE(reg, 0);
1678
1679         I915_WRITE(reg, dpll);
1680
1681         /* Wait for the clocks to stabilize. */
1682         POSTING_READ(reg);
1683         udelay(150);
1684
1685         if (INTEL_INFO(dev)->gen >= 4) {
1686                 I915_WRITE(DPLL_MD(crtc->pipe),
1687                            crtc->config->dpll_hw_state.dpll_md);
1688         } else {
1689                 /* The pixel multiplier can only be updated once the
1690                  * DPLL is enabled and the clocks are stable.
1691                  *
1692                  * So write it again.
1693                  */
1694                 I915_WRITE(reg, dpll);
1695         }
1696
1697         /* We do this three times for luck */
1698         I915_WRITE(reg, dpll);
1699         POSTING_READ(reg);
1700         udelay(150); /* wait for warmup */
1701         I915_WRITE(reg, dpll);
1702         POSTING_READ(reg);
1703         udelay(150); /* wait for warmup */
1704         I915_WRITE(reg, dpll);
1705         POSTING_READ(reg);
1706         udelay(150); /* wait for warmup */
1707 }
1708
1709 /**
1710  * i9xx_disable_pll - disable a PLL
1711  * @dev_priv: i915 private structure
1712  * @pipe: pipe PLL to disable
1713  *
1714  * Disable the PLL for @pipe, making sure the pipe is off first.
1715  *
1716  * Note!  This is for pre-ILK only.
1717  */
1718 static void i9xx_disable_pll(struct intel_crtc *crtc)
1719 {
1720         struct drm_device *dev = crtc->base.dev;
1721         struct drm_i915_private *dev_priv = dev->dev_private;
1722         enum pipe pipe = crtc->pipe;
1723
1724         /* Disable DVO 2x clock on both PLLs if necessary */
1725         if (IS_I830(dev) &&
1726             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1727             !intel_num_dvo_pipes(dev)) {
1728                 I915_WRITE(DPLL(PIPE_B),
1729                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1730                 I915_WRITE(DPLL(PIPE_A),
1731                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1732         }
1733
1734         /* Don't disable pipe or pipe PLLs if needed */
1735         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1736             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1737                 return;
1738
1739         /* Make sure the pipe isn't still relying on us */
1740         assert_pipe_disabled(dev_priv, pipe);
1741
1742         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1743         POSTING_READ(DPLL(pipe));
1744 }
1745
1746 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1747 {
1748         u32 val;
1749
1750         /* Make sure the pipe isn't still relying on us */
1751         assert_pipe_disabled(dev_priv, pipe);
1752
1753         val = DPLL_INTEGRATED_REF_CLK_VLV |
1754                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1755         if (pipe != PIPE_A)
1756                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1757
1758         I915_WRITE(DPLL(pipe), val);
1759         POSTING_READ(DPLL(pipe));
1760 }
1761
1762 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1763 {
1764         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1765         u32 val;
1766
1767         /* Make sure the pipe isn't still relying on us */
1768         assert_pipe_disabled(dev_priv, pipe);
1769
1770         val = DPLL_SSC_REF_CLK_CHV |
1771                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1772         if (pipe != PIPE_A)
1773                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1774
1775         I915_WRITE(DPLL(pipe), val);
1776         POSTING_READ(DPLL(pipe));
1777
1778         mutex_lock(&dev_priv->sb_lock);
1779
1780         /* Disable 10bit clock to display controller */
1781         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1782         val &= ~DPIO_DCLKP_EN;
1783         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1784
1785         mutex_unlock(&dev_priv->sb_lock);
1786 }
1787
1788 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1789                          struct intel_digital_port *dport,
1790                          unsigned int expected_mask)
1791 {
1792         u32 port_mask;
1793         i915_reg_t dpll_reg;
1794
1795         switch (dport->port) {
1796         case PORT_B:
1797                 port_mask = DPLL_PORTB_READY_MASK;
1798                 dpll_reg = DPLL(0);
1799                 break;
1800         case PORT_C:
1801                 port_mask = DPLL_PORTC_READY_MASK;
1802                 dpll_reg = DPLL(0);
1803                 expected_mask <<= 4;
1804                 break;
1805         case PORT_D:
1806                 port_mask = DPLL_PORTD_READY_MASK;
1807                 dpll_reg = DPIO_PHY_STATUS;
1808                 break;
1809         default:
1810                 BUG();
1811         }
1812
1813         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1814                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1815                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1816 }
1817
1818 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1819                                            enum pipe pipe)
1820 {
1821         struct drm_device *dev = dev_priv->dev;
1822         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1823         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1824         i915_reg_t reg;
1825         uint32_t val, pipeconf_val;
1826
1827         /* Make sure PCH DPLL is enabled */
1828         assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1829
1830         /* FDI must be feeding us bits for PCH ports */
1831         assert_fdi_tx_enabled(dev_priv, pipe);
1832         assert_fdi_rx_enabled(dev_priv, pipe);
1833
1834         if (HAS_PCH_CPT(dev)) {
1835                 /* Workaround: Set the timing override bit before enabling the
1836                  * pch transcoder. */
1837                 reg = TRANS_CHICKEN2(pipe);
1838                 val = I915_READ(reg);
1839                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1840                 I915_WRITE(reg, val);
1841         }
1842
1843         reg = PCH_TRANSCONF(pipe);
1844         val = I915_READ(reg);
1845         pipeconf_val = I915_READ(PIPECONF(pipe));
1846
1847         if (HAS_PCH_IBX(dev_priv)) {
1848                 /*
1849                  * Make the BPC in transcoder be consistent with
1850                  * that in pipeconf reg. For HDMI we must use 8bpc
1851                  * here for both 8bpc and 12bpc.
1852                  */
1853                 val &= ~PIPECONF_BPC_MASK;
1854                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1855                         val |= PIPECONF_8BPC;
1856                 else
1857                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1858         }
1859
1860         val &= ~TRANS_INTERLACE_MASK;
1861         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1862                 if (HAS_PCH_IBX(dev_priv) &&
1863                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1864                         val |= TRANS_LEGACY_INTERLACED_ILK;
1865                 else
1866                         val |= TRANS_INTERLACED;
1867         else
1868                 val |= TRANS_PROGRESSIVE;
1869
1870         I915_WRITE(reg, val | TRANS_ENABLE);
1871         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1872                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1873 }
1874
1875 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1876                                       enum transcoder cpu_transcoder)
1877 {
1878         u32 val, pipeconf_val;
1879
1880         /* FDI must be feeding us bits for PCH ports */
1881         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1882         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1883
1884         /* Workaround: set timing override bit. */
1885         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1886         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1887         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1888
1889         val = TRANS_ENABLE;
1890         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1891
1892         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1893             PIPECONF_INTERLACED_ILK)
1894                 val |= TRANS_INTERLACED;
1895         else
1896                 val |= TRANS_PROGRESSIVE;
1897
1898         I915_WRITE(LPT_TRANSCONF, val);
1899         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1900                 DRM_ERROR("Failed to enable PCH transcoder\n");
1901 }
1902
1903 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1904                                             enum pipe pipe)
1905 {
1906         struct drm_device *dev = dev_priv->dev;
1907         i915_reg_t reg;
1908         uint32_t val;
1909
1910         /* FDI relies on the transcoder */
1911         assert_fdi_tx_disabled(dev_priv, pipe);
1912         assert_fdi_rx_disabled(dev_priv, pipe);
1913
1914         /* Ports must be off as well */
1915         assert_pch_ports_disabled(dev_priv, pipe);
1916
1917         reg = PCH_TRANSCONF(pipe);
1918         val = I915_READ(reg);
1919         val &= ~TRANS_ENABLE;
1920         I915_WRITE(reg, val);
1921         /* wait for PCH transcoder off, transcoder state */
1922         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1923                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1924
1925         if (HAS_PCH_CPT(dev)) {
1926                 /* Workaround: Clear the timing override chicken bit again. */
1927                 reg = TRANS_CHICKEN2(pipe);
1928                 val = I915_READ(reg);
1929                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1930                 I915_WRITE(reg, val);
1931         }
1932 }
1933
1934 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1935 {
1936         u32 val;
1937
1938         val = I915_READ(LPT_TRANSCONF);
1939         val &= ~TRANS_ENABLE;
1940         I915_WRITE(LPT_TRANSCONF, val);
1941         /* wait for PCH transcoder off, transcoder state */
1942         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1943                 DRM_ERROR("Failed to disable PCH transcoder\n");
1944
1945         /* Workaround: clear timing override bit. */
1946         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1947         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1948         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1949 }
1950
1951 /**
1952  * intel_enable_pipe - enable a pipe, asserting requirements
1953  * @crtc: crtc responsible for the pipe
1954  *
1955  * Enable @crtc's pipe, making sure that various hardware specific requirements
1956  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1957  */
1958 static void intel_enable_pipe(struct intel_crtc *crtc)
1959 {
1960         struct drm_device *dev = crtc->base.dev;
1961         struct drm_i915_private *dev_priv = dev->dev_private;
1962         enum pipe pipe = crtc->pipe;
1963         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1964         enum pipe pch_transcoder;
1965         i915_reg_t reg;
1966         u32 val;
1967
1968         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1969
1970         assert_planes_disabled(dev_priv, pipe);
1971         assert_cursor_disabled(dev_priv, pipe);
1972         assert_sprites_disabled(dev_priv, pipe);
1973
1974         if (HAS_PCH_LPT(dev_priv))
1975                 pch_transcoder = TRANSCODER_A;
1976         else
1977                 pch_transcoder = pipe;
1978
1979         /*
1980          * A pipe without a PLL won't actually be able to drive bits from
1981          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1982          * need the check.
1983          */
1984         if (HAS_GMCH_DISPLAY(dev_priv))
1985                 if (crtc->config->has_dsi_encoder)
1986                         assert_dsi_pll_enabled(dev_priv);
1987                 else
1988                         assert_pll_enabled(dev_priv, pipe);
1989         else {
1990                 if (crtc->config->has_pch_encoder) {
1991                         /* if driving the PCH, we need FDI enabled */
1992                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1993                         assert_fdi_tx_pll_enabled(dev_priv,
1994                                                   (enum pipe) cpu_transcoder);
1995                 }
1996                 /* FIXME: assert CPU port conditions for SNB+ */
1997         }
1998
1999         reg = PIPECONF(cpu_transcoder);
2000         val = I915_READ(reg);
2001         if (val & PIPECONF_ENABLE) {
2002                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2003                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2004                 return;
2005         }
2006
2007         I915_WRITE(reg, val | PIPECONF_ENABLE);
2008         POSTING_READ(reg);
2009
2010         /*
2011          * Until the pipe starts DSL will read as 0, which would cause
2012          * an apparent vblank timestamp jump, which messes up also the
2013          * frame count when it's derived from the timestamps. So let's
2014          * wait for the pipe to start properly before we call
2015          * drm_crtc_vblank_on()
2016          */
2017         if (dev->max_vblank_count == 0 &&
2018             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2019                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
2020 }
2021
2022 /**
2023  * intel_disable_pipe - disable a pipe, asserting requirements
2024  * @crtc: crtc whose pipes is to be disabled
2025  *
2026  * Disable the pipe of @crtc, making sure that various hardware
2027  * specific requirements are met, if applicable, e.g. plane
2028  * disabled, panel fitter off, etc.
2029  *
2030  * Will wait until the pipe has shut down before returning.
2031  */
2032 static void intel_disable_pipe(struct intel_crtc *crtc)
2033 {
2034         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2035         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2036         enum pipe pipe = crtc->pipe;
2037         i915_reg_t reg;
2038         u32 val;
2039
2040         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2041
2042         /*
2043          * Make sure planes won't keep trying to pump pixels to us,
2044          * or we might hang the display.
2045          */
2046         assert_planes_disabled(dev_priv, pipe);
2047         assert_cursor_disabled(dev_priv, pipe);
2048         assert_sprites_disabled(dev_priv, pipe);
2049
2050         reg = PIPECONF(cpu_transcoder);
2051         val = I915_READ(reg);
2052         if ((val & PIPECONF_ENABLE) == 0)
2053                 return;
2054
2055         /*
2056          * Double wide has implications for planes
2057          * so best keep it disabled when not needed.
2058          */
2059         if (crtc->config->double_wide)
2060                 val &= ~PIPECONF_DOUBLE_WIDE;
2061
2062         /* Don't disable pipe or pipe PLLs if needed */
2063         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2064             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2065                 val &= ~PIPECONF_ENABLE;
2066
2067         I915_WRITE(reg, val);
2068         if ((val & PIPECONF_ENABLE) == 0)
2069                 intel_wait_for_pipe_off(crtc);
2070 }
2071
2072 static bool need_vtd_wa(struct drm_device *dev)
2073 {
2074 #ifdef CONFIG_INTEL_IOMMU
2075         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2076                 return true;
2077 #endif
2078         return false;
2079 }
2080
2081 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2082 {
2083         return IS_GEN2(dev_priv) ? 2048 : 4096;
2084 }
2085
2086 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2087                                            uint64_t fb_modifier, unsigned int cpp)
2088 {
2089         switch (fb_modifier) {
2090         case DRM_FORMAT_MOD_NONE:
2091                 return cpp;
2092         case I915_FORMAT_MOD_X_TILED:
2093                 if (IS_GEN2(dev_priv))
2094                         return 128;
2095                 else
2096                         return 512;
2097         case I915_FORMAT_MOD_Y_TILED:
2098                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2099                         return 128;
2100                 else
2101                         return 512;
2102         case I915_FORMAT_MOD_Yf_TILED:
2103                 switch (cpp) {
2104                 case 1:
2105                         return 64;
2106                 case 2:
2107                 case 4:
2108                         return 128;
2109                 case 8:
2110                 case 16:
2111                         return 256;
2112                 default:
2113                         MISSING_CASE(cpp);
2114                         return cpp;
2115                 }
2116                 break;
2117         default:
2118                 MISSING_CASE(fb_modifier);
2119                 return cpp;
2120         }
2121 }
2122
2123 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2124                                uint64_t fb_modifier, unsigned int cpp)
2125 {
2126         if (fb_modifier == DRM_FORMAT_MOD_NONE)
2127                 return 1;
2128         else
2129                 return intel_tile_size(dev_priv) /
2130                         intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2131 }
2132
2133 /* Return the tile dimensions in pixel units */
2134 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2135                             unsigned int *tile_width,
2136                             unsigned int *tile_height,
2137                             uint64_t fb_modifier,
2138                             unsigned int cpp)
2139 {
2140         unsigned int tile_width_bytes =
2141                 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2142
2143         *tile_width = tile_width_bytes / cpp;
2144         *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2145 }
2146
2147 unsigned int
2148 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2149                       uint32_t pixel_format, uint64_t fb_modifier)
2150 {
2151         unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2152         unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2153
2154         return ALIGN(height, tile_height);
2155 }
2156
2157 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2158 {
2159         unsigned int size = 0;
2160         int i;
2161
2162         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2163                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2164
2165         return size;
2166 }
2167
2168 static void
2169 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2170                         const struct drm_framebuffer *fb,
2171                         unsigned int rotation)
2172 {
2173         if (intel_rotation_90_or_270(rotation)) {
2174                 *view = i915_ggtt_view_rotated;
2175                 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2176         } else {
2177                 *view = i915_ggtt_view_normal;
2178         }
2179 }
2180
2181 static void
2182 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2183                    struct drm_framebuffer *fb)
2184 {
2185         struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2186         unsigned int tile_size, tile_width, tile_height, cpp;
2187
2188         tile_size = intel_tile_size(dev_priv);
2189
2190         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2191         intel_tile_dims(dev_priv, &tile_width, &tile_height,
2192                         fb->modifier[0], cpp);
2193
2194         info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2195         info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
2196
2197         if (info->pixel_format == DRM_FORMAT_NV12) {
2198                 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2199                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2200                                 fb->modifier[1], cpp);
2201
2202                 info->uv_offset = fb->offsets[1];
2203                 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2204                 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
2205         }
2206 }
2207
2208 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2209 {
2210         if (INTEL_INFO(dev_priv)->gen >= 9)
2211                 return 256 * 1024;
2212         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2213                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2214                 return 128 * 1024;
2215         else if (INTEL_INFO(dev_priv)->gen >= 4)
2216                 return 4 * 1024;
2217         else
2218                 return 0;
2219 }
2220
2221 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2222                                          uint64_t fb_modifier)
2223 {
2224         switch (fb_modifier) {
2225         case DRM_FORMAT_MOD_NONE:
2226                 return intel_linear_alignment(dev_priv);
2227         case I915_FORMAT_MOD_X_TILED:
2228                 if (INTEL_INFO(dev_priv)->gen >= 9)
2229                         return 256 * 1024;
2230                 return 0;
2231         case I915_FORMAT_MOD_Y_TILED:
2232         case I915_FORMAT_MOD_Yf_TILED:
2233                 return 1 * 1024 * 1024;
2234         default:
2235                 MISSING_CASE(fb_modifier);
2236                 return 0;
2237         }
2238 }
2239
2240 int
2241 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2242                            unsigned int rotation)
2243 {
2244         struct drm_device *dev = fb->dev;
2245         struct drm_i915_private *dev_priv = dev->dev_private;
2246         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2247         struct i915_ggtt_view view;
2248         u32 alignment;
2249         int ret;
2250
2251         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2252
2253         alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2254
2255         intel_fill_fb_ggtt_view(&view, fb, rotation);
2256
2257         /* Note that the w/a also requires 64 PTE of padding following the
2258          * bo. We currently fill all unused PTE with the shadow page and so
2259          * we should always have valid PTE following the scanout preventing
2260          * the VT-d warning.
2261          */
2262         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2263                 alignment = 256 * 1024;
2264
2265         /*
2266          * Global gtt pte registers are special registers which actually forward
2267          * writes to a chunk of system memory. Which means that there is no risk
2268          * that the register values disappear as soon as we call
2269          * intel_runtime_pm_put(), so it is correct to wrap only the
2270          * pin/unpin/fence and not more.
2271          */
2272         intel_runtime_pm_get(dev_priv);
2273
2274         ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2275                                                    &view);
2276         if (ret)
2277                 goto err_pm;
2278
2279         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2280          * fence, whereas 965+ only requires a fence if using
2281          * framebuffer compression.  For simplicity, we always install
2282          * a fence as the cost is not that onerous.
2283          */
2284         if (view.type == I915_GGTT_VIEW_NORMAL) {
2285                 ret = i915_gem_object_get_fence(obj);
2286                 if (ret == -EDEADLK) {
2287                         /*
2288                          * -EDEADLK means there are no free fences
2289                          * no pending flips.
2290                          *
2291                          * This is propagated to atomic, but it uses
2292                          * -EDEADLK to force a locking recovery, so
2293                          * change the returned error to -EBUSY.
2294                          */
2295                         ret = -EBUSY;
2296                         goto err_unpin;
2297                 } else if (ret)
2298                         goto err_unpin;
2299
2300                 i915_gem_object_pin_fence(obj);
2301         }
2302
2303         intel_runtime_pm_put(dev_priv);
2304         return 0;
2305
2306 err_unpin:
2307         i915_gem_object_unpin_from_display_plane(obj, &view);
2308 err_pm:
2309         intel_runtime_pm_put(dev_priv);
2310         return ret;
2311 }
2312
2313 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2314 {
2315         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2316         struct i915_ggtt_view view;
2317
2318         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2319
2320         intel_fill_fb_ggtt_view(&view, fb, rotation);
2321
2322         if (view.type == I915_GGTT_VIEW_NORMAL)
2323                 i915_gem_object_unpin_fence(obj);
2324
2325         i915_gem_object_unpin_from_display_plane(obj, &view);
2326 }
2327
2328 /*
2329  * Adjust the tile offset by moving the difference into
2330  * the x/y offsets.
2331  *
2332  * Input tile dimensions and pitch must already be
2333  * rotated to match x and y, and in pixel units.
2334  */
2335 static u32 intel_adjust_tile_offset(int *x, int *y,
2336                                     unsigned int tile_width,
2337                                     unsigned int tile_height,
2338                                     unsigned int tile_size,
2339                                     unsigned int pitch_tiles,
2340                                     u32 old_offset,
2341                                     u32 new_offset)
2342 {
2343         unsigned int tiles;
2344
2345         WARN_ON(old_offset & (tile_size - 1));
2346         WARN_ON(new_offset & (tile_size - 1));
2347         WARN_ON(new_offset > old_offset);
2348
2349         tiles = (old_offset - new_offset) / tile_size;
2350
2351         *y += tiles / pitch_tiles * tile_height;
2352         *x += tiles % pitch_tiles * tile_width;
2353
2354         return new_offset;
2355 }
2356
2357 /*
2358  * Computes the linear offset to the base tile and adjusts
2359  * x, y. bytes per pixel is assumed to be a power-of-two.
2360  *
2361  * In the 90/270 rotated case, x and y are assumed
2362  * to be already rotated to match the rotated GTT view, and
2363  * pitch is the tile_height aligned framebuffer height.
2364  */
2365 u32 intel_compute_tile_offset(int *x, int *y,
2366                               const struct drm_framebuffer *fb, int plane,
2367                               unsigned int pitch,
2368                               unsigned int rotation)
2369 {
2370         const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2371         uint64_t fb_modifier = fb->modifier[plane];
2372         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2373         u32 offset, offset_aligned, alignment;
2374
2375         alignment = intel_surf_alignment(dev_priv, fb_modifier);
2376         if (alignment)
2377                 alignment--;
2378
2379         if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2380                 unsigned int tile_size, tile_width, tile_height;
2381                 unsigned int tile_rows, tiles, pitch_tiles;
2382
2383                 tile_size = intel_tile_size(dev_priv);
2384                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2385                                 fb_modifier, cpp);
2386
2387                 if (intel_rotation_90_or_270(rotation)) {
2388                         pitch_tiles = pitch / tile_height;
2389                         swap(tile_width, tile_height);
2390                 } else {
2391                         pitch_tiles = pitch / (tile_width * cpp);
2392                 }
2393
2394                 tile_rows = *y / tile_height;
2395                 *y %= tile_height;
2396
2397                 tiles = *x / tile_width;
2398                 *x %= tile_width;
2399
2400                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2401                 offset_aligned = offset & ~alignment;
2402
2403                 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2404                                          tile_size, pitch_tiles,
2405                                          offset, offset_aligned);
2406         } else {
2407                 offset = *y * pitch + *x * cpp;
2408                 offset_aligned = offset & ~alignment;
2409
2410                 *y = (offset & alignment) / pitch;
2411                 *x = ((offset & alignment) - *y * pitch) / cpp;
2412         }
2413
2414         return offset_aligned;
2415 }
2416
2417 static int i9xx_format_to_fourcc(int format)
2418 {
2419         switch (format) {
2420         case DISPPLANE_8BPP:
2421                 return DRM_FORMAT_C8;
2422         case DISPPLANE_BGRX555:
2423                 return DRM_FORMAT_XRGB1555;
2424         case DISPPLANE_BGRX565:
2425                 return DRM_FORMAT_RGB565;
2426         default:
2427         case DISPPLANE_BGRX888:
2428                 return DRM_FORMAT_XRGB8888;
2429         case DISPPLANE_RGBX888:
2430                 return DRM_FORMAT_XBGR8888;
2431         case DISPPLANE_BGRX101010:
2432                 return DRM_FORMAT_XRGB2101010;
2433         case DISPPLANE_RGBX101010:
2434                 return DRM_FORMAT_XBGR2101010;
2435         }
2436 }
2437
2438 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2439 {
2440         switch (format) {
2441         case PLANE_CTL_FORMAT_RGB_565:
2442                 return DRM_FORMAT_RGB565;
2443         default:
2444         case PLANE_CTL_FORMAT_XRGB_8888:
2445                 if (rgb_order) {
2446                         if (alpha)
2447                                 return DRM_FORMAT_ABGR8888;
2448                         else
2449                                 return DRM_FORMAT_XBGR8888;
2450                 } else {
2451                         if (alpha)
2452                                 return DRM_FORMAT_ARGB8888;
2453                         else
2454                                 return DRM_FORMAT_XRGB8888;
2455                 }
2456         case PLANE_CTL_FORMAT_XRGB_2101010:
2457                 if (rgb_order)
2458                         return DRM_FORMAT_XBGR2101010;
2459                 else
2460                         return DRM_FORMAT_XRGB2101010;
2461         }
2462 }
2463
2464 static bool
2465 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2466                               struct intel_initial_plane_config *plane_config)
2467 {
2468         struct drm_device *dev = crtc->base.dev;
2469         struct drm_i915_private *dev_priv = to_i915(dev);
2470         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2471         struct drm_i915_gem_object *obj = NULL;
2472         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2473         struct drm_framebuffer *fb = &plane_config->fb->base;
2474         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2475         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2476                                     PAGE_SIZE);
2477
2478         size_aligned -= base_aligned;
2479
2480         if (plane_config->size == 0)
2481                 return false;
2482
2483         /* If the FB is too big, just don't use it since fbdev is not very
2484          * important and we should probably use that space with FBC or other
2485          * features. */
2486         if (size_aligned * 2 > ggtt->stolen_usable_size)
2487                 return false;
2488
2489         mutex_lock(&dev->struct_mutex);
2490
2491         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2492                                                              base_aligned,
2493                                                              base_aligned,
2494                                                              size_aligned);
2495         if (!obj) {
2496                 mutex_unlock(&dev->struct_mutex);
2497                 return false;
2498         }
2499
2500         obj->tiling_mode = plane_config->tiling;
2501         if (obj->tiling_mode == I915_TILING_X)
2502                 obj->stride = fb->pitches[0];
2503
2504         mode_cmd.pixel_format = fb->pixel_format;
2505         mode_cmd.width = fb->width;
2506         mode_cmd.height = fb->height;
2507         mode_cmd.pitches[0] = fb->pitches[0];
2508         mode_cmd.modifier[0] = fb->modifier[0];
2509         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2510
2511         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2512                                    &mode_cmd, obj)) {
2513                 DRM_DEBUG_KMS("intel fb init failed\n");
2514                 goto out_unref_obj;
2515         }
2516
2517         mutex_unlock(&dev->struct_mutex);
2518
2519         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2520         return true;
2521
2522 out_unref_obj:
2523         drm_gem_object_unreference(&obj->base);
2524         mutex_unlock(&dev->struct_mutex);
2525         return false;
2526 }
2527
2528 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2529 static void
2530 update_state_fb(struct drm_plane *plane)
2531 {
2532         if (plane->fb == plane->state->fb)
2533                 return;
2534
2535         if (plane->state->fb)
2536                 drm_framebuffer_unreference(plane->state->fb);
2537         plane->state->fb = plane->fb;
2538         if (plane->state->fb)
2539                 drm_framebuffer_reference(plane->state->fb);
2540 }
2541
2542 static void
2543 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2544                              struct intel_initial_plane_config *plane_config)
2545 {
2546         struct drm_device *dev = intel_crtc->base.dev;
2547         struct drm_i915_private *dev_priv = dev->dev_private;
2548         struct drm_crtc *c;
2549         struct intel_crtc *i;
2550         struct drm_i915_gem_object *obj;
2551         struct drm_plane *primary = intel_crtc->base.primary;
2552         struct drm_plane_state *plane_state = primary->state;
2553         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2554         struct intel_plane *intel_plane = to_intel_plane(primary);
2555         struct intel_plane_state *intel_state =
2556                 to_intel_plane_state(plane_state);
2557         struct drm_framebuffer *fb;
2558
2559         if (!plane_config->fb)
2560                 return;
2561
2562         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2563                 fb = &plane_config->fb->base;
2564                 goto valid_fb;
2565         }
2566
2567         kfree(plane_config->fb);
2568
2569         /*
2570          * Failed to alloc the obj, check to see if we should share
2571          * an fb with another CRTC instead
2572          */
2573         for_each_crtc(dev, c) {
2574                 i = to_intel_crtc(c);
2575
2576                 if (c == &intel_crtc->base)
2577                         continue;
2578
2579                 if (!i->active)
2580                         continue;
2581
2582                 fb = c->primary->fb;
2583                 if (!fb)
2584                         continue;
2585
2586                 obj = intel_fb_obj(fb);
2587                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2588                         drm_framebuffer_reference(fb);
2589                         goto valid_fb;
2590                 }
2591         }
2592
2593         /*
2594          * We've failed to reconstruct the BIOS FB.  Current display state
2595          * indicates that the primary plane is visible, but has a NULL FB,
2596          * which will lead to problems later if we don't fix it up.  The
2597          * simplest solution is to just disable the primary plane now and
2598          * pretend the BIOS never had it enabled.
2599          */
2600         to_intel_plane_state(plane_state)->visible = false;
2601         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2602         intel_pre_disable_primary_noatomic(&intel_crtc->base);
2603         intel_plane->disable_plane(primary, &intel_crtc->base);
2604
2605         return;
2606
2607 valid_fb:
2608         plane_state->src_x = 0;
2609         plane_state->src_y = 0;
2610         plane_state->src_w = fb->width << 16;
2611         plane_state->src_h = fb->height << 16;
2612
2613         plane_state->crtc_x = 0;
2614         plane_state->crtc_y = 0;
2615         plane_state->crtc_w = fb->width;
2616         plane_state->crtc_h = fb->height;
2617
2618         intel_state->src.x1 = plane_state->src_x;
2619         intel_state->src.y1 = plane_state->src_y;
2620         intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2621         intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2622         intel_state->dst.x1 = plane_state->crtc_x;
2623         intel_state->dst.y1 = plane_state->crtc_y;
2624         intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2625         intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2626
2627         obj = intel_fb_obj(fb);
2628         if (obj->tiling_mode != I915_TILING_NONE)
2629                 dev_priv->preserve_bios_swizzle = true;
2630
2631         drm_framebuffer_reference(fb);
2632         primary->fb = primary->state->fb = fb;
2633         primary->crtc = primary->state->crtc = &intel_crtc->base;
2634         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2635         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2636 }
2637
2638 static void i9xx_update_primary_plane(struct drm_plane *primary,
2639                                       const struct intel_crtc_state *crtc_state,
2640                                       const struct intel_plane_state *plane_state)
2641 {
2642         struct drm_device *dev = primary->dev;
2643         struct drm_i915_private *dev_priv = dev->dev_private;
2644         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2645         struct drm_framebuffer *fb = plane_state->base.fb;
2646         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2647         int plane = intel_crtc->plane;
2648         u32 linear_offset;
2649         u32 dspcntr;
2650         i915_reg_t reg = DSPCNTR(plane);
2651         unsigned int rotation = plane_state->base.rotation;
2652         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2653         int x = plane_state->src.x1 >> 16;
2654         int y = plane_state->src.y1 >> 16;
2655
2656         dspcntr = DISPPLANE_GAMMA_ENABLE;
2657
2658         dspcntr |= DISPLAY_PLANE_ENABLE;
2659
2660         if (INTEL_INFO(dev)->gen < 4) {
2661                 if (intel_crtc->pipe == PIPE_B)
2662                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2663
2664                 /* pipesrc and dspsize control the size that is scaled from,
2665                  * which should always be the user's requested size.
2666                  */
2667                 I915_WRITE(DSPSIZE(plane),
2668                            ((crtc_state->pipe_src_h - 1) << 16) |
2669                            (crtc_state->pipe_src_w - 1));
2670                 I915_WRITE(DSPPOS(plane), 0);
2671         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2672                 I915_WRITE(PRIMSIZE(plane),
2673                            ((crtc_state->pipe_src_h - 1) << 16) |
2674                            (crtc_state->pipe_src_w - 1));
2675                 I915_WRITE(PRIMPOS(plane), 0);
2676                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2677         }
2678
2679         switch (fb->pixel_format) {
2680         case DRM_FORMAT_C8:
2681                 dspcntr |= DISPPLANE_8BPP;
2682                 break;
2683         case DRM_FORMAT_XRGB1555:
2684                 dspcntr |= DISPPLANE_BGRX555;
2685                 break;
2686         case DRM_FORMAT_RGB565:
2687                 dspcntr |= DISPPLANE_BGRX565;
2688                 break;
2689         case DRM_FORMAT_XRGB8888:
2690                 dspcntr |= DISPPLANE_BGRX888;
2691                 break;
2692         case DRM_FORMAT_XBGR8888:
2693                 dspcntr |= DISPPLANE_RGBX888;
2694                 break;
2695         case DRM_FORMAT_XRGB2101010:
2696                 dspcntr |= DISPPLANE_BGRX101010;
2697                 break;
2698         case DRM_FORMAT_XBGR2101010:
2699                 dspcntr |= DISPPLANE_RGBX101010;
2700                 break;
2701         default:
2702                 BUG();
2703         }
2704
2705         if (INTEL_INFO(dev)->gen >= 4 &&
2706             obj->tiling_mode != I915_TILING_NONE)
2707                 dspcntr |= DISPPLANE_TILED;
2708
2709         if (IS_G4X(dev))
2710                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2711
2712         linear_offset = y * fb->pitches[0] + x * cpp;
2713
2714         if (INTEL_INFO(dev)->gen >= 4) {
2715                 intel_crtc->dspaddr_offset =
2716                         intel_compute_tile_offset(&x, &y, fb, 0,
2717                                                   fb->pitches[0], rotation);
2718                 linear_offset -= intel_crtc->dspaddr_offset;
2719         } else {
2720                 intel_crtc->dspaddr_offset = linear_offset;
2721         }
2722
2723         if (rotation == BIT(DRM_ROTATE_180)) {
2724                 dspcntr |= DISPPLANE_ROTATE_180;
2725
2726                 x += (crtc_state->pipe_src_w - 1);
2727                 y += (crtc_state->pipe_src_h - 1);
2728
2729                 /* Finding the last pixel of the last line of the display
2730                 data and adding to linear_offset*/
2731                 linear_offset +=
2732                         (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2733                         (crtc_state->pipe_src_w - 1) * cpp;
2734         }
2735
2736         intel_crtc->adjusted_x = x;
2737         intel_crtc->adjusted_y = y;
2738
2739         I915_WRITE(reg, dspcntr);
2740
2741         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2742         if (INTEL_INFO(dev)->gen >= 4) {
2743                 I915_WRITE(DSPSURF(plane),
2744                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2745                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2746                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2747         } else
2748                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2749         POSTING_READ(reg);
2750 }
2751
2752 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2753                                        struct drm_crtc *crtc)
2754 {
2755         struct drm_device *dev = crtc->dev;
2756         struct drm_i915_private *dev_priv = dev->dev_private;
2757         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2758         int plane = intel_crtc->plane;
2759
2760         I915_WRITE(DSPCNTR(plane), 0);
2761         if (INTEL_INFO(dev_priv)->gen >= 4)
2762                 I915_WRITE(DSPSURF(plane), 0);
2763         else
2764                 I915_WRITE(DSPADDR(plane), 0);
2765         POSTING_READ(DSPCNTR(plane));
2766 }
2767
2768 static void ironlake_update_primary_plane(struct drm_plane *primary,
2769                                           const struct intel_crtc_state *crtc_state,
2770                                           const struct intel_plane_state *plane_state)
2771 {
2772         struct drm_device *dev = primary->dev;
2773         struct drm_i915_private *dev_priv = dev->dev_private;
2774         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2775         struct drm_framebuffer *fb = plane_state->base.fb;
2776         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2777         int plane = intel_crtc->plane;
2778         u32 linear_offset;
2779         u32 dspcntr;
2780         i915_reg_t reg = DSPCNTR(plane);
2781         unsigned int rotation = plane_state->base.rotation;
2782         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2783         int x = plane_state->src.x1 >> 16;
2784         int y = plane_state->src.y1 >> 16;
2785
2786         dspcntr = DISPPLANE_GAMMA_ENABLE;
2787         dspcntr |= DISPLAY_PLANE_ENABLE;
2788
2789         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2790                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2791
2792         switch (fb->pixel_format) {
2793         case DRM_FORMAT_C8:
2794                 dspcntr |= DISPPLANE_8BPP;
2795                 break;
2796         case DRM_FORMAT_RGB565:
2797                 dspcntr |= DISPPLANE_BGRX565;
2798                 break;
2799         case DRM_FORMAT_XRGB8888:
2800                 dspcntr |= DISPPLANE_BGRX888;
2801                 break;
2802         case DRM_FORMAT_XBGR8888:
2803                 dspcntr |= DISPPLANE_RGBX888;
2804                 break;
2805         case DRM_FORMAT_XRGB2101010:
2806                 dspcntr |= DISPPLANE_BGRX101010;
2807                 break;
2808         case DRM_FORMAT_XBGR2101010:
2809                 dspcntr |= DISPPLANE_RGBX101010;
2810                 break;
2811         default:
2812                 BUG();
2813         }
2814
2815         if (obj->tiling_mode != I915_TILING_NONE)
2816                 dspcntr |= DISPPLANE_TILED;
2817
2818         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2819                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2820
2821         linear_offset = y * fb->pitches[0] + x * cpp;
2822         intel_crtc->dspaddr_offset =
2823                 intel_compute_tile_offset(&x, &y, fb, 0,
2824                                           fb->pitches[0], rotation);
2825         linear_offset -= intel_crtc->dspaddr_offset;
2826         if (rotation == BIT(DRM_ROTATE_180)) {
2827                 dspcntr |= DISPPLANE_ROTATE_180;
2828
2829                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2830                         x += (crtc_state->pipe_src_w - 1);
2831                         y += (crtc_state->pipe_src_h - 1);
2832
2833                         /* Finding the last pixel of the last line of the display
2834                         data and adding to linear_offset*/
2835                         linear_offset +=
2836                                 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2837                                 (crtc_state->pipe_src_w - 1) * cpp;
2838                 }
2839         }
2840
2841         intel_crtc->adjusted_x = x;
2842         intel_crtc->adjusted_y = y;
2843
2844         I915_WRITE(reg, dspcntr);
2845
2846         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2847         I915_WRITE(DSPSURF(plane),
2848                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2849         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2850                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2851         } else {
2852                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2853                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2854         }
2855         POSTING_READ(reg);
2856 }
2857
2858 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2859                               uint64_t fb_modifier, uint32_t pixel_format)
2860 {
2861         if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2862                 return 64;
2863         } else {
2864                 int cpp = drm_format_plane_cpp(pixel_format, 0);
2865
2866                 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2867         }
2868 }
2869
2870 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2871                            struct drm_i915_gem_object *obj,
2872                            unsigned int plane)
2873 {
2874         struct i915_ggtt_view view;
2875         struct i915_vma *vma;
2876         u64 offset;
2877
2878         intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2879                                 intel_plane->base.state->rotation);
2880
2881         vma = i915_gem_obj_to_ggtt_view(obj, &view);
2882         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2883                 view.type))
2884                 return -1;
2885
2886         offset = vma->node.start;
2887
2888         if (plane == 1) {
2889                 offset += vma->ggtt_view.params.rotated.uv_start_page *
2890                           PAGE_SIZE;
2891         }
2892
2893         WARN_ON(upper_32_bits(offset));
2894
2895         return lower_32_bits(offset);
2896 }
2897
2898 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2899 {
2900         struct drm_device *dev = intel_crtc->base.dev;
2901         struct drm_i915_private *dev_priv = dev->dev_private;
2902
2903         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2904         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2905         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2906 }
2907
2908 /*
2909  * This function detaches (aka. unbinds) unused scalers in hardware
2910  */
2911 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2912 {
2913         struct intel_crtc_scaler_state *scaler_state;
2914         int i;
2915
2916         scaler_state = &intel_crtc->config->scaler_state;
2917
2918         /* loop through and disable scalers that aren't in use */
2919         for (i = 0; i < intel_crtc->num_scalers; i++) {
2920                 if (!scaler_state->scalers[i].in_use)
2921                         skl_detach_scaler(intel_crtc, i);
2922         }
2923 }
2924
2925 u32 skl_plane_ctl_format(uint32_t pixel_format)
2926 {
2927         switch (pixel_format) {
2928         case DRM_FORMAT_C8:
2929                 return PLANE_CTL_FORMAT_INDEXED;
2930         case DRM_FORMAT_RGB565:
2931                 return PLANE_CTL_FORMAT_RGB_565;
2932         case DRM_FORMAT_XBGR8888:
2933                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2934         case DRM_FORMAT_XRGB8888:
2935                 return PLANE_CTL_FORMAT_XRGB_8888;
2936         /*
2937          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2938          * to be already pre-multiplied. We need to add a knob (or a different
2939          * DRM_FORMAT) for user-space to configure that.
2940          */
2941         case DRM_FORMAT_ABGR8888:
2942                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2943                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2944         case DRM_FORMAT_ARGB8888:
2945                 return PLANE_CTL_FORMAT_XRGB_8888 |
2946                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2947         case DRM_FORMAT_XRGB2101010:
2948                 return PLANE_CTL_FORMAT_XRGB_2101010;
2949         case DRM_FORMAT_XBGR2101010:
2950                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2951         case DRM_FORMAT_YUYV:
2952                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2953         case DRM_FORMAT_YVYU:
2954                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2955         case DRM_FORMAT_UYVY:
2956                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2957         case DRM_FORMAT_VYUY:
2958                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2959         default:
2960                 MISSING_CASE(pixel_format);
2961         }
2962
2963         return 0;
2964 }
2965
2966 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2967 {
2968         switch (fb_modifier) {
2969         case DRM_FORMAT_MOD_NONE:
2970                 break;
2971         case I915_FORMAT_MOD_X_TILED:
2972                 return PLANE_CTL_TILED_X;
2973         case I915_FORMAT_MOD_Y_TILED:
2974                 return PLANE_CTL_TILED_Y;
2975         case I915_FORMAT_MOD_Yf_TILED:
2976                 return PLANE_CTL_TILED_YF;
2977         default:
2978                 MISSING_CASE(fb_modifier);
2979         }
2980
2981         return 0;
2982 }
2983
2984 u32 skl_plane_ctl_rotation(unsigned int rotation)
2985 {
2986         switch (rotation) {
2987         case BIT(DRM_ROTATE_0):
2988                 break;
2989         /*
2990          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
2991          * while i915 HW rotation is clockwise, thats why this swapping.
2992          */
2993         case BIT(DRM_ROTATE_90):
2994                 return PLANE_CTL_ROTATE_270;
2995         case BIT(DRM_ROTATE_180):
2996                 return PLANE_CTL_ROTATE_180;
2997         case BIT(DRM_ROTATE_270):
2998                 return PLANE_CTL_ROTATE_90;
2999         default:
3000                 MISSING_CASE(rotation);
3001         }
3002
3003         return 0;
3004 }
3005
3006 static void skylake_update_primary_plane(struct drm_plane *plane,
3007                                          const struct intel_crtc_state *crtc_state,
3008                                          const struct intel_plane_state *plane_state)
3009 {
3010         struct drm_device *dev = plane->dev;
3011         struct drm_i915_private *dev_priv = dev->dev_private;
3012         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3013         struct drm_framebuffer *fb = plane_state->base.fb;
3014         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3015         int pipe = intel_crtc->pipe;
3016         u32 plane_ctl, stride_div, stride;
3017         u32 tile_height, plane_offset, plane_size;
3018         unsigned int rotation = plane_state->base.rotation;
3019         int x_offset, y_offset;
3020         u32 surf_addr;
3021         int scaler_id = plane_state->scaler_id;
3022         int src_x = plane_state->src.x1 >> 16;
3023         int src_y = plane_state->src.y1 >> 16;
3024         int src_w = drm_rect_width(&plane_state->src) >> 16;
3025         int src_h = drm_rect_height(&plane_state->src) >> 16;
3026         int dst_x = plane_state->dst.x1;
3027         int dst_y = plane_state->dst.y1;
3028         int dst_w = drm_rect_width(&plane_state->dst);
3029         int dst_h = drm_rect_height(&plane_state->dst);
3030
3031         plane_ctl = PLANE_CTL_ENABLE |
3032                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3033                     PLANE_CTL_PIPE_CSC_ENABLE;
3034
3035         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3036         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3037         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3038         plane_ctl |= skl_plane_ctl_rotation(rotation);
3039
3040         stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3041                                                fb->pixel_format);
3042         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3043
3044         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3045
3046         if (intel_rotation_90_or_270(rotation)) {
3047                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3048
3049                 /* stride = Surface height in tiles */
3050                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3051                 stride = DIV_ROUND_UP(fb->height, tile_height);
3052                 x_offset = stride * tile_height - src_y - src_h;
3053                 y_offset = src_x;
3054                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3055         } else {
3056                 stride = fb->pitches[0] / stride_div;
3057                 x_offset = src_x;
3058                 y_offset = src_y;
3059                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3060         }
3061         plane_offset = y_offset << 16 | x_offset;
3062
3063         intel_crtc->adjusted_x = x_offset;
3064         intel_crtc->adjusted_y = y_offset;
3065
3066         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3067         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3068         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3069         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3070
3071         if (scaler_id >= 0) {
3072                 uint32_t ps_ctrl = 0;
3073
3074                 WARN_ON(!dst_w || !dst_h);
3075                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3076                         crtc_state->scaler_state.scalers[scaler_id].mode;
3077                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3078                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3079                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3080                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3081                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3082         } else {
3083                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3084         }
3085
3086         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3087
3088         POSTING_READ(PLANE_SURF(pipe, 0));
3089 }
3090
3091 static void skylake_disable_primary_plane(struct drm_plane *primary,
3092                                           struct drm_crtc *crtc)
3093 {
3094         struct drm_device *dev = crtc->dev;
3095         struct drm_i915_private *dev_priv = dev->dev_private;
3096         int pipe = to_intel_crtc(crtc)->pipe;
3097
3098         I915_WRITE(PLANE_CTL(pipe, 0), 0);
3099         I915_WRITE(PLANE_SURF(pipe, 0), 0);
3100         POSTING_READ(PLANE_SURF(pipe, 0));
3101 }
3102
3103 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3104 static int
3105 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3106                            int x, int y, enum mode_set_atomic state)
3107 {
3108         /* Support for kgdboc is disabled, this needs a major rework. */
3109         DRM_ERROR("legacy panic handler not supported any more.\n");
3110
3111         return -ENODEV;
3112 }
3113
3114 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3115 {
3116         struct drm_crtc *crtc;
3117
3118         for_each_crtc(dev_priv->dev, crtc) {
3119                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3120                 enum plane plane = intel_crtc->plane;
3121
3122                 intel_prepare_page_flip(dev_priv, plane);
3123                 intel_finish_page_flip_plane(dev_priv, plane);
3124         }
3125 }
3126
3127 static void intel_update_primary_planes(struct drm_device *dev)
3128 {
3129         struct drm_crtc *crtc;
3130
3131         for_each_crtc(dev, crtc) {
3132                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3133                 struct intel_plane_state *plane_state;
3134
3135                 drm_modeset_lock_crtc(crtc, &plane->base);
3136                 plane_state = to_intel_plane_state(plane->base.state);
3137
3138                 if (plane_state->visible)
3139                         plane->update_plane(&plane->base,
3140                                             to_intel_crtc_state(crtc->state),
3141                                             plane_state);
3142
3143                 drm_modeset_unlock_crtc(crtc);
3144         }
3145 }
3146
3147 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3148 {
3149         /* no reset support for gen2 */
3150         if (IS_GEN2(dev_priv))
3151                 return;
3152
3153         /* reset doesn't touch the display */
3154         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
3155                 return;
3156
3157         drm_modeset_lock_all(dev_priv->dev);
3158         /*
3159          * Disabling the crtcs gracefully seems nicer. Also the
3160          * g33 docs say we should at least disable all the planes.
3161          */
3162         intel_display_suspend(dev_priv->dev);
3163 }
3164
3165 void intel_finish_reset(struct drm_i915_private *dev_priv)
3166 {
3167         /*
3168          * Flips in the rings will be nuked by the reset,
3169          * so complete all pending flips so that user space
3170          * will get its events and not get stuck.
3171          */
3172         intel_complete_page_flips(dev_priv);
3173
3174         /* no reset support for gen2 */
3175         if (IS_GEN2(dev_priv))
3176                 return;
3177
3178         /* reset doesn't touch the display */
3179         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
3180                 /*
3181                  * Flips in the rings have been nuked by the reset,
3182                  * so update the base address of all primary
3183                  * planes to the the last fb to make sure we're
3184                  * showing the correct fb after a reset.
3185                  *
3186                  * FIXME: Atomic will make this obsolete since we won't schedule
3187                  * CS-based flips (which might get lost in gpu resets) any more.
3188                  */
3189                 intel_update_primary_planes(dev_priv->dev);
3190                 return;
3191         }
3192
3193         /*
3194          * The display has been reset as well,
3195          * so need a full re-initialization.
3196          */
3197         intel_runtime_pm_disable_interrupts(dev_priv);
3198         intel_runtime_pm_enable_interrupts(dev_priv);
3199
3200         intel_modeset_init_hw(dev_priv->dev);
3201
3202         spin_lock_irq(&dev_priv->irq_lock);
3203         if (dev_priv->display.hpd_irq_setup)
3204                 dev_priv->display.hpd_irq_setup(dev_priv);
3205         spin_unlock_irq(&dev_priv->irq_lock);
3206
3207         intel_display_resume(dev_priv->dev);
3208
3209         intel_hpd_init(dev_priv);
3210
3211         drm_modeset_unlock_all(dev_priv->dev);
3212 }
3213
3214 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3215 {
3216         struct drm_device *dev = crtc->dev;
3217         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3218         unsigned reset_counter;
3219         bool pending;
3220
3221         reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error);
3222         if (intel_crtc->reset_counter != reset_counter)
3223                 return false;
3224
3225         spin_lock_irq(&dev->event_lock);
3226         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3227         spin_unlock_irq(&dev->event_lock);
3228
3229         return pending;
3230 }
3231
3232 static void intel_update_pipe_config(struct intel_crtc *crtc,
3233                                      struct intel_crtc_state *old_crtc_state)
3234 {
3235         struct drm_device *dev = crtc->base.dev;
3236         struct drm_i915_private *dev_priv = dev->dev_private;
3237         struct intel_crtc_state *pipe_config =
3238                 to_intel_crtc_state(crtc->base.state);
3239
3240         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3241         crtc->base.mode = crtc->base.state->mode;
3242
3243         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3244                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3245                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3246
3247         /*
3248          * Update pipe size and adjust fitter if needed: the reason for this is
3249          * that in compute_mode_changes we check the native mode (not the pfit
3250          * mode) to see if we can flip rather than do a full mode set. In the
3251          * fastboot case, we'll flip, but if we don't update the pipesrc and
3252          * pfit state, we'll end up with a big fb scanned out into the wrong
3253          * sized surface.
