Merge git://1984.lsi.us.es/nf-next
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51         /* given values */
52         int n;
53         int m1, m2;
54         int p1, p2;
55         /* derived values */
56         int     dot;
57         int     vco;
58         int     m;
59         int     p;
60 } intel_clock_t;
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75         intel_p2_t          p2;
76         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                         int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85                     int target, int refclk, intel_clock_t *match_clock,
86                     intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89                         int target, int refclk, intel_clock_t *match_clock,
90                         intel_clock_t *best_clock);
91
92 static bool
93 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
94                       int target, int refclk, intel_clock_t *match_clock,
95                       intel_clock_t *best_clock);
96 static bool
97 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
98                            int target, int refclk, intel_clock_t *match_clock,
99                            intel_clock_t *best_clock);
100
101 static bool
102 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
103                         int target, int refclk, intel_clock_t *match_clock,
104                         intel_clock_t *best_clock);
105
106 static inline u32 /* units of 100MHz */
107 intel_fdi_link_freq(struct drm_device *dev)
108 {
109         if (IS_GEN5(dev)) {
110                 struct drm_i915_private *dev_priv = dev->dev_private;
111                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
112         } else
113                 return 27;
114 }
115
116 static const intel_limit_t intel_limits_i8xx_dvo = {
117         .dot = { .min = 25000, .max = 350000 },
118         .vco = { .min = 930000, .max = 1400000 },
119         .n = { .min = 3, .max = 16 },
120         .m = { .min = 96, .max = 140 },
121         .m1 = { .min = 18, .max = 26 },
122         .m2 = { .min = 6, .max = 16 },
123         .p = { .min = 4, .max = 128 },
124         .p1 = { .min = 2, .max = 33 },
125         .p2 = { .dot_limit = 165000,
126                 .p2_slow = 4, .p2_fast = 2 },
127         .find_pll = intel_find_best_PLL,
128 };
129
130 static const intel_limit_t intel_limits_i8xx_lvds = {
131         .dot = { .min = 25000, .max = 350000 },
132         .vco = { .min = 930000, .max = 1400000 },
133         .n = { .min = 3, .max = 16 },
134         .m = { .min = 96, .max = 140 },
135         .m1 = { .min = 18, .max = 26 },
136         .m2 = { .min = 6, .max = 16 },
137         .p = { .min = 4, .max = 128 },
138         .p1 = { .min = 1, .max = 6 },
139         .p2 = { .dot_limit = 165000,
140                 .p2_slow = 14, .p2_fast = 7 },
141         .find_pll = intel_find_best_PLL,
142 };
143
144 static const intel_limit_t intel_limits_i9xx_sdvo = {
145         .dot = { .min = 20000, .max = 400000 },
146         .vco = { .min = 1400000, .max = 2800000 },
147         .n = { .min = 1, .max = 6 },
148         .m = { .min = 70, .max = 120 },
149         .m1 = { .min = 10, .max = 22 },
150         .m2 = { .min = 5, .max = 9 },
151         .p = { .min = 5, .max = 80 },
152         .p1 = { .min = 1, .max = 8 },
153         .p2 = { .dot_limit = 200000,
154                 .p2_slow = 10, .p2_fast = 5 },
155         .find_pll = intel_find_best_PLL,
156 };
157
158 static const intel_limit_t intel_limits_i9xx_lvds = {
159         .dot = { .min = 20000, .max = 400000 },
160         .vco = { .min = 1400000, .max = 2800000 },
161         .n = { .min = 1, .max = 6 },
162         .m = { .min = 70, .max = 120 },
163         .m1 = { .min = 10, .max = 22 },
164         .m2 = { .min = 5, .max = 9 },
165         .p = { .min = 7, .max = 98 },
166         .p1 = { .min = 1, .max = 8 },
167         .p2 = { .dot_limit = 112000,
168                 .p2_slow = 14, .p2_fast = 7 },
169         .find_pll = intel_find_best_PLL,
170 };
171
172
173 static const intel_limit_t intel_limits_g4x_sdvo = {
174         .dot = { .min = 25000, .max = 270000 },
175         .vco = { .min = 1750000, .max = 3500000},
176         .n = { .min = 1, .max = 4 },
177         .m = { .min = 104, .max = 138 },
178         .m1 = { .min = 17, .max = 23 },
179         .m2 = { .min = 5, .max = 11 },
180         .p = { .min = 10, .max = 30 },
181         .p1 = { .min = 1, .max = 3},
182         .p2 = { .dot_limit = 270000,
183                 .p2_slow = 10,
184                 .p2_fast = 10
185         },
186         .find_pll = intel_g4x_find_best_PLL,
187 };
188
189 static const intel_limit_t intel_limits_g4x_hdmi = {
190         .dot = { .min = 22000, .max = 400000 },
191         .vco = { .min = 1750000, .max = 3500000},
192         .n = { .min = 1, .max = 4 },
193         .m = { .min = 104, .max = 138 },
194         .m1 = { .min = 16, .max = 23 },
195         .m2 = { .min = 5, .max = 11 },
196         .p = { .min = 5, .max = 80 },
197         .p1 = { .min = 1, .max = 8},
198         .p2 = { .dot_limit = 165000,
199                 .p2_slow = 10, .p2_fast = 5 },
200         .find_pll = intel_g4x_find_best_PLL,
201 };
202
203 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
204         .dot = { .min = 20000, .max = 115000 },
205         .vco = { .min = 1750000, .max = 3500000 },
206         .n = { .min = 1, .max = 3 },
207         .m = { .min = 104, .max = 138 },
208         .m1 = { .min = 17, .max = 23 },
209         .m2 = { .min = 5, .max = 11 },
210         .p = { .min = 28, .max = 112 },
211         .p1 = { .min = 2, .max = 8 },
212         .p2 = { .dot_limit = 0,
213                 .p2_slow = 14, .p2_fast = 14
214         },
215         .find_pll = intel_g4x_find_best_PLL,
216 };
217
218 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
219         .dot = { .min = 80000, .max = 224000 },
220         .vco = { .min = 1750000, .max = 3500000 },
221         .n = { .min = 1, .max = 3 },
222         .m = { .min = 104, .max = 138 },
223         .m1 = { .min = 17, .max = 23 },
224         .m2 = { .min = 5, .max = 11 },
225         .p = { .min = 14, .max = 42 },
226         .p1 = { .min = 2, .max = 6 },
227         .p2 = { .dot_limit = 0,
228                 .p2_slow = 7, .p2_fast = 7
229         },
230         .find_pll = intel_g4x_find_best_PLL,
231 };
232
233 static const intel_limit_t intel_limits_g4x_display_port = {
234         .dot = { .min = 161670, .max = 227000 },
235         .vco = { .min = 1750000, .max = 3500000},
236         .n = { .min = 1, .max = 2 },
237         .m = { .min = 97, .max = 108 },
238         .m1 = { .min = 0x10, .max = 0x12 },
239         .m2 = { .min = 0x05, .max = 0x06 },
240         .p = { .min = 10, .max = 20 },
241         .p1 = { .min = 1, .max = 2},
242         .p2 = { .dot_limit = 0,
243                 .p2_slow = 10, .p2_fast = 10 },
244         .find_pll = intel_find_pll_g4x_dp,
245 };
246
247 static const intel_limit_t intel_limits_pineview_sdvo = {
248         .dot = { .min = 20000, .max = 400000},
249         .vco = { .min = 1700000, .max = 3500000 },
250         /* Pineview's Ncounter is a ring counter */
251         .n = { .min = 3, .max = 6 },
252         .m = { .min = 2, .max = 256 },
253         /* Pineview only has one combined m divider, which we treat as m2. */
254         .m1 = { .min = 0, .max = 0 },
255         .m2 = { .min = 0, .max = 254 },
256         .p = { .min = 5, .max = 80 },
257         .p1 = { .min = 1, .max = 8 },
258         .p2 = { .dot_limit = 200000,
259                 .p2_slow = 10, .p2_fast = 5 },
260         .find_pll = intel_find_best_PLL,
261 };
262
263 static const intel_limit_t intel_limits_pineview_lvds = {
264         .dot = { .min = 20000, .max = 400000 },
265         .vco = { .min = 1700000, .max = 3500000 },
266         .n = { .min = 3, .max = 6 },
267         .m = { .min = 2, .max = 256 },
268         .m1 = { .min = 0, .max = 0 },
269         .m2 = { .min = 0, .max = 254 },
270         .p = { .min = 7, .max = 112 },
271         .p1 = { .min = 1, .max = 8 },
272         .p2 = { .dot_limit = 112000,
273                 .p2_slow = 14, .p2_fast = 14 },
274         .find_pll = intel_find_best_PLL,
275 };
276
277 /* Ironlake / Sandybridge
278  *
279  * We calculate clock using (register_value + 2) for N/M1/M2, so here
280  * the range value for them is (actual_value - 2).
281  */
282 static const intel_limit_t intel_limits_ironlake_dac = {
283         .dot = { .min = 25000, .max = 350000 },
284         .vco = { .min = 1760000, .max = 3510000 },
285         .n = { .min = 1, .max = 5 },
286         .m = { .min = 79, .max = 127 },
287         .m1 = { .min = 12, .max = 22 },
288         .m2 = { .min = 5, .max = 9 },
289         .p = { .min = 5, .max = 80 },
290         .p1 = { .min = 1, .max = 8 },
291         .p2 = { .dot_limit = 225000,
292                 .p2_slow = 10, .p2_fast = 5 },
293         .find_pll = intel_g4x_find_best_PLL,
294 };
295
296 static const intel_limit_t intel_limits_ironlake_single_lvds = {
297         .dot = { .min = 25000, .max = 350000 },
298         .vco = { .min = 1760000, .max = 3510000 },
299         .n = { .min = 1, .max = 3 },
300         .m = { .min = 79, .max = 118 },
301         .m1 = { .min = 12, .max = 22 },
302         .m2 = { .min = 5, .max = 9 },
303         .p = { .min = 28, .max = 112 },
304         .p1 = { .min = 2, .max = 8 },
305         .p2 = { .dot_limit = 225000,
306                 .p2_slow = 14, .p2_fast = 14 },
307         .find_pll = intel_g4x_find_best_PLL,
308 };
309
310 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
311         .dot = { .min = 25000, .max = 350000 },
312         .vco = { .min = 1760000, .max = 3510000 },
313         .n = { .min = 1, .max = 3 },
314         .m = { .min = 79, .max = 127 },
315         .m1 = { .min = 12, .max = 22 },
316         .m2 = { .min = 5, .max = 9 },
317         .p = { .min = 14, .max = 56 },
318         .p1 = { .min = 2, .max = 8 },
319         .p2 = { .dot_limit = 225000,
320                 .p2_slow = 7, .p2_fast = 7 },
321         .find_pll = intel_g4x_find_best_PLL,
322 };
323
324 /* LVDS 100mhz refclk limits. */
325 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
326         .dot = { .min = 25000, .max = 350000 },
327         .vco = { .min = 1760000, .max = 3510000 },
328         .n = { .min = 1, .max = 2 },
329         .m = { .min = 79, .max = 126 },
330         .m1 = { .min = 12, .max = 22 },
331         .m2 = { .min = 5, .max = 9 },
332         .p = { .min = 28, .max = 112 },
333         .p1 = { .min = 2, .max = 8 },
334         .p2 = { .dot_limit = 225000,
335                 .p2_slow = 14, .p2_fast = 14 },
336         .find_pll = intel_g4x_find_best_PLL,
337 };
338
339 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
340         .dot = { .min = 25000, .max = 350000 },
341         .vco = { .min = 1760000, .max = 3510000 },
342         .n = { .min = 1, .max = 3 },
343         .m = { .min = 79, .max = 126 },
344         .m1 = { .min = 12, .max = 22 },
345         .m2 = { .min = 5, .max = 9 },
346         .p = { .min = 14, .max = 42 },
347         .p1 = { .min = 2, .max = 6 },
348         .p2 = { .dot_limit = 225000,
349                 .p2_slow = 7, .p2_fast = 7 },
350         .find_pll = intel_g4x_find_best_PLL,
351 };
352
353 static const intel_limit_t intel_limits_ironlake_display_port = {
354         .dot = { .min = 25000, .max = 350000 },
355         .vco = { .min = 1760000, .max = 3510000},
356         .n = { .min = 1, .max = 2 },
357         .m = { .min = 81, .max = 90 },
358         .m1 = { .min = 12, .max = 22 },
359         .m2 = { .min = 5, .max = 9 },
360         .p = { .min = 10, .max = 20 },
361         .p1 = { .min = 1, .max = 2},
362         .p2 = { .dot_limit = 0,
363                 .p2_slow = 10, .p2_fast = 10 },
364         .find_pll = intel_find_pll_ironlake_dp,
365 };
366
367 static const intel_limit_t intel_limits_vlv_dac = {
368         .dot = { .min = 25000, .max = 270000 },
369         .vco = { .min = 4000000, .max = 6000000 },
370         .n = { .min = 1, .max = 7 },
371         .m = { .min = 22, .max = 450 }, /* guess */
372         .m1 = { .min = 2, .max = 3 },
373         .m2 = { .min = 11, .max = 156 },
374         .p = { .min = 10, .max = 30 },
375         .p1 = { .min = 2, .max = 3 },
376         .p2 = { .dot_limit = 270000,
377                 .p2_slow = 2, .p2_fast = 20 },
378         .find_pll = intel_vlv_find_best_pll,
379 };
380
381 static const intel_limit_t intel_limits_vlv_hdmi = {
382         .dot = { .min = 20000, .max = 165000 },
383         .vco = { .min = 5994000, .max = 4000000 },
384         .n = { .min = 1, .max = 7 },
385         .m = { .min = 60, .max = 300 }, /* guess */
386         .m1 = { .min = 2, .max = 3 },
387         .m2 = { .min = 11, .max = 156 },
388         .p = { .min = 10, .max = 30 },
389         .p1 = { .min = 2, .max = 3 },
390         .p2 = { .dot_limit = 270000,
391                 .p2_slow = 2, .p2_fast = 20 },
392         .find_pll = intel_vlv_find_best_pll,
393 };
394
395 static const intel_limit_t intel_limits_vlv_dp = {
396         .dot = { .min = 162000, .max = 270000 },
397         .vco = { .min = 5994000, .max = 4000000 },
398         .n = { .min = 1, .max = 7 },
399         .m = { .min = 60, .max = 300 }, /* guess */
400         .m1 = { .min = 2, .max = 3 },
401         .m2 = { .min = 11, .max = 156 },
402         .p = { .min = 10, .max = 30 },
403         .p1 = { .min = 2, .max = 3 },
404         .p2 = { .dot_limit = 270000,
405                 .p2_slow = 2, .p2_fast = 20 },
406         .find_pll = intel_vlv_find_best_pll,
407 };
408
409 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
410 {
411         unsigned long flags;
412         u32 val = 0;
413
414         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
415         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
416                 DRM_ERROR("DPIO idle wait timed out\n");
417                 goto out_unlock;
418         }
419
420         I915_WRITE(DPIO_REG, reg);
421         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
422                    DPIO_BYTE);
423         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424                 DRM_ERROR("DPIO read wait timed out\n");
425                 goto out_unlock;
426         }
427         val = I915_READ(DPIO_DATA);
428
429 out_unlock:
430         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
431         return val;
432 }
433
434 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
435                              u32 val)
436 {
437         unsigned long flags;
438
439         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
440         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
441                 DRM_ERROR("DPIO idle wait timed out\n");
442                 goto out_unlock;
443         }
444
445         I915_WRITE(DPIO_DATA, val);
446         I915_WRITE(DPIO_REG, reg);
447         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
448                    DPIO_BYTE);
449         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
450                 DRM_ERROR("DPIO write wait timed out\n");
451
452 out_unlock:
453        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
454 }
455
456 static void vlv_init_dpio(struct drm_device *dev)
457 {
458         struct drm_i915_private *dev_priv = dev->dev_private;
459
460         /* Reset the DPIO config */
461         I915_WRITE(DPIO_CTL, 0);
462         POSTING_READ(DPIO_CTL);
463         I915_WRITE(DPIO_CTL, 1);
464         POSTING_READ(DPIO_CTL);
465 }
466
467 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
468 {
469         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
470         return 1;
471 }
472
473 static const struct dmi_system_id intel_dual_link_lvds[] = {
474         {
475                 .callback = intel_dual_link_lvds_callback,
476                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
477                 .matches = {
478                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
479                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
480                 },
481         },
482         { }     /* terminating entry */
483 };
484
485 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
486                               unsigned int reg)
487 {
488         unsigned int val;
489
490         /* use the module option value if specified */
491         if (i915_lvds_channel_mode > 0)
492                 return i915_lvds_channel_mode == 2;
493
494         if (dmi_check_system(intel_dual_link_lvds))
495                 return true;
496
497         if (dev_priv->lvds_val)
498                 val = dev_priv->lvds_val;
499         else {
500                 /* BIOS should set the proper LVDS register value at boot, but
501                  * in reality, it doesn't set the value when the lid is closed;
502                  * we need to check "the value to be set" in VBT when LVDS
503                  * register is uninitialized.
504                  */
505                 val = I915_READ(reg);
506                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
507                         val = dev_priv->bios_lvds_val;
508                 dev_priv->lvds_val = val;
509         }
510         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
511 }
512
513 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
514                                                 int refclk)
515 {
516         struct drm_device *dev = crtc->dev;
517         struct drm_i915_private *dev_priv = dev->dev_private;
518         const intel_limit_t *limit;
519
520         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
521                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
522                         /* LVDS dual channel */
523                         if (refclk == 100000)
524                                 limit = &intel_limits_ironlake_dual_lvds_100m;
525                         else
526                                 limit = &intel_limits_ironlake_dual_lvds;
527                 } else {
528                         if (refclk == 100000)
529                                 limit = &intel_limits_ironlake_single_lvds_100m;
530                         else
531                                 limit = &intel_limits_ironlake_single_lvds;
532                 }
533         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
534                         HAS_eDP)
535                 limit = &intel_limits_ironlake_display_port;
536         else
537                 limit = &intel_limits_ironlake_dac;
538
539         return limit;
540 }
541
542 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
543 {
544         struct drm_device *dev = crtc->dev;
545         struct drm_i915_private *dev_priv = dev->dev_private;
546         const intel_limit_t *limit;
547
548         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
549                 if (is_dual_link_lvds(dev_priv, LVDS))
550                         /* LVDS with dual channel */
551                         limit = &intel_limits_g4x_dual_channel_lvds;
552                 else
553                         /* LVDS with dual channel */
554                         limit = &intel_limits_g4x_single_channel_lvds;
555         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
556                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
557                 limit = &intel_limits_g4x_hdmi;
558         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
559                 limit = &intel_limits_g4x_sdvo;
560         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
561                 limit = &intel_limits_g4x_display_port;
562         } else /* The option is for other outputs */
563                 limit = &intel_limits_i9xx_sdvo;
564
565         return limit;
566 }
567
568 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
569 {
570         struct drm_device *dev = crtc->dev;
571         const intel_limit_t *limit;
572
573         if (HAS_PCH_SPLIT(dev))
574                 limit = intel_ironlake_limit(crtc, refclk);
575         else if (IS_G4X(dev)) {
576                 limit = intel_g4x_limit(crtc);
577         } else if (IS_PINEVIEW(dev)) {
578                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
579                         limit = &intel_limits_pineview_lvds;
580                 else
581                         limit = &intel_limits_pineview_sdvo;
582         } else if (IS_VALLEYVIEW(dev)) {
583                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
584                         limit = &intel_limits_vlv_dac;
585                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
586                         limit = &intel_limits_vlv_hdmi;
587                 else
588                         limit = &intel_limits_vlv_dp;
589         } else if (!IS_GEN2(dev)) {
590                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
591                         limit = &intel_limits_i9xx_lvds;
592                 else
593                         limit = &intel_limits_i9xx_sdvo;
594         } else {
595                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
596                         limit = &intel_limits_i8xx_lvds;
597                 else
598                         limit = &intel_limits_i8xx_dvo;
599         }
600         return limit;
601 }
602
603 /* m1 is reserved as 0 in Pineview, n is a ring counter */
604 static void pineview_clock(int refclk, intel_clock_t *clock)
605 {
606         clock->m = clock->m2 + 2;
607         clock->p = clock->p1 * clock->p2;
608         clock->vco = refclk * clock->m / clock->n;
609         clock->dot = clock->vco / clock->p;
610 }
611
612 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
613 {
614         if (IS_PINEVIEW(dev)) {
615                 pineview_clock(refclk, clock);
616                 return;
617         }
618         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
619         clock->p = clock->p1 * clock->p2;
620         clock->vco = refclk * clock->m / (clock->n + 2);
621         clock->dot = clock->vco / clock->p;
622 }
623
624 /**
625  * Returns whether any output on the specified pipe is of the specified type
626  */
627 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
628 {
629         struct drm_device *dev = crtc->dev;
630         struct intel_encoder *encoder;
631
632         for_each_encoder_on_crtc(dev, crtc, encoder)
633                 if (encoder->type == type)
634                         return true;
635
636         return false;
637 }
638
639 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
640 /**
641  * Returns whether the given set of divisors are valid for a given refclk with
642  * the given connectors.
643  */
644
645 static bool intel_PLL_is_valid(struct drm_device *dev,
646                                const intel_limit_t *limit,
647                                const intel_clock_t *clock)
648 {
649         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
650                 INTELPllInvalid("p1 out of range\n");
651         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
652                 INTELPllInvalid("p out of range\n");
653         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
654                 INTELPllInvalid("m2 out of range\n");
655         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
656                 INTELPllInvalid("m1 out of range\n");
657         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
658                 INTELPllInvalid("m1 <= m2\n");
659         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
660                 INTELPllInvalid("m out of range\n");
661         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
662                 INTELPllInvalid("n out of range\n");
663         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
664                 INTELPllInvalid("vco out of range\n");
665         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
666          * connector, etc., rather than just a single range.
667          */
668         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
669                 INTELPllInvalid("dot out of range\n");
670
671         return true;
672 }
673
674 static bool
675 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
676                     int target, int refclk, intel_clock_t *match_clock,
677                     intel_clock_t *best_clock)
678
679 {
680         struct drm_device *dev = crtc->dev;
681         struct drm_i915_private *dev_priv = dev->dev_private;
682         intel_clock_t clock;
683         int err = target;
684
685         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
686             (I915_READ(LVDS)) != 0) {
687                 /*
688                  * For LVDS, if the panel is on, just rely on its current
689                  * settings for dual-channel.  We haven't figured out how to
690                  * reliably set up different single/dual channel state, if we
691                  * even can.