3254          */
3255
3256         I915_WRITE(PIPESRC(crtc->pipe),
3257                    ((pipe_config->pipe_src_w - 1) << 16) |
3258                    (pipe_config->pipe_src_h - 1));
3259
3260         /* on skylake this is done by detaching scalers */
3261         if (INTEL_INFO(dev)->gen >= 9) {
3262                 skl_detach_scalers(crtc);
3263
3264                 if (pipe_config->pch_pfit.enabled)
3265                         skylake_pfit_enable(crtc);
3266         } else if (HAS_PCH_SPLIT(dev)) {
3267                 if (pipe_config->pch_pfit.enabled)
3268                         ironlake_pfit_enable(crtc);
3269                 else if (old_crtc_state->pch_pfit.enabled)
3270                         ironlake_pfit_disable(crtc, true);
3271         }
3272 }
3273
3274 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3275 {
3276         struct drm_device *dev = crtc->dev;
3277         struct drm_i915_private *dev_priv = dev->dev_private;
3278         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3279         int pipe = intel_crtc->pipe;
3280         i915_reg_t reg;
3281         u32 temp;
3282
3283         /* enable normal train */
3284         reg = FDI_TX_CTL(pipe);
3285         temp = I915_READ(reg);
3286         if (IS_IVYBRIDGE(dev)) {
3287                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3288                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3289         } else {
3290                 temp &= ~FDI_LINK_TRAIN_NONE;
3291                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3292         }
3293         I915_WRITE(reg, temp);
3294
3295         reg = FDI_RX_CTL(pipe);
3296         temp = I915_READ(reg);
3297         if (HAS_PCH_CPT(dev)) {
3298                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3299                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3300         } else {
3301                 temp &= ~FDI_LINK_TRAIN_NONE;
3302                 temp |= FDI_LINK_TRAIN_NONE;
3303         }
3304         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3305
3306         /* wait one idle pattern time */
3307         POSTING_READ(reg);
3308         udelay(1000);
3309
3310         /* IVB wants error correction enabled */
3311         if (IS_IVYBRIDGE(dev))
3312                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3313                            FDI_FE_ERRC_ENABLE);
3314 }
3315
3316 /* The FDI link training functions for ILK/Ibexpeak. */
3317 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3318 {
3319         struct drm_device *dev = crtc->dev;
3320         struct drm_i915_private *dev_priv = dev->dev_private;
3321         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3322         int pipe = intel_crtc->pipe;
3323         i915_reg_t reg;
3324         u32 temp, tries;
3325
3326         /* FDI needs bits from pipe first */
3327         assert_pipe_enabled(dev_priv, pipe);
3328
3329         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3330            for train result */
3331         reg = FDI_RX_IMR(pipe);
3332         temp = I915_READ(reg);
3333         temp &= ~FDI_RX_SYMBOL_LOCK;
3334         temp &= ~FDI_RX_BIT_LOCK;
3335         I915_WRITE(reg, temp);
3336         I915_READ(reg);
3337         udelay(150);
3338
3339         /* enable CPU FDI TX and PCH FDI RX */
3340         reg = FDI_TX_CTL(pipe);
3341         temp = I915_READ(reg);
3342         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3343         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3344         temp &= ~FDI_LINK_TRAIN_NONE;
3345         temp |= FDI_LINK_TRAIN_PATTERN_1;
3346         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3347
3348         reg = FDI_RX_CTL(pipe);
3349         temp = I915_READ(reg);
3350         temp &= ~FDI_LINK_TRAIN_NONE;
3351         temp |= FDI_LINK_TRAIN_PATTERN_1;
3352         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3353
3354         POSTING_READ(reg);
3355         udelay(150);
3356
3357         /* Ironlake workaround, enable clock pointer after FDI enable*/
3358         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3359         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3360                    FDI_RX_PHASE_SYNC_POINTER_EN);
3361
3362         reg = FDI_RX_IIR(pipe);
3363         for (tries = 0; tries < 5; tries++) {
3364                 temp = I915_READ(reg);
3365                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3366
3367                 if ((temp & FDI_RX_BIT_LOCK)) {
3368                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3369                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3370                         break;
3371                 }
3372         }
3373         if (tries == 5)
3374                 DRM_ERROR("FDI train 1 fail!\n");
3375
3376         /* Train 2 */
3377         reg = FDI_TX_CTL(pipe);
3378         temp = I915_READ(reg);
3379         temp &= ~FDI_LINK_TRAIN_NONE;
3380         temp |= FDI_LINK_TRAIN_PATTERN_2;
3381         I915_WRITE(reg, temp);
3382
3383         reg = FDI_RX_CTL(pipe);
3384         temp = I915_READ(reg);
3385         temp &= ~FDI_LINK_TRAIN_NONE;
3386         temp |= FDI_LINK_TRAIN_PATTERN_2;
3387         I915_WRITE(reg, temp);
3388
3389         POSTING_READ(reg);
3390         udelay(150);
3391
3392         reg = FDI_RX_IIR(pipe);
3393         for (tries = 0; tries < 5; tries++) {
3394                 temp = I915_READ(reg);
3395                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3396
3397                 if (temp & FDI_RX_SYMBOL_LOCK) {
3398                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3399                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3400                         break;
3401                 }
3402         }
3403         if (tries == 5)
3404                 DRM_ERROR("FDI train 2 fail!\n");
3405
3406         DRM_DEBUG_KMS("FDI train done\n");
3407
3408 }
3409
3410 static const int snb_b_fdi_train_param[] = {
3411         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3412         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3413         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3414         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3415 };
3416
3417 /* The FDI link training functions for SNB/Cougarpoint. */
3418 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3419 {
3420         struct drm_device *dev = crtc->dev;
3421         struct drm_i915_private *dev_priv = dev->dev_private;
3422         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3423         int pipe = intel_crtc->pipe;
3424         i915_reg_t reg;
3425         u32 temp, i, retry;
3426
3427         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3428            for train result */
3429         reg = FDI_RX_IMR(pipe);
3430         temp = I915_READ(reg);
3431         temp &= ~FDI_RX_SYMBOL_LOCK;
3432         temp &= ~FDI_RX_BIT_LOCK;
3433         I915_WRITE(reg, temp);
3434
3435         POSTING_READ(reg);
3436         udelay(150);
3437
3438         /* enable CPU FDI TX and PCH FDI RX */
3439         reg = FDI_TX_CTL(pipe);
3440         temp = I915_READ(reg);
3441         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3442         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3443         temp &= ~FDI_LINK_TRAIN_NONE;
3444         temp |= FDI_LINK_TRAIN_PATTERN_1;
3445         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3446         /* SNB-B */
3447         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3448         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3449
3450         I915_WRITE(FDI_RX_MISC(pipe),
3451                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3452
3453         reg = FDI_RX_CTL(pipe);
3454         temp = I915_READ(reg);
3455         if (HAS_PCH_CPT(dev)) {
3456                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3457                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3458         } else {
3459                 temp &= ~FDI_LINK_TRAIN_NONE;
3460                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3461         }
3462         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3463
3464         POSTING_READ(reg);
3465         udelay(150);
3466
3467         for (i = 0; i < 4; i++) {
3468                 reg = FDI_TX_CTL(pipe);
3469                 temp = I915_READ(reg);
3470                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3471                 temp |= snb_b_fdi_train_param[i];
3472                 I915_WRITE(reg, temp);
3473
3474                 POSTING_READ(reg);
3475                 udelay(500);
3476
3477                 for (retry = 0; retry < 5; retry++) {
3478                         reg = FDI_RX_IIR(pipe);
3479                         temp = I915_READ(reg);
3480                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3481                         if (temp & FDI_RX_BIT_LOCK) {
3482                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3483                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3484                                 break;
3485                         }
3486                         udelay(50);
3487                 }
3488                 if (retry < 5)
3489                         break;
3490         }
3491         if (i == 4)
3492                 DRM_ERROR("FDI train 1 fail!\n");
3493
3494         /* Train 2 */
3495         reg = FDI_TX_CTL(pipe);
3496         temp = I915_READ(reg);
3497         temp &= ~FDI_LINK_TRAIN_NONE;
3498         temp |= FDI_LINK_TRAIN_PATTERN_2;
3499         if (IS_GEN6(dev)) {
3500                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3501                 /* SNB-B */
3502                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3503         }
3504         I915_WRITE(reg, temp);
3505
3506         reg = FDI_RX_CTL(pipe);
3507         temp = I915_READ(reg);
3508         if (HAS_PCH_CPT(dev)) {
3509                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3510                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3511         } else {
3512                 temp &= ~FDI_LINK_TRAIN_NONE;
3513                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3514         }
3515         I915_WRITE(reg, temp);
3516
3517         POSTING_READ(reg);
3518         udelay(150);
3519
3520         for (i = 0; i < 4; i++) {
3521                 reg = FDI_TX_CTL(pipe);
3522                 temp = I915_READ(reg);
3523                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3524                 temp |= snb_b_fdi_train_param[i];
3525                 I915_WRITE(reg, temp);
3526
3527                 POSTING_READ(reg);
3528                 udelay(500);
3529
3530                 for (retry = 0; retry < 5; retry++) {
3531                         reg = FDI_RX_IIR(pipe);
3532                         temp = I915_READ(reg);
3533                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3534                         if (temp & FDI_RX_SYMBOL_LOCK) {
3535                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3536                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3537                                 break;
3538                         }
3539                         udelay(50);
3540                 }
3541                 if (retry < 5)
3542                         break;
3543         }
3544         if (i == 4)
3545                 DRM_ERROR("FDI train 2 fail!\n");
3546
3547         DRM_DEBUG_KMS("FDI train done.\n");
3548 }
3549
3550 /* Manual link training for Ivy Bridge A0 parts */
3551 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3552 {
3553         struct drm_device *dev = crtc->dev;
3554         struct drm_i915_private *dev_priv = dev->dev_private;
3555         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3556         int pipe = intel_crtc->pipe;
3557         i915_reg_t reg;
3558         u32 temp, i, j;
3559
3560         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3561            for train result */
3562         reg = FDI_RX_IMR(pipe);
3563         temp = I915_READ(reg);
3564         temp &= ~FDI_RX_SYMBOL_LOCK;
3565         temp &= ~FDI_RX_BIT_LOCK;
3566         I915_WRITE(reg, temp);
3567
3568         POSTING_READ(reg);
3569         udelay(150);
3570
3571         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3572                       I915_READ(FDI_RX_IIR(pipe)));
3573
3574         /* Try each vswing and preemphasis setting twice before moving on */
3575         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3576                 /* disable first in case we need to retry */
3577                 reg = FDI_TX_CTL(pipe);
3578                 temp = I915_READ(reg);
3579                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3580                 temp &= ~FDI_TX_ENABLE;
3581                 I915_WRITE(reg, temp);
3582
3583                 reg = FDI_RX_CTL(pipe);
3584                 temp = I915_READ(reg);
3585                 temp &= ~FDI_LINK_TRAIN_AUTO;
3586                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3587                 temp &= ~FDI_RX_ENABLE;
3588                 I915_WRITE(reg, temp);
3589
3590                 /* enable CPU FDI TX and PCH FDI RX */
3591                 reg = FDI_TX_CTL(pipe);
3592                 temp = I915_READ(reg);
3593                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3594                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3595                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3596                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3597                 temp |= snb_b_fdi_train_param[j/2];
3598                 temp |= FDI_COMPOSITE_SYNC;
3599                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3600
3601                 I915_WRITE(FDI_RX_MISC(pipe),
3602                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3603
3604                 reg = FDI_RX_CTL(pipe);
3605                 temp = I915_READ(reg);
3606                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3607                 temp |= FDI_COMPOSITE_SYNC;
3608                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3609
3610                 POSTING_READ(reg);
3611                 udelay(1); /* should be 0.5us */
3612
3613                 for (i = 0; i < 4; i++) {
3614                         reg = FDI_RX_IIR(pipe);
3615                         temp = I915_READ(reg);
3616                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3617
3618                         if (temp & FDI_RX_BIT_LOCK ||
3619                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3620                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3621                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3622                                               i);
3623                                 break;
3624                         }
3625                         udelay(1); /* should be 0.5us */
3626                 }
3627                 if (i == 4) {
3628                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3629                         continue;
3630                 }
3631
3632                 /* Train 2 */
3633                 reg = FDI_TX_CTL(pipe);
3634                 temp = I915_READ(reg);
3635                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3636                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3637                 I915_WRITE(reg, temp);
3638
3639                 reg = FDI_RX_CTL(pipe);
3640                 temp = I915_READ(reg);
3641                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3642                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3643                 I915_WRITE(reg, temp);
3644
3645                 POSTING_READ(reg);
3646                 udelay(2); /* should be 1.5us */
3647
3648                 for (i = 0; i < 4; i++) {
3649                         reg = FDI_RX_IIR(pipe);
3650                         temp = I915_READ(reg);
3651                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3652
3653                         if (temp & FDI_RX_SYMBOL_LOCK ||
3654                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3655                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3656                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3657                                               i);
3658                                 goto train_done;
3659                         }
3660                         udelay(2); /* should be 1.5us */
3661                 }
3662                 if (i == 4)
3663                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3664         }
3665
3666 train_done:
3667         DRM_DEBUG_KMS("FDI train done.\n");
3668 }
3669
3670 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3671 {
3672         struct drm_device *dev = intel_crtc->base.dev;
3673         struct drm_i915_private *dev_priv = dev->dev_private;
3674         int pipe = intel_crtc->pipe;
3675         i915_reg_t reg;
3676         u32 temp;
3677
3678         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3679         reg = FDI_RX_CTL(pipe);
3680         temp = I915_READ(reg);
3681         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3682         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3683         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3684         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3685
3686         POSTING_READ(reg);
3687         udelay(200);
3688
3689         /* Switch from Rawclk to PCDclk */
3690         temp = I915_READ(reg);
3691         I915_WRITE(reg, temp | FDI_PCDCLK);
3692
3693         POSTING_READ(reg);
3694         udelay(200);
3695
3696         /* Enable CPU FDI TX PLL, always on for Ironlake */
3697         reg = FDI_TX_CTL(pipe);
3698         temp = I915_READ(reg);
3699         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3700                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3701
3702                 POSTING_READ(reg);
3703                 udelay(100);
3704         }
3705 }
3706
3707 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3708 {
3709         struct drm_device *dev = intel_crtc->base.dev;
3710         struct drm_i915_private *dev_priv = dev->dev_private;
3711         int pipe = intel_crtc->pipe;
3712         i915_reg_t reg;
3713         u32 temp;
3714
3715         /* Switch from PCDclk to Rawclk */
3716         reg = FDI_RX_CTL(pipe);
3717         temp = I915_READ(reg);
3718         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3719
3720         /* Disable CPU FDI TX PLL */
3721         reg = FDI_TX_CTL(pipe);
3722         temp = I915_READ(reg);
3723         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3724
3725         POSTING_READ(reg);
3726         udelay(100);
3727
3728         reg = FDI_RX_CTL(pipe);
3729         temp = I915_READ(reg);
3730         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3731
3732         /* Wait for the clocks to turn off. */
3733         POSTING_READ(reg);
3734         udelay(100);
3735 }
3736
3737 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3738 {
3739         struct drm_device *dev = crtc->dev;
3740         struct drm_i915_private *dev_priv = dev->dev_private;
3741         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3742         int pipe = intel_crtc->pipe;
3743         i915_reg_t reg;
3744         u32 temp;
3745
3746         /* disable CPU FDI tx and PCH FDI rx */
3747         reg = FDI_TX_CTL(pipe);
3748         temp = I915_READ(reg);
3749         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3750         POSTING_READ(reg);
3751
3752         reg = FDI_RX_CTL(pipe);
3753         temp = I915_READ(reg);
3754         temp &= ~(0x7 << 16);
3755         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3756         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3757
3758         POSTING_READ(reg);
3759         udelay(100);
3760
3761         /* Ironlake workaround, disable clock pointer after downing FDI */
3762         if (HAS_PCH_IBX(dev))
3763                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3764
3765         /* still set train pattern 1 */
3766         reg = FDI_TX_CTL(pipe);
3767         temp = I915_READ(reg);
3768         temp &= ~FDI_LINK_TRAIN_NONE;
3769         temp |= FDI_LINK_TRAIN_PATTERN_1;
3770         I915_WRITE(reg, temp);
3771
3772         reg = FDI_RX_CTL(pipe);
3773         temp = I915_READ(reg);
3774         if (HAS_PCH_CPT(dev)) {
3775                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3776                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3777         } else {
3778                 temp &= ~FDI_LINK_TRAIN_NONE;
3779                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3780         }
3781         /* BPC in FDI rx is consistent with that in PIPECONF */
3782         temp &= ~(0x07 << 16);
3783         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3784         I915_WRITE(reg, temp);
3785
3786         POSTING_READ(reg);
3787         udelay(100);
3788 }
3789
3790 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3791 {
3792         struct intel_crtc *crtc;
3793
3794         /* Note that we don't need to be called with mode_config.lock here
3795          * as our list of CRTC objects is static for the lifetime of the
3796          * device and so cannot disappear as we iterate. Similarly, we can
3797          * happily treat the predicates as racy, atomic checks as userspace
3798          * cannot claim and pin a new fb without at least acquring the
3799          * struct_mutex and so serialising with us.
3800          */
3801         for_each_intel_crtc(dev, crtc) {
3802                 if (atomic_read(&crtc->unpin_work_count) == 0)
3803                         continue;
3804
3805                 if (crtc->unpin_work)
3806                         intel_wait_for_vblank(dev, crtc->pipe);
3807
3808                 return true;
3809         }
3810
3811         return false;
3812 }
3813
3814 static void page_flip_completed(struct intel_crtc *intel_crtc)
3815 {
3816         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3817         struct intel_unpin_work *work = intel_crtc->unpin_work;
3818
3819         /* ensure that the unpin work is consistent wrt ->pending. */
3820         smp_rmb();
3821         intel_crtc->unpin_work = NULL;
3822
3823         if (work->event)
3824                 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
3825
3826         drm_crtc_vblank_put(&intel_crtc->base);
3827
3828         wake_up_all(&dev_priv->pending_flip_queue);
3829         queue_work(dev_priv->wq, &work->work);
3830
3831         trace_i915_flip_complete(intel_crtc->plane,
3832                                  work->pending_flip_obj);
3833 }
3834
3835 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3836 {
3837         struct drm_device *dev = crtc->dev;
3838         struct drm_i915_private *dev_priv = dev->dev_private;
3839         long ret;
3840
3841         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3842
3843         ret = wait_event_interruptible_timeout(
3844                                         dev_priv->pending_flip_queue,
3845                                         !intel_crtc_has_pending_flip(crtc),
3846                                         60*HZ);
3847
3848         if (ret < 0)
3849                 return ret;
3850
3851         if (ret == 0) {
3852                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3853
3854                 spin_lock_irq(&dev->event_lock);
3855                 if (intel_crtc->unpin_work) {
3856                         WARN_ONCE(1, "Removing stuck page flip\n");
3857                         page_flip_completed(intel_crtc);
3858                 }
3859                 spin_unlock_irq(&dev->event_lock);
3860         }
3861
3862         return 0;
3863 }
3864
3865 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3866 {
3867         u32 temp;
3868
3869         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3870
3871         mutex_lock(&dev_priv->sb_lock);
3872
3873         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3874         temp |= SBI_SSCCTL_DISABLE;
3875         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3876
3877         mutex_unlock(&dev_priv->sb_lock);
3878 }
3879
3880 /* Program iCLKIP clock to the desired frequency */
3881 static void lpt_program_iclkip(struct drm_crtc *crtc)
3882 {
3883         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3884         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3885         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3886         u32 temp;
3887
3888         lpt_disable_iclkip(dev_priv);
3889
3890         /* The iCLK virtual clock root frequency is in MHz,
3891          * but the adjusted_mode->crtc_clock in in KHz. To get the
3892          * divisors, it is necessary to divide one by another, so we
3893          * convert the virtual clock precision to KHz here for higher
3894          * precision.
3895          */
3896         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
3897                 u32 iclk_virtual_root_freq = 172800 * 1000;
3898                 u32 iclk_pi_range = 64;
3899                 u32 desired_divisor;
3900
3901                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3902                                                     clock << auxdiv);
3903                 divsel = (desired_divisor / iclk_pi_range) - 2;
3904                 phaseinc = desired_divisor % iclk_pi_range;
3905
3906                 /*
3907                  * Near 20MHz is a corner case which is
3908                  * out of range for the 7-bit divisor
3909                  */
3910                 if (divsel <= 0x7f)
3911                         break;
3912         }
3913
3914         /* This should not happen with any sane values */
3915         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3916                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3917         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3918                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3919
3920         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3921                         clock,
3922                         auxdiv,
3923                         divsel,
3924                         phasedir,
3925                         phaseinc);
3926
3927         mutex_lock(&dev_priv->sb_lock);
3928
3929         /* Program SSCDIVINTPHASE6 */
3930         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3931         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3932         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3933         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3934         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3935         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3936         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3937         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3938
3939         /* Program SSCAUXDIV */
3940         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3941         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3942         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3943         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3944
3945         /* Enable modulator and associated divider */
3946         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3947         temp &= ~SBI_SSCCTL_DISABLE;
3948         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3949
3950         mutex_unlock(&dev_priv->sb_lock);
3951
3952         /* Wait for initialization time */
3953         udelay(24);
3954
3955         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3956 }
3957
3958 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3959 {
3960         u32 divsel, phaseinc, auxdiv;
3961         u32 iclk_virtual_root_freq = 172800 * 1000;
3962         u32 iclk_pi_range = 64;
3963         u32 desired_divisor;
3964         u32 temp;
3965
3966         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3967                 return 0;
3968
3969         mutex_lock(&dev_priv->sb_lock);
3970
3971         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3972         if (temp & SBI_SSCCTL_DISABLE) {
3973                 mutex_unlock(&dev_priv->sb_lock);
3974                 return 0;
3975         }
3976
3977         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3978         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
3979                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
3980         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
3981                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
3982
3983         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3984         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
3985                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
3986
3987         mutex_unlock(&dev_priv->sb_lock);
3988
3989         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
3990
3991         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3992                                  desired_divisor << auxdiv);
3993 }
3994
3995 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3996                                                 enum pipe pch_transcoder)
3997 {
3998         struct drm_device *dev = crtc->base.dev;
3999         struct drm_i915_private *dev_priv = dev->dev_private;
4000         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4001
4002         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4003                    I915_READ(HTOTAL(cpu_transcoder)));
4004         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4005                    I915_READ(HBLANK(cpu_transcoder)));
4006         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4007                    I915_READ(HSYNC(cpu_transcoder)));
4008
4009         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4010                    I915_READ(VTOTAL(cpu_transcoder)));
4011         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4012                    I915_READ(VBLANK(cpu_transcoder)));
4013         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4014                    I915_READ(VSYNC(cpu_transcoder)));
4015         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4016                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4017 }
4018
4019 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4020 {
4021         struct drm_i915_private *dev_priv = dev->dev_private;
4022         uint32_t temp;
4023
4024         temp = I915_READ(SOUTH_CHICKEN1);
4025         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4026                 return;
4027
4028         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4029         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4030
4031         temp &= ~FDI_BC_BIFURCATION_SELECT;
4032         if (enable)
4033                 temp |= FDI_BC_BIFURCATION_SELECT;
4034
4035         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4036         I915_WRITE(SOUTH_CHICKEN1, temp);
4037         POSTING_READ(SOUTH_CHICKEN1);
4038 }
4039
4040 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4041 {
4042         struct drm_device *dev = intel_crtc->base.dev;
4043
4044         switch (intel_crtc->pipe) {
4045         case PIPE_A:
4046                 break;
4047         case PIPE_B:
4048                 if (intel_crtc->config->fdi_lanes > 2)
4049                         cpt_set_fdi_bc_bifurcation(dev, false);
4050                 else
4051                         cpt_set_fdi_bc_bifurcation(dev, true);
4052
4053                 break;
4054         case PIPE_C:
4055                 cpt_set_fdi_bc_bifurcation(dev, true);
4056
4057                 break;
4058         default:
4059                 BUG();
4060         }
4061 }
4062
4063 /* Return which DP Port should be selected for Transcoder DP control */
4064 static enum port
4065 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4066 {
4067         struct drm_device *dev = crtc->dev;
4068         struct intel_encoder *encoder;
4069
4070         for_each_encoder_on_crtc(dev, crtc, encoder) {
4071                 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4072                     encoder->type == INTEL_OUTPUT_EDP)
4073                         return enc_to_dig_port(&encoder->base)->port;
4074         }
4075
4076         return -1;
4077 }
4078
4079 /*
4080  * Enable PCH resources required for PCH ports:
4081  *   - PCH PLLs
4082  *   - FDI training & RX/TX
4083  *   - update transcoder timings
4084  *   - DP transcoding bits
4085  *   - transcoder
4086  */
4087 static void ironlake_pch_enable(struct drm_crtc *crtc)
4088 {
4089         struct drm_device *dev = crtc->dev;
4090         struct drm_i915_private *dev_priv = dev->dev_private;
4091         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4092         int pipe = intel_crtc->pipe;
4093         u32 temp;
4094
4095         assert_pch_transcoder_disabled(dev_priv, pipe);
4096
4097         if (IS_IVYBRIDGE(dev))
4098                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4099
4100         /* Write the TU size bits before fdi link training, so that error
4101          * detection works. */
4102         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4103                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4104
4105         /* For PCH output, training FDI link */
4106         dev_priv->display.fdi_link_train(crtc);
4107
4108         /* We need to program the right clock selection before writing the pixel
4109          * mutliplier into the DPLL. */
4110         if (HAS_PCH_CPT(dev)) {
4111                 u32 sel;
4112
4113                 temp = I915_READ(PCH_DPLL_SEL);
4114                 temp |= TRANS_DPLL_ENABLE(pipe);
4115                 sel = TRANS_DPLLB_SEL(pipe);
4116                 if (intel_crtc->config->shared_dpll ==
4117                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4118                         temp |= sel;
4119                 else
4120                         temp &= ~sel;
4121                 I915_WRITE(PCH_DPLL_SEL, temp);
4122         }
4123
4124         /* XXX: pch pll's can be enabled any time before we enable the PCH
4125          * transcoder, and we actually should do this to not upset any PCH
4126          * transcoder that already use the clock when we share it.
4127          *
4128          * Note that enable_shared_dpll tries to do the right thing, but
4129          * get_shared_dpll unconditionally resets the pll - we need that to have
4130          * the right LVDS enable sequence. */
4131         intel_enable_shared_dpll(intel_crtc);
4132
4133         /* set transcoder timing, panel must allow it */
4134         assert_panel_unlocked(dev_priv, pipe);
4135         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4136
4137         intel_fdi_normal_train(crtc);
4138
4139         /* For PCH DP, enable TRANS_DP_CTL */
4140         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4141                 const struct drm_display_mode *adjusted_mode =
4142                         &intel_crtc->config->base.adjusted_mode;
4143                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4144                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4145                 temp = I915_READ(reg);
4146                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4147                           TRANS_DP_SYNC_MASK |
4148                           TRANS_DP_BPC_MASK);
4149                 temp |= TRANS_DP_OUTPUT_ENABLE;
4150                 temp |= bpc << 9; /* same format but at 11:9 */
4151
4152                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4153                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4154                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4155                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4156
4157                 switch (intel_trans_dp_port_sel(crtc)) {
4158                 case PORT_B:
4159                         temp |= TRANS_DP_PORT_SEL_B;
4160                         break;
4161                 case PORT_C:
4162                         temp |= TRANS_DP_PORT_SEL_C;
4163                         break;
4164                 case PORT_D:
4165                         temp |= TRANS_DP_PORT_SEL_D;
4166                         break;
4167                 default:
4168                         BUG();
4169                 }
4170
4171                 I915_WRITE(reg, temp);
4172         }
4173
4174         ironlake_enable_pch_transcoder(dev_priv, pipe);
4175 }
4176
4177 static void lpt_pch_enable(struct drm_crtc *crtc)
4178 {
4179         struct drm_device *dev = crtc->dev;
4180         struct drm_i915_private *dev_priv = dev->dev_private;
4181         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4182         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4183
4184         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4185
4186         lpt_program_iclkip(crtc);
4187
4188         /* Set transcoder timing. */
4189         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4190
4191         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4192 }
4193
4194 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4195 {
4196         struct drm_i915_private *dev_priv = dev->dev_private;
4197         i915_reg_t dslreg = PIPEDSL(pipe);
4198         u32 temp;
4199
4200         temp = I915_READ(dslreg);
4201         udelay(500);
4202         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4203                 if (wait_for(I915_READ(dslreg) != temp, 5))
4204                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4205         }
4206 }
4207
4208 static int
4209 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4210                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4211                   int src_w, int src_h, int dst_w, int dst_h)
4212 {
4213         struct intel_crtc_scaler_state *scaler_state =
4214                 &crtc_state->scaler_state;
4215         struct intel_crtc *intel_crtc =
4216                 to_intel_crtc(crtc_state->base.crtc);
4217         int need_scaling;
4218
4219         need_scaling = intel_rotation_90_or_270(rotation) ?
4220                 (src_h != dst_w || src_w != dst_h):
4221                 (src_w != dst_w || src_h != dst_h);
4222
4223         /*
4224          * if plane is being disabled or scaler is no more required or force detach
4225          *  - free scaler binded to this plane/crtc
4226          *  - in order to do this, update crtc->scaler_usage
4227          *
4228          * Here scaler state in crtc_state is set free so that
4229          * scaler can be assigned to other user. Actual register
4230          * update to free the scaler is done in plane/panel-fit programming.
4231          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4232          */
4233         if (force_detach || !need_scaling) {
4234                 if (*scaler_id >= 0) {
4235                         scaler_state->scaler_users &= ~(1 << scaler_user);
4236                         scaler_state->scalers[*scaler_id].in_use = 0;
4237
4238                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4239                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4240                                 intel_crtc->pipe, scaler_user, *scaler_id,
4241                                 scaler_state->scaler_users);
4242                         *scaler_id = -1;
4243                 }
4244                 return 0;
4245         }
4246
4247         /* range checks */
4248         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4249                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4250
4251                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4252                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4253                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4254                         "size is out of scaler range\n",
4255                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4256                 return -EINVAL;
4257         }
4258
4259         /* mark this plane as a scaler user in crtc_state */
4260         scaler_state->scaler_users |= (1 << scaler_user);
4261         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4262                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4263                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4264                 scaler_state->scaler_users);
4265
4266         return 0;
4267 }
4268
4269 /**
4270  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4271  *
4272  * @state: crtc's scaler state
4273  *
4274  * Return
4275  *     0 - scaler_usage updated successfully
4276  *    error - requested scaling cannot be supported or other error condition
4277  */
4278 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4279 {
4280         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4281         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4282
4283         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4284                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4285
4286         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4287                 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4288                 state->pipe_src_w, state->pipe_src_h,
4289                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4290 }
4291
4292 /**
4293  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4294  *
4295  * @state: crtc's scaler state
4296  * @plane_state: atomic plane state to update
4297  *
4298  * Return
4299  *     0 - scaler_usage updated successfully
4300  *    error - requested scaling cannot be supported or other error condition
4301  */
4302 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4303                                    struct intel_plane_state *plane_state)
4304 {
4305
4306         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4307         struct intel_plane *intel_plane =
4308                 to_intel_plane(plane_state->base.plane);
4309         struct drm_framebuffer *fb = plane_state->base.fb;
4310         int ret;
4311
4312         bool force_detach = !fb || !plane_state->visible;
4313
4314         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4315                       intel_plane->base.base.id, intel_crtc->pipe,
4316                       drm_plane_index(&intel_plane->base));
4317
4318         ret = skl_update_scaler(crtc_state, force_detach,
4319                                 drm_plane_index(&intel_plane->base),
4320                                 &plane_state->scaler_id,
4321                                 plane_state->base.rotation,
4322                                 drm_rect_width(&plane_state->src) >> 16,
4323                                 drm_rect_height(&plane_state->src) >> 16,
4324                                 drm_rect_width(&plane_state->dst),
4325                                 drm_rect_height(&plane_state->dst));
4326
4327         if (ret || plane_state->scaler_id < 0)
4328                 return ret;
4329
4330         /* check colorkey */
4331         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4332                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4333                               intel_plane->base.base.id);
4334                 return -EINVAL;
4335         }
4336
4337         /* Check src format */
4338         switch (fb->pixel_format) {
4339         case DRM_FORMAT_RGB565:
4340         case DRM_FORMAT_XBGR8888:
4341         case DRM_FORMAT_XRGB8888:
4342         case DRM_FORMAT_ABGR8888:
4343         case DRM_FORMAT_ARGB8888:
4344         case DRM_FORMAT_XRGB2101010:
4345         case DRM_FORMAT_XBGR2101010:
4346         case DRM_FORMAT_YUYV:
4347         case DRM_FORMAT_YVYU:
4348         case DRM_FORMAT_UYVY:
4349         case DRM_FORMAT_VYUY:
4350                 break;
4351         default:
4352                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4353                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4354                 return -EINVAL;
4355         }
4356
4357         return 0;
4358 }
4359
4360 static void skylake_scaler_disable(struct intel_crtc *crtc)
4361 {
4362         int i;
4363
4364         for (i = 0; i < crtc->num_scalers; i++)
4365                 skl_detach_scaler(crtc, i);
4366 }
4367
4368 static void skylake_pfit_enable(struct intel_crtc *crtc)
4369 {
4370         struct drm_device *dev = crtc->base.dev;
4371         struct drm_i915_private *dev_priv = dev->dev_private;
4372         int pipe = crtc->pipe;
4373         struct intel_crtc_scaler_state *scaler_state =
4374                 &crtc->config->scaler_state;
4375
4376         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4377
4378         if (crtc->config->pch_pfit.enabled) {
4379                 int id;
4380
4381                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4382                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4383                         return;
4384                 }
4385
4386                 id = scaler_state->scaler_id;
4387                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4388                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4389                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4390                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4391
4392                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4393         }
4394 }
4395
4396 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4397 {
4398         struct drm_device *dev = crtc->base.dev;
4399         struct drm_i915_private *dev_priv = dev->dev_private;
4400         int pipe = crtc->pipe;
4401
4402         if (crtc->config->pch_pfit.enabled) {
4403                 /* Force use of hard-coded filter coefficients
4404                  * as some pre-programmed values are broken,
4405                  * e.g. x201.
4406                  */
4407                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4408                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4409                                                  PF_PIPE_SEL_IVB(pipe));
4410                 else
4411                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4412                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4413                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4414         }
4415 }
4416
4417 void hsw_enable_ips(struct intel_crtc *crtc)
4418 {
4419         struct drm_device *dev = crtc->base.dev;
4420         struct drm_i915_private *dev_priv = dev->dev_private;
4421
4422         if (!crtc->config->ips_enabled)
4423                 return;
4424
4425         /*
4426          * We can only enable IPS after we enable a plane and wait for a vblank
4427          * This function is called from post_plane_update, which is run after
4428          * a vblank wait.
4429          */
4430
4431         assert_plane_enabled(dev_priv, crtc->plane);
4432         if (IS_BROADWELL(dev)) {
4433                 mutex_lock(&dev_priv->rps.hw_lock);
4434                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4435                 mutex_unlock(&dev_priv->rps.hw_lock);
4436                 /* Quoting Art Runyan: "its not safe to expect any particular
4437                  * value in IPS_CTL bit 31 after enabling IPS through the
4438                  * mailbox." Moreover, the mailbox may return a bogus state,
4439                  * so we need to just enable it and continue on.
4440                  */
4441         } else {
4442                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4443                 /* The bit only becomes 1 in the next vblank, so this wait here
4444                  * is essentially intel_wait_for_vblank. If we don't have this
4445                  * and don't wait for vblanks until the end of crtc_enable, then
4446                  * the HW state readout code will complain that the expected
4447                  * IPS_CTL value is not the one we read. */
4448                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4449                         DRM_ERROR("Timed out waiting for IPS enable\n");
4450         }
4451 }
4452
4453 void hsw_disable_ips(struct intel_crtc *crtc)
4454 {
4455         struct drm_device *dev = crtc->base.dev;
4456         struct drm_i915_private *dev_priv = dev->dev_private;
4457
4458         if (!crtc->config->ips_enabled)
4459                 return;
4460
4461         assert_plane_enabled(dev_priv, crtc->plane);
4462         if (IS_BROADWELL(dev)) {
4463                 mutex_lock(&dev_priv->rps.hw_lock);
4464                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4465                 mutex_unlock(&dev_priv->rps.hw_lock);
4466                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4467                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4468                         DRM_ERROR("Timed out waiting for IPS disable\n");
4469         } else {
4470                 I915_WRITE(IPS_CTL, 0);
4471                 POSTING_READ(IPS_CTL);
4472         }
4473
4474         /* We need to wait for a vblank before we can disable the plane. */
4475         intel_wait_for_vblank(dev, crtc->pipe);
4476 }
4477
4478 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4479 {
4480         if (intel_crtc->overlay) {
4481                 struct drm_device *dev = intel_crtc->base.dev;
4482                 struct drm_i915_private *dev_priv = dev->dev_private;
4483
4484                 mutex_lock(&dev->struct_mutex);
4485                 dev_priv->mm.interruptible = false;
4486                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4487                 dev_priv->mm.interruptible = true;
4488                 mutex_unlock(&dev->struct_mutex);
4489         }
4490
4491         /* Let userspace switch the overlay on again. In most cases userspace
4492          * has to recompute where to put it anyway.
4493          */
4494 }
4495
4496 /**
4497  * intel_post_enable_primary - Perform operations after enabling primary plane
4498  * @crtc: the CRTC whose primary plane was just enabled
4499  *
4500  * Performs potentially sleeping operations that must be done after the primary
4501  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4502  * called due to an explicit primary plane update, or due to an implicit
4503  * re-enable that is caused when a sprite plane is updated to no longer
4504  * completely hide the primary plane.
4505  */
4506 static void
4507 intel_post_enable_primary(struct drm_crtc *crtc)
4508 {
4509         struct drm_device *dev = crtc->dev;
4510         struct drm_i915_private *dev_priv = dev->dev_private;
4511         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4512         int pipe = intel_crtc->pipe;
4513
4514         /*
4515          * FIXME IPS should be fine as long as one plane is
4516          * enabled, but in practice it seems to have problems
4517          * when going from primary only to sprite only and vice
4518          * versa.
4519          */
4520         hsw_enable_ips(intel_crtc);
4521
4522         /*
4523          * Gen2 reports pipe underruns whenever all planes are disabled.
4524          * So don't enable underrun reporting before at least some planes
4525          * are enabled.
4526          * FIXME: Need to fix the logic to work when we turn off all planes
4527          * but leave the pipe running.
4528          */
4529         if (IS_GEN2(dev))
4530                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4531
4532         /* Underruns don't always raise interrupts, so check manually. */
4533         intel_check_cpu_fifo_underruns(dev_priv);
4534         intel_check_pch_fifo_underruns(dev_priv);
4535 }
4536
4537 /* FIXME move all this to pre_plane_update() with proper state tracking */
4538 static void
4539 intel_pre_disable_primary(struct drm_crtc *crtc)
4540 {
4541         struct drm_device *dev = crtc->dev;
4542         struct drm_i915_private *dev_priv = dev->dev_private;
4543         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4544         int pipe = intel_crtc->pipe;
4545
4546         /*
4547          * Gen2 reports pipe underruns whenever all planes are disabled.
4548          * So diasble underrun reporting before all the planes get disabled.
4549          * FIXME: Need to fix the logic to work when we turn off all planes
4550          * but leave the pipe running.
4551          */
4552         if (IS_GEN2(dev))
4553                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4554
4555         /*
4556          * FIXME IPS should be fine as long as one plane is
4557          * enabled, but in practice it seems to have problems
4558          * when going from primary only to sprite only and vice
4559          * versa.
4560          */
4561         hsw_disable_ips(intel_crtc);
4562 }
4563
4564 /* FIXME get rid of this and use pre_plane_update */
4565 static void
4566 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4567 {
4568         struct drm_device *dev = crtc->dev;
4569         struct drm_i915_private *dev_priv = dev->dev_private;
4570         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4571         int pipe = intel_crtc->pipe;
4572
4573         intel_pre_disable_primary(crtc);
4574
4575         /*
4576          * Vblank time updates from the shadow to live plane control register
4577          * are blocked if the memory self-refresh mode is active at that
4578          * moment. So to make sure the plane gets truly disabled, disable
4579          * first the self-refresh mode. The self-refresh enable bit in turn
4580          * will be checked/applied by the HW only at the next frame start
4581          * event which is after the vblank start event, so we need to have a
4582          * wait-for-vblank between disabling the plane and the pipe.
4583          */
4584         if (HAS_GMCH_DISPLAY(dev)) {
4585                 intel_set_memory_cxsr(dev_priv, false);
4586                 dev_priv->wm.vlv.cxsr = false;
4587                 intel_wait_for_vblank(dev, pipe);
4588         }
4589 }
4590
4591 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4592 {
4593         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4594         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4595         struct intel_crtc_state *pipe_config =
4596                 to_intel_crtc_state(crtc->base.state);
4597         struct drm_device *dev = crtc->base.dev;
4598         struct drm_plane *primary = crtc->base.primary;
4599         struct drm_plane_state *old_pri_state =
4600                 drm_atomic_get_existing_plane_state(old_state, primary);
4601
4602         intel_frontbuffer_flip(dev, pipe_config->fb_bits);
4603
4604         crtc->wm.cxsr_allowed = true;
4605
4606         if (pipe_config->update_wm_post && pipe_config->base.active)
4607                 intel_update_watermarks(&crtc->base);
4608
4609         if (old_pri_state) {
4610                 struct intel_plane_state *primary_state =
4611                         to_intel_plane_state(primary->state);
4612                 struct intel_plane_state *old_primary_state =
4613                         to_intel_plane_state(old_pri_state);
4614
4615                 intel_fbc_post_update(crtc);
4616
4617                 if (primary_state->visible &&
4618                     (needs_modeset(&pipe_config->base) ||
4619                      !old_primary_state->visible))
4620                         intel_post_enable_primary(&crtc->base);
4621         }
4622 }
4623
4624 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4625 {
4626         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4627         struct drm_device *dev = crtc->base.dev;
4628         struct drm_i915_private *dev_priv = dev->dev_private;
4629         struct intel_crtc_state *pipe_config =
4630                 to_intel_crtc_state(crtc->base.state);
4631         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4632         struct drm_plane *primary = crtc->base.primary;
4633         struct drm_plane_state *old_pri_state =
4634                 drm_atomic_get_existing_plane_state(old_state, primary);
4635         bool modeset = needs_modeset(&pipe_config->base);
4636
4637         if (old_pri_state) {
4638                 struct intel_plane_state *primary_state =
4639                         to_intel_plane_state(primary->state);
4640                 struct intel_plane_state *old_primary_state =
4641                         to_intel_plane_state(old_pri_state);
4642
4643                 intel_fbc_pre_update(crtc);
4644
4645                 if (old_primary_state->visible &&
4646                     (modeset || !primary_state->visible))
4647                         intel_pre_disable_primary(&crtc->base);
4648         }
4649
4650         if (pipe_config->disable_cxsr) {
4651                 crtc->wm.cxsr_allowed = false;
4652
4653                 /*
4654                  * Vblank time updates from the shadow to live plane control register
4655                  * are blocked if the memory self-refresh mode is active at that
4656                  * moment. So to make sure the plane gets truly disabled, disable
4657                  * first the self-refresh mode. The self-refresh enable bit in turn
4658                  * will be checked/applied by the HW only at the next frame start
4659                  * event which is after the vblank start event, so we need to have a
4660                  * wait-for-vblank between disabling the plane and the pipe.
4661                  */
4662                 if (old_crtc_state->base.active) {
4663                         intel_set_memory_cxsr(dev_priv, false);
4664                         dev_priv->wm.vlv.cxsr = false;
4665                         intel_wait_for_vblank(dev, crtc->pipe);
4666                 }
4667         }
4668
4669         /*
4670          * IVB workaround: must disable low power watermarks for at least
4671          * one frame before enabling scaling.  LP watermarks can be re-enabled
4672          * when scaling is disabled.
4673          *
4674          * WaCxSRDisabledForSpriteScaling:ivb
4675          */
4676         if (pipe_config->disable_lp_wm) {
4677                 ilk_disable_lp_wm(dev);
4678                 intel_wait_for_vblank(dev, crtc->pipe);
4679         }
4680
4681         /*
4682          * If we're doing a modeset, we're done.  No need to do any pre-vblank
4683          * watermark programming here.
4684          */
4685         if (needs_modeset(&pipe_config->base))
4686                 return;
4687
4688         /*
4689          * For platforms that support atomic watermarks, program the
4690          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
4691          * will be the intermediate values that are safe for both pre- and
4692          * post- vblank; when vblank happens, the 'active' values will be set
4693          * to the final 'target' values and we'll do this again to get the
4694          * optimal watermarks.  For gen9+ platforms, the values we program here
4695          * will be the final target values which will get automatically latched
4696          * at vblank time; no further programming will be necessary.
4697          *
4698          * If a platform hasn't been transitioned to atomic watermarks yet,
4699          * we'll continue to update watermarks the old way, if flags tell
4700          * us to.
4701          */
4702         if (dev_priv->display.initial_watermarks != NULL)
4703                 dev_priv->display.initial_watermarks(pipe_config);
4704         else if (pipe_config->update_wm_pre)
4705                 intel_update_watermarks(&crtc->base);
4706 }
4707
4708 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4709 {
4710         struct drm_device *dev = crtc->dev;
4711         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4712         struct drm_plane *p;
4713         int pipe = intel_crtc->pipe;
4714
4715         intel_crtc_dpms_overlay_disable(intel_crtc);
4716
4717         drm_for_each_plane_mask(p, dev, plane_mask)
4718                 to_intel_plane(p)->disable_plane(p, crtc);
4719
4720         /*
4721          * FIXME: Once we grow proper nuclear flip support out of this we need
4722          * to compute the mask of flip planes precisely. For the time being
4723          * consider this a flip to a NULL plane.
4724          */
4725         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4726 }
4727
4728 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4729 {
4730         struct drm_device *dev = crtc->dev;
4731         struct drm_i915_private *dev_priv = dev->dev_private;
4732         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4733         struct intel_encoder *encoder;
4734         int pipe = intel_crtc->pipe;
4735         struct intel_crtc_state *pipe_config =
4736                 to_intel_crtc_state(crtc->state);
4737
4738         if (WARN_ON(intel_crtc->active))
4739                 return;
4740
4741         /*
4742          * Sometimes spurious CPU pipe underruns happen during FDI
4743          * training, at least with VGA+HDMI cloning. Suppress them.
4744          *
4745          * On ILK we get an occasional spurious CPU pipe underruns
4746          * between eDP port A enable and vdd enable. Also PCH port
4747          * enable seems to result in the occasional CPU pipe underrun.
4748          *
4749          * Spurious PCH underruns also occur during PCH enabling.
4750          */
4751         if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
4752                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4753         if (intel_crtc->config->has_pch_encoder)
4754                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4755
4756         if (intel_crtc->config->has_pch_encoder)
4757                 intel_prepare_shared_dpll(intel_crtc);
4758
4759         if (intel_crtc->config->has_dp_encoder)
4760                 intel_dp_set_m_n(intel_crtc, M1_N1);
4761
4762         intel_set_pipe_timings(intel_crtc);
4763         intel_set_pipe_src_size(intel_crtc);
4764
4765         if (intel_crtc->config->has_pch_encoder) {
4766                 intel_cpu_transcoder_set_m_n(intel_crtc,
4767                                      &intel_crtc->config->fdi_m_n, NULL);
4768         }
4769
4770         ironlake_set_pipeconf(crtc);
4771
4772         intel_crtc->active = true;
4773
4774         for_each_encoder_on_crtc(dev, crtc, encoder)
4775                 if (encoder->pre_enable)
4776                         encoder->pre_enable(encoder);
4777
4778         if (intel_crtc->config->has_pch_encoder) {
4779                 /* Note: FDI PLL enabling _must_ be done before we enable the
4780                  * cpu pipes, hence this is separate from all the other fdi/pch
4781                  * enabling. */
4782                 ironlake_fdi_pll_enable(intel_crtc);
4783         } else {
4784                 assert_fdi_tx_disabled(dev_priv, pipe);
4785                 assert_fdi_rx_disabled(dev_priv, pipe);
4786         }
4787
4788         ironlake_pfit_enable(intel_crtc);
4789
4790         /*
4791          * On ILK+ LUT must be loaded before the pipe is running but with
4792          * clocks enabled
4793          */
4794         intel_color_load_luts(&pipe_config->base);
4795
4796         if (dev_priv->display.initial_watermarks != NULL)
4797                 dev_priv->display.initial_watermarks(intel_crtc->config);
4798         intel_enable_pipe(intel_crtc);
4799
4800         if (intel_crtc->config->has_pch_encoder)
4801                 ironlake_pch_enable(crtc);
4802
4803         assert_vblank_disabled(crtc);
4804         drm_crtc_vblank_on(crtc);
4805
4806         for_each_encoder_on_crtc(dev, crtc, encoder)
4807                 encoder->enable(encoder);
4808
4809         if (HAS_PCH_CPT(dev))
4810                 cpt_verify_modeset(dev, intel_crtc->pipe);
4811
4812         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4813         if (intel_crtc->config->has_pch_encoder)
4814                 intel_wait_for_vblank(dev, pipe);
4815         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4816         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4817 }
4818
4819 /* IPS only exists on ULT machines and is tied to pipe A. */
4820 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4821 {
4822         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4823 }
4824
4825 static void haswell_crtc_enable(struct drm_crtc *crtc)
4826 {
4827         struct drm_device *dev = crtc->dev;
4828         struct drm_i915_private *dev_priv = dev->dev_private;
4829         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4830         struct intel_encoder *encoder;
4831         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4832         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4833         struct intel_crtc_state *pipe_config =
4834                 to_intel_crtc_state(crtc->state);
4835
4836         if (WARN_ON(intel_crtc->active))
4837                 return;
4838
4839         if (intel_crtc->config->has_pch_encoder)
4840                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4841                                                       false);
4842
4843         if (intel_crtc->config->shared_dpll)
4844                 intel_enable_shared_dpll(intel_crtc);
4845
4846         if (intel_crtc->config->has_dp_encoder)
4847                 intel_dp_set_m_n(intel_crtc, M1_N1);
4848
4849         if (!intel_crtc->config->has_dsi_encoder)
4850                 intel_set_pipe_timings(intel_crtc);
4851
4852         intel_set_pipe_src_size(intel_crtc);
4853
4854         if (cpu_transcoder != TRANSCODER_EDP &&
4855             !transcoder_is_dsi(cpu_transcoder)) {
4856                 I915_WRITE(PIPE_MULT(cpu_transcoder),
4857                            intel_crtc->config->pixel_multiplier - 1);
4858         }
4859
4860         if (intel_crtc->config->has_pch_encoder) {
4861                 intel_cpu_transcoder_set_m_n(intel_crtc,
4862                                      &intel_crtc->config->fdi_m_n, NULL);
4863         }
4864
4865         if (!intel_crtc->config->has_dsi_encoder)
4866                 haswell_set_pipeconf(crtc);
4867
4868         haswell_set_pipemisc(crtc);
4869
4870         intel_color_set_csc(&pipe_config->base);
4871
4872         intel_crtc->active = true;
4873
4874         if (intel_crtc->config->has_pch_encoder)
4875                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4876         else
4877                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4878
4879         for_each_encoder_on_crtc(dev, crtc, encoder) {
4880                 if (encoder->pre_enable)
4881                         encoder->pre_enable(encoder);
4882         }
4883
4884         if (intel_crtc->config->has_pch_encoder)
4885                 dev_priv->display.fdi_link_train(crtc);
4886
4887         if (!intel_crtc->config->has_dsi_encoder)
4888                 intel_ddi_enable_pipe_clock(intel_crtc);
4889
4890         if (INTEL_INFO(dev)->gen >= 9)
4891                 skylake_pfit_enable(intel_crtc);
4892         else
4893                 ironlake_pfit_enable(intel_crtc);
4894
4895         /*
4896          * On ILK+ LUT must be loaded before the pipe is running but with
4897          * clocks enabled
4898          */
4899         intel_color_load_luts(&pipe_config->base);
4900
4901         intel_ddi_set_pipe_settings(crtc);
4902         if (!intel_crtc->config->has_dsi_encoder)
4903                 intel_ddi_enable_transcoder_func(crtc);
4904
4905         if (dev_priv->display.initial_watermarks != NULL)
4906                 dev_priv->display.initial_watermarks(pipe_config);
4907         else
4908                 intel_update_watermarks(crtc);
4909
4910         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
4911         if (!intel_crtc->config->has_dsi_encoder)
4912                 intel_enable_pipe(intel_crtc);
4913
4914         if (intel_crtc->config->has_pch_encoder)
4915                 lpt_pch_enable(crtc);
4916
4917         if (intel_crtc->config->dp_encoder_is_mst)
4918                 intel_ddi_set_vc_payload_alloc(crtc, true);
4919
4920         assert_vblank_disabled(crtc);
4921         drm_crtc_vblank_on(crtc);
4922
4923         for_each_encoder_on_crtc(dev, crtc, encoder) {
4924                 encoder->enable(encoder);
4925                 intel_opregion_notify_encoder(encoder, true);
4926         }
4927
4928         if (intel_crtc->config->has_pch_encoder) {
4929                 intel_wait_for_vblank(dev, pipe);
4930                 intel_wait_for_vblank(dev, pipe);
4931                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4932                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4933                                                       true);
4934         }
4935
4936         /* If we change the relative order between pipe/planes enabling, we need
4937          * to change the workaround. */
4938         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4939         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4940                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4941                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4942         }
4943 }
4944
4945 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4946 {
4947         struct drm_device *dev = crtc->base.dev;
4948         struct drm_i915_private *dev_priv = dev->dev_private;
4949         int pipe = crtc->pipe;
4950
4951         /* To avoid upsetting the power well on haswell only disable the pfit if
4952          * it's in use. The hw state code will make sure we get this right. */
4953         if (force || crtc->config->pch_pfit.enabled) {
4954                 I915_WRITE(PF_CTL(pipe), 0);
4955                 I915_WRITE(PF_WIN_POS(pipe), 0);
4956                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4957         }
4958 }
4959
4960 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4961 {
4962         struct drm_device *dev = crtc->dev;
4963         struct drm_i915_private *dev_priv = dev->dev_private;
4964         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4965         struct intel_encoder *encoder;
4966         int pipe = intel_crtc->pipe;
4967
4968         /*
4969          * Sometimes spurious CPU pipe underruns happen when the
4970          * pipe is already disabled, but FDI RX/TX is still enabled.
4971          * Happens at least with VGA+HDMI cloning. Suppress them.
4972          */
4973         if (intel_crtc->config->has_pch_encoder) {
4974                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4975                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4976         }
4977
4978         for_each_encoder_on_crtc(dev, crtc, encoder)
4979                 encoder->disable(encoder);
4980
4981         drm_crtc_vblank_off(crtc);
4982         assert_vblank_disabled(crtc);
4983
4984         intel_disable_pipe(intel_crtc);
4985
4986         ironlake_pfit_disable(intel_crtc, false);
4987
4988         if (intel_crtc->config->has_pch_encoder)
4989                 ironlake_fdi_disable(crtc);
4990
4991         for_each_encoder_on_crtc(dev, crtc, encoder)
4992                 if (encoder->post_disable)
4993                         encoder->post_disable(encoder);
4994
4995         if (intel_crtc->config->has_pch_encoder) {
4996                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4997
4998                 if (HAS_PCH_CPT(dev)) {
4999                         i915_reg_t reg;
5000                         u32 temp;
5001
5002                         /* disable TRANS_DP_CTL */
5003                         reg = TRANS_DP_CTL(pipe);
5004                         temp = I915_READ(reg);
5005                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5006                                   TRANS_DP_PORT_SEL_MASK);
5007                         temp |= TRANS_DP_PORT_SEL_NONE;
5008                         I915_WRITE(reg, temp);
5009
5010                         /* disable DPLL_SEL */
5011                         temp = I915_READ(PCH_DPLL_SEL);
5012                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5013                         I915_WRITE(PCH_DPLL_SEL, temp);
5014                 }
5015
5016                 ironlake_fdi_pll_disable(intel_crtc);
5017         }
5018
5019         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5020         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5021 }
5022
5023 static void haswell_crtc_disable(struct drm_crtc *crtc)
5024 {
5025         struct drm_device *dev = crtc->dev;
5026         struct drm_i915_private *dev_priv = dev->dev_private;
5027         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5028         struct intel_encoder *encoder;
5029         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5030
5031         if (intel_crtc->config->has_pch_encoder)
5032                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5033                                                       false);
5034
5035         for_each_encoder_on_crtc(dev, crtc, encoder) {
5036                 intel_opregion_notify_encoder(encoder, false);
5037                 encoder->disable(encoder);
5038         }
5039
5040         drm_crtc_vblank_off(crtc);
5041         assert_vblank_disabled(crtc);
5042
5043         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5044         if (!intel_crtc->config->has_dsi_encoder)
5045                 intel_disable_pipe(intel_crtc);
5046
5047         if (intel_crtc->config->dp_encoder_is_mst)
5048                 intel_ddi_set_vc_payload_alloc(crtc, false);
5049
5050         if (!intel_crtc->config->has_dsi_encoder)
5051                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5052
5053         if (INTEL_INFO(dev)->gen >= 9)
5054                 skylake_scaler_disable(intel_crtc);
5055         else
5056                 ironlake_pfit_disable(intel_crtc, false);
5057
5058         if (!intel_crtc->config->has_dsi_encoder)
5059                 intel_ddi_disable_pipe_clock(intel_crtc);
5060
5061         for_each_encoder_on_crtc(dev, crtc, encoder)
5062                 if (encoder->post_disable)
5063                         encoder->post_disable(encoder);
5064
5065         if (intel_crtc->config->has_pch_encoder) {
5066                 lpt_disable_pch_transcoder(dev_priv);
5067                 lpt_disable_iclkip(dev_priv);
5068                 intel_ddi_fdi_disable(crtc);
5069
5070                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5071                                                       true);
5072         }
5073 }
5074
5075 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5076 {
5077         struct drm_device *dev = crtc->base.dev;
5078         struct drm_i915_private *dev_priv = dev->dev_private;
5079         struct intel_crtc_state *pipe_config = crtc->config;
5080
5081         if (!pipe_config->gmch_pfit.control)
5082                 return;
5083
5084         /*
5085          * The panel fitter should only be adjusted whilst the pipe is disabled,
5086          * according to register description and PRM.
5087          */
5088         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5089         assert_pipe_disabled(dev_priv, crtc->pipe);
5090
5091         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5092         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5093
5094         /* Border color in case we don't scale up to the full screen. Black by
5095          * default, change to something else for debugging. */
5096         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5097 }
5098
5099 static enum intel_display_power_domain port_to_power_domain(enum port port)
5100 {
5101         switch (port) {
5102         case PORT_A:
5103                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5104         case PORT_B:
5105                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5106         case PORT_C:
5107                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5108         case PORT_D:
5109                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5110         case PORT_E:
5111                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5112         default:
5113                 MISSING_CASE(port);
5114                 return POWER_DOMAIN_PORT_OTHER;
5115         }
5116 }
5117
5118 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5119 {
5120         switch (port) {
5121         case PORT_A:
5122                 return POWER_DOMAIN_AUX_A;
5123         case PORT_B:
5124                 return POWER_DOMAIN_AUX_B;
5125         case PORT_C:
5126                 return POWER_DOMAIN_AUX_C;
5127         case PORT_D:
5128                 return POWER_DOMAIN_AUX_D;
5129         case PORT_E:
5130                 /* FIXME: Check VBT for actual wiring of PORT E */
5131                 return POWER_DOMAIN_AUX_D;
5132         default:
5133                 MISSING_CASE(port);
5134                 return POWER_DOMAIN_AUX_A;
5135         }
5136 }
5137
5138 enum intel_display_power_domain
5139 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5140 {
5141         struct drm_device *dev = intel_encoder->base.dev;
5142         struct intel_digital_port *intel_dig_port;
5143
5144         switch (intel_encoder->type) {
5145         case INTEL_OUTPUT_UNKNOWN:
5146                 /* Only DDI platforms should ever use this output type */
5147                 WARN_ON_ONCE(!HAS_DDI(dev));
5148         case INTEL_OUTPUT_DISPLAYPORT:
5149         case INTEL_OUTPUT_HDMI:
5150         case INTEL_OUTPUT_EDP:
5151                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5152                 return port_to_power_domain(intel_dig_port->port);
5153         case INTEL_OUTPUT_DP_MST:
5154                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5155                 return port_to_power_domain(intel_dig_port->port);
5156         case INTEL_OUTPUT_ANALOG:
5157                 return POWER_DOMAIN_PORT_CRT;
5158         case INTEL_OUTPUT_DSI:
5159                 return POWER_DOMAIN_PORT_DSI;
5160         default:
5161                 return POWER_DOMAIN_PORT_OTHER;
5162         }
5163 }
5164
5165 enum intel_display_power_domain
5166 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5167 {
5168         struct drm_device *dev = intel_encoder->base.dev;
5169         struct intel_digital_port *intel_dig_port;
5170
5171         switch (intel_encoder->type) {
5172         case INTEL_OUTPUT_UNKNOWN:
5173         case INTEL_OUTPUT_HDMI:
5174                 /*
5175                  * Only DDI platforms should ever use these output types.