692                  */
693                 if (is_dual_link_lvds(dev_priv, LVDS))
694                         clock.p2 = limit->p2.p2_fast;
695                 else
696                         clock.p2 = limit->p2.p2_slow;
697         } else {
698                 if (target < limit->p2.dot_limit)
699                         clock.p2 = limit->p2.p2_slow;
700                 else
701                         clock.p2 = limit->p2.p2_fast;
702         }
703
704         memset(best_clock, 0, sizeof(*best_clock));
705
706         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
707              clock.m1++) {
708                 for (clock.m2 = limit->m2.min;
709                      clock.m2 <= limit->m2.max; clock.m2++) {
710                         /* m1 is always 0 in Pineview */
711                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
712                                 break;
713                         for (clock.n = limit->n.min;
714                              clock.n <= limit->n.max; clock.n++) {
715                                 for (clock.p1 = limit->p1.min;
716                                         clock.p1 <= limit->p1.max; clock.p1++) {
717                                         int this_err;
718
719                                         intel_clock(dev, refclk, &clock);
720                                         if (!intel_PLL_is_valid(dev, limit,
721                                                                 &clock))
722                                                 continue;
723                                         if (match_clock &&
724                                             clock.p != match_clock->p)
725                                                 continue;
726
727                                         this_err = abs(clock.dot - target);
728                                         if (this_err < err) {
729                                                 *best_clock = clock;
730                                                 err = this_err;
731                                         }
732                                 }
733                         }
734                 }
735         }
736
737         return (err != target);
738 }
739
740 static bool
741 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742                         int target, int refclk, intel_clock_t *match_clock,
743                         intel_clock_t *best_clock)
744 {
745         struct drm_device *dev = crtc->dev;
746         struct drm_i915_private *dev_priv = dev->dev_private;
747         intel_clock_t clock;
748         int max_n;
749         bool found;
750         /* approximately equals target * 0.00585 */
751         int err_most = (target >> 8) + (target >> 9);
752         found = false;
753
754         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
755                 int lvds_reg;
756
757                 if (HAS_PCH_SPLIT(dev))
758                         lvds_reg = PCH_LVDS;
759                 else
760                         lvds_reg = LVDS;
761                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
762                     LVDS_CLKB_POWER_UP)
763                         clock.p2 = limit->p2.p2_fast;
764                 else
765                         clock.p2 = limit->p2.p2_slow;
766         } else {
767                 if (target < limit->p2.dot_limit)
768                         clock.p2 = limit->p2.p2_slow;
769                 else
770                         clock.p2 = limit->p2.p2_fast;
771         }
772
773         memset(best_clock, 0, sizeof(*best_clock));
774         max_n = limit->n.max;
775         /* based on hardware requirement, prefer smaller n to precision */
776         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
777                 /* based on hardware requirement, prefere larger m1,m2 */
778                 for (clock.m1 = limit->m1.max;
779                      clock.m1 >= limit->m1.min; clock.m1--) {
780                         for (clock.m2 = limit->m2.max;
781                              clock.m2 >= limit->m2.min; clock.m2--) {
782                                 for (clock.p1 = limit->p1.max;
783                                      clock.p1 >= limit->p1.min; clock.p1--) {
784                                         int this_err;
785
786                                         intel_clock(dev, refclk, &clock);
787                                         if (!intel_PLL_is_valid(dev, limit,
788                                                                 &clock))
789                                                 continue;
790                                         if (match_clock &&
791                                             clock.p != match_clock->p)
792                                                 continue;
793
794                                         this_err = abs(clock.dot - target);
795                                         if (this_err < err_most) {
796                                                 *best_clock = clock;
797                                                 err_most = this_err;
798                                                 max_n = clock.n;
799                                                 found = true;
800                                         }
801                                 }
802                         }
803                 }
804         }
805         return found;
806 }
807
808 static bool
809 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
810                            int target, int refclk, intel_clock_t *match_clock,
811                            intel_clock_t *best_clock)
812 {
813         struct drm_device *dev = crtc->dev;
814         intel_clock_t clock;
815
816         if (target < 200000) {
817                 clock.n = 1;
818                 clock.p1 = 2;
819                 clock.p2 = 10;
820                 clock.m1 = 12;
821                 clock.m2 = 9;
822         } else {
823                 clock.n = 2;
824                 clock.p1 = 1;
825                 clock.p2 = 10;
826                 clock.m1 = 14;
827                 clock.m2 = 8;
828         }
829         intel_clock(dev, refclk, &clock);
830         memcpy(best_clock, &clock, sizeof(intel_clock_t));
831         return true;
832 }
833
834 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
835 static bool
836 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837                       int target, int refclk, intel_clock_t *match_clock,
838                       intel_clock_t *best_clock)
839 {
840         intel_clock_t clock;
841         if (target < 200000) {
842                 clock.p1 = 2;
843                 clock.p2 = 10;
844                 clock.n = 2;
845                 clock.m1 = 23;
846                 clock.m2 = 8;
847         } else {
848                 clock.p1 = 1;
849                 clock.p2 = 10;
850                 clock.n = 1;
851                 clock.m1 = 14;
852                 clock.m2 = 2;
853         }
854         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
855         clock.p = (clock.p1 * clock.p2);
856         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
857         clock.vco = 0;
858         memcpy(best_clock, &clock, sizeof(intel_clock_t));
859         return true;
860 }
861 static bool
862 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
863                         int target, int refclk, intel_clock_t *match_clock,
864                         intel_clock_t *best_clock)
865 {
866         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
867         u32 m, n, fastclk;
868         u32 updrate, minupdate, fracbits, p;
869         unsigned long bestppm, ppm, absppm;
870         int dotclk, flag;
871
872         flag = 0;
873         dotclk = target * 1000;
874         bestppm = 1000000;
875         ppm = absppm = 0;
876         fastclk = dotclk / (2*100);
877         updrate = 0;
878         minupdate = 19200;
879         fracbits = 1;
880         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
881         bestm1 = bestm2 = bestp1 = bestp2 = 0;
882
883         /* based on hardware requirement, prefer smaller n to precision */
884         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
885                 updrate = refclk / n;
886                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
887                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
888                                 if (p2 > 10)
889                                         p2 = p2 - 1;
890                                 p = p1 * p2;
891                                 /* based on hardware requirement, prefer bigger m1,m2 values */
892                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
893                                         m2 = (((2*(fastclk * p * n / m1 )) +
894                                                refclk) / (2*refclk));
895                                         m = m1 * m2;
896                                         vco = updrate * m;
897                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
898                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
899                                                 absppm = (ppm > 0) ? ppm : (-ppm);
900                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
901                                                         bestppm = 0;
902                                                         flag = 1;
903                                                 }
904                                                 if (absppm < bestppm - 10) {
905                                                         bestppm = absppm;
906                                                         flag = 1;
907                                                 }
908                                                 if (flag) {
909                                                         bestn = n;
910                                                         bestm1 = m1;
911                                                         bestm2 = m2;
912                                                         bestp1 = p1;
913                                                         bestp2 = p2;
914                                                         flag = 0;
915                                                 }
916                                         }
917                                 }
918                         }
919                 }
920         }
921         best_clock->n = bestn;
922         best_clock->m1 = bestm1;
923         best_clock->m2 = bestm2;
924         best_clock->p1 = bestp1;
925         best_clock->p2 = bestp2;
926
927         return true;
928 }
929
930 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
931 {
932         struct drm_i915_private *dev_priv = dev->dev_private;
933         u32 frame, frame_reg = PIPEFRAME(pipe);
934
935         frame = I915_READ(frame_reg);
936
937         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
938                 DRM_DEBUG_KMS("vblank wait timed out\n");
939 }
940
941 /**
942  * intel_wait_for_vblank - wait for vblank on a given pipe
943  * @dev: drm device
944  * @pipe: pipe to wait for
945  *
946  * Wait for vblank to occur on a given pipe.  Needed for various bits of
947  * mode setting code.
948  */
949 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951         struct drm_i915_private *dev_priv = dev->dev_private;
952         int pipestat_reg = PIPESTAT(pipe);
953
954         if (INTEL_INFO(dev)->gen >= 5) {
955                 ironlake_wait_for_vblank(dev, pipe);
956                 return;
957         }
958
959         /* Clear existing vblank status. Note this will clear any other
960          * sticky status fields as well.
961          *
962          * This races with i915_driver_irq_handler() with the result
963          * that either function could miss a vblank event.  Here it is not
964          * fatal, as we will either wait upon the next vblank interrupt or
965          * timeout.  Generally speaking intel_wait_for_vblank() is only
966          * called during modeset at which time the GPU should be idle and
967          * should *not* be performing page flips and thus not waiting on
968          * vblanks...
969          * Currently, the result of us stealing a vblank from the irq
970          * handler is that a single frame will be skipped during swapbuffers.
971          */
972         I915_WRITE(pipestat_reg,
973                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
974
975         /* Wait for vblank interrupt bit to set */
976         if (wait_for(I915_READ(pipestat_reg) &
977                      PIPE_VBLANK_INTERRUPT_STATUS,
978                      50))
979                 DRM_DEBUG_KMS("vblank wait timed out\n");
980 }
981
982 /*
983  * intel_wait_for_pipe_off - wait for pipe to turn off
984  * @dev: drm device
985  * @pipe: pipe to wait for
986  *
987  * After disabling a pipe, we can't wait for vblank in the usual way,
988  * spinning on the vblank interrupt status bit, since we won't actually
989  * see an interrupt when the pipe is disabled.
990  *
991  * On Gen4 and above:
992  *   wait for the pipe register state bit to turn off
993  *
994  * Otherwise:
995  *   wait for the display line value to settle (it usually
996  *   ends up stopping at the start of the next frame).
997  *
998  */
999 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1000 {
1001         struct drm_i915_private *dev_priv = dev->dev_private;
1002
1003         if (INTEL_INFO(dev)->gen >= 4) {
1004                 int reg = PIPECONF(pipe);
1005
1006                 /* Wait for the Pipe State to go off */
1007                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1008                              100))
1009                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1010         } else {
1011                 u32 last_line, line_mask;
1012                 int reg = PIPEDSL(pipe);
1013                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1014
1015                 if (IS_GEN2(dev))
1016                         line_mask = DSL_LINEMASK_GEN2;
1017                 else
1018                         line_mask = DSL_LINEMASK_GEN3;
1019
1020                 /* Wait for the display line to settle */
1021                 do {
1022                         last_line = I915_READ(reg) & line_mask;
1023                         mdelay(5);
1024                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1025                          time_after(timeout, jiffies));
1026                 if (time_after(jiffies, timeout))
1027                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1028         }
1029 }
1030
1031 static const char *state_string(bool enabled)
1032 {
1033         return enabled ? "on" : "off";
1034 }
1035
1036 /* Only for pre-ILK configs */
1037 static void assert_pll(struct drm_i915_private *dev_priv,
1038                        enum pipe pipe, bool state)
1039 {
1040         int reg;
1041         u32 val;
1042         bool cur_state;
1043
1044         reg = DPLL(pipe);
1045         val = I915_READ(reg);
1046         cur_state = !!(val & DPLL_VCO_ENABLE);
1047         WARN(cur_state != state,
1048              "PLL state assertion failure (expected %s, current %s)\n",
1049              state_string(state), state_string(cur_state));
1050 }
1051 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1052 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1053
1054 /* For ILK+ */
1055 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1056                            struct intel_pch_pll *pll,
1057                            struct intel_crtc *crtc,
1058                            bool state)
1059 {
1060         u32 val;
1061         bool cur_state;
1062
1063         if (HAS_PCH_LPT(dev_priv->dev)) {
1064                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1065                 return;
1066         }
1067
1068         if (WARN (!pll,
1069                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1070                 return;
1071
1072         val = I915_READ(pll->pll_reg);
1073         cur_state = !!(val & DPLL_VCO_ENABLE);
1074         WARN(cur_state != state,
1075              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1076              pll->pll_reg, state_string(state), state_string(cur_state), val);
1077
1078         /* Make sure the selected PLL is correctly attached to the transcoder */
1079         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1080                 u32 pch_dpll;
1081
1082                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1083                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1084                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1085                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1086                           cur_state, crtc->pipe, pch_dpll)) {
1087                         cur_state = !!(val >> (4*crtc->pipe + 3));
1088                         WARN(cur_state != state,
1089                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1090                              pll->pll_reg == _PCH_DPLL_B,
1091                              state_string(state),
1092                              crtc->pipe,
1093                              val);
1094                 }
1095         }
1096 }
1097 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1098 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1099
1100 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1101                           enum pipe pipe, bool state)
1102 {
1103         int reg;
1104         u32 val;
1105         bool cur_state;
1106
1107         if (IS_HASWELL(dev_priv->dev)) {
1108                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1109                 reg = DDI_FUNC_CTL(pipe);
1110                 val = I915_READ(reg);
1111                 cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
1112         } else {
1113                 reg = FDI_TX_CTL(pipe);
1114                 val = I915_READ(reg);
1115                 cur_state = !!(val & FDI_TX_ENABLE);
1116         }
1117         WARN(cur_state != state,
1118              "FDI TX state assertion failure (expected %s, current %s)\n",
1119              state_string(state), state_string(cur_state));
1120 }
1121 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1122 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1123
1124 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1125                           enum pipe pipe, bool state)
1126 {
1127         int reg;
1128         u32 val;
1129         bool cur_state;
1130
1131         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1132                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1133                         return;
1134         } else {
1135                 reg = FDI_RX_CTL(pipe);
1136                 val = I915_READ(reg);
1137                 cur_state = !!(val & FDI_RX_ENABLE);
1138         }
1139         WARN(cur_state != state,
1140              "FDI RX state assertion failure (expected %s, current %s)\n",
1141              state_string(state), state_string(cur_state));
1142 }
1143 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1144 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1145
1146 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1147                                       enum pipe pipe)
1148 {
1149         int reg;
1150         u32 val;
1151
1152         /* ILK FDI PLL is always enabled */
1153         if (dev_priv->info->gen == 5)
1154                 return;
1155
1156         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1157         if (IS_HASWELL(dev_priv->dev))
1158                 return;
1159
1160         reg = FDI_TX_CTL(pipe);
1161         val = I915_READ(reg);
1162         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1163 }
1164
1165 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1166                                       enum pipe pipe)
1167 {
1168         int reg;
1169         u32 val;
1170
1171         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1172                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1173                 return;
1174         }
1175         reg = FDI_RX_CTL(pipe);
1176         val = I915_READ(reg);
1177         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1178 }
1179
1180 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1181                                   enum pipe pipe)
1182 {
1183         int pp_reg, lvds_reg;
1184         u32 val;
1185         enum pipe panel_pipe = PIPE_A;
1186         bool locked = true;
1187
1188         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1189                 pp_reg = PCH_PP_CONTROL;
1190                 lvds_reg = PCH_LVDS;
1191         } else {
1192                 pp_reg = PP_CONTROL;
1193                 lvds_reg = LVDS;
1194         }
1195
1196         val = I915_READ(pp_reg);
1197         if (!(val & PANEL_POWER_ON) ||
1198             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1199                 locked = false;
1200
1201         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1202                 panel_pipe = PIPE_B;
1203
1204         WARN(panel_pipe == pipe && locked,
1205              "panel assertion failure, pipe %c regs locked\n",
1206              pipe_name(pipe));
1207 }
1208
1209 void assert_pipe(struct drm_i915_private *dev_priv,
1210                  enum pipe pipe, bool state)
1211 {
1212         int reg;
1213         u32 val;
1214         bool cur_state;
1215
1216         /* if we need the pipe A quirk it must be always on */
1217         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1218                 state = true;
1219
1220         reg = PIPECONF(pipe);
1221         val = I915_READ(reg);
1222         cur_state = !!(val & PIPECONF_ENABLE);
1223         WARN(cur_state != state,
1224              "pipe %c assertion failure (expected %s, current %s)\n",
1225              pipe_name(pipe), state_string(state), state_string(cur_state));
1226 }
1227
1228 static void assert_plane(struct drm_i915_private *dev_priv,
1229                          enum plane plane, bool state)
1230 {
1231         int reg;
1232         u32 val;
1233         bool cur_state;
1234
1235         reg = DSPCNTR(plane);
1236         val = I915_READ(reg);
1237         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1238         WARN(cur_state != state,
1239              "plane %c assertion failure (expected %s, current %s)\n",
1240              plane_name(plane), state_string(state), state_string(cur_state));
1241 }
1242
1243 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1244 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1245
1246 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1247                                    enum pipe pipe)
1248 {
1249         int reg, i;
1250         u32 val;
1251         int cur_pipe;
1252
1253         /* Planes are fixed to pipes on ILK+ */
1254         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1255                 reg = DSPCNTR(pipe);
1256                 val = I915_READ(reg);
1257                 WARN((val & DISPLAY_PLANE_ENABLE),
1258                      "plane %c assertion failure, should be disabled but not\n",
1259                      plane_name(pipe));
1260                 return;
1261         }
1262
1263         /* Need to check both planes against the pipe */
1264         for (i = 0; i < 2; i++) {
1265                 reg = DSPCNTR(i);
1266                 val = I915_READ(reg);
1267                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1268                         DISPPLANE_SEL_PIPE_SHIFT;
1269                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1270                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1271                      plane_name(i), pipe_name(pipe));
1272         }
1273 }
1274
1275 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1276 {
1277         u32 val;
1278         bool enabled;
1279
1280         if (HAS_PCH_LPT(dev_priv->dev)) {
1281                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1282                 return;
1283         }
1284
1285         val = I915_READ(PCH_DREF_CONTROL);
1286         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1287                             DREF_SUPERSPREAD_SOURCE_MASK));
1288         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1289 }
1290
1291 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1292                                        enum pipe pipe)
1293 {
1294         int reg;
1295         u32 val;
1296         bool enabled;
1297
1298         reg = TRANSCONF(pipe);
1299         val = I915_READ(reg);
1300         enabled = !!(val & TRANS_ENABLE);
1301         WARN(enabled,
1302              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1303              pipe_name(pipe));
1304 }
1305
1306 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1307                             enum pipe pipe, u32 port_sel, u32 val)
1308 {
1309         if ((val & DP_PORT_EN) == 0)
1310                 return false;
1311
1312         if (HAS_PCH_CPT(dev_priv->dev)) {
1313                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1314                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1315                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316                         return false;
1317         } else {
1318                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1319                         return false;
1320         }
1321         return true;
1322 }
1323
1324 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1325                               enum pipe pipe, u32 val)
1326 {
1327         if ((val & PORT_ENABLE) == 0)
1328                 return false;
1329
1330         if (HAS_PCH_CPT(dev_priv->dev)) {
1331                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1332                         return false;
1333         } else {
1334                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1335                         return false;
1336         }
1337         return true;
1338 }
1339
1340 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1341                               enum pipe pipe, u32 val)
1342 {
1343         if ((val & LVDS_PORT_EN) == 0)
1344                 return false;
1345
1346         if (HAS_PCH_CPT(dev_priv->dev)) {
1347                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1348                         return false;
1349         } else {
1350                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1351                         return false;
1352         }
1353         return true;
1354 }
1355
1356 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1357                               enum pipe pipe, u32 val)
1358 {
1359         if ((val & ADPA_DAC_ENABLE) == 0)
1360                 return false;
1361         if (HAS_PCH_CPT(dev_priv->dev)) {
1362                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1363                         return false;
1364         } else {
1365                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1366                         return false;
1367         }
1368         return true;
1369 }
1370
1371 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1372                                    enum pipe pipe, int reg, u32 port_sel)
1373 {
1374         u32 val = I915_READ(reg);
1375         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1376              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1377              reg, pipe_name(pipe));
1378
1379         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
1380              "IBX PCH dp port still using transcoder B\n");
1381 }
1382
1383 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1384                                      enum pipe pipe, int reg)
1385 {
1386         u32 val = I915_READ(reg);
1387         WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1388              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1389              reg, pipe_name(pipe));
1390
1391         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
1392              "IBX PCH hdmi port still using transcoder B\n");
1393 }
1394
1395 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1396                                       enum pipe pipe)
1397 {
1398         int reg;
1399         u32 val;
1400
1401         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1402         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1403         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1404
1405         reg = PCH_ADPA;
1406         val = I915_READ(reg);
1407         WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1408              "PCH VGA enabled on transcoder %c, should be disabled\n",
1409              pipe_name(pipe));
1410
1411         reg = PCH_LVDS;
1412         val = I915_READ(reg);
1413         WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1414              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1415              pipe_name(pipe));
1416
1417         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1418         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1419         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1420 }
1421
1422 /**
1423  * intel_enable_pll - enable a PLL
1424  * @dev_priv: i915 private structure
1425  * @pipe: pipe PLL to enable
1426  *
1427  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1428  * make sure the PLL reg is writable first though, since the panel write
1429  * protect mechanism may be enabled.
1430  *
1431  * Note!  This is for pre-ILK only.
1432  */
1433 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1434 {
1435         int reg;
1436         u32 val;
1437
1438         /* No really, not for ILK+ */
1439         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1440
1441         /* PLL is protected by panel, make sure we can write it */
1442         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1443                 assert_panel_unlocked(dev_priv, pipe);
1444
1445         reg = DPLL(pipe);
1446         val = I915_READ(reg);
1447         val |= DPLL_VCO_ENABLE;
1448
1449         /* We do this three times for luck */
1450         I915_WRITE(reg, val);
1451         POSTING_READ(reg);
1452         udelay(150); /* wait for warmup */
1453         I915_WRITE(reg, val);
1454         POSTING_READ(reg);
1455         udelay(150); /* wait for warmup */
1456         I915_WRITE(reg, val);
1457         POSTING_READ(reg);
1458         udelay(150); /* wait for warmup */
1459 }
1460
1461 /**
1462  * intel_disable_pll - disable a PLL
1463  * @dev_priv: i915 private structure
1464  * @pipe: pipe PLL to disable
1465  *
1466  * Disable the PLL for @pipe, making sure the pipe is off first.
1467  *
1468  * Note!  This is for pre-ILK only.
1469  */
1470 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1471 {
1472         int reg;
1473         u32 val;
1474
1475         /* Don't disable pipe A or pipe A PLLs if needed */
1476         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1477                 return;
1478
1479         /* Make sure the pipe isn't still relying on us */
1480         assert_pipe_disabled(dev_priv, pipe);
1481
1482         reg = DPLL(pipe);
1483         val = I915_READ(reg);
1484         val &= ~DPLL_VCO_ENABLE;
1485         I915_WRITE(reg, val);
1486         POSTING_READ(reg);
1487 }
1488
1489 /* SBI access */
1490 static void
1491 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1492 {
1493         unsigned long flags;
1494
1495         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1496         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1497                                 100)) {
1498                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1499                 goto out_unlock;
1500         }
1501
1502         I915_WRITE(SBI_ADDR,
1503                         (reg << 16));
1504         I915_WRITE(SBI_DATA,
1505                         value);
1506         I915_WRITE(SBI_CTL_STAT,
1507                         SBI_BUSY |
1508                         SBI_CTL_OP_CRWR);
1509
1510         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1511                                 100)) {
1512                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1513                 goto out_unlock;
1514         }
1515
1516 out_unlock:
1517         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1518 }
1519
1520 static u32
1521 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1522 {
1523         unsigned long flags;
1524         u32 value = 0;
1525
1526         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1527         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1528                                 100)) {
1529                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1530                 goto out_unlock;
1531         }
1532
1533         I915_WRITE(SBI_ADDR,
1534                         (reg << 16));
1535         I915_WRITE(SBI_CTL_STAT,
1536                         SBI_BUSY |
1537                         SBI_CTL_OP_CRRD);
1538
1539         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1540                                 100)) {
1541                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1542                 goto out_unlock;
1543         }
1544
1545         value = I915_READ(SBI_DATA);
1546
1547 out_unlock:
1548         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1549         return value;
1550 }
1551
1552 /**
1553  * intel_enable_pch_pll - enable PCH PLL
1554  * @dev_priv: i915 private structure
1555  * @pipe: pipe PLL to enable
1556  *
1557  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1558  * drives the transcoder clock.