5176                  * We can get here after the HDMI detect code has already set
5177                  * the type of the shared encoder. Since we can't be sure
5178                  * what's the status of the given connectors, play safe and
5179                  * run the DP detection too.
5180                  */
5181                 WARN_ON_ONCE(!HAS_DDI(dev));
5182         case INTEL_OUTPUT_DISPLAYPORT:
5183         case INTEL_OUTPUT_EDP:
5184                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5185                 return port_to_aux_power_domain(intel_dig_port->port);
5186         case INTEL_OUTPUT_DP_MST:
5187                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5188                 return port_to_aux_power_domain(intel_dig_port->port);
5189         default:
5190                 MISSING_CASE(intel_encoder->type);
5191                 return POWER_DOMAIN_AUX_A;
5192         }
5193 }
5194
5195 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5196                                             struct intel_crtc_state *crtc_state)
5197 {
5198         struct drm_device *dev = crtc->dev;
5199         struct drm_encoder *encoder;
5200         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5201         enum pipe pipe = intel_crtc->pipe;
5202         unsigned long mask;
5203         enum transcoder transcoder = crtc_state->cpu_transcoder;
5204
5205         if (!crtc_state->base.active)
5206                 return 0;
5207
5208         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5209         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5210         if (crtc_state->pch_pfit.enabled ||
5211             crtc_state->pch_pfit.force_thru)
5212                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5213
5214         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5215                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5216
5217                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5218         }
5219
5220         if (crtc_state->shared_dpll)
5221                 mask |= BIT(POWER_DOMAIN_PLLS);
5222
5223         return mask;
5224 }
5225
5226 static unsigned long
5227 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5228                                struct intel_crtc_state *crtc_state)
5229 {
5230         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5231         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5232         enum intel_display_power_domain domain;
5233         unsigned long domains, new_domains, old_domains;
5234
5235         old_domains = intel_crtc->enabled_power_domains;
5236         intel_crtc->enabled_power_domains = new_domains =
5237                 get_crtc_power_domains(crtc, crtc_state);
5238
5239         domains = new_domains & ~old_domains;
5240
5241         for_each_power_domain(domain, domains)
5242                 intel_display_power_get(dev_priv, domain);
5243
5244         return old_domains & ~new_domains;
5245 }
5246
5247 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5248                                       unsigned long domains)
5249 {
5250         enum intel_display_power_domain domain;
5251
5252         for_each_power_domain(domain, domains)
5253                 intel_display_power_put(dev_priv, domain);
5254 }
5255
5256 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5257 {
5258         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5259
5260         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5261             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5262                 return max_cdclk_freq;
5263         else if (IS_CHERRYVIEW(dev_priv))
5264                 return max_cdclk_freq*95/100;
5265         else if (INTEL_INFO(dev_priv)->gen < 4)
5266                 return 2*max_cdclk_freq*90/100;
5267         else
5268                 return max_cdclk_freq*90/100;
5269 }
5270
5271 static void intel_update_max_cdclk(struct drm_device *dev)
5272 {
5273         struct drm_i915_private *dev_priv = dev->dev_private;
5274
5275         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5276                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5277
5278                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5279                         dev_priv->max_cdclk_freq = 675000;
5280                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5281                         dev_priv->max_cdclk_freq = 540000;
5282                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5283                         dev_priv->max_cdclk_freq = 450000;
5284                 else
5285                         dev_priv->max_cdclk_freq = 337500;
5286         } else if (IS_BROXTON(dev)) {
5287                 dev_priv->max_cdclk_freq = 624000;
5288         } else if (IS_BROADWELL(dev))  {
5289                 /*
5290                  * FIXME with extra cooling we can allow
5291                  * 540 MHz for ULX and 675 Mhz for ULT.
5292                  * How can we know if extra cooling is
5293                  * available? PCI ID, VTB, something else?
5294                  */
5295                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5296                         dev_priv->max_cdclk_freq = 450000;
5297                 else if (IS_BDW_ULX(dev))
5298                         dev_priv->max_cdclk_freq = 450000;
5299                 else if (IS_BDW_ULT(dev))
5300                         dev_priv->max_cdclk_freq = 540000;
5301                 else
5302                         dev_priv->max_cdclk_freq = 675000;
5303         } else if (IS_CHERRYVIEW(dev)) {
5304                 dev_priv->max_cdclk_freq = 320000;
5305         } else if (IS_VALLEYVIEW(dev)) {
5306                 dev_priv->max_cdclk_freq = 400000;
5307         } else {
5308                 /* otherwise assume cdclk is fixed */
5309                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5310         }
5311
5312         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5313
5314         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5315                          dev_priv->max_cdclk_freq);
5316
5317         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5318                          dev_priv->max_dotclk_freq);
5319 }
5320
5321 static void intel_update_cdclk(struct drm_device *dev)
5322 {
5323         struct drm_i915_private *dev_priv = dev->dev_private;
5324
5325         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5326         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5327                          dev_priv->cdclk_freq);
5328
5329         /*
5330          * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5331          * Programmng [sic] note: bit[9:2] should be programmed to the number
5332          * of cdclk that generates 4MHz reference clock freq which is used to
5333          * generate GMBus clock. This will vary with the cdclk freq.
5334          */
5335         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5336                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5337
5338         if (dev_priv->max_cdclk_freq == 0)
5339                 intel_update_max_cdclk(dev);
5340 }
5341
5342 static void broxton_set_cdclk(struct drm_i915_private *dev_priv, int frequency)
5343 {
5344         uint32_t divider;
5345         uint32_t ratio;
5346         uint32_t current_freq;
5347         int ret;
5348
5349         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5350         switch (frequency) {
5351         case 144000:
5352                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5353                 ratio = BXT_DE_PLL_RATIO(60);
5354                 break;
5355         case 288000:
5356                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5357                 ratio = BXT_DE_PLL_RATIO(60);
5358                 break;
5359         case 384000:
5360                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5361                 ratio = BXT_DE_PLL_RATIO(60);
5362                 break;
5363         case 576000:
5364                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5365                 ratio = BXT_DE_PLL_RATIO(60);
5366                 break;
5367         case 624000:
5368                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5369                 ratio = BXT_DE_PLL_RATIO(65);
5370                 break;
5371         case 19200:
5372                 /*
5373                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5374                  * to suppress GCC warning.
5375                  */
5376                 ratio = 0;
5377                 divider = 0;
5378                 break;
5379         default:
5380                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5381
5382                 return;
5383         }
5384
5385         mutex_lock(&dev_priv->rps.hw_lock);
5386         /* Inform power controller of upcoming frequency change */
5387         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5388                                       0x80000000);
5389         mutex_unlock(&dev_priv->rps.hw_lock);
5390
5391         if (ret) {
5392                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5393                           ret, frequency);
5394                 return;
5395         }
5396
5397         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5398         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5399         current_freq = current_freq * 500 + 1000;
5400
5401         /*
5402          * DE PLL has to be disabled when
5403          * - setting to 19.2MHz (bypass, PLL isn't used)
5404          * - before setting to 624MHz (PLL needs toggling)
5405          * - before setting to any frequency from 624MHz (PLL needs toggling)
5406          */
5407         if (frequency == 19200 || frequency == 624000 ||
5408             current_freq == 624000) {
5409                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5410                 /* Timeout 200us */
5411                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5412                              1))
5413                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5414         }
5415
5416         if (frequency != 19200) {
5417                 uint32_t val;
5418
5419                 val = I915_READ(BXT_DE_PLL_CTL);
5420                 val &= ~BXT_DE_PLL_RATIO_MASK;
5421                 val |= ratio;
5422                 I915_WRITE(BXT_DE_PLL_CTL, val);
5423
5424                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5425                 /* Timeout 200us */
5426                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5427                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5428
5429                 val = I915_READ(CDCLK_CTL);
5430                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5431                 val |= divider;
5432                 /*
5433                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5434                  * enable otherwise.
5435                  */
5436                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5437                 if (frequency >= 500000)
5438                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5439
5440                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5441                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5442                 val |= (frequency - 1000) / 500;
5443                 I915_WRITE(CDCLK_CTL, val);
5444         }
5445
5446         mutex_lock(&dev_priv->rps.hw_lock);
5447         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5448                                       DIV_ROUND_UP(frequency, 25000));
5449         mutex_unlock(&dev_priv->rps.hw_lock);
5450
5451         if (ret) {
5452                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5453                           ret, frequency);
5454                 return;
5455         }
5456
5457         intel_update_cdclk(dev_priv->dev);
5458 }
5459
5460 static bool broxton_cdclk_is_enabled(struct drm_i915_private *dev_priv)
5461 {
5462         if (!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE))
5463                 return false;
5464
5465         /* TODO: Check for a valid CDCLK rate */
5466
5467         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_REQUEST)) {
5468                 DRM_DEBUG_DRIVER("CDCLK enabled, but DBUF power not requested\n");
5469
5470                 return false;
5471         }
5472
5473         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE)) {
5474                 DRM_DEBUG_DRIVER("CDCLK enabled, but DBUF power hasn't settled\n");
5475
5476                 return false;
5477         }
5478
5479         return true;
5480 }
5481
5482 bool broxton_cdclk_verify_state(struct drm_i915_private *dev_priv)
5483 {
5484         return broxton_cdclk_is_enabled(dev_priv);
5485 }
5486
5487 void broxton_init_cdclk(struct drm_i915_private *dev_priv)
5488 {
5489         /* check if cd clock is enabled */
5490         if (broxton_cdclk_is_enabled(dev_priv)) {
5491                 DRM_DEBUG_KMS("CDCLK already enabled, won't reprogram it\n");
5492                 return;
5493         }
5494
5495         DRM_DEBUG_KMS("CDCLK not enabled, enabling it\n");
5496
5497         /*
5498          * FIXME:
5499          * - The initial CDCLK needs to be read from VBT.
5500          *   Need to make this change after VBT has changes for BXT.
5501          * - check if setting the max (or any) cdclk freq is really necessary
5502          *   here, it belongs to modeset time
5503          */
5504         broxton_set_cdclk(dev_priv, 624000);
5505
5506         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5507         POSTING_READ(DBUF_CTL);
5508
5509         udelay(10);
5510
5511         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5512                 DRM_ERROR("DBuf power enable timeout!\n");
5513 }
5514
5515 void broxton_uninit_cdclk(struct drm_i915_private *dev_priv)
5516 {
5517         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5518         POSTING_READ(DBUF_CTL);
5519
5520         udelay(10);
5521
5522         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5523                 DRM_ERROR("DBuf power disable timeout!\n");
5524
5525         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5526         broxton_set_cdclk(dev_priv, 19200);
5527 }
5528
5529 static const struct skl_cdclk_entry {
5530         unsigned int freq;
5531         unsigned int vco;
5532 } skl_cdclk_frequencies[] = {
5533         { .freq = 308570, .vco = 8640 },
5534         { .freq = 337500, .vco = 8100 },
5535         { .freq = 432000, .vco = 8640 },
5536         { .freq = 450000, .vco = 8100 },
5537         { .freq = 540000, .vco = 8100 },
5538         { .freq = 617140, .vco = 8640 },
5539         { .freq = 675000, .vco = 8100 },
5540 };
5541
5542 static unsigned int skl_cdclk_decimal(unsigned int freq)
5543 {
5544         return (freq - 1000) / 500;
5545 }
5546
5547 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5548 {
5549         unsigned int i;
5550
5551         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5552                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5553
5554                 if (e->freq == freq)
5555                         return e->vco;
5556         }
5557
5558         return 8100;
5559 }
5560
5561 static void
5562 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5563 {
5564         unsigned int min_freq;
5565         u32 val;
5566
5567         /* select the minimum CDCLK before enabling DPLL 0 */
5568         val = I915_READ(CDCLK_CTL);
5569         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5570         val |= CDCLK_FREQ_337_308;
5571
5572         if (required_vco == 8640)
5573                 min_freq = 308570;
5574         else
5575                 min_freq = 337500;
5576
5577         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5578
5579         I915_WRITE(CDCLK_CTL, val);
5580         POSTING_READ(CDCLK_CTL);
5581
5582         /*
5583          * We always enable DPLL0 with the lowest link rate possible, but still
5584          * taking into account the VCO required to operate the eDP panel at the
5585          * desired frequency. The usual DP link rates operate with a VCO of
5586          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5587          * The modeset code is responsible for the selection of the exact link
5588          * rate later on, with the constraint of choosing a frequency that
5589          * works with required_vco.
5590          */
5591         val = I915_READ(DPLL_CTRL1);
5592
5593         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5594                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5595         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5596         if (required_vco == 8640)
5597                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5598                                             SKL_DPLL0);
5599         else
5600                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5601                                             SKL_DPLL0);
5602
5603         I915_WRITE(DPLL_CTRL1, val);
5604         POSTING_READ(DPLL_CTRL1);
5605
5606         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5607
5608         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5609                 DRM_ERROR("DPLL0 not locked\n");
5610 }
5611
5612 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5613 {
5614         int ret;
5615         u32 val;
5616
5617         /* inform PCU we want to change CDCLK */
5618         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5619         mutex_lock(&dev_priv->rps.hw_lock);
5620         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5621         mutex_unlock(&dev_priv->rps.hw_lock);
5622
5623         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5624 }
5625
5626 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5627 {
5628         unsigned int i;
5629
5630         for (i = 0; i < 15; i++) {
5631                 if (skl_cdclk_pcu_ready(dev_priv))
5632                         return true;
5633                 udelay(10);
5634         }
5635
5636         return false;
5637 }
5638
5639 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5640 {
5641         struct drm_device *dev = dev_priv->dev;
5642         u32 freq_select, pcu_ack;
5643
5644         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5645
5646         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5647                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5648                 return;
5649         }
5650
5651         /* set CDCLK_CTL */
5652         switch(freq) {
5653         case 450000:
5654         case 432000:
5655                 freq_select = CDCLK_FREQ_450_432;
5656                 pcu_ack = 1;
5657                 break;
5658         case 540000:
5659                 freq_select = CDCLK_FREQ_540;
5660                 pcu_ack = 2;
5661                 break;
5662         case 308570:
5663         case 337500:
5664         default:
5665                 freq_select = CDCLK_FREQ_337_308;
5666                 pcu_ack = 0;
5667                 break;
5668         case 617140:
5669         case 675000:
5670                 freq_select = CDCLK_FREQ_675_617;
5671                 pcu_ack = 3;
5672                 break;
5673         }
5674
5675         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5676         POSTING_READ(CDCLK_CTL);
5677
5678         /* inform PCU of the change */
5679         mutex_lock(&dev_priv->rps.hw_lock);
5680         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5681         mutex_unlock(&dev_priv->rps.hw_lock);
5682
5683         intel_update_cdclk(dev);
5684 }
5685
5686 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5687 {
5688         /* disable DBUF power */
5689         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5690         POSTING_READ(DBUF_CTL);
5691
5692         udelay(10);
5693
5694         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5695                 DRM_ERROR("DBuf power disable timeout\n");
5696
5697         /* disable DPLL0 */
5698         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5699         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5700                 DRM_ERROR("Couldn't disable DPLL0\n");
5701 }
5702
5703 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5704 {
5705         unsigned int required_vco;
5706
5707         /* DPLL0 not enabled (happens on early BIOS versions) */
5708         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5709                 /* enable DPLL0 */
5710                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5711                 skl_dpll0_enable(dev_priv, required_vco);
5712         }
5713
5714         /* set CDCLK to the frequency the BIOS chose */
5715         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5716
5717         /* enable DBUF power */
5718         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5719         POSTING_READ(DBUF_CTL);
5720
5721         udelay(10);
5722
5723         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5724                 DRM_ERROR("DBuf power enable timeout\n");
5725 }
5726
5727 int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5728 {
5729         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5730         uint32_t cdctl = I915_READ(CDCLK_CTL);
5731         int freq = dev_priv->skl_boot_cdclk;
5732
5733         /*
5734          * check if the pre-os intialized the display
5735          * There is SWF18 scratchpad register defined which is set by the
5736          * pre-os which can be used by the OS drivers to check the status
5737          */
5738         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5739                 goto sanitize;
5740
5741         /* Is PLL enabled and locked ? */
5742         if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5743                 goto sanitize;
5744
5745         /* DPLL okay; verify the cdclock
5746          *
5747          * Noticed in some instances that the freq selection is correct but
5748          * decimal part is programmed wrong from BIOS where pre-os does not
5749          * enable display. Verify the same as well.
5750          */
5751         if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5752                 /* All well; nothing to sanitize */
5753                 return false;
5754 sanitize:
5755         /*
5756          * As of now initialize with max cdclk till
5757          * we get dynamic cdclk support
5758          * */
5759         dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5760         skl_init_cdclk(dev_priv);
5761
5762         /* we did have to sanitize */
5763         return true;
5764 }
5765
5766 /* Adjust CDclk dividers to allow high res or save power if possible */
5767 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5768 {
5769         struct drm_i915_private *dev_priv = dev->dev_private;
5770         u32 val, cmd;
5771
5772         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5773                                         != dev_priv->cdclk_freq);
5774
5775         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5776                 cmd = 2;
5777         else if (cdclk == 266667)
5778                 cmd = 1;
5779         else
5780                 cmd = 0;
5781
5782         mutex_lock(&dev_priv->rps.hw_lock);
5783         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5784         val &= ~DSPFREQGUAR_MASK;
5785         val |= (cmd << DSPFREQGUAR_SHIFT);
5786         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5787         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5788                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5789                      50)) {
5790                 DRM_ERROR("timed out waiting for CDclk change\n");
5791         }
5792         mutex_unlock(&dev_priv->rps.hw_lock);
5793
5794         mutex_lock(&dev_priv->sb_lock);
5795
5796         if (cdclk == 400000) {
5797                 u32 divider;
5798
5799                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5800
5801                 /* adjust cdclk divider */
5802                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5803                 val &= ~CCK_FREQUENCY_VALUES;
5804                 val |= divider;
5805                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5806
5807                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5808                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5809                              50))
5810                         DRM_ERROR("timed out waiting for CDclk change\n");
5811         }
5812
5813         /* adjust self-refresh exit latency value */
5814         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5815         val &= ~0x7f;
5816
5817         /*
5818          * For high bandwidth configs, we set a higher latency in the bunit
5819          * so that the core display fetch happens in time to avoid underruns.
5820          */
5821         if (cdclk == 400000)
5822                 val |= 4500 / 250; /* 4.5 usec */
5823         else
5824                 val |= 3000 / 250; /* 3.0 usec */
5825         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5826
5827         mutex_unlock(&dev_priv->sb_lock);
5828
5829         intel_update_cdclk(dev);
5830 }
5831
5832 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5833 {
5834         struct drm_i915_private *dev_priv = dev->dev_private;
5835         u32 val, cmd;
5836
5837         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5838                                                 != dev_priv->cdclk_freq);
5839
5840         switch (cdclk) {
5841         case 333333:
5842         case 320000:
5843         case 266667:
5844         case 200000:
5845                 break;
5846         default:
5847                 MISSING_CASE(cdclk);
5848                 return;
5849         }
5850
5851         /*
5852          * Specs are full of misinformation, but testing on actual
5853          * hardware has shown that we just need to write the desired
5854          * CCK divider into the Punit register.
5855          */
5856         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5857
5858         mutex_lock(&dev_priv->rps.hw_lock);
5859         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5860         val &= ~DSPFREQGUAR_MASK_CHV;
5861         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5862         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5863         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5864                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5865                      50)) {
5866                 DRM_ERROR("timed out waiting for CDclk change\n");
5867         }
5868         mutex_unlock(&dev_priv->rps.hw_lock);
5869
5870         intel_update_cdclk(dev);
5871 }
5872
5873 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5874                                  int max_pixclk)
5875 {
5876         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5877         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5878
5879         /*
5880          * Really only a few cases to deal with, as only 4 CDclks are supported:
5881          *   200MHz
5882          *   267MHz
5883          *   320/333MHz (depends on HPLL freq)
5884          *   400MHz (VLV only)
5885          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5886          * of the lower bin and adjust if needed.
5887          *
5888          * We seem to get an unstable or solid color picture at 200MHz.
5889          * Not sure what's wrong. For now use 200MHz only when all pipes
5890          * are off.
5891          */
5892         if (!IS_CHERRYVIEW(dev_priv) &&
5893             max_pixclk > freq_320*limit/100)
5894                 return 400000;
5895         else if (max_pixclk > 266667*limit/100)
5896                 return freq_320;
5897         else if (max_pixclk > 0)
5898                 return 266667;
5899         else
5900                 return 200000;
5901 }
5902
5903 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5904                               int max_pixclk)
5905 {
5906         /*
5907          * FIXME:
5908          * - remove the guardband, it's not needed on BXT
5909          * - set 19.2MHz bypass frequency if there are no active pipes
5910          */
5911         if (max_pixclk > 576000*9/10)
5912                 return 624000;
5913         else if (max_pixclk > 384000*9/10)
5914                 return 576000;
5915         else if (max_pixclk > 288000*9/10)
5916                 return 384000;
5917         else if (max_pixclk > 144000*9/10)
5918                 return 288000;
5919         else
5920                 return 144000;
5921 }
5922
5923 /* Compute the max pixel clock for new configuration. */
5924 static int intel_mode_max_pixclk(struct drm_device *dev,
5925                                  struct drm_atomic_state *state)
5926 {
5927         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5928         struct drm_i915_private *dev_priv = dev->dev_private;
5929         struct drm_crtc *crtc;
5930         struct drm_crtc_state *crtc_state;
5931         unsigned max_pixclk = 0, i;
5932         enum pipe pipe;
5933
5934         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
5935                sizeof(intel_state->min_pixclk));
5936
5937         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5938                 int pixclk = 0;
5939
5940                 if (crtc_state->enable)
5941                         pixclk = crtc_state->adjusted_mode.crtc_clock;
5942
5943                 intel_state->min_pixclk[i] = pixclk;
5944         }
5945
5946         for_each_pipe(dev_priv, pipe)
5947                 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
5948
5949         return max_pixclk;
5950 }
5951
5952 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5953 {
5954         struct drm_device *dev = state->dev;
5955         struct drm_i915_private *dev_priv = dev->dev_private;
5956         int max_pixclk = intel_mode_max_pixclk(dev, state);
5957         struct intel_atomic_state *intel_state =
5958                 to_intel_atomic_state(state);
5959
5960         if (max_pixclk < 0)
5961                 return max_pixclk;
5962
5963         intel_state->cdclk = intel_state->dev_cdclk =
5964                 valleyview_calc_cdclk(dev_priv, max_pixclk);
5965
5966         if (!intel_state->active_crtcs)
5967                 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
5968
5969         return 0;
5970 }
5971
5972 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5973 {
5974         struct drm_device *dev = state->dev;
5975         struct drm_i915_private *dev_priv = dev->dev_private;
5976         int max_pixclk = intel_mode_max_pixclk(dev, state);
5977         struct intel_atomic_state *intel_state =
5978                 to_intel_atomic_state(state);
5979
5980         if (max_pixclk < 0)
5981                 return max_pixclk;
5982
5983         intel_state->cdclk = intel_state->dev_cdclk =
5984                 broxton_calc_cdclk(dev_priv, max_pixclk);
5985
5986         if (!intel_state->active_crtcs)
5987                 intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, 0);
5988
5989         return 0;
5990 }
5991
5992 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5993 {
5994         unsigned int credits, default_credits;
5995
5996         if (IS_CHERRYVIEW(dev_priv))
5997                 default_credits = PFI_CREDIT(12);
5998         else
5999                 default_credits = PFI_CREDIT(8);
6000
6001         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6002                 /* CHV suggested value is 31 or 63 */
6003                 if (IS_CHERRYVIEW(dev_priv))
6004                         credits = PFI_CREDIT_63;
6005                 else
6006                         credits = PFI_CREDIT(15);
6007         } else {
6008                 credits = default_credits;
6009         }
6010
6011         /*
6012          * WA - write default credits before re-programming
6013          * FIXME: should we also set the resend bit here?
6014          */
6015         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6016                    default_credits);
6017
6018         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6019                    credits | PFI_CREDIT_RESEND);
6020
6021         /*
6022          * FIXME is this guaranteed to clear
6023          * immediately or should we poll for it?
6024          */
6025         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6026 }
6027
6028 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6029 {
6030         struct drm_device *dev = old_state->dev;
6031         struct drm_i915_private *dev_priv = dev->dev_private;
6032         struct intel_atomic_state *old_intel_state =
6033                 to_intel_atomic_state(old_state);
6034         unsigned req_cdclk = old_intel_state->dev_cdclk;
6035
6036         /*
6037          * FIXME: We can end up here with all power domains off, yet
6038          * with a CDCLK frequency other than the minimum. To account
6039          * for this take the PIPE-A power domain, which covers the HW
6040          * blocks needed for the following programming. This can be
6041          * removed once it's guaranteed that we get here either with
6042          * the minimum CDCLK set, or the required power domains
6043          * enabled.
6044          */
6045         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6046
6047         if (IS_CHERRYVIEW(dev))
6048                 cherryview_set_cdclk(dev, req_cdclk);
6049         else
6050                 valleyview_set_cdclk(dev, req_cdclk);
6051
6052         vlv_program_pfi_credits(dev_priv);
6053
6054         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6055 }
6056
6057 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6058 {
6059         struct drm_device *dev = crtc->dev;
6060         struct drm_i915_private *dev_priv = to_i915(dev);
6061         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6062         struct intel_encoder *encoder;
6063         struct intel_crtc_state *pipe_config =
6064                 to_intel_crtc_state(crtc->state);
6065         int pipe = intel_crtc->pipe;
6066
6067         if (WARN_ON(intel_crtc->active))
6068                 return;
6069
6070         if (intel_crtc->config->has_dp_encoder)
6071                 intel_dp_set_m_n(intel_crtc, M1_N1);
6072
6073         intel_set_pipe_timings(intel_crtc);
6074         intel_set_pipe_src_size(intel_crtc);
6075
6076         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6077                 struct drm_i915_private *dev_priv = dev->dev_private;
6078
6079                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6080                 I915_WRITE(CHV_CANVAS(pipe), 0);
6081         }
6082
6083         i9xx_set_pipeconf(intel_crtc);
6084
6085         intel_crtc->active = true;
6086
6087         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6088
6089         for_each_encoder_on_crtc(dev, crtc, encoder)
6090                 if (encoder->pre_pll_enable)
6091                         encoder->pre_pll_enable(encoder);
6092
6093         if (IS_CHERRYVIEW(dev)) {
6094                 chv_prepare_pll(intel_crtc, intel_crtc->config);
6095                 chv_enable_pll(intel_crtc, intel_crtc->config);
6096         } else {
6097                 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6098                 vlv_enable_pll(intel_crtc, intel_crtc->config);
6099         }
6100
6101         for_each_encoder_on_crtc(dev, crtc, encoder)
6102                 if (encoder->pre_enable)
6103                         encoder->pre_enable(encoder);
6104
6105         i9xx_pfit_enable(intel_crtc);
6106
6107         intel_color_load_luts(&pipe_config->base);
6108
6109         intel_update_watermarks(crtc);
6110         intel_enable_pipe(intel_crtc);
6111
6112         assert_vblank_disabled(crtc);
6113         drm_crtc_vblank_on(crtc);
6114
6115         for_each_encoder_on_crtc(dev, crtc, encoder)
6116                 encoder->enable(encoder);
6117 }
6118
6119 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6120 {
6121         struct drm_device *dev = crtc->base.dev;
6122         struct drm_i915_private *dev_priv = dev->dev_private;
6123
6124         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6125         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6126 }
6127
6128 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6129 {
6130         struct drm_device *dev = crtc->dev;
6131         struct drm_i915_private *dev_priv = to_i915(dev);
6132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6133         struct intel_encoder *encoder;
6134         struct intel_crtc_state *pipe_config =
6135                 to_intel_crtc_state(crtc->state);
6136         enum pipe pipe = intel_crtc->pipe;
6137
6138         if (WARN_ON(intel_crtc->active))
6139                 return;
6140
6141         i9xx_set_pll_dividers(intel_crtc);
6142
6143         if (intel_crtc->config->has_dp_encoder)
6144                 intel_dp_set_m_n(intel_crtc, M1_N1);
6145
6146         intel_set_pipe_timings(intel_crtc);
6147         intel_set_pipe_src_size(intel_crtc);
6148
6149         i9xx_set_pipeconf(intel_crtc);
6150
6151         intel_crtc->active = true;
6152
6153         if (!IS_GEN2(dev))
6154                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6155
6156         for_each_encoder_on_crtc(dev, crtc, encoder)
6157                 if (encoder->pre_enable)
6158                         encoder->pre_enable(encoder);
6159
6160         i9xx_enable_pll(intel_crtc);
6161
6162         i9xx_pfit_enable(intel_crtc);
6163
6164         intel_color_load_luts(&pipe_config->base);
6165
6166         intel_update_watermarks(crtc);
6167         intel_enable_pipe(intel_crtc);
6168
6169         assert_vblank_disabled(crtc);
6170         drm_crtc_vblank_on(crtc);
6171
6172         for_each_encoder_on_crtc(dev, crtc, encoder)
6173                 encoder->enable(encoder);
6174 }
6175
6176 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6177 {
6178         struct drm_device *dev = crtc->base.dev;
6179         struct drm_i915_private *dev_priv = dev->dev_private;
6180
6181         if (!crtc->config->gmch_pfit.control)
6182                 return;
6183
6184         assert_pipe_disabled(dev_priv, crtc->pipe);
6185
6186         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6187                          I915_READ(PFIT_CONTROL));
6188         I915_WRITE(PFIT_CONTROL, 0);
6189 }
6190
6191 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6192 {
6193         struct drm_device *dev = crtc->dev;
6194         struct drm_i915_private *dev_priv = dev->dev_private;
6195         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6196         struct intel_encoder *encoder;
6197         int pipe = intel_crtc->pipe;
6198
6199         /*
6200          * On gen2 planes are double buffered but the pipe isn't, so we must
6201          * wait for planes to fully turn off before disabling the pipe.
6202          */
6203         if (IS_GEN2(dev))
6204                 intel_wait_for_vblank(dev, pipe);
6205
6206         for_each_encoder_on_crtc(dev, crtc, encoder)
6207                 encoder->disable(encoder);
6208
6209         drm_crtc_vblank_off(crtc);
6210         assert_vblank_disabled(crtc);
6211
6212         intel_disable_pipe(intel_crtc);
6213
6214         i9xx_pfit_disable(intel_crtc);
6215
6216         for_each_encoder_on_crtc(dev, crtc, encoder)
6217                 if (encoder->post_disable)
6218                         encoder->post_disable(encoder);
6219
6220         if (!intel_crtc->config->has_dsi_encoder) {
6221                 if (IS_CHERRYVIEW(dev))
6222                         chv_disable_pll(dev_priv, pipe);
6223                 else if (IS_VALLEYVIEW(dev))
6224                         vlv_disable_pll(dev_priv, pipe);
6225                 else
6226                         i9xx_disable_pll(intel_crtc);
6227         }
6228
6229         for_each_encoder_on_crtc(dev, crtc, encoder)
6230                 if (encoder->post_pll_disable)
6231                         encoder->post_pll_disable(encoder);
6232
6233         if (!IS_GEN2(dev))
6234                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6235 }
6236
6237 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6238 {
6239         struct intel_encoder *encoder;
6240         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6241         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6242         enum intel_display_power_domain domain;
6243         unsigned long domains;
6244
6245         if (!intel_crtc->active)
6246                 return;
6247
6248         if (to_intel_plane_state(crtc->primary->state)->visible) {
6249                 WARN_ON(intel_crtc->unpin_work);
6250
6251                 intel_pre_disable_primary_noatomic(crtc);
6252
6253                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6254                 to_intel_plane_state(crtc->primary->state)->visible = false;
6255         }
6256
6257         dev_priv->display.crtc_disable(crtc);
6258
6259         DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was enabled, now disabled\n",
6260                       crtc->base.id);
6261
6262         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6263         crtc->state->active = false;
6264         intel_crtc->active = false;
6265         crtc->enabled = false;
6266         crtc->state->connector_mask = 0;
6267         crtc->state->encoder_mask = 0;
6268
6269         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6270                 encoder->base.crtc = NULL;
6271
6272         intel_fbc_disable(intel_crtc);
6273         intel_update_watermarks(crtc);
6274         intel_disable_shared_dpll(intel_crtc);
6275
6276         domains = intel_crtc->enabled_power_domains;
6277         for_each_power_domain(domain, domains)
6278                 intel_display_power_put(dev_priv, domain);
6279         intel_crtc->enabled_power_domains = 0;
6280
6281         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6282         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6283 }
6284
6285 /*
6286  * turn all crtc's off, but do not adjust state
6287  * This has to be paired with a call to intel_modeset_setup_hw_state.
6288  */
6289 int intel_display_suspend(struct drm_device *dev)
6290 {
6291         struct drm_i915_private *dev_priv = to_i915(dev);
6292         struct drm_atomic_state *state;
6293         int ret;
6294
6295         state = drm_atomic_helper_suspend(dev);
6296         ret = PTR_ERR_OR_ZERO(state);
6297         if (ret)
6298                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6299         else
6300                 dev_priv->modeset_restore_state = state;
6301         return ret;
6302 }
6303
6304 void intel_encoder_destroy(struct drm_encoder *encoder)
6305 {
6306         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6307
6308         drm_encoder_cleanup(encoder);
6309         kfree(intel_encoder);
6310 }
6311
6312 /* Cross check the actual hw state with our own modeset state tracking (and it's
6313  * internal consistency). */
6314 static void intel_connector_verify_state(struct intel_connector *connector)
6315 {
6316         struct drm_crtc *crtc = connector->base.state->crtc;
6317
6318         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6319                       connector->base.base.id,
6320                       connector->base.name);
6321
6322         if (connector->get_hw_state(connector)) {
6323                 struct intel_encoder *encoder = connector->encoder;
6324                 struct drm_connector_state *conn_state = connector->base.state;
6325
6326                 I915_STATE_WARN(!crtc,
6327                          "connector enabled without attached crtc\n");
6328
6329                 if (!crtc)
6330                         return;
6331
6332                 I915_STATE_WARN(!crtc->state->active,
6333                       "connector is active, but attached crtc isn't\n");
6334
6335                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6336                         return;
6337
6338                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6339                         "atomic encoder doesn't match attached encoder\n");
6340
6341                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6342                         "attached encoder crtc differs from connector crtc\n");
6343         } else {
6344                 I915_STATE_WARN(crtc && crtc->state->active,
6345                         "attached crtc is active, but connector isn't\n");
6346                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6347                         "best encoder set without crtc!\n");
6348         }
6349 }
6350
6351 int intel_connector_init(struct intel_connector *connector)
6352 {
6353         drm_atomic_helper_connector_reset(&connector->base);
6354
6355         if (!connector->base.state)
6356                 return -ENOMEM;
6357
6358         return 0;
6359 }
6360
6361 struct intel_connector *intel_connector_alloc(void)
6362 {
6363         struct intel_connector *connector;
6364
6365         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6366         if (!connector)
6367                 return NULL;
6368
6369         if (intel_connector_init(connector) < 0) {
6370                 kfree(connector);
6371                 return NULL;
6372         }
6373
6374         return connector;
6375 }
6376
6377 /* Simple connector->get_hw_state implementation for encoders that support only
6378  * one connector and no cloning and hence the encoder state determines the state
6379  * of the connector. */
6380 bool intel_connector_get_hw_state(struct intel_connector *connector)
6381 {
6382         enum pipe pipe = 0;
6383         struct intel_encoder *encoder = connector->encoder;
6384
6385         return encoder->get_hw_state(encoder, &pipe);
6386 }
6387
6388 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6389 {
6390         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6391                 return crtc_state->fdi_lanes;
6392
6393         return 0;
6394 }
6395
6396 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6397                                      struct intel_crtc_state *pipe_config)
6398 {
6399         struct drm_atomic_state *state = pipe_config->base.state;
6400         struct intel_crtc *other_crtc;
6401         struct intel_crtc_state *other_crtc_state;
6402
6403         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6404                       pipe_name(pipe), pipe_config->fdi_lanes);
6405         if (pipe_config->fdi_lanes > 4) {
6406                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6407                               pipe_name(pipe), pipe_config->fdi_lanes);
6408                 return -EINVAL;
6409         }
6410
6411         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6412                 if (pipe_config->fdi_lanes > 2) {
6413                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6414                                       pipe_config->fdi_lanes);
6415                         return -EINVAL;
6416                 } else {
6417                         return 0;
6418                 }
6419         }
6420
6421         if (INTEL_INFO(dev)->num_pipes == 2)
6422                 return 0;
6423
6424         /* Ivybridge 3 pipe is really complicated */
6425         switch (pipe) {
6426         case PIPE_A:
6427                 return 0;
6428         case PIPE_B:
6429                 if (pipe_config->fdi_lanes <= 2)
6430                         return 0;
6431
6432                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6433                 other_crtc_state =
6434                         intel_atomic_get_crtc_state(state, other_crtc);
6435                 if (IS_ERR(other_crtc_state))
6436                         return PTR_ERR(other_crtc_state);
6437
6438                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6439                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6440                                       pipe_name(pipe), pipe_config->fdi_lanes);
6441                         return -EINVAL;
6442                 }
6443                 return 0;
6444         case PIPE_C:
6445                 if (pipe_config->fdi_lanes > 2) {
6446                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6447                                       pipe_name(pipe), pipe_config->fdi_lanes);
6448                         return -EINVAL;
6449                 }
6450
6451                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6452                 other_crtc_state =
6453                         intel_atomic_get_crtc_state(state, other_crtc);
6454                 if (IS_ERR(other_crtc_state))
6455                         return PTR_ERR(other_crtc_state);
6456
6457                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6458                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6459                         return -EINVAL;
6460                 }
6461                 return 0;
6462         default:
6463                 BUG();
6464         }
6465 }
6466
6467 #define RETRY 1
6468 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6469                                        struct intel_crtc_state *pipe_config)
6470 {
6471         struct drm_device *dev = intel_crtc->base.dev;
6472         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6473         int lane, link_bw, fdi_dotclock, ret;
6474         bool needs_recompute = false;
6475
6476 retry:
6477         /* FDI is a binary signal running at ~2.7GHz, encoding
6478          * each output octet as 10 bits. The actual frequency
6479          * is stored as a divider into a 100MHz clock, and the
6480          * mode pixel clock is stored in units of 1KHz.
6481          * Hence the bw of each lane in terms of the mode signal
6482          * is:
6483          */
6484         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6485
6486         fdi_dotclock = adjusted_mode->crtc_clock;
6487
6488         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6489                                            pipe_config->pipe_bpp);
6490
6491         pipe_config->fdi_lanes = lane;
6492
6493         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6494                                link_bw, &pipe_config->fdi_m_n);
6495
6496         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6497         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6498                 pipe_config->pipe_bpp -= 2*3;
6499                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6500                               pipe_config->pipe_bpp);
6501                 needs_recompute = true;
6502                 pipe_config->bw_constrained = true;
6503
6504                 goto retry;
6505         }
6506
6507         if (needs_recompute)
6508                 return RETRY;
6509
6510         return ret;
6511 }
6512
6513 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6514                                      struct intel_crtc_state *pipe_config)
6515 {
6516         if (pipe_config->pipe_bpp > 24)
6517                 return false;
6518
6519         /* HSW can handle pixel rate up to cdclk? */
6520         if (IS_HASWELL(dev_priv))
6521                 return true;
6522
6523         /*
6524          * We compare against max which means we must take
6525          * the increased cdclk requirement into account when
6526          * calculating the new cdclk.
6527          *
6528          * Should measure whether using a lower cdclk w/o IPS
6529          */
6530         return ilk_pipe_pixel_rate(pipe_config) <=
6531                 dev_priv->max_cdclk_freq * 95 / 100;
6532 }
6533
6534 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6535                                    struct intel_crtc_state *pipe_config)
6536 {
6537         struct drm_device *dev = crtc->base.dev;
6538         struct drm_i915_private *dev_priv = dev->dev_private;
6539
6540         pipe_config->ips_enabled = i915.enable_ips &&
6541                 hsw_crtc_supports_ips(crtc) &&
6542                 pipe_config_supports_ips(dev_priv, pipe_config);
6543 }
6544
6545 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6546 {
6547         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6548
6549         /* GDG double wide on either pipe, otherwise pipe A only */
6550         return INTEL_INFO(dev_priv)->gen < 4 &&
6551                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6552 }
6553
6554 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6555                                      struct intel_crtc_state *pipe_config)
6556 {
6557         struct drm_device *dev = crtc->base.dev;
6558         struct drm_i915_private *dev_priv = dev->dev_private;
6559         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6560
6561         /* FIXME should check pixel clock limits on all platforms */
6562         if (INTEL_INFO(dev)->gen < 4) {
6563                 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6564
6565                 /*
6566                  * Enable double wide mode when the dot clock
6567                  * is > 90% of the (display) core speed.
6568                  */
6569                 if (intel_crtc_supports_double_wide(crtc) &&
6570                     adjusted_mode->crtc_clock > clock_limit) {
6571                         clock_limit *= 2;
6572                         pipe_config->double_wide = true;
6573                 }
6574
6575                 if (adjusted_mode->crtc_clock > clock_limit) {
6576                         DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6577                                       adjusted_mode->crtc_clock, clock_limit,
6578                                       yesno(pipe_config->double_wide));
6579                         return -EINVAL;
6580                 }
6581         }
6582
6583         /*
6584          * Pipe horizontal size must be even in:
6585          * - DVO ganged mode
6586          * - LVDS dual channel mode
6587          * - Double wide pipe
6588          */
6589         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6590              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6591                 pipe_config->pipe_src_w &= ~1;
6592
6593         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6594          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6595          */
6596         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6597                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6598                 return -EINVAL;
6599
6600         if (HAS_IPS(dev))
6601                 hsw_compute_ips_config(crtc, pipe_config);
6602
6603         if (pipe_config->has_pch_encoder)
6604                 return ironlake_fdi_compute_config(crtc, pipe_config);
6605
6606         return 0;
6607 }
6608
6609 static int skylake_get_display_clock_speed(struct drm_device *dev)
6610 {
6611         struct drm_i915_private *dev_priv = to_i915(dev);
6612         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6613         uint32_t cdctl = I915_READ(CDCLK_CTL);
6614         uint32_t linkrate;
6615
6616         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6617                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6618
6619         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6620                 return 540000;
6621
6622         linkrate = (I915_READ(DPLL_CTRL1) &
6623                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6624
6625         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6626             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6627                 /* vco 8640 */
6628                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6629                 case CDCLK_FREQ_450_432:
6630                         return 432000;
6631                 case CDCLK_FREQ_337_308:
6632                         return 308570;
6633                 case CDCLK_FREQ_675_617:
6634                         return 617140;
6635                 default:
6636                         WARN(1, "Unknown cd freq selection\n");
6637                 }
6638         } else {
6639                 /* vco 8100 */
6640                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6641                 case CDCLK_FREQ_450_432:
6642                         return 450000;
6643                 case CDCLK_FREQ_337_308:
6644                         return 337500;
6645                 case CDCLK_FREQ_675_617:
6646                         return 675000;
6647                 default:
6648                         WARN(1, "Unknown cd freq selection\n");
6649                 }
6650         }
6651
6652         /* error case, do as if DPLL0 isn't enabled */
6653         return 24000;
6654 }
6655
6656 static int broxton_get_display_clock_speed(struct drm_device *dev)
6657 {
6658         struct drm_i915_private *dev_priv = to_i915(dev);
6659         uint32_t cdctl = I915_READ(CDCLK_CTL);
6660         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6661         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6662         int cdclk;
6663
6664         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6665                 return 19200;
6666
6667         cdclk = 19200 * pll_ratio / 2;
6668
6669         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6670         case BXT_CDCLK_CD2X_DIV_SEL_1:
6671                 return cdclk;  /* 576MHz or 624MHz */
6672         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6673                 return cdclk * 2 / 3; /* 384MHz */
6674         case BXT_CDCLK_CD2X_DIV_SEL_2:
6675                 return cdclk / 2; /* 288MHz */
6676         case BXT_CDCLK_CD2X_DIV_SEL_4:
6677                 return cdclk / 4; /* 144MHz */
6678         }
6679
6680         /* error case, do as if DE PLL isn't enabled */
6681         return 19200;
6682 }
6683
6684 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6685 {
6686         struct drm_i915_private *dev_priv = dev->dev_private;
6687         uint32_t lcpll = I915_READ(LCPLL_CTL);
6688         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6689
6690         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6691                 return 800000;
6692         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6693                 return 450000;
6694         else if (freq == LCPLL_CLK_FREQ_450)
6695                 return 450000;
6696         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6697                 return 540000;
6698         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6699                 return 337500;
6700         else
6701                 return 675000;
6702 }
6703
6704 static int haswell_get_display_clock_speed(struct drm_device *dev)
6705 {
6706         struct drm_i915_private *dev_priv = dev->dev_private;
6707         uint32_t lcpll = I915_READ(LCPLL_CTL);
6708         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6709
6710         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6711                 return 800000;
6712         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6713                 return 450000;
6714         else if (freq == LCPLL_CLK_FREQ_450)
6715                 return 450000;
6716         else if (IS_HSW_ULT(dev))
6717                 return 337500;
6718         else
6719                 return 540000;
6720 }
6721
6722 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6723 {
6724         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6725                                       CCK_DISPLAY_CLOCK_CONTROL);
6726 }
6727
6728 static int ilk_get_display_clock_speed(struct drm_device *dev)
6729 {
6730         return 450000;
6731 }
6732
6733 static int i945_get_display_clock_speed(struct drm_device *dev)
6734 {
6735         return 400000;
6736 }
6737
6738 static int i915_get_display_clock_speed(struct drm_device *dev)
6739 {
6740         return 333333;
6741 }
6742
6743 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6744 {
6745         return 200000;
6746 }
6747
6748 static int pnv_get_display_clock_speed(struct drm_device *dev)
6749 {
6750         u16 gcfgc = 0;
6751
6752         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6753
6754         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6755         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6756                 return 266667;
6757         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6758                 return 333333;
6759         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6760                 return 444444;
6761         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6762                 return 200000;
6763         default:
6764                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6765         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6766                 return 133333;
6767         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6768                 return 166667;
6769         }
6770 }
6771
6772 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6773 {
6774         u16 gcfgc = 0;
6775
6776         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6777
6778         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6779                 return 133333;
6780         else {
6781                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6782                 case GC_DISPLAY_CLOCK_333_MHZ:
6783                         return 333333;
6784                 default:
6785                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6786                         return 190000;
6787                 }
6788         }
6789 }
6790
6791 static int i865_get_display_clock_speed(struct drm_device *dev)
6792 {
6793         return 266667;
6794 }
6795
6796 static int i85x_get_display_clock_speed(struct drm_device *dev)
6797 {
6798         u16 hpllcc = 0;
6799
6800         /*
6801          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6802          * encoding is different :(
6803          * FIXME is this the right way to detect 852GM/852GMV?
6804          */
6805         if (dev->pdev->revision == 0x1)
6806                 return 133333;
6807
6808         pci_bus_read_config_word(dev->pdev->bus,
6809                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6810
6811         /* Assume that the hardware is in the high speed state.  This
6812          * should be the default.
6813          */
6814         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6815         case GC_CLOCK_133_200:
6816         case GC_CLOCK_133_200_2:
6817         case GC_CLOCK_100_200:
6818                 return 200000;
6819         case GC_CLOCK_166_250:
6820                 return 250000;
6821         case GC_CLOCK_100_133:
6822                 return 133333;
6823         case GC_CLOCK_133_266:
6824         case GC_CLOCK_133_266_2:
6825         case GC_CLOCK_166_266:
6826                 return 266667;
6827         }
6828
6829         /* Shouldn't happen */
6830         return 0;
6831 }
6832
6833 static int i830_get_display_clock_speed(struct drm_device *dev)
6834 {
6835         return 133333;
6836 }
6837
6838 static unsigned int intel_hpll_vco(struct drm_device *dev)
6839 {
6840         struct drm_i915_private *dev_priv = dev->dev_private;
6841         static const unsigned int blb_vco[8] = {
6842                 [0] = 3200000,
6843                 [1] = 4000000,
6844                 [2] = 5333333,
6845                 [3] = 4800000,
6846                 [4] = 6400000,
6847         };
6848         static const unsigned int pnv_vco[8] = {
6849                 [0] = 3200000,
6850                 [1] = 4000000,
6851                 [2] = 5333333,
6852                 [3] = 4800000,
6853                 [4] = 2666667,
6854         };
6855         static const unsigned int cl_vco[8] = {
6856                 [0] = 3200000,
6857                 [1] = 4000000,
6858                 [2] = 5333333,
6859                 [3] = 6400000,
6860                 [4] = 3333333,
6861                 [5] = 3566667,
6862                 [6] = 4266667,
6863         };
6864         static const unsigned int elk_vco[8] = {
6865                 [0] = 3200000,
6866                 [1] = 4000000,
6867                 [2] = 5333333,
6868                 [3] = 4800000,
6869         };
6870         static const unsigned int ctg_vco[8] = {
6871                 [0] = 3200000,
6872                 [1] = 4000000,
6873                 [2] = 5333333,
6874                 [3] = 6400000,
6875                 [4] = 2666667,
6876                 [5] = 4266667,
6877         };
6878         const unsigned int *vco_table;
6879         unsigned int vco;
6880         uint8_t tmp = 0;
6881
6882         /* FIXME other chipsets? */
6883         if (IS_GM45(dev))
6884                 vco_table = ctg_vco;
6885         else if (IS_G4X(dev))
6886                 vco_table = elk_vco;
6887         else if (IS_CRESTLINE(dev))
6888                 vco_table = cl_vco;
6889         else if (IS_PINEVIEW(dev))
6890                 vco_table = pnv_vco;
6891         else if (IS_G33(dev))
6892                 vco_table = blb_vco;
6893         else
6894                 return 0;
6895
6896         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6897
6898         vco = vco_table[tmp & 0x7];
6899         if (vco == 0)
6900                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6901         else
6902                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6903
6904         return vco;
6905 }
6906
6907 static int gm45_get_display_clock_speed(struct drm_device *dev)
6908 {
6909         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6910         uint16_t tmp = 0;
6911
6912         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6913
6914         cdclk_sel = (tmp >> 12) & 0x1;
6915
6916         switch (vco) {
6917         case 2666667:
6918         case 4000000:
6919         case 5333333:
6920                 return cdclk_sel ? 333333 : 222222;
6921         case 3200000:
6922                 return cdclk_sel ? 320000 : 228571;
6923         default:
6924                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6925                 return 222222;
6926         }
6927 }
6928
6929 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6930 {
6931         static const uint8_t div_3200[] = { 16, 10,  8 };
6932         static const uint8_t div_4000[] = { 20, 12, 10 };
6933         static const uint8_t div_5333[] = { 24, 16, 14 };
6934         const uint8_t *div_table;
6935         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6936         uint16_t tmp = 0;
6937
6938         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6939
6940         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6941
6942         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6943                 goto fail;
6944
6945         switch (vco) {
6946         case 3200000:
6947                 div_table = div_3200;
6948                 break;
6949         case 4000000:
6950                 div_table = div_4000;
6951                 break;
6952         case 5333333:
6953                 div_table = div_5333;
6954                 break;
6955         default:
6956                 goto fail;
6957         }
6958
6959         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6960
6961 fail:
6962         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6963         return 200000;
6964 }
6965
6966 static int g33_get_display_clock_speed(struct drm_device *dev)
6967 {
6968         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
6969         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
6970         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6971         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6972         const uint8_t *div_table;
6973         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6974         uint16_t tmp = 0;
6975
6976         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6977
6978         cdclk_sel = (tmp >> 4) & 0x7;
6979
6980         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6981                 goto fail;
6982
6983         switch (vco) {
6984         case 3200000:
6985                 div_table = div_3200;
6986                 break;
6987         case 4000000:
6988                 div_table = div_4000;
6989                 break;
6990         case 4800000:
6991                 div_table = div_4800;
6992                 break;
6993         case 5333333:
6994                 div_table = div_5333;
6995                 break;
6996         default:
6997                 goto fail;
6998         }
6999
7000         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7001
7002 fail:
7003         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7004         return 190476;
7005 }
7006
7007 static void
7008 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7009 {
7010         while (*num > DATA_LINK_M_N_MASK ||
7011                *den > DATA_LINK_M_N_MASK) {
7012                 *num >>= 1;
7013                 *den >>= 1;
7014         }
7015 }
7016
7017 static void compute_m_n(unsigned int m, unsigned int n,
7018                         uint32_t *ret_m, uint32_t *ret_n)
7019 {
7020         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7021         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7022         intel_reduce_m_n_ratio(ret_m, ret_n);
7023 }
7024
7025 void
7026 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7027                        int pixel_clock, int link_clock,
7028                        struct intel_link_m_n *m_n)
7029 {
7030         m_n->tu = 64;
7031
7032         compute_m_n(bits_per_pixel * pixel_clock,
7033                     link_clock * nlanes * 8,
7034                     &m_n->gmch_m, &m_n->gmch_n);
7035
7036         compute_m_n(pixel_clock, link_clock,
7037                     &m_n->link_m, &m_n->link_n);
7038 }
7039
7040 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7041 {
7042         if (i915.panel_use_ssc >= 0)
7043                 return i915.panel_use_ssc != 0;
7044         return dev_priv->vbt.lvds_use_ssc
7045                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7046 }
7047
7048 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7049 {
7050         return (1 << dpll->n) << 16 | dpll->m2;
7051 }
7052
7053 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7054 {
7055         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7056 }
7057
7058 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7059                                      struct intel_crtc_state *crtc_state,
7060                                      intel_clock_t *reduced_clock)
7061 {
7062         struct drm_device *dev = crtc->base.dev;
7063         u32 fp, fp2 = 0;
7064
7065         if (IS_PINEVIEW(dev)) {
7066                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7067                 if (reduced_clock)
7068                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7069         } else {
7070                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7071                 if (reduced_clock)
7072                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7073         }
7074
7075         crtc_state->dpll_hw_state.fp0 = fp;
7076
7077         crtc->lowfreq_avail = false;
7078         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7079             reduced_clock) {
7080                 crtc_state->dpll_hw_state.fp1 = fp2;
7081                 crtc->lowfreq_avail = true;
7082         } else {
7083                 crtc_state->dpll_hw_state.fp1 = fp;
7084         }
7085 }
7086
7087 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7088                 pipe)
7089 {
7090         u32 reg_val;
7091
7092         /*
7093          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7094          * and set it to a reasonable value instead.
7095          */
7096         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7097         reg_val &= 0xffffff00;
7098         reg_val |= 0x00000030;
7099         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7100
7101         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7102         reg_val &= 0x8cffffff;
7103         reg_val = 0x8c000000;
7104         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7105
7106         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7107         reg_val &= 0xffffff00;
7108         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7109
7110         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7111         reg_val &= 0x00ffffff;
7112         reg_val |= 0xb0000000;
7113         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7114 }
7115
7116 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7117                                          struct intel_link_m_n *m_n)
7118 {
7119         struct drm_device *dev = crtc->base.dev;
7120         struct drm_i915_private *dev_priv = dev->dev_private;
7121         int pipe = crtc->pipe;
7122
7123         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7124         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7125         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7126         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7127 }
7128
7129 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7130                                          struct intel_link_m_n *m_n,
7131                                          struct intel_link_m_n *m2_n2)
7132 {
7133         struct drm_device *dev = crtc->base.dev;
7134         struct drm_i915_private *dev_priv = dev->dev_private;
7135         int pipe = crtc->pipe;
7136         enum transcoder transcoder = crtc->config->cpu_transcoder;
7137
7138         if (INTEL_INFO(dev)->gen >= 5) {
7139                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7140                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7141                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7142                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7143                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7144                  * for gen < 8) and if DRRS is supported (to make sure the
7145                  * registers are not unnecessarily accessed).
7146                  */
7147                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7148                         crtc->config->has_drrs) {
7149                         I915_WRITE(PIPE_DATA_M2(transcoder),
7150                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7151                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7152                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7153                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7154                 }
7155         } else {
7156                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7157                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7158                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7159                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7160         }
7161 }
7162
7163 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7164 {
7165         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7166
7167         if (m_n == M1_N1) {
7168                 dp_m_n = &crtc->config->dp_m_n;
7169                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7170         } else if (m_n == M2_N2) {
7171
7172                 /*
7173                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7174                  * needs to be programmed into M1_N1.
7175                  */
7176                 dp_m_n = &crtc->config->dp_m2_n2;
7177         } else {
7178                 DRM_ERROR("Unsupported divider value\n");
7179                 return;
7180         }
7181
7182         if (crtc->config->has_pch_encoder)
7183                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7184         else
7185                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7186 }
7187
7188 static void vlv_compute_dpll(struct intel_crtc *crtc,
7189                              struct intel_crtc_state *pipe_config)
7190 {
7191         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7192                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7193         if (crtc->pipe != PIPE_A)
7194                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7195
7196         /* DPLL not used with DSI, but still need the rest set up */
7197         if (!pipe_config->has_dsi_encoder)
7198                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7199                         DPLL_EXT_BUFFER_ENABLE_VLV;
7200
7201         pipe_config->dpll_hw_state.dpll_md =
7202                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7203 }
7204
7205 static void chv_compute_dpll(struct intel_crtc *crtc,
7206                              struct intel_crtc_state *pipe_config)
7207 {
7208         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7209                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7210         if (crtc->pipe != PIPE_A)
7211                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7212
7213         /* DPLL not used with DSI, but still need the rest set up */
7214         if (!pipe_config->has_dsi_encoder)
7215                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7216
7217         pipe_config->dpll_hw_state.dpll_md =
7218                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7219 }
7220
7221 static void vlv_prepare_pll(struct intel_crtc *crtc,
7222                             const struct intel_crtc_state *pipe_config)
7223 {
7224         struct drm_device *dev = crtc->base.dev;
7225         struct drm_i915_private *dev_priv = dev->dev_private;
7226         enum pipe pipe = crtc->pipe;
7227         u32 mdiv;
7228         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7229         u32 coreclk, reg_val;
7230
7231         /* Enable Refclk */
7232         I915_WRITE(DPLL(pipe),
7233                    pipe_config->dpll_hw_state.dpll &
7234                    ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7235
7236         /* No need to actually set up the DPLL with DSI */
7237         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7238                 return;
7239
7240         mutex_lock(&dev_priv->sb_lock);
7241
7242         bestn = pipe_config->dpll.n;
7243         bestm1 = pipe_config->dpll.m1;
7244         bestm2 = pipe_config->dpll.m2;
7245         bestp1 = pipe_config->dpll.p1;
7246         bestp2 = pipe_config->dpll.p2;
7247
7248         /* See eDP HDMI DPIO driver vbios notes doc */
7249
7250         /* PLL B needs special handling */
7251         if (pipe == PIPE_B)
7252                 vlv_pllb_recal_opamp(dev_priv, pipe);
7253
7254         /* Set up Tx target for periodic Rcomp update */
7255         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7256
7257         /* Disable target IRef on PLL */
7258         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7259         reg_val &= 0x00ffffff;
7260         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7261
7262         /* Disable fast lock */
7263         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7264
7265         /* Set idtafcrecal before PLL is enabled */
7266         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7267         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7268         mdiv |= ((bestn << DPIO_N_SHIFT));
7269         mdiv |= (1 << DPIO_K_SHIFT);
7270
7271         /*
7272          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7273          * but we don't support that).
7274          * Note: don't use the DAC post divider as it seems unstable.
7275          */
7276         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7277         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7278
7279         mdiv |= DPIO_ENABLE_CALIBRATION;
7280         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7281
7282         /* Set HBR and RBR LPF coefficients */
7283         if (pipe_config->port_clock == 162000 ||
7284             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7285             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7286                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7287                                  0x009f0003);
7288         else
7289                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7290                                  0x00d0000f);
7291
7292         if (pipe_config->has_dp_encoder) {
7293                 /* Use SSC source */
7294                 if (pipe == PIPE_A)
7295                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7296                                          0x0df40000);
7297                 else
7298                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7299                                          0x0df70000);
7300         } else { /* HDMI or VGA */
7301                 /* Use bend source */
7302                 if (pipe == PIPE_A)
7303                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7304                                          0x0df70000);
7305                 else
7306                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7307                                          0x0df40000);
7308         }
7309
7310         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7311         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7312         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7313             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7314                 coreclk |= 0x01000000;
7315         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7316
7317         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7318         mutex_unlock(&dev_priv->sb_lock);
7319 }
7320
7321 static void chv_prepare_pll(struct intel_crtc *crtc,
7322                             const struct intel_crtc_state *pipe_config)
7323 {
7324         struct drm_device *dev = crtc->base.dev;
7325         struct drm_i915_private *dev_priv = dev->dev_private;
7326         enum pipe pipe = crtc->pipe;
7327         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7328         u32 loopfilter, tribuf_calcntr;
7329         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7330         u32 dpio_val;
7331         int vco;
7332
7333         /* Enable Refclk and SSC */
7334         I915_WRITE(DPLL(pipe),
7335                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7336
7337         /* No need to actually set up the DPLL with DSI */
7338         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7339                 return;
7340
7341         bestn = pipe_config->dpll.n;
7342         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7343         bestm1 = pipe_config->dpll.m1;
7344         bestm2 = pipe_config->dpll.m2 >> 22;
7345         bestp1 = pipe_config->dpll.p1;
7346         bestp2 = pipe_config->dpll.p2;
7347         vco = pipe_config->dpll.vco;
7348         dpio_val = 0;
7349         loopfilter = 0;
7350
7351         mutex_lock(&dev_priv->sb_lock);
7352
7353         /* p1 and p2 divider */
7354         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7355                         5 << DPIO_CHV_S1_DIV_SHIFT |
7356                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7357                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7358                         1 << DPIO_CHV_K_DIV_SHIFT);
7359
7360         /* Feedback post-divider - m2 */
7361         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7362
7363         /* Feedback refclk divider - n and m1 */
7364         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7365                         DPIO_CHV_M1_DIV_BY_2 |
7366                         1 << DPIO_CHV_N_DIV_SHIFT);
7367
7368         /* M2 fraction division */
7369         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7370
7371         /* M2 fraction division enable */
7372         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7373         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7374         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7375         if (bestm2_frac)
7376                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7377         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7378
7379         /* Program digital lock detect threshold */
7380         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7381         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7382                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7383         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7384         if (!bestm2_frac)
7385                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7386         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7387
7388         /* Loop filter */
7389         if (vco == 5400000) {
7390                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7391                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7392                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7393                 tribuf_calcntr = 0x9;
7394         } else if (vco <= 6200000) {
7395                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7396                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7397                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7398                 tribuf_calcntr = 0x9;
7399         } else if (vco <= 6480000) {
7400                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7401                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7402                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7403                 tribuf_calcntr = 0x8;
7404         } else {
7405                 /* Not supported. Apply the same limits as in the max case */
7406                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7407                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7408                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7409                 tribuf_calcntr = 0;
7410         }
7411         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7412
7413         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7414         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7415         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7416         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7417
7418         /* AFC Recal */
7419         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7420                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7421                         DPIO_AFC_RECAL);
7422
7423         mutex_unlock(&dev_priv->sb_lock);
7424 }
7425
7426 /**
7427  * vlv_force_pll_on - forcibly enable just the PLL
7428  * @dev_priv: i915 private structure
7429  * @pipe: pipe PLL to enable
7430  * @dpll: PLL configuration
7431  *
7432  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7433  * in cases where we need the PLL enabled even when @pipe is not going to
7434  * be enabled.
7435  */
7436 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7437                      const struct dpll *dpll)
7438 {
7439         struct intel_crtc *crtc =
7440                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7441         struct intel_crtc_state *pipe_config;
7442
7443         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7444         if (!pipe_config)
7445                 return -ENOMEM;
7446
7447         pipe_config->base.crtc = &crtc->base;
7448         pipe_config->pixel_multiplier = 1;
7449         pipe_config->dpll = *dpll;
7450
7451         if (IS_CHERRYVIEW(dev)) {
7452                 chv_compute_dpll(crtc, pipe_config);
7453                 chv_prepare_pll(crtc, pipe_config);
7454                 chv_enable_pll(crtc, pipe_config);
7455         } else {
7456                 vlv_compute_dpll(crtc, pipe_config);
7457                 vlv_prepare_pll(crtc, pipe_config);
7458                 vlv_enable_pll(crtc, pipe_config);
7459         }
7460
7461         kfree(pipe_config);
7462
7463         return 0;
7464 }
7465
7466 /**
7467  * vlv_force_pll_off - forcibly disable just the PLL
7468  * @dev_priv: i915 private structure
7469  * @pipe: pipe PLL to disable
7470  *
7471  * Disable the PLL for @pipe. To be used in cases where we need
7472  * the PLL enabled even when @pipe is not going to be enabled.
7473  */
7474 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7475 {
7476         if (IS_CHERRYVIEW(dev))
7477                 chv_disable_pll(to_i915(dev), pipe);
7478         else
7479                 vlv_disable_pll(to_i915(dev), pipe);
7480 }
7481
7482 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7483                               struct intel_crtc_state *crtc_state,
7484                               intel_clock_t *reduced_clock)
7485 {
7486         struct drm_device *dev = crtc->base.dev;
7487         struct drm_i915_private *dev_priv = dev->dev_private;
7488         u32 dpll;
7489         bool is_sdvo;
7490         struct dpll *clock = &crtc_state->dpll;
7491
7492         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7493
7494         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7495                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7496
7497         dpll = DPLL_VGA_MODE_DIS;
7498
7499         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7500                 dpll |= DPLLB_MODE_LVDS;
7501         else
7502                 dpll |= DPLLB_MODE_DAC_SERIAL;
7503
7504         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7505                 dpll |= (crtc_state->pixel_multiplier - 1)
7506                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7507         }
7508
7509         if (is_sdvo)
7510                 dpll |= DPLL_SDVO_HIGH_SPEED;
7511
7512         if (crtc_state->has_dp_encoder)
7513                 dpll |= DPLL_SDVO_HIGH_SPEED;
7514
7515         /* compute bitmask from p1 value */
7516         if (IS_PINEVIEW(dev))
7517                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7518         else {
7519                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7520                 if (IS_G4X(dev) && reduced_clock)
7521                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7522         }
7523         switch (clock->p2) {
7524         case 5:
7525                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7526                 break;
7527         case 7:
7528                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7529                 break;
7530         case 10:
7531                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7532                 break;
7533         case 14:
7534                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7535                 break;
7536         }
7537         if (INTEL_INFO(dev)->gen >= 4)
7538                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7539
7540         if (crtc_state->sdvo_tv_clock)
7541                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7542         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7543                  intel_panel_use_ssc(dev_priv))
7544                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7545         else
7546                 dpll |= PLL_REF_INPUT_DREFCLK;
7547
7548         dpll |= DPLL_VCO_ENABLE;
7549         crtc_state->dpll_hw_state.dpll = dpll;
7550
7551         if (INTEL_INFO(dev)->gen >= 4) {
7552                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7553                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7554                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7555         }
7556 }
7557
7558 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7559                               struct intel_crtc_state *crtc_state,
7560                               intel_clock_t *reduced_clock)
7561 {
7562         struct drm_device *dev = crtc->base.dev;
7563         struct drm_i915_private *dev_priv = dev->dev_private;
7564         u32 dpll;
7565         struct dpll *clock = &crtc_state->dpll;
7566
7567         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7568
7569         dpll = DPLL_VGA_MODE_DIS;
7570
7571         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7572                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7573         } else {
7574                 if (clock->p1 == 2)
7575                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7576                 else
7577                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7578                 if (clock->p2 == 4)
7579                         dpll |= PLL_P2_DIVIDE_BY_4;
7580         }
7581
7582         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7583                 dpll |= DPLL_DVO_2X_MODE;
7584
7585         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7586             intel_panel_use_ssc(dev_priv))
7587                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7588         else
7589                 dpll |= PLL_REF_INPUT_DREFCLK;
7590
7591         dpll |= DPLL_VCO_ENABLE;
7592         crtc_state->dpll_hw_state.dpll = dpll;
7593 }
7594
7595 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7596 {
7597         struct drm_device *dev = intel_crtc->base.dev;
7598         struct drm_i915_private *dev_priv = dev->dev_private;
7599         enum pipe pipe = intel_crtc->pipe;
7600         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7601         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7602         uint32_t crtc_vtotal, crtc_vblank_end;
7603         int vsyncshift = 0;
7604
7605         /* We need to be careful not to changed the adjusted mode, for otherwise
7606          * the hw state checker will get angry at the mismatch. */
7607         crtc_vtotal = adjusted_mode->crtc_vtotal;
7608         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7609
7610         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7611                 /* the chip adds 2 halflines automatically */
7612                 crtc_vtotal -= 1;
7613                 crtc_vblank_end -= 1;
7614
7615                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7616                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7617                 else
7618                         vsyncshift = adjusted_mode->crtc_hsync_start -
7619                                 adjusted_mode->crtc_htotal / 2;
7620                 if (vsyncshift < 0)
7621                         vsyncshift += adjusted_mode->crtc_htotal;
7622         }
7623
7624         if (INTEL_INFO(dev)->gen > 3)
7625                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7626
7627         I915_WRITE(HTOTAL(cpu_transcoder),
7628                    (adjusted_mode->crtc_hdisplay - 1) |
7629                    ((adjusted_mode->crtc_htotal - 1) << 16));
7630         I915_WRITE(HBLANK(cpu_transcoder),
7631                    (adjusted_mode->crtc_hblank_start - 1) |
7632                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7633         I915_WRITE(HSYNC(cpu_transcoder),
7634                    (adjusted_mode->crtc_hsync_start - 1) |
7635                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7636
7637         I915_WRITE(VTOTAL(cpu_transcoder),
7638                    (adjusted_mode->crtc_vdisplay - 1) |
7639                    ((crtc_vtotal - 1) << 16));
7640         I915_WRITE(VBLANK(cpu_transcoder),
7641                    (adjusted_mode->crtc_vblank_start - 1) |
7642                    ((crtc_vblank_end - 1) << 16));
7643         I915_WRITE(VSYNC(cpu_transcoder),
7644                    (adjusted_mode->crtc_vsync_start - 1) |
7645                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7646
7647         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7648          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7649          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7650          * bits. */
7651         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7652             (pipe == PIPE_B || pipe == PIPE_C))
7653                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7654
7655 }
7656
7657 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7658 {
7659         struct drm_device *dev = intel_crtc->base.dev;
7660         struct drm_i915_private *dev_priv = dev->dev_private;
7661         enum pipe pipe = intel_crtc->pipe;
7662
7663         /* pipesrc controls the size that is scaled from, which should
7664          * always be the user's requested size.
7665          */
7666         I915_WRITE(PIPESRC(pipe),
7667                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7668                    (intel_crtc->config->pipe_src_h - 1));
7669 }
7670
7671 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7672                                    struct intel_crtc_state *pipe_config)
7673 {
7674         struct drm_device *dev = crtc->base.dev;
7675         struct drm_i915_private *dev_priv = dev->dev_private;
7676         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7677         uint32_t tmp;
7678
7679         tmp = I915_READ(HTOTAL(cpu_transcoder));
7680         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7681         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7682         tmp = I915_READ(HBLANK(cpu_transcoder));
7683         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7684         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7685         tmp = I915_READ(HSYNC(cpu_transcoder));
7686         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7687         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7688
7689         tmp = I915_READ(VTOTAL(cpu_transcoder));
7690         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7691         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7692         tmp = I915_READ(VBLANK(cpu_transcoder));
7693         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7694         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7695         tmp = I915_READ(VSYNC(cpu_transcoder));
7696         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7697         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7698
7699         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7700                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7701                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7702                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7703         }
7704 }
7705
7706 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7707                                     struct intel_crtc_state *pipe_config)
7708 {
7709         struct drm_device *dev = crtc->base.dev;
7710         struct drm_i915_private *dev_priv = dev->dev_private;
7711         u32 tmp;
7712
7713         tmp = I915_READ(PIPESRC(crtc->pipe));
7714         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7715         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7716
7717         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7718         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7719 }
7720
7721 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7722                                  struct intel_crtc_state *pipe_config)
7723 {
7724         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7725         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7726         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7727         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7728
7729         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7730         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7731         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7732         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7733
7734         mode->flags = pipe_config->base.adjusted_mode.flags;
7735         mode->type = DRM_MODE_TYPE_DRIVER;
7736
7737         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7738         mode->flags |= pipe_config->base.adjusted_mode.flags;
7739
7740         mode->hsync = drm_mode_hsync(mode);
7741         mode->vrefresh = drm_mode_vrefresh(mode);
7742         drm_mode_set_name(mode);
7743 }
7744
7745 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7746 {
7747         struct drm_device *dev = intel_crtc->base.dev;
7748         struct drm_i915_private *dev_priv = dev->dev_private;
7749         uint32_t pipeconf;
7750
7751         pipeconf = 0;
7752
7753         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7754             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7755                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7756
7757         if (intel_crtc->config->double_wide)
7758                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7759
7760         /* only g4x and later have fancy bpc/dither controls */
7761         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7762                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7763                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7764                         pipeconf |= PIPECONF_DITHER_EN |
7765                                     PIPECONF_DITHER_TYPE_SP;
7766
7767                 switch (intel_crtc->config->pipe_bpp) {
7768                 case 18:
7769                         pipeconf |= PIPECONF_6BPC;
7770                         break;
7771                 case 24:
7772                         pipeconf |= PIPECONF_8BPC;
7773                         break;
7774                 case 30:
7775                         pipeconf |= PIPECONF_10BPC;
7776                         break;
7777                 default:
7778                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7779                         BUG();
7780                 }
7781         }
7782
7783         if (HAS_PIPE_CXSR(dev)) {
7784                 if (intel_crtc->lowfreq_avail) {
7785                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7786                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7787                 } else {
7788                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7789                 }
7790         }
7791
7792         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7793                 if (INTEL_INFO(dev)->gen < 4 ||
7794                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7795                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7796                 else
7797                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7798         } else
7799                 pipeconf |= PIPECONF_PROGRESSIVE;
7800
7801         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7802              intel_crtc->config->limited_color_range)
7803                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7804
7805         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7806         POSTING_READ(PIPECONF(intel_crtc->pipe));
7807 }
7808
7809 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7810                                    struct intel_crtc_state *crtc_state)
7811 {
7812         struct drm_device *dev = crtc->base.dev;
7813         struct drm_i915_private *dev_priv = dev->dev_private;
7814         const intel_limit_t *limit;
7815         int refclk = 48000;
7816
7817         memset(&crtc_state->dpll_hw_state, 0,
7818                sizeof(crtc_state->dpll_hw_state));
7819
7820         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7821                 if (intel_panel_use_ssc(dev_priv)) {
7822                         refclk = dev_priv->vbt.lvds_ssc_freq;
7823                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7824                 }
7825
7826                 limit = &intel_limits_i8xx_lvds;
7827         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO)) {
7828                 limit = &intel_limits_i8xx_dvo;
7829         } else {
7830                 limit = &intel_limits_i8xx_dac;
7831         }
7832
7833         if (!crtc_state->clock_set &&
7834             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7835                                  refclk, NULL, &crtc_state->dpll)) {
7836                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7837                 return -EINVAL;
7838         }
7839
7840         i8xx_compute_dpll(crtc, crtc_state, NULL);
7841
7842         return 0;
7843 }
7844
7845 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7846                                   struct intel_crtc_state *crtc_state)
7847 {
7848         struct drm_device *dev = crtc->base.dev;
7849         struct drm_i915_private *dev_priv = dev->dev_private;
7850         const intel_limit_t *limit;
7851         int refclk = 96000;
7852
7853         memset(&crtc_state->dpll_hw_state, 0,
7854                sizeof(crtc_state->dpll_hw_state));
7855
7856         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7857                 if (intel_panel_use_ssc(dev_priv)) {
7858                         refclk = dev_priv->vbt.lvds_ssc_freq;
7859                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7860                 }
7861
7862                 if (intel_is_dual_link_lvds(dev))
7863                         limit = &intel_limits_g4x_dual_channel_lvds;
7864                 else
7865                         limit = &intel_limits_g4x_single_channel_lvds;
7866         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7867                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7868                 limit = &intel_limits_g4x_hdmi;
7869         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7870                 limit = &intel_limits_g4x_sdvo;
7871         } else {
7872                 /* The option is for other outputs */
7873                 limit = &intel_limits_i9xx_sdvo;
7874         }
7875
7876         if (!crtc_state->clock_set &&
7877             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7878                                 refclk, NULL, &crtc_state->dpll)) {
7879                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7880                 return -EINVAL;
7881         }
7882
7883         i9xx_compute_dpll(crtc, crtc_state, NULL);
7884
7885         return 0;
7886 }
7887
7888 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7889                                   struct intel_crtc_state *crtc_state)
7890 {
7891         struct drm_device *dev = crtc->base.dev;
7892         struct drm_i915_private *dev_priv = dev->dev_private;
7893         const intel_limit_t *limit;
7894         int refclk = 96000;
7895
7896         memset(&crtc_state->dpll_hw_state, 0,
7897                sizeof(crtc_state->dpll_hw_state));
7898
7899         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7900                 if (intel_panel_use_ssc(dev_priv)) {
7901                         refclk = dev_priv->vbt.lvds_ssc_freq;
7902                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7903                 }
7904
7905                 limit = &intel_limits_pineview_lvds;
7906         } else {
7907                 limit = &intel_limits_pineview_sdvo;
7908         }
7909
7910         if (!crtc_state->clock_set &&
7911             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7912                                 refclk, NULL, &crtc_state->dpll)) {
7913                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7914                 return -EINVAL;
7915         }
7916
7917         i9xx_compute_dpll(crtc, crtc_state, NULL);
7918
7919         return 0;
7920 }
7921
7922 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7923                                    struct intel_crtc_state *crtc_state)
7924 {
7925         struct drm_device *dev = crtc->base.dev;
7926         struct drm_i915_private *dev_priv = dev->dev_private;
7927         const intel_limit_t *limit;
7928         int refclk = 96000;
7929
7930         memset(&crtc_state->dpll_hw_state, 0,
7931                sizeof(crtc_state->dpll_hw_state));
7932
7933         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7934                 if (intel_panel_use_ssc(dev_priv)) {
7935                         refclk = dev_priv->vbt.lvds_ssc_freq;
7936                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7937                 }
7938
7939                 limit = &intel_limits_i9xx_lvds;
7940         } else {
7941                 limit = &intel_limits_i9xx_sdvo;
7942         }
7943
7944         if (!crtc_state->clock_set &&
7945             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7946                                  refclk, NULL, &crtc_state->dpll)) {
7947                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7948                 return -EINVAL;
7949         }
7950
7951         i9xx_compute_dpll(crtc, crtc_state, NULL);
7952
7953         return 0;
7954 }
7955
7956 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7957                                   struct intel_crtc_state *crtc_state)
7958 {
7959         int refclk = 100000;
7960         const intel_limit_t *limit = &intel_limits_chv;
7961
7962         memset(&crtc_state->dpll_hw_state, 0,
7963                sizeof(crtc_state->dpll_hw_state));
7964
7965         if (!crtc_state->clock_set &&
7966             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7967                                 refclk, NULL, &crtc_state->dpll)) {
7968                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7969                 return -EINVAL;
7970         }
7971
7972         chv_compute_dpll(crtc, crtc_state);
7973
7974         return 0;
7975 }
7976
7977 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7978                                   struct intel_crtc_state *crtc_state)
7979 {
7980         int refclk = 100000;
7981         const intel_limit_t *limit = &intel_limits_vlv;
7982
7983         memset(&crtc_state->dpll_hw_state, 0,
7984                sizeof(crtc_state->dpll_hw_state));
7985
7986         if (!crtc_state->clock_set &&
7987             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7988                                 refclk, NULL, &crtc_state->dpll)) {
7989                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7990                 return -EINVAL;
7991         }
7992
7993         vlv_compute_dpll(crtc, crtc_state);
7994
7995         return 0;
7996 }
7997
7998 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7999                                  struct intel_crtc_state *pipe_config)
8000 {
8001         struct drm_device *dev = crtc->base.dev;
8002         struct drm_i915_private *dev_priv = dev->dev_private;
8003         uint32_t tmp;
8004
8005         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8006                 return;
8007
8008         tmp = I915_READ(PFIT_CONTROL);
8009         if (!(tmp & PFIT_ENABLE))
8010                 return;
8011
8012         /* Check whether the pfit is attached to our pipe. */
8013         if (INTEL_INFO(dev)->gen < 4) {
8014                 if (crtc->pipe != PIPE_B)
8015                         return;
8016         } else {
8017                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8018                         return;
8019         }
8020
8021         pipe_config->gmch_pfit.control = tmp;
8022         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8023 }
8024
8025 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8026                                struct intel_crtc_state *pipe_config)
8027 {
8028         struct drm_device *dev = crtc->base.dev;
8029         struct drm_i915_private *dev_priv = dev->dev_private;
8030         int pipe = pipe_config->cpu_transcoder;
8031         intel_clock_t clock;
8032         u32 mdiv;
8033         int refclk = 100000;
8034
8035         /* In case of DSI, DPLL will not be used */
8036         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8037                 return;
8038
8039         mutex_lock(&dev_priv->sb_lock);
8040         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8041         mutex_unlock(&dev_priv->sb_lock);
8042
8043         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8044         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8045         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8046         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8047         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8048
8049         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8050 }
8051
8052 static void
8053 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8054                               struct intel_initial_plane_config *plane_config)
8055 {
8056         struct drm_device *dev = crtc->base.dev;
8057         struct drm_i915_private *dev_priv = dev->dev_private;
8058         u32 val, base, offset;
8059         int pipe = crtc->pipe, plane = crtc->plane;
8060         int fourcc, pixel_format;
8061         unsigned int aligned_height;
8062         struct drm_framebuffer *fb;
8063         struct intel_framebuffer *intel_fb;
8064
8065         val = I915_READ(DSPCNTR(plane));
8066         if (!(val & DISPLAY_PLANE_ENABLE))
8067                 return;
8068
8069         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8070         if (!intel_fb) {
8071                 DRM_DEBUG_KMS("failed to alloc fb\n");
8072                 return;
8073         }
8074
8075         fb = &intel_fb->base;
8076
8077         if (INTEL_INFO(dev)->gen >= 4) {
8078                 if (val & DISPPLANE_TILED) {
8079                         plane_config->tiling = I915_TILING_X;
8080                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8081                 }
8082         }
8083
8084         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8085         fourcc = i9xx_format_to_fourcc(pixel_format);
8086         fb->pixel_format = fourcc;
8087         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8088
8089         if (INTEL_INFO(dev)->gen >= 4) {
8090                 if (plane_config->tiling)
8091                         offset = I915_READ(DSPTILEOFF(plane));
8092                 else
8093                         offset = I915_READ(DSPLINOFF(plane));
8094                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8095         } else {
8096                 base = I915_READ(DSPADDR(plane));
8097         }
8098         plane_config->base = base;
8099
8100         val = I915_READ(PIPESRC(pipe));
8101         fb->width = ((val >> 16) & 0xfff) + 1;
8102         fb->height = ((val >> 0) & 0xfff) + 1;
8103
8104         val = I915_READ(DSPSTRIDE(pipe));
8105         fb->pitches[0] = val & 0xffffffc0;
8106
8107         aligned_height = intel_fb_align_height(dev, fb->height,
8108                                                fb->pixel_format,
8109                                                fb->modifier[0]);
8110
8111         plane_config->size = fb->pitches[0] * aligned_height;
8112
8113         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8114                       pipe_name(pipe), plane, fb->width, fb->height,
8115                       fb->bits_per_pixel, base, fb->pitches[0],
8116                       plane_config->size);
8117
8118         plane_config->fb = intel_fb;
8119 }
8120
8121 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8122                                struct intel_crtc_state *pipe_config)
8123 {
8124         struct drm_device *dev = crtc->base.dev;
8125         struct drm_i915_private *dev_priv = dev->dev_private;
8126         int pipe = pipe_config->cpu_transcoder;
8127         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8128         intel_clock_t clock;
8129         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8130         int refclk = 100000;
8131
8132         /* In case of DSI, DPLL will not be used */
8133         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8134                 return;
8135
8136         mutex_lock(&dev_priv->sb_lock);
8137         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8138         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8139         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8140         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8141         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8142         mutex_unlock(&dev_priv->sb_lock);
8143
8144         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8145         clock.m2 = (pll_dw0 & 0xff) << 22;
8146         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8147                 clock.m2 |= pll_dw2 & 0x3fffff;
8148         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8149         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8150         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8151
8152         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8153 }
8154
8155 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8156                                  struct intel_crtc_state *pipe_config)
8157 {
8158         struct drm_device *dev = crtc->base.dev;
8159         struct drm_i915_private *dev_priv = dev->dev_private;
8160         enum intel_display_power_domain power_domain;
8161         uint32_t tmp;
8162         bool ret;
8163
8164         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8165         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8166                 return false;
8167
8168         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8169         pipe_config->shared_dpll = NULL;
8170
8171         ret = false;
8172
8173         tmp = I915_READ(PIPECONF(crtc->pipe));
8174         if (!(tmp & PIPECONF_ENABLE))
8175                 goto out;
8176
8177         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8178                 switch (tmp & PIPECONF_BPC_MASK) {
8179                 case PIPECONF_6BPC:
8180                         pipe_config->pipe_bpp = 18;
8181                         break;
8182                 case PIPECONF_8BPC:
8183                         pipe_config->pipe_bpp = 24;
8184                         break;
8185                 case PIPECONF_10BPC:
8186                         pipe_config->pipe_bpp = 30;
8187                         break;
8188                 default:
8189                         break;
8190                 }
8191         }
8192
8193         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8194             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8195                 pipe_config->limited_color_range = true;
8196
8197         if (INTEL_INFO(dev)->gen < 4)
8198                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8199
8200         intel_get_pipe_timings(crtc, pipe_config);
8201         intel_get_pipe_src_size(crtc, pipe_config);
8202
8203         i9xx_get_pfit_config(crtc, pipe_config);
8204
8205         if (INTEL_INFO(dev)->gen >= 4) {
8206                 /* No way to read it out on pipes B and C */
8207                 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8208                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
8209                 else
8210                         tmp = I915_READ(DPLL_MD(crtc->pipe));
8211                 pipe_config->pixel_multiplier =
8212                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8213                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8214                 pipe_config->dpll_hw_state.dpll_md = tmp;
8215         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8216                 tmp = I915_READ(DPLL(crtc->pipe));
8217                 pipe_config->pixel_multiplier =
8218                         ((tmp & SDVO_MULTIPLIER_MASK)
8219                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8220         } else {
8221                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8222                  * port and will be fixed up in the encoder->get_config
8223                  * function. */
8224                 pipe_config->pixel_multiplier = 1;
8225         }
8226         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8227         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8228                 /*
8229                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8230                  * on 830. Filter it out here so that we don't
8231                  * report errors due to that.
8232                  */
8233                 if (IS_I830(dev))
8234                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8235
8236                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8237                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8238         } else {
8239                 /* Mask out read-only status bits. */
8240                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8241                                                      DPLL_PORTC_READY_MASK |
8242                                                      DPLL_PORTB_READY_MASK);
8243         }
8244
8245         if (IS_CHERRYVIEW(dev))
8246                 chv_crtc_clock_get(crtc, pipe_config);
8247         else if (IS_VALLEYVIEW(dev))
8248                 vlv_crtc_clock_get(crtc, pipe_config);
8249         else
8250                 i9xx_crtc_clock_get(crtc, pipe_config);
8251
8252         /*
8253          * Normally the dotclock is filled in by the encoder .get_config()
8254          * but in case the pipe is enabled w/o any ports we need a sane
8255          * default.
8256          */
8257         pipe_config->base.adjusted_mode.crtc_clock =
8258                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8259
8260         ret = true;
8261
8262 out:
8263         intel_display_power_put(dev_priv, power_domain);
8264
8265         return ret;
8266 }
8267
8268 static void ironlake_init_pch_refclk(struct drm_device *dev)
8269 {
8270         struct drm_i915_private *dev_priv = dev->dev_private;
8271         struct intel_encoder *encoder;
8272         u32 val, final;
8273         bool has_lvds = false;
8274         bool has_cpu_edp = false;
8275         bool has_panel = false;
8276         bool has_ck505 = false;
8277         bool can_ssc = false;
8278
8279         /* We need to take the global config into account */
8280         for_each_intel_encoder(dev, encoder) {
8281                 switch (encoder->type) {
8282                 case INTEL_OUTPUT_LVDS:
8283                         has_panel = true;
8284                         has_lvds = true;
8285                         break;
8286                 case INTEL_OUTPUT_EDP:
8287                         has_panel = true;
8288                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8289                                 has_cpu_edp = true;
8290                         break;
8291                 default:
8292                         break;
8293                 }
8294         }
8295
8296         if (HAS_PCH_IBX(dev)) {
8297                 has_ck505 = dev_priv->vbt.display_clock_mode;
8298                 can_ssc = has_ck505;
8299         } else {
8300                 has_ck505 = false;
8301                 can_ssc = true;
8302         }
8303
8304         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8305                       has_panel, has_lvds, has_ck505);
8306
8307         /* Ironlake: try to setup display ref clock before DPLL
8308          * enabling. This is only under driver's control after
8309          * PCH B stepping, previous chipset stepping should be
8310          * ignoring this setting.
8311          */
8312         val = I915_READ(PCH_DREF_CONTROL);
8313
8314         /* As we must carefully and slowly disable/enable each source in turn,
8315          * compute the final state we want first and check if we need to
8316          * make any changes at all.
8317          */
8318         final = val;
8319         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8320         if (has_ck505)
8321                 final |= DREF_NONSPREAD_CK505_ENABLE;
8322         else
8323                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8324
8325         final &= ~DREF_SSC_SOURCE_MASK;
8326         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8327         final &= ~DREF_SSC1_ENABLE;
8328
8329         if (has_panel) {
8330                 final |= DREF_SSC_SOURCE_ENABLE;
8331
8332                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8333                         final |= DREF_SSC1_ENABLE;
8334
8335                 if (has_cpu_edp) {
8336                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8337                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8338                         else
8339                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8340                 } else
8341                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8342         } else {
8343                 final |= DREF_SSC_SOURCE_DISABLE;
8344                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8345         }
8346
8347         if (final == val)
8348                 return;
8349
8350         /* Always enable nonspread source */
8351         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8352
8353         if (has_ck505)
8354                 val |= DREF_NONSPREAD_CK505_ENABLE;
8355         else
8356                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8357
8358         if (has_panel) {
8359                 val &= ~DREF_SSC_SOURCE_MASK;
8360                 val |= DREF_SSC_SOURCE_ENABLE;
8361
8362                 /* SSC must be turned on before enabling the CPU output  */
8363                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8364                         DRM_DEBUG_KMS("Using SSC on panel\n");
8365                         val |= DREF_SSC1_ENABLE;
8366                 } else
8367                         val &= ~DREF_SSC1_ENABLE;
8368
8369                 /* Get SSC going before enabling the outputs */
8370                 I915_WRITE(PCH_DREF_CONTROL, val);
8371                 POSTING_READ(PCH_DREF_CONTROL);
8372                 udelay(200);
8373
8374                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8375
8376                 /* Enable CPU source on CPU attached eDP */
8377                 if (has_cpu_edp) {
8378                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8379                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8380                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8381                         } else
8382                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8383                 } else
8384                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8385
8386                 I915_WRITE(PCH_DREF_CONTROL, val);
8387                 POSTING_READ(PCH_DREF_CONTROL);
8388                 udelay(200);
8389         } else {
8390                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8391
8392                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8393
8394                 /* Turn off CPU output */
8395                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8396
8397                 I915_WRITE(PCH_DREF_CONTROL, val);
8398                 POSTING_READ(PCH_DREF_CONTROL);
8399                 udelay(200);
8400
8401                 /* Turn off the SSC source */
8402                 val &= ~DREF_SSC_SOURCE_MASK;
8403                 val |= DREF_SSC_SOURCE_DISABLE;
8404
8405                 /* Turn off SSC1 */
8406                 val &= ~DREF_SSC1_ENABLE;
8407
8408                 I915_WRITE(PCH_DREF_CONTROL, val);
8409                 POSTING_READ(PCH_DREF_CONTROL);
8410                 udelay(200);
8411         }
8412
8413         BUG_ON(val != final);
8414 }
8415
8416 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8417 {
8418         uint32_t tmp;
8419
8420         tmp = I915_READ(SOUTH_CHICKEN2);
8421         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8422         I915_WRITE(SOUTH_CHICKEN2, tmp);
8423
8424         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8425                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8426                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8427
8428         tmp = I915_READ(SOUTH_CHICKEN2);
8429         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8430         I915_WRITE(SOUTH_CHICKEN2, tmp);
8431
8432         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8433                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8434                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8435 }
8436
8437 /* WaMPhyProgramming:hsw */
8438 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8439 {
8440         uint32_t tmp;
8441
8442         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8443         tmp &= ~(0xFF << 24);
8444         tmp |= (0x12 << 24);
8445         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8446
8447         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8448         tmp |= (1 << 11);
8449         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8450
8451         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8452         tmp |= (1 << 11);
8453         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8454
8455         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8456         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8457         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8458
8459         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8460         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8461         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8462
8463         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8464         tmp &= ~(7 << 13);
8465         tmp |= (5 << 13);
8466         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8467
8468         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8469         tmp &= ~(7 << 13);
8470         tmp |= (5 << 13);
8471         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8472
8473         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8474         tmp &= ~0xFF;
8475         tmp |= 0x1C;
8476         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8477
8478         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8479         tmp &= ~0xFF;
8480         tmp |= 0x1C;
8481         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8482
8483         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8484         tmp &= ~(0xFF << 16);
8485         tmp |= (0x1C << 16);
8486         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8487
8488         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8489         tmp &= ~(0xFF << 16);
8490         tmp |= (0x1C << 16);
8491         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8492
8493         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8494         tmp |= (1 << 27);
8495         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8496
8497         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8498         tmp |= (1 << 27);
8499         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8500
8501         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8502         tmp &= ~(0xF << 28);
8503         tmp |= (4 << 28);
8504         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8505
8506         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8507         tmp &= ~(0xF << 28);
8508         tmp |= (4 << 28);
8509         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8510 }
8511
8512 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8513  * Programming" based on the parameters passed:
8514  * - Sequence to enable CLKOUT_DP
8515  * - Sequence to enable CLKOUT_DP without spread
8516  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8517  */
8518 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8519                                  bool with_fdi)
8520 {
8521         struct drm_i915_private *dev_priv = dev->dev_private;
8522         uint32_t reg, tmp;
8523
8524         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8525                 with_spread = true;
8526         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8527                 with_fdi = false;
8528
8529         mutex_lock(&dev_priv->sb_lock);
8530
8531         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8532         tmp &= ~SBI_SSCCTL_DISABLE;
8533         tmp |= SBI_SSCCTL_PATHALT;
8534         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8535
8536         udelay(24);
8537
8538         if (with_spread) {
8539                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8540                 tmp &= ~SBI_SSCCTL_PATHALT;
8541                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8542
8543                 if (with_fdi) {
8544                         lpt_reset_fdi_mphy(dev_priv);
8545                         lpt_program_fdi_mphy(dev_priv);
8546                 }
8547         }
8548
8549         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8550         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8551         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8552         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8553
8554         mutex_unlock(&dev_priv->sb_lock);
8555 }
8556
8557 /* Sequence to disable CLKOUT_DP */
8558 static void lpt_disable_clkout_dp(struct drm_device *dev)
8559 {
8560         struct drm_i915_private *dev_priv = dev->dev_private;
8561         uint32_t reg, tmp;
8562
8563         mutex_lock(&dev_priv->sb_lock);
8564
8565         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8566         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8567         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8568         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8569
8570         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8571         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8572                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8573                         tmp |= SBI_SSCCTL_PATHALT;
8574                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8575                         udelay(32);
8576                 }
8577                 tmp |= SBI_SSCCTL_DISABLE;
8578                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8579         }
8580
8581         mutex_unlock(&dev_priv->sb_lock);
8582 }
8583
8584 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8585
8586 static const uint16_t sscdivintphase[] = {
8587         [BEND_IDX( 50)] = 0x3B23,
8588         [BEND_IDX( 45)] = 0x3B23,
8589         [BEND_IDX( 40)] = 0x3C23,
8590         [BEND_IDX( 35)] = 0x3C23,
8591         [BEND_IDX( 30)] = 0x3D23,
8592         [BEND_IDX( 25)] = 0x3D23,
8593         [BEND_IDX( 20)] = 0x3E23,
8594         [BEND_IDX( 15)] = 0x3E23,
8595         [BEND_IDX( 10)] = 0x3F23,
8596         [BEND_IDX(  5)] = 0x3F23,
8597         [BEND_IDX(  0)] = 0x0025,
8598         [BEND_IDX( -5)] = 0x0025,
8599         [BEND_IDX(-10)] = 0x0125,
8600         [BEND_IDX(-15)] = 0x0125,
8601         [BEND_IDX(-20)] = 0x0225,
8602         [BEND_IDX(-25)] = 0x0225,
8603         [BEND_IDX(-30)] = 0x0325,
8604         [BEND_IDX(-35)] = 0x0325,
8605         [BEND_IDX(-40)] = 0x0425,
8606         [BEND_IDX(-45)] = 0x0425,
8607         [BEND_IDX(-50)] = 0x0525,
8608 };
8609
8610 /*
8611  * Bend CLKOUT_DP
8612  * steps -50 to 50 inclusive, in steps of 5
8613  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8614  * change in clock period = -(steps / 10) * 5.787 ps
8615  */
8616 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8617 {
8618         uint32_t tmp;
8619         int idx = BEND_IDX(steps);
8620
8621         if (WARN_ON(steps % 5 != 0))
8622                 return;
8623
8624         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8625                 return;
8626
8627         mutex_lock(&dev_priv->sb_lock);
8628
8629         if (steps % 10 != 0)
8630                 tmp = 0xAAAAAAAB;
8631         else
8632                 tmp = 0x00000000;
8633         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8634
8635         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8636         tmp &= 0xffff0000;
8637         tmp |= sscdivintphase[idx];
8638         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8639
8640         mutex_unlock(&dev_priv->sb_lock);
8641 }
8642
8643 #undef BEND_IDX
8644
8645 static void lpt_init_pch_refclk(struct drm_device *dev)
8646 {
8647         struct intel_encoder *encoder;
8648         bool has_vga = false;
8649
8650         for_each_intel_encoder(dev, encoder) {
8651                 switch (encoder->type) {
8652                 case INTEL_OUTPUT_ANALOG:
8653                         has_vga = true;
8654                         break;
8655                 default:
8656                         break;
8657                 }
8658         }
8659
8660         if (has_vga) {
8661                 lpt_bend_clkout_dp(to_i915(dev), 0);
8662                 lpt_enable_clkout_dp(dev, true, true);
8663         } else {
8664                 lpt_disable_clkout_dp(dev);
8665         }
8666 }
8667
8668 /*
8669  * Initialize reference clocks when the driver loads
8670  */
8671 void intel_init_pch_refclk(struct drm_device *dev)
8672 {
8673         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8674                 ironlake_init_pch_refclk(dev);
8675         else if (HAS_PCH_LPT(dev))
8676                 lpt_init_pch_refclk(dev);
8677 }
8678
8679 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8680 {
8681         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8682         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8683         int pipe = intel_crtc->pipe;
8684         uint32_t val;
8685
8686         val = 0;
8687
8688         switch (intel_crtc->config->pipe_bpp) {
8689         case 18:
8690                 val |= PIPECONF_6BPC;
8691                 break;
8692         case 24:
8693                 val |= PIPECONF_8BPC;
8694                 break;
8695         case 30:
8696                 val |= PIPECONF_10BPC;
8697                 break;
8698         case 36:
8699                 val |= PIPECONF_12BPC;
8700                 break;
8701         default:
8702                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8703                 BUG();
8704         }
8705
8706         if (intel_crtc->config->dither)
8707                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8708
8709         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8710                 val |= PIPECONF_INTERLACED_ILK;
8711         else
8712                 val |= PIPECONF_PROGRESSIVE;
8713
8714         if (intel_crtc->config->limited_color_range)
8715                 val |= PIPECONF_COLOR_RANGE_SELECT;
8716
8717         I915_WRITE(PIPECONF(pipe), val);
8718         POSTING_READ(PIPECONF(pipe));
8719 }
8720
8721 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8722 {
8723         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8724         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8725         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8726         u32 val = 0;
8727
8728         if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8729                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8730
8731         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8732                 val |= PIPECONF_INTERLACED_ILK;
8733         else
8734                 val |= PIPECONF_PROGRESSIVE;
8735
8736         I915_WRITE(PIPECONF(cpu_transcoder), val);
8737         POSTING_READ(PIPECONF(cpu_transcoder));
8738 }
8739
8740 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8741 {
8742         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8743         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8744
8745         if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8746                 u32 val = 0;
8747
8748                 switch (intel_crtc->config->pipe_bpp) {
8749                 case 18:
8750                         val |= PIPEMISC_DITHER_6_BPC;
8751                         break;
8752                 case 24:
8753                         val |= PIPEMISC_DITHER_8_BPC;
8754                         break;
8755                 case 30:
8756                         val |= PIPEMISC_DITHER_10_BPC;
8757                         break;
8758                 case 36:
8759                         val |= PIPEMISC_DITHER_12_BPC;
8760                         break;
8761                 default:
8762                         /* Case prevented by pipe_config_set_bpp. */
8763                         BUG();
8764                 }
8765
8766                 if (intel_crtc->config->dither)
8767                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8768
8769                 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8770         }
8771 }
8772
8773 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8774 {
8775         /*
8776          * Account for spread spectrum to avoid
8777          * oversubscribing the link. Max center spread
8778          * is 2.5%; use 5% for safety's sake.
8779          */
8780         u32 bps = target_clock * bpp * 21 / 20;
8781         return DIV_ROUND_UP(bps, link_bw * 8);
8782 }
8783
8784 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8785 {
8786         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8787 }
8788
8789 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8790                                   struct intel_crtc_state *crtc_state,
8791                                   intel_clock_t *reduced_clock)
8792 {
8793         struct drm_crtc *crtc = &intel_crtc->base;
8794         struct drm_device *dev = crtc->dev;
8795         struct drm_i915_private *dev_priv = dev->dev_private;
8796         struct drm_atomic_state *state = crtc_state->base.state;
8797         struct drm_connector *connector;
8798         struct drm_connector_state *connector_state;
8799         struct intel_encoder *encoder;
8800         u32 dpll, fp, fp2;
8801         int factor, i;
8802         bool is_lvds = false, is_sdvo = false;
8803
8804         for_each_connector_in_state(state, connector, connector_state, i) {
8805                 if (connector_state->crtc != crtc_state->base.crtc)
8806                         continue;
8807
8808                 encoder = to_intel_encoder(connector_state->best_encoder);
8809
8810                 switch (encoder->type) {
8811                 case INTEL_OUTPUT_LVDS:
8812                         is_lvds = true;
8813                         break;
8814                 case INTEL_OUTPUT_SDVO:
8815                 case INTEL_OUTPUT_HDMI:
8816                         is_sdvo = true;
8817                         break;
8818                 default:
8819                         break;
8820                 }
8821         }
8822
8823         /* Enable autotuning of the PLL clock (if permissible) */
8824         factor = 21;
8825         if (is_lvds) {
8826                 if ((intel_panel_use_ssc(dev_priv) &&
8827                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8828                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8829                         factor = 25;
8830         } else if (crtc_state->sdvo_tv_clock)
8831                 factor = 20;
8832
8833         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8834
8835         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8836                 fp |= FP_CB_TUNE;
8837
8838         if (reduced_clock) {
8839                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8840
8841                 if (reduced_clock->m < factor * reduced_clock->n)
8842                         fp2 |= FP_CB_TUNE;
8843         } else {
8844                 fp2 = fp;
8845         }
8846
8847         dpll = 0;
8848
8849         if (is_lvds)
8850                 dpll |= DPLLB_MODE_LVDS;
8851         else
8852                 dpll |= DPLLB_MODE_DAC_SERIAL;
8853
8854         dpll |= (crtc_state->pixel_multiplier - 1)
8855                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8856
8857         if (is_sdvo)
8858                 dpll |= DPLL_SDVO_HIGH_SPEED;
8859         if (crtc_state->has_dp_encoder)
8860                 dpll |= DPLL_SDVO_HIGH_SPEED;
8861
8862         /* compute bitmask from p1 value */
8863         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8864         /* also FPA1 */
8865         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8866
8867         switch (crtc_state->dpll.p2) {
8868         case 5:
8869                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8870                 break;
8871         case 7:
8872                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8873                 break;
8874         case 10:
8875                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8876                 break;
8877         case 14:
8878                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8879                 break;
8880         }
8881
8882         if (is_lvds && intel_panel_use_ssc(dev_priv))
8883                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8884         else
8885                 dpll |= PLL_REF_INPUT_DREFCLK;
8886
8887         dpll |= DPLL_VCO_ENABLE;
8888
8889         crtc_state->dpll_hw_state.dpll = dpll;
8890         crtc_state->dpll_hw_state.fp0 = fp;
8891         crtc_state->dpll_hw_state.fp1 = fp2;
8892 }
8893
8894 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8895                                        struct intel_crtc_state *crtc_state)
8896 {
8897         struct drm_device *dev = crtc->base.dev;
8898         struct drm_i915_private *dev_priv = dev->dev_private;
8899         intel_clock_t reduced_clock;
8900         bool has_reduced_clock = false;
8901         struct intel_shared_dpll *pll;
8902         const intel_limit_t *limit;
8903         int refclk = 120000;
8904
8905         memset(&crtc_state->dpll_hw_state, 0,
8906                sizeof(crtc_state->dpll_hw_state));
8907
8908         crtc->lowfreq_avail = false;
8909
8910         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8911         if (!crtc_state->has_pch_encoder)
8912                 return 0;
8913
8914         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8915                 if (intel_panel_use_ssc(dev_priv)) {
8916                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8917                                       dev_priv->vbt.lvds_ssc_freq);
8918                         refclk = dev_priv->vbt.lvds_ssc_freq;
8919                 }
8920
8921                 if (intel_is_dual_link_lvds(dev)) {
8922                         if (refclk == 100000)
8923                                 limit = &intel_limits_ironlake_dual_lvds_100m;
8924                         else
8925                                 limit = &intel_limits_ironlake_dual_lvds;
8926                 } else {
8927                         if (refclk == 100000)
8928                                 limit = &intel_limits_ironlake_single_lvds_100m;
8929                         else
8930                                 limit = &intel_limits_ironlake_single_lvds;
8931                 }
8932         } else {
8933                 limit = &intel_limits_ironlake_dac;
8934         }
8935
8936         if (!crtc_state->clock_set &&
8937             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8938                                 refclk, NULL, &crtc_state->dpll)) {
8939                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8940                 return -EINVAL;
8941         }
8942
8943         ironlake_compute_dpll(crtc, crtc_state,
8944                               has_reduced_clock ? &reduced_clock : NULL);
8945
8946         pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
8947         if (pll == NULL) {
8948                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8949                                  pipe_name(crtc->pipe));
8950                 return -EINVAL;
8951         }
8952
8953         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8954             has_reduced_clock)
8955                 crtc->lowfreq_avail = true;
8956
8957         return 0;
8958 }
8959
8960 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8961                                          struct intel_link_m_n *m_n)
8962 {
8963         struct drm_device *dev = crtc->base.dev;
8964         struct drm_i915_private *dev_priv = dev->dev_private;
8965         enum pipe pipe = crtc->pipe;
8966
8967         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8968         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8969         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8970                 & ~TU_SIZE_MASK;
8971         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8972         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8973                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8974 }
8975
8976 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8977                                          enum transcoder transcoder,
8978                                          struct intel_link_m_n *m_n,
8979                                          struct intel_link_m_n *m2_n2)
8980 {
8981         struct drm_device *dev = crtc->base.dev;
8982         struct drm_i915_private *dev_priv = dev->dev_private;
8983         enum pipe pipe = crtc->pipe;
8984
8985         if (INTEL_INFO(dev)->gen >= 5) {
8986                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8987                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8988                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8989                         & ~TU_SIZE_MASK;
8990                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8991                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8992                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8993                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8994                  * gen < 8) and if DRRS is supported (to make sure the
8995                  * registers are not unnecessarily read).