1559  */
1560 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1561 {
1562         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1563         struct intel_pch_pll *pll;
1564         int reg;
1565         u32 val;
1566
1567         /* PCH PLLs only available on ILK, SNB and IVB */
1568         BUG_ON(dev_priv->info->gen < 5);
1569         pll = intel_crtc->pch_pll;
1570         if (pll == NULL)
1571                 return;
1572
1573         if (WARN_ON(pll->refcount == 0))
1574                 return;
1575
1576         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1577                       pll->pll_reg, pll->active, pll->on,
1578                       intel_crtc->base.base.id);
1579
1580         /* PCH refclock must be enabled first */
1581         assert_pch_refclk_enabled(dev_priv);
1582
1583         if (pll->active++ && pll->on) {
1584                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1585                 return;
1586         }
1587
1588         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1589
1590         reg = pll->pll_reg;
1591         val = I915_READ(reg);
1592         val |= DPLL_VCO_ENABLE;
1593         I915_WRITE(reg, val);
1594         POSTING_READ(reg);
1595         udelay(200);
1596
1597         pll->on = true;
1598 }
1599
1600 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1601 {
1602         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1603         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1604         int reg;
1605         u32 val;
1606
1607         /* PCH only available on ILK+ */
1608         BUG_ON(dev_priv->info->gen < 5);
1609         if (pll == NULL)
1610                return;
1611
1612         if (WARN_ON(pll->refcount == 0))
1613                 return;
1614
1615         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1616                       pll->pll_reg, pll->active, pll->on,
1617                       intel_crtc->base.base.id);
1618
1619         if (WARN_ON(pll->active == 0)) {
1620                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1621                 return;
1622         }
1623
1624         if (--pll->active) {
1625                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1626                 return;
1627         }
1628
1629         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1630
1631         /* Make sure transcoder isn't still depending on us */
1632         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1633
1634         reg = pll->pll_reg;
1635         val = I915_READ(reg);
1636         val &= ~DPLL_VCO_ENABLE;
1637         I915_WRITE(reg, val);
1638         POSTING_READ(reg);
1639         udelay(200);
1640
1641         pll->on = false;
1642 }
1643
1644 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1645                                     enum pipe pipe)
1646 {
1647         int reg;
1648         u32 val, pipeconf_val;
1649         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1650
1651         /* PCH only available on ILK+ */
1652         BUG_ON(dev_priv->info->gen < 5);
1653
1654         /* Make sure PCH DPLL is enabled */
1655         assert_pch_pll_enabled(dev_priv,
1656                                to_intel_crtc(crtc)->pch_pll,
1657                                to_intel_crtc(crtc));
1658
1659         /* FDI must be feeding us bits for PCH ports */
1660         assert_fdi_tx_enabled(dev_priv, pipe);
1661         assert_fdi_rx_enabled(dev_priv, pipe);
1662
1663         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1664                 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1665                 return;
1666         }
1667         reg = TRANSCONF(pipe);
1668         val = I915_READ(reg);
1669         pipeconf_val = I915_READ(PIPECONF(pipe));
1670
1671         if (HAS_PCH_IBX(dev_priv->dev)) {
1672                 /*
1673                  * make the BPC in transcoder be consistent with
1674                  * that in pipeconf reg.
1675                  */
1676                 val &= ~PIPE_BPC_MASK;
1677                 val |= pipeconf_val & PIPE_BPC_MASK;
1678         }
1679
1680         val &= ~TRANS_INTERLACE_MASK;
1681         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1682                 if (HAS_PCH_IBX(dev_priv->dev) &&
1683                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1684                         val |= TRANS_LEGACY_INTERLACED_ILK;
1685                 else
1686                         val |= TRANS_INTERLACED;
1687         else
1688                 val |= TRANS_PROGRESSIVE;
1689
1690         I915_WRITE(reg, val | TRANS_ENABLE);
1691         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1692                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1693 }
1694
1695 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1696                                      enum pipe pipe)
1697 {
1698         int reg;
1699         u32 val;
1700
1701         /* FDI relies on the transcoder */
1702         assert_fdi_tx_disabled(dev_priv, pipe);
1703         assert_fdi_rx_disabled(dev_priv, pipe);
1704
1705         /* Ports must be off as well */
1706         assert_pch_ports_disabled(dev_priv, pipe);
1707
1708         reg = TRANSCONF(pipe);
1709         val = I915_READ(reg);
1710         val &= ~TRANS_ENABLE;
1711         I915_WRITE(reg, val);
1712         /* wait for PCH transcoder off, transcoder state */
1713         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1714                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1715 }
1716
1717 /**
1718  * intel_enable_pipe - enable a pipe, asserting requirements
1719  * @dev_priv: i915 private structure
1720  * @pipe: pipe to enable
1721  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1722  *
1723  * Enable @pipe, making sure that various hardware specific requirements
1724  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1725  *
1726  * @pipe should be %PIPE_A or %PIPE_B.
1727  *
1728  * Will wait until the pipe is actually running (i.e. first vblank) before
1729  * returning.
1730  */
1731 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1732                               bool pch_port)
1733 {
1734         int reg;
1735         u32 val;
1736
1737         /*
1738          * A pipe without a PLL won't actually be able to drive bits from
1739          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1740          * need the check.
1741          */
1742         if (!HAS_PCH_SPLIT(dev_priv->dev))
1743                 assert_pll_enabled(dev_priv, pipe);
1744         else {
1745                 if (pch_port) {
1746                         /* if driving the PCH, we need FDI enabled */
1747                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1748                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1749                 }
1750                 /* FIXME: assert CPU port conditions for SNB+ */
1751         }
1752
1753         reg = PIPECONF(pipe);
1754         val = I915_READ(reg);
1755         if (val & PIPECONF_ENABLE)
1756                 return;
1757
1758         I915_WRITE(reg, val | PIPECONF_ENABLE);
1759         intel_wait_for_vblank(dev_priv->dev, pipe);
1760 }
1761
1762 /**
1763  * intel_disable_pipe - disable a pipe, asserting requirements
1764  * @dev_priv: i915 private structure
1765  * @pipe: pipe to disable
1766  *
1767  * Disable @pipe, making sure that various hardware specific requirements
1768  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1769  *
1770  * @pipe should be %PIPE_A or %PIPE_B.
1771  *
1772  * Will wait until the pipe has shut down before returning.
1773  */
1774 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1775                                enum pipe pipe)
1776 {
1777         int reg;
1778         u32 val;
1779
1780         /*
1781          * Make sure planes won't keep trying to pump pixels to us,
1782          * or we might hang the display.
1783          */
1784         assert_planes_disabled(dev_priv, pipe);
1785
1786         /* Don't disable pipe A or pipe A PLLs if needed */
1787         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1788                 return;
1789
1790         reg = PIPECONF(pipe);
1791         val = I915_READ(reg);
1792         if ((val & PIPECONF_ENABLE) == 0)
1793                 return;
1794
1795         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1796         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1797 }
1798
1799 /*
1800  * Plane regs are double buffered, going from enabled->disabled needs a
1801  * trigger in order to latch.  The display address reg provides this.
1802  */
1803 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1804                                       enum plane plane)
1805 {
1806         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1807         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1808 }
1809
1810 /**
1811  * intel_enable_plane - enable a display plane on a given pipe
1812  * @dev_priv: i915 private structure
1813  * @plane: plane to enable
1814  * @pipe: pipe being fed
1815  *
1816  * Enable @plane on @pipe, making sure that @pipe is running first.
1817  */
1818 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1819                                enum plane plane, enum pipe pipe)
1820 {
1821         int reg;
1822         u32 val;
1823
1824         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1825         assert_pipe_enabled(dev_priv, pipe);
1826
1827         reg = DSPCNTR(plane);
1828         val = I915_READ(reg);
1829         if (val & DISPLAY_PLANE_ENABLE)
1830                 return;
1831
1832         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1833         intel_flush_display_plane(dev_priv, plane);
1834         intel_wait_for_vblank(dev_priv->dev, pipe);
1835 }
1836
1837 /**
1838  * intel_disable_plane - disable a display plane
1839  * @dev_priv: i915 private structure
1840  * @plane: plane to disable
1841  * @pipe: pipe consuming the data
1842  *
1843  * Disable @plane; should be an independent operation.
1844  */
1845 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1846                                 enum plane plane, enum pipe pipe)
1847 {
1848         int reg;
1849         u32 val;
1850
1851         reg = DSPCNTR(plane);
1852         val = I915_READ(reg);
1853         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1854                 return;
1855
1856         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1857         intel_flush_display_plane(dev_priv, plane);
1858         intel_wait_for_vblank(dev_priv->dev, pipe);
1859 }
1860
1861 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1862                            enum pipe pipe, int reg, u32 port_sel)
1863 {
1864         u32 val = I915_READ(reg);
1865         if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1866                 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1867                 I915_WRITE(reg, val & ~DP_PORT_EN);
1868         }
1869 }
1870
1871 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1872                              enum pipe pipe, int reg)
1873 {
1874         u32 val = I915_READ(reg);
1875         if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1876                 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1877                               reg, pipe);
1878                 I915_WRITE(reg, val & ~PORT_ENABLE);
1879         }
1880 }
1881
1882 /* Disable any ports connected to this transcoder */
1883 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1884                                     enum pipe pipe)
1885 {
1886         u32 reg, val;
1887
1888         val = I915_READ(PCH_PP_CONTROL);
1889         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1890
1891         disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1892         disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1893         disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1894
1895         reg = PCH_ADPA;
1896         val = I915_READ(reg);
1897         if (adpa_pipe_enabled(dev_priv, val, pipe))
1898                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1899
1900         reg = PCH_LVDS;
1901         val = I915_READ(reg);
1902         if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1903                 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1904                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1905                 POSTING_READ(reg);
1906                 udelay(100);
1907         }
1908
1909         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1910         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1911         disable_pch_hdmi(dev_priv, pipe, HDMID);
1912 }
1913
1914 int
1915 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1916                            struct drm_i915_gem_object *obj,
1917                            struct intel_ring_buffer *pipelined)
1918 {
1919         struct drm_i915_private *dev_priv = dev->dev_private;
1920         u32 alignment;
1921         int ret;
1922
1923         switch (obj->tiling_mode) {
1924         case I915_TILING_NONE:
1925                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1926                         alignment = 128 * 1024;
1927                 else if (INTEL_INFO(dev)->gen >= 4)
1928                         alignment = 4 * 1024;
1929                 else
1930                         alignment = 64 * 1024;
1931                 break;
1932         case I915_TILING_X:
1933                 /* pin() will align the object as required by fence */
1934                 alignment = 0;
1935                 break;
1936         case I915_TILING_Y:
1937                 /* FIXME: Is this true? */
1938                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1939                 return -EINVAL;
1940         default:
1941                 BUG();
1942         }
1943
1944         dev_priv->mm.interruptible = false;
1945         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1946         if (ret)
1947                 goto err_interruptible;
1948
1949         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1950          * fence, whereas 965+ only requires a fence if using
1951          * framebuffer compression.  For simplicity, we always install
1952          * a fence as the cost is not that onerous.
1953          */
1954         ret = i915_gem_object_get_fence(obj);
1955         if (ret)
1956                 goto err_unpin;
1957
1958         i915_gem_object_pin_fence(obj);
1959
1960         dev_priv->mm.interruptible = true;
1961         return 0;
1962
1963 err_unpin:
1964         i915_gem_object_unpin(obj);
1965 err_interruptible:
1966         dev_priv->mm.interruptible = true;
1967         return ret;
1968 }
1969
1970 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1971 {
1972         i915_gem_object_unpin_fence(obj);
1973         i915_gem_object_unpin(obj);
1974 }
1975
1976 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1977  * is assumed to be a power-of-two. */
1978 static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1979                                                         unsigned int bpp,
1980                                                         unsigned int pitch)
1981 {
1982         int tile_rows, tiles;
1983
1984         tile_rows = *y / 8;
1985         *y %= 8;
1986         tiles = *x / (512/bpp);
1987         *x %= 512/bpp;
1988
1989         return tile_rows * pitch * 8 + tiles * 4096;
1990 }
1991
1992 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1993                              int x, int y)
1994 {
1995         struct drm_device *dev = crtc->dev;
1996         struct drm_i915_private *dev_priv = dev->dev_private;
1997         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1998         struct intel_framebuffer *intel_fb;
1999         struct drm_i915_gem_object *obj;
2000         int plane = intel_crtc->plane;
2001         unsigned long linear_offset;
2002         u32 dspcntr;
2003         u32 reg;
2004
2005         switch (plane) {
2006         case 0:
2007         case 1:
2008                 break;
2009         default:
2010                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2011                 return -EINVAL;
2012         }
2013
2014         intel_fb = to_intel_framebuffer(fb);
2015         obj = intel_fb->obj;
2016
2017         reg = DSPCNTR(plane);
2018         dspcntr = I915_READ(reg);
2019         /* Mask out pixel format bits in case we change it */
2020         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2021         switch (fb->bits_per_pixel) {
2022         case 8:
2023                 dspcntr |= DISPPLANE_8BPP;
2024                 break;
2025         case 16:
2026                 if (fb->depth == 15)
2027                         dspcntr |= DISPPLANE_15_16BPP;
2028                 else
2029                         dspcntr |= DISPPLANE_16BPP;
2030                 break;
2031         case 24:
2032         case 32:
2033                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2034                 break;
2035         default:
2036                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2037                 return -EINVAL;
2038         }
2039         if (INTEL_INFO(dev)->gen >= 4) {
2040                 if (obj->tiling_mode != I915_TILING_NONE)
2041                         dspcntr |= DISPPLANE_TILED;
2042                 else
2043                         dspcntr &= ~DISPPLANE_TILED;
2044         }
2045
2046         I915_WRITE(reg, dspcntr);
2047
2048         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2049
2050         if (INTEL_INFO(dev)->gen >= 4) {
2051                 intel_crtc->dspaddr_offset =
2052                         gen4_compute_dspaddr_offset_xtiled(&x, &y,
2053                                                            fb->bits_per_pixel / 8,
2054                                                            fb->pitches[0]);
2055                 linear_offset -= intel_crtc->dspaddr_offset;
2056         } else {
2057                 intel_crtc->dspaddr_offset = linear_offset;
2058         }
2059
2060         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2061                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2062         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2063         if (INTEL_INFO(dev)->gen >= 4) {
2064                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2065                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2066                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2067                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2068         } else
2069                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2070         POSTING_READ(reg);
2071
2072         return 0;
2073 }
2074
2075 static int ironlake_update_plane(struct drm_crtc *crtc,
2076                                  struct drm_framebuffer *fb, int x, int y)
2077 {
2078         struct drm_device *dev = crtc->dev;
2079         struct drm_i915_private *dev_priv = dev->dev_private;
2080         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2081         struct intel_framebuffer *intel_fb;
2082         struct drm_i915_gem_object *obj;
2083         int plane = intel_crtc->plane;
2084         unsigned long linear_offset;
2085         u32 dspcntr;
2086         u32 reg;
2087
2088         switch (plane) {
2089         case 0:
2090         case 1:
2091         case 2:
2092                 break;
2093         default:
2094                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2095                 return -EINVAL;
2096         }
2097
2098         intel_fb = to_intel_framebuffer(fb);
2099         obj = intel_fb->obj;
2100
2101         reg = DSPCNTR(plane);
2102         dspcntr = I915_READ(reg);
2103         /* Mask out pixel format bits in case we change it */
2104         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2105         switch (fb->bits_per_pixel) {
2106         case 8:
2107                 dspcntr |= DISPPLANE_8BPP;
2108                 break;
2109         case 16:
2110                 if (fb->depth != 16)
2111                         return -EINVAL;
2112
2113                 dspcntr |= DISPPLANE_16BPP;
2114                 break;
2115         case 24:
2116         case 32:
2117                 if (fb->depth == 24)
2118                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2119                 else if (fb->depth == 30)
2120                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2121                 else
2122                         return -EINVAL;
2123                 break;
2124         default:
2125                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2126                 return -EINVAL;
2127         }
2128
2129         if (obj->tiling_mode != I915_TILING_NONE)
2130                 dspcntr |= DISPPLANE_TILED;
2131         else
2132                 dspcntr &= ~DISPPLANE_TILED;
2133
2134         /* must disable */
2135         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2136
2137         I915_WRITE(reg, dspcntr);
2138
2139         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2140         intel_crtc->dspaddr_offset =
2141                 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2142                                                    fb->bits_per_pixel / 8,
2143                                                    fb->pitches[0]);
2144         linear_offset -= intel_crtc->dspaddr_offset;
2145
2146         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2147                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2148         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2149         I915_MODIFY_DISPBASE(DSPSURF(plane),
2150                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2151         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2152         I915_WRITE(DSPLINOFF(plane), linear_offset);
2153         POSTING_READ(reg);
2154
2155         return 0;
2156 }
2157
2158 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2159 static int
2160 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2161                            int x, int y, enum mode_set_atomic state)
2162 {
2163         struct drm_device *dev = crtc->dev;
2164         struct drm_i915_private *dev_priv = dev->dev_private;
2165
2166         if (dev_priv->display.disable_fbc)
2167                 dev_priv->display.disable_fbc(dev);
2168         intel_increase_pllclock(crtc);
2169
2170         return dev_priv->display.update_plane(crtc, fb, x, y);
2171 }
2172
2173 static int
2174 intel_finish_fb(struct drm_framebuffer *old_fb)
2175 {
2176         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2177         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2178         bool was_interruptible = dev_priv->mm.interruptible;
2179         int ret;
2180
2181         wait_event(dev_priv->pending_flip_queue,
2182                    atomic_read(&dev_priv->mm.wedged) ||
2183                    atomic_read(&obj->pending_flip) == 0);
2184
2185         /* Big Hammer, we also need to ensure that any pending
2186          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2187          * current scanout is retired before unpinning the old
2188          * framebuffer.
2189          *
2190          * This should only fail upon a hung GPU, in which case we
2191          * can safely continue.