8996                  */
8997                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8998                         crtc->config->has_drrs) {
8999                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9000                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9001                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9002                                         & ~TU_SIZE_MASK;
9003                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9004                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9005                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9006                 }
9007         } else {
9008                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9009                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9010                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9011                         & ~TU_SIZE_MASK;
9012                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9013                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9014                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9015         }
9016 }
9017
9018 void intel_dp_get_m_n(struct intel_crtc *crtc,
9019                       struct intel_crtc_state *pipe_config)
9020 {
9021         if (pipe_config->has_pch_encoder)
9022                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9023         else
9024                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9025                                              &pipe_config->dp_m_n,
9026                                              &pipe_config->dp_m2_n2);
9027 }
9028
9029 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9030                                         struct intel_crtc_state *pipe_config)
9031 {
9032         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9033                                      &pipe_config->fdi_m_n, NULL);
9034 }
9035
9036 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9037                                     struct intel_crtc_state *pipe_config)
9038 {
9039         struct drm_device *dev = crtc->base.dev;
9040         struct drm_i915_private *dev_priv = dev->dev_private;
9041         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9042         uint32_t ps_ctrl = 0;
9043         int id = -1;
9044         int i;
9045
9046         /* find scaler attached to this pipe */
9047         for (i = 0; i < crtc->num_scalers; i++) {
9048                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9049                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9050                         id = i;
9051                         pipe_config->pch_pfit.enabled = true;
9052                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9053                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9054                         break;
9055                 }
9056         }
9057
9058         scaler_state->scaler_id = id;
9059         if (id >= 0) {
9060                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9061         } else {
9062                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9063         }
9064 }
9065
9066 static void
9067 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9068                                  struct intel_initial_plane_config *plane_config)
9069 {
9070         struct drm_device *dev = crtc->base.dev;
9071         struct drm_i915_private *dev_priv = dev->dev_private;
9072         u32 val, base, offset, stride_mult, tiling;
9073         int pipe = crtc->pipe;
9074         int fourcc, pixel_format;
9075         unsigned int aligned_height;
9076         struct drm_framebuffer *fb;
9077         struct intel_framebuffer *intel_fb;
9078
9079         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9080         if (!intel_fb) {
9081                 DRM_DEBUG_KMS("failed to alloc fb\n");
9082                 return;
9083         }
9084
9085         fb = &intel_fb->base;
9086
9087         val = I915_READ(PLANE_CTL(pipe, 0));
9088         if (!(val & PLANE_CTL_ENABLE))
9089                 goto error;
9090
9091         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9092         fourcc = skl_format_to_fourcc(pixel_format,
9093                                       val & PLANE_CTL_ORDER_RGBX,
9094                                       val & PLANE_CTL_ALPHA_MASK);
9095         fb->pixel_format = fourcc;
9096         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9097
9098         tiling = val & PLANE_CTL_TILED_MASK;
9099         switch (tiling) {
9100         case PLANE_CTL_TILED_LINEAR:
9101                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9102                 break;
9103         case PLANE_CTL_TILED_X:
9104                 plane_config->tiling = I915_TILING_X;
9105                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9106                 break;
9107         case PLANE_CTL_TILED_Y:
9108                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9109                 break;
9110         case PLANE_CTL_TILED_YF:
9111                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9112                 break;
9113         default:
9114                 MISSING_CASE(tiling);
9115                 goto error;
9116         }
9117
9118         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9119         plane_config->base = base;
9120
9121         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9122
9123         val = I915_READ(PLANE_SIZE(pipe, 0));
9124         fb->height = ((val >> 16) & 0xfff) + 1;
9125         fb->width = ((val >> 0) & 0x1fff) + 1;
9126
9127         val = I915_READ(PLANE_STRIDE(pipe, 0));
9128         stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9129                                                 fb->pixel_format);
9130         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9131
9132         aligned_height = intel_fb_align_height(dev, fb->height,
9133                                                fb->pixel_format,
9134                                                fb->modifier[0]);
9135
9136         plane_config->size = fb->pitches[0] * aligned_height;
9137
9138         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9139                       pipe_name(pipe), fb->width, fb->height,
9140                       fb->bits_per_pixel, base, fb->pitches[0],
9141                       plane_config->size);
9142
9143         plane_config->fb = intel_fb;
9144         return;
9145
9146 error:
9147         kfree(fb);
9148 }
9149
9150 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9151                                      struct intel_crtc_state *pipe_config)
9152 {
9153         struct drm_device *dev = crtc->base.dev;
9154         struct drm_i915_private *dev_priv = dev->dev_private;
9155         uint32_t tmp;
9156
9157         tmp = I915_READ(PF_CTL(crtc->pipe));
9158
9159         if (tmp & PF_ENABLE) {
9160                 pipe_config->pch_pfit.enabled = true;
9161                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9162                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9163
9164                 /* We currently do not free assignements of panel fitters on
9165                  * ivb/hsw (since we don't use the higher upscaling modes which
9166                  * differentiates them) so just WARN about this case for now. */
9167                 if (IS_GEN7(dev)) {
9168                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9169                                 PF_PIPE_SEL_IVB(crtc->pipe));
9170                 }
9171         }
9172 }
9173
9174 static void
9175 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9176                                   struct intel_initial_plane_config *plane_config)
9177 {
9178         struct drm_device *dev = crtc->base.dev;
9179         struct drm_i915_private *dev_priv = dev->dev_private;
9180         u32 val, base, offset;
9181         int pipe = crtc->pipe;
9182         int fourcc, pixel_format;
9183         unsigned int aligned_height;
9184         struct drm_framebuffer *fb;
9185         struct intel_framebuffer *intel_fb;
9186
9187         val = I915_READ(DSPCNTR(pipe));
9188         if (!(val & DISPLAY_PLANE_ENABLE))
9189                 return;
9190
9191         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9192         if (!intel_fb) {
9193                 DRM_DEBUG_KMS("failed to alloc fb\n");
9194                 return;
9195         }
9196
9197         fb = &intel_fb->base;
9198
9199         if (INTEL_INFO(dev)->gen >= 4) {
9200                 if (val & DISPPLANE_TILED) {
9201                         plane_config->tiling = I915_TILING_X;
9202                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9203                 }
9204         }
9205
9206         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9207         fourcc = i9xx_format_to_fourcc(pixel_format);
9208         fb->pixel_format = fourcc;
9209         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9210
9211         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9212         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9213                 offset = I915_READ(DSPOFFSET(pipe));
9214         } else {
9215                 if (plane_config->tiling)
9216                         offset = I915_READ(DSPTILEOFF(pipe));
9217                 else
9218                         offset = I915_READ(DSPLINOFF(pipe));
9219         }
9220         plane_config->base = base;
9221
9222         val = I915_READ(PIPESRC(pipe));
9223         fb->width = ((val >> 16) & 0xfff) + 1;
9224         fb->height = ((val >> 0) & 0xfff) + 1;
9225
9226         val = I915_READ(DSPSTRIDE(pipe));
9227         fb->pitches[0] = val & 0xffffffc0;
9228
9229         aligned_height = intel_fb_align_height(dev, fb->height,
9230                                                fb->pixel_format,
9231                                                fb->modifier[0]);
9232
9233         plane_config->size = fb->pitches[0] * aligned_height;
9234
9235         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9236                       pipe_name(pipe), fb->width, fb->height,
9237                       fb->bits_per_pixel, base, fb->pitches[0],
9238                       plane_config->size);
9239
9240         plane_config->fb = intel_fb;
9241 }
9242
9243 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9244                                      struct intel_crtc_state *pipe_config)
9245 {
9246         struct drm_device *dev = crtc->base.dev;
9247         struct drm_i915_private *dev_priv = dev->dev_private;
9248         enum intel_display_power_domain power_domain;
9249         uint32_t tmp;
9250         bool ret;
9251
9252         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9253         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9254                 return false;
9255
9256         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9257         pipe_config->shared_dpll = NULL;
9258
9259         ret = false;
9260         tmp = I915_READ(PIPECONF(crtc->pipe));
9261         if (!(tmp & PIPECONF_ENABLE))
9262                 goto out;
9263
9264         switch (tmp & PIPECONF_BPC_MASK) {
9265         case PIPECONF_6BPC:
9266                 pipe_config->pipe_bpp = 18;
9267                 break;
9268         case PIPECONF_8BPC:
9269                 pipe_config->pipe_bpp = 24;
9270                 break;
9271         case PIPECONF_10BPC:
9272                 pipe_config->pipe_bpp = 30;
9273                 break;
9274         case PIPECONF_12BPC:
9275                 pipe_config->pipe_bpp = 36;
9276                 break;
9277         default:
9278                 break;
9279         }
9280
9281         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9282                 pipe_config->limited_color_range = true;
9283
9284         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9285                 struct intel_shared_dpll *pll;
9286                 enum intel_dpll_id pll_id;
9287
9288                 pipe_config->has_pch_encoder = true;
9289
9290                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9291                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9292                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9293
9294                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9295
9296                 if (HAS_PCH_IBX(dev_priv)) {
9297                         pll_id = (enum intel_dpll_id) crtc->pipe;
9298                 } else {
9299                         tmp = I915_READ(PCH_DPLL_SEL);
9300                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9301                                 pll_id = DPLL_ID_PCH_PLL_B;
9302                         else
9303                                 pll_id= DPLL_ID_PCH_PLL_A;
9304                 }
9305
9306                 pipe_config->shared_dpll =
9307                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
9308                 pll = pipe_config->shared_dpll;
9309
9310                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9311                                                  &pipe_config->dpll_hw_state));
9312
9313                 tmp = pipe_config->dpll_hw_state.dpll;
9314                 pipe_config->pixel_multiplier =
9315                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9316                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9317
9318                 ironlake_pch_clock_get(crtc, pipe_config);
9319         } else {
9320                 pipe_config->pixel_multiplier = 1;
9321         }
9322
9323         intel_get_pipe_timings(crtc, pipe_config);
9324         intel_get_pipe_src_size(crtc, pipe_config);
9325
9326         ironlake_get_pfit_config(crtc, pipe_config);
9327
9328         ret = true;
9329
9330 out:
9331         intel_display_power_put(dev_priv, power_domain);
9332
9333         return ret;
9334 }
9335
9336 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9337 {
9338         struct drm_device *dev = dev_priv->dev;
9339         struct intel_crtc *crtc;
9340
9341         for_each_intel_crtc(dev, crtc)
9342                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9343                      pipe_name(crtc->pipe));
9344
9345         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9346         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9347         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9348         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9349         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9350         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9351              "CPU PWM1 enabled\n");
9352         if (IS_HASWELL(dev))
9353                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9354                      "CPU PWM2 enabled\n");
9355         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9356              "PCH PWM1 enabled\n");
9357         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9358              "Utility pin enabled\n");
9359         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9360
9361         /*
9362          * In theory we can still leave IRQs enabled, as long as only the HPD
9363          * interrupts remain enabled. We used to check for that, but since it's
9364          * gen-specific and since we only disable LCPLL after we fully disable
9365          * the interrupts, the check below should be enough.
9366          */
9367         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9368 }
9369
9370 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9371 {
9372         struct drm_device *dev = dev_priv->dev;
9373
9374         if (IS_HASWELL(dev))
9375                 return I915_READ(D_COMP_HSW);
9376         else
9377                 return I915_READ(D_COMP_BDW);
9378 }
9379
9380 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9381 {
9382         struct drm_device *dev = dev_priv->dev;
9383
9384         if (IS_HASWELL(dev)) {
9385                 mutex_lock(&dev_priv->rps.hw_lock);
9386                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9387                                             val))
9388                         DRM_ERROR("Failed to write to D_COMP\n");
9389                 mutex_unlock(&dev_priv->rps.hw_lock);
9390         } else {
9391                 I915_WRITE(D_COMP_BDW, val);
9392                 POSTING_READ(D_COMP_BDW);
9393         }
9394 }
9395
9396 /*
9397  * This function implements pieces of two sequences from BSpec:
9398  * - Sequence for display software to disable LCPLL
9399  * - Sequence for display software to allow package C8+
9400  * The steps implemented here are just the steps that actually touch the LCPLL
9401  * register. Callers should take care of disabling all the display engine
9402  * functions, doing the mode unset, fixing interrupts, etc.
9403  */
9404 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9405                               bool switch_to_fclk, bool allow_power_down)
9406 {
9407         uint32_t val;
9408
9409         assert_can_disable_lcpll(dev_priv);
9410
9411         val = I915_READ(LCPLL_CTL);
9412
9413         if (switch_to_fclk) {
9414                 val |= LCPLL_CD_SOURCE_FCLK;
9415                 I915_WRITE(LCPLL_CTL, val);
9416
9417                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9418                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9419                         DRM_ERROR("Switching to FCLK failed\n");
9420
9421                 val = I915_READ(LCPLL_CTL);
9422         }
9423
9424         val |= LCPLL_PLL_DISABLE;
9425         I915_WRITE(LCPLL_CTL, val);
9426         POSTING_READ(LCPLL_CTL);
9427
9428         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9429                 DRM_ERROR("LCPLL still locked\n");
9430
9431         val = hsw_read_dcomp(dev_priv);
9432         val |= D_COMP_COMP_DISABLE;
9433         hsw_write_dcomp(dev_priv, val);
9434         ndelay(100);
9435
9436         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9437                      1))
9438                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9439
9440         if (allow_power_down) {
9441                 val = I915_READ(LCPLL_CTL);
9442                 val |= LCPLL_POWER_DOWN_ALLOW;
9443                 I915_WRITE(LCPLL_CTL, val);
9444                 POSTING_READ(LCPLL_CTL);
9445         }
9446 }
9447
9448 /*
9449  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9450  * source.
9451  */
9452 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9453 {
9454         uint32_t val;
9455
9456         val = I915_READ(LCPLL_CTL);
9457
9458         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9459                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9460                 return;
9461
9462         /*
9463          * Make sure we're not on PC8 state before disabling PC8, otherwise
9464          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9465          */
9466         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9467
9468         if (val & LCPLL_POWER_DOWN_ALLOW) {
9469                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9470                 I915_WRITE(LCPLL_CTL, val);
9471                 POSTING_READ(LCPLL_CTL);
9472         }
9473
9474         val = hsw_read_dcomp(dev_priv);
9475         val |= D_COMP_COMP_FORCE;
9476         val &= ~D_COMP_COMP_DISABLE;
9477         hsw_write_dcomp(dev_priv, val);
9478
9479         val = I915_READ(LCPLL_CTL);
9480         val &= ~LCPLL_PLL_DISABLE;
9481         I915_WRITE(LCPLL_CTL, val);
9482
9483         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9484                 DRM_ERROR("LCPLL not locked yet\n");
9485
9486         if (val & LCPLL_CD_SOURCE_FCLK) {
9487                 val = I915_READ(LCPLL_CTL);
9488                 val &= ~LCPLL_CD_SOURCE_FCLK;
9489                 I915_WRITE(LCPLL_CTL, val);
9490
9491                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9492                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9493                         DRM_ERROR("Switching back to LCPLL failed\n");
9494         }
9495
9496         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9497         intel_update_cdclk(dev_priv->dev);
9498 }
9499
9500 /*
9501  * Package states C8 and deeper are really deep PC states that can only be
9502  * reached when all the devices on the system allow it, so even if the graphics
9503  * device allows PC8+, it doesn't mean the system will actually get to these
9504  * states. Our driver only allows PC8+ when going into runtime PM.
9505  *
9506  * The requirements for PC8+ are that all the outputs are disabled, the power
9507  * well is disabled and most interrupts are disabled, and these are also
9508  * requirements for runtime PM. When these conditions are met, we manually do
9509  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9510  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9511  * hang the machine.
9512  *
9513  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9514  * the state of some registers, so when we come back from PC8+ we need to
9515  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9516  * need to take care of the registers kept by RC6. Notice that this happens even
9517  * if we don't put the device in PCI D3 state (which is what currently happens
9518  * because of the runtime PM support).
9519  *
9520  * For more, read "Display Sequences for Package C8" on the hardware
9521  * documentation.
9522  */
9523 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9524 {
9525         struct drm_device *dev = dev_priv->dev;
9526         uint32_t val;
9527
9528         DRM_DEBUG_KMS("Enabling package C8+\n");
9529
9530         if (HAS_PCH_LPT_LP(dev)) {
9531                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9532                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9533                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9534         }
9535
9536         lpt_disable_clkout_dp(dev);
9537         hsw_disable_lcpll(dev_priv, true, true);
9538 }
9539
9540 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9541 {
9542         struct drm_device *dev = dev_priv->dev;
9543         uint32_t val;
9544
9545         DRM_DEBUG_KMS("Disabling package C8+\n");
9546
9547         hsw_restore_lcpll(dev_priv);
9548         lpt_init_pch_refclk(dev);
9549
9550         if (HAS_PCH_LPT_LP(dev)) {
9551                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9552                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9553                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9554         }
9555 }
9556
9557 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9558 {
9559         struct drm_device *dev = old_state->dev;
9560         struct intel_atomic_state *old_intel_state =
9561                 to_intel_atomic_state(old_state);
9562         unsigned int req_cdclk = old_intel_state->dev_cdclk;
9563
9564         broxton_set_cdclk(to_i915(dev), req_cdclk);
9565 }
9566
9567 /* compute the max rate for new configuration */
9568 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9569 {
9570         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9571         struct drm_i915_private *dev_priv = state->dev->dev_private;
9572         struct drm_crtc *crtc;
9573         struct drm_crtc_state *cstate;
9574         struct intel_crtc_state *crtc_state;
9575         unsigned max_pixel_rate = 0, i;
9576         enum pipe pipe;
9577
9578         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9579                sizeof(intel_state->min_pixclk));
9580
9581         for_each_crtc_in_state(state, crtc, cstate, i) {
9582                 int pixel_rate;
9583
9584                 crtc_state = to_intel_crtc_state(cstate);
9585                 if (!crtc_state->base.enable) {
9586                         intel_state->min_pixclk[i] = 0;
9587                         continue;
9588                 }
9589
9590                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9591
9592                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9593                 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9594                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9595
9596                 intel_state->min_pixclk[i] = pixel_rate;
9597         }
9598
9599         for_each_pipe(dev_priv, pipe)
9600                 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9601
9602         return max_pixel_rate;
9603 }
9604
9605 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9606 {
9607         struct drm_i915_private *dev_priv = dev->dev_private;
9608         uint32_t val, data;
9609         int ret;
9610
9611         if (WARN((I915_READ(LCPLL_CTL) &
9612                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9613                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9614                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9615                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9616                  "trying to change cdclk frequency with cdclk not enabled\n"))
9617                 return;
9618
9619         mutex_lock(&dev_priv->rps.hw_lock);
9620         ret = sandybridge_pcode_write(dev_priv,
9621                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9622         mutex_unlock(&dev_priv->rps.hw_lock);
9623         if (ret) {
9624                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9625                 return;
9626         }
9627
9628         val = I915_READ(LCPLL_CTL);
9629         val |= LCPLL_CD_SOURCE_FCLK;
9630         I915_WRITE(LCPLL_CTL, val);
9631
9632         if (wait_for_us(I915_READ(LCPLL_CTL) &
9633                         LCPLL_CD_SOURCE_FCLK_DONE, 1))
9634                 DRM_ERROR("Switching to FCLK failed\n");
9635
9636         val = I915_READ(LCPLL_CTL);
9637         val &= ~LCPLL_CLK_FREQ_MASK;
9638
9639         switch (cdclk) {
9640         case 450000:
9641                 val |= LCPLL_CLK_FREQ_450;
9642                 data = 0;
9643                 break;
9644         case 540000:
9645                 val |= LCPLL_CLK_FREQ_54O_BDW;
9646                 data = 1;
9647                 break;
9648         case 337500:
9649                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9650                 data = 2;
9651                 break;
9652         case 675000:
9653                 val |= LCPLL_CLK_FREQ_675_BDW;
9654                 data = 3;
9655                 break;
9656         default:
9657                 WARN(1, "invalid cdclk frequency\n");
9658                 return;
9659         }
9660
9661         I915_WRITE(LCPLL_CTL, val);
9662
9663         val = I915_READ(LCPLL_CTL);
9664         val &= ~LCPLL_CD_SOURCE_FCLK;
9665         I915_WRITE(LCPLL_CTL, val);
9666
9667         if (wait_for_us((I915_READ(LCPLL_CTL) &
9668                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9669                 DRM_ERROR("Switching back to LCPLL failed\n");
9670
9671         mutex_lock(&dev_priv->rps.hw_lock);
9672         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9673         mutex_unlock(&dev_priv->rps.hw_lock);
9674
9675         I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9676
9677         intel_update_cdclk(dev);
9678
9679         WARN(cdclk != dev_priv->cdclk_freq,
9680              "cdclk requested %d kHz but got %d kHz\n",
9681              cdclk, dev_priv->cdclk_freq);
9682 }
9683
9684 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9685 {
9686         struct drm_i915_private *dev_priv = to_i915(state->dev);
9687         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9688         int max_pixclk = ilk_max_pixel_rate(state);
9689         int cdclk;
9690
9691         /*
9692          * FIXME should also account for plane ratio
9693          * once 64bpp pixel formats are supported.
9694          */
9695         if (max_pixclk > 540000)
9696                 cdclk = 675000;
9697         else if (max_pixclk > 450000)
9698                 cdclk = 540000;
9699         else if (max_pixclk > 337500)
9700                 cdclk = 450000;
9701         else
9702                 cdclk = 337500;
9703
9704         if (cdclk > dev_priv->max_cdclk_freq) {
9705                 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9706                               cdclk, dev_priv->max_cdclk_freq);
9707                 return -EINVAL;
9708         }
9709
9710         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9711         if (!intel_state->active_crtcs)
9712                 intel_state->dev_cdclk = 337500;
9713
9714         return 0;
9715 }
9716
9717 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9718 {
9719         struct drm_device *dev = old_state->dev;
9720         struct intel_atomic_state *old_intel_state =
9721                 to_intel_atomic_state(old_state);
9722         unsigned req_cdclk = old_intel_state->dev_cdclk;
9723
9724         broadwell_set_cdclk(dev, req_cdclk);
9725 }
9726
9727 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9728                                       struct intel_crtc_state *crtc_state)
9729 {
9730         struct intel_encoder *intel_encoder =
9731                 intel_ddi_get_crtc_new_encoder(crtc_state);
9732
9733         if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9734                 if (!intel_ddi_pll_select(crtc, crtc_state))
9735                         return -EINVAL;
9736         }
9737
9738         crtc->lowfreq_avail = false;
9739
9740         return 0;
9741 }
9742
9743 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9744                                 enum port port,
9745                                 struct intel_crtc_state *pipe_config)
9746 {
9747         enum intel_dpll_id id;
9748
9749         switch (port) {
9750         case PORT_A:
9751                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9752                 id = DPLL_ID_SKL_DPLL0;
9753                 break;
9754         case PORT_B:
9755                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9756                 id = DPLL_ID_SKL_DPLL1;
9757                 break;
9758         case PORT_C:
9759                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9760                 id = DPLL_ID_SKL_DPLL2;
9761                 break;
9762         default:
9763                 DRM_ERROR("Incorrect port type\n");
9764                 return;
9765         }
9766
9767         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9768 }
9769
9770 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9771                                 enum port port,
9772                                 struct intel_crtc_state *pipe_config)
9773 {
9774         enum intel_dpll_id id;
9775         u32 temp;
9776
9777         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9778         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9779
9780         switch (pipe_config->ddi_pll_sel) {
9781         case SKL_DPLL0:
9782                 id = DPLL_ID_SKL_DPLL0;
9783                 break;
9784         case SKL_DPLL1:
9785                 id = DPLL_ID_SKL_DPLL1;
9786                 break;
9787         case SKL_DPLL2:
9788                 id = DPLL_ID_SKL_DPLL2;
9789                 break;
9790         case SKL_DPLL3:
9791                 id = DPLL_ID_SKL_DPLL3;
9792                 break;
9793         default:
9794                 MISSING_CASE(pipe_config->ddi_pll_sel);
9795                 return;
9796         }
9797
9798         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9799 }
9800
9801 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9802                                 enum port port,
9803                                 struct intel_crtc_state *pipe_config)
9804 {
9805         enum intel_dpll_id id;
9806
9807         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9808
9809         switch (pipe_config->ddi_pll_sel) {
9810         case PORT_CLK_SEL_WRPLL1:
9811                 id = DPLL_ID_WRPLL1;
9812                 break;
9813         case PORT_CLK_SEL_WRPLL2:
9814                 id = DPLL_ID_WRPLL2;
9815                 break;
9816         case PORT_CLK_SEL_SPLL:
9817                 id = DPLL_ID_SPLL;
9818                 break;
9819         case PORT_CLK_SEL_LCPLL_810:
9820                 id = DPLL_ID_LCPLL_810;
9821                 break;
9822         case PORT_CLK_SEL_LCPLL_1350:
9823                 id = DPLL_ID_LCPLL_1350;
9824                 break;
9825         case PORT_CLK_SEL_LCPLL_2700:
9826                 id = DPLL_ID_LCPLL_2700;
9827                 break;
9828         default:
9829                 MISSING_CASE(pipe_config->ddi_pll_sel);
9830                 /* fall through */
9831         case PORT_CLK_SEL_NONE:
9832                 return;
9833         }
9834
9835         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9836 }
9837
9838 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9839                                      struct intel_crtc_state *pipe_config,
9840                                      unsigned long *power_domain_mask)
9841 {
9842         struct drm_device *dev = crtc->base.dev;
9843         struct drm_i915_private *dev_priv = dev->dev_private;
9844         enum intel_display_power_domain power_domain;
9845         u32 tmp;
9846
9847         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9848
9849         /*
9850          * XXX: Do intel_display_power_get_if_enabled before reading this (for
9851          * consistency and less surprising code; it's in always on power).
9852          */
9853         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9854         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9855                 enum pipe trans_edp_pipe;
9856                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9857                 default:
9858                         WARN(1, "unknown pipe linked to edp transcoder\n");
9859                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9860                 case TRANS_DDI_EDP_INPUT_A_ON:
9861                         trans_edp_pipe = PIPE_A;
9862                         break;
9863                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9864                         trans_edp_pipe = PIPE_B;
9865                         break;
9866                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9867                         trans_edp_pipe = PIPE_C;
9868                         break;
9869                 }
9870
9871                 if (trans_edp_pipe == crtc->pipe)
9872                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9873         }
9874
9875         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9876         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9877                 return false;
9878         *power_domain_mask |= BIT(power_domain);
9879
9880         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9881
9882         return tmp & PIPECONF_ENABLE;
9883 }
9884
9885 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9886                                          struct intel_crtc_state *pipe_config,
9887                                          unsigned long *power_domain_mask)
9888 {
9889         struct drm_device *dev = crtc->base.dev;
9890         struct drm_i915_private *dev_priv = dev->dev_private;
9891         enum intel_display_power_domain power_domain;
9892         enum port port;
9893         enum transcoder cpu_transcoder;
9894         u32 tmp;
9895
9896         pipe_config->has_dsi_encoder = false;
9897
9898         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9899                 if (port == PORT_A)
9900                         cpu_transcoder = TRANSCODER_DSI_A;
9901                 else
9902                         cpu_transcoder = TRANSCODER_DSI_C;
9903
9904                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9905                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9906                         continue;
9907                 *power_domain_mask |= BIT(power_domain);
9908
9909                 /*
9910                  * The PLL needs to be enabled with a valid divider
9911                  * configuration, otherwise accessing DSI registers will hang
9912                  * the machine. See BSpec North Display Engine
9913                  * registers/MIPI[BXT]. We can break out here early, since we
9914                  * need the same DSI PLL to be enabled for both DSI ports.
9915                  */
9916                 if (!intel_dsi_pll_is_enabled(dev_priv))
9917                         break;
9918
9919                 /* XXX: this works for video mode only */
9920                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9921                 if (!(tmp & DPI_ENABLE))
9922                         continue;
9923
9924                 tmp = I915_READ(MIPI_CTRL(port));
9925                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9926                         continue;
9927
9928                 pipe_config->cpu_transcoder = cpu_transcoder;
9929                 pipe_config->has_dsi_encoder = true;
9930                 break;
9931         }
9932
9933         return pipe_config->has_dsi_encoder;
9934 }
9935
9936 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9937                                        struct intel_crtc_state *pipe_config)
9938 {
9939         struct drm_device *dev = crtc->base.dev;
9940         struct drm_i915_private *dev_priv = dev->dev_private;
9941         struct intel_shared_dpll *pll;
9942         enum port port;
9943         uint32_t tmp;
9944
9945         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9946
9947         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9948
9949         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9950                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9951         else if (IS_BROXTON(dev))
9952                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9953         else
9954                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9955
9956         pll = pipe_config->shared_dpll;
9957         if (pll) {
9958                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9959                                                  &pipe_config->dpll_hw_state));
9960         }
9961
9962         /*
9963          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9964          * DDI E. So just check whether this pipe is wired to DDI E and whether
9965          * the PCH transcoder is on.
9966          */
9967         if (INTEL_INFO(dev)->gen < 9 &&
9968             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9969                 pipe_config->has_pch_encoder = true;
9970
9971                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9972                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9973                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9974
9975                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9976         }
9977 }
9978
9979 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9980                                     struct intel_crtc_state *pipe_config)
9981 {
9982         struct drm_device *dev = crtc->base.dev;
9983         struct drm_i915_private *dev_priv = dev->dev_private;
9984         enum intel_display_power_domain power_domain;
9985         unsigned long power_domain_mask;
9986         bool active;
9987
9988         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9989         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9990                 return false;
9991         power_domain_mask = BIT(power_domain);
9992
9993         pipe_config->shared_dpll = NULL;
9994
9995         active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
9996
9997         if (IS_BROXTON(dev_priv)) {
9998                 bxt_get_dsi_transcoder_state(crtc, pipe_config,
9999                                              &power_domain_mask);
10000                 WARN_ON(active && pipe_config->has_dsi_encoder);
10001                 if (pipe_config->has_dsi_encoder)
10002                         active = true;
10003         }
10004
10005         if (!active)
10006                 goto out;
10007
10008         if (!pipe_config->has_dsi_encoder) {
10009                 haswell_get_ddi_port_state(crtc, pipe_config);
10010                 intel_get_pipe_timings(crtc, pipe_config);
10011         }
10012
10013         intel_get_pipe_src_size(crtc, pipe_config);
10014
10015         pipe_config->gamma_mode =
10016                 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10017
10018         if (INTEL_INFO(dev)->gen >= 9) {
10019                 skl_init_scalers(dev, crtc, pipe_config);
10020         }
10021
10022         if (INTEL_INFO(dev)->gen >= 9) {
10023                 pipe_config->scaler_state.scaler_id = -1;
10024                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10025         }
10026
10027         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10028         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10029                 power_domain_mask |= BIT(power_domain);
10030                 if (INTEL_INFO(dev)->gen >= 9)
10031                         skylake_get_pfit_config(crtc, pipe_config);
10032                 else
10033                         ironlake_get_pfit_config(crtc, pipe_config);
10034         }
10035
10036         if (IS_HASWELL(dev))
10037                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10038                         (I915_READ(IPS_CTL) & IPS_ENABLE);
10039
10040         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10041             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10042                 pipe_config->pixel_multiplier =
10043                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10044         } else {
10045                 pipe_config->pixel_multiplier = 1;
10046         }
10047
10048 out:
10049         for_each_power_domain(power_domain, power_domain_mask)
10050                 intel_display_power_put(dev_priv, power_domain);
10051
10052         return active;
10053 }
10054
10055 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10056                                const struct intel_plane_state *plane_state)
10057 {
10058         struct drm_device *dev = crtc->dev;
10059         struct drm_i915_private *dev_priv = dev->dev_private;
10060         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10061         uint32_t cntl = 0, size = 0;
10062
10063         if (plane_state && plane_state->visible) {
10064                 unsigned int width = plane_state->base.crtc_w;
10065                 unsigned int height = plane_state->base.crtc_h;
10066                 unsigned int stride = roundup_pow_of_two(width) * 4;
10067
10068                 switch (stride) {
10069                 default:
10070                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10071                                   width, stride);
10072                         stride = 256;
10073                         /* fallthrough */
10074                 case 256:
10075                 case 512:
10076                 case 1024:
10077                 case 2048:
10078                         break;
10079                 }
10080
10081                 cntl |= CURSOR_ENABLE |
10082                         CURSOR_GAMMA_ENABLE |
10083                         CURSOR_FORMAT_ARGB |
10084                         CURSOR_STRIDE(stride);
10085
10086                 size = (height << 12) | width;
10087         }
10088
10089         if (intel_crtc->cursor_cntl != 0 &&
10090             (intel_crtc->cursor_base != base ||
10091              intel_crtc->cursor_size != size ||
10092              intel_crtc->cursor_cntl != cntl)) {
10093                 /* On these chipsets we can only modify the base/size/stride
10094                  * whilst the cursor is disabled.
10095                  */
10096                 I915_WRITE(CURCNTR(PIPE_A), 0);
10097                 POSTING_READ(CURCNTR(PIPE_A));
10098                 intel_crtc->cursor_cntl = 0;
10099         }
10100
10101         if (intel_crtc->cursor_base != base) {
10102                 I915_WRITE(CURBASE(PIPE_A), base);
10103                 intel_crtc->cursor_base = base;
10104         }
10105
10106         if (intel_crtc->cursor_size != size) {
10107                 I915_WRITE(CURSIZE, size);
10108                 intel_crtc->cursor_size = size;
10109         }
10110
10111         if (intel_crtc->cursor_cntl != cntl) {
10112                 I915_WRITE(CURCNTR(PIPE_A), cntl);
10113                 POSTING_READ(CURCNTR(PIPE_A));
10114                 intel_crtc->cursor_cntl = cntl;
10115         }
10116 }
10117
10118 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10119                                const struct intel_plane_state *plane_state)
10120 {
10121         struct drm_device *dev = crtc->dev;
10122         struct drm_i915_private *dev_priv = dev->dev_private;
10123         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10124         int pipe = intel_crtc->pipe;
10125         uint32_t cntl = 0;
10126
10127         if (plane_state && plane_state->visible) {
10128                 cntl = MCURSOR_GAMMA_ENABLE;
10129                 switch (plane_state->base.crtc_w) {
10130                         case 64:
10131                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10132                                 break;
10133                         case 128:
10134                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10135                                 break;
10136                         case 256:
10137                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10138                                 break;
10139                         default:
10140                                 MISSING_CASE(plane_state->base.crtc_w);
10141                                 return;
10142                 }
10143                 cntl |= pipe << 28; /* Connect to correct pipe */
10144
10145                 if (HAS_DDI(dev))
10146                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10147
10148                 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10149                         cntl |= CURSOR_ROTATE_180;
10150         }
10151
10152         if (intel_crtc->cursor_cntl != cntl) {
10153                 I915_WRITE(CURCNTR(pipe), cntl);
10154                 POSTING_READ(CURCNTR(pipe));
10155                 intel_crtc->cursor_cntl = cntl;
10156         }
10157
10158         /* and commit changes on next vblank */
10159         I915_WRITE(CURBASE(pipe), base);
10160         POSTING_READ(CURBASE(pipe));
10161
10162         intel_crtc->cursor_base = base;
10163 }
10164
10165 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10166 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10167                                      const struct intel_plane_state *plane_state)
10168 {
10169         struct drm_device *dev = crtc->dev;
10170         struct drm_i915_private *dev_priv = dev->dev_private;
10171         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10172         int pipe = intel_crtc->pipe;
10173         u32 base = intel_crtc->cursor_addr;
10174         u32 pos = 0;
10175
10176         if (plane_state) {
10177                 int x = plane_state->base.crtc_x;
10178                 int y = plane_state->base.crtc_y;
10179
10180                 if (x < 0) {
10181                         pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10182                         x = -x;
10183                 }
10184                 pos |= x << CURSOR_X_SHIFT;
10185
10186                 if (y < 0) {
10187                         pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10188                         y = -y;
10189                 }
10190                 pos |= y << CURSOR_Y_SHIFT;
10191
10192                 /* ILK+ do this automagically */
10193                 if (HAS_GMCH_DISPLAY(dev) &&
10194                     plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10195                         base += (plane_state->base.crtc_h *
10196                                  plane_state->base.crtc_w - 1) * 4;
10197                 }
10198         }
10199
10200         I915_WRITE(CURPOS(pipe), pos);
10201
10202         if (IS_845G(dev) || IS_I865G(dev))
10203                 i845_update_cursor(crtc, base, plane_state);
10204         else
10205                 i9xx_update_cursor(crtc, base, plane_state);
10206 }
10207
10208 static bool cursor_size_ok(struct drm_device *dev,
10209                            uint32_t width, uint32_t height)
10210 {
10211         if (width == 0 || height == 0)
10212                 return false;
10213
10214         /*
10215          * 845g/865g are special in that they are only limited by
10216          * the width of their cursors, the height is arbitrary up to
10217          * the precision of the register. Everything else requires
10218          * square cursors, limited to a few power-of-two sizes.
10219          */
10220         if (IS_845G(dev) || IS_I865G(dev)) {
10221                 if ((width & 63) != 0)
10222                         return false;
10223
10224                 if (width > (IS_845G(dev) ? 64 : 512))
10225                         return false;
10226
10227                 if (height > 1023)
10228                         return false;
10229         } else {
10230                 switch (width | height) {
10231                 case 256:
10232                 case 128:
10233                         if (IS_GEN2(dev))
10234                                 return false;
10235                 case 64:
10236                         break;
10237                 default:
10238                         return false;
10239                 }
10240         }
10241
10242         return true;
10243 }
10244
10245 /* VESA 640x480x72Hz mode to set on the pipe */
10246 static struct drm_display_mode load_detect_mode = {
10247         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10248                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10249 };
10250
10251 struct drm_framebuffer *
10252 __intel_framebuffer_create(struct drm_device *dev,
10253                            struct drm_mode_fb_cmd2 *mode_cmd,
10254                            struct drm_i915_gem_object *obj)
10255 {
10256         struct intel_framebuffer *intel_fb;
10257         int ret;
10258
10259         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10260         if (!intel_fb)
10261                 return ERR_PTR(-ENOMEM);
10262
10263         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10264         if (ret)
10265                 goto err;
10266
10267         return &intel_fb->base;
10268
10269 err:
10270         kfree(intel_fb);
10271         return ERR_PTR(ret);
10272 }
10273
10274 static struct drm_framebuffer *
10275 intel_framebuffer_create(struct drm_device *dev,
10276                          struct drm_mode_fb_cmd2 *mode_cmd,
10277                          struct drm_i915_gem_object *obj)
10278 {
10279         struct drm_framebuffer *fb;
10280         int ret;
10281
10282         ret = i915_mutex_lock_interruptible(dev);
10283         if (ret)
10284                 return ERR_PTR(ret);
10285         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10286         mutex_unlock(&dev->struct_mutex);
10287
10288         return fb;
10289 }
10290
10291 static u32
10292 intel_framebuffer_pitch_for_width(int width, int bpp)
10293 {
10294         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10295         return ALIGN(pitch, 64);
10296 }
10297
10298 static u32
10299 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10300 {
10301         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10302         return PAGE_ALIGN(pitch * mode->vdisplay);
10303 }
10304
10305 static struct drm_framebuffer *
10306 intel_framebuffer_create_for_mode(struct drm_device *dev,
10307                                   struct drm_display_mode *mode,
10308                                   int depth, int bpp)
10309 {
10310         struct drm_framebuffer *fb;
10311         struct drm_i915_gem_object *obj;
10312         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10313
10314         obj = i915_gem_object_create(dev,
10315                                     intel_framebuffer_size_for_mode(mode, bpp));
10316         if (IS_ERR(obj))
10317                 return ERR_CAST(obj);
10318
10319         mode_cmd.width = mode->hdisplay;
10320         mode_cmd.height = mode->vdisplay;
10321         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10322                                                                 bpp);
10323         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10324
10325         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10326         if (IS_ERR(fb))
10327                 drm_gem_object_unreference_unlocked(&obj->base);
10328
10329         return fb;
10330 }
10331
10332 static struct drm_framebuffer *
10333 mode_fits_in_fbdev(struct drm_device *dev,
10334                    struct drm_display_mode *mode)
10335 {
10336 #ifdef CONFIG_DRM_FBDEV_EMULATION
10337         struct drm_i915_private *dev_priv = dev->dev_private;
10338         struct drm_i915_gem_object *obj;
10339         struct drm_framebuffer *fb;
10340
10341         if (!dev_priv->fbdev)
10342                 return NULL;
10343
10344         if (!dev_priv->fbdev->fb)
10345                 return NULL;
10346
10347         obj = dev_priv->fbdev->fb->obj;
10348         BUG_ON(!obj);
10349
10350         fb = &dev_priv->fbdev->fb->base;
10351         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10352                                                                fb->bits_per_pixel))
10353                 return NULL;
10354
10355         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10356                 return NULL;
10357
10358         drm_framebuffer_reference(fb);
10359         return fb;
10360 #else
10361         return NULL;
10362 #endif
10363 }
10364
10365 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10366                                            struct drm_crtc *crtc,
10367                                            struct drm_display_mode *mode,
10368                                            struct drm_framebuffer *fb,
10369                                            int x, int y)
10370 {
10371         struct drm_plane_state *plane_state;
10372         int hdisplay, vdisplay;
10373         int ret;
10374
10375         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10376         if (IS_ERR(plane_state))
10377                 return PTR_ERR(plane_state);
10378
10379         if (mode)
10380                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10381         else
10382                 hdisplay = vdisplay = 0;
10383
10384         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10385         if (ret)
10386                 return ret;
10387         drm_atomic_set_fb_for_plane(plane_state, fb);
10388         plane_state->crtc_x = 0;
10389         plane_state->crtc_y = 0;
10390         plane_state->crtc_w = hdisplay;
10391         plane_state->crtc_h = vdisplay;
10392         plane_state->src_x = x << 16;
10393         plane_state->src_y = y << 16;
10394         plane_state->src_w = hdisplay << 16;
10395         plane_state->src_h = vdisplay << 16;
10396
10397         return 0;
10398 }
10399
10400 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10401                                 struct drm_display_mode *mode,
10402                                 struct intel_load_detect_pipe *old,
10403                                 struct drm_modeset_acquire_ctx *ctx)
10404 {
10405         struct intel_crtc *intel_crtc;
10406         struct intel_encoder *intel_encoder =
10407                 intel_attached_encoder(connector);
10408         struct drm_crtc *possible_crtc;
10409         struct drm_encoder *encoder = &intel_encoder->base;
10410         struct drm_crtc *crtc = NULL;
10411         struct drm_device *dev = encoder->dev;
10412         struct drm_framebuffer *fb;
10413         struct drm_mode_config *config = &dev->mode_config;
10414         struct drm_atomic_state *state = NULL, *restore_state = NULL;
10415         struct drm_connector_state *connector_state;
10416         struct intel_crtc_state *crtc_state;
10417         int ret, i = -1;
10418
10419         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10420                       connector->base.id, connector->name,
10421                       encoder->base.id, encoder->name);
10422
10423         old->restore_state = NULL;
10424
10425 retry:
10426         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10427         if (ret)
10428                 goto fail;
10429
10430         /*
10431          * Algorithm gets a little messy:
10432          *
10433          *   - if the connector already has an assigned crtc, use it (but make
10434          *     sure it's on first)
10435          *
10436          *   - try to find the first unused crtc that can drive this connector,
10437          *     and use that if we find one
10438          */
10439
10440         /* See if we already have a CRTC for this connector */
10441         if (connector->state->crtc) {
10442                 crtc = connector->state->crtc;
10443
10444                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10445                 if (ret)
10446                         goto fail;
10447
10448                 /* Make sure the crtc and connector are running */
10449                 goto found;
10450         }
10451
10452         /* Find an unused one (if possible) */
10453         for_each_crtc(dev, possible_crtc) {
10454                 i++;
10455                 if (!(encoder->possible_crtcs & (1 << i)))
10456                         continue;
10457
10458                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10459                 if (ret)
10460                         goto fail;
10461
10462                 if (possible_crtc->state->enable) {
10463                         drm_modeset_unlock(&possible_crtc->mutex);
10464                         continue;
10465                 }
10466
10467                 crtc = possible_crtc;
10468                 break;
10469         }
10470
10471         /*
10472          * If we didn't find an unused CRTC, don't use any.
10473          */
10474         if (!crtc) {
10475                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10476                 goto fail;
10477         }
10478
10479 found:
10480         intel_crtc = to_intel_crtc(crtc);
10481
10482         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10483         if (ret)
10484                 goto fail;
10485
10486         state = drm_atomic_state_alloc(dev);
10487         restore_state = drm_atomic_state_alloc(dev);
10488         if (!state || !restore_state) {
10489                 ret = -ENOMEM;
10490                 goto fail;
10491         }
10492
10493         state->acquire_ctx = ctx;
10494         restore_state->acquire_ctx = ctx;
10495
10496         connector_state = drm_atomic_get_connector_state(state, connector);
10497         if (IS_ERR(connector_state)) {
10498                 ret = PTR_ERR(connector_state);
10499                 goto fail;
10500         }
10501
10502         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10503         if (ret)
10504                 goto fail;
10505
10506         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10507         if (IS_ERR(crtc_state)) {
10508                 ret = PTR_ERR(crtc_state);
10509                 goto fail;
10510         }
10511
10512         crtc_state->base.active = crtc_state->base.enable = true;
10513
10514         if (!mode)
10515                 mode = &load_detect_mode;
10516
10517         /* We need a framebuffer large enough to accommodate all accesses
10518          * that the plane may generate whilst we perform load detection.
10519          * We can not rely on the fbcon either being present (we get called
10520          * during its initialisation to detect all boot displays, or it may
10521          * not even exist) or that it is large enough to satisfy the
10522          * requested mode.
10523          */
10524         fb = mode_fits_in_fbdev(dev, mode);
10525         if (fb == NULL) {
10526                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10527                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10528         } else
10529                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10530         if (IS_ERR(fb)) {
10531                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10532                 goto fail;
10533         }
10534
10535         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10536         if (ret)
10537                 goto fail;
10538
10539         drm_framebuffer_unreference(fb);
10540
10541         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10542         if (ret)
10543                 goto fail;
10544
10545         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10546         if (!ret)
10547                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10548         if (!ret)
10549                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10550         if (ret) {
10551                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10552                 goto fail;
10553         }
10554
10555         ret = drm_atomic_commit(state);
10556         if (ret) {
10557                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10558                 goto fail;
10559         }
10560
10561         old->restore_state = restore_state;
10562
10563         /* let the connector get through one full cycle before testing */
10564         intel_wait_for_vblank(dev, intel_crtc->pipe);
10565         return true;
10566
10567 fail:
10568         drm_atomic_state_free(state);
10569         drm_atomic_state_free(restore_state);
10570         restore_state = state = NULL;
10571
10572         if (ret == -EDEADLK) {
10573                 drm_modeset_backoff(ctx);
10574                 goto retry;
10575         }
10576
10577         return false;
10578 }
10579
10580 void intel_release_load_detect_pipe(struct drm_connector *connector,
10581                                     struct intel_load_detect_pipe *old,
10582                                     struct drm_modeset_acquire_ctx *ctx)
10583 {
10584         struct intel_encoder *intel_encoder =
10585                 intel_attached_encoder(connector);
10586         struct drm_encoder *encoder = &intel_encoder->base;
10587         struct drm_atomic_state *state = old->restore_state;
10588         int ret;
10589
10590         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10591                       connector->base.id, connector->name,
10592                       encoder->base.id, encoder->name);
10593
10594         if (!state)
10595                 return;
10596
10597         ret = drm_atomic_commit(state);
10598         if (ret) {
10599                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10600                 drm_atomic_state_free(state);
10601         }
10602 }
10603
10604 static int i9xx_pll_refclk(struct drm_device *dev,
10605                            const struct intel_crtc_state *pipe_config)
10606 {
10607         struct drm_i915_private *dev_priv = dev->dev_private;
10608         u32 dpll = pipe_config->dpll_hw_state.dpll;
10609
10610         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10611                 return dev_priv->vbt.lvds_ssc_freq;
10612         else if (HAS_PCH_SPLIT(dev))
10613                 return 120000;
10614         else if (!IS_GEN2(dev))
10615                 return 96000;
10616         else
10617                 return 48000;
10618 }
10619
10620 /* Returns the clock of the currently programmed mode of the given pipe. */
10621 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10622                                 struct intel_crtc_state *pipe_config)
10623 {
10624         struct drm_device *dev = crtc->base.dev;
10625         struct drm_i915_private *dev_priv = dev->dev_private;
10626         int pipe = pipe_config->cpu_transcoder;
10627         u32 dpll = pipe_config->dpll_hw_state.dpll;
10628         u32 fp;
10629         intel_clock_t clock;
10630         int port_clock;
10631         int refclk = i9xx_pll_refclk(dev, pipe_config);
10632
10633         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10634                 fp = pipe_config->dpll_hw_state.fp0;
10635         else
10636                 fp = pipe_config->dpll_hw_state.fp1;
10637
10638         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10639         if (IS_PINEVIEW(dev)) {
10640                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10641                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10642         } else {
10643                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10644                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10645         }
10646
10647         if (!IS_GEN2(dev)) {
10648                 if (IS_PINEVIEW(dev))
10649                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10650                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10651                 else
10652                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10653                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10654
10655                 switch (dpll & DPLL_MODE_MASK) {
10656                 case DPLLB_MODE_DAC_SERIAL:
10657                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10658                                 5 : 10;
10659                         break;
10660                 case DPLLB_MODE_LVDS:
10661                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10662                                 7 : 14;
10663                         break;
10664                 default:
10665                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10666                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10667                         return;
10668                 }
10669
10670                 if (IS_PINEVIEW(dev))
10671                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10672                 else
10673                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10674         } else {
10675                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10676                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10677
10678                 if (is_lvds) {
10679                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10680                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10681
10682                         if (lvds & LVDS_CLKB_POWER_UP)
10683                                 clock.p2 = 7;
10684                         else
10685                                 clock.p2 = 14;
10686                 } else {
10687                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10688                                 clock.p1 = 2;
10689                         else {
10690                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10691                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10692                         }
10693                         if (dpll & PLL_P2_DIVIDE_BY_4)
10694                                 clock.p2 = 4;
10695                         else
10696                                 clock.p2 = 2;
10697                 }
10698
10699                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10700         }
10701
10702         /*
10703          * This value includes pixel_multiplier. We will use
10704          * port_clock to compute adjusted_mode.crtc_clock in the
10705          * encoder's get_config() function.
10706          */
10707         pipe_config->port_clock = port_clock;
10708 }
10709
10710 int intel_dotclock_calculate(int link_freq,
10711                              const struct intel_link_m_n *m_n)
10712 {
10713         /*
10714          * The calculation for the data clock is:
10715          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10716          * But we want to avoid losing precison if possible, so:
10717          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10718          *
10719          * and the link clock is simpler:
10720          * link_clock = (m * link_clock) / n
10721          */
10722
10723         if (!m_n->link_n)
10724                 return 0;
10725
10726         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10727 }
10728
10729 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10730                                    struct intel_crtc_state *pipe_config)
10731 {
10732         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10733
10734         /* read out port_clock from the DPLL */
10735         i9xx_crtc_clock_get(crtc, pipe_config);
10736
10737         /*
10738          * In case there is an active pipe without active ports,
10739          * we may need some idea for the dotclock anyway.
10740          * Calculate one based on the FDI configuration.
10741          */
10742         pipe_config->base.adjusted_mode.crtc_clock =
10743                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10744                                          &pipe_config->fdi_m_n);
10745 }
10746
10747 /** Returns the currently programmed mode of the given pipe. */
10748 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10749                                              struct drm_crtc *crtc)
10750 {
10751         struct drm_i915_private *dev_priv = dev->dev_private;
10752         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10753         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10754         struct drm_display_mode *mode;
10755         struct intel_crtc_state *pipe_config;
10756         int htot = I915_READ(HTOTAL(cpu_transcoder));
10757         int hsync = I915_READ(HSYNC(cpu_transcoder));
10758         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10759         int vsync = I915_READ(VSYNC(cpu_transcoder));
10760         enum pipe pipe = intel_crtc->pipe;
10761
10762         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10763         if (!mode)
10764                 return NULL;
10765
10766         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10767         if (!pipe_config) {
10768                 kfree(mode);
10769                 return NULL;
10770         }
10771
10772         /*
10773          * Construct a pipe_config sufficient for getting the clock info
10774          * back out of crtc_clock_get.
10775          *
10776          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10777          * to use a real value here instead.
10778          */
10779         pipe_config->cpu_transcoder = (enum transcoder) pipe;
10780         pipe_config->pixel_multiplier = 1;
10781         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10782         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10783         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10784         i9xx_crtc_clock_get(intel_crtc, pipe_config);
10785
10786         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10787         mode->hdisplay = (htot & 0xffff) + 1;
10788         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10789         mode->hsync_start = (hsync & 0xffff) + 1;
10790         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10791         mode->vdisplay = (vtot & 0xffff) + 1;
10792         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10793         mode->vsync_start = (vsync & 0xffff) + 1;
10794         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10795
10796         drm_mode_set_name(mode);
10797
10798         kfree(pipe_config);
10799
10800         return mode;
10801 }
10802
10803 void intel_mark_busy(struct drm_i915_private *dev_priv)
10804 {
10805         if (dev_priv->mm.busy)
10806                 return;
10807
10808         intel_runtime_pm_get(dev_priv);
10809         i915_update_gfx_val(dev_priv);
10810         if (INTEL_GEN(dev_priv) >= 6)
10811                 gen6_rps_busy(dev_priv);
10812         dev_priv->mm.busy = true;
10813 }
10814
10815 void intel_mark_idle(struct drm_i915_private *dev_priv)
10816 {
10817         if (!dev_priv->mm.busy)
10818                 return;
10819
10820         dev_priv->mm.busy = false;
10821
10822         if (INTEL_GEN(dev_priv) >= 6)
10823                 gen6_rps_idle(dev_priv);
10824
10825         intel_runtime_pm_put(dev_priv);
10826 }
10827
10828 static void intel_crtc_destroy(struct drm_crtc *crtc)
10829 {
10830         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10831         struct drm_device *dev = crtc->dev;
10832         struct intel_unpin_work *work;
10833
10834         spin_lock_irq(&dev->event_lock);
10835         work = intel_crtc->unpin_work;
10836         intel_crtc->unpin_work = NULL;
10837         spin_unlock_irq(&dev->event_lock);
10838
10839         if (work) {
10840                 cancel_work_sync(&work->work);
10841                 kfree(work);
10842         }
10843
10844         drm_crtc_cleanup(crtc);
10845
10846         kfree(intel_crtc);
10847 }
10848
10849 static void intel_unpin_work_fn(struct work_struct *__work)
10850 {
10851         struct intel_unpin_work *work =
10852                 container_of(__work, struct intel_unpin_work, work);
10853         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10854         struct drm_device *dev = crtc->base.dev;
10855         struct drm_plane *primary = crtc->base.primary;
10856
10857         mutex_lock(&dev->struct_mutex);
10858         intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
10859         drm_gem_object_unreference(&work->pending_flip_obj->base);
10860
10861         if (work->flip_queued_req)
10862                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10863         mutex_unlock(&dev->struct_mutex);
10864
10865         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10866         intel_fbc_post_update(crtc);
10867         drm_framebuffer_unreference(work->old_fb);
10868
10869         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10870         atomic_dec(&crtc->unpin_work_count);
10871
10872         kfree(work);
10873 }
10874
10875 static void do_intel_finish_page_flip(struct drm_i915_private *dev_priv,
10876                                       struct drm_crtc *crtc)
10877 {
10878         struct drm_device *dev = dev_priv->dev;
10879         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10880         struct intel_unpin_work *work;
10881         unsigned long flags;
10882
10883         /* Ignore early vblank irqs */
10884         if (intel_crtc == NULL)
10885                 return;
10886
10887         /*
10888          * This is called both by irq handlers and the reset code (to complete
10889          * lost pageflips) so needs the full irqsave spinlocks.
10890          */
10891         spin_lock_irqsave(&dev->event_lock, flags);
10892         work = intel_crtc->unpin_work;
10893
10894         /* Ensure we don't miss a work->pending update ... */
10895         smp_rmb();
10896
10897         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10898                 spin_unlock_irqrestore(&dev->event_lock, flags);
10899                 return;
10900         }
10901
10902         page_flip_completed(intel_crtc);
10903
10904         spin_unlock_irqrestore(&dev->event_lock, flags);
10905 }
10906
10907 void intel_finish_page_flip(struct drm_i915_private *dev_priv, int pipe)
10908 {
10909         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10910
10911         do_intel_finish_page_flip(dev_priv, crtc);
10912 }
10913
10914 void intel_finish_page_flip_plane(struct drm_i915_private *dev_priv, int plane)
10915 {
10916         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10917
10918         do_intel_finish_page_flip(dev_priv, crtc);
10919 }
10920
10921 /* Is 'a' after or equal to 'b'? */
10922 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10923 {
10924         return !((a - b) & 0x80000000);
10925 }
10926
10927 static bool page_flip_finished(struct intel_crtc *crtc)
10928 {
10929         struct drm_device *dev = crtc->base.dev;
10930         struct drm_i915_private *dev_priv = dev->dev_private;
10931         unsigned reset_counter;
10932
10933         reset_counter = i915_reset_counter(&dev_priv->gpu_error);
10934         if (crtc->reset_counter != reset_counter)
10935                 return true;
10936
10937         /*
10938          * The relevant registers doen't exist on pre-ctg.
10939          * As the flip done interrupt doesn't trigger for mmio
10940          * flips on gmch platforms, a flip count check isn't
10941          * really needed there. But since ctg has the registers,
10942          * include it in the check anyway.
10943          */
10944         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10945                 return true;
10946
10947         /*
10948          * BDW signals flip done immediately if the plane
10949          * is disabled, even if the plane enable is already
10950          * armed to occur at the next vblank :(
10951          */
10952
10953         /*
10954          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10955          * used the same base address. In that case the mmio flip might
10956          * have completed, but the CS hasn't even executed the flip yet.
10957          *
10958          * A flip count check isn't enough as the CS might have updated
10959          * the base address just after start of vblank, but before we
10960          * managed to process the interrupt. This means we'd complete the
10961          * CS flip too soon.
10962          *
10963          * Combining both checks should get us a good enough result. It may
10964          * still happen that the CS flip has been executed, but has not
10965          * yet actually completed. But in case the base address is the same
10966          * anyway, we don't really care.
10967          */
10968         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10969                 crtc->unpin_work->gtt_offset &&
10970                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10971                                     crtc->unpin_work->flip_count);
10972 }
10973
10974 void intel_prepare_page_flip(struct drm_i915_private *dev_priv, int plane)
10975 {
10976         struct drm_device *dev = dev_priv->dev;
10977         struct intel_crtc *intel_crtc =
10978                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10979         unsigned long flags;
10980
10981
10982         /*
10983          * This is called both by irq handlers and the reset code (to complete
10984          * lost pageflips) so needs the full irqsave spinlocks.
10985          *
10986          * NB: An MMIO update of the plane base pointer will also
10987          * generate a page-flip completion irq, i.e. every modeset
10988          * is also accompanied by a spurious intel_prepare_page_flip().
10989          */
10990         spin_lock_irqsave(&dev->event_lock, flags);
10991         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10992                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10993         spin_unlock_irqrestore(&dev->event_lock, flags);
10994 }
10995
10996 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
10997 {
10998         /* Ensure that the work item is consistent when activating it ... */
10999         smp_wmb();
11000         atomic_set(&work->pending, INTEL_FLIP_PENDING);
11001         /* and that it is marked active as soon as the irq could fire. */
11002         smp_wmb();
11003 }
11004
11005 static int intel_gen2_queue_flip(struct drm_device *dev,
11006                                  struct drm_crtc *crtc,
11007                                  struct drm_framebuffer *fb,
11008                                  struct drm_i915_gem_object *obj,
11009                                  struct drm_i915_gem_request *req,
11010                                  uint32_t flags)
11011 {
11012         struct intel_engine_cs *engine = req->engine;
11013         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11014         u32 flip_mask;
11015         int ret;
11016
11017         ret = intel_ring_begin(req, 6);
11018         if (ret)
11019                 return ret;
11020
11021         /* Can't queue multiple flips, so wait for the previous
11022          * one to finish before executing the next.
11023          */
11024         if (intel_crtc->plane)
11025                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11026         else
11027                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11028         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11029         intel_ring_emit(engine, MI_NOOP);
11030         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11031                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11032         intel_ring_emit(engine, fb->pitches[0]);
11033         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11034         intel_ring_emit(engine, 0); /* aux display base address, unused */
11035
11036         intel_mark_page_flip_active(intel_crtc->unpin_work);
11037         return 0;
11038 }
11039
11040 static int intel_gen3_queue_flip(struct drm_device *dev,
11041                                  struct drm_crtc *crtc,
11042                                  struct drm_framebuffer *fb,
11043                                  struct drm_i915_gem_object *obj,
11044                                  struct drm_i915_gem_request *req,
11045                                  uint32_t flags)
11046 {
11047         struct intel_engine_cs *engine = req->engine;
11048         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11049         u32 flip_mask;
11050         int ret;
11051
11052         ret = intel_ring_begin(req, 6);
11053         if (ret)
11054                 return ret;
11055
11056         if (intel_crtc->plane)
11057                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11058         else
11059                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11060         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11061         intel_ring_emit(engine, MI_NOOP);
11062         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 |
11063                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11064         intel_ring_emit(engine, fb->pitches[0]);
11065         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11066         intel_ring_emit(engine, MI_NOOP);
11067
11068         intel_mark_page_flip_active(intel_crtc->unpin_work);
11069         return 0;
11070 }
11071
11072 static int intel_gen4_queue_flip(struct drm_device *dev,
11073                                  struct drm_crtc *crtc,
11074                                  struct drm_framebuffer *fb,
11075                                  struct drm_i915_gem_object *obj,
11076                                  struct drm_i915_gem_request *req,
11077                                  uint32_t flags)
11078 {
11079         struct intel_engine_cs *engine = req->engine;
11080         struct drm_i915_private *dev_priv = dev->dev_private;
11081         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11082         uint32_t pf, pipesrc;
11083         int ret;
11084
11085         ret = intel_ring_begin(req, 4);
11086         if (ret)
11087                 return ret;
11088
11089         /* i965+ uses the linear or tiled offsets from the
11090          * Display Registers (which do not change across a page-flip)
11091          * so we need only reprogram the base address.
11092          */
11093         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11094                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11095         intel_ring_emit(engine, fb->pitches[0]);
11096         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset |
11097                         obj->tiling_mode);
11098
11099         /* XXX Enabling the panel-fitter across page-flip is so far
11100          * untested on non-native modes, so ignore it for now.
11101          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11102          */
11103         pf = 0;
11104         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11105         intel_ring_emit(engine, pf | pipesrc);
11106
11107         intel_mark_page_flip_active(intel_crtc->unpin_work);
11108         return 0;
11109 }
11110
11111 static int intel_gen6_queue_flip(struct drm_device *dev,
11112                                  struct drm_crtc *crtc,
11113                                  struct drm_framebuffer *fb,
11114                                  struct drm_i915_gem_object *obj,
11115                                  struct drm_i915_gem_request *req,
11116                                  uint32_t flags)
11117 {
11118         struct intel_engine_cs *engine = req->engine;
11119         struct drm_i915_private *dev_priv = dev->dev_private;
11120         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11121         uint32_t pf, pipesrc;
11122         int ret;
11123
11124         ret = intel_ring_begin(req, 4);
11125         if (ret)
11126                 return ret;
11127
11128         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11129                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11130         intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode);
11131         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11132
11133         /* Contrary to the suggestions in the documentation,
11134          * "Enable Panel Fitter" does not seem to be required when page
11135          * flipping with a non-native mode, and worse causes a normal
11136          * modeset to fail.
11137          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11138          */
11139         pf = 0;
11140         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11141         intel_ring_emit(engine, pf | pipesrc);
11142
11143         intel_mark_page_flip_active(intel_crtc->unpin_work);
11144         return 0;
11145 }
11146
11147 static int intel_gen7_queue_flip(struct drm_device *dev,
11148                                  struct drm_crtc *crtc,
11149                                  struct drm_framebuffer *fb,
11150                                  struct drm_i915_gem_object *obj,
11151                                  struct drm_i915_gem_request *req,
11152                                  uint32_t flags)
11153 {
11154         struct intel_engine_cs *engine = req->engine;
11155         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11156         uint32_t plane_bit = 0;
11157         int len, ret;
11158
11159         switch (intel_crtc->plane) {
11160         case PLANE_A:
11161                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11162                 break;
11163         case PLANE_B:
11164                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11165                 break;
11166         case PLANE_C:
11167                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11168                 break;
11169         default:
11170                 WARN_ONCE(1, "unknown plane in flip command\n");
11171                 return -ENODEV;
11172         }
11173
11174         len = 4;
11175         if (engine->id == RCS) {
11176                 len += 6;
11177                 /*
11178                  * On Gen 8, SRM is now taking an extra dword to accommodate
11179                  * 48bits addresses, and we need a NOOP for the batch size to
11180                  * stay even.
11181                  */
11182                 if (IS_GEN8(dev))
11183                         len += 2;
11184         }
11185
11186         /*
11187          * BSpec MI_DISPLAY_FLIP for IVB:
11188          * "The full packet must be contained within the same cache line."
11189          *
11190          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11191          * cacheline, if we ever start emitting more commands before
11192          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11193          * then do the cacheline alignment, and finally emit the
11194          * MI_DISPLAY_FLIP.
11195          */
11196         ret = intel_ring_cacheline_align(req);
11197         if (ret)
11198                 return ret;
11199
11200         ret = intel_ring_begin(req, len);
11201         if (ret)
11202                 return ret;
11203
11204         /* Unmask the flip-done completion message. Note that the bspec says that
11205          * we should do this for both the BCS and RCS, and that we must not unmask
11206          * more than one flip event at any time (or ensure that one flip message
11207          * can be sent by waiting for flip-done prior to queueing new flips).
11208          * Experimentation says that BCS works despite DERRMR masking all
11209          * flip-done completion events and that unmasking all planes at once
11210          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11211          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11212          */
11213         if (engine->id == RCS) {
11214                 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
11215                 intel_ring_emit_reg(engine, DERRMR);
11216                 intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11217                                           DERRMR_PIPEB_PRI_FLIP_DONE |
11218                                           DERRMR_PIPEC_PRI_FLIP_DONE));
11219                 if (IS_GEN8(dev))
11220                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 |
11221                                               MI_SRM_LRM_GLOBAL_GTT);
11222                 else
11223                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM |
11224                                               MI_SRM_LRM_GLOBAL_GTT);
11225                 intel_ring_emit_reg(engine, DERRMR);
11226                 intel_ring_emit(engine, engine->scratch.gtt_offset + 256);
11227                 if (IS_GEN8(dev)) {
11228                         intel_ring_emit(engine, 0);
11229                         intel_ring_emit(engine, MI_NOOP);
11230                 }
11231         }
11232
11233         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit);
11234         intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode));
11235         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11236         intel_ring_emit(engine, (MI_NOOP));
11237
11238         intel_mark_page_flip_active(intel_crtc->unpin_work);
11239         return 0;
11240 }
11241
11242 static bool use_mmio_flip(struct intel_engine_cs *engine,
11243                           struct drm_i915_gem_object *obj)
11244 {
11245         /*
11246          * This is not being used for older platforms, because
11247          * non-availability of flip done interrupt forces us to use
11248          * CS flips. Older platforms derive flip done using some clever
11249          * tricks involving the flip_pending status bits and vblank irqs.
11250          * So using MMIO flips there would disrupt this mechanism.
11251          */
11252
11253         if (engine == NULL)
11254                 return true;
11255
11256         if (INTEL_GEN(engine->i915) < 5)
11257                 return false;
11258
11259         if (i915.use_mmio_flip < 0)
11260                 return false;
11261         else if (i915.use_mmio_flip > 0)
11262                 return true;
11263         else if (i915.enable_execlists)
11264                 return true;
11265         else if (obj->base.dma_buf &&
11266                  !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11267                                                        false))
11268                 return true;
11269         else
11270                 return engine != i915_gem_request_get_engine(obj->last_write_req);
11271 }
11272
11273 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11274                              unsigned int rotation,
11275                              struct intel_unpin_work *work)
11276 {
11277         struct drm_device *dev = intel_crtc->base.dev;
11278         struct drm_i915_private *dev_priv = dev->dev_private;
11279         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11280         const enum pipe pipe = intel_crtc->pipe;
11281         u32 ctl, stride, tile_height;
11282
11283         ctl = I915_READ(PLANE_CTL(pipe, 0));
11284         ctl &= ~PLANE_CTL_TILED_MASK;
11285         switch (fb->modifier[0]) {
11286         case DRM_FORMAT_MOD_NONE:
11287                 break;
11288         case I915_FORMAT_MOD_X_TILED:
11289                 ctl |= PLANE_CTL_TILED_X;
11290                 break;
11291         case I915_FORMAT_MOD_Y_TILED:
11292                 ctl |= PLANE_CTL_TILED_Y;
11293                 break;
11294         case I915_FORMAT_MOD_Yf_TILED:
11295                 ctl |= PLANE_CTL_TILED_YF;
11296                 break;
11297         default:
11298                 MISSING_CASE(fb->modifier[0]);
11299         }
11300
11301         /*
11302          * The stride is either expressed as a multiple of 64 bytes chunks for
11303          * linear buffers or in number of tiles for tiled buffers.
11304          */
11305         if (intel_rotation_90_or_270(rotation)) {
11306                 /* stride = Surface height in tiles */
11307                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11308                 stride = DIV_ROUND_UP(fb->height, tile_height);
11309         } else {
11310                 stride = fb->pitches[0] /
11311                         intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11312                                                   fb->pixel_format);
11313         }
11314
11315         /*
11316          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11317          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11318          */
11319         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11320         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11321
11322         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11323         POSTING_READ(PLANE_SURF(pipe, 0));
11324 }
11325
11326 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11327                              struct intel_unpin_work *work)
11328 {
11329         struct drm_device *dev = intel_crtc->base.dev;
11330         struct drm_i915_private *dev_priv = dev->dev_private;
11331         struct intel_framebuffer *intel_fb =
11332                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11333         struct drm_i915_gem_object *obj = intel_fb->obj;
11334         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11335         u32 dspcntr;
11336
11337         dspcntr = I915_READ(reg);
11338
11339         if (obj->tiling_mode != I915_TILING_NONE)
11340                 dspcntr |= DISPPLANE_TILED;
11341         else
11342                 dspcntr &= ~DISPPLANE_TILED;
11343
11344         I915_WRITE(reg, dspcntr);
11345
11346         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11347         POSTING_READ(DSPSURF(intel_crtc->plane));
11348 }
11349
11350 /*
11351  * XXX: This is the temporary way to update the plane registers until we get
11352  * around to using the usual plane update functions for MMIO flips
11353  */
11354 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11355 {
11356         struct intel_crtc *crtc = mmio_flip->crtc;
11357         struct intel_unpin_work *work;
11358
11359         spin_lock_irq(&crtc->base.dev->event_lock);
11360         work = crtc->unpin_work;
11361         spin_unlock_irq(&crtc->base.dev->event_lock);
11362         if (work == NULL)
11363                 return;
11364
11365         intel_mark_page_flip_active(work);
11366
11367         intel_pipe_update_start(crtc);
11368
11369         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11370                 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
11371         else
11372                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11373                 ilk_do_mmio_flip(crtc, work);
11374
11375         intel_pipe_update_end(crtc);
11376 }
11377
11378 static void intel_mmio_flip_work_func(struct work_struct *work)
11379 {
11380         struct intel_mmio_flip *mmio_flip =
11381                 container_of(work, struct intel_mmio_flip, work);
11382         struct intel_framebuffer *intel_fb =
11383                 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11384         struct drm_i915_gem_object *obj = intel_fb->obj;
11385
11386         if (mmio_flip->req) {
11387                 WARN_ON(__i915_wait_request(mmio_flip->req,
11388                                             false, NULL,
11389                                             &mmio_flip->i915->rps.mmioflips));
11390                 i915_gem_request_unreference(mmio_flip->req);
11391         }
11392
11393         /* For framebuffer backed by dmabuf, wait for fence */
11394         if (obj->base.dma_buf)
11395                 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11396                                                             false, false,
11397                                                             MAX_SCHEDULE_TIMEOUT) < 0);
11398
11399         intel_do_mmio_flip(mmio_flip);
11400         kfree(mmio_flip);
11401 }
11402
11403 static int intel_queue_mmio_flip(struct drm_device *dev,
11404                                  struct drm_crtc *crtc,
11405                                  struct drm_i915_gem_object *obj)
11406 {
11407         struct intel_mmio_flip *mmio_flip;
11408
11409         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11410         if (mmio_flip == NULL)
11411                 return -ENOMEM;
11412
11413         mmio_flip->i915 = to_i915(dev);
11414         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11415         mmio_flip->crtc = to_intel_crtc(crtc);
11416         mmio_flip->rotation = crtc->primary->state->rotation;
11417
11418         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11419         schedule_work(&mmio_flip->work);
11420
11421         return 0;
11422 }
11423
11424 static int intel_default_queue_flip(struct drm_device *dev,
11425                                     struct drm_crtc *crtc,
11426                                     struct drm_framebuffer *fb,
11427                                     struct drm_i915_gem_object *obj,
11428                                     struct drm_i915_gem_request *req,
11429                                     uint32_t flags)
11430 {
11431         return -ENODEV;
11432 }
11433
11434 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11435                                          struct drm_crtc *crtc)
11436 {
11437         struct drm_i915_private *dev_priv = dev->dev_private;
11438         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11439         struct intel_unpin_work *work = intel_crtc->unpin_work;
11440         u32 addr;
11441
11442         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11443                 return true;
11444
11445         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11446                 return false;
11447
11448         if (!work->enable_stall_check)
11449                 return false;
11450
11451         if (work->flip_ready_vblank == 0) {
11452                 if (work->flip_queued_req &&
11453                     !i915_gem_request_completed(work->flip_queued_req, true))
11454                         return false;
11455
11456                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11457         }
11458
11459         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11460                 return false;
11461
11462         /* Potential stall - if we see that the flip has happened,
11463          * assume a missed interrupt. */
11464         if (INTEL_INFO(dev)->gen >= 4)
11465                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11466         else
11467                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11468
11469         /* There is a potential issue here with a false positive after a flip
11470          * to the same address. We could address this by checking for a
11471          * non-incrementing frame counter.
11472          */
11473         return addr == work->gtt_offset;
11474 }
11475
11476 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
11477 {
11478         struct drm_device *dev = dev_priv->dev;
11479         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11480         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11481         struct intel_unpin_work *work;
11482
11483         WARN_ON(!in_interrupt());
11484
11485         if (crtc == NULL)
11486                 return;
11487
11488         spin_lock(&dev->event_lock);
11489         work = intel_crtc->unpin_work;
11490         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11491                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11492                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11493                 page_flip_completed(intel_crtc);
11494                 work = NULL;
11495         }
11496         if (work != NULL &&
11497             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11498                 intel_queue_rps_boost_for_request(work->flip_queued_req);
11499         spin_unlock(&dev->event_lock);
11500 }
11501
11502 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11503                                 struct drm_framebuffer *fb,
11504                                 struct drm_pending_vblank_event *event,
11505                                 uint32_t page_flip_flags)
11506 {
11507         struct drm_device *dev = crtc->dev;
11508         struct drm_i915_private *dev_priv = dev->dev_private;
11509         struct drm_framebuffer *old_fb = crtc->primary->fb;
11510         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11511         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11512         struct drm_plane *primary = crtc->primary;
11513         enum pipe pipe = intel_crtc->pipe;
11514         struct intel_unpin_work *work;
11515         struct intel_engine_cs *engine;
11516         bool mmio_flip;
11517         struct drm_i915_gem_request *request = NULL;
11518         int ret;
11519
11520         /*
11521          * drm_mode_page_flip_ioctl() should already catch this, but double
11522          * check to be safe.  In the future we may enable pageflipping from
11523          * a disabled primary plane.
11524          */
11525         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11526                 return -EBUSY;
11527
11528         /* Can't change pixel format via MI display flips. */
11529         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11530                 return -EINVAL;
11531
11532         /*
11533          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11534          * Note that pitch changes could also affect these register.
11535          */
11536         if (INTEL_INFO(dev)->gen > 3 &&
11537             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11538              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11539                 return -EINVAL;
11540
11541         if (i915_terminally_wedged(&dev_priv->gpu_error))
11542                 goto out_hang;
11543
11544         work = kzalloc(sizeof(*work), GFP_KERNEL);
11545         if (work == NULL)
11546                 return -ENOMEM;
11547
11548         work->event = event;
11549         work->crtc = crtc;
11550         work->old_fb = old_fb;
11551         INIT_WORK(&work->work, intel_unpin_work_fn);
11552
11553         ret = drm_crtc_vblank_get(crtc);
11554         if (ret)
11555                 goto free_work;
11556
11557         /* We borrow the event spin lock for protecting unpin_work */
11558         spin_lock_irq(&dev->event_lock);
11559         if (intel_crtc->unpin_work) {
11560                 /* Before declaring the flip queue wedged, check if
11561                  * the hardware completed the operation behind our backs.
11562                  */
11563                 if (__intel_pageflip_stall_check(dev, crtc)) {
11564                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11565                         page_flip_completed(intel_crtc);
11566                 } else {
11567                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11568                         spin_unlock_irq(&dev->event_lock);
11569
11570                         drm_crtc_vblank_put(crtc);
11571                         kfree(work);
11572                         return -EBUSY;
11573                 }
11574         }
11575         intel_crtc->unpin_work = work;
11576         spin_unlock_irq(&dev->event_lock);
11577
11578         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11579                 flush_workqueue(dev_priv->wq);
11580
11581         /* Reference the objects for the scheduled work. */
11582         drm_framebuffer_reference(work->old_fb);
11583         drm_gem_object_reference(&obj->base);
11584
11585         crtc->primary->fb = fb;
11586         update_state_fb(crtc->primary);
11587         intel_fbc_pre_update(intel_crtc);
11588
11589         work->pending_flip_obj = obj;
11590
11591         ret = i915_mutex_lock_interruptible(dev);
11592         if (ret)
11593                 goto cleanup;
11594
11595         intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11596         if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) {
11597                 ret = -EIO;
11598                 goto cleanup;
11599         }
11600
11601         atomic_inc(&intel_crtc->unpin_work_count);
11602
11603         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11604                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11605
11606         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11607                 engine = &dev_priv->engine[BCS];
11608                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11609                         /* vlv: DISPLAY_FLIP fails to change tiling */
11610                         engine = NULL;
11611         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11612                 engine = &dev_priv->engine[BCS];
11613         } else if (INTEL_INFO(dev)->gen >= 7) {
11614                 engine = i915_gem_request_get_engine(obj->last_write_req);
11615                 if (engine == NULL || engine->id != RCS)
11616                         engine = &dev_priv->engine[BCS];
11617         } else {
11618                 engine = &dev_priv->engine[RCS];
11619         }
11620
11621         mmio_flip = use_mmio_flip(engine, obj);
11622
11623         /* When using CS flips, we want to emit semaphores between rings.
11624          * However, when using mmio flips we will create a task to do the
11625          * synchronisation, so all we want here is to pin the framebuffer
11626          * into the display plane and skip any waits.
11627          */
11628         if (!mmio_flip) {
11629                 ret = i915_gem_object_sync(obj, engine, &request);
11630                 if (ret)
11631                         goto cleanup_pending;
11632         }
11633
11634         ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
11635         if (ret)
11636                 goto cleanup_pending;
11637
11638         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11639                                                   obj, 0);
11640         work->gtt_offset += intel_crtc->dspaddr_offset;
11641
11642         if (mmio_flip) {
11643                 ret = intel_queue_mmio_flip(dev, crtc, obj);
11644                 if (ret)
11645                         goto cleanup_unpin;
11646
11647                 i915_gem_request_assign(&work->flip_queued_req,
11648                                         obj->last_write_req);
11649         } else {
11650                 if (!request) {
11651                         request = i915_gem_request_alloc(engine, NULL);
11652                         if (IS_ERR(request)) {
11653                                 ret = PTR_ERR(request);
11654                                 goto cleanup_unpin;
11655                         }
11656                 }
11657
11658                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11659                                                    page_flip_flags);
11660                 if (ret)
11661                         goto cleanup_unpin;
11662
11663                 i915_gem_request_assign(&work->flip_queued_req, request);
11664         }
11665
11666         if (request)
11667                 i915_add_request_no_flush(request);
11668
11669         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11670         work->enable_stall_check = true;
11671
11672         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11673                           to_intel_plane(primary)->frontbuffer_bit);
11674         mutex_unlock(&dev->struct_mutex);
11675
11676         intel_frontbuffer_flip_prepare(dev,
11677                                        to_intel_plane(primary)->frontbuffer_bit);
11678
11679         trace_i915_flip_request(intel_crtc->plane, obj);
11680
11681         return 0;
11682
11683 cleanup_unpin:
11684         intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
11685 cleanup_pending:
11686         if (!IS_ERR_OR_NULL(request))
11687                 i915_add_request_no_flush(request);
11688         atomic_dec(&intel_crtc->unpin_work_count);
11689         mutex_unlock(&dev->struct_mutex);
11690 cleanup:
11691         crtc->primary->fb = old_fb;
11692         update_state_fb(crtc->primary);
11693
11694         drm_gem_object_unreference_unlocked(&obj->base);
11695         drm_framebuffer_unreference(work->old_fb);
11696
11697         spin_lock_irq(&dev->event_lock);
11698         intel_crtc->unpin_work = NULL;
11699         spin_unlock_irq(&dev->event_lock);
11700
11701         drm_crtc_vblank_put(crtc);
11702 free_work:
11703         kfree(work);
11704
11705         if (ret == -EIO) {
11706                 struct drm_atomic_state *state;
11707                 struct drm_plane_state *plane_state;
11708
11709 out_hang:
11710                 state = drm_atomic_state_alloc(dev);
11711                 if (!state)
11712                         return -ENOMEM;
11713                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11714
11715 retry:
11716                 plane_state = drm_atomic_get_plane_state(state, primary);
11717                 ret = PTR_ERR_OR_ZERO(plane_state);
11718                 if (!ret) {
11719                         drm_atomic_set_fb_for_plane(plane_state, fb);
11720
11721                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11722                         if (!ret)
11723                                 ret = drm_atomic_commit(state);
11724                 }
11725
11726                 if (ret == -EDEADLK) {
11727                         drm_modeset_backoff(state->acquire_ctx);
11728                         drm_atomic_state_clear(state);
11729                         goto retry;
11730                 }
11731
11732                 if (ret)
11733                         drm_atomic_state_free(state);
11734
11735                 if (ret == 0 && event) {
11736                         spin_lock_irq(&dev->event_lock);
11737                         drm_crtc_send_vblank_event(crtc, event);
11738                         spin_unlock_irq(&dev->event_lock);
11739                 }
11740         }
11741         return ret;
11742 }
11743
11744
11745 /**
11746  * intel_wm_need_update - Check whether watermarks need updating
11747  * @plane: drm plane
11748  * @state: new plane state
11749  *
11750  * Check current plane state versus the new one to determine whether
11751  * watermarks need to be recalculated.
11752  *
11753  * Returns true or false.
11754  */
11755 static bool intel_wm_need_update(struct drm_plane *plane,
11756                                  struct drm_plane_state *state)
11757 {
11758         struct intel_plane_state *new = to_intel_plane_state(state);
11759         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11760
11761         /* Update watermarks on tiling or size changes. */
11762         if (new->visible != cur->visible)
11763                 return true;
11764
11765         if (!cur->base.fb || !new->base.fb)
11766                 return false;
11767
11768         if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11769             cur->base.rotation != new->base.rotation ||
11770             drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11771             drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11772             drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11773             drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11774                 return true;
11775
11776         return false;
11777 }
11778
11779 static bool needs_scaling(struct intel_plane_state *state)
11780 {
11781         int src_w = drm_rect_width(&state->src) >> 16;
11782         int src_h = drm_rect_height(&state->src) >> 16;
11783         int dst_w = drm_rect_width(&state->dst);
11784         int dst_h = drm_rect_height(&state->dst);
11785
11786         return (src_w != dst_w || src_h != dst_h);
11787 }
11788
11789 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11790                                     struct drm_plane_state *plane_state)
11791 {
11792         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11793         struct drm_crtc *crtc = crtc_state->crtc;
11794         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11795         struct drm_plane *plane = plane_state->plane;
11796         struct drm_device *dev = crtc->dev;
11797         struct drm_i915_private *dev_priv = to_i915(dev);
11798         struct intel_plane_state *old_plane_state =
11799                 to_intel_plane_state(plane->state);
11800         int idx = intel_crtc->base.base.id, ret;
11801         bool mode_changed = needs_modeset(crtc_state);
11802         bool was_crtc_enabled = crtc->state->active;
11803         bool is_crtc_enabled = crtc_state->active;
11804         bool turn_off, turn_on, visible, was_visible;
11805         struct drm_framebuffer *fb = plane_state->fb;
11806
11807         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11808             plane->type != DRM_PLANE_TYPE_CURSOR) {
11809                 ret = skl_update_scaler_plane(
11810                         to_intel_crtc_state(crtc_state),
11811                         to_intel_plane_state(plane_state));
11812                 if (ret)
11813                         return ret;
11814         }
11815
11816         was_visible = old_plane_state->visible;
11817         visible = to_intel_plane_state(plane_state)->visible;
11818
11819         if (!was_crtc_enabled && WARN_ON(was_visible))
11820                 was_visible = false;
11821
11822         /*
11823          * Visibility is calculated as if the crtc was on, but
11824          * after scaler setup everything depends on it being off
11825          * when the crtc isn't active.
11826          *
11827          * FIXME this is wrong for watermarks. Watermarks should also
11828          * be computed as if the pipe would be active. Perhaps move
11829          * per-plane wm computation to the .check_plane() hook, and
11830          * only combine the results from all planes in the current place?
11831          */
11832         if (!is_crtc_enabled)
11833                 to_intel_plane_state(plane_state)->visible = visible = false;
11834
11835         if (!was_visible && !visible)
11836                 return 0;
11837
11838         if (fb != old_plane_state->base.fb)
11839                 pipe_config->fb_changed = true;
11840
11841         turn_off = was_visible && (!visible || mode_changed);
11842         turn_on = visible && (!was_visible || mode_changed);
11843
11844         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11845                          plane->base.id, fb ? fb->base.id : -1);
11846
11847         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11848                          plane->base.id, was_visible, visible,
11849                          turn_off, turn_on, mode_changed);
11850
11851         if (turn_on) {
11852                 pipe_config->update_wm_pre = true;
11853
11854                 /* must disable cxsr around plane enable/disable */
11855                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11856                         pipe_config->disable_cxsr = true;
11857         } else if (turn_off) {
11858                 pipe_config->update_wm_post = true;
11859
11860                 /* must disable cxsr around plane enable/disable */
11861                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11862                         pipe_config->disable_cxsr = true;
11863         } else if (intel_wm_need_update(plane, plane_state)) {
11864                 /* FIXME bollocks */
11865                 pipe_config->update_wm_pre = true;
11866                 pipe_config->update_wm_post = true;
11867         }
11868
11869         /* Pre-gen9 platforms need two-step watermark updates */
11870         if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
11871             INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
11872                 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
11873
11874         if (visible || was_visible)
11875                 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
11876
11877         /*
11878          * WaCxSRDisabledForSpriteScaling:ivb
11879          *
11880          * cstate->update_wm was already set above, so this flag will
11881          * take effect when we commit and program watermarks.
11882          */
11883         if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
11884             needs_scaling(to_intel_plane_state(plane_state)) &&
11885             !needs_scaling(old_plane_state))
11886                 pipe_config->disable_lp_wm = true;
11887
11888         return 0;
11889 }
11890
11891 static bool encoders_cloneable(const struct intel_encoder *a,
11892                                const struct intel_encoder *b)
11893 {
11894         /* masks could be asymmetric, so check both ways */
11895         return a == b || (a->cloneable & (1 << b->type) &&
11896                           b->cloneable & (1 << a->type));
11897 }
11898
11899 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11900                                          struct intel_crtc *crtc,
11901                                          struct intel_encoder *encoder)
11902 {
11903         struct intel_encoder *source_encoder;
11904         struct drm_connector *connector;
11905         struct drm_connector_state *connector_state;
11906         int i;
11907
11908         for_each_connector_in_state(state, connector, connector_state, i) {
11909                 if (connector_state->crtc != &crtc->base)
11910                         continue;
11911
11912                 source_encoder =
11913                         to_intel_encoder(connector_state->best_encoder);
11914                 if (!encoders_cloneable(encoder, source_encoder))
11915                         return false;
11916         }
11917
11918         return true;
11919 }
11920
11921 static bool check_encoder_cloning(struct drm_atomic_state *state,
11922                                   struct intel_crtc *crtc)
11923 {
11924         struct intel_encoder *encoder;
11925         struct drm_connector *connector;
11926         struct drm_connector_state *connector_state;
11927         int i;
11928
11929         for_each_connector_in_state(state, connector, connector_state, i) {
11930                 if (connector_state->crtc != &crtc->base)
11931                         continue;
11932
11933                 encoder = to_intel_encoder(connector_state->best_encoder);
11934                 if (!check_single_encoder_cloning(state, crtc, encoder))
11935                         return false;
11936         }
11937
11938         return true;
11939 }
11940
11941 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11942                                    struct drm_crtc_state *crtc_state)
11943 {
11944         struct drm_device *dev = crtc->dev;
11945         struct drm_i915_private *dev_priv = dev->dev_private;
11946         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11947         struct intel_crtc_state *pipe_config =
11948                 to_intel_crtc_state(crtc_state);
11949         struct drm_atomic_state *state = crtc_state->state;
11950         int ret;
11951         bool mode_changed = needs_modeset(crtc_state);
11952
11953         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11954                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11955                 return -EINVAL;
11956         }
11957
11958         if (mode_changed && !crtc_state->active)
11959                 pipe_config->update_wm_post = true;
11960
11961         if (mode_changed && crtc_state->enable &&
11962             dev_priv->display.crtc_compute_clock &&
11963             !WARN_ON(pipe_config->shared_dpll)) {
11964                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11965                                                            pipe_config);
11966                 if (ret)
11967                         return ret;
11968         }
11969
11970         if (crtc_state->color_mgmt_changed) {
11971                 ret = intel_color_check(crtc, crtc_state);
11972                 if (ret)
11973                         return ret;
11974         }
11975
11976         ret = 0;
11977         if (dev_priv->display.compute_pipe_wm) {
11978                 ret = dev_priv->display.compute_pipe_wm(pipe_config);
11979                 if (ret) {
11980                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
11981                         return ret;
11982                 }
11983         }
11984
11985         if (dev_priv->display.compute_intermediate_wm &&
11986             !to_intel_atomic_state(state)->skip_intermediate_wm) {
11987                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
11988                         return 0;
11989
11990                 /*
11991                  * Calculate 'intermediate' watermarks that satisfy both the
11992                  * old state and the new state.  We can program these
11993                  * immediately.
11994                  */
11995                 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
11996                                                                 intel_crtc,
11997                                                                 pipe_config);
11998                 if (ret) {
11999                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12000                         return ret;
12001                 }
12002         }
12003
12004         if (INTEL_INFO(dev)->gen >= 9) {
12005                 if (mode_changed)
12006                         ret = skl_update_scaler_crtc(pipe_config);
12007
12008                 if (!ret)
12009                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
12010                                                          pipe_config);
12011         }
12012
12013         return ret;
12014 }
12015
12016 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12017         .mode_set_base_atomic = intel_pipe_set_base_atomic,
12018         .atomic_begin = intel_begin_crtc_commit,
12019         .atomic_flush = intel_finish_crtc_commit,
12020         .atomic_check = intel_crtc_atomic_check,
12021 };
12022
12023 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12024 {
12025         struct intel_connector *connector;
12026
12027         for_each_intel_connector(dev, connector) {
12028                 if (connector->base.encoder) {
12029                         connector->base.state->best_encoder =
12030                                 connector->base.encoder;
12031                         connector->base.state->crtc =
12032                                 connector->base.encoder->crtc;
12033                 } else {
12034                         connector->base.state->best_encoder = NULL;
12035                         connector->base.state->crtc = NULL;
12036                 }
12037         }
12038 }
12039
12040 static void
12041 connected_sink_compute_bpp(struct intel_connector *connector,
12042                            struct intel_crtc_state *pipe_config)
12043 {
12044         int bpp = pipe_config->pipe_bpp;
12045
12046         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12047                 connector->base.base.id,
12048                 connector->base.name);
12049
12050         /* Don't use an invalid EDID bpc value */
12051         if (connector->base.display_info.bpc &&
12052             connector->base.display_info.bpc * 3 < bpp) {
12053                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12054                               bpp, connector->base.display_info.bpc*3);
12055                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12056         }
12057
12058         /* Clamp bpp to default limit on screens without EDID 1.4 */
12059         if (connector->base.display_info.bpc == 0) {
12060                 int type = connector->base.connector_type;
12061                 int clamp_bpp = 24;
12062
12063                 /* Fall back to 18 bpp when DP sink capability is unknown. */
12064                 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12065                     type == DRM_MODE_CONNECTOR_eDP)
12066                         clamp_bpp = 18;
12067
12068                 if (bpp > clamp_bpp) {
12069                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12070                                       bpp, clamp_bpp);
12071                         pipe_config->pipe_bpp = clamp_bpp;
12072                 }
12073         }
12074 }
12075
12076 static int
12077 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12078                           struct intel_crtc_state *pipe_config)
12079 {
12080         struct drm_device *dev = crtc->base.dev;
12081         struct drm_atomic_state *state;
12082         struct drm_connector *connector;
12083         struct drm_connector_state *connector_state;
12084         int bpp, i;
12085
12086         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12087                 bpp = 10*3;
12088         else if (INTEL_INFO(dev)->gen >= 5)
12089                 bpp = 12*3;
12090         else
12091                 bpp = 8*3;
12092
12093
12094         pipe_config->pipe_bpp = bpp;
12095
12096         state = pipe_config->base.state;
12097
12098         /* Clamp display bpp to EDID value */
12099         for_each_connector_in_state(state, connector, connector_state, i) {
12100                 if (connector_state->crtc != &crtc->base)
12101                         continue;
12102
12103                 connected_sink_compute_bpp(to_intel_connector(connector),
12104                                            pipe_config);
12105         }
12106
12107         return bpp;
12108 }
12109
12110 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12111 {
12112         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12113                         "type: 0x%x flags: 0x%x\n",
12114                 mode->crtc_clock,
12115                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12116                 mode->crtc_hsync_end, mode->crtc_htotal,
12117                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12118                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12119 }
12120
12121 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12122                                    struct intel_crtc_state *pipe_config,
12123                                    const char *context)
12124 {
12125         struct drm_device *dev = crtc->base.dev;
12126         struct drm_plane *plane;
12127         struct intel_plane *intel_plane;
12128         struct intel_plane_state *state;
12129         struct drm_framebuffer *fb;
12130
12131         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12132                       context, pipe_config, pipe_name(crtc->pipe));
12133
12134         DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12135         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12136                       pipe_config->pipe_bpp, pipe_config->dither);
12137         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12138                       pipe_config->has_pch_encoder,
12139                       pipe_config->fdi_lanes,
12140                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12141                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12142                       pipe_config->fdi_m_n.tu);
12143         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12144                       pipe_config->has_dp_encoder,
12145                       pipe_config->lane_count,
12146                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12147                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12148                       pipe_config->dp_m_n.tu);
12149
12150         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12151                       pipe_config->has_dp_encoder,
12152                       pipe_config->lane_count,
12153                       pipe_config->dp_m2_n2.gmch_m,
12154                       pipe_config->dp_m2_n2.gmch_n,
12155                       pipe_config->dp_m2_n2.link_m,
12156                       pipe_config->dp_m2_n2.link_n,
12157                       pipe_config->dp_m2_n2.tu);
12158
12159         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12160                       pipe_config->has_audio,
12161                       pipe_config->has_infoframe);
12162
12163         DRM_DEBUG_KMS("requested mode:\n");
12164         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12165         DRM_DEBUG_KMS("adjusted mode:\n");
12166         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12167         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12168         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12169         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12170                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12171         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12172                       crtc->num_scalers,
12173                       pipe_config->scaler_state.scaler_users,
12174                       pipe_config->scaler_state.scaler_id);
12175         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12176                       pipe_config->gmch_pfit.control,
12177                       pipe_config->gmch_pfit.pgm_ratios,
12178                       pipe_config->gmch_pfit.lvds_border_bits);
12179         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12180                       pipe_config->pch_pfit.pos,
12181                       pipe_config->pch_pfit.size,
12182                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12183         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12184         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12185
12186         if (IS_BROXTON(dev)) {
12187                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12188                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12189                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12190                               pipe_config->ddi_pll_sel,
12191                               pipe_config->dpll_hw_state.ebb0,
12192                               pipe_config->dpll_hw_state.ebb4,
12193                               pipe_config->dpll_hw_state.pll0,
12194                               pipe_config->dpll_hw_state.pll1,
12195                               pipe_config->dpll_hw_state.pll2,
12196                               pipe_config->dpll_hw_state.pll3,
12197                               pipe_config->dpll_hw_state.pll6,
12198                               pipe_config->dpll_hw_state.pll8,
12199                               pipe_config->dpll_hw_state.pll9,
12200                               pipe_config->dpll_hw_state.pll10,
12201                               pipe_config->dpll_hw_state.pcsdw12);
12202         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12203                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12204                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12205                               pipe_config->ddi_pll_sel,
12206                               pipe_config->dpll_hw_state.ctrl1,
12207                               pipe_config->dpll_hw_state.cfgcr1,
12208                               pipe_config->dpll_hw_state.cfgcr2);
12209         } else if (HAS_DDI(dev)) {
12210                 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12211                               pipe_config->ddi_pll_sel,
12212                               pipe_config->dpll_hw_state.wrpll,
12213                               pipe_config->dpll_hw_state.spll);
12214         } else {
12215                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12216                               "fp0: 0x%x, fp1: 0x%x\n",
12217                               pipe_config->dpll_hw_state.dpll,
12218                               pipe_config->dpll_hw_state.dpll_md,
12219                               pipe_config->dpll_hw_state.fp0,
12220                               pipe_config->dpll_hw_state.fp1);
12221         }
12222
12223         DRM_DEBUG_KMS("planes on this crtc\n");
12224         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12225                 intel_plane = to_intel_plane(plane);
12226                 if (intel_plane->pipe != crtc->pipe)
12227                         continue;
12228
12229                 state = to_intel_plane_state(plane->state);
12230                 fb = state->base.fb;
12231                 if (!fb) {
12232                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12233                                 "disabled, scaler_id = %d\n",
12234                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12235                                 plane->base.id, intel_plane->pipe,
12236                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12237                                 drm_plane_index(plane), state->scaler_id);
12238                         continue;
12239                 }
12240
12241                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12242                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12243                         plane->base.id, intel_plane->pipe,
12244                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12245                         drm_plane_index(plane));
12246                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12247                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12248                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12249                         state->scaler_id,
12250                         state->src.x1 >> 16, state->src.y1 >> 16,
12251                         drm_rect_width(&state->src) >> 16,
12252                         drm_rect_height(&state->src) >> 16,
12253                         state->dst.x1, state->dst.y1,
12254                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12255         }
12256 }
12257
12258 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12259 {
12260         struct drm_device *dev = state->dev;
12261         struct drm_connector *connector;
12262         unsigned int used_ports = 0;
12263
12264         /*
12265          * Walk the connector list instead of the encoder
12266          * list to detect the problem on ddi platforms
12267          * where there's just one encoder per digital port.
12268          */
12269         drm_for_each_connector(connector, dev) {
12270                 struct drm_connector_state *connector_state;
12271                 struct intel_encoder *encoder;
12272
12273                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12274                 if (!connector_state)
12275                         connector_state = connector->state;
12276
12277                 if (!connector_state->best_encoder)
12278                         continue;
12279
12280                 encoder = to_intel_encoder(connector_state->best_encoder);
12281
12282                 WARN_ON(!connector_state->crtc);
12283
12284                 switch (encoder->type) {
12285                         unsigned int port_mask;
12286                 case INTEL_OUTPUT_UNKNOWN:
12287                         if (WARN_ON(!HAS_DDI(dev)))
12288                                 break;
12289                 case INTEL_OUTPUT_DISPLAYPORT:
12290                 case INTEL_OUTPUT_HDMI:
12291                 case INTEL_OUTPUT_EDP:
12292                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12293
12294                         /* the same port mustn't appear more than once */
12295                         if (used_ports & port_mask)
12296                                 return false;
12297
12298                         used_ports |= port_mask;
12299                 default:
12300                         break;
12301                 }
12302         }
12303
12304         return true;
12305 }
12306
12307 static void
12308 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12309 {
12310         struct drm_crtc_state tmp_state;
12311         struct intel_crtc_scaler_state scaler_state;
12312         struct intel_dpll_hw_state dpll_hw_state;
12313         struct intel_shared_dpll *shared_dpll;
12314         uint32_t ddi_pll_sel;
12315         bool force_thru;
12316
12317         /* FIXME: before the switch to atomic started, a new pipe_config was
12318          * kzalloc'd. Code that depends on any field being zero should be
12319          * fixed, so that the crtc_state can be safely duplicated. For now,
12320          * only fields that are know to not cause problems are preserved. */
12321
12322         tmp_state = crtc_state->base;
12323         scaler_state = crtc_state->scaler_state;
12324         shared_dpll = crtc_state->shared_dpll;
12325         dpll_hw_state = crtc_state->dpll_hw_state;
12326         ddi_pll_sel = crtc_state->ddi_pll_sel;
12327         force_thru = crtc_state->pch_pfit.force_thru;
12328
12329         memset(crtc_state, 0, sizeof *crtc_state);
12330
12331         crtc_state->base = tmp_state;
12332         crtc_state->scaler_state = scaler_state;
12333         crtc_state->shared_dpll = shared_dpll;
12334         crtc_state->dpll_hw_state = dpll_hw_state;
12335         crtc_state->ddi_pll_sel = ddi_pll_sel;
12336         crtc_state->pch_pfit.force_thru = force_thru;
12337 }
12338
12339 static int
12340 intel_modeset_pipe_config(struct drm_crtc *crtc,
12341                           struct intel_crtc_state *pipe_config)
12342 {
12343         struct drm_atomic_state *state = pipe_config->base.state;
12344         struct intel_encoder *encoder;
12345         struct drm_connector *connector;
12346         struct drm_connector_state *connector_state;
12347         int base_bpp, ret = -EINVAL;
12348         int i;
12349         bool retry = true;
12350
12351         clear_intel_crtc_state(pipe_config);
12352
12353         pipe_config->cpu_transcoder =
12354                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12355
12356         /*
12357          * Sanitize sync polarity flags based on requested ones. If neither
12358          * positive or negative polarity is requested, treat this as meaning
12359          * negative polarity.
12360          */
12361         if (!(pipe_config->base.adjusted_mode.flags &
12362               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12363                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12364
12365         if (!(pipe_config->base.adjusted_mode.flags &
12366               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12367                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12368
12369         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12370                                              pipe_config);
12371         if (base_bpp < 0)
12372                 goto fail;
12373
12374         /*
12375          * Determine the real pipe dimensions. Note that stereo modes can
12376          * increase the actual pipe size due to the frame doubling and
12377          * insertion of additional space for blanks between the frame. This
12378          * is stored in the crtc timings. We use the requested mode to do this
12379          * computation to clearly distinguish it from the adjusted mode, which
12380          * can be changed by the connectors in the below retry loop.
12381          */
12382         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12383                                &pipe_config->pipe_src_w,
12384                                &pipe_config->pipe_src_h);
12385
12386 encoder_retry:
12387         /* Ensure the port clock defaults are reset when retrying. */
12388         pipe_config->port_clock = 0;
12389         pipe_config->pixel_multiplier = 1;
12390
12391         /* Fill in default crtc timings, allow encoders to overwrite them. */
12392         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12393                               CRTC_STEREO_DOUBLE);
12394
12395         /* Pass our mode to the connectors and the CRTC to give them a chance to
12396          * adjust it according to limitations or connector properties, and also
12397          * a chance to reject the mode entirely.
12398          */
12399         for_each_connector_in_state(state, connector, connector_state, i) {
12400                 if (connector_state->crtc != crtc)
12401                         continue;
12402
12403                 encoder = to_intel_encoder(connector_state->best_encoder);
12404
12405                 if (!(encoder->compute_config(encoder, pipe_config))) {
12406                         DRM_DEBUG_KMS("Encoder config failure\n");
12407                         goto fail;
12408                 }
12409         }
12410
12411         /* Set default port clock if not overwritten by the encoder. Needs to be
12412          * done afterwards in case the encoder adjusts the mode. */
12413         if (!pipe_config->port_clock)
12414                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12415                         * pipe_config->pixel_multiplier;
12416
12417         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12418         if (ret < 0) {
12419                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12420                 goto fail;
12421         }
12422
12423         if (ret == RETRY) {
12424                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12425                         ret = -EINVAL;
12426                         goto fail;
12427                 }
12428
12429                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12430                 retry = false;
12431                 goto encoder_retry;
12432         }
12433
12434         /* Dithering seems to not pass-through bits correctly when it should, so
12435          * only enable it on 6bpc panels. */
12436         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12437         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12438                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12439
12440 fail:
12441         return ret;
12442 }
12443
12444 static void
12445 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12446 {
12447         struct drm_crtc *crtc;
12448         struct drm_crtc_state *crtc_state;
12449         int i;
12450
12451         /* Double check state. */
12452         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12453                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12454
12455                 /* Update hwmode for vblank functions */
12456                 if (crtc->state->active)
12457                         crtc->hwmode = crtc->state->adjusted_mode;
12458                 else
12459                         crtc->hwmode.crtc_clock = 0;
12460
12461                 /*
12462                  * Update legacy state to satisfy fbc code. This can
12463                  * be removed when fbc uses the atomic state.
12464                  */
12465                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12466                         struct drm_plane_state *plane_state = crtc->primary->state;
12467
12468                         crtc->primary->fb = plane_state->fb;
12469                         crtc->x = plane_state->src_x >> 16;
12470                         crtc->y = plane_state->src_y >> 16;
12471                 }
12472         }
12473 }
12474
12475 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12476 {
12477         int diff;
12478
12479         if (clock1 == clock2)
12480                 return true;
12481
12482         if (!clock1 || !clock2)
12483                 return false;
12484
12485         diff = abs(clock1 - clock2);
12486
12487         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12488                 return true;
12489
12490         return false;
12491 }
12492
12493 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12494         list_for_each_entry((intel_crtc), \
12495                             &(dev)->mode_config.crtc_list, \
12496                             base.head) \
12497                 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12498
12499 static bool
12500 intel_compare_m_n(unsigned int m, unsigned int n,
12501                   unsigned int m2, unsigned int n2,
12502                   bool exact)
12503 {
12504         if (m == m2 && n == n2)
12505                 return true;
12506
12507         if (exact || !m || !n || !m2 || !n2)
12508                 return false;
12509
12510         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12511
12512         if (n > n2) {
12513                 while (n > n2) {
12514                         m2 <<= 1;
12515                         n2 <<= 1;
12516                 }
12517         } else if (n < n2) {
12518                 while (n < n2) {
12519                         m <<= 1;
12520                         n <<= 1;
12521                 }
12522         }
12523
12524         if (n != n2)
12525                 return false;
12526
12527         return intel_fuzzy_clock_check(m, m2);
12528 }
12529
12530 static bool
12531 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12532                        struct intel_link_m_n *m2_n2,
12533                        bool adjust)
12534 {
12535         if (m_n->tu == m2_n2->tu &&
12536             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12537                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12538             intel_compare_m_n(m_n->link_m, m_n->link_n,
12539                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12540                 if (adjust)
12541                         *m2_n2 = *m_n;
12542
12543                 return true;
12544         }
12545
12546         return false;
12547 }
12548
12549 static bool
12550 intel_pipe_config_compare(struct drm_device *dev,
12551                           struct intel_crtc_state *current_config,
12552                           struct intel_crtc_state *pipe_config,
12553                           bool adjust)
12554 {
12555         bool ret = true;
12556
12557 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12558         do { \
12559                 if (!adjust) \
12560                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12561                 else \
12562                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12563         } while (0)
12564
12565 #define PIPE_CONF_CHECK_X(name) \
12566         if (current_config->name != pipe_config->name) { \
12567                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12568                           "(expected 0x%08x, found 0x%08x)\n", \
12569                           current_config->name, \
12570                           pipe_config->name); \
12571                 ret = false; \
12572         }
12573
12574 #define PIPE_CONF_CHECK_I(name) \
12575         if (current_config->name != pipe_config->name) { \
12576                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12577                           "(expected %i, found %i)\n", \
12578                           current_config->name, \
12579                           pipe_config->name); \
12580                 ret = false; \
12581         }
12582
12583 #define PIPE_CONF_CHECK_P(name) \
12584         if (current_config->name != pipe_config->name) { \
12585                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12586                           "(expected %p, found %p)\n", \
12587                           current_config->name, \
12588                           pipe_config->name); \
12589                 ret = false; \
12590         }
12591
12592 #define PIPE_CONF_CHECK_M_N(name) \
12593         if (!intel_compare_link_m_n(&current_config->name, \
12594                                     &pipe_config->name,\
12595                                     adjust)) { \
12596                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12597                           "(expected tu %i gmch %i/%i link %i/%i, " \
12598                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12599                           current_config->name.tu, \
12600                           current_config->name.gmch_m, \
12601                           current_config->name.gmch_n, \
12602                           current_config->name.link_m, \
12603                           current_config->name.link_n, \
12604                           pipe_config->name.tu, \
12605                           pipe_config->name.gmch_m, \
12606                           pipe_config->name.gmch_n, \
12607                           pipe_config->name.link_m, \
12608                           pipe_config->name.link_n); \
12609                 ret = false; \
12610         }
12611
12612 /* This is required for BDW+ where there is only one set of registers for
12613  * switching between high and low RR.
12614  * This macro can be used whenever a comparison has to be made between one
12615  * hw state and multiple sw state variables.
12616  */
12617 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12618         if (!intel_compare_link_m_n(&current_config->name, \
12619                                     &pipe_config->name, adjust) && \
12620             !intel_compare_link_m_n(&current_config->alt_name, \
12621                                     &pipe_config->name, adjust)) { \
12622                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12623                           "(expected tu %i gmch %i/%i link %i/%i, " \
12624                           "or tu %i gmch %i/%i link %i/%i, " \
12625                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12626                           current_config->name.tu, \
12627                           current_config->name.gmch_m, \
12628                           current_config->name.gmch_n, \
12629                           current_config->name.link_m, \
12630                           current_config->name.link_n, \
12631                           current_config->alt_name.tu, \
12632                           current_config->alt_name.gmch_m, \
12633                           current_config->alt_name.gmch_n, \
12634                           current_config->alt_name.link_m, \
12635                           current_config->alt_name.link_n, \
12636                           pipe_config->name.tu, \
12637                           pipe_config->name.gmch_m, \
12638                           pipe_config->name.gmch_n, \
12639                           pipe_config->name.link_m, \
12640                           pipe_config->name.link_n); \
12641                 ret = false; \
12642         }
12643
12644 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12645         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12646                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12647                           "(expected %i, found %i)\n", \
12648                           current_config->name & (mask), \
12649                           pipe_config->name & (mask)); \
12650                 ret = false; \
12651         }
12652
12653 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12654         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12655                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12656                           "(expected %i, found %i)\n", \
12657                           current_config->name, \
12658                           pipe_config->name); \
12659                 ret = false; \
12660         }
12661
12662 #define PIPE_CONF_QUIRK(quirk)  \
12663         ((current_config->quirks | pipe_config->quirks) & (quirk))
12664
12665         PIPE_CONF_CHECK_I(cpu_transcoder);
12666
12667         PIPE_CONF_CHECK_I(has_pch_encoder);
12668         PIPE_CONF_CHECK_I(fdi_lanes);
12669         PIPE_CONF_CHECK_M_N(fdi_m_n);
12670
12671         PIPE_CONF_CHECK_I(has_dp_encoder);
12672         PIPE_CONF_CHECK_I(lane_count);
12673
12674         if (INTEL_INFO(dev)->gen < 8) {
12675                 PIPE_CONF_CHECK_M_N(dp_m_n);
12676
12677                 if (current_config->has_drrs)
12678                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12679         } else
12680                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12681
12682         PIPE_CONF_CHECK_I(has_dsi_encoder);
12683
12684         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12685         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12686         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12687         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12688         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12689         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12690
12691         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12692         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12693         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12694         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12695         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12696         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12697
12698         PIPE_CONF_CHECK_I(pixel_multiplier);
12699         PIPE_CONF_CHECK_I(has_hdmi_sink);
12700         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12701             IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12702                 PIPE_CONF_CHECK_I(limited_color_range);
12703         PIPE_CONF_CHECK_I(has_infoframe);
12704
12705         PIPE_CONF_CHECK_I(has_audio);
12706
12707         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12708                               DRM_MODE_FLAG_INTERLACE);
12709
12710         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12711                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12712                                       DRM_MODE_FLAG_PHSYNC);
12713                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12714                                       DRM_MODE_FLAG_NHSYNC);
12715                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12716                                       DRM_MODE_FLAG_PVSYNC);
12717                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12718                                       DRM_MODE_FLAG_NVSYNC);
12719         }
12720
12721         PIPE_CONF_CHECK_X(gmch_pfit.control);
12722         /* pfit ratios are autocomputed by the hw on gen4+ */
12723         if (INTEL_INFO(dev)->gen < 4)
12724                 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
12725         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12726
12727         if (!adjust) {
12728                 PIPE_CONF_CHECK_I(pipe_src_w);
12729                 PIPE_CONF_CHECK_I(pipe_src_h);
12730
12731                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12732                 if (current_config->pch_pfit.enabled) {
12733                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12734                         PIPE_CONF_CHECK_X(pch_pfit.size);
12735                 }
12736
12737                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12738         }
12739
12740         /* BDW+ don't expose a synchronous way to read the state */
12741         if (IS_HASWELL(dev))
12742                 PIPE_CONF_CHECK_I(ips_enabled);
12743
12744         PIPE_CONF_CHECK_I(double_wide);
12745
12746         PIPE_CONF_CHECK_X(ddi_pll_sel);
12747
12748         PIPE_CONF_CHECK_P(shared_dpll);
12749         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12750         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12751         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12752         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12753         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12754         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12755         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12756         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12757         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12758
12759         PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12760         PIPE_CONF_CHECK_X(dsi_pll.div);
12761
12762         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12763                 PIPE_CONF_CHECK_I(pipe_bpp);
12764
12765         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12766         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12767
12768 #undef PIPE_CONF_CHECK_X
12769 #undef PIPE_CONF_CHECK_I
12770 #undef PIPE_CONF_CHECK_P
12771 #undef PIPE_CONF_CHECK_FLAGS
12772 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12773 #undef PIPE_CONF_QUIRK
12774 #undef INTEL_ERR_OR_DBG_KMS
12775
12776         return ret;
12777 }
12778
12779 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12780                                            const struct intel_crtc_state *pipe_config)
12781 {
12782         if (pipe_config->has_pch_encoder) {
12783                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12784                                                             &pipe_config->fdi_m_n);
12785                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12786
12787                 /*
12788                  * FDI already provided one idea for the dotclock.