2192          */
2193         dev_priv->mm.interruptible = false;
2194         ret = i915_gem_object_finish_gpu(obj);
2195         dev_priv->mm.interruptible = was_interruptible;
2196
2197         return ret;
2198 }
2199
2200 static int
2201 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2202                     struct drm_framebuffer *old_fb)
2203 {
2204         struct drm_device *dev = crtc->dev;
2205         struct drm_i915_private *dev_priv = dev->dev_private;
2206         struct drm_i915_master_private *master_priv;
2207         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2208         int ret;
2209
2210         /* no fb bound */
2211         if (!crtc->fb) {
2212                 DRM_ERROR("No FB bound\n");
2213                 return 0;
2214         }
2215
2216         if(intel_crtc->plane > dev_priv->num_pipe) {
2217                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2218                                 intel_crtc->plane,
2219                                 dev_priv->num_pipe);
2220                 return -EINVAL;
2221         }
2222
2223         mutex_lock(&dev->struct_mutex);
2224         ret = intel_pin_and_fence_fb_obj(dev,
2225                                          to_intel_framebuffer(crtc->fb)->obj,
2226                                          NULL);
2227         if (ret != 0) {
2228                 mutex_unlock(&dev->struct_mutex);
2229                 DRM_ERROR("pin & fence failed\n");
2230                 return ret;
2231         }
2232
2233         if (old_fb)
2234                 intel_finish_fb(old_fb);
2235
2236         ret = dev_priv->display.update_plane(crtc, crtc->fb, x, y);
2237         if (ret) {
2238                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2239                 mutex_unlock(&dev->struct_mutex);
2240                 DRM_ERROR("failed to update base address\n");
2241                 return ret;
2242         }
2243
2244         if (old_fb) {
2245                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2246                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2247         }
2248
2249         intel_update_fbc(dev);
2250         mutex_unlock(&dev->struct_mutex);
2251
2252         if (!dev->primary->master)
2253                 return 0;
2254
2255         master_priv = dev->primary->master->driver_priv;
2256         if (!master_priv->sarea_priv)
2257                 return 0;
2258
2259         if (intel_crtc->pipe) {
2260                 master_priv->sarea_priv->pipeB_x = x;
2261                 master_priv->sarea_priv->pipeB_y = y;
2262         } else {
2263                 master_priv->sarea_priv->pipeA_x = x;
2264                 master_priv->sarea_priv->pipeA_y = y;
2265         }
2266
2267         return 0;
2268 }
2269
2270 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2271 {
2272         struct drm_device *dev = crtc->dev;
2273         struct drm_i915_private *dev_priv = dev->dev_private;
2274         u32 dpa_ctl;
2275
2276         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2277         dpa_ctl = I915_READ(DP_A);
2278         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2279
2280         if (clock < 200000) {
2281                 u32 temp;
2282                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2283                 /* workaround for 160Mhz:
2284                    1) program 0x4600c bits 15:0 = 0x8124
2285                    2) program 0x46010 bit 0 = 1
2286                    3) program 0x46034 bit 24 = 1
2287                    4) program 0x64000 bit 14 = 1
2288                    */
2289                 temp = I915_READ(0x4600c);
2290                 temp &= 0xffff0000;
2291                 I915_WRITE(0x4600c, temp | 0x8124);
2292
2293                 temp = I915_READ(0x46010);
2294                 I915_WRITE(0x46010, temp | 1);
2295
2296                 temp = I915_READ(0x46034);
2297                 I915_WRITE(0x46034, temp | (1 << 24));
2298         } else {
2299                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2300         }
2301         I915_WRITE(DP_A, dpa_ctl);
2302
2303         POSTING_READ(DP_A);
2304         udelay(500);
2305 }
2306
2307 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2308 {
2309         struct drm_device *dev = crtc->dev;
2310         struct drm_i915_private *dev_priv = dev->dev_private;
2311         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2312         int pipe = intel_crtc->pipe;
2313         u32 reg, temp;
2314
2315         /* enable normal train */
2316         reg = FDI_TX_CTL(pipe);
2317         temp = I915_READ(reg);
2318         if (IS_IVYBRIDGE(dev)) {
2319                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2320                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2321         } else {
2322                 temp &= ~FDI_LINK_TRAIN_NONE;
2323                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2324         }
2325         I915_WRITE(reg, temp);
2326
2327         reg = FDI_RX_CTL(pipe);
2328         temp = I915_READ(reg);
2329         if (HAS_PCH_CPT(dev)) {
2330                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2331                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2332         } else {
2333                 temp &= ~FDI_LINK_TRAIN_NONE;
2334                 temp |= FDI_LINK_TRAIN_NONE;
2335         }
2336         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2337
2338         /* wait one idle pattern time */
2339         POSTING_READ(reg);
2340         udelay(1000);
2341
2342         /* IVB wants error correction enabled */
2343         if (IS_IVYBRIDGE(dev))
2344                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2345                            FDI_FE_ERRC_ENABLE);
2346 }
2347
2348 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2349 {
2350         struct drm_i915_private *dev_priv = dev->dev_private;
2351         u32 flags = I915_READ(SOUTH_CHICKEN1);
2352
2353         flags |= FDI_PHASE_SYNC_OVR(pipe);
2354         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2355         flags |= FDI_PHASE_SYNC_EN(pipe);
2356         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2357         POSTING_READ(SOUTH_CHICKEN1);
2358 }
2359
2360 /* The FDI link training functions for ILK/Ibexpeak. */
2361 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2362 {
2363         struct drm_device *dev = crtc->dev;
2364         struct drm_i915_private *dev_priv = dev->dev_private;
2365         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2366         int pipe = intel_crtc->pipe;
2367         int plane = intel_crtc->plane;
2368         u32 reg, temp, tries;
2369
2370         /* FDI needs bits from pipe & plane first */
2371         assert_pipe_enabled(dev_priv, pipe);
2372         assert_plane_enabled(dev_priv, plane);
2373
2374         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2375            for train result */
2376         reg = FDI_RX_IMR(pipe);
2377         temp = I915_READ(reg);
2378         temp &= ~FDI_RX_SYMBOL_LOCK;
2379         temp &= ~FDI_RX_BIT_LOCK;
2380         I915_WRITE(reg, temp);
2381         I915_READ(reg);
2382         udelay(150);
2383
2384         /* enable CPU FDI TX and PCH FDI RX */
2385         reg = FDI_TX_CTL(pipe);
2386         temp = I915_READ(reg);
2387         temp &= ~(7 << 19);
2388         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2389         temp &= ~FDI_LINK_TRAIN_NONE;
2390         temp |= FDI_LINK_TRAIN_PATTERN_1;
2391         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2392
2393         reg = FDI_RX_CTL(pipe);
2394         temp = I915_READ(reg);
2395         temp &= ~FDI_LINK_TRAIN_NONE;
2396         temp |= FDI_LINK_TRAIN_PATTERN_1;
2397         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2398
2399         POSTING_READ(reg);
2400         udelay(150);
2401
2402         /* Ironlake workaround, enable clock pointer after FDI enable*/
2403         if (HAS_PCH_IBX(dev)) {
2404                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2405                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2406                            FDI_RX_PHASE_SYNC_POINTER_EN);
2407         }
2408
2409         reg = FDI_RX_IIR(pipe);
2410         for (tries = 0; tries < 5; tries++) {
2411                 temp = I915_READ(reg);
2412                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2413
2414                 if ((temp & FDI_RX_BIT_LOCK)) {
2415                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2416                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2417                         break;
2418                 }
2419         }
2420         if (tries == 5)
2421                 DRM_ERROR("FDI train 1 fail!\n");
2422
2423         /* Train 2 */
2424         reg = FDI_TX_CTL(pipe);
2425         temp = I915_READ(reg);
2426         temp &= ~FDI_LINK_TRAIN_NONE;
2427         temp |= FDI_LINK_TRAIN_PATTERN_2;
2428         I915_WRITE(reg, temp);
2429
2430         reg = FDI_RX_CTL(pipe);
2431         temp = I915_READ(reg);
2432         temp &= ~FDI_LINK_TRAIN_NONE;
2433         temp |= FDI_LINK_TRAIN_PATTERN_2;
2434         I915_WRITE(reg, temp);
2435
2436         POSTING_READ(reg);
2437         udelay(150);
2438
2439         reg = FDI_RX_IIR(pipe);
2440         for (tries = 0; tries < 5; tries++) {
2441                 temp = I915_READ(reg);
2442                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2443
2444                 if (temp & FDI_RX_SYMBOL_LOCK) {
2445                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2446                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2447                         break;
2448                 }
2449         }
2450         if (tries == 5)
2451                 DRM_ERROR("FDI train 2 fail!\n");
2452
2453         DRM_DEBUG_KMS("FDI train done\n");
2454
2455 }
2456
2457 static const int snb_b_fdi_train_param[] = {
2458         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2459         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2460         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2461         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2462 };
2463
2464 /* The FDI link training functions for SNB/Cougarpoint. */
2465 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2466 {
2467         struct drm_device *dev = crtc->dev;
2468         struct drm_i915_private *dev_priv = dev->dev_private;
2469         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2470         int pipe = intel_crtc->pipe;
2471         u32 reg, temp, i, retry;
2472
2473         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2474            for train result */
2475         reg = FDI_RX_IMR(pipe);
2476         temp = I915_READ(reg);
2477         temp &= ~FDI_RX_SYMBOL_LOCK;
2478         temp &= ~FDI_RX_BIT_LOCK;
2479         I915_WRITE(reg, temp);
2480
2481         POSTING_READ(reg);
2482         udelay(150);
2483
2484         /* enable CPU FDI TX and PCH FDI RX */
2485         reg = FDI_TX_CTL(pipe);
2486         temp = I915_READ(reg);
2487         temp &= ~(7 << 19);
2488         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2489         temp &= ~FDI_LINK_TRAIN_NONE;
2490         temp |= FDI_LINK_TRAIN_PATTERN_1;
2491         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2492         /* SNB-B */
2493         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2494         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2495
2496         reg = FDI_RX_CTL(pipe);
2497         temp = I915_READ(reg);
2498         if (HAS_PCH_CPT(dev)) {
2499                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2500                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2501         } else {
2502                 temp &= ~FDI_LINK_TRAIN_NONE;
2503                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2504         }
2505         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2506
2507         POSTING_READ(reg);
2508         udelay(150);
2509
2510         if (HAS_PCH_CPT(dev))
2511                 cpt_phase_pointer_enable(dev, pipe);
2512
2513         for (i = 0; i < 4; i++) {
2514                 reg = FDI_TX_CTL(pipe);
2515                 temp = I915_READ(reg);
2516                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2517                 temp |= snb_b_fdi_train_param[i];
2518                 I915_WRITE(reg, temp);
2519
2520                 POSTING_READ(reg);
2521                 udelay(500);
2522
2523                 for (retry = 0; retry < 5; retry++) {
2524                         reg = FDI_RX_IIR(pipe);
2525                         temp = I915_READ(reg);
2526                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2527                         if (temp & FDI_RX_BIT_LOCK) {
2528                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2529                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2530                                 break;
2531                         }
2532                         udelay(50);
2533                 }
2534                 if (retry < 5)
2535                         break;
2536         }
2537         if (i == 4)
2538                 DRM_ERROR("FDI train 1 fail!\n");
2539
2540         /* Train 2 */
2541         reg = FDI_TX_CTL(pipe);
2542         temp = I915_READ(reg);
2543         temp &= ~FDI_LINK_TRAIN_NONE;
2544         temp |= FDI_LINK_TRAIN_PATTERN_2;
2545         if (IS_GEN6(dev)) {
2546                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2547                 /* SNB-B */
2548                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2549         }
2550         I915_WRITE(reg, temp);
2551
2552         reg = FDI_RX_CTL(pipe);
2553         temp = I915_READ(reg);
2554         if (HAS_PCH_CPT(dev)) {
2555                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2556                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2557         } else {
2558                 temp &= ~FDI_LINK_TRAIN_NONE;
2559                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2560         }
2561         I915_WRITE(reg, temp);
2562
2563         POSTING_READ(reg);
2564         udelay(150);
2565
2566         for (i = 0; i < 4; i++) {
2567                 reg = FDI_TX_CTL(pipe);
2568                 temp = I915_READ(reg);
2569                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2570                 temp |= snb_b_fdi_train_param[i];
2571                 I915_WRITE(reg, temp);
2572
2573                 POSTING_READ(reg);
2574                 udelay(500);
2575
2576                 for (retry = 0; retry < 5; retry++) {
2577                         reg = FDI_RX_IIR(pipe);
2578                         temp = I915_READ(reg);
2579                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2580                         if (temp & FDI_RX_SYMBOL_LOCK) {
2581                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2582                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2583                                 break;
2584                         }
2585                         udelay(50);
2586                 }
2587                 if (retry < 5)
2588                         break;
2589         }
2590         if (i == 4)
2591                 DRM_ERROR("FDI train 2 fail!\n");
2592
2593         DRM_DEBUG_KMS("FDI train done.\n");
2594 }
2595
2596 /* Manual link training for Ivy Bridge A0 parts */
2597 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2598 {
2599         struct drm_device *dev = crtc->dev;
2600         struct drm_i915_private *dev_priv = dev->dev_private;
2601         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2602         int pipe = intel_crtc->pipe;
2603         u32 reg, temp, i;
2604
2605         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2606            for train result */
2607         reg = FDI_RX_IMR(pipe);
2608         temp = I915_READ(reg);
2609         temp &= ~FDI_RX_SYMBOL_LOCK;
2610         temp &= ~FDI_RX_BIT_LOCK;
2611         I915_WRITE(reg, temp);
2612
2613         POSTING_READ(reg);
2614         udelay(150);
2615
2616         /* enable CPU FDI TX and PCH FDI RX */
2617         reg = FDI_TX_CTL(pipe);
2618         temp = I915_READ(reg);
2619         temp &= ~(7 << 19);
2620         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2621         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2622         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2623         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2624         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2625         temp |= FDI_COMPOSITE_SYNC;
2626         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2627
2628         reg = FDI_RX_CTL(pipe);
2629         temp = I915_READ(reg);
2630         temp &= ~FDI_LINK_TRAIN_AUTO;
2631         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2632         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2633         temp |= FDI_COMPOSITE_SYNC;
2634         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2635
2636         POSTING_READ(reg);
2637         udelay(150);
2638
2639         if (HAS_PCH_CPT(dev))
2640                 cpt_phase_pointer_enable(dev, pipe);
2641
2642         for (i = 0; i < 4; i++) {
2643                 reg = FDI_TX_CTL(pipe);
2644                 temp = I915_READ(reg);
2645                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2646                 temp |= snb_b_fdi_train_param[i];
2647                 I915_WRITE(reg, temp);
2648
2649                 POSTING_READ(reg);
2650                 udelay(500);
2651
2652                 reg = FDI_RX_IIR(pipe);
2653                 temp = I915_READ(reg);
2654                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2655
2656                 if (temp & FDI_RX_BIT_LOCK ||
2657                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2658                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2659                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2660                         break;
2661                 }
2662         }
2663         if (i == 4)
2664                 DRM_ERROR("FDI train 1 fail!\n");
2665
2666         /* Train 2 */
2667         reg = FDI_TX_CTL(pipe);
2668         temp = I915_READ(reg);
2669         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2670         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2671         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2672         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2673         I915_WRITE(reg, temp);
2674
2675         reg = FDI_RX_CTL(pipe);
2676         temp = I915_READ(reg);
2677         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2678         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2679         I915_WRITE(reg, temp);
2680
2681         POSTING_READ(reg);
2682         udelay(150);
2683
2684         for (i = 0; i < 4; i++) {
2685                 reg = FDI_TX_CTL(pipe);
2686                 temp = I915_READ(reg);
2687                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2688                 temp |= snb_b_fdi_train_param[i];
2689                 I915_WRITE(reg, temp);
2690
2691                 POSTING_READ(reg);
2692                 udelay(500);
2693
2694                 reg = FDI_RX_IIR(pipe);
2695                 temp = I915_READ(reg);
2696                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2697
2698                 if (temp & FDI_RX_SYMBOL_LOCK) {
2699                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2700                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2701                         break;
2702                 }
2703         }
2704         if (i == 4)
2705                 DRM_ERROR("FDI train 2 fail!\n");
2706
2707         DRM_DEBUG_KMS("FDI train done.\n");
2708 }
2709
2710 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2711 {
2712         struct drm_device *dev = crtc->dev;
2713         struct drm_i915_private *dev_priv = dev->dev_private;
2714         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2715         int pipe = intel_crtc->pipe;
2716         u32 reg, temp;
2717
2718         /* Write the TU size bits so error detection works */
2719         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2720                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2721
2722         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2723         reg = FDI_RX_CTL(pipe);
2724         temp = I915_READ(reg);
2725         temp &= ~((0x7 << 19) | (0x7 << 16));
2726         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2727         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2728         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2729
2730         POSTING_READ(reg);
2731         udelay(200);
2732
2733         /* Switch from Rawclk to PCDclk */
2734         temp = I915_READ(reg);
2735         I915_WRITE(reg, temp | FDI_PCDCLK);
2736
2737         POSTING_READ(reg);
2738         udelay(200);
2739
2740         /* On Haswell, the PLL configuration for ports and pipes is handled
2741          * separately, as part of DDI setup */
2742         if (!IS_HASWELL(dev)) {
2743                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2744                 reg = FDI_TX_CTL(pipe);
2745                 temp = I915_READ(reg);
2746                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2747                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2748
2749                         POSTING_READ(reg);
2750                         udelay(100);
2751                 }
2752         }
2753 }
2754
2755 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2756 {
2757         struct drm_i915_private *dev_priv = dev->dev_private;
2758         u32 flags = I915_READ(SOUTH_CHICKEN1);
2759
2760         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2761         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2762         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2763         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2764         POSTING_READ(SOUTH_CHICKEN1);
2765 }
2766 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2767 {
2768         struct drm_device *dev = crtc->dev;
2769         struct drm_i915_private *dev_priv = dev->dev_private;
2770         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2771         int pipe = intel_crtc->pipe;
2772         u32 reg, temp;
2773
2774         /* disable CPU FDI tx and PCH FDI rx */
2775         reg = FDI_TX_CTL(pipe);
2776         temp = I915_READ(reg);
2777         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2778         POSTING_READ(reg);
2779
2780         reg = FDI_RX_CTL(pipe);
2781         temp = I915_READ(reg);
2782         temp &= ~(0x7 << 16);
2783         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2784         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2785
2786         POSTING_READ(reg);
2787         udelay(100);
2788
2789         /* Ironlake workaround, disable clock pointer after downing FDI */
2790         if (HAS_PCH_IBX(dev)) {
2791                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2792                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2793                            I915_READ(FDI_RX_CHICKEN(pipe) &
2794                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2795         } else if (HAS_PCH_CPT(dev)) {
2796                 cpt_phase_pointer_disable(dev, pipe);
2797         }
2798
2799         /* still set train pattern 1 */
2800         reg = FDI_TX_CTL(pipe);
2801         temp = I915_READ(reg);
2802         temp &= ~FDI_LINK_TRAIN_NONE;
2803         temp |= FDI_LINK_TRAIN_PATTERN_1;
2804         I915_WRITE(reg, temp);
2805
2806         reg = FDI_RX_CTL(pipe);
2807         temp = I915_READ(reg);
2808         if (HAS_PCH_CPT(dev)) {
2809                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2810                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2811         } else {
2812                 temp &= ~FDI_LINK_TRAIN_NONE;
2813                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2814         }
2815         /* BPC in FDI rx is consistent with that in PIPECONF */
2816         temp &= ~(0x07 << 16);
2817         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2818         I915_WRITE(reg, temp);
2819
2820         POSTING_READ(reg);
2821         udelay(100);
2822 }
2823
2824 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2825 {
2826         struct drm_device *dev = crtc->dev;
2827
2828         if (crtc->fb == NULL)
2829                 return;
2830
2831         mutex_lock(&dev->struct_mutex);
2832         intel_finish_fb(crtc->fb);
2833         mutex_unlock(&dev->struct_mutex);
2834 }
2835
2836 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2837 {
2838         struct drm_device *dev = crtc->dev;
2839         struct intel_encoder *encoder;
2840
2841         /*
2842          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2843          * must be driven by its own crtc; no sharing is possible.
2844          */
2845         for_each_encoder_on_crtc(dev, crtc, encoder) {
2846
2847                 /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
2848                  * CPU handles all others */
2849                 if (IS_HASWELL(dev)) {
2850                         /* It is still unclear how this will work on PPT, so throw up a warning */
2851                         WARN_ON(!HAS_PCH_LPT(dev));
2852
2853                         if (encoder->type == DRM_MODE_ENCODER_DAC) {
2854                                 DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
2855                                 return true;
2856                         } else {
2857                                 DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
2858                                                 encoder->type);
2859                                 return false;
2860                         }
2861                 }
2862
2863                 switch (encoder->type) {
2864                 case INTEL_OUTPUT_EDP:
2865                         if (!intel_encoder_is_pch_edp(&encoder->base))
2866                                 return false;
2867                         continue;
2868                 }
2869         }
2870
2871         return true;
2872 }
2873
2874 /* Program iCLKIP clock to the desired frequency */
2875 static void lpt_program_iclkip(struct drm_crtc *crtc)
2876 {
2877         struct drm_device *dev = crtc->dev;
2878         struct drm_i915_private *dev_priv = dev->dev_private;
2879         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2880         u32 temp;
2881
2882         /* It is necessary to ungate the pixclk gate prior to programming
2883          * the divisors, and gate it back when it is done.
2884          */
2885         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2886
2887         /* Disable SSCCTL */
2888         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2889                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2890                                         SBI_SSCCTL_DISABLE);
2891
2892         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2893         if (crtc->mode.clock == 20000) {
2894                 auxdiv = 1;
2895                 divsel = 0x41;
2896                 phaseinc = 0x20;
2897         } else {
2898                 /* The iCLK virtual clock root frequency is in MHz,
2899                  * but the crtc->mode.clock in in KHz. To get the divisors,
2900                  * it is necessary to divide one by another, so we
2901                  * convert the virtual clock precision to KHz here for higher
2902                  * precision.
2903                  */
2904                 u32 iclk_virtual_root_freq = 172800 * 1000;
2905                 u32 iclk_pi_range = 64;
2906                 u32 desired_divisor, msb_divisor_value, pi_value;
2907
2908                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2909                 msb_divisor_value = desired_divisor / iclk_pi_range;
2910                 pi_value = desired_divisor % iclk_pi_range;
2911
2912                 auxdiv = 0;
2913                 divsel = msb_divisor_value - 2;
2914                 phaseinc = pi_value;
2915         }
2916
2917         /* This should not happen with any sane values */
2918         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2919                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2920         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2921                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2922
2923         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2924                         crtc->mode.clock,
2925                         auxdiv,
2926                         divsel,
2927                         phasedir,
2928                         phaseinc);
2929
2930         /* Program SSCDIVINTPHASE6 */
2931         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2932         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2933         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2934         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2935         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2936         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2937         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2938
2939         intel_sbi_write(dev_priv,
2940                         SBI_SSCDIVINTPHASE6,
2941                         temp);
2942
2943         /* Program SSCAUXDIV */
2944         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2945         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2946         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2947         intel_sbi_write(dev_priv,
2948                         SBI_SSCAUXDIV6,
2949                         temp);
2950
2951
2952         /* Enable modulator and associated divider */
2953         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2954         temp &= ~SBI_SSCCTL_DISABLE;
2955         intel_sbi_write(dev_priv,
2956                         SBI_SSCCTL6,
2957                         temp);
2958
2959         /* Wait for initialization time */
2960         udelay(24);
2961
2962         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2963 }
2964
2965 /*
2966  * Enable PCH resources required for PCH ports:
2967  *   - PCH PLLs
2968  *   - FDI training & RX/TX
2969  *   - update transcoder timings
2970  *   - DP transcoding bits
2971  *   - transcoder
2972  */
2973 static void ironlake_pch_enable(struct drm_crtc *crtc)
2974 {
2975         struct drm_device *dev = crtc->dev;
2976         struct drm_i915_private *dev_priv = dev->dev_private;
2977         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2978         int pipe = intel_crtc->pipe;
2979         u32 reg, temp;
2980
2981         assert_transcoder_disabled(dev_priv, pipe);
2982
2983         /* For PCH output, training FDI link */
2984         dev_priv->display.fdi_link_train(crtc);
2985
2986         intel_enable_pch_pll(intel_crtc);
2987
2988         if (HAS_PCH_LPT(dev)) {
2989                 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
2990                 lpt_program_iclkip(crtc);
2991         } else if (HAS_PCH_CPT(dev)) {
2992                 u32 sel;
2993
2994                 temp = I915_READ(PCH_DPLL_SEL);
2995                 switch (pipe) {
2996                 default:
2997                 case 0:
2998                         temp |= TRANSA_DPLL_ENABLE;
2999                         sel = TRANSA_DPLLB_SEL;
3000                         break;
3001                 case 1:
3002                         temp |= TRANSB_DPLL_ENABLE;
3003                         sel = TRANSB_DPLLB_SEL;
3004                         break;
3005                 case 2:
3006                         temp |= TRANSC_DPLL_ENABLE;
3007                         sel = TRANSC_DPLLB_SEL;
3008                         break;
3009                 }
3010                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3011                         temp |= sel;
3012                 else
3013                         temp &= ~sel;
3014                 I915_WRITE(PCH_DPLL_SEL, temp);
3015         }
3016
3017         /* set transcoder timing, panel must allow it */
3018         assert_panel_unlocked(dev_priv, pipe);
3019         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3020         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3021         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3022
3023         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3024         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3025         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3026         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3027
3028         if (!IS_HASWELL(dev))
3029                 intel_fdi_normal_train(crtc);
3030
3031         /* For PCH DP, enable TRANS_DP_CTL */
3032         if (HAS_PCH_CPT(dev) &&
3033             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3034              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3035                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3036                 reg = TRANS_DP_CTL(pipe);
3037                 temp = I915_READ(reg);
3038                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3039                           TRANS_DP_SYNC_MASK |
3040                           TRANS_DP_BPC_MASK);
3041                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3042                          TRANS_DP_ENH_FRAMING);
3043                 temp |= bpc << 9; /* same format but at 11:9 */
3044
3045                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3046                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3047                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3048                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3049
3050                 switch (intel_trans_dp_port_sel(crtc)) {
3051                 case PCH_DP_B:
3052                         temp |= TRANS_DP_PORT_SEL_B;
3053                         break;
3054                 case PCH_DP_C:
3055                         temp |= TRANS_DP_PORT_SEL_C;
3056                         break;
3057                 case PCH_DP_D:
3058                         temp |= TRANS_DP_PORT_SEL_D;
3059                         break;
3060                 default:
3061                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3062                         temp |= TRANS_DP_PORT_SEL_B;
3063                         break;
3064                 }
3065
3066                 I915_WRITE(reg, temp);
3067         }
3068
3069         intel_enable_transcoder(dev_priv, pipe);
3070 }
3071
3072 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3073 {
3074         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3075
3076         if (pll == NULL)
3077                 return;
3078
3079         if (pll->refcount == 0) {
3080                 WARN(1, "bad PCH PLL refcount\n");
3081                 return;
3082         }
3083
3084         --pll->refcount;
3085         intel_crtc->pch_pll = NULL;
3086 }
3087
3088 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3089 {
3090         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3091         struct intel_pch_pll *pll;
3092         int i;
3093
3094         pll = intel_crtc->pch_pll;
3095         if (pll) {
3096                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3097                               intel_crtc->base.base.id, pll->pll_reg);
3098                 goto prepare;
3099         }
3100
3101         if (HAS_PCH_IBX(dev_priv->dev)) {
3102                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3103                 i = intel_crtc->pipe;
3104                 pll = &dev_priv->pch_plls[i];
3105
3106                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3107                               intel_crtc->base.base.id, pll->pll_reg);
3108
3109                 goto found;
3110         }
3111
3112         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3113                 pll = &dev_priv->pch_plls[i];
3114
3115                 /* Only want to check enabled timings first */
3116                 if (pll->refcount == 0)
3117                         continue;
3118
3119                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3120                     fp == I915_READ(pll->fp0_reg)) {
3121                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3122                                       intel_crtc->base.base.id,
3123                                       pll->pll_reg, pll->refcount, pll->active);
3124
3125                         goto found;
3126                 }
3127         }
3128
3129         /* Ok no matching timings, maybe there's a free one? */
3130         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3131                 pll = &dev_priv->pch_plls[i];
3132                 if (pll->refcount == 0) {
3133                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3134                                       intel_crtc->base.base.id, pll->pll_reg);
3135                         goto found;
3136                 }
3137         }
3138
3139         return NULL;
3140
3141 found:
3142         intel_crtc->pch_pll = pll;
3143         pll->refcount++;
3144         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3145 prepare: /* separate function? */
3146         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3147
3148         /* Wait for the clocks to stabilize before rewriting the regs */
3149         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3150         POSTING_READ(pll->pll_reg);
3151         udelay(150);
3152
3153         I915_WRITE(pll->fp0_reg, fp);
3154         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3155         pll->on = false;
3156         return pll;
3157 }
3158
3159 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3160 {
3161         struct drm_i915_private *dev_priv = dev->dev_private;
3162         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3163         u32 temp;
3164
3165         temp = I915_READ(dslreg);
3166         udelay(500);
3167         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3168                 /* Without this, mode sets may fail silently on FDI */
3169                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3170                 udelay(250);
3171                 I915_WRITE(tc2reg, 0);
3172                 if (wait_for(I915_READ(dslreg) != temp, 5))
3173                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3174         }
3175 }
3176
3177 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3178 {
3179         struct drm_device *dev = crtc->dev;
3180         struct drm_i915_private *dev_priv = dev->dev_private;
3181         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3182         int pipe = intel_crtc->pipe;
3183         int plane = intel_crtc->plane;
3184         u32 temp;
3185         bool is_pch_port;
3186
3187         if (intel_crtc->active)
3188                 return;
3189
3190         intel_crtc->active = true;
3191         intel_update_watermarks(dev);
3192
3193         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3194                 temp = I915_READ(PCH_LVDS);
3195                 if ((temp & LVDS_PORT_EN) == 0)
3196                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3197         }
3198
3199         is_pch_port = intel_crtc_driving_pch(crtc);
3200
3201         if (is_pch_port)
3202                 ironlake_fdi_pll_enable(crtc);
3203         else
3204                 ironlake_fdi_disable(crtc);
3205
3206         /* Enable panel fitting for LVDS */
3207         if (dev_priv->pch_pf_size &&
3208             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3209                 /* Force use of hard-coded filter coefficients
3210                  * as some pre-programmed values are broken,
3211                  * e.g. x201.
3212                  */
3213                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3214                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3215                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3216         }
3217
3218         /*
3219          * On ILK+ LUT must be loaded before the pipe is running but with
3220          * clocks enabled
3221          */
3222         intel_crtc_load_lut(crtc);
3223
3224         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3225         intel_enable_plane(dev_priv, plane, pipe);
3226
3227         if (is_pch_port)
3228                 ironlake_pch_enable(crtc);
3229
3230         mutex_lock(&dev->struct_mutex);
3231         intel_update_fbc(dev);
3232         mutex_unlock(&dev->struct_mutex);
3233
3234         intel_crtc_update_cursor(crtc, true);
3235 }
3236
3237 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3238 {
3239         struct drm_device *dev = crtc->dev;
3240         struct drm_i915_private *dev_priv = dev->dev_private;
3241         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3242         int pipe = intel_crtc->pipe;
3243         int plane = intel_crtc->plane;
3244         u32 reg, temp;
3245
3246         if (!intel_crtc->active)
3247                 return;
3248
3249         intel_crtc_wait_for_pending_flips(crtc);
3250         drm_vblank_off(dev, pipe);
3251         intel_crtc_update_cursor(crtc, false);
3252
3253         intel_disable_plane(dev_priv, plane, pipe);
3254
3255         if (dev_priv->cfb_plane == plane)
3256                 intel_disable_fbc(dev);
3257
3258         intel_disable_pipe(dev_priv, pipe);
3259
3260         /* Disable PF */
3261         I915_WRITE(PF_CTL(pipe), 0);
3262         I915_WRITE(PF_WIN_SZ(pipe), 0);
3263
3264         ironlake_fdi_disable(crtc);
3265
3266         /* This is a horrible layering violation; we should be doing this in
3267          * the connector/encoder ->prepare instead, but we don't always have
3268          * enough information there about the config to know whether it will
3269          * actually be necessary or just cause undesired flicker.
3270          */
3271         intel_disable_pch_ports(dev_priv, pipe);
3272
3273         intel_disable_transcoder(dev_priv, pipe);
3274
3275         if (HAS_PCH_CPT(dev)) {
3276                 /* disable TRANS_DP_CTL */
3277                 reg = TRANS_DP_CTL(pipe);
3278                 temp = I915_READ(reg);
3279                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3280                 temp |= TRANS_DP_PORT_SEL_NONE;
3281                 I915_WRITE(reg, temp);
3282
3283                 /* disable DPLL_SEL */
3284                 temp = I915_READ(PCH_DPLL_SEL);
3285                 switch (pipe) {
3286                 case 0:
3287                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3288                         break;
3289                 case 1:
3290                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3291                         break;
3292                 case 2:
3293                         /* C shares PLL A or B */
3294                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3295                         break;
3296                 default:
3297                         BUG(); /* wtf */
3298                 }
3299                 I915_WRITE(PCH_DPLL_SEL, temp);
3300         }
3301
3302         /* disable PCH DPLL */
3303         intel_disable_pch_pll(intel_crtc);
3304
3305         /* Switch from PCDclk to Rawclk */
3306         reg = FDI_RX_CTL(pipe);
3307         temp = I915_READ(reg);
3308         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3309
3310         /* Disable CPU FDI TX PLL */
3311         reg = FDI_TX_CTL(pipe);
3312         temp = I915_READ(reg);
3313         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3314
3315         POSTING_READ(reg);
3316         udelay(100);
3317
3318         reg = FDI_RX_CTL(pipe);
3319         temp = I915_READ(reg);
3320         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3321
3322         /* Wait for the clocks to turn off. */
3323         POSTING_READ(reg);
3324         udelay(100);
3325
3326         intel_crtc->active = false;
3327         intel_update_watermarks(dev);
3328
3329         mutex_lock(&dev->struct_mutex);
3330         intel_update_fbc(dev);
3331         mutex_unlock(&dev->struct_mutex);
3332 }
3333
3334 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3335 {
3336         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3337         int pipe = intel_crtc->pipe;
3338         int plane = intel_crtc->plane;
3339
3340         /* XXX: When our outputs are all unaware of DPMS modes other than off
3341          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3342          */
3343         switch (mode) {
3344         case DRM_MODE_DPMS_ON:
3345         case DRM_MODE_DPMS_STANDBY:
3346         case DRM_MODE_DPMS_SUSPEND:
3347                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3348                 ironlake_crtc_enable(crtc);
3349                 break;
3350
3351         case DRM_MODE_DPMS_OFF:
3352                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3353                 ironlake_crtc_disable(crtc);
3354                 break;
3355         }
3356 }
3357
3358 static void ironlake_crtc_off(struct drm_crtc *crtc)
3359 {
3360         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3361         intel_put_pch_pll(intel_crtc);
3362 }
3363
3364 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3365 {
3366         if (!enable && intel_crtc->overlay) {
3367                 struct drm_device *dev = intel_crtc->base.dev;
3368                 struct drm_i915_private *dev_priv = dev->dev_private;
3369
3370                 mutex_lock(&dev->struct_mutex);
3371                 dev_priv->mm.interruptible = false;
3372                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3373                 dev_priv->mm.interruptible = true;
3374                 mutex_unlock(&dev->struct_mutex);
3375         }
3376
3377         /* Let userspace switch the overlay on again. In most cases userspace
3378          * has to recompute where to put it anyway.
3379          */
3380 }
3381
3382 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3383 {
3384         struct drm_device *dev = crtc->dev;
3385         struct drm_i915_private *dev_priv = dev->dev_private;
3386         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3387         int pipe = intel_crtc->pipe;
3388         int plane = intel_crtc->plane;
3389
3390         if (intel_crtc->active)
3391                 return;
3392
3393         intel_crtc->active = true;
3394         intel_update_watermarks(dev);
3395
3396         intel_enable_pll(dev_priv, pipe);
3397         intel_enable_pipe(dev_priv, pipe, false);
3398         intel_enable_plane(dev_priv, plane, pipe);
3399
3400         intel_crtc_load_lut(crtc);
3401         intel_update_fbc(dev);
3402
3403         /* Give the overlay scaler a chance to enable if it's on this pipe */
3404         intel_crtc_dpms_overlay(intel_crtc, true);
3405         intel_crtc_update_cursor(crtc, true);
3406 }
3407
3408 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3409 {
3410         struct drm_device *dev = crtc->dev;
3411         struct drm_i915_private *dev_priv = dev->dev_private;
3412         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3413         int pipe = intel_crtc->pipe;
3414         int plane = intel_crtc->plane;
3415
3416         if (!intel_crtc->active)
3417                 return;
3418
3419         /* Give the overlay scaler a chance to disable if it's on this pipe */
3420         intel_crtc_wait_for_pending_flips(crtc);
3421         drm_vblank_off(dev, pipe);
3422         intel_crtc_dpms_overlay(intel_crtc, false);
3423         intel_crtc_update_cursor(crtc, false);
3424
3425         if (dev_priv->cfb_plane == plane)
3426                 intel_disable_fbc(dev);
3427
3428         intel_disable_plane(dev_priv, plane, pipe);
3429         intel_disable_pipe(dev_priv, pipe);
3430         intel_disable_pll(dev_priv, pipe);
3431
3432         intel_crtc->active = false;
3433         intel_update_fbc(dev);
3434         intel_update_watermarks(dev);
3435 }
3436
3437 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3438 {
3439         /* XXX: When our outputs are all unaware of DPMS modes other than off
3440          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3441          */
3442         switch (mode) {
3443         case DRM_MODE_DPMS_ON:
3444         case DRM_MODE_DPMS_STANDBY:
3445         case DRM_MODE_DPMS_SUSPEND:
3446                 i9xx_crtc_enable(crtc);
3447                 break;
3448         case DRM_MODE_DPMS_OFF:
3449                 i9xx_crtc_disable(crtc);
3450                 break;
3451         }
3452 }
3453
3454 static void i9xx_crtc_off(struct drm_crtc *crtc)
3455 {
3456 }
3457
3458 /**
3459  * Sets the power management mode of the pipe and plane.
3460  */
3461 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3462 {
3463         struct drm_device *dev = crtc->dev;
3464         struct drm_i915_private *dev_priv = dev->dev_private;
3465         struct drm_i915_master_private *master_priv;
3466         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3467         int pipe = intel_crtc->pipe;
3468         bool enabled;
3469
3470         if (intel_crtc->dpms_mode == mode)
3471                 return;
3472
3473         intel_crtc->dpms_mode = mode;
3474
3475         dev_priv->display.dpms(crtc, mode);
3476
3477         if (!dev->primary->master)
3478                 return;
3479
3480         master_priv = dev->primary->master->driver_priv;
3481         if (!master_priv->sarea_priv)
3482                 return;
3483
3484         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3485
3486         switch (pipe) {
3487         case 0:
3488                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3489                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3490                 break;
3491         case 1:
3492                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3493                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3494                 break;
3495         default:
3496                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3497                 break;
3498         }
3499 }
3500
3501 static void intel_crtc_disable(struct drm_crtc *crtc)
3502 {
3503         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3504         struct drm_device *dev = crtc->dev;
3505         struct drm_i915_private *dev_priv = dev->dev_private;
3506
3507         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3508         dev_priv->display.off(crtc);
3509
3510         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3511         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3512
3513         if (crtc->fb) {
3514                 mutex_lock(&dev->struct_mutex);
3515                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3516                 mutex_unlock(&dev->struct_mutex);
3517         }
3518 }
3519
3520 /* Prepare for a mode set.
3521  *
3522  * Note we could be a lot smarter here.  We need to figure out which outputs
3523  * will be enabled, which disabled (in short, how the config will changes)
3524  * and perform the minimum necessary steps to accomplish that, e.g. updating
3525  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3526  * panel fitting is in the proper state, etc.
3527  */
3528 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3529 {
3530         i9xx_crtc_disable(crtc);
3531 }
3532
3533 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3534 {
3535         i9xx_crtc_enable(crtc);
3536 }
3537
3538 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3539 {
3540         ironlake_crtc_disable(crtc);
3541 }
3542
3543 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3544 {
3545         ironlake_crtc_enable(crtc);
3546 }
3547
3548 void intel_encoder_prepare(struct drm_encoder *encoder)
3549 {
3550         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3551         /* lvds has its own version of prepare see intel_lvds_prepare */
3552         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3553 }
3554
3555 void intel_encoder_commit(struct drm_encoder *encoder)
3556 {
3557         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3558         struct drm_device *dev = encoder->dev;
3559         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
3560
3561         /* lvds has its own version of commit see intel_lvds_commit */
3562         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3563
3564         if (HAS_PCH_CPT(dev))
3565                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3566 }
3567
3568 void intel_encoder_destroy(struct drm_encoder *encoder)
3569 {
3570         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3571
3572         drm_encoder_cleanup(encoder);
3573         kfree(intel_encoder);
3574 }
3575
3576 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3577                                   const struct drm_display_mode *mode,
3578                                   struct drm_display_mode *adjusted_mode)
3579 {
3580         struct drm_device *dev = crtc->dev;
3581
3582         if (HAS_PCH_SPLIT(dev)) {
3583                 /* FDI link clock is fixed at 2.7G */
3584                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3585                         return false;
3586         }
3587
3588         /* All interlaced capable intel hw wants timings in frames. Note though
3589          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3590          * timings, so we need to be careful not to clobber these.*/
3591         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3592                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3593
3594         return true;
3595 }
3596
3597 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3598 {
3599         return 400000; /* FIXME */
3600 }
3601
3602 static int i945_get_display_clock_speed(struct drm_device *dev)
3603 {
3604         return 400000;
3605 }
3606
3607 static int i915_get_display_clock_speed(struct drm_device *dev)
3608 {
3609         return 333000;
3610 }
3611
3612 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3613 {
3614         return 200000;
3615 }
3616
3617 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3618 {
3619         u16 gcfgc = 0;
3620
3621         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3622
3623         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3624                 return 133000;
3625         else {
3626                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3627                 case GC_DISPLAY_CLOCK_333_MHZ:
3628                         return 333000;
3629                 default:
3630                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3631                         return 190000;
3632                 }
3633         }
3634 }
3635
3636 static int i865_get_display_clock_speed(struct drm_device *dev)
3637 {
3638         return 266000;
3639 }
3640
3641 static int i855_get_display_clock_speed(struct drm_device *dev)
3642 {
3643         u16 hpllcc = 0;
3644         /* Assume that the hardware is in the high speed state.  This
3645          * should be the default.
3646          */
3647         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3648         case GC_CLOCK_133_200:
3649         case GC_CLOCK_100_200:
3650                 return 200000;
3651         case GC_CLOCK_166_250:
3652                 return 250000;
3653         case GC_CLOCK_100_133:
3654                 return 133000;
3655         }
3656
3657         /* Shouldn't happen */
3658         return 0;
3659 }
3660
3661 static int i830_get_display_clock_speed(struct drm_device *dev)
3662 {
3663         return 133000;
3664 }
3665
3666 struct fdi_m_n {
3667         u32        tu;
3668         u32        gmch_m;
3669         u32        gmch_n;
3670         u32        link_m;
3671         u32        link_n;
3672 };
3673
3674 static void
3675 fdi_reduce_ratio(u32 *num, u32 *den)
3676 {
3677         while (*num > 0xffffff || *den > 0xffffff) {
3678                 *num >>= 1;
3679                 *den >>= 1;
3680         }
3681 }
3682
3683 static void
3684 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3685                      int link_clock, struct fdi_m_n *m_n)
3686 {
3687         m_n->tu = 64; /* default size */
3688
3689         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3690         m_n->gmch_m = bits_per_pixel * pixel_clock;
3691         m_n->gmch_n = link_clock * nlanes * 8;
3692         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3693
3694         m_n->link_m = pixel_clock;
3695         m_n->link_n = link_clock;
3696         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3697 }
3698
3699 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3700 {
3701         if (i915_panel_use_ssc >= 0)
3702                 return i915_panel_use_ssc != 0;
3703         return dev_priv->lvds_use_ssc
3704                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3705 }
3706
3707 /**
3708  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3709  * @crtc: CRTC structure
3710  * @mode: requested mode
3711  *
3712  * A pipe may be connected to one or more outputs.  Based on the depth of the
3713  * attached framebuffer, choose a good color depth to use on the pipe.
3714  *
3715  * If possible, match the pipe depth to the fb depth.  In some cases, this
3716  * isn't ideal, because the connected output supports a lesser or restricted
3717  * set of depths.  Resolve that here:
3718  *    LVDS typically supports only 6bpc, so clamp down in that case
3719  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3720  *    Displays may support a restricted set as well, check EDID and clamp as
3721  *      appropriate.
3722  *    DP may want to dither down to 6bpc to fit larger modes
3723  *
3724  * RETURNS:
3725  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3726  * true if they don't match).
3727  */
3728 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3729                                          unsigned int *pipe_bpp,
3730                                          struct drm_display_mode *mode)
3731 {
3732         struct drm_device *dev = crtc->dev;
3733         struct drm_i915_private *dev_priv = dev->dev_private;
3734         struct drm_connector *connector;
3735         struct intel_encoder *intel_encoder;
3736         unsigned int display_bpc = UINT_MAX, bpc;
3737
3738         /* Walk the encoders & connectors on this crtc, get min bpc */
3739         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3740
3741                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3742                         unsigned int lvds_bpc;
3743
3744                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3745                             LVDS_A3_POWER_UP)
3746                                 lvds_bpc = 8;
3747                         else
3748                                 lvds_bpc = 6;
3749
3750                         if (lvds_bpc < display_bpc) {
3751                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3752                                 display_bpc = lvds_bpc;
3753                         }
3754                         continue;
3755                 }
3756
3757                 /* Not one of the known troublemakers, check the EDID */
3758                 list_for_each_entry(connector, &dev->mode_config.connector_list,
3759                                     head) {
3760                         if (connector->encoder != &intel_encoder->base)
3761                                 continue;
3762
3763                         /* Don't use an invalid EDID bpc value */
3764                         if (connector->display_info.bpc &&
3765                             connector->display_info.bpc < display_bpc) {
3766                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3767                                 display_bpc = connector->display_info.bpc;
3768                         }
3769                 }
3770
3771                 /*
3772                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3773                  * through, clamp it down.  (Note: >12bpc will be caught below.)
3774                  */
3775                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3776                         if (display_bpc > 8 && display_bpc < 12) {
3777                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
3778                                 display_bpc = 12;
3779                         } else {
3780                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
3781                                 display_bpc = 8;
3782                         }
3783                 }
3784         }
3785
3786         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3787                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3788                 display_bpc = 6;
3789         }
3790
3791         /*
3792          * We could just drive the pipe at the highest bpc all the time and
3793          * enable dithering as needed, but that costs bandwidth.  So choose
3794          * the minimum value that expresses the full color range of the fb but
3795          * also stays within the max display bpc discovered above.
3796          */
3797
3798         switch (crtc->fb->depth) {
3799         case 8:
3800                 bpc = 8; /* since we go through a colormap */
3801                 break;
3802         case 15:
3803         case 16:
3804                 bpc = 6; /* min is 18bpp */
3805                 break;
3806         case 24:
3807                 bpc = 8;
3808                 break;
3809         case 30:
3810                 bpc = 10;
3811                 break;
3812         case 48:
3813                 bpc = 12;
3814                 break;
3815         default:
3816                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3817                 bpc = min((unsigned int)8, display_bpc);
3818                 break;
3819         }
3820
3821         display_bpc = min(display_bpc, bpc);
3822
3823         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3824                       bpc, display_bpc);
3825
3826         *pipe_bpp = display_bpc * 3;
3827
3828         return display_bpc != bpc;
3829 }
3830
3831 static int vlv_get_refclk(struct drm_crtc *crtc)
3832 {
3833         struct drm_device *dev = crtc->dev;
3834         struct drm_i915_private *dev_priv = dev->dev_private;
3835         int refclk = 27000; /* for DP & HDMI */
3836
3837         return 100000; /* only one validated so far */
3838
3839         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
3840                 refclk = 96000;
3841         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3842                 if (intel_panel_use_ssc(dev_priv))
3843                         refclk = 100000;
3844                 else
3845                         refclk = 96000;
3846         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3847                 refclk = 100000;
3848         }
3849
3850         return refclk;
3851 }
3852
3853 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3854 {
3855         struct drm_device *dev = crtc->dev;
3856         struct drm_i915_private *dev_priv = dev->dev_private;
3857         int refclk;
3858
3859         if (IS_VALLEYVIEW(dev)) {
3860                 refclk = vlv_get_refclk(crtc);
3861         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3862             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3863                 refclk = dev_priv->lvds_ssc_freq * 1000;
3864                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3865                               refclk / 1000);
3866         } else if (!IS_GEN2(dev)) {
3867                 refclk = 96000;
3868         } else {
3869                 refclk = 48000;
3870         }
3871
3872         return refclk;
3873 }
3874
3875 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3876                                       intel_clock_t *clock)
3877 {
3878         /* SDVO TV has fixed PLL values depend on its clock range,
3879            this mirrors vbios setting. */
3880         if (adjusted_mode->clock >= 100000
3881             && adjusted_mode->clock < 140500) {
3882                 clock->p1 = 2;
3883                 clock->p2 = 10;
3884                 clock->n = 3;
3885                 clock->m1 = 16;
3886                 clock->m2 = 8;
3887         } else if (adjusted_mode->clock >= 140500
3888                    && adjusted_mode->clock <= 200000) {
3889                 clock->p1 = 1;
3890                 clock->p2 = 10;
3891                 clock->n = 6;
3892                 clock->m1 = 12;
3893                 clock->m2 = 8;
3894         }
3895 }
3896
3897 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3898                                      intel_clock_t *clock,
3899                                      intel_clock_t *reduced_clock)
3900 {
3901         struct drm_device *dev = crtc->dev;
3902         struct drm_i915_private *dev_priv = dev->dev_private;
3903         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3904         int pipe = intel_crtc->pipe;
3905         u32 fp, fp2 = 0;
3906
3907         if (IS_PINEVIEW(dev)) {
3908                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3909                 if (reduced_clock)
3910                         fp2 = (1 << reduced_clock->n) << 16 |
3911                                 reduced_clock->m1 << 8 | reduced_clock->m2;
3912         } else {
3913                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3914                 if (reduced_clock)
3915                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
3916                                 reduced_clock->m2;
3917         }
3918
3919         I915_WRITE(FP0(pipe), fp);
3920
3921         intel_crtc->lowfreq_avail = false;
3922         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3923             reduced_clock && i915_powersave) {
3924                 I915_WRITE(FP1(pipe), fp2);
3925                 intel_crtc->lowfreq_avail = true;
3926         } else {
3927                 I915_WRITE(FP1(pipe), fp);
3928         }
3929 }
3930
3931 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
3932                               struct drm_display_mode *adjusted_mode)
3933 {
3934         struct drm_device *dev = crtc->dev;
3935         struct drm_i915_private *dev_priv = dev->dev_private;
3936         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3937         int pipe = intel_crtc->pipe;
3938         u32 temp;
3939
3940         temp = I915_READ(LVDS);
3941         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3942         if (pipe == 1) {
3943                 temp |= LVDS_PIPEB_SELECT;
3944         } else {
3945                 temp &= ~LVDS_PIPEB_SELECT;
3946         }
3947         /* set the corresponsding LVDS_BORDER bit */
3948         temp |= dev_priv->lvds_border_bits;
3949         /* Set the B0-B3 data pairs corresponding to whether we're going to
3950          * set the DPLLs for dual-channel mode or not.
3951          */
3952         if (clock->p2 == 7)
3953                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3954         else
3955                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3956
3957         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3958          * appropriately here, but we need to look more thoroughly into how
3959          * panels behave in the two modes.
3960          */
3961         /* set the dithering flag on LVDS as needed */
3962         if (INTEL_INFO(dev)->gen >= 4) {
3963                 if (dev_priv->lvds_dither)
3964                         temp |= LVDS_ENABLE_DITHER;
3965                 else
3966                         temp &= ~LVDS_ENABLE_DITHER;
3967         }
3968         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
3969         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
3970                 temp |= LVDS_HSYNC_POLARITY;
3971         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
3972                 temp |= LVDS_VSYNC_POLARITY;
3973         I915_WRITE(LVDS, temp);
3974 }
3975
3976 static void vlv_update_pll(struct drm_crtc *crtc,
3977                            struct drm_display_mode *mode,
3978                            struct drm_display_mode *adjusted_mode,
3979                            intel_clock_t *clock, intel_clock_t *reduced_clock,
3980                            int refclk, int num_connectors)
3981 {
3982         struct drm_device *dev = crtc->dev;
3983         struct drm_i915_private *dev_priv = dev->dev_private;
3984         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3985         int pipe = intel_crtc->pipe;
3986         u32 dpll, mdiv, pdiv;
3987         u32 bestn, bestm1, bestm2, bestp1, bestp2;
3988         bool is_hdmi;
3989
3990         is_hdmi = intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
3991
3992         bestn = clock->n;
3993         bestm1 = clock->m1;
3994         bestm2 = clock->m2;
3995         bestp1 = clock->p1;
3996         bestp2 = clock->p2;
3997
3998         /* Enable DPIO clock input */
3999         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4000                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4001         I915_WRITE(DPLL(pipe), dpll);
4002         POSTING_READ(DPLL(pipe));
4003
4004         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4005         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4006         mdiv |= ((bestn << DPIO_N_SHIFT));
4007         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4008         mdiv |= (1 << DPIO_K_SHIFT);
4009         mdiv |= DPIO_ENABLE_CALIBRATION;
4010         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4011
4012         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4013
4014         pdiv = DPIO_REFSEL_OVERRIDE | (5 << DPIO_PLL_MODESEL_SHIFT) |
4015                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4016                 (8 << DPIO_DRIVER_CTL_SHIFT) | (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4017         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4018
4019         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x009f0051);
4020
4021         dpll |= DPLL_VCO_ENABLE;
4022         I915_WRITE(DPLL(pipe), dpll);
4023         POSTING_READ(DPLL(pipe));
4024         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4025                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4026
4027         if (is_hdmi) {
4028                 u32 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4029
4030                 if (temp > 1)
4031                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4032                 else
4033                         temp = 0;
4034
4035                 I915_WRITE(DPLL_MD(pipe), temp);
4036                 POSTING_READ(DPLL_MD(pipe));
4037         }
4038
4039         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x641); /* ??? */
4040 }
4041
4042 static void i9xx_update_pll(struct drm_crtc *crtc,
4043                             struct drm_display_mode *mode,
4044                             struct drm_display_mode *adjusted_mode,
4045                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4046                             int num_connectors)
4047 {
4048         struct drm_device *dev = crtc->dev;
4049         struct drm_i915_private *dev_priv = dev->dev_private;
4050         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4051         int pipe = intel_crtc->pipe;
4052         u32 dpll;
4053         bool is_sdvo;
4054
4055         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4056                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4057
4058         dpll = DPLL_VGA_MODE_DIS;
4059
4060         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4061                 dpll |= DPLLB_MODE_LVDS;
4062         else
4063                 dpll |= DPLLB_MODE_DAC_SERIAL;
4064         if (is_sdvo) {
4065                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4066                 if (pixel_multiplier > 1) {
4067                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4068                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4069                 }
4070                 dpll |= DPLL_DVO_HIGH_SPEED;
4071         }
4072         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4073                 dpll |= DPLL_DVO_HIGH_SPEED;
4074
4075         /* compute bitmask from p1 value */
4076         if (IS_PINEVIEW(dev))
4077                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4078         else {
4079                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4080                 if (IS_G4X(dev) && reduced_clock)
4081                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4082         }
4083         switch (clock->p2) {
4084         case 5:
4085                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4086                 break;
4087         case 7:
4088                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4089                 break;
4090         case 10:
4091                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4092                 break;
4093         case 14:
4094                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4095                 break;
4096         }
4097         if (INTEL_INFO(dev)->gen >= 4)
4098                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4099
4100         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4101                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4102         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4103                 /* XXX: just matching BIOS for now */
4104                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4105                 dpll |= 3;
4106         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4107                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4108                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4109         else
4110                 dpll |= PLL_REF_INPUT_DREFCLK;
4111
4112         dpll |= DPLL_VCO_ENABLE;
4113         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4114         POSTING_READ(DPLL(pipe));
4115         udelay(150);
4116
4117         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4118          * This is an exception to the general rule that mode_set doesn't turn
4119          * things on.
4120          */
4121         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4122                 intel_update_lvds(crtc, clock, adjusted_mode);
4123
4124         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4125                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4126
4127         I915_WRITE(DPLL(pipe), dpll);
4128
4129         /* Wait for the clocks to stabilize. */
4130         POSTING_READ(DPLL(pipe));
4131         udelay(150);
4132
4133         if (INTEL_INFO(dev)->gen >= 4) {
4134                 u32 temp = 0;
4135                 if (is_sdvo) {
4136                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4137                         if (temp > 1)
4138                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4139                         else
4140                                 temp = 0;
4141                 }
4142                 I915_WRITE(DPLL_MD(pipe), temp);
4143         } else {
4144                 /* The pixel multiplier can only be updated once the
4145                  * DPLL is enabled and the clocks are stable.
4146                  *
4147                  * So write it again.
4148                  */
4149                 I915_WRITE(DPLL(pipe), dpll);
4150         }
4151 }
4152
4153 static void i8xx_update_pll(struct drm_crtc *crtc,
4154                             struct drm_display_mode *adjusted_mode,
4155                             intel_clock_t *clock,
4156                             int num_connectors)
4157 {
4158         struct drm_device *dev = crtc->dev;
4159         struct drm_i915_private *dev_priv = dev->dev_private;
4160         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4161         int pipe = intel_crtc->pipe;
4162         u32 dpll;
4163
4164         dpll = DPLL_VGA_MODE_DIS;
4165
4166         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4167                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4168         } else {
4169                 if (clock->p1 == 2)
4170                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4171                 else
4172                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4173                 if (clock->p2 == 4)
4174                         dpll |= PLL_P2_DIVIDE_BY_4;
4175         }
4176
4177         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4178                 /* XXX: just matching BIOS for now */
4179                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4180                 dpll |= 3;
4181         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4182                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4183                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4184         else
4185                 dpll |= PLL_REF_INPUT_DREFCLK;
4186
4187         dpll |= DPLL_VCO_ENABLE;
4188         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4189         POSTING_READ(DPLL(pipe));
4190         udelay(150);
4191
4192         I915_WRITE(DPLL(pipe), dpll);
4193
4194         /* Wait for the clocks to stabilize. */
4195         POSTING_READ(DPLL(pipe));
4196         udelay(150);
4197
4198         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4199          * This is an exception to the general rule that mode_set doesn't turn
4200          * things on.
4201          */
4202         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4203                 intel_update_lvds(crtc, clock, adjusted_mode);
4204
4205         /* The pixel multiplier can only be updated once the
4206          * DPLL is enabled and the clocks are stable.
4207          *
4208          * So write it again.
4209          */
4210         I915_WRITE(DPLL(pipe), dpll);
4211 }
4212
4213 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4214                               struct drm_display_mode *mode,
4215                               struct drm_display_mode *adjusted_mode,
4216                               int x, int y,
4217                               struct drm_framebuffer *old_fb)
4218 {
4219         struct drm_device *dev = crtc->dev;
4220         struct drm_i915_private *dev_priv = dev->dev_private;
4221         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4222         int pipe = intel_crtc->pipe;
4223         int plane = intel_crtc->plane;
4224         int refclk, num_connectors = 0;
4225         intel_clock_t clock, reduced_clock;
4226         u32 dspcntr, pipeconf, vsyncshift;
4227         bool ok, has_reduced_clock = false, is_sdvo = false;
4228         bool is_lvds = false, is_tv = false, is_dp = false;
4229         struct intel_encoder *encoder;
4230         const intel_limit_t *limit;
4231         int ret;
4232
4233         for_each_encoder_on_crtc(dev, crtc, encoder) {
4234                 switch (encoder->type) {
4235                 case INTEL_OUTPUT_LVDS:
4236                         is_lvds = true;
4237                         break;
4238                 case INTEL_OUTPUT_SDVO:
4239                 case INTEL_OUTPUT_HDMI:
4240                         is_sdvo = true;
4241                         if (encoder->needs_tv_clock)
4242                                 is_tv = true;
4243                         break;
4244                 case INTEL_OUTPUT_TVOUT:
4245                         is_tv = true;
4246                         break;
4247                 case INTEL_OUTPUT_DISPLAYPORT:
4248                         is_dp = true;
4249                         break;
4250                 }
4251
4252                 num_connectors++;
4253         }
4254
4255         refclk = i9xx_get_refclk(crtc, num_connectors);
4256
4257         /*
4258          * Returns a set of divisors for the desired target clock with the given
4259          * refclk, or FALSE.  The returned values represent the clock equation:
4260          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4261          */
4262         limit = intel_limit(crtc, refclk);
4263         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4264                              &clock);
4265         if (!ok) {
4266                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4267                 return -EINVAL;
4268         }
4269
4270         /* Ensure that the cursor is valid for the new mode before changing... */
4271         intel_crtc_update_cursor(crtc, true);
4272
4273         if (is_lvds && dev_priv->lvds_downclock_avail) {
4274                 /*
4275                  * Ensure we match the reduced clock's P to the target clock.
4276                  * If the clocks don't match, we can't switch the display clock
4277                  * by using the FP0/FP1. In such case we will disable the LVDS
4278                  * downclock feature.
4279                 */
4280                 has_reduced_clock = limit->find_pll(limit, crtc,
4281                                                     dev_priv->lvds_downclock,
4282                                                     refclk,
4283                                                     &clock,
4284                                                     &reduced_clock);
4285         }
4286
4287         if (is_sdvo && is_tv)
4288                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4289
4290         i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
4291                                  &reduced_clock : NULL);
4292
4293         if (IS_GEN2(dev))
4294                 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
4295         else if (IS_VALLEYVIEW(dev))
4296                 vlv_update_pll(crtc, mode,adjusted_mode, &clock, NULL,
4297                                refclk, num_connectors);
4298         else
4299                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4300                                 has_reduced_clock ? &reduced_clock : NULL,
4301                                 num_connectors);
4302
4303         /* setup pipeconf */
4304         pipeconf = I915_READ(PIPECONF(pipe));
4305
4306         /* Set up the display plane register */
4307         dspcntr = DISPPLANE_GAMMA_ENABLE;
4308
4309         if (pipe == 0)
4310                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4311         else
4312                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4313
4314         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4315                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4316                  * core speed.
4317                  *
4318                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4319                  * pipe == 0 check?
4320                  */
4321                 if (mode->clock >
4322                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4323                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4324                 else
4325                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4326         }
4327
4328         /* default to 8bpc */
4329         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4330         if (is_dp) {
4331                 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4332                         pipeconf |= PIPECONF_BPP_6 |
4333                                     PIPECONF_DITHER_EN |
4334                                     PIPECONF_DITHER_TYPE_SP;
4335                 }
4336         }
4337
4338         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4339         drm_mode_debug_printmodeline(mode);
4340
4341         if (HAS_PIPE_CXSR(dev)) {
4342                 if (intel_crtc->lowfreq_avail) {
4343                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4344                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4345                 } else {
4346                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4347                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4348                 }
4349         }
4350
4351         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4352         if (!IS_GEN2(dev) &&
4353             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4354                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4355                 /* the chip adds 2 halflines automatically */
4356                 adjusted_mode->crtc_vtotal -= 1;
4357                 adjusted_mode->crtc_vblank_end -= 1;
4358                 vsyncshift = adjusted_mode->crtc_hsync_start
4359                              - adjusted_mode->crtc_htotal/2;
4360         } else {
4361                 pipeconf |= PIPECONF_PROGRESSIVE;
4362                 vsyncshift = 0;
4363         }
4364
4365         if (!IS_GEN3(dev))
4366                 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
4367
4368         I915_WRITE(HTOTAL(pipe),
4369                    (adjusted_mode->crtc_hdisplay - 1) |
4370                    ((adjusted_mode->crtc_htotal - 1) << 16));
4371         I915_WRITE(HBLANK(pipe),
4372                    (adjusted_mode->crtc_hblank_start - 1) |
4373                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4374         I915_WRITE(HSYNC(pipe),
4375                    (adjusted_mode->crtc_hsync_start - 1) |
4376                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4377
4378         I915_WRITE(VTOTAL(pipe),
4379                    (adjusted_mode->crtc_vdisplay - 1) |
4380                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4381         I915_WRITE(VBLANK(pipe),
4382                    (adjusted_mode->crtc_vblank_start - 1) |
4383                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4384         I915_WRITE(VSYNC(pipe),
4385                    (adjusted_mode->crtc_vsync_start - 1) |
4386                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4387
4388         /* pipesrc and dspsize control the size that is scaled from,
4389          * which should always be the user's requested size.
4390          */
4391         I915_WRITE(DSPSIZE(plane),
4392                    ((mode->vdisplay - 1) << 16) |
4393                    (mode->hdisplay - 1));
4394         I915_WRITE(DSPPOS(plane), 0);
4395         I915_WRITE(PIPESRC(pipe),
4396                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4397
4398         I915_WRITE(PIPECONF(pipe), pipeconf);
4399         POSTING_READ(PIPECONF(pipe));
4400         intel_enable_pipe(dev_priv, pipe, false);
4401
4402         intel_wait_for_vblank(dev, pipe);
4403
4404         I915_WRITE(DSPCNTR(plane), dspcntr);
4405         POSTING_READ(DSPCNTR(plane));
4406
4407         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4408
4409         intel_update_watermarks(dev);
4410
4411         return ret;
4412 }
4413
4414 /*
4415  * Initialize reference clocks when the driver loads
4416  */
4417 void ironlake_init_pch_refclk(struct drm_device *dev)
4418 {
4419         struct drm_i915_private *dev_priv = dev->dev_private;
4420         struct drm_mode_config *mode_config = &dev->mode_config;
4421         struct intel_encoder *encoder;
4422         u32 temp;
4423         bool has_lvds = false;
4424         bool has_cpu_edp = false;
4425         bool has_pch_edp = false;
4426         bool has_panel = false;
4427         bool has_ck505 = false;
4428         bool can_ssc = false;
4429
4430         /* We need to take the global config into account */
4431         list_for_each_entry(encoder, &mode_config->encoder_list,
4432                             base.head) {
4433                 switch (encoder->type) {
4434                 case INTEL_OUTPUT_LVDS:
4435                         has_panel = true;
4436                         has_lvds = true;
4437                         break;
4438                 case INTEL_OUTPUT_EDP:
4439                         has_panel = true;
4440                         if (intel_encoder_is_pch_edp(&encoder->base))
4441                                 has_pch_edp = true;
4442                         else
4443                                 has_cpu_edp = true;
4444                         break;
4445                 }
4446         }
4447
4448         if (HAS_PCH_IBX(dev)) {
4449                 has_ck505 = dev_priv->display_clock_mode;
4450                 can_ssc = has_ck505;
4451         } else {
4452                 has_ck505 = false;
4453                 can_ssc = true;
4454         }
4455
4456         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4457                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4458                       has_ck505);
4459
4460         /* Ironlake: try to setup display ref clock before DPLL
4461          * enabling. This is only under driver's control after
4462          * PCH B stepping, previous chipset stepping should be
4463          * ignoring this setting.
4464          */
4465         temp = I915_READ(PCH_DREF_CONTROL);
4466         /* Always enable nonspread source */
4467         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4468
4469         if (has_ck505)
4470                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4471         else
4472                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4473
4474         if (has_panel) {
4475                 temp &= ~DREF_SSC_SOURCE_MASK;
4476                 temp |= DREF_SSC_SOURCE_ENABLE;
4477
4478                 /* SSC must be turned on before enabling the CPU output  */
4479                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4480                         DRM_DEBUG_KMS("Using SSC on panel\n");
4481                         temp |= DREF_SSC1_ENABLE;
4482                 } else
4483                         temp &= ~DREF_SSC1_ENABLE;
4484
4485                 /* Get SSC going before enabling the outputs */
4486                 I915_WRITE(PCH_DREF_CONTROL, temp);
4487                 POSTING_READ(PCH_DREF_CONTROL);
4488                 udelay(200);
4489
4490                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4491
4492                 /* Enable CPU source on CPU attached eDP */
4493                 if (has_cpu_edp) {
4494                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4495                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4496                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4497                         }
4498                         else
4499                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4500                 } else
4501                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4502
4503                 I915_WRITE(PCH_DREF_CONTROL, temp);
4504                 POSTING_READ(PCH_DREF_CONTROL);
4505                 udelay(200);
4506         } else {
4507                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4508
4509                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4510
4511                 /* Turn off CPU output */
4512                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4513
4514                 I915_WRITE(PCH_DREF_CONTROL, temp);
4515                 POSTING_READ(PCH_DREF_CONTROL);
4516                 udelay(200);
4517
4518                 /* Turn off the SSC source */
4519                 temp &= ~DREF_SSC_SOURCE_MASK;
4520                 temp |= DREF_SSC_SOURCE_DISABLE;
4521
4522                 /* Turn off SSC1 */
4523                 temp &= ~ DREF_SSC1_ENABLE;
4524
4525                 I915_WRITE(PCH_DREF_CONTROL, temp);
4526                 POSTING_READ(PCH_DREF_CONTROL);
4527                 udelay(200);
4528         }
4529 }
4530
4531 static int ironlake_get_refclk(struct drm_crtc *crtc)
4532 {
4533         struct drm_device *dev = crtc->dev;
4534         struct drm_i915_private *dev_priv = dev->dev_private;
4535         struct intel_encoder *encoder;
4536         struct intel_encoder *edp_encoder = NULL;
4537         int num_connectors = 0;
4538         bool is_lvds = false;
4539
4540         for_each_encoder_on_crtc(dev, crtc, encoder) {
4541                 switch (encoder->type) {
4542                 case INTEL_OUTPUT_LVDS:
4543                         is_lvds = true;
4544                         break;
4545                 case INTEL_OUTPUT_EDP:
4546                         edp_encoder = encoder;
4547                         break;
4548                 }
4549                 num_connectors++;
4550         }
4551
4552         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4553                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4554                               dev_priv->lvds_ssc_freq);
4555                 return dev_priv->lvds_ssc_freq * 1000;
4556         }
4557
4558         return 120000;
4559 }
4560
4561 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4562                                   struct drm_display_mode *mode,
4563                                   struct drm_display_mode *adjusted_mode,
4564                                   int x, int y,
4565                                   struct drm_framebuffer *old_fb)
4566 {
4567         struct drm_device *dev = crtc->dev;
4568         struct drm_i915_private *dev_priv = dev->dev_private;
4569         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4570         int pipe = intel_crtc->pipe;
4571         int plane = intel_crtc->plane;
4572         int refclk, num_connectors = 0;
4573         intel_clock_t clock, reduced_clock;
4574         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4575         bool ok, has_reduced_clock = false, is_sdvo = false;
4576         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4577         struct intel_encoder *encoder, *edp_encoder = NULL;
4578         const intel_limit_t *limit;
4579         int ret;
4580         struct fdi_m_n m_n = {0};
4581         u32 temp;
4582         int target_clock, pixel_multiplier, lane, link_bw, factor;
4583         unsigned int pipe_bpp;
4584         bool dither;
4585         bool is_cpu_edp = false, is_pch_edp = false;
4586
4587         for_each_encoder_on_crtc(dev, crtc, encoder) {
4588                 switch (encoder->type) {
4589                 case INTEL_OUTPUT_LVDS:
4590                         is_lvds = true;
4591                         break;
4592                 case INTEL_OUTPUT_SDVO:
4593                 case INTEL_OUTPUT_HDMI:
4594                         is_sdvo = true;
4595                         if (encoder->needs_tv_clock)
4596                                 is_tv = true;
4597                         break;
4598                 case INTEL_OUTPUT_TVOUT:
4599                         is_tv = true;
4600                         break;
4601                 case INTEL_OUTPUT_ANALOG:
4602                         is_crt = true;
4603                         break;
4604                 case INTEL_OUTPUT_DISPLAYPORT:
4605                         is_dp = true;
4606                         break;
4607                 case INTEL_OUTPUT_EDP:
4608                         is_dp = true;
4609                         if (intel_encoder_is_pch_edp(&encoder->base))
4610                                 is_pch_edp = true;
4611                         else
4612                                 is_cpu_edp = true;
4613                         edp_encoder = encoder;
4614                         break;
4615                 }
4616
4617                 num_connectors++;
4618         }
4619
4620         refclk = ironlake_get_refclk(crtc);
4621
4622         /*
4623          * Returns a set of divisors for the desired target clock with the given
4624          * refclk, or FALSE.  The returned values represent the clock equation:
4625          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4626          */
4627         limit = intel_limit(crtc, refclk);
4628         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4629                              &clock);
4630         if (!ok) {
4631                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4632                 return -EINVAL;
4633         }
4634
4635         /* Ensure that the cursor is valid for the new mode before changing... */
4636         intel_crtc_update_cursor(crtc, true);
4637
4638         if (is_lvds && dev_priv->lvds_downclock_avail) {
4639                 /*
4640                  * Ensure we match the reduced clock's P to the target clock.
4641                  * If the clocks don't match, we can't switch the display clock
4642                  * by using the FP0/FP1. In such case we will disable the LVDS
4643                  * downclock feature.
4644                 */
4645                 has_reduced_clock = limit->find_pll(limit, crtc,
4646                                                     dev_priv->lvds_downclock,
4647                                                     refclk,
4648                                                     &clock,
4649                                                     &reduced_clock);
4650         }
4651
4652         if (is_sdvo && is_tv)
4653                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4654
4655
4656         /* FDI link */
4657         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4658         lane = 0;
4659         /* CPU eDP doesn't require FDI link, so just set DP M/N
4660            according to current link config */
4661         if (is_cpu_edp) {
4662                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
4663         } else {
4664                 /* FDI is a binary signal running at ~2.7GHz, encoding
4665                  * each output octet as 10 bits. The actual frequency
4666                  * is stored as a divider into a 100MHz clock, and the
4667                  * mode pixel clock is stored in units of 1KHz.
4668                  * Hence the bw of each lane in terms of the mode signal
4669                  * is:
4670                  */
4671                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4672         }
4673
4674         /* [e]DP over FDI requires target mode clock instead of link clock. */
4675         if (edp_encoder)
4676                 target_clock = intel_edp_target_clock(edp_encoder, mode);
4677         else if (is_dp)
4678                 target_clock = mode->clock;
4679         else
4680                 target_clock = adjusted_mode->clock;
4681
4682         /* determine panel color depth */
4683         temp = I915_READ(PIPECONF(pipe));
4684         temp &= ~PIPE_BPC_MASK;
4685         dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
4686         switch (pipe_bpp) {
4687         case 18:
4688                 temp |= PIPE_6BPC;
4689                 break;
4690         case 24:
4691                 temp |= PIPE_8BPC;
4692                 break;
4693         case 30:
4694                 temp |= PIPE_10BPC;
4695                 break;
4696         case 36:
4697                 temp |= PIPE_12BPC;
4698                 break;
4699         default:
4700                 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
4701                         pipe_bpp);
4702                 temp |= PIPE_8BPC;
4703                 pipe_bpp = 24;
4704                 break;
4705         }
4706
4707         intel_crtc->bpp = pipe_bpp;
4708         I915_WRITE(PIPECONF(pipe), temp);
4709
4710         if (!lane) {
4711                 /*
4712                  * Account for spread spectrum to avoid
4713                  * oversubscribing the link. Max center spread
4714                  * is 2.5%; use 5% for safety's sake.
4715                  */
4716                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4717                 lane = bps / (link_bw * 8) + 1;
4718         }
4719
4720         intel_crtc->fdi_lanes = lane;
4721
4722         if (pixel_multiplier > 1)
4723                 link_bw *= pixel_multiplier;
4724         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4725                              &m_n);
4726
4727         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4728         if (has_reduced_clock)
4729                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4730                         reduced_clock.m2;
4731
4732         /* Enable autotuning of the PLL clock (if permissible) */
4733         factor = 21;
4734         if (is_lvds) {
4735                 if ((intel_panel_use_ssc(dev_priv) &&
4736                      dev_priv->lvds_ssc_freq == 100) ||
4737                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4738                         factor = 25;
4739         } else if (is_sdvo && is_tv)
4740                 factor = 20;
4741
4742         if (clock.m < factor * clock.n)
4743                 fp |= FP_CB_TUNE;
4744
4745         dpll = 0;
4746
4747         if (is_lvds)
4748                 dpll |= DPLLB_MODE_LVDS;
4749         else
4750                 dpll |= DPLLB_MODE_DAC_SERIAL;
4751         if (is_sdvo) {
4752                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4753                 if (pixel_multiplier > 1) {
4754                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4755                 }
4756                 dpll |= DPLL_DVO_HIGH_SPEED;
4757         }
4758         if (is_dp && !is_cpu_edp)
4759                 dpll |= DPLL_DVO_HIGH_SPEED;
4760
4761         /* compute bitmask from p1 value */
4762         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4763         /* also FPA1 */
4764         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4765
4766         switch (clock.p2) {
4767         case 5:
4768                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4769                 break;
4770         case 7:
4771                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4772                 break;
4773         case 10:
4774                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4775                 break;
4776         case 14:
4777                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4778                 break;
4779         }
4780
4781         if (is_sdvo && is_tv)
4782                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4783         else if (is_tv)
4784                 /* XXX: just matching BIOS for now */
4785                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4786                 dpll |= 3;
4787         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4788                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4789         else
4790                 dpll |= PLL_REF_INPUT_DREFCLK;
4791
4792         /* setup pipeconf */
4793         pipeconf = I915_READ(PIPECONF(pipe));
4794
4795         /* Set up the display plane register */
4796         dspcntr = DISPPLANE_GAMMA_ENABLE;
4797
4798         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
4799         drm_mode_debug_printmodeline(mode);
4800
4801         /* CPU eDP is the only output that doesn't need a PCH PLL of its own on
4802          * pre-Haswell/LPT generation */
4803         if (HAS_PCH_LPT(dev)) {
4804                 DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
4805                                 pipe);
4806         } else if (!is_cpu_edp) {
4807                 struct intel_pch_pll *pll;
4808
4809                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
4810                 if (pll == NULL) {
4811                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
4812                                          pipe);
4813                         return -EINVAL;
4814                 }
4815         } else
4816                 intel_put_pch_pll(intel_crtc);
4817
4818         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4819          * This is an exception to the general rule that mode_set doesn't turn
4820          * things on.
4821          */
4822         if (is_lvds) {
4823                 temp = I915_READ(PCH_LVDS);
4824                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4825                 if (HAS_PCH_CPT(dev)) {
4826                         temp &= ~PORT_TRANS_SEL_MASK;
4827                         temp |= PORT_TRANS_SEL_CPT(pipe);
4828                 } else {
4829                         if (pipe == 1)
4830                                 temp |= LVDS_PIPEB_SELECT;
4831                         else
4832                                 temp &= ~LVDS_PIPEB_SELECT;
4833                 }
4834
4835                 /* set the corresponsding LVDS_BORDER bit */
4836                 temp |= dev_priv->lvds_border_bits;
4837                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4838                  * set the DPLLs for dual-channel mode or not.
4839                  */
4840                 if (clock.p2 == 7)
4841                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4842                 else
4843                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4844
4845                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4846                  * appropriately here, but we need to look more thoroughly into how
4847                  * panels behave in the two modes.
4848                  */
4849                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4850                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4851                         temp |= LVDS_HSYNC_POLARITY;
4852                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4853                         temp |= LVDS_VSYNC_POLARITY;
4854                 I915_WRITE(PCH_LVDS, temp);
4855         }
4856
4857         pipeconf &= ~PIPECONF_DITHER_EN;
4858         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4859         if ((is_lvds && dev_priv->lvds_dither) || dither) {
4860                 pipeconf |= PIPECONF_DITHER_EN;
4861                 pipeconf |= PIPECONF_DITHER_TYPE_SP;
4862         }
4863         if (is_dp && !is_cpu_edp) {
4864                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4865         } else {
4866                 /* For non-DP output, clear any trans DP clock recovery setting.*/
4867                 I915_WRITE(TRANSDATA_M1(pipe), 0);
4868                 I915_WRITE(TRANSDATA_N1(pipe), 0);
4869                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
4870                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
4871         }
4872
4873         if (intel_crtc->pch_pll) {
4874                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4875
4876                 /* Wait for the clocks to stabilize. */
4877                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
4878                 udelay(150);
4879
4880                 /* The pixel multiplier can only be updated once the
4881                  * DPLL is enabled and the clocks are stable.
4882                  *
4883                  * So write it again.
4884                  */
4885                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4886         }
4887
4888         intel_crtc->lowfreq_avail = false;
4889         if (intel_crtc->pch_pll) {
4890                 if (is_lvds && has_reduced_clock && i915_powersave) {
4891                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4892                         intel_crtc->lowfreq_avail = true;
4893                 } else {
4894                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
4895                 }
4896         }
4897
4898         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4899         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4900                 pipeconf |= PIPECONF_INTERLACED_ILK;
4901                 /* the chip adds 2 halflines automatically */
4902                 adjusted_mode->crtc_vtotal -= 1;
4903                 adjusted_mode->crtc_vblank_end -= 1;
4904                 I915_WRITE(VSYNCSHIFT(pipe),
4905                            adjusted_mode->crtc_hsync_start
4906                            - adjusted_mode->crtc_htotal/2);
4907         } else {
4908                 pipeconf |= PIPECONF_PROGRESSIVE;
4909                 I915_WRITE(VSYNCSHIFT(pipe), 0);
4910         }
4911
4912         I915_WRITE(HTOTAL(pipe),
4913                    (adjusted_mode->crtc_hdisplay - 1) |
4914                    ((adjusted_mode->crtc_htotal - 1) << 16));
4915         I915_WRITE(HBLANK(pipe),
4916                    (adjusted_mode->crtc_hblank_start - 1) |
4917                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4918         I915_WRITE(HSYNC(pipe),
4919                    (adjusted_mode->crtc_hsync_start - 1) |
4920                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4921
4922         I915_WRITE(VTOTAL(pipe),
4923                    (adjusted_mode->crtc_vdisplay - 1) |
4924                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4925         I915_WRITE(VBLANK(pipe),
4926                    (adjusted_mode->crtc_vblank_start - 1) |
4927                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4928         I915_WRITE(VSYNC(pipe),
4929                    (adjusted_mode->crtc_vsync_start - 1) |
4930                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4931
4932         /* pipesrc controls the size that is scaled from, which should
4933          * always be the user's requested size.
4934          */
4935         I915_WRITE(PIPESRC(pipe),
4936                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4937
4938         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4939         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4940         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4941         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4942
4943         if (is_cpu_edp)
4944                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4945
4946         I915_WRITE(PIPECONF(pipe), pipeconf);
4947         POSTING_READ(PIPECONF(pipe));
4948
4949         intel_wait_for_vblank(dev, pipe);
4950
4951         I915_WRITE(DSPCNTR(plane), dspcntr);
4952         POSTING_READ(DSPCNTR(plane));
4953
4954         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4955
4956         intel_update_watermarks(dev);
4957
4958         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
4959
4960         return ret;
4961 }
4962
4963 static int intel_crtc_mode_set(struct drm_crtc *crtc,
4964                                struct drm_display_mode *mode,
4965                                struct drm_display_mode *adjusted_mode,
4966                                int x, int y,
4967                                struct drm_framebuffer *old_fb)
4968 {
4969         struct drm_device *dev = crtc->dev;
4970         struct drm_i915_private *dev_priv = dev->dev_private;
4971         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4972         int pipe = intel_crtc->pipe;
4973         int ret;
4974
4975         drm_vblank_pre_modeset(dev, pipe);
4976
4977         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
4978                                               x, y, old_fb);
4979         drm_vblank_post_modeset(dev, pipe);
4980
4981         if (ret)
4982                 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4983         else
4984                 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
4985
4986         return ret;
4987 }
4988
4989 static bool intel_eld_uptodate(struct drm_connector *connector,
4990                                int reg_eldv, uint32_t bits_eldv,
4991                                int reg_elda, uint32_t bits_elda,
4992                                int reg_edid)
4993 {
4994         struct drm_i915_private *dev_priv = connector->dev->dev_private;
4995         uint8_t *eld = connector->eld;
4996         uint32_t i;
4997
4998         i = I915_READ(reg_eldv);
4999         i &= bits_eldv;
5000
5001         if (!eld[0])
5002                 return !i;
5003
5004         if (!i)
5005                 return false;
5006
5007         i = I915_READ(reg_elda);
5008         i &= ~bits_elda;
5009         I915_WRITE(reg_elda, i);
5010
5011         for (i = 0; i < eld[2]; i++)
5012                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5013                         return false;
5014
5015         return true;
5016 }
5017
5018 static void g4x_write_eld(struct drm_connector *connector,
5019                           struct drm_crtc *crtc)
5020 {
5021         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5022         uint8_t *eld = connector->eld;
5023         uint32_t eldv;
5024         uint32_t len;
5025         uint32_t i;
5026
5027         i = I915_READ(G4X_AUD_VID_DID);
5028
5029         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5030                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5031         else
5032                 eldv = G4X_ELDV_DEVCTG;
5033
5034         if (intel_eld_uptodate(connector,
5035                                G4X_AUD_CNTL_ST, eldv,
5036                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5037                                G4X_HDMIW_HDMIEDID))
5038                 return;
5039
5040         i = I915_READ(G4X_AUD_CNTL_ST);
5041         i &= ~(eldv | G4X_ELD_ADDR);
5042         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5043         I915_WRITE(G4X_AUD_CNTL_ST, i);
5044
5045         if (!eld[0])
5046                 return;
5047
5048         len = min_t(uint8_t, eld[2], len);
5049         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5050         for (i = 0; i < len; i++)
5051                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5052
5053         i = I915_READ(G4X_AUD_CNTL_ST);
5054         i |= eldv;
5055         I915_WRITE(G4X_AUD_CNTL_ST, i);
5056 }
5057
5058 static void ironlake_write_eld(struct drm_connector *connector,
5059                                      struct drm_crtc *crtc)
5060 {
5061         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5062         uint8_t *eld = connector->eld;
5063         uint32_t eldv;
5064         uint32_t i;
5065         int len;
5066         int hdmiw_hdmiedid;
5067         int aud_config;
5068         int aud_cntl_st;
5069         int aud_cntrl_st2;
5070
5071         if (HAS_PCH_IBX(connector->dev)) {
5072                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
5073                 aud_config = IBX_AUD_CONFIG_A;
5074                 aud_cntl_st = IBX_AUD_CNTL_ST_A;
5075                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5076         } else {
5077                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
5078                 aud_config = CPT_AUD_CONFIG_A;
5079                 aud_cntl_st = CPT_AUD_CNTL_ST_A;
5080                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5081         }
5082
5083         i = to_intel_crtc(crtc)->pipe;
5084         hdmiw_hdmiedid += i * 0x100;
5085         aud_cntl_st += i * 0x100;
5086         aud_config += i * 0x100;
5087
5088         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
5089
5090         i = I915_READ(aud_cntl_st);
5091         i = (i >> 29) & 0x3;            /* DIP_Port_Select, 0x1 = PortB */
5092         if (!i) {
5093                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5094                 /* operate blindly on all ports */
5095                 eldv = IBX_ELD_VALIDB;
5096                 eldv |= IBX_ELD_VALIDB << 4;
5097                 eldv |= IBX_ELD_VALIDB << 8;
5098         } else {
5099                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5100                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5101         }
5102
5103         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5104                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5105                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5106                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5107         } else
5108                 I915_WRITE(aud_config, 0);
5109
5110         if (intel_eld_uptodate(connector,
5111                                aud_cntrl_st2, eldv,
5112                                aud_cntl_st, IBX_ELD_ADDRESS,
5113                                hdmiw_hdmiedid))
5114                 return;
5115
5116         i = I915_READ(aud_cntrl_st2);
5117         i &= ~eldv;
5118         I915_WRITE(aud_cntrl_st2, i);
5119
5120         if (!eld[0])
5121                 return;
5122
5123         i = I915_READ(aud_cntl_st);
5124         i &= ~IBX_ELD_ADDRESS;
5125         I915_WRITE(aud_cntl_st, i);
5126
5127         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5128         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5129         for (i = 0; i < len; i++)
5130                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5131
5132         i = I915_READ(aud_cntrl_st2);
5133         i |= eldv;
5134         I915_WRITE(aud_cntrl_st2, i);
5135 }
5136
5137 void intel_write_eld(struct drm_encoder *encoder,
5138                      struct drm_display_mode *mode)
5139 {
5140         struct drm_crtc *crtc = encoder->crtc;
5141         struct drm_connector *connector;
5142         struct drm_device *dev = encoder->dev;
5143         struct drm_i915_private *dev_priv = dev->dev_private;
5144
5145         connector = drm_select_eld(encoder, mode);
5146         if (!connector)
5147                 return;
5148
5149         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5150                          connector->base.id,
5151                          drm_get_connector_name(connector),
5152                          connector->encoder->base.id,
5153                          drm_get_encoder_name(connector->encoder));
5154
5155         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5156
5157         if (dev_priv->display.write_eld)
5158                 dev_priv->display.write_eld(connector, crtc);
5159 }
5160
5161 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5162 void intel_crtc_load_lut(struct drm_crtc *crtc)
5163 {
5164         struct drm_device *dev = crtc->dev;
5165         struct drm_i915_private *dev_priv = dev->dev_private;
5166         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5167         int palreg = PALETTE(intel_crtc->pipe);
5168         int i;
5169
5170         /* The clocks have to be on to load the palette. */
5171         if (!crtc->enabled || !intel_crtc->active)
5172                 return;
5173
5174         /* use legacy palette for Ironlake */
5175         if (HAS_PCH_SPLIT(dev))
5176                 palreg = LGC_PALETTE(intel_crtc->pipe);
5177
5178         for (i = 0; i < 256; i++) {
5179                 I915_WRITE(palreg + 4 * i,
5180                            (intel_crtc->lut_r[i] << 16) |
5181                            (intel_crtc->lut_g[i] << 8) |
5182                            intel_crtc->lut_b[i]);
5183         }
5184 }
5185
5186 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5187 {
5188         struct drm_device *dev = crtc->dev;
5189         struct drm_i915_private *dev_priv = dev->dev_private;
5190         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5191         bool visible = base != 0;
5192         u32 cntl;
5193
5194         if (intel_crtc->cursor_visible == visible)
5195                 return;
5196
5197         cntl = I915_READ(_CURACNTR);
5198         if (visible) {
5199                 /* On these chipsets we can only modify the base whilst
5200                  * the cursor is disabled.
5201                  */
5202                 I915_WRITE(_CURABASE, base);
5203
5204                 cntl &= ~(CURSOR_FORMAT_MASK);
5205                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5206                 cntl |= CURSOR_ENABLE |
5207                         CURSOR_GAMMA_ENABLE |
5208                         CURSOR_FORMAT_ARGB;
5209         } else
5210                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5211         I915_WRITE(_CURACNTR, cntl);
5212
5213         intel_crtc->cursor_visible = visible;
5214 }
5215
5216 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5217 {
5218         struct drm_device *dev = crtc->dev;
5219         struct drm_i915_private *dev_priv = dev->dev_private;
5220         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5221         int pipe = intel_crtc->pipe;
5222         bool visible = base != 0;
5223
5224         if (intel_crtc->cursor_visible != visible) {
5225                 uint32_t cntl = I915_READ(CURCNTR(pipe));
5226                 if (base) {
5227                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5228                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5229                         cntl |= pipe << 28; /* Connect to correct pipe */
5230                 } else {
5231                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5232                         cntl |= CURSOR_MODE_DISABLE;
5233                 }
5234                 I915_WRITE(CURCNTR(pipe), cntl);
5235
5236                 intel_crtc->cursor_visible = visible;
5237         }
5238         /* and commit changes on next vblank */
5239         I915_WRITE(CURBASE(pipe), base);
5240 }
5241
5242 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5243 {
5244         struct drm_device *dev = crtc->dev;
5245         struct drm_i915_private *dev_priv = dev->dev_private;
5246         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5247         int pipe = intel_crtc->pipe;
5248         bool visible = base != 0;
5249
5250         if (intel_crtc->cursor_visible != visible) {
5251                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5252                 if (base) {
5253                         cntl &= ~CURSOR_MODE;
5254                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5255                 } else {
5256                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5257                         cntl |= CURSOR_MODE_DISABLE;
5258                 }
5259                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5260
5261                 intel_crtc->cursor_visible = visible;
5262         }
5263         /* and commit changes on next vblank */
5264         I915_WRITE(CURBASE_IVB(pipe), base);
5265 }
5266
5267 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5268 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5269                                      bool on)
5270 {
5271         struct drm_device *dev = crtc->dev;
5272         struct drm_i915_private *dev_priv = dev->dev_private;
5273         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5274         int pipe = intel_crtc->pipe;
5275         int x = intel_crtc->cursor_x;
5276         int y = intel_crtc->cursor_y;
5277         u32 base, pos;
5278         bool visible;
5279
5280         pos = 0;
5281
5282         if (on && crtc->enabled && crtc->fb) {
5283                 base = intel_crtc->cursor_addr;
5284                 if (x > (int) crtc->fb->width)
5285                         base = 0;
5286
5287                 if (y > (int) crtc->fb->height)
5288                         base = 0;
5289         } else
5290                 base = 0;
5291
5292         if (x < 0) {
5293                 if (x + intel_crtc->cursor_width < 0)
5294                         base = 0;
5295
5296                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5297                 x = -x;
5298         }
5299         pos |= x << CURSOR_X_SHIFT;
5300
5301         if (y < 0) {
5302                 if (y + intel_crtc->cursor_height < 0)
5303                         base = 0;
5304
5305                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5306                 y = -y;
5307         }
5308         pos |= y << CURSOR_Y_SHIFT;
5309
5310         visible = base != 0;
5311         if (!visible && !intel_crtc->cursor_visible)
5312                 return;
5313
5314         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5315                 I915_WRITE(CURPOS_IVB(pipe), pos);
5316                 ivb_update_cursor(crtc, base);
5317         } else {
5318                 I915_WRITE(CURPOS(pipe), pos);
5319                 if (IS_845G(dev) || IS_I865G(dev))
5320                         i845_update_cursor(crtc, base);
5321                 else
5322                         i9xx_update_cursor(crtc, base);
5323         }
5324 }
5325
5326 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5327                                  struct drm_file *file,
5328                                  uint32_t handle,
5329                                  uint32_t width, uint32_t height)
5330 {
5331         struct drm_device *dev = crtc->dev;
5332         struct drm_i915_private *dev_priv = dev->dev_private;
5333         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5334         struct drm_i915_gem_object *obj;
5335         uint32_t addr;
5336         int ret;
5337
5338         DRM_DEBUG_KMS("\n");
5339
5340         /* if we want to turn off the cursor ignore width and height */
5341         if (!handle) {
5342                 DRM_DEBUG_KMS("cursor off\n");
5343                 addr = 0;
5344                 obj = NULL;
5345                 mutex_lock(&dev->struct_mutex);
5346                 goto finish;
5347         }
5348
5349         /* Currently we only support 64x64 cursors */
5350         if (width != 64 || height != 64) {
5351                 DRM_ERROR("we currently only support 64x64 cursors\n");
5352                 return -EINVAL;
5353         }
5354
5355         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5356         if (&obj->base == NULL)
5357                 return -ENOENT;
5358
5359         if (obj->base.size < width * height * 4) {
5360                 DRM_ERROR("buffer is to small\n");
5361                 ret = -ENOMEM;
5362                 goto fail;
5363         }
5364
5365         /* we only need to pin inside GTT if cursor is non-phy */
5366         mutex_lock(&dev->struct_mutex);
5367         if (!dev_priv->info->cursor_needs_physical) {
5368                 if (obj->tiling_mode) {
5369                         DRM_ERROR("cursor cannot be tiled\n");
5370                         ret = -EINVAL;
5371                         goto fail_locked;
5372                 }
5373
5374                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5375                 if (ret) {
5376                         DRM_ERROR("failed to move cursor bo into the GTT\n");
5377                         goto fail_locked;
5378                 }
5379
5380                 ret = i915_gem_object_put_fence(obj);
5381                 if (ret) {
5382                         DRM_ERROR("failed to release fence for cursor");
5383                         goto fail_unpin;
5384                 }
5385
5386                 addr = obj->gtt_offset;
5387         } else {
5388                 int align = IS_I830(dev) ? 16 * 1024 : 256;
5389                 ret = i915_gem_attach_phys_object(dev, obj,
5390                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5391                                                   align);
5392                 if (ret) {
5393                         DRM_ERROR("failed to attach phys object\n");
5394                         goto fail_locked;
5395                 }
5396                 addr = obj->phys_obj->handle->busaddr;
5397         }
5398
5399         if (IS_GEN2(dev))
5400                 I915_WRITE(CURSIZE, (height << 12) | width);
5401
5402  finish:
5403         if (intel_crtc->cursor_bo) {
5404                 if (dev_priv->info->cursor_needs_physical) {
5405                         if (intel_crtc->cursor_bo != obj)
5406                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5407                 } else
5408                         i915_gem_object_unpin(intel_crtc->cursor_bo);
5409                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5410         }
5411
5412         mutex_unlock(&dev->struct_mutex);
5413
5414         intel_crtc->cursor_addr = addr;
5415         intel_crtc->cursor_bo = obj;
5416         intel_crtc->cursor_width = width;
5417         intel_crtc->cursor_height = height;
5418
5419         intel_crtc_update_cursor(crtc, true);
5420
5421         return 0;
5422 fail_unpin:
5423         i915_gem_object_unpin(obj);
5424 fail_locked:
5425         mutex_unlock(&dev->struct_mutex);
5426 fail:
5427         drm_gem_object_unreference_unlocked(&obj->base);
5428         return ret;
5429 }
5430
5431 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5432 {
5433         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5434
5435         intel_crtc->cursor_x = x;
5436         intel_crtc->cursor_y = y;
5437
5438         intel_crtc_update_cursor(crtc, true);
5439
5440         return 0;
5441 }
5442
5443 /** Sets the color ramps on behalf of RandR */
5444 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5445                                  u16 blue, int regno)
5446 {
5447         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5448
5449         intel_crtc->lut_r[regno] = red >> 8;
5450         intel_crtc->lut_g[regno] = green >> 8;
5451         intel_crtc->lut_b[regno] = blue >> 8;
5452 }
5453
5454 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5455                              u16 *blue, int regno)
5456 {
5457         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5458
5459         *red = intel_crtc->lut_r[regno] << 8;
5460         *green = intel_crtc->lut_g[regno] << 8;
5461         *blue = intel_crtc->lut_b[regno] << 8;
5462 }
5463
5464 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5465                                  u16 *blue, uint32_t start, uint32_t size)
5466 {
5467         int end = (start + size > 256) ? 256 : start + size, i;
5468         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5469
5470         for (i = start; i < end; i++) {
5471                 intel_crtc->lut_r[i] = red[i] >> 8;
5472                 intel_crtc->lut_g[i] = green[i] >> 8;
5473                 intel_crtc->lut_b[i] = blue[i] >> 8;
5474         }
5475
5476         intel_crtc_load_lut(crtc);
5477 }
5478
5479 /**
5480  * Get a pipe with a simple mode set on it for doing load-based monitor
5481  * detection.
5482  *
5483  * It will be up to the load-detect code to adjust the pipe as appropriate for
5484  * its requirements.  The pipe will be connected to no other encoders.
5485  *
5486  * Currently this code will only succeed if there is a pipe with no encoders
5487  * configured for it.  In the future, it could choose to temporarily disable
5488  * some outputs to free up a pipe for its use.
5489  *
5490  * \return crtc, or NULL if no pipes are available.
5491  */
5492
5493 /* VESA 640x480x72Hz mode to set on the pipe */
5494 static struct drm_display_mode load_detect_mode = {
5495         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5496                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5497 };
5498
5499 static struct drm_framebuffer *
5500 intel_framebuffer_create(struct drm_device *dev,
5501                          struct drm_mode_fb_cmd2 *mode_cmd,
5502                          struct drm_i915_gem_object *obj)
5503 {
5504         struct intel_framebuffer *intel_fb;
5505         int ret;
5506
5507         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5508         if (!intel_fb) {
5509                 drm_gem_object_unreference_unlocked(&obj->base);
5510                 return ERR_PTR(-ENOMEM);
5511         }
5512
5513         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5514         if (ret) {
5515                 drm_gem_object_unreference_unlocked(&obj->base);
5516                 kfree(intel_fb);
5517                 return ERR_PTR(ret);
5518         }
5519
5520         return &intel_fb->base;
5521 }
5522
5523 static u32
5524 intel_framebuffer_pitch_for_width(int width, int bpp)
5525 {
5526         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5527         return ALIGN(pitch, 64);
5528 }
5529
5530 static u32
5531 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5532 {
5533         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5534         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5535 }
5536
5537 static struct drm_framebuffer *
5538 intel_framebuffer_create_for_mode(struct drm_device *dev,
5539                                   struct drm_display_mode *mode,
5540                                   int depth, int bpp)
5541 {
5542         struct drm_i915_gem_object *obj;
5543         struct drm_mode_fb_cmd2 mode_cmd;
5544
5545         obj = i915_gem_alloc_object(dev,
5546                                     intel_framebuffer_size_for_mode(mode, bpp));
5547         if (obj == NULL)
5548                 return ERR_PTR(-ENOMEM);
5549
5550         mode_cmd.width = mode->hdisplay;
5551         mode_cmd.height = mode->vdisplay;
5552         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
5553                                                                 bpp);
5554         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
5555
5556         return intel_framebuffer_create(dev, &mode_cmd, obj);
5557 }
5558
5559 static struct drm_framebuffer *
5560 mode_fits_in_fbdev(struct drm_device *dev,
5561                    struct drm_display_mode *mode)
5562 {
5563         struct drm_i915_private *dev_priv = dev->dev_private;
5564         struct drm_i915_gem_object *obj;
5565         struct drm_framebuffer *fb;
5566
5567         if (dev_priv->fbdev == NULL)
5568                 return NULL;
5569
5570         obj = dev_priv->fbdev->ifb.obj;
5571         if (obj == NULL)
5572                 return NULL;
5573
5574         fb = &dev_priv->fbdev->ifb.base;
5575         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
5576                                                                fb->bits_per_pixel))
5577                 return NULL;
5578
5579         if (obj->base.size < mode->vdisplay * fb->pitches[0])
5580                 return NULL;
5581
5582         return fb;
5583 }
5584
5585 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5586                                 struct drm_connector *connector,
5587                                 struct drm_display_mode *mode,
5588                                 struct intel_load_detect_pipe *old)
5589 {
5590         struct intel_crtc *intel_crtc;
5591         struct drm_crtc *possible_crtc;
5592         struct drm_encoder *encoder = &intel_encoder->base;
5593         struct drm_crtc *crtc = NULL;
5594         struct drm_device *dev = encoder->dev;
5595         struct drm_framebuffer *old_fb;
5596         int i = -1;
5597
5598         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5599                       connector->base.id, drm_get_connector_name(connector),
5600                       encoder->base.id, drm_get_encoder_name(encoder));
5601
5602         /*
5603          * Algorithm gets a little messy:
5604          *
5605          *   - if the connector already has an assigned crtc, use it (but make
5606          *     sure it's on first)
5607          *
5608          *   - try to find the first unused crtc that can drive this connector,
5609          *     and use that if we find one
5610          */
5611
5612         /* See if we already have a CRTC for this connector */
5613         if (encoder->crtc) {
5614                 crtc = encoder->crtc;
5615
5616                 intel_crtc = to_intel_crtc(crtc);
5617                 old->dpms_mode = intel_crtc->dpms_mode;
5618                 old->load_detect_temp = false;
5619
5620                 /* Make sure the crtc and connector are running */
5621                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5622                         struct drm_encoder_helper_funcs *encoder_funcs;
5623                         struct drm_crtc_helper_funcs *crtc_funcs;
5624
5625                         crtc_funcs = crtc->helper_private;
5626                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5627
5628                         encoder_funcs = encoder->helper_private;
5629                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5630                 }
5631
5632                 return true;
5633         }
5634
5635         /* Find an unused one (if possible) */
5636         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5637                 i++;
5638                 if (!(encoder->possible_crtcs & (1 << i)))
5639                         continue;
5640                 if (!possible_crtc->enabled) {
5641                         crtc = possible_crtc;
5642                         break;
5643                 }
5644         }
5645
5646         /*
5647          * If we didn't find an unused CRTC, don't use any.
5648          */
5649         if (!crtc) {
5650                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5651                 return false;
5652         }
5653
5654         encoder->crtc = crtc;
5655         connector->encoder = encoder;
5656
5657         intel_crtc = to_intel_crtc(crtc);
5658         old->dpms_mode = intel_crtc->dpms_mode;
5659         old->load_detect_temp = true;
5660         old->release_fb = NULL;
5661
5662         if (!mode)
5663                 mode = &load_detect_mode;
5664
5665         old_fb = crtc->fb;
5666
5667         /* We need a framebuffer large enough to accommodate all accesses
5668          * that the plane may generate whilst we perform load detection.
5669          * We can not rely on the fbcon either being present (we get called
5670          * during its initialisation to detect all boot displays, or it may
5671          * not even exist) or that it is large enough to satisfy the
5672          * requested mode.
5673          */
5674         crtc->fb = mode_fits_in_fbdev(dev, mode);
5675         if (crtc->fb == NULL) {
5676                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5677                 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5678                 old->release_fb = crtc->fb;
5679         } else
5680                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5681         if (IS_ERR(crtc->fb)) {
5682                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5683                 crtc->fb = old_fb;
5684                 return false;
5685         }
5686
5687         if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
5688                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5689                 if (old->release_fb)
5690                         old->release_fb->funcs->destroy(old->release_fb);
5691                 crtc->fb = old_fb;
5692                 return false;
5693         }
5694
5695         /* let the connector get through one full cycle before testing */
5696         intel_wait_for_vblank(dev, intel_crtc->pipe);
5697
5698         return true;
5699 }
5700
5701 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5702                                     struct drm_connector *connector,
5703                                     struct intel_load_detect_pipe *old)
5704 {
5705         struct drm_encoder *encoder = &intel_encoder->base;
5706         struct drm_device *dev = encoder->dev;
5707         struct drm_crtc *crtc = encoder->crtc;
5708         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5709         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5710
5711         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5712                       connector->base.id, drm_get_connector_name(connector),
5713                       encoder->base.id, drm_get_encoder_name(encoder));
5714
5715         if (old->load_detect_temp) {
5716                 connector->encoder = NULL;
5717                 drm_helper_disable_unused_functions(dev);
5718
5719                 if (old->release_fb)
5720                         old->release_fb->funcs->destroy(old->release_fb);
5721
5722                 return;
5723         }
5724
5725         /* Switch crtc and encoder back off if necessary */
5726         if (old->dpms_mode != DRM_MODE_DPMS_ON) {
5727                 encoder_funcs->dpms(encoder, old->dpms_mode);
5728                 crtc_funcs->dpms(crtc, old->dpms_mode);
5729         }
5730 }
5731
5732 /* Returns the clock of the currently programmed mode of the given pipe. */
5733 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5734 {
5735         struct drm_i915_private *dev_priv = dev->dev_private;
5736         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5737         int pipe = intel_crtc->pipe;
5738         u32 dpll = I915_READ(DPLL(pipe));
5739         u32 fp;
5740         intel_clock_t clock;
5741
5742         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5743                 fp = I915_READ(FP0(pipe));
5744         else
5745                 fp = I915_READ(FP1(pipe));
5746
5747         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5748         if (IS_PINEVIEW(dev)) {
5749                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5750                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5751         } else {
5752                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5753                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5754         }
5755
5756         if (!IS_GEN2(dev)) {
5757                 if (IS_PINEVIEW(dev))
5758                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5759                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5760                 else
5761                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5762                                DPLL_FPA01_P1_POST_DIV_SHIFT);
5763
5764                 switch (dpll & DPLL_MODE_MASK) {
5765                 case DPLLB_MODE_DAC_SERIAL:
5766                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5767                                 5 : 10;
5768                         break;
5769                 case DPLLB_MODE_LVDS:
5770                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5771                                 7 : 14;
5772                         break;
5773                 default:
5774                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5775                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
5776                         return 0;
5777                 }
5778
5779                 /* XXX: Handle the 100Mhz refclk */
5780                 intel_clock(dev, 96000, &clock);
5781         } else {
5782                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5783
5784                 if (is_lvds) {
5785                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5786                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
5787                         clock.p2 = 14;
5788
5789                         if ((dpll & PLL_REF_INPUT_MASK) ==
5790                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5791                                 /* XXX: might not be 66MHz */
5792                                 intel_clock(dev, 66000, &clock);
5793                         } else
5794                                 intel_clock(dev, 48000, &clock);
5795                 } else {
5796                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
5797                                 clock.p1 = 2;
5798                         else {
5799                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5800                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5801                         }
5802                         if (dpll & PLL_P2_DIVIDE_BY_4)
5803                                 clock.p2 = 4;
5804                         else
5805                                 clock.p2 = 2;
5806
5807                         intel_clock(dev, 48000, &clock);
5808                 }
5809         }
5810
5811         /* XXX: It would be nice to validate the clocks, but we can't reuse
5812          * i830PllIsValid() because it relies on the xf86_config connector
5813          * configuration being accurate, which it isn't necessarily.
5814          */
5815
5816         return clock.dot;
5817 }
5818
5819 /** Returns the currently programmed mode of the given pipe. */
5820 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5821                                              struct drm_crtc *crtc)
5822 {
5823         struct drm_i915_private *dev_priv = dev->dev_private;
5824         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5825         int pipe = intel_crtc->pipe;
5826         struct drm_display_mode *mode;
5827         int htot = I915_READ(HTOTAL(pipe));
5828         int hsync = I915_READ(HSYNC(pipe));
5829         int vtot = I915_READ(VTOTAL(pipe));
5830         int vsync = I915_READ(VSYNC(pipe));
5831
5832         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5833         if (!mode)
5834                 return NULL;
5835
5836         mode->clock = intel_crtc_clock_get(dev, crtc);
5837         mode->hdisplay = (htot & 0xffff) + 1;
5838         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5839         mode->hsync_start = (hsync & 0xffff) + 1;
5840         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5841         mode->vdisplay = (vtot & 0xffff) + 1;
5842         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5843         mode->vsync_start = (vsync & 0xffff) + 1;
5844         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5845
5846         drm_mode_set_name(mode);
5847
5848         return mode;
5849 }
5850
5851 #define GPU_IDLE_TIMEOUT 500 /* ms */
5852
5853 /* When this timer fires, we've been idle for awhile */
5854 static void intel_gpu_idle_timer(unsigned long arg)
5855 {
5856         struct drm_device *dev = (struct drm_device *)arg;
5857         drm_i915_private_t *dev_priv = dev->dev_private;
5858
5859         if (!list_empty(&dev_priv->mm.active_list)) {
5860                 /* Still processing requests, so just re-arm the timer. */
5861                 mod_timer(&dev_priv->idle_timer, jiffies +
5862                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5863                 return;
5864         }
5865
5866         dev_priv->busy = false;
5867         queue_work(dev_priv->wq, &dev_priv->idle_work);
5868 }
5869
5870 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
5871
5872 static void intel_crtc_idle_timer(unsigned long arg)
5873 {
5874         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
5875         struct drm_crtc *crtc = &intel_crtc->base;
5876         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5877         struct intel_framebuffer *intel_fb;
5878
5879         intel_fb = to_intel_framebuffer(crtc->fb);
5880         if (intel_fb && intel_fb->obj->active) {
5881                 /* The framebuffer is still being accessed by the GPU. */
5882                 mod_timer(&intel_crtc->idle_timer, jiffies +
5883                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5884                 return;
5885         }
5886
5887         intel_crtc->busy = false;
5888         queue_work(dev_priv->wq, &dev_priv->idle_work);
5889 }
5890
5891 static void intel_increase_pllclock(struct drm_crtc *crtc)
5892 {
5893         struct drm_device *dev = crtc->dev;
5894         drm_i915_private_t *dev_priv = dev->dev_private;
5895         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5896         int pipe = intel_crtc->pipe;
5897         int dpll_reg = DPLL(pipe);
5898         int dpll;
5899
5900         if (HAS_PCH_SPLIT(dev))
5901                 return;
5902
5903         if (!dev_priv->lvds_downclock_avail)
5904                 return;
5905
5906         dpll = I915_READ(dpll_reg);
5907         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5908                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
5909
5910                 assert_panel_unlocked(dev_priv, pipe);
5911
5912                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5913                 I915_WRITE(dpll_reg, dpll);
5914                 intel_wait_for_vblank(dev, pipe);
5915
5916                 dpll = I915_READ(dpll_reg);
5917                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
5918                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5919         }
5920
5921         /* Schedule downclock */
5922         mod_timer(&intel_crtc->idle_timer, jiffies +
5923                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5924 }
5925
5926 static void intel_decrease_pllclock(struct drm_crtc *crtc)
5927 {
5928         struct drm_device *dev = crtc->dev;
5929         drm_i915_private_t *dev_priv = dev->dev_private;
5930         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5931
5932         if (HAS_PCH_SPLIT(dev))
5933                 return;
5934
5935         if (!dev_priv->lvds_downclock_avail)
5936                 return;
5937
5938         /*
5939          * Since this is called by a timer, we should never get here in
5940          * the manual case.
5941          */
5942         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
5943                 int pipe = intel_crtc->pipe;
5944                 int dpll_reg = DPLL(pipe);
5945                 int dpll;
5946
5947                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
5948
5949                 assert_panel_unlocked(dev_priv, pipe);
5950
5951                 dpll = I915_READ(dpll_reg);
5952                 dpll |= DISPLAY_RATE_SELECT_FPA1;
5953                 I915_WRITE(dpll_reg, dpll);
5954                 intel_wait_for_vblank(dev, pipe);
5955                 dpll = I915_READ(dpll_reg);
5956                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
5957                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
5958         }
5959
5960 }
5961
5962 /**
5963  * intel_idle_update - adjust clocks for idleness
5964  * @work: work struct
5965  *
5966  * Either the GPU or display (or both) went idle.  Check the busy status
5967  * here and adjust the CRTC and GPU clocks as necessary.
5968  */
5969 static void intel_idle_update(struct work_struct *work)
5970 {
5971         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
5972                                                     idle_work);
5973         struct drm_device *dev = dev_priv->dev;
5974         struct drm_crtc *crtc;
5975         struct intel_crtc *intel_crtc;
5976
5977         if (!i915_powersave)
5978                 return;
5979
5980         mutex_lock(&dev->struct_mutex);
5981
5982         i915_update_gfx_val(dev_priv);
5983
5984         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5985                 /* Skip inactive CRTCs */
5986                 if (!crtc->fb)
5987                         continue;
5988
5989                 intel_crtc = to_intel_crtc(crtc);
5990                 if (!intel_crtc->busy)
5991                         intel_decrease_pllclock(crtc);
5992         }
5993
5994
5995         mutex_unlock(&dev->struct_mutex);
5996 }
5997
5998 /**
5999  * intel_mark_busy - mark the GPU and possibly the display busy
6000  * @dev: drm device
6001  * @obj: object we're operating on
6002  *
6003  * Callers can use this function to indicate that the GPU is busy processing
6004  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
6005  * buffer), we'll also mark the display as busy, so we know to increase its
6006  * clock frequency.
6007  */
6008 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6009 {
6010         drm_i915_private_t *dev_priv = dev->dev_private;
6011         struct drm_crtc *crtc = NULL;
6012         struct intel_framebuffer *intel_fb;
6013         struct intel_crtc *intel_crtc;
6014
6015         if (!drm_core_check_feature(dev, DRIVER_MODESET))
6016                 return;
6017
6018         if (!dev_priv->busy) {
6019                 intel_sanitize_pm(dev);
6020                 dev_priv->busy = true;
6021         } else
6022                 mod_timer(&dev_priv->idle_timer, jiffies +
6023                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6024
6025         if (obj == NULL)
6026                 return;
6027
6028         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6029                 if (!crtc->fb)
6030                         continue;
6031
6032                 intel_crtc = to_intel_crtc(crtc);
6033                 intel_fb = to_intel_framebuffer(crtc->fb);
6034                 if (intel_fb->obj == obj) {
6035                         if (!intel_crtc->busy) {
6036                                 /* Non-busy -> busy, upclock */
6037                                 intel_increase_pllclock(crtc);
6038                                 intel_crtc->busy = true;
6039                         } else {
6040                                 /* Busy -> busy, put off timer */
6041                                 mod_timer(&intel_crtc->idle_timer, jiffies +
6042                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6043                         }
6044                 }
6045         }
6046 }
6047
6048 static void intel_crtc_destroy(struct drm_crtc *crtc)
6049 {
6050         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6051         struct drm_device *dev = crtc->dev;
6052         struct intel_unpin_work *work;
6053         unsigned long flags;
6054
6055         spin_lock_irqsave(&dev->event_lock, flags);
6056         work = intel_crtc->unpin_work;
6057         intel_crtc->unpin_work = NULL;
6058         spin_unlock_irqrestore(&dev->event_lock, flags);
6059
6060         if (work) {
6061                 cancel_work_sync(&work->work);
6062                 kfree(work);
6063         }
6064
6065         drm_crtc_cleanup(crtc);
6066
6067         kfree(intel_crtc);
6068 }
6069
6070 static void intel_unpin_work_fn(struct work_struct *__work)
6071 {
6072         struct intel_unpin_work *work =
6073                 container_of(__work, struct intel_unpin_work, work);
6074
6075         mutex_lock(&work->dev->struct_mutex);
6076         intel_unpin_fb_obj(work->old_fb_obj);
6077         drm_gem_object_unreference(&work->pending_flip_obj->base);
6078         drm_gem_object_unreference(&work->old_fb_obj->base);
6079
6080         intel_update_fbc(work->dev);
6081         mutex_unlock(&work->dev->struct_mutex);
6082         kfree(work);
6083 }
6084
6085 static void do_intel_finish_page_flip(struct drm_device *dev,
6086                                       struct drm_crtc *crtc)
6087 {
6088         drm_i915_private_t *dev_priv = dev->dev_private;
6089         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6090         struct intel_unpin_work *work;
6091         struct drm_i915_gem_object *obj;
6092         struct drm_pending_vblank_event *e;
6093         struct timeval tnow, tvbl;
6094         unsigned long flags;
6095
6096         /* Ignore early vblank irqs */
6097         if (intel_crtc == NULL)
6098                 return;
6099
6100         do_gettimeofday(&tnow);
6101
6102         spin_lock_irqsave(&dev->event_lock, flags);
6103         work = intel_crtc->unpin_work;
6104         if (work == NULL || !work->pending) {
6105                 spin_unlock_irqrestore(&dev->event_lock, flags);
6106                 return;
6107         }
6108
6109         intel_crtc->unpin_work = NULL;
6110
6111         if (work->event) {
6112                 e = work->event;
6113                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6114
6115                 /* Called before vblank count and timestamps have
6116                  * been updated for the vblank interval of flip
6117                  * completion? Need to increment vblank count and
6118                  * add one videorefresh duration to returned timestamp
6119                  * to account for this. We assume this happened if we
6120                  * get called over 0.9 frame durations after the last
6121                  * timestamped vblank.
6122                  *
6123                  * This calculation can not be used with vrefresh rates
6124                  * below 5Hz (10Hz to be on the safe side) without
6125                  * promoting to 64 integers.
6126                  */
6127                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6128                     9 * crtc->framedur_ns) {
6129                         e->event.sequence++;
6130                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6131                                              crtc->framedur_ns);
6132                 }
6133
6134                 e->event.tv_sec = tvbl.tv_sec;
6135                 e->event.tv_usec = tvbl.tv_usec;
6136
6137                 list_add_tail(&e->base.link,
6138                               &e->base.file_priv->event_list);
6139                 wake_up_interruptible(&e->base.file_priv->event_wait);
6140         }
6141
6142         drm_vblank_put(dev, intel_crtc->pipe);
6143
6144         spin_unlock_irqrestore(&dev->event_lock, flags);
6145
6146         obj = work->old_fb_obj;
6147
6148         atomic_clear_mask(1 << intel_crtc->plane,
6149                           &obj->pending_flip.counter);
6150         if (atomic_read(&obj->pending_flip) == 0)
6151                 wake_up(&dev_priv->pending_flip_queue);
6152
6153         schedule_work(&work->work);
6154
6155         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6156 }
6157
6158 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6159 {
6160         drm_i915_private_t *dev_priv = dev->dev_private;
6161         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6162
6163         do_intel_finish_page_flip(dev, crtc);
6164 }
6165
6166 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6167 {
6168         drm_i915_private_t *dev_priv = dev->dev_private;
6169         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6170
6171         do_intel_finish_page_flip(dev, crtc);
6172 }
6173
6174 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6175 {
6176         drm_i915_private_t *dev_priv = dev->dev_private;
6177         struct intel_crtc *intel_crtc =
6178                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6179         unsigned long flags;
6180
6181         spin_lock_irqsave(&dev->event_lock, flags);
6182         if (intel_crtc->unpin_work) {
6183                 if ((++intel_crtc->unpin_work->pending) > 1)
6184                         DRM_ERROR("Prepared flip multiple times\n");
6185         } else {
6186                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6187         }
6188         spin_unlock_irqrestore(&dev->event_lock, flags);
6189 }
6190
6191 static int intel_gen2_queue_flip(struct drm_device *dev,
6192                                  struct drm_crtc *crtc,
6193                                  struct drm_framebuffer *fb,
6194                                  struct drm_i915_gem_object *obj)
6195 {
6196         struct drm_i915_private *dev_priv = dev->dev_private;
6197         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6198         u32 flip_mask;
6199         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6200         int ret;
6201
6202         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6203         if (ret)
6204                 goto err;
6205
6206         ret = intel_ring_begin(ring, 6);
6207         if (ret)
6208                 goto err_unpin;
6209
6210         /* Can't queue multiple flips, so wait for the previous
6211          * one to finish before executing the next.
6212          */
6213         if (intel_crtc->plane)
6214                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6215         else
6216                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6217         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6218         intel_ring_emit(ring, MI_NOOP);
6219         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6220                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6221         intel_ring_emit(ring, fb->pitches[0]);
6222         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6223         intel_ring_emit(ring, 0); /* aux display base address, unused */
6224         intel_ring_advance(ring);
6225         return 0;
6226
6227 err_unpin:
6228         intel_unpin_fb_obj(obj);
6229 err:
6230         return ret;
6231 }
6232
6233 static int intel_gen3_queue_flip(struct drm_device *dev,
6234                                  struct drm_crtc *crtc,
6235                                  struct drm_framebuffer *fb,
6236                                  struct drm_i915_gem_object *obj)
6237 {
6238         struct drm_i915_private *dev_priv = dev->dev_private;
6239         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6240         u32 flip_mask;
6241         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6242         int ret;
6243
6244         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6245         if (ret)
6246                 goto err;
6247
6248         ret = intel_ring_begin(ring, 6);
6249         if (ret)
6250                 goto err_unpin;
6251
6252         if (intel_crtc->plane)
6253                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6254         else
6255                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6256         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6257         intel_ring_emit(ring, MI_NOOP);
6258         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6259                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6260         intel_ring_emit(ring, fb->pitches[0]);
6261         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6262         intel_ring_emit(ring, MI_NOOP);
6263
6264         intel_ring_advance(ring);
6265         return 0;
6266
6267 err_unpin:
6268         intel_unpin_fb_obj(obj);
6269 err:
6270         return ret;
6271 }
6272
6273 static int intel_gen4_queue_flip(struct drm_device *dev,
6274                                  struct drm_crtc *crtc,
6275                                  struct drm_framebuffer *fb,
6276                                  struct drm