12789                  * Yell if the encoder disagrees.
12790                  */
12791                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12792                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12793                      fdi_dotclock, dotclock);
12794         }
12795 }
12796
12797 static void verify_wm_state(struct drm_crtc *crtc,
12798                             struct drm_crtc_state *new_state)
12799 {
12800         struct drm_device *dev = crtc->dev;
12801         struct drm_i915_private *dev_priv = dev->dev_private;
12802         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12803         struct skl_ddb_entry *hw_entry, *sw_entry;
12804         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12805         const enum pipe pipe = intel_crtc->pipe;
12806         int plane;
12807
12808         if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
12809                 return;
12810
12811         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12812         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12813
12814         /* planes */
12815         for_each_plane(dev_priv, pipe, plane) {
12816                 hw_entry = &hw_ddb.plane[pipe][plane];
12817                 sw_entry = &sw_ddb->plane[pipe][plane];
12818
12819                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12820                         continue;
12821
12822                 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12823                           "(expected (%u,%u), found (%u,%u))\n",
12824                           pipe_name(pipe), plane + 1,
12825                           sw_entry->start, sw_entry->end,
12826                           hw_entry->start, hw_entry->end);
12827         }
12828
12829         /* cursor */
12830         hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12831         sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12832
12833         if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
12834                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12835                           "(expected (%u,%u), found (%u,%u))\n",
12836                           pipe_name(pipe),
12837                           sw_entry->start, sw_entry->end,
12838                           hw_entry->start, hw_entry->end);
12839         }
12840 }
12841
12842 static void
12843 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
12844 {
12845         struct drm_connector *connector;
12846
12847         drm_for_each_connector(connector, dev) {
12848                 struct drm_encoder *encoder = connector->encoder;
12849                 struct drm_connector_state *state = connector->state;
12850
12851                 if (state->crtc != crtc)
12852                         continue;
12853
12854                 intel_connector_verify_state(to_intel_connector(connector));
12855
12856                 I915_STATE_WARN(state->best_encoder != encoder,
12857                      "connector's atomic encoder doesn't match legacy encoder\n");
12858         }
12859 }
12860
12861 static void
12862 verify_encoder_state(struct drm_device *dev)
12863 {
12864         struct intel_encoder *encoder;
12865         struct intel_connector *connector;
12866
12867         for_each_intel_encoder(dev, encoder) {
12868                 bool enabled = false;
12869                 enum pipe pipe;
12870
12871                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12872                               encoder->base.base.id,
12873                               encoder->base.name);
12874
12875                 for_each_intel_connector(dev, connector) {
12876                         if (connector->base.state->best_encoder != &encoder->base)
12877                                 continue;
12878                         enabled = true;
12879
12880                         I915_STATE_WARN(connector->base.state->crtc !=
12881                                         encoder->base.crtc,
12882                              "connector's crtc doesn't match encoder crtc\n");
12883                 }
12884
12885                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12886                      "encoder's enabled state mismatch "
12887                      "(expected %i, found %i)\n",
12888                      !!encoder->base.crtc, enabled);
12889
12890                 if (!encoder->base.crtc) {
12891                         bool active;
12892
12893                         active = encoder->get_hw_state(encoder, &pipe);
12894                         I915_STATE_WARN(active,
12895                              "encoder detached but still enabled on pipe %c.\n",
12896                              pipe_name(pipe));
12897                 }
12898         }
12899 }
12900
12901 static void
12902 verify_crtc_state(struct drm_crtc *crtc,
12903                   struct drm_crtc_state *old_crtc_state,
12904                   struct drm_crtc_state *new_crtc_state)
12905 {
12906         struct drm_device *dev = crtc->dev;
12907         struct drm_i915_private *dev_priv = dev->dev_private;
12908         struct intel_encoder *encoder;
12909         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12910         struct intel_crtc_state *pipe_config, *sw_config;
12911         struct drm_atomic_state *old_state;
12912         bool active;
12913
12914         old_state = old_crtc_state->state;
12915         __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12916         pipe_config = to_intel_crtc_state(old_crtc_state);
12917         memset(pipe_config, 0, sizeof(*pipe_config));
12918         pipe_config->base.crtc = crtc;
12919         pipe_config->base.state = old_state;
12920
12921         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
12922
12923         active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12924
12925         /* hw state is inconsistent with the pipe quirk */
12926         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12927             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12928                 active = new_crtc_state->active;
12929
12930         I915_STATE_WARN(new_crtc_state->active != active,
12931              "crtc active state doesn't match with hw state "
12932              "(expected %i, found %i)\n", new_crtc_state->active, active);
12933
12934         I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12935              "transitional active state does not match atomic hw state "
12936              "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
12937
12938         for_each_encoder_on_crtc(dev, crtc, encoder) {
12939                 enum pipe pipe;
12940
12941                 active = encoder->get_hw_state(encoder, &pipe);
12942                 I915_STATE_WARN(active != new_crtc_state->active,
12943                         "[ENCODER:%i] active %i with crtc active %i\n",
12944                         encoder->base.base.id, active, new_crtc_state->active);
12945
12946                 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12947                                 "Encoder connected to wrong pipe %c\n",
12948                                 pipe_name(pipe));
12949
12950                 if (active)
12951                         encoder->get_config(encoder, pipe_config);
12952         }
12953
12954         if (!new_crtc_state->active)
12955                 return;
12956
12957         intel_pipe_config_sanity_check(dev_priv, pipe_config);
12958
12959         sw_config = to_intel_crtc_state(crtc->state);
12960         if (!intel_pipe_config_compare(dev, sw_config,
12961                                        pipe_config, false)) {
12962                 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12963                 intel_dump_pipe_config(intel_crtc, pipe_config,
12964                                        "[hw state]");
12965                 intel_dump_pipe_config(intel_crtc, sw_config,
12966                                        "[sw state]");
12967         }
12968 }
12969
12970 static void
12971 verify_single_dpll_state(struct drm_i915_private *dev_priv,
12972                          struct intel_shared_dpll *pll,
12973                          struct drm_crtc *crtc,
12974                          struct drm_crtc_state *new_state)
12975 {
12976         struct intel_dpll_hw_state dpll_hw_state;
12977         unsigned crtc_mask;
12978         bool active;
12979
12980         memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12981
12982         DRM_DEBUG_KMS("%s\n", pll->name);
12983
12984         active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
12985
12986         if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
12987                 I915_STATE_WARN(!pll->on && pll->active_mask,
12988                      "pll in active use but not on in sw tracking\n");
12989                 I915_STATE_WARN(pll->on && !pll->active_mask,
12990                      "pll is on but not used by any active crtc\n");
12991                 I915_STATE_WARN(pll->on != active,
12992                      "pll on state mismatch (expected %i, found %i)\n",
12993                      pll->on, active);
12994         }
12995
12996         if (!crtc) {
12997                 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
12998                                 "more active pll users than references: %x vs %x\n",
12999                                 pll->active_mask, pll->config.crtc_mask);
13000
13001                 return;
13002         }
13003
13004         crtc_mask = 1 << drm_crtc_index(crtc);
13005
13006         if (new_state->active)
13007                 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13008                                 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13009                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13010         else
13011                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13012                                 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13013                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13014
13015         I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13016                         "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13017                         crtc_mask, pll->config.crtc_mask);
13018
13019         I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13020                                           &dpll_hw_state,
13021                                           sizeof(dpll_hw_state)),
13022                         "pll hw state mismatch\n");
13023 }
13024
13025 static void
13026 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13027                          struct drm_crtc_state *old_crtc_state,
13028                          struct drm_crtc_state *new_crtc_state)
13029 {
13030         struct drm_i915_private *dev_priv = dev->dev_private;
13031         struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13032         struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13033
13034         if (new_state->shared_dpll)
13035                 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13036
13037         if (old_state->shared_dpll &&
13038             old_state->shared_dpll != new_state->shared_dpll) {
13039                 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13040                 struct intel_shared_dpll *pll = old_state->shared_dpll;
13041
13042                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13043                                 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13044                                 pipe_name(drm_crtc_index(crtc)));
13045                 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13046                                 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13047                                 pipe_name(drm_crtc_index(crtc)));
13048         }
13049 }
13050
13051 static void
13052 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13053                          struct drm_crtc_state *old_state,
13054                          struct drm_crtc_state *new_state)
13055 {
13056         if (!needs_modeset(new_state) &&
13057             !to_intel_crtc_state(new_state)->update_pipe)
13058                 return;
13059
13060         verify_wm_state(crtc, new_state);
13061         verify_connector_state(crtc->dev, crtc);
13062         verify_crtc_state(crtc, old_state, new_state);
13063         verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13064 }
13065
13066 static void
13067 verify_disabled_dpll_state(struct drm_device *dev)
13068 {
13069         struct drm_i915_private *dev_priv = dev->dev_private;
13070         int i;
13071
13072         for (i = 0; i < dev_priv->num_shared_dpll; i++)
13073                 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13074 }
13075
13076 static void
13077 intel_modeset_verify_disabled(struct drm_device *dev)
13078 {
13079         verify_encoder_state(dev);
13080         verify_connector_state(dev, NULL);
13081         verify_disabled_dpll_state(dev);
13082 }
13083
13084 static void update_scanline_offset(struct intel_crtc *crtc)
13085 {
13086         struct drm_device *dev = crtc->base.dev;
13087
13088         /*
13089          * The scanline counter increments at the leading edge of hsync.
13090          *
13091          * On most platforms it starts counting from vtotal-1 on the
13092          * first active line. That means the scanline counter value is
13093          * always one less than what we would expect. Ie. just after
13094          * start of vblank, which also occurs at start of hsync (on the
13095          * last active line), the scanline counter will read vblank_start-1.
13096          *
13097          * On gen2 the scanline counter starts counting from 1 instead
13098          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13099          * to keep the value positive), instead of adding one.
13100          *
13101          * On HSW+ the behaviour of the scanline counter depends on the output
13102          * type. For DP ports it behaves like most other platforms, but on HDMI
13103          * there's an extra 1 line difference. So we need to add two instead of
13104          * one to the value.
13105          */
13106         if (IS_GEN2(dev)) {
13107                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13108                 int vtotal;
13109
13110                 vtotal = adjusted_mode->crtc_vtotal;
13111                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13112                         vtotal /= 2;
13113
13114                 crtc->scanline_offset = vtotal - 1;
13115         } else if (HAS_DDI(dev) &&
13116                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
13117                 crtc->scanline_offset = 2;
13118         } else
13119                 crtc->scanline_offset = 1;
13120 }
13121
13122 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13123 {
13124         struct drm_device *dev = state->dev;
13125         struct drm_i915_private *dev_priv = to_i915(dev);
13126         struct intel_shared_dpll_config *shared_dpll = NULL;
13127         struct drm_crtc *crtc;
13128         struct drm_crtc_state *crtc_state;
13129         int i;
13130
13131         if (!dev_priv->display.crtc_compute_clock)
13132                 return;
13133
13134         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13135                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13136                 struct intel_shared_dpll *old_dpll =
13137                         to_intel_crtc_state(crtc->state)->shared_dpll;
13138
13139                 if (!needs_modeset(crtc_state))
13140                         continue;
13141
13142                 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13143
13144                 if (!old_dpll)
13145                         continue;
13146
13147                 if (!shared_dpll)
13148                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13149
13150                 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13151         }
13152 }
13153
13154 /*
13155  * This implements the workaround described in the "notes" section of the mode
13156  * set sequence documentation. When going from no pipes or single pipe to
13157  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13158  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13159  */
13160 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13161 {
13162         struct drm_crtc_state *crtc_state;
13163         struct intel_crtc *intel_crtc;
13164         struct drm_crtc *crtc;
13165         struct intel_crtc_state *first_crtc_state = NULL;
13166         struct intel_crtc_state *other_crtc_state = NULL;
13167         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13168         int i;
13169
13170         /* look at all crtc's that are going to be enabled in during modeset */
13171         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13172                 intel_crtc = to_intel_crtc(crtc);
13173
13174                 if (!crtc_state->active || !needs_modeset(crtc_state))
13175                         continue;
13176
13177                 if (first_crtc_state) {
13178                         other_crtc_state = to_intel_crtc_state(crtc_state);
13179                         break;
13180                 } else {
13181                         first_crtc_state = to_intel_crtc_state(crtc_state);
13182                         first_pipe = intel_crtc->pipe;
13183                 }
13184         }
13185
13186         /* No workaround needed? */
13187         if (!first_crtc_state)
13188                 return 0;
13189
13190         /* w/a possibly needed, check how many crtc's are already enabled. */
13191         for_each_intel_crtc(state->dev, intel_crtc) {
13192                 struct intel_crtc_state *pipe_config;
13193
13194                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13195                 if (IS_ERR(pipe_config))
13196                         return PTR_ERR(pipe_config);
13197
13198                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13199
13200                 if (!pipe_config->base.active ||
13201                     needs_modeset(&pipe_config->base))
13202                         continue;
13203
13204                 /* 2 or more enabled crtcs means no need for w/a */
13205                 if (enabled_pipe != INVALID_PIPE)
13206                         return 0;
13207
13208                 enabled_pipe = intel_crtc->pipe;
13209         }
13210
13211         if (enabled_pipe != INVALID_PIPE)
13212                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13213         else if (other_crtc_state)
13214                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13215
13216         return 0;
13217 }
13218
13219 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13220 {
13221         struct drm_crtc *crtc;
13222         struct drm_crtc_state *crtc_state;
13223         int ret = 0;
13224
13225         /* add all active pipes to the state */
13226         for_each_crtc(state->dev, crtc) {
13227                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13228                 if (IS_ERR(crtc_state))
13229                         return PTR_ERR(crtc_state);
13230
13231                 if (!crtc_state->active || needs_modeset(crtc_state))
13232                         continue;
13233
13234                 crtc_state->mode_changed = true;
13235
13236                 ret = drm_atomic_add_affected_connectors(state, crtc);
13237                 if (ret)
13238                         break;
13239
13240                 ret = drm_atomic_add_affected_planes(state, crtc);
13241                 if (ret)
13242                         break;
13243         }
13244
13245         return ret;
13246 }
13247
13248 static int intel_modeset_checks(struct drm_atomic_state *state)
13249 {
13250         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13251         struct drm_i915_private *dev_priv = state->dev->dev_private;
13252         struct drm_crtc *crtc;
13253         struct drm_crtc_state *crtc_state;
13254         int ret = 0, i;
13255
13256         if (!check_digital_port_conflicts(state)) {
13257                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13258                 return -EINVAL;
13259         }
13260
13261         intel_state->modeset = true;
13262         intel_state->active_crtcs = dev_priv->active_crtcs;
13263
13264         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13265                 if (crtc_state->active)
13266                         intel_state->active_crtcs |= 1 << i;
13267                 else
13268                         intel_state->active_crtcs &= ~(1 << i);
13269         }
13270
13271         /*
13272          * See if the config requires any additional preparation, e.g.
13273          * to adjust global state with pipes off.  We need to do this
13274          * here so we can get the modeset_pipe updated config for the new
13275          * mode set on this crtc.  For other crtcs we need to use the
13276          * adjusted_mode bits in the crtc directly.
13277          */
13278         if (dev_priv->display.modeset_calc_cdclk) {
13279                 ret = dev_priv->display.modeset_calc_cdclk(state);
13280
13281                 if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq)
13282                         ret = intel_modeset_all_pipes(state);
13283
13284                 if (ret < 0)
13285                         return ret;
13286
13287                 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13288                               intel_state->cdclk, intel_state->dev_cdclk);
13289         } else
13290                 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13291
13292         intel_modeset_clear_plls(state);
13293
13294         if (IS_HASWELL(dev_priv))
13295                 return haswell_mode_set_planes_workaround(state);
13296
13297         return 0;
13298 }
13299
13300 /*
13301  * Handle calculation of various watermark data at the end of the atomic check
13302  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13303  * handlers to ensure that all derived state has been updated.
13304  */
13305 static void calc_watermark_data(struct drm_atomic_state *state)
13306 {
13307         struct drm_device *dev = state->dev;
13308         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13309         struct drm_crtc *crtc;
13310         struct drm_crtc_state *cstate;
13311         struct drm_plane *plane;
13312         struct drm_plane_state *pstate;
13313
13314         /*
13315          * Calculate watermark configuration details now that derived
13316          * plane/crtc state is all properly updated.
13317          */
13318         drm_for_each_crtc(crtc, dev) {
13319                 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13320                         crtc->state;
13321
13322                 if (cstate->active)
13323                         intel_state->wm_config.num_pipes_active++;
13324         }
13325         drm_for_each_legacy_plane(plane, dev) {
13326                 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13327                         plane->state;
13328
13329                 if (!to_intel_plane_state(pstate)->visible)
13330                         continue;
13331
13332                 intel_state->wm_config.sprites_enabled = true;
13333                 if (pstate->crtc_w != pstate->src_w >> 16 ||
13334                     pstate->crtc_h != pstate->src_h >> 16)
13335                         intel_state->wm_config.sprites_scaled = true;
13336         }
13337 }
13338
13339 /**
13340  * intel_atomic_check - validate state object
13341  * @dev: drm device
13342  * @state: state to validate
13343  */
13344 static int intel_atomic_check(struct drm_device *dev,
13345                               struct drm_atomic_state *state)
13346 {
13347         struct drm_i915_private *dev_priv = to_i915(dev);
13348         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13349         struct drm_crtc *crtc;
13350         struct drm_crtc_state *crtc_state;
13351         int ret, i;
13352         bool any_ms = false;
13353
13354         ret = drm_atomic_helper_check_modeset(dev, state);
13355         if (ret)
13356                 return ret;
13357
13358         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13359                 struct intel_crtc_state *pipe_config =
13360                         to_intel_crtc_state(crtc_state);
13361
13362                 /* Catch I915_MODE_FLAG_INHERITED */
13363                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13364                         crtc_state->mode_changed = true;
13365
13366                 if (!crtc_state->enable) {
13367                         if (needs_modeset(crtc_state))
13368                                 any_ms = true;
13369                         continue;
13370                 }
13371
13372                 if (!needs_modeset(crtc_state))
13373                         continue;
13374
13375                 /* FIXME: For only active_changed we shouldn't need to do any
13376                  * state recomputation at all. */
13377
13378                 ret = drm_atomic_add_affected_connectors(state, crtc);
13379                 if (ret)
13380                         return ret;
13381
13382                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13383                 if (ret) {
13384                         intel_dump_pipe_config(to_intel_crtc(crtc),
13385                                                pipe_config, "[failed]");
13386                         return ret;
13387                 }
13388
13389                 if (i915.fastboot &&
13390                     intel_pipe_config_compare(dev,
13391                                         to_intel_crtc_state(crtc->state),
13392                                         pipe_config, true)) {
13393                         crtc_state->mode_changed = false;
13394                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13395                 }
13396
13397                 if (needs_modeset(crtc_state)) {
13398                         any_ms = true;
13399
13400                         ret = drm_atomic_add_affected_planes(state, crtc);
13401                         if (ret)
13402                                 return ret;
13403                 }
13404
13405                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13406                                        needs_modeset(crtc_state) ?
13407                                        "[modeset]" : "[fastset]");
13408         }
13409
13410         if (any_ms) {
13411                 ret = intel_modeset_checks(state);
13412
13413                 if (ret)
13414                         return ret;
13415         } else
13416                 intel_state->cdclk = dev_priv->cdclk_freq;
13417
13418         ret = drm_atomic_helper_check_planes(dev, state);
13419         if (ret)
13420                 return ret;
13421
13422         intel_fbc_choose_crtc(dev_priv, state);
13423         calc_watermark_data(state);
13424
13425         return 0;
13426 }
13427
13428 static int intel_atomic_prepare_commit(struct drm_device *dev,
13429                                        struct drm_atomic_state *state,
13430                                        bool async)
13431 {
13432         struct drm_i915_private *dev_priv = dev->dev_private;
13433         struct drm_plane_state *plane_state;
13434         struct drm_crtc_state *crtc_state;
13435         struct drm_plane *plane;
13436         struct drm_crtc *crtc;
13437         int i, ret;
13438
13439         if (async) {
13440                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13441                 return -EINVAL;
13442         }
13443
13444         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13445                 if (state->legacy_cursor_update)
13446                         continue;
13447
13448                 ret = intel_crtc_wait_for_pending_flips(crtc);
13449                 if (ret)
13450                         return ret;
13451
13452                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13453                         flush_workqueue(dev_priv->wq);
13454         }
13455
13456         ret = mutex_lock_interruptible(&dev->struct_mutex);
13457         if (ret)
13458                 return ret;
13459
13460         ret = drm_atomic_helper_prepare_planes(dev, state);
13461         mutex_unlock(&dev->struct_mutex);
13462
13463         if (!ret && !async) {
13464                 for_each_plane_in_state(state, plane, plane_state, i) {
13465                         struct intel_plane_state *intel_plane_state =
13466                                 to_intel_plane_state(plane_state);
13467
13468                         if (!intel_plane_state->wait_req)
13469                                 continue;
13470
13471                         ret = __i915_wait_request(intel_plane_state->wait_req,
13472                                                   true, NULL, NULL);
13473                         if (ret) {
13474                                 /* Any hang should be swallowed by the wait */
13475                                 WARN_ON(ret == -EIO);
13476                                 mutex_lock(&dev->struct_mutex);
13477                                 drm_atomic_helper_cleanup_planes(dev, state);
13478                                 mutex_unlock(&dev->struct_mutex);
13479                                 break;
13480                         }
13481                 }
13482         }
13483
13484         return ret;
13485 }
13486
13487 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13488                                           struct drm_i915_private *dev_priv,
13489                                           unsigned crtc_mask)
13490 {
13491         unsigned last_vblank_count[I915_MAX_PIPES];
13492         enum pipe pipe;
13493         int ret;
13494
13495         if (!crtc_mask)
13496                 return;
13497
13498         for_each_pipe(dev_priv, pipe) {
13499                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13500
13501                 if (!((1 << pipe) & crtc_mask))
13502                         continue;
13503
13504                 ret = drm_crtc_vblank_get(crtc);
13505                 if (WARN_ON(ret != 0)) {
13506                         crtc_mask &= ~(1 << pipe);
13507                         continue;
13508                 }
13509
13510                 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13511         }
13512
13513         for_each_pipe(dev_priv, pipe) {
13514                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13515                 long lret;
13516
13517                 if (!((1 << pipe) & crtc_mask))
13518                         continue;
13519
13520                 lret = wait_event_timeout(dev->vblank[pipe].queue,
13521                                 last_vblank_count[pipe] !=
13522                                         drm_crtc_vblank_count(crtc),
13523                                 msecs_to_jiffies(50));
13524
13525                 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
13526
13527                 drm_crtc_vblank_put(crtc);
13528         }
13529 }
13530
13531 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13532 {
13533         /* fb updated, need to unpin old fb */
13534         if (crtc_state->fb_changed)
13535                 return true;
13536
13537         /* wm changes, need vblank before final wm's */
13538         if (crtc_state->update_wm_post)
13539                 return true;
13540
13541         /*
13542          * cxsr is re-enabled after vblank.
13543          * This is already handled by crtc_state->update_wm_post,
13544          * but added for clarity.
13545          */
13546         if (crtc_state->disable_cxsr)
13547                 return true;
13548
13549         return false;
13550 }
13551
13552 /**
13553  * intel_atomic_commit - commit validated state object
13554  * @dev: DRM device
13555  * @state: the top-level driver state object
13556  * @async: asynchronous commit
13557  *
13558  * This function commits a top-level state object that has been validated
13559  * with drm_atomic_helper_check().
13560  *
13561  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13562  * we can only handle plane-related operations and do not yet support
13563  * asynchronous commit.
13564  *
13565  * RETURNS
13566  * Zero for success or -errno.
13567  */
13568 static int intel_atomic_commit(struct drm_device *dev,
13569                                struct drm_atomic_state *state,
13570                                bool async)
13571 {
13572         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13573         struct drm_i915_private *dev_priv = dev->dev_private;
13574         struct drm_crtc_state *old_crtc_state;
13575         struct drm_crtc *crtc;
13576         struct intel_crtc_state *intel_cstate;
13577         int ret = 0, i;
13578         bool hw_check = intel_state->modeset;
13579         unsigned long put_domains[I915_MAX_PIPES] = {};
13580         unsigned crtc_vblank_mask = 0;
13581
13582         ret = intel_atomic_prepare_commit(dev, state, async);
13583         if (ret) {
13584                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13585                 return ret;
13586         }
13587
13588         drm_atomic_helper_swap_state(dev, state);
13589         dev_priv->wm.config = intel_state->wm_config;
13590         intel_shared_dpll_commit(state);
13591
13592         if (intel_state->modeset) {
13593                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13594                        sizeof(intel_state->min_pixclk));
13595                 dev_priv->active_crtcs = intel_state->active_crtcs;
13596                 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13597
13598                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13599         }
13600
13601         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13602                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13603
13604                 if (needs_modeset(crtc->state) ||
13605                     to_intel_crtc_state(crtc->state)->update_pipe) {
13606                         hw_check = true;
13607
13608                         put_domains[to_intel_crtc(crtc)->pipe] =
13609                                 modeset_get_crtc_power_domains(crtc,
13610                                         to_intel_crtc_state(crtc->state));
13611                 }
13612
13613                 if (!needs_modeset(crtc->state))
13614                         continue;
13615
13616                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13617
13618                 if (old_crtc_state->active) {
13619                         intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13620                         dev_priv->display.crtc_disable(crtc);
13621                         intel_crtc->active = false;
13622                         intel_fbc_disable(intel_crtc);
13623                         intel_disable_shared_dpll(intel_crtc);
13624
13625                         /*
13626                          * Underruns don't always raise
13627                          * interrupts, so check manually.
13628                          */
13629                         intel_check_cpu_fifo_underruns(dev_priv);
13630                         intel_check_pch_fifo_underruns(dev_priv);
13631
13632                         if (!crtc->state->active)
13633                                 intel_update_watermarks(crtc);
13634                 }
13635         }
13636
13637         /* Only after disabling all output pipelines that will be changed can we
13638          * update the the output configuration. */
13639         intel_modeset_update_crtc_state(state);
13640
13641         if (intel_state->modeset) {
13642                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13643
13644                 if (dev_priv->display.modeset_commit_cdclk &&
13645                     intel_state->dev_cdclk != dev_priv->cdclk_freq)
13646                         dev_priv->display.modeset_commit_cdclk(state);
13647
13648                 intel_modeset_verify_disabled(dev);
13649         }
13650
13651         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13652         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13653                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13654                 bool modeset = needs_modeset(crtc->state);
13655                 struct intel_crtc_state *pipe_config =
13656                         to_intel_crtc_state(crtc->state);
13657                 bool update_pipe = !modeset && pipe_config->update_pipe;
13658
13659                 if (modeset && crtc->state->active) {
13660                         update_scanline_offset(to_intel_crtc(crtc));
13661                         dev_priv->display.crtc_enable(crtc);
13662                 }
13663
13664                 if (!modeset)
13665                         intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13666
13667                 if (crtc->state->active &&
13668                     drm_atomic_get_existing_plane_state(state, crtc->primary))
13669                         intel_fbc_enable(intel_crtc);
13670
13671                 if (crtc->state->active &&
13672                     (crtc->state->planes_changed || update_pipe))
13673                         drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
13674
13675                 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13676                         crtc_vblank_mask |= 1 << i;
13677         }
13678
13679         /* FIXME: add subpixel order */
13680
13681         if (!state->legacy_cursor_update)
13682                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13683
13684         /*
13685          * Now that the vblank has passed, we can go ahead and program the
13686          * optimal watermarks on platforms that need two-step watermark
13687          * programming.
13688          *
13689          * TODO: Move this (and other cleanup) to an async worker eventually.
13690          */
13691         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13692                 intel_cstate = to_intel_crtc_state(crtc->state);
13693
13694                 if (dev_priv->display.optimize_watermarks)
13695                         dev_priv->display.optimize_watermarks(intel_cstate);
13696         }
13697
13698         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13699                 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13700
13701                 if (put_domains[i])
13702                         modeset_put_power_domains(dev_priv, put_domains[i]);
13703
13704                 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
13705         }
13706
13707         if (intel_state->modeset)
13708                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13709
13710         mutex_lock(&dev->struct_mutex);
13711         drm_atomic_helper_cleanup_planes(dev, state);
13712         mutex_unlock(&dev->struct_mutex);
13713
13714         drm_atomic_state_free(state);
13715
13716         /* As one of the primary mmio accessors, KMS has a high likelihood
13717          * of triggering bugs in unclaimed access. After we finish
13718          * modesetting, see if an error has been flagged, and if so
13719          * enable debugging for the next modeset - and hope we catch
13720          * the culprit.
13721          *
13722          * XXX note that we assume display power is on at this point.
13723          * This might hold true now but we need to add pm helper to check
13724          * unclaimed only when the hardware is on, as atomic commits
13725          * can happen also when the device is completely off.
13726          */
13727         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13728
13729         return 0;
13730 }
13731
13732 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13733 {
13734         struct drm_device *dev = crtc->dev;
13735         struct drm_atomic_state *state;
13736         struct drm_crtc_state *crtc_state;
13737         int ret;
13738
13739         state = drm_atomic_state_alloc(dev);
13740         if (!state) {
13741                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13742                               crtc->base.id);
13743                 return;
13744         }
13745
13746         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13747
13748 retry:
13749         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13750         ret = PTR_ERR_OR_ZERO(crtc_state);
13751         if (!ret) {
13752                 if (!crtc_state->active)
13753                         goto out;
13754
13755                 crtc_state->mode_changed = true;
13756                 ret = drm_atomic_commit(state);
13757         }
13758
13759         if (ret == -EDEADLK) {
13760                 drm_atomic_state_clear(state);
13761                 drm_modeset_backoff(state->acquire_ctx);
13762                 goto retry;
13763         }
13764
13765         if (ret)
13766 out:
13767                 drm_atomic_state_free(state);
13768 }
13769
13770 #undef for_each_intel_crtc_masked
13771
13772 static const struct drm_crtc_funcs intel_crtc_funcs = {
13773         .gamma_set = drm_atomic_helper_legacy_gamma_set,
13774         .set_config = drm_atomic_helper_set_config,
13775         .set_property = drm_atomic_helper_crtc_set_property,
13776         .destroy = intel_crtc_destroy,
13777         .page_flip = intel_crtc_page_flip,
13778         .atomic_duplicate_state = intel_crtc_duplicate_state,
13779         .atomic_destroy_state = intel_crtc_destroy_state,
13780 };
13781
13782 /**
13783  * intel_prepare_plane_fb - Prepare fb for usage on plane
13784  * @plane: drm plane to prepare for
13785  * @fb: framebuffer to prepare for presentation
13786  *
13787  * Prepares a framebuffer for usage on a display plane.  Generally this
13788  * involves pinning the underlying object and updating the frontbuffer tracking
13789  * bits.  Some older platforms need special physical address handling for
13790  * cursor planes.
13791  *
13792  * Must be called with struct_mutex held.
13793  *
13794  * Returns 0 on success, negative error code on failure.
13795  */
13796 int
13797 intel_prepare_plane_fb(struct drm_plane *plane,
13798                        const struct drm_plane_state *new_state)
13799 {
13800         struct drm_device *dev = plane->dev;
13801         struct drm_framebuffer *fb = new_state->fb;
13802         struct intel_plane *intel_plane = to_intel_plane(plane);
13803         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13804         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13805         int ret = 0;
13806
13807         if (!obj && !old_obj)
13808                 return 0;
13809
13810         if (old_obj) {
13811                 struct drm_crtc_state *crtc_state =
13812                         drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13813
13814                 /* Big Hammer, we also need to ensure that any pending
13815                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13816                  * current scanout is retired before unpinning the old
13817                  * framebuffer. Note that we rely on userspace rendering
13818                  * into the buffer attached to the pipe they are waiting
13819                  * on. If not, userspace generates a GPU hang with IPEHR
13820                  * point to the MI_WAIT_FOR_EVENT.
13821                  *
13822                  * This should only fail upon a hung GPU, in which case we
13823                  * can safely continue.
13824                  */
13825                 if (needs_modeset(crtc_state))
13826                         ret = i915_gem_object_wait_rendering(old_obj, true);
13827                 if (ret) {
13828                         /* GPU hangs should have been swallowed by the wait */
13829                         WARN_ON(ret == -EIO);
13830                         return ret;
13831                 }
13832         }
13833
13834         /* For framebuffer backed by dmabuf, wait for fence */
13835         if (obj && obj->base.dma_buf) {
13836                 long lret;
13837
13838                 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13839                                                            false, true,
13840                                                            MAX_SCHEDULE_TIMEOUT);
13841                 if (lret == -ERESTARTSYS)
13842                         return lret;
13843
13844                 WARN(lret < 0, "waiting returns %li\n", lret);
13845         }
13846
13847         if (!obj) {
13848                 ret = 0;
13849         } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13850             INTEL_INFO(dev)->cursor_needs_physical) {
13851                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13852                 ret = i915_gem_object_attach_phys(obj, align);
13853                 if (ret)
13854                         DRM_DEBUG_KMS("failed to attach phys object\n");
13855         } else {
13856                 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
13857         }
13858
13859         if (ret == 0) {
13860                 if (obj) {
13861                         struct intel_plane_state *plane_state =
13862                                 to_intel_plane_state(new_state);
13863
13864                         i915_gem_request_assign(&plane_state->wait_req,
13865                                                 obj->last_write_req);
13866                 }
13867
13868                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13869         }
13870
13871         return ret;
13872 }
13873
13874 /**
13875  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13876  * @plane: drm plane to clean up for
13877  * @fb: old framebuffer that was on plane
13878  *
13879  * Cleans up a framebuffer that has just been removed from a plane.
13880  *
13881  * Must be called with struct_mutex held.
13882  */
13883 void
13884 intel_cleanup_plane_fb(struct drm_plane *plane,
13885                        const struct drm_plane_state *old_state)
13886 {
13887         struct drm_device *dev = plane->dev;
13888         struct intel_plane *intel_plane = to_intel_plane(plane);
13889         struct intel_plane_state *old_intel_state;
13890         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13891         struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13892
13893         old_intel_state = to_intel_plane_state(old_state);
13894
13895         if (!obj && !old_obj)
13896                 return;
13897
13898         if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13899             !INTEL_INFO(dev)->cursor_needs_physical))
13900                 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
13901
13902         /* prepare_fb aborted? */
13903         if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13904             (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13905                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13906
13907         i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13908 }
13909
13910 int
13911 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13912 {
13913         int max_scale;
13914         struct drm_device *dev;
13915         struct drm_i915_private *dev_priv;
13916         int crtc_clock, cdclk;
13917
13918         if (!intel_crtc || !crtc_state->base.enable)
13919                 return DRM_PLANE_HELPER_NO_SCALING;
13920
13921         dev = intel_crtc->base.dev;
13922         dev_priv = dev->dev_private;
13923         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13924         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13925
13926         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13927                 return DRM_PLANE_HELPER_NO_SCALING;
13928
13929         /*
13930          * skl max scale is lower of:
13931          *    close to 3 but not 3, -1 is for that purpose
13932          *            or
13933          *    cdclk/crtc_clock
13934          */
13935         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13936
13937         return max_scale;
13938 }
13939
13940 static int
13941 intel_check_primary_plane(struct drm_plane *plane,
13942                           struct intel_crtc_state *crtc_state,
13943                           struct intel_plane_state *state)
13944 {
13945         struct drm_crtc *crtc = state->base.crtc;
13946         struct drm_framebuffer *fb = state->base.fb;
13947         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13948         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13949         bool can_position = false;
13950
13951         if (INTEL_INFO(plane->dev)->gen >= 9) {
13952                 /* use scaler when colorkey is not required */
13953                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13954                         min_scale = 1;
13955                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13956                 }
13957                 can_position = true;
13958         }
13959
13960         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13961                                              &state->dst, &state->clip,
13962                                              min_scale, max_scale,
13963                                              can_position, true,
13964                                              &state->visible);
13965 }
13966
13967 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13968                                     struct drm_crtc_state *old_crtc_state)
13969 {
13970         struct drm_device *dev = crtc->dev;
13971         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13972         struct intel_crtc_state *old_intel_state =
13973                 to_intel_crtc_state(old_crtc_state);
13974         bool modeset = needs_modeset(crtc->state);
13975
13976         /* Perform vblank evasion around commit operation */
13977         intel_pipe_update_start(intel_crtc);
13978
13979         if (modeset)
13980                 return;
13981
13982         if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
13983                 intel_color_set_csc(crtc->state);
13984                 intel_color_load_luts(crtc->state);
13985         }
13986
13987         if (to_intel_crtc_state(crtc->state)->update_pipe)
13988                 intel_update_pipe_config(intel_crtc, old_intel_state);
13989         else if (INTEL_INFO(dev)->gen >= 9)
13990                 skl_detach_scalers(intel_crtc);
13991 }
13992
13993 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13994                                      struct drm_crtc_state *old_crtc_state)
13995 {
13996         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13997
13998         intel_pipe_update_end(intel_crtc);
13999 }
14000
14001 /**
14002  * intel_plane_destroy - destroy a plane
14003  * @plane: plane to destroy
14004  *
14005  * Common destruction function for all types of planes (primary, cursor,
14006  * sprite).
14007  */
14008 void intel_plane_destroy(struct drm_plane *plane)
14009 {
14010         struct intel_plane *intel_plane = to_intel_plane(plane);
14011         drm_plane_cleanup(plane);
14012         kfree(intel_plane);
14013 }
14014
14015 const struct drm_plane_funcs intel_plane_funcs = {
14016         .update_plane = drm_atomic_helper_update_plane,
14017         .disable_plane = drm_atomic_helper_disable_plane,
14018         .destroy = intel_plane_destroy,
14019         .set_property = drm_atomic_helper_plane_set_property,
14020         .atomic_get_property = intel_plane_atomic_get_property,
14021         .atomic_set_property = intel_plane_atomic_set_property,
14022         .atomic_duplicate_state = intel_plane_duplicate_state,
14023         .atomic_destroy_state = intel_plane_destroy_state,
14024
14025 };
14026
14027 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14028                                                     int pipe)
14029 {
14030         struct intel_plane *primary = NULL;
14031         struct intel_plane_state *state = NULL;
14032         const uint32_t *intel_primary_formats;
14033         unsigned int num_formats;
14034         int ret;
14035
14036         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14037         if (!primary)
14038                 goto fail;
14039
14040         state = intel_create_plane_state(&primary->base);
14041         if (!state)
14042                 goto fail;
14043         primary->base.state = &state->base;
14044
14045         primary->can_scale = false;
14046         primary->max_downscale = 1;
14047         if (INTEL_INFO(dev)->gen >= 9) {
14048                 primary->can_scale = true;
14049                 state->scaler_id = -1;
14050         }
14051         primary->pipe = pipe;
14052         primary->plane = pipe;
14053         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14054         primary->check_plane = intel_check_primary_plane;
14055         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14056                 primary->plane = !pipe;
14057
14058         if (INTEL_INFO(dev)->gen >= 9) {
14059                 intel_primary_formats = skl_primary_formats;
14060                 num_formats = ARRAY_SIZE(skl_primary_formats);
14061
14062                 primary->update_plane = skylake_update_primary_plane;
14063                 primary->disable_plane = skylake_disable_primary_plane;
14064         } else if (HAS_PCH_SPLIT(dev)) {
14065                 intel_primary_formats = i965_primary_formats;
14066                 num_formats = ARRAY_SIZE(i965_primary_formats);
14067
14068                 primary->update_plane = ironlake_update_primary_plane;
14069                 primary->disable_plane = i9xx_disable_primary_plane;
14070         } else if (INTEL_INFO(dev)->gen >= 4) {
14071                 intel_primary_formats = i965_primary_formats;
14072                 num_formats = ARRAY_SIZE(i965_primary_formats);
14073
14074                 primary->update_plane = i9xx_update_primary_plane;
14075                 primary->disable_plane = i9xx_disable_primary_plane;
14076         } else {
14077                 intel_primary_formats = i8xx_primary_formats;
14078                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14079
14080                 primary->update_plane = i9xx_update_primary_plane;
14081                 primary->disable_plane = i9xx_disable_primary_plane;
14082         }
14083
14084         ret = drm_universal_plane_init(dev, &primary->base, 0,
14085                                        &intel_plane_funcs,
14086                                        intel_primary_formats, num_formats,
14087                                        DRM_PLANE_TYPE_PRIMARY, NULL);
14088         if (ret)
14089                 goto fail;
14090
14091         if (INTEL_INFO(dev)->gen >= 4)
14092                 intel_create_rotation_property(dev, primary);
14093
14094         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14095
14096         return &primary->base;
14097
14098 fail:
14099         kfree(state);
14100         kfree(primary);
14101
14102         return NULL;
14103 }
14104
14105 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14106 {
14107         if (!dev->mode_config.rotation_property) {
14108                 unsigned long flags = BIT(DRM_ROTATE_0) |
14109                         BIT(DRM_ROTATE_180);
14110
14111                 if (INTEL_INFO(dev)->gen >= 9)
14112                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14113
14114                 dev->mode_config.rotation_property =
14115                         drm_mode_create_rotation_property(dev, flags);
14116         }
14117         if (dev->mode_config.rotation_property)
14118                 drm_object_attach_property(&plane->base.base,
14119                                 dev->mode_config.rotation_property,
14120                                 plane->base.state->rotation);
14121 }
14122
14123 static int
14124 intel_check_cursor_plane(struct drm_plane *plane,
14125                          struct intel_crtc_state *crtc_state,
14126                          struct intel_plane_state *state)
14127 {
14128         struct drm_crtc *crtc = crtc_state->base.crtc;
14129         struct drm_framebuffer *fb = state->base.fb;
14130         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14131         enum pipe pipe = to_intel_plane(plane)->pipe;
14132         unsigned stride;
14133         int ret;
14134
14135         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14136                                             &state->dst, &state->clip,
14137                                             DRM_PLANE_HELPER_NO_SCALING,
14138                                             DRM_PLANE_HELPER_NO_SCALING,
14139                                             true, true, &state->visible);
14140         if (ret)
14141                 return ret;
14142
14143         /* if we want to turn off the cursor ignore width and height */
14144         if (!obj)
14145                 return 0;
14146
14147         /* Check for which cursor types we support */
14148         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14149                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14150                           state->base.crtc_w, state->base.crtc_h);
14151                 return -EINVAL;
14152         }
14153
14154         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14155         if (obj->base.size < stride * state->base.crtc_h) {
14156                 DRM_DEBUG_KMS("buffer is too small\n");
14157                 return -ENOMEM;
14158         }
14159
14160         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14161                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14162                 return -EINVAL;
14163         }
14164
14165         /*
14166          * There's something wrong with the cursor on CHV pipe C.
14167          * If it straddles the left edge of the screen then
14168          * moving it away from the edge or disabling it often
14169          * results in a pipe underrun, and often that can lead to
14170          * dead pipe (constant underrun reported, and it scans
14171          * out just a solid color). To recover from that, the
14172          * display power well must be turned off and on again.
14173          * Refuse the put the cursor into that compromised position.
14174          */
14175         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14176             state->visible && state->base.crtc_x < 0) {
14177                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14178                 return -EINVAL;
14179         }
14180
14181         return 0;
14182 }
14183
14184 static void
14185 intel_disable_cursor_plane(struct drm_plane *plane,
14186                            struct drm_crtc *crtc)
14187 {
14188         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14189
14190         intel_crtc->cursor_addr = 0;
14191         intel_crtc_update_cursor(crtc, NULL);
14192 }
14193
14194 static void
14195 intel_update_cursor_plane(struct drm_plane *plane,
14196                           const struct intel_crtc_state *crtc_state,
14197                           const struct intel_plane_state *state)
14198 {
14199         struct drm_crtc *crtc = crtc_state->base.crtc;
14200         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14201         struct drm_device *dev = plane->dev;
14202         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14203         uint32_t addr;
14204
14205         if (!obj)
14206                 addr = 0;
14207         else if (!INTEL_INFO(dev)->cursor_needs_physical)
14208                 addr = i915_gem_obj_ggtt_offset(obj);
14209         else
14210                 addr = obj->phys_handle->busaddr;
14211
14212         intel_crtc->cursor_addr = addr;
14213         intel_crtc_update_cursor(crtc, state);
14214 }
14215
14216 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14217                                                    int pipe)
14218 {
14219         struct intel_plane *cursor = NULL;
14220         struct intel_plane_state *state = NULL;
14221         int ret;
14222
14223         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14224         if (!cursor)
14225                 goto fail;
14226
14227         state = intel_create_plane_state(&cursor->base);
14228         if (!state)
14229                 goto fail;
14230         cursor->base.state = &state->base;
14231
14232         cursor->can_scale = false;
14233         cursor->max_downscale = 1;
14234         cursor->pipe = pipe;
14235         cursor->plane = pipe;
14236         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14237         cursor->check_plane = intel_check_cursor_plane;
14238         cursor->update_plane = intel_update_cursor_plane;
14239         cursor->disable_plane = intel_disable_cursor_plane;
14240
14241         ret = drm_universal_plane_init(dev, &cursor->base, 0,
14242                                        &intel_plane_funcs,
14243                                        intel_cursor_formats,
14244                                        ARRAY_SIZE(intel_cursor_formats),
14245                                        DRM_PLANE_TYPE_CURSOR, NULL);
14246         if (ret)
14247                 goto fail;
14248
14249         if (INTEL_INFO(dev)->gen >= 4) {
14250                 if (!dev->mode_config.rotation_property)
14251                         dev->mode_config.rotation_property =
14252                                 drm_mode_create_rotation_property(dev,
14253                                                         BIT(DRM_ROTATE_0) |
14254                                                         BIT(DRM_ROTATE_180));
14255                 if (dev->mode_config.rotation_property)
14256                         drm_object_attach_property(&cursor->base.base,
14257                                 dev->mode_config.rotation_property,
14258                                 state->base.rotation);
14259         }
14260
14261         if (INTEL_INFO(dev)->gen >=9)
14262                 state->scaler_id = -1;
14263
14264         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14265
14266         return &cursor->base;
14267
14268 fail:
14269         kfree(state);
14270         kfree(cursor);
14271
14272         return NULL;
14273 }
14274
14275 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14276         struct intel_crtc_state *crtc_state)
14277 {
14278         int i;
14279         struct intel_scaler *intel_scaler;
14280         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14281
14282         for (i = 0; i < intel_crtc->num_scalers; i++) {
14283                 intel_scaler = &scaler_state->scalers[i];
14284                 intel_scaler->in_use = 0;
14285                 intel_scaler->mode = PS_SCALER_MODE_DYN;
14286         }
14287
14288         scaler_state->scaler_id = -1;
14289 }
14290
14291 static void intel_crtc_init(struct drm_device *dev, int pipe)
14292 {
14293         struct drm_i915_private *dev_priv = dev->dev_private;
14294         struct intel_crtc *intel_crtc;
14295         struct intel_crtc_state *crtc_state = NULL;
14296         struct drm_plane *primary = NULL;
14297         struct drm_plane *cursor = NULL;
14298         int ret;
14299
14300         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14301         if (intel_crtc == NULL)
14302                 return;
14303
14304         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14305         if (!crtc_state)
14306                 goto fail;
14307         intel_crtc->config = crtc_state;
14308         intel_crtc->base.state = &crtc_state->base;
14309         crtc_state->base.crtc = &intel_crtc->base;
14310
14311         /* initialize shared scalers */
14312         if (INTEL_INFO(dev)->gen >= 9) {
14313                 if (pipe == PIPE_C)
14314                         intel_crtc->num_scalers = 1;
14315                 else
14316                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
14317
14318                 skl_init_scalers(dev, intel_crtc, crtc_state);
14319         }
14320
14321         primary = intel_primary_plane_create(dev, pipe);
14322         if (!primary)
14323                 goto fail;
14324
14325         cursor = intel_cursor_plane_create(dev, pipe);
14326         if (!cursor)
14327                 goto fail;
14328
14329         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14330                                         cursor, &intel_crtc_funcs, NULL);
14331         if (ret)
14332                 goto fail;
14333
14334         /*
14335          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14336          * is hooked to pipe B. Hence we want plane A feeding pipe B.
14337          */
14338         intel_crtc->pipe = pipe;
14339         intel_crtc->plane = pipe;
14340         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14341                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14342                 intel_crtc->plane = !pipe;
14343         }
14344
14345         intel_crtc->cursor_base = ~0;
14346         intel_crtc->cursor_cntl = ~0;
14347         intel_crtc->cursor_size = ~0;
14348
14349         intel_crtc->wm.cxsr_allowed = true;
14350
14351         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14352                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14353         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14354         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14355
14356         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14357
14358         intel_color_init(&intel_crtc->base);
14359
14360         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14361         return;
14362
14363 fail:
14364         if (primary)
14365                 drm_plane_cleanup(primary);
14366         if (cursor)
14367                 drm_plane_cleanup(cursor);
14368         kfree(crtc_state);
14369         kfree(intel_crtc);
14370 }
14371
14372 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14373 {
14374         struct drm_encoder *encoder = connector->base.encoder;
14375         struct drm_device *dev = connector->base.dev;
14376
14377         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14378
14379         if (!encoder || WARN_ON(!encoder->crtc))
14380                 return INVALID_PIPE;
14381
14382         return to_intel_crtc(encoder->crtc)->pipe;
14383 }
14384
14385 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14386                                 struct drm_file *file)
14387 {
14388         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14389         struct drm_crtc *drmmode_crtc;
14390         struct intel_crtc *crtc;
14391
14392         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14393
14394         if (!drmmode_crtc) {
14395                 DRM_ERROR("no such CRTC id\n");
14396                 return -ENOENT;
14397         }
14398
14399         crtc = to_intel_crtc(drmmode_crtc);
14400         pipe_from_crtc_id->pipe = crtc->pipe;
14401
14402         return 0;
14403 }
14404
14405 static int intel_encoder_clones(struct intel_encoder *encoder)
14406 {
14407         struct drm_device *dev = encoder->base.dev;
14408         struct intel_encoder *source_encoder;
14409         int index_mask = 0;
14410         int entry = 0;
14411
14412         for_each_intel_encoder(dev, source_encoder) {
14413                 if (encoders_cloneable(encoder, source_encoder))
14414                         index_mask |= (1 << entry);
14415
14416                 entry++;
14417         }
14418
14419         return index_mask;
14420 }
14421
14422 static bool has_edp_a(struct drm_device *dev)
14423 {
14424         struct drm_i915_private *dev_priv = dev->dev_private;
14425
14426         if (!IS_MOBILE(dev))
14427                 return false;
14428
14429         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14430                 return false;
14431
14432         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14433                 return false;
14434
14435         return true;
14436 }
14437
14438 static bool intel_crt_present(struct drm_device *dev)
14439 {
14440         struct drm_i915_private *dev_priv = dev->dev_private;
14441
14442         if (INTEL_INFO(dev)->gen >= 9)
14443                 return false;
14444
14445         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14446                 return false;
14447
14448         if (IS_CHERRYVIEW(dev))
14449                 return false;
14450
14451         if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14452                 return false;
14453
14454         /* DDI E can't be used if DDI A requires 4 lanes */
14455         if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14456                 return false;
14457
14458         if (!dev_priv->vbt.int_crt_support)
14459                 return false;
14460
14461         return true;
14462 }
14463
14464 static void intel_setup_outputs(struct drm_device *dev)
14465 {
14466         struct drm_i915_private *dev_priv = dev->dev_private;
14467         struct intel_encoder *encoder;
14468         bool dpd_is_edp = false;
14469
14470         intel_lvds_init(dev);
14471
14472         if (intel_crt_present(dev))
14473                 intel_crt_init(dev);
14474
14475         if (IS_BROXTON(dev)) {
14476                 /*
14477                  * FIXME: Broxton doesn't support port detection via the
14478                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14479                  * detect the ports.
14480                  */
14481                 intel_ddi_init(dev, PORT_A);
14482                 intel_ddi_init(dev, PORT_B);
14483                 intel_ddi_init(dev, PORT_C);
14484
14485                 intel_dsi_init(dev);
14486         } else if (HAS_DDI(dev)) {
14487                 int found;
14488
14489                 /*
14490                  * Haswell uses DDI functions to detect digital outputs.
14491                  * On SKL pre-D0 the strap isn't connected, so we assume
14492                  * it's there.
14493                  */
14494                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14495                 /* WaIgnoreDDIAStrap: skl */
14496                 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14497                         intel_ddi_init(dev, PORT_A);
14498
14499                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14500                  * register */
14501                 found = I915_READ(SFUSE_STRAP);
14502
14503                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14504                         intel_ddi_init(dev, PORT_B);
14505                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14506                         intel_ddi_init(dev, PORT_C);
14507                 if (found & SFUSE_STRAP_DDID_DETECTED)
14508                         intel_ddi_init(dev, PORT_D);
14509                 /*
14510                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14511                  */
14512                 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14513                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14514                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14515                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14516                         intel_ddi_init(dev, PORT_E);
14517
14518         } else if (HAS_PCH_SPLIT(dev)) {
14519                 int found;
14520                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14521
14522                 if (has_edp_a(dev))
14523                         intel_dp_init(dev, DP_A, PORT_A);
14524
14525                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14526                         /* PCH SDVOB multiplex with HDMIB */
14527                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14528                         if (!found)
14529                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14530                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14531                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14532                 }
14533
14534                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14535                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14536
14537                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14538                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14539
14540                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14541                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14542
14543                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14544                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14545         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14546                 /*
14547                  * The DP_DETECTED bit is the latched state of the DDC
14548                  * SDA pin at boot. However since eDP doesn't require DDC
14549                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14550                  * eDP ports may have been muxed to an alternate function.
14551                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14552                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14553                  * detect eDP ports.
14554                  */
14555                 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14556                     !intel_dp_is_edp(dev, PORT_B))
14557                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14558                 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14559                     intel_dp_is_edp(dev, PORT_B))
14560                         intel_dp_init(dev, VLV_DP_B, PORT_B);
14561
14562                 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14563                     !intel_dp_is_edp(dev, PORT_C))
14564                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14565                 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14566                     intel_dp_is_edp(dev, PORT_C))
14567                         intel_dp_init(dev, VLV_DP_C, PORT_C);
14568
14569                 if (IS_CHERRYVIEW(dev)) {
14570                         /* eDP not supported on port D, so don't check VBT */
14571                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14572                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14573                         if (I915_READ(CHV_DP_D) & DP_DETECTED)
14574                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14575                 }
14576
14577                 intel_dsi_init(dev);
14578         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14579                 bool found = false;
14580
14581                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14582                         DRM_DEBUG_KMS("probing SDVOB\n");
14583                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14584                         if (!found && IS_G4X(dev)) {
14585                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14586                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14587                         }
14588
14589                         if (!found && IS_G4X(dev))
14590                                 intel_dp_init(dev, DP_B, PORT_B);
14591                 }
14592
14593                 /* Before G4X SDVOC doesn't have its own detect register */
14594
14595                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14596                         DRM_DEBUG_KMS("probing SDVOC\n");
14597                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14598                 }
14599
14600                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14601
14602                         if (IS_G4X(dev)) {
14603                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14604                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14605                         }
14606                         if (IS_G4X(dev))
14607                                 intel_dp_init(dev, DP_C, PORT_C);
14608                 }
14609
14610                 if (IS_G4X(dev) &&
14611                     (I915_READ(DP_D) & DP_DETECTED))
14612                         intel_dp_init(dev, DP_D, PORT_D);
14613         } else if (IS_GEN2(dev))
14614                 intel_dvo_init(dev);
14615
14616         if (SUPPORTS_TV(dev))
14617                 intel_tv_init(dev);
14618
14619         intel_psr_init(dev);
14620
14621         for_each_intel_encoder(dev, encoder) {
14622                 encoder->base.possible_crtcs = encoder->crtc_mask;
14623                 encoder->base.possible_clones =
14624                         intel_encoder_clones(encoder);
14625         }
14626
14627         intel_init_pch_refclk(dev);
14628
14629         drm_helper_move_panel_connectors_to_head(dev);
14630 }
14631
14632 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14633 {
14634         struct drm_device *dev = fb->dev;
14635         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14636
14637         drm_framebuffer_cleanup(fb);
14638         mutex_lock(&dev->struct_mutex);
14639         WARN_ON(!intel_fb->obj->framebuffer_references--);
14640         drm_gem_object_unreference(&intel_fb->obj->base);
14641         mutex_unlock(&dev->struct_mutex);
14642         kfree(intel_fb);
14643 }
14644
14645 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14646                                                 struct drm_file *file,
14647                                                 unsigned int *handle)
14648 {
14649         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14650         struct drm_i915_gem_object *obj = intel_fb->obj;
14651
14652         if (obj->userptr.mm) {
14653                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14654                 return -EINVAL;
14655         }
14656
14657         return drm_gem_handle_create(file, &obj->base, handle);
14658 }
14659
14660 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14661                                         struct drm_file *file,
14662                                         unsigned flags, unsigned color,
14663                                         struct drm_clip_rect *clips,
14664                                         unsigned num_clips)
14665 {
14666         struct drm_device *dev = fb->dev;
14667         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14668         struct drm_i915_gem_object *obj = intel_fb->obj;
14669
14670         mutex_lock(&dev->struct_mutex);
14671         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14672         mutex_unlock(&dev->struct_mutex);
14673
14674         return 0;
14675 }
14676
14677 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14678         .destroy = intel_user_framebuffer_destroy,
14679         .create_handle = intel_user_framebuffer_create_handle,
14680         .dirty = intel_user_framebuffer_dirty,
14681 };
14682
14683 static
14684 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14685                          uint32_t pixel_format)
14686 {
14687         u32 gen = INTEL_INFO(dev)->gen;
14688
14689         if (gen >= 9) {
14690                 int cpp = drm_format_plane_cpp(pixel_format, 0);
14691
14692                 /* "The stride in bytes must not exceed the of the size of 8K
14693                  *  pixels and 32K bytes."
14694                  */
14695                 return min(8192 * cpp, 32768);
14696         } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14697                 return 32*1024;
14698         } else if (gen >= 4) {
14699                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14700                         return 16*1024;
14701                 else
14702                         return 32*1024;
14703         } else if (gen >= 3) {
14704                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14705                         return 8*1024;
14706                 else
14707                         return 16*1024;
14708         } else {
14709                 /* XXX DSPC is limited to 4k tiled */
14710                 return 8*1024;
14711         }
14712 }
14713
14714 static int intel_framebuffer_init(struct drm_device *dev,
14715                                   struct intel_framebuffer *intel_fb,
14716                                   struct drm_mode_fb_cmd2 *mode_cmd,
14717                                   struct drm_i915_gem_object *obj)
14718 {
14719         struct drm_i915_private *dev_priv = to_i915(dev);
14720         unsigned int aligned_height;
14721         int ret;
14722         u32 pitch_limit, stride_alignment;
14723
14724         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14725
14726         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14727                 /* Enforce that fb modifier and tiling mode match, but only for
14728                  * X-tiled. This is needed for FBC. */
14729                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14730                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14731                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14732                         return -EINVAL;
14733                 }
14734         } else {
14735                 if (obj->tiling_mode == I915_TILING_X)
14736                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14737                 else if (obj->tiling_mode == I915_TILING_Y) {
14738                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14739                         return -EINVAL;
14740                 }
14741         }
14742
14743         /* Passed in modifier sanity checking. */
14744         switch (mode_cmd->modifier[0]) {
14745         case I915_FORMAT_MOD_Y_TILED:
14746         case I915_FORMAT_MOD_Yf_TILED:
14747                 if (INTEL_INFO(dev)->gen < 9) {
14748                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14749                                   mode_cmd->modifier[0]);
14750                         return -EINVAL;
14751                 }
14752         case DRM_FORMAT_MOD_NONE:
14753         case I915_FORMAT_MOD_X_TILED:
14754                 break;
14755         default:
14756                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14757                           mode_cmd->modifier[0]);
14758                 return -EINVAL;
14759         }
14760
14761         stride_alignment = intel_fb_stride_alignment(dev_priv,
14762                                                      mode_cmd->modifier[0],
14763                                                      mode_cmd->pixel_format);
14764         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14765                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14766                           mode_cmd->pitches[0], stride_alignment);
14767                 return -EINVAL;
14768         }
14769
14770         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14771                                            mode_cmd->pixel_format);
14772         if (mode_cmd->pitches[0] > pitch_limit) {
14773                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14774                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14775                           "tiled" : "linear",
14776                           mode_cmd->pitches[0], pitch_limit);
14777                 return -EINVAL;
14778         }
14779
14780         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14781             mode_cmd->pitches[0] != obj->stride) {
14782                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14783                           mode_cmd->pitches[0], obj->stride);
14784                 return -EINVAL;
14785         }
14786
14787         /* Reject formats not supported by any plane early. */
14788         switch (mode_cmd->pixel_format) {
14789         case DRM_FORMAT_C8:
14790         case DRM_FORMAT_RGB565:
14791         case DRM_FORMAT_XRGB8888:
14792         case DRM_FORMAT_ARGB8888:
14793                 break;
14794         case DRM_FORMAT_XRGB1555:
14795                 if (INTEL_INFO(dev)->gen > 3) {
14796                         DRM_DEBUG("unsupported pixel format: %s\n",
14797                                   drm_get_format_name(mode_cmd->pixel_format));
14798                         return -EINVAL;
14799                 }
14800                 break;
14801         case DRM_FORMAT_ABGR8888:
14802                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14803                     INTEL_INFO(dev)->gen < 9) {
14804                         DRM_DEBUG("unsupported pixel format: %s\n",
14805                                   drm_get_format_name(mode_cmd->pixel_format));
14806                         return -EINVAL;
14807                 }
14808                 break;
14809         case DRM_FORMAT_XBGR8888:
14810         case DRM_FORMAT_XRGB2101010:
14811         case DRM_FORMAT_XBGR2101010:
14812                 if (INTEL_INFO(dev)->gen < 4) {
14813                         DRM_DEBUG("unsupported pixel format: %s\n",
14814                                   drm_get_format_name(mode_cmd->pixel_format));
14815                         return -EINVAL;
14816                 }
14817                 break;
14818         case DRM_FORMAT_ABGR2101010:
14819                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14820                         DRM_DEBUG("unsupported pixel format: %s\n",
14821                                   drm_get_format_name(mode_cmd->pixel_format));
14822                         return -EINVAL;
14823                 }
14824                 break;
14825         case DRM_FORMAT_YUYV:
14826         case DRM_FORMAT_UYVY:
14827         case DRM_FORMAT_YVYU:
14828         case DRM_FORMAT_VYUY:
14829                 if (INTEL_INFO(dev)->gen < 5) {
14830                         DRM_DEBUG("unsupported pixel format: %s\n",
14831                                   drm_get_format_name(mode_cmd->pixel_format));
14832                         return -EINVAL;
14833                 }
14834                 break;
14835         default:
14836                 DRM_DEBUG("unsupported pixel format: %s\n",
14837                           drm_get_format_name(mode_cmd->pixel_format));
14838                 return -EINVAL;
14839         }
14840
14841         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14842         if (mode_cmd->offsets[0] != 0)
14843                 return -EINVAL;
14844
14845         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14846                                                mode_cmd->pixel_format,
14847                                                mode_cmd->modifier[0]);
14848         /* FIXME drm helper for size checks (especially planar formats)? */
14849         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14850                 return -EINVAL;
14851
14852         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14853         intel_fb->obj = obj;
14854
14855         intel_fill_fb_info(dev_priv, &intel_fb->base);
14856
14857         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14858         if (ret) {
14859                 DRM_ERROR("framebuffer init failed %d\n", ret);
14860                 return ret;
14861         }
14862
14863         intel_fb->obj->framebuffer_references++;
14864
14865         return 0;
14866 }
14867
14868 static struct drm_framebuffer *
14869 intel_user_framebuffer_create(struct drm_device *dev,
14870                               struct drm_file *filp,
14871                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
14872 {
14873         struct drm_framebuffer *fb;
14874         struct drm_i915_gem_object *obj;
14875         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14876
14877         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14878                                                 mode_cmd.handles[0]));
14879         if (&obj->base == NULL)
14880                 return ERR_PTR(-ENOENT);
14881
14882         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
14883         if (IS_ERR(fb))
14884                 drm_gem_object_unreference_unlocked(&obj->base);
14885
14886         return fb;
14887 }
14888
14889 #ifndef CONFIG_DRM_FBDEV_EMULATION
14890 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14891 {
14892 }
14893 #endif
14894
14895 static const struct drm_mode_config_funcs intel_mode_funcs = {
14896         .fb_create = intel_user_framebuffer_create,
14897         .output_poll_changed = intel_fbdev_output_poll_changed,
14898         .atomic_check = intel_atomic_check,
14899         .atomic_commit = intel_atomic_commit,
14900         .atomic_state_alloc = intel_atomic_state_alloc,
14901         .atomic_state_clear = intel_atomic_state_clear,
14902 };
14903
14904 /**
14905  * intel_init_display_hooks - initialize the display modesetting hooks
14906  * @dev_priv: device private
14907  */
14908 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14909 {
14910         if (INTEL_INFO(dev_priv)->gen >= 9) {
14911                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14912                 dev_priv->display.get_initial_plane_config =
14913                         skylake_get_initial_plane_config;
14914                 dev_priv->display.crtc_compute_clock =
14915                         haswell_crtc_compute_clock;
14916                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14917                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14918         } else if (HAS_DDI(dev_priv)) {
14919                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14920                 dev_priv->display.get_initial_plane_config =
14921                         ironlake_get_initial_plane_config;
14922                 dev_priv->display.crtc_compute_clock =
14923                         haswell_crtc_compute_clock;
14924                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14925                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14926         } else if (HAS_PCH_SPLIT(dev_priv)) {
14927                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14928                 dev_priv->display.get_initial_plane_config =
14929                         ironlake_get_initial_plane_config;
14930                 dev_priv->display.crtc_compute_clock =
14931                         ironlake_crtc_compute_clock;
14932                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14933                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14934         } else if (IS_CHERRYVIEW(dev_priv)) {
14935                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14936                 dev_priv->display.get_initial_plane_config =
14937                         i9xx_get_initial_plane_config;
14938                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14939                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14940                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14941         } else if (IS_VALLEYVIEW(dev_priv)) {
14942                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14943                 dev_priv->display.get_initial_plane_config =
14944                         i9xx_get_initial_plane_config;
14945                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14946                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14947                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14948         } else if (IS_G4X(dev_priv)) {
14949                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14950                 dev_priv->display.get_initial_plane_config =
14951                         i9xx_get_initial_plane_config;
14952                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14953                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14954                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14955         } else if (IS_PINEVIEW(dev_priv)) {
14956                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14957                 dev_priv->display.get_initial_plane_config =
14958                         i9xx_get_initial_plane_config;
14959                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14960                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14961                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14962         } else if (!IS_GEN2(dev_priv)) {
14963                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14964                 dev_priv->display.get_initial_plane_config =
14965                         i9xx_get_initial_plane_config;
14966                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14967                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14968                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14969         } else {
14970                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14971                 dev_priv->display.get_initial_plane_config =
14972                         i9xx_get_initial_plane_config;
14973                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14974                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14975                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14976         }
14977
14978         /* Returns the core display clock speed */
14979         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
14980                 dev_priv->display.get_display_clock_speed =
14981                         skylake_get_display_clock_speed;
14982         else if (IS_BROXTON(dev_priv))
14983                 dev_priv->display.get_display_clock_speed =
14984                         broxton_get_display_clock_speed;
14985         else if (IS_BROADWELL(dev_priv))
14986                 dev_priv->display.get_display_clock_speed =
14987                         broadwell_get_display_clock_speed;
14988         else if (IS_HASWELL(dev_priv))
14989                 dev_priv->display.get_display_clock_speed =
14990                         haswell_get_display_clock_speed;
14991         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14992                 dev_priv->display.get_display_clock_speed =
14993                         valleyview_get_display_clock_speed;
14994         else if (IS_GEN5(dev_priv))
14995                 dev_priv->display.get_display_clock_speed =
14996                         ilk_get_display_clock_speed;
14997         else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
14998                  IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
14999                 dev_priv->display.get_display_clock_speed =
15000                         i945_get_display_clock_speed;
15001         else if (IS_GM45(dev_priv))
15002                 dev_priv->display.get_display_clock_speed =
15003                         gm45_get_display_clock_speed;
15004         else if (IS_CRESTLINE(dev_priv))
15005                 dev_priv->display.get_display_clock_speed =
15006                         i965gm_get_display_clock_speed;
15007         else if (IS_PINEVIEW(dev_priv))
15008                 dev_priv->display.get_display_clock_speed =
15009                         pnv_get_display_clock_speed;
15010         else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
15011                 dev_priv->display.get_display_clock_speed =
15012                         g33_get_display_clock_speed;
15013         else if (IS_I915G(dev_priv))
15014                 dev_priv->display.get_display_clock_speed =
15015                         i915_get_display_clock_speed;
15016         else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
15017                 dev_priv->display.get_display_clock_speed =
15018                         i9xx_misc_get_display_clock_speed;
15019         else if (IS_I915GM(dev_priv))
15020                 dev_priv->display.get_display_clock_speed =
15021                         i915gm_get_display_clock_speed;
15022         else if (IS_I865G(dev_priv))
15023                 dev_priv->display.get_display_clock_speed =
15024                         i865_get_display_clock_speed;
15025         else if (IS_I85X(dev_priv))
15026                 dev_priv->display.get_display_clock_speed =
15027                         i85x_get_display_clock_speed;
15028         else { /* 830 */
15029                 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
15030                 dev_priv->display.get_display_clock_speed =
15031                         i830_get_display_clock_speed;
15032         }
15033
15034         if (IS_GEN5(dev_priv)) {
15035                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15036         } else if (IS_GEN6(dev_priv)) {
15037                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15038         } else if (IS_IVYBRIDGE(dev_priv)) {
15039                 /* FIXME: detect B0+ stepping and use auto training */
15040                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15041         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
15042                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15043                 if (IS_BROADWELL(dev_priv)) {
15044                         dev_priv->display.modeset_commit_cdclk =
15045                                 broadwell_modeset_commit_cdclk;
15046                         dev_priv->display.modeset_calc_cdclk =
15047                                 broadwell_modeset_calc_cdclk;
15048                 }
15049         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15050                 dev_priv->display.modeset_commit_cdclk =
15051                         valleyview_modeset_commit_cdclk;
15052                 dev_priv->display.modeset_calc_cdclk =
15053                         valleyview_modeset_calc_cdclk;
15054         } else if (IS_BROXTON(dev_priv)) {
15055                 dev_priv->display.modeset_commit_cdclk =
15056                         broxton_modeset_commit_cdclk;
15057                 dev_priv->display.modeset_calc_cdclk =
15058                         broxton_modeset_calc_cdclk;
15059         }
15060
15061         switch (INTEL_INFO(dev_priv)->gen) {
15062         case 2:
15063                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15064                 break;
15065
15066         case 3:
15067                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15068                 break;
15069
15070         case 4:
15071         case 5:
15072                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15073                 break;
15074
15075         case 6:
15076                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15077                 break;
15078         case 7:
15079         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15080                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15081                 break;
15082         case 9:
15083                 /* Drop through - unsupported since execlist only. */
15084         default:
15085                 /* Default just returns -ENODEV to indicate unsupported */
15086                 dev_priv->display.queue_flip = intel_default_queue_flip;
15087         }
15088 }
15089
15090 /*
15091  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15092  * resume, or other times.  This quirk makes sure that's the case for
15093  * affected systems.
15094  */
15095 static void quirk_pipea_force(struct drm_device *dev)
15096 {
15097         struct drm_i915_private *dev_priv = dev->dev_private;
15098
15099         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15100         DRM_INFO("applying pipe a force quirk\n");
15101 }
15102
15103 static void quirk_pipeb_force(struct drm_device *dev)
15104 {
15105         struct drm_i915_private *dev_priv = dev->dev_private;
15106
15107         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15108         DRM_INFO("applying pipe b force quirk\n");
15109 }
15110
15111 /*
15112  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15113  */
15114 static void quirk_ssc_force_disable(struct drm_device *dev)
15115 {
15116         struct drm_i915_private *dev_priv = dev->dev_private;
15117         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15118         DRM_INFO("applying lvds SSC disable quirk\n");
15119 }
15120
15121 /*
15122  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15123  * brightness value
15124  */
15125 static void quirk_invert_brightness(struct drm_device *dev)
15126 {
15127         struct drm_i915_private *dev_priv = dev->dev_private;
15128         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15129         DRM_INFO("applying inverted panel brightness quirk\n");
15130 }
15131
15132 /* Some VBT's incorrectly indicate no backlight is present */
15133 static void quirk_backlight_present(struct drm_device *dev)
15134 {
15135         struct drm_i915_private *dev_priv = dev->dev_private;
15136         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15137         DRM_INFO("applying backlight present quirk\n");
15138 }
15139
15140 struct intel_quirk {
15141         int device;
15142         int subsystem_vendor;
15143         int subsystem_device;
15144         void (*hook)(struct drm_device *dev);
15145 };
15146
15147 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15148 struct intel_dmi_quirk {
15149         void (*hook)(struct drm_device *dev);
15150         const struct dmi_system_id (*dmi_id_list)[];
15151 };
15152
15153 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15154 {
15155         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15156         return 1;
15157 }
15158
15159 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15160         {
15161                 .dmi_id_list = &(const struct dmi_system_id[]) {
15162                         {
15163                                 .callback = intel_dmi_reverse_brightness,
15164                                 .ident = "NCR Corporation",
15165                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15166                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
15167                                 },
15168                         },
15169                         { }  /* terminating entry */
15170                 },
15171                 .hook = quirk_invert_brightness,
15172         },
15173 };
15174
15175 static struct intel_quirk intel_quirks[] = {
15176         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15177         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15178
15179         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15180         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15181
15182         /* 830 needs to leave pipe A & dpll A up */
15183         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15184
15185         /* 830 needs to leave pipe B & dpll B up */
15186         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15187
15188         /* Lenovo U160 cannot use SSC on LVDS */
15189         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15190
15191         /* Sony Vaio Y cannot use SSC on LVDS */
15192         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15193
15194         /* Acer Aspire 5734Z must invert backlight brightness */
15195         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15196
15197         /* Acer/eMachines G725 */
15198         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15199
15200         /* Acer/eMachines e725 */
15201         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15202
15203         /* Acer/Packard Bell NCL20 */
15204         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15205
15206         /* Acer Aspire 4736Z */
15207         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15208
15209         /* Acer Aspire 5336 */
15210         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15211
15212         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15213         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15214
15215         /* Acer C720 Chromebook (Core i3 4005U) */
15216         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15217
15218         /* Apple Macbook 2,1 (Core 2 T7400) */
15219         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15220
15221         /* Apple Macbook 4,1 */
15222         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15223
15224         /* Toshiba CB35 Chromebook (Celeron 2955U) */
15225         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15226
15227         /* HP Chromebook 14 (Celeron 2955U) */
15228         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15229
15230         /* Dell Chromebook 11 */
15231         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15232
15233         /* Dell Chromebook 11 (2015 version) */
15234         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15235 };
15236
15237 static void intel_init_quirks(struct drm_device *dev)
15238 {
15239         struct pci_dev *d = dev->pdev;
15240         int i;
15241
15242         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15243                 struct intel_quirk *q = &intel_quirks[i];
15244
15245                 if (d->device == q->device &&
15246                     (d->subsystem_vendor == q->subsystem_vendor ||
15247                      q->subsystem_vendor == PCI_ANY_ID) &&
15248                     (d->subsystem_device == q->subsystem_device ||
15249                      q->subsystem_device == PCI_ANY_ID))
15250                         q->hook(dev);
15251         }
15252         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15253                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15254                         intel_dmi_quirks[i].hook(dev);
15255         }
15256 }
15257
15258 /* Disable the VGA plane that we never use */
15259 static void i915_disable_vga(struct drm_device *dev)
15260 {
15261         struct drm_i915_private *dev_priv = dev->dev_private;
15262         u8 sr1;
15263         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15264
15265         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15266         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15267         outb(SR01, VGA_SR_INDEX);
15268         sr1 = inb(VGA_SR_DATA);
15269         outb(sr1 | 1<<5, VGA_SR_DATA);
15270         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15271         udelay(300);
15272
15273         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15274         POSTING_READ(vga_reg);
15275 }
15276
15277 void intel_modeset_init_hw(struct drm_device *dev)
15278 {
15279         struct drm_i915_private *dev_priv = dev->dev_private;
15280
15281         intel_update_cdclk(dev);
15282
15283         dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15284
15285         intel_init_clock_gating(dev);
15286         intel_enable_gt_powersave(dev_priv);
15287 }
15288
15289 /*
15290  * Calculate what we think the watermarks should be for the state we've read
15291  * out of the hardware and then immediately program those watermarks so that
15292  * we ensure the hardware settings match our internal state.
15293  *
15294  * We can calculate what we think WM's should be by creating a duplicate of the
15295  * current state (which was constructed during hardware readout) and running it
15296  * through the atomic check code to calculate new watermark values in the
15297  * state object.
15298  */
15299 static void sanitize_watermarks(struct drm_device *dev)
15300 {
15301         struct drm_i915_private *dev_priv = to_i915(dev);
15302         struct drm_atomic_state *state;
15303         struct drm_crtc *crtc;
15304         struct drm_crtc_state *cstate;
15305         struct drm_modeset_acquire_ctx ctx;
15306         int ret;
15307         int i;
15308
15309         /* Only supported on platforms that use atomic watermark design */
15310         if (!dev_priv->display.optimize_watermarks)
15311                 return;
15312
15313         /*
15314          * We need to hold connection_mutex before calling duplicate_state so
15315          * that the connector loop is protected.
15316          */
15317         drm_modeset_acquire_init(&ctx, 0);
15318 retry:
15319         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15320         if (ret == -EDEADLK) {
15321                 drm_modeset_backoff(&ctx);
15322                 goto retry;
15323         } else if (WARN_ON(ret)) {
15324                 goto fail;
15325         }
15326
15327         state = drm_atomic_helper_duplicate_state(dev, &ctx);
15328         if (WARN_ON(IS_ERR(state)))
15329                 goto fail;
15330
15331         /*
15332          * Hardware readout is the only time we don't want to calculate
15333          * intermediate watermarks (since we don't trust the current
15334          * watermarks).
15335          */
15336         to_intel_atomic_state(state)->skip_intermediate_wm = true;
15337
15338         ret = intel_atomic_check(dev, state);
15339         if (ret) {
15340                 /*
15341                  * If we fail here, it means that the hardware appears to be
15342                  * programmed in a way that shouldn't be possible, given our
15343                  * understanding of watermark requirements.  This might mean a
15344                  * mistake in the hardware readout code or a mistake in the
15345                  * watermark calculations for a given platform.  Raise a WARN
15346                  * so that this is noticeable.
15347                  *
15348                  * If this actually happens, we'll have to just leave the
15349                  * BIOS-programmed watermarks untouched and hope for the best.
15350                  */
15351                 WARN(true, "Could not determine valid watermarks for inherited state\n");
15352                 goto fail;
15353         }
15354
15355         /* Write calculated watermark values back */
15356         to_i915(dev)->wm.config = to_intel_atomic_state(state)->wm_config;
15357         for_each_crtc_in_state(state, crtc, cstate, i) {
15358                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15359
15360                 cs->wm.need_postvbl_update = true;
15361                 dev_priv->display.optimize_watermarks(cs);
15362         }
15363
15364         drm_atomic_state_free(state);
15365 fail:
15366         drm_modeset_drop_locks(&ctx);
15367         drm_modeset_acquire_fini(&ctx);
15368 }
15369
15370 void intel_modeset_init(struct drm_device *dev)
15371 {
15372         struct drm_i915_private *dev_priv = to_i915(dev);
15373         struct i915_ggtt *ggtt = &dev_priv->ggtt;
15374         int sprite, ret;
15375         enum pipe pipe;
15376         struct intel_crtc *crtc;
15377
15378         drm_mode_config_init(dev);
15379
15380         dev->mode_config.min_width = 0;
15381         dev->mode_config.min_height = 0;
15382
15383         dev->mode_config.preferred_depth = 24;
15384         dev->mode_config.prefer_shadow = 1;
15385
15386         dev->mode_config.allow_fb_modifiers = true;
15387
15388         dev->mode_config.funcs = &intel_mode_funcs;
15389
15390         intel_init_quirks(dev);
15391
15392         intel_init_pm(dev);
15393
15394         if (INTEL_INFO(dev)->num_pipes == 0)
15395                 return;
15396
15397         /*
15398          * There may be no VBT; and if the BIOS enabled SSC we can
15399          * just keep using it to avoid unnecessary flicker.  Whereas if the
15400          * BIOS isn't using it, don't assume it will work even if the VBT
15401          * indicates as much.
15402          */
15403         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15404                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15405                                             DREF_SSC1_ENABLE);
15406
15407                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15408                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15409                                      bios_lvds_use_ssc ? "en" : "dis",
15410                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15411                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15412                 }
15413         }
15414
15415         if (IS_GEN2(dev)) {
15416                 dev->mode_config.max_width = 2048;
15417                 dev->mode_config.max_height = 2048;
15418         } else if (IS_GEN3(dev)) {
15419                 dev->mode_config.max_width = 4096;
15420                 dev->mode_config.max_height = 4096;
15421         } else {
15422                 dev->mode_config.max_width = 8192;
15423                 dev->mode_config.max_height = 8192;
15424         }
15425
15426         if (IS_845G(dev) || IS_I865G(dev)) {
15427                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15428                 dev->mode_config.cursor_height = 1023;
15429         } else if (IS_GEN2(dev)) {
15430                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15431                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15432         } else {
15433                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15434                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15435         }
15436
15437         dev->mode_config.fb_base = ggtt->mappable_base;
15438
15439         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15440                       INTEL_INFO(dev)->num_pipes,
15441                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15442
15443         for_each_pipe(dev_priv, pipe) {
15444                 intel_crtc_init(dev, pipe);
15445                 for_each_sprite(dev_priv, pipe, sprite) {
15446                         ret = intel_plane_init(dev, pipe, sprite);
15447                         if (ret)
15448                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15449                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
15450                 }
15451         }
15452
15453         intel_update_czclk(dev_priv);
15454         intel_update_cdclk(dev);
15455
15456         intel_shared_dpll_init(dev);
15457
15458         /* Just disable it once at startup */
15459         i915_disable_vga(dev);
15460         intel_setup_outputs(dev);
15461
15462         drm_modeset_lock_all(dev);
15463         intel_modeset_setup_hw_state(dev);
15464         drm_modeset_unlock_all(dev);
15465
15466         for_each_intel_crtc(dev, crtc) {
15467                 struct intel_initial_plane_config plane_config = {};
15468
15469                 if (!crtc->active)
15470                         continue;
15471
15472                 /*
15473                  * Note that reserving the BIOS fb up front prevents us
15474                  * from stuffing other stolen allocations like the ring
15475                  * on top.  This prevents some ugliness at boot time, and
15476                  * can even allow for smooth boot transitions if the BIOS
15477                  * fb is large enough for the active pipe configuration.
15478                  */
15479                 dev_priv->display.get_initial_plane_config(crtc,
15480                                                            &plane_config);
15481
15482                 /*
15483                  * If the fb is shared between multiple heads, we'll
15484                  * just get the first one.
15485                  */
15486                 intel_find_initial_plane_obj(crtc, &plane_config);
15487         }
15488
15489         /*
15490          * Make sure hardware watermarks really match the state we read out.
15491          * Note that we need to do this after reconstructing the BIOS fb's
15492          * since the watermark calculation done here will use pstate->fb.
15493          */
15494         sanitize_watermarks(dev);
15495 }
15496
15497 static void intel_enable_pipe_a(struct drm_device *dev)
15498 {
15499         struct intel_connector *connector;
15500         struct drm_connector *crt = NULL;
15501         struct intel_load_detect_pipe load_detect_temp;
15502         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15503
15504         /* We can't just switch on the pipe A, we need to set things up with a
15505          * proper mode and output configuration. As a gross hack, enable pipe A
15506          * by enabling the load detect pipe once. */
15507         for_each_intel_connector(dev, connector) {
15508                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15509                         crt = &connector->base;
15510                         break;
15511                 }
15512         }
15513
15514         if (!crt)
15515                 return;
15516
15517         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15518                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15519 }
15520
15521 static bool
15522 intel_check_plane_mapping(struct intel_crtc *crtc)
15523 {
15524         struct drm_device *dev = crtc->base.dev;
15525         struct drm_i915_private *dev_priv = dev->dev_private;
15526         u32 val;
15527
15528         if (INTEL_INFO(dev)->num_pipes == 1)
15529                 return true;
15530
15531         val = I915_READ(DSPCNTR(!crtc->plane));
15532
15533         if ((val & DISPLAY_PLANE_ENABLE) &&
15534             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15535                 return false;
15536
15537         return true;
15538 }
15539
15540 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15541 {
15542         struct drm_device *dev = crtc->base.dev;
15543         struct intel_encoder *encoder;
15544
15545         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15546                 return true;
15547
15548         return false;
15549 }
15550
15551 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15552 {
15553         struct drm_device *dev = encoder->base.dev;
15554         struct intel_connector *connector;
15555
15556         for_each_connector_on_encoder(dev, &encoder->base, connector)
15557                 return true;
15558
15559         return false;
15560 }
15561
15562 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15563 {
15564         struct drm_device *dev = crtc->base.dev;
15565         struct drm_i915_private *dev_priv = dev->dev_private;
15566         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15567
15568         /* Clear any frame start delays used for debugging left by the BIOS */
15569         if (!transcoder_is_dsi(cpu_transcoder)) {
15570                 i915_reg_t reg = PIPECONF(cpu_transcoder);
15571
15572                 I915_WRITE(reg,
15573                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15574         }
15575
15576         /* restore vblank interrupts to correct state */
15577         drm_crtc_vblank_reset(&crtc->base);
15578         if (crtc->active) {
15579                 struct intel_plane *plane;
15580
15581                 drm_crtc_vblank_on(&crtc->base);
15582
15583                 /* Disable everything but the primary plane */
15584                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15585                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15586                                 continue;
15587
15588                         plane->disable_plane(&plane->base, &crtc->base);
15589                 }
15590         }
15591
15592         /* We need to sanitize the plane -> pipe mapping first because this will
15593          * disable the crtc (and hence change the state) if it is wrong. Note
15594          * that gen4+ has a fixed plane -> pipe mapping.  */
15595         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15596                 bool plane;
15597
15598                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15599                               crtc->base.base.id);
15600
15601                 /* Pipe has the wrong plane attached and the plane is active.
15602                  * Temporarily change the plane mapping and disable everything
15603                  * ...  */
15604                 plane = crtc->plane;
15605                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15606                 crtc->plane = !plane;
15607                 intel_crtc_disable_noatomic(&crtc->base);
15608                 crtc->plane = plane;
15609         }
15610
15611         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15612             crtc->pipe == PIPE_A && !crtc->active) {
15613                 /* BIOS forgot to enable pipe A, this mostly happens after
15614                  * resume. Force-enable the pipe to fix this, the update_dpms
15615                  * call below we restore the pipe to the right state, but leave
15616                  * the required bits on. */
15617                 intel_enable_pipe_a(dev);
15618         }
15619
15620         /* Adjust the state of the output pipe according to whether we
15621          * have active connectors/encoders. */
15622         if (crtc->active && !intel_crtc_has_encoders(crtc))
15623                 intel_crtc_disable_noatomic(&crtc->base);
15624
15625         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15626                 /*
15627                  * We start out with underrun reporting disabled to avoid races.
15628                  * For correct bookkeeping mark this on active crtcs.
15629                  *
15630                  * Also on gmch platforms we dont have any hardware bits to
15631                  * disable the underrun reporting. Which means we need to start
15632                  * out with underrun reporting disabled also on inactive pipes,
15633                  * since otherwise we'll complain about the garbage we read when
15634                  * e.g. coming up after runtime pm.
15635                  *
15636                  * No protection against concurrent access is required - at
15637                  * worst a fifo underrun happens which also sets this to false.
15638                  */
15639                 crtc->cpu_fifo_underrun_disabled = true;
15640                 crtc->pch_fifo_underrun_disabled = true;
15641         }
15642 }
15643
15644 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15645 {
15646         struct intel_connector *connector;
15647         struct drm_device *dev = encoder->base.dev;
15648
15649         /* We need to check both for a crtc link (meaning that the
15650          * encoder is active and trying to read from a pipe) and the
15651          * pipe itself being active. */
15652         bool has_active_crtc = encoder->base.crtc &&
15653                 to_intel_crtc(encoder->base.crtc)->active;
15654
15655         if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15656                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15657                               encoder->base.base.id,
15658                               encoder->base.name);
15659
15660                 /* Connector is active, but has no active pipe. This is
15661                  * fallout from our resume register restoring. Disable
15662                  * the encoder manually again. */
15663                 if (encoder->base.crtc) {
15664                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15665                                       encoder->base.base.id,
15666                                       encoder->base.name);
15667                         encoder->disable(encoder);
15668                         if (encoder->post_disable)
15669                                 encoder->post_disable(encoder);
15670                 }
15671                 encoder->base.crtc = NULL;
15672
15673                 /* Inconsistent output/port/pipe state happens presumably due to
15674                  * a bug in one of the get_hw_state functions. Or someplace else
15675                  * in our code, like the register restore mess on resume. Clamp
15676                  * things to off as a safer default. */
15677                 for_each_intel_connector(dev, connector) {
15678                         if (connector->encoder != encoder)
15679                                 continue;
15680                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15681                         connector->base.encoder = NULL;
15682                 }
15683         }
15684         /* Enabled encoders without active connectors will be fixed in
15685          * the crtc fixup. */
15686 }
15687
15688 void i915_redisable_vga_power_on(struct drm_device *dev)
15689 {
15690         struct drm_i915_private *dev_priv = dev->dev_private;
15691         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15692
15693         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15694                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15695                 i915_disable_vga(dev);
15696         }
15697 }
15698
15699 void i915_redisable_vga(struct drm_device *dev)
15700 {
15701         struct drm_i915_private *dev_priv = dev->dev_private;
15702
15703         /* This function can be called both from intel_modeset_setup_hw_state or
15704          * at a very early point in our resume sequence, where the power well
15705          * structures are not yet restored. Since this function is at a very
15706          * paranoid "someone might have enabled VGA while we were not looking"
15707          * level, just check if the power well is enabled instead of trying to
15708          * follow the "don't touch the power well if we don't need it" policy
15709          * the rest of the driver uses. */
15710         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15711                 return;
15712
15713         i915_redisable_vga_power_on(dev);
15714
15715         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15716 }
15717
15718 static bool primary_get_hw_state(struct intel_plane *plane)
15719 {
15720         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15721
15722         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15723 }
15724
15725 /* FIXME read out full plane state for all planes */
15726 static void readout_plane_state(struct intel_crtc *crtc)
15727 {
15728         struct drm_plane *primary = crtc->base.primary;
15729         struct intel_plane_state *plane_state =
15730                 to_intel_plane_state(primary->state);
15731
15732         plane_state->visible = crtc->active &&
15733                 primary_get_hw_state(to_intel_plane(primary));
15734
15735         if (plane_state->visible)
15736                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15737 }
15738
15739 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15740 {
15741         struct drm_i915_private *dev_priv = dev->dev_private;
15742         enum pipe pipe;
15743         struct intel_crtc *crtc;
15744         struct intel_encoder *encoder;
15745         struct intel_connector *connector;
15746         int i;
15747
15748         dev_priv->active_crtcs = 0;
15749
15750         for_each_intel_crtc(dev, crtc) {
15751                 struct intel_crtc_state *crtc_state = crtc->config;
15752                 int pixclk = 0;
15753
15754                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, &crtc_state->base);
15755                 memset(crtc_state, 0, sizeof(*crtc_state));
15756                 crtc_state->base.crtc = &crtc->base;
15757
15758                 crtc_state->base.active = crtc_state->base.enable =
15759                         dev_priv->display.get_pipe_config(crtc, crtc_state);
15760
15761                 crtc->base.enabled = crtc_state->base.enable;
15762                 crtc->active = crtc_state->base.active;
15763
15764                 if (crtc_state->base.active) {
15765                         dev_priv->active_crtcs |= 1 << crtc->pipe;
15766
15767                         if (IS_BROADWELL(dev_priv)) {
15768                                 pixclk = ilk_pipe_pixel_rate(crtc_state);
15769
15770                                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15771                                 if (crtc_state->ips_enabled)
15772                                         pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15773                         } else if (IS_VALLEYVIEW(dev_priv) ||
15774                                    IS_CHERRYVIEW(dev_priv) ||
15775                                    IS_BROXTON(dev_priv))
15776                                 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15777                         else
15778                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15779                 }
15780
15781                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15782
15783                 readout_plane_state(crtc);
15784
15785                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15786                               crtc->base.base.id,
15787                               crtc->active ? "enabled" : "disabled");
15788         }
15789
15790         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15791                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15792
15793                 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15794                                                   &pll->config.hw_state);
15795                 pll->config.crtc_mask = 0;
15796                 for_each_intel_crtc(dev, crtc) {
15797                         if (crtc->active && crtc->config->shared_dpll == pll)
15798                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15799                 }
15800                 pll->active_mask = pll->config.crtc_mask;
15801
15802                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15803                               pll->name, pll->config.crtc_mask, pll->on);
15804         }
15805
15806         for_each_intel_encoder(dev, encoder) {
15807                 pipe = 0;
15808
15809                 if (encoder->get_hw_state(encoder, &pipe)) {
15810                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15811                         encoder->base.crtc = &crtc->base;
15812                         encoder->get_config(encoder, crtc->config);
15813                 } else {
15814                         encoder->base.crtc = NULL;
15815                 }
15816
15817                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15818                               encoder->base.base.id,
15819                               encoder->base.name,
15820                               encoder->base.crtc ? "enabled" : "disabled",
15821                               pipe_name(pipe));
15822         }
15823
15824         for_each_intel_connector(dev, connector) {
15825                 if (connector->get_hw_state(connector)) {
15826                         connector->base.dpms = DRM_MODE_DPMS_ON;
15827
15828                         encoder = connector->encoder;
15829                         connector->base.encoder = &encoder->base;
15830
15831                         if (encoder->base.crtc &&
15832                             encoder->base.crtc->state->active) {
15833                                 /*
15834                                  * This has to be done during hardware readout
15835                                  * because anything calling .crtc_disable may
15836                                  * rely on the connector_mask being accurate.
15837                                  */
15838                                 encoder->base.crtc->state->connector_mask |=
15839                                         1 << drm_connector_index(&connector->base);
15840                                 encoder->base.crtc->state->encoder_mask |=
15841                                         1 << drm_encoder_index(&encoder->base);
15842                         }
15843
15844                 } else {
15845                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15846                         connector->base.encoder = NULL;
15847                 }
15848                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15849                               connector->base.base.id,
15850                               connector->base.name,
15851                               connector->base.encoder ? "enabled" : "disabled");
15852         }
15853
15854         for_each_intel_crtc(dev, crtc) {
15855                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15856
15857                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15858                 if (crtc->base.state->active) {
15859                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15860                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15861                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15862
15863                         /*
15864                          * The initial mode needs to be set in order to keep
15865                          * the atomic core happy. It wants a valid mode if the
15866                          * crtc's enabled, so we do the above call.
15867                          *
15868                          * At this point some state updated by the connectors
15869                          * in their ->detect() callback has not run yet, so
15870                          * no recalculation can be done yet.
15871                          *
15872                          * Even if we could do a recalculation and modeset
15873                          * right now it would cause a double modeset if
15874                          * fbdev or userspace chooses a different initial mode.
15875                          *
15876                          * If that happens, someone indicated they wanted a
15877                          * mode change, which means it's safe to do a full
15878                          * recalculation.
15879                          */
15880                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15881
15882                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15883                         update_scanline_offset(crtc);
15884                 }
15885
15886                 intel_pipe_config_sanity_check(dev_priv, crtc->config);
15887         }
15888 }
15889
15890 /* Scan out the current hw modeset state,
15891  * and sanitizes it to the current state
15892  */
15893 static void
15894 intel_modeset_setup_hw_state(struct drm_device *dev)
15895 {
15896         struct drm_i915_private *dev_priv = dev->dev_private;
15897         enum pipe pipe;
15898         struct intel_crtc *crtc;
15899         struct intel_encoder *encoder;
15900         int i;
15901
15902         intel_modeset_readout_hw_state(dev);
15903
15904         /* HW state is read out, now we need to sanitize this mess. */
15905         for_each_intel_encoder(dev, encoder) {
15906                 intel_sanitize_encoder(encoder);
15907         }
15908
15909         for_each_pipe(dev_priv, pipe) {
15910                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15911                 intel_sanitize_crtc(crtc);
15912                 intel_dump_pipe_config(crtc, crtc->config,
15913                                        "[setup_hw_state]");
15914         }
15915
15916         intel_modeset_update_connector_atomic_state(dev);
15917
15918         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15919                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15920
15921                 if (!pll->on || pll->active_mask)
15922                         continue;
15923
15924                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15925
15926                 pll->funcs.disable(dev_priv, pll);
15927                 pll->on = false;
15928         }
15929
15930         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
15931                 vlv_wm_get_hw_state(dev);
15932         else if (IS_GEN9(dev))
15933                 skl_wm_get_hw_state(dev);
15934         else if (HAS_PCH_SPLIT(dev))
15935                 ilk_wm_get_hw_state(dev);
15936
15937         for_each_intel_crtc(dev, crtc) {
15938                 unsigned long put_domains;
15939
15940                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15941                 if (WARN_ON(put_domains))
15942                         modeset_put_power_domains(dev_priv, put_domains);
15943         }
15944         intel_display_set_init_power(dev_priv, false);
15945
15946         intel_fbc_init_pipe_state(dev_priv);
15947 }
15948
15949 void intel_display_resume(struct drm_device *dev)
15950 {
15951         struct drm_i915_private *dev_priv = to_i915(dev);
15952         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15953         struct drm_modeset_acquire_ctx ctx;
15954         int ret;
15955         bool setup = false;
15956
15957         dev_priv->modeset_restore_state = NULL;
15958
15959         /*
15960          * This is a cludge because with real atomic modeset mode_config.mutex
15961          * won't be taken. Unfortunately some probed state like
15962          * audio_codec_enable is still protected by mode_config.mutex, so lock
15963          * it here for now.
15964          */
15965         mutex_lock(&dev->mode_config.mutex);
15966         drm_modeset_acquire_init(&ctx, 0);
15967
15968 retry:
15969         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15970
15971         if (ret == 0 && !setup) {
15972                 setup = true;
15973
15974                 intel_modeset_setup_hw_state(dev);
15975                 i915_redisable_vga(dev);
15976         }
15977
15978         if (ret == 0 && state) {
15979                 struct drm_crtc_state *crtc_state;
15980                 struct drm_crtc *crtc;
15981                 int i;
15982
15983                 state->acquire_ctx = &ctx;
15984
15985                 for_each_crtc_in_state(state, crtc, crtc_state, i) {
15986                         /*
15987                          * Force recalculation even if we restore
15988                          * current state. With fast modeset this may not result
15989                          * in a modeset when the state is compatible.
15990                          */
15991                         crtc_state->mode_changed = true;
15992                 }
15993
15994                 ret = drm_atomic_commit(state);
15995         }
15996
15997         if (ret == -EDEADLK) {
15998                 drm_modeset_backoff(&ctx);
15999                 goto retry;
16000         }
16001
16002         drm_modeset_drop_locks(&ctx);
16003         drm_modeset_acquire_fini(&ctx);
16004         mutex_unlock(&dev->mode_config.mutex);
16005
16006         if (ret) {
16007                 DRM_ERROR("Restoring old state failed with %i\n", ret);
16008                 drm_atomic_state_free(state);
16009         }
16010 }
16011
16012 void intel_modeset_gem_init(struct drm_device *dev)
16013 {
16014         struct drm_i915_private *dev_priv = to_i915(dev);
16015         struct drm_crtc *c;
16016         struct drm_i915_gem_object *obj;
16017         int ret;
16018
16019         intel_init_gt_powersave(dev_priv);
16020
16021         intel_modeset_init_hw(dev);
16022
16023         intel_setup_overlay(dev);
16024
16025         /*
16026          * Make sure any fbs we allocated at startup are properly
16027          * pinned & fenced.  When we do the allocation it's too early
16028          * for this.
16029          */
16030         for_each_crtc(dev, c) {
16031                 obj = intel_fb_obj(c->primary->fb);
16032                 if (obj == NULL)
16033                         continue;
16034
16035                 mutex_lock(&dev->struct_mutex);
16036                 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
16037                                                  c->primary->state->rotation);
16038                 mutex_unlock(&dev->struct_mutex);
16039                 if (ret) {
16040                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
16041                                   to_intel_crtc(c)->pipe);
16042                         drm_framebuffer_unreference(c->primary->fb);
16043                         c->primary->fb = NULL;
16044                         c->primary->crtc = c->primary->state->crtc = NULL;
16045                         update_state_fb(c->primary);
16046                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16047                 }
16048         }
16049
16050         intel_backlight_register(dev);
16051 }
16052
16053 void intel_connector_unregister(struct intel_connector *intel_connector)
16054 {
16055         struct drm_connector *connector = &intel_connector->base;
16056
16057         intel_panel_destroy_backlight(connector);
16058         drm_connector_unregister(connector);
16059 }
16060
16061 void intel_modeset_cleanup(struct drm_device *dev)
16062 {
16063         struct drm_i915_private *dev_priv = dev->dev_private;
16064         struct intel_connector *connector;
16065
16066         intel_disable_gt_powersave(dev_priv);
16067
16068         intel_backlight_unregister(dev);
16069
16070         /*
16071          * Interrupts and polling as the first thing to avoid creating havoc.
16072          * Too much stuff here (turning of connectors, ...) would
16073          * experience fancy races otherwise.
16074          */
16075         intel_irq_uninstall(dev_priv);
16076
16077         /*
16078          * Due to the hpd irq storm handling the hotplug work can re-arm the
16079          * poll handlers. Hence disable polling after hpd handling is shut down.
16080          */
16081         drm_kms_helper_poll_fini(dev);
16082
16083         intel_unregister_dsm_handler();
16084
16085         intel_fbc_global_disable(dev_priv);
16086
16087         /* flush any delayed tasks or pending work */
16088         flush_scheduled_work();
16089
16090         /* destroy the backlight and sysfs files before encoders/connectors */
16091         for_each_intel_connector(dev, connector)
16092                 connector->unregister(connector);
16093
16094         drm_mode_config_cleanup(dev);
16095
16096         intel_cleanup_overlay(dev);
16097
16098         intel_cleanup_gt_powersave(dev_priv);
16099
16100         intel_teardown_gmbus(dev);
16101 }
16102
16103 /*
16104  * Return which encoder is currently attached for connector.
16105  */
16106 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
16107 {
16108         return &intel_attached_encoder(connector)->base;
16109 }
16110
16111 void intel_connector_attach_encoder(struct intel_connector *connector,
16112                                     struct intel_encoder *encoder)
16113 {
16114         connector->encoder = encoder;
16115         drm_mode_connector_attach_encoder(&connector->base,
16116                                           &encoder->base);
16117 }
16118
16119 /*
16120  * set vga decode state - true == enable VGA decode
16121  */
16122 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16123 {
16124         struct drm_i915_private *dev_priv = dev->dev_private;
16125         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16126         u16 gmch_ctrl;
16127
16128         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16129                 DRM_ERROR("failed to read control word\n");
16130                 return -EIO;
16131         }
16132
16133         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16134                 return 0;
16135
16136         if (state)
16137                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16138         else
16139                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16140
16141         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16142                 DRM_ERROR("failed to write control word\n");
16143                 return -EIO;
16144         }
16145
16146         return 0;
16147 }
16148
16149 struct intel_display_error_state {
16150
16151         u32 power_well_driver;
16152
16153         int num_transcoders;
16154
16155         struct intel_cursor_error_state {
16156                 u32 control;
16157                 u32 position;
16158                 u32 base;
16159                 u32 size;
16160         } cursor[I915_MAX_PIPES];
16161
16162         struct intel_pipe_error_state {
16163                 bool power_domain_on;
16164                 u32 source;
16165                 u32 stat;
16166         } pipe[I915_MAX_PIPES];
16167
16168         struct intel_plane_error_state {
16169                 u32 control;
16170                 u32 stride;
16171                 u32 size;
16172                 u32 pos;
16173                 u32 addr;
16174                 u32 surface;
16175                 u32 tile_offset;
16176         } plane[I915_MAX_PIPES];
16177
16178         struct intel_transcoder_error_state {
16179                 bool power_domain_on;
16180                 enum transcoder cpu_transcoder;
16181
16182                 u32 conf;
16183
16184                 u32 htotal;
16185                 u32 hblank;
16186                 u32 hsync;
16187                 u32 vtotal;
16188                 u32 vblank;
16189                 u32 vsync;
16190         } transcoder[4];
16191 };
16192
16193 struct intel_display_error_state *
16194 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
16195 {
16196         struct intel_display_error_state *error;
16197         int transcoders[] = {
16198                 TRANSCODER_A,
16199                 TRANSCODER_B,
16200                 TRANSCODER_C,
16201                 TRANSCODER_EDP,
16202         };
16203         int i;
16204
16205         if (INTEL_INFO(dev_priv)->num_pipes == 0)
16206                 return NULL;
16207
16208         error = kzalloc(sizeof(*error), GFP_ATOMIC);
16209         if (error == NULL)
16210                 return NULL;
16211
16212         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
16213                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16214
16215         for_each_pipe(dev_priv, i) {
16216                 error->pipe[i].power_domain_on =
16217                         __intel_display_power_is_enabled(dev_priv,
16218                                                          POWER_DOMAIN_PIPE(i));
16219                 if (!error->pipe[i].power_domain_on)
16220                         continue;
16221
16222                 error->cursor[i].control = I915_READ(CURCNTR(i));
16223                 error->cursor[i].position = I915_READ(CURPOS(i));
16224                 error->cursor[i].base = I915_READ(CURBASE(i));
16225
16226                 error->plane[i].control = I915_READ(DSPCNTR(i));
16227                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16228                 if (INTEL_GEN(dev_priv) <= 3) {
16229                         error->plane[i].size = I915_READ(DSPSIZE(i));
16230                         error->plane[i].pos = I915_READ(DSPPOS(i));
16231                 }
16232                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
16233                         error->plane[i].addr = I915_READ(DSPADDR(i));
16234                 if (INTEL_GEN(dev_priv) >= 4) {
16235                         error->plane[i].surface = I915_READ(DSPSURF(i));
16236                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16237                 }
16238
16239                 error->pipe[i].source = I915_READ(PIPESRC(i));
16240
16241                 if (HAS_GMCH_DISPLAY(dev_priv))
16242                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
16243         }
16244
16245         /* Note: this does not include DSI transcoders. */
16246         error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
16247         if (HAS_DDI(dev_priv))
16248                 error->num_transcoders++; /* Account for eDP. */
16249
16250         for (i = 0; i < error->num_transcoders; i++) {
16251                 enum transcoder cpu_transcoder = transcoders[i];
16252
16253                 error->transcoder[i].power_domain_on =
16254                         __intel_display_power_is_enabled(dev_priv,
16255                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16256                 if (!error->transcoder[i].power_domain_on)
16257                         continue;
16258
16259                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16260
16261                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16262                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16263                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16264                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16265                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16266                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16267                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16268         }
16269
16270         return error;
16271 }
16272
16273 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16274
16275 void
16276 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16277                                 struct drm_device *dev,
16278                                 struct intel_display_error_state *error)
16279 {
16280         struct drm_i915_private *dev_priv = dev->dev_private;
16281         int i;
16282
16283         if (!error)
16284                 return;
16285
16286         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16287         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16288                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16289                            error->power_well_driver);
16290         for_each_pipe(dev_priv, i) {
16291                 err_printf(m, "Pipe [%d]:\n", i);
16292                 err_printf(m, "  Power: %s\n",
16293                            onoff(error->pipe[i].power_domain_on));
16294                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
16295                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
16296
16297                 err_printf(m, "Plane [%d]:\n", i);
16298                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
16299                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
16300                 if (INTEL_INFO(dev)->gen <= 3) {
16301                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
16302                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
16303                 }
16304                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16305                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
16306                 if (INTEL_INFO(dev)->gen >= 4) {
16307                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
16308                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
16309                 }
16310
16311                 err_printf(m, "Cursor [%d]:\n", i);
16312                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
16313                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
16314                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
16315         }
16316
16317         for (i = 0; i < error->num_transcoders; i++) {
16318                 err_printf(m, "CPU transcoder: %s\n",
16319                            transcoder_name(error->transcoder[i].cpu_transcoder));
16320                 err_printf(m, "  Power: %s\n",
16321                            onoff(error->transcoder[i].power_domain_on));
16322                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
16323                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
16324                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
16325                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
16326                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
16327                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
16328                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
16329         }
16330 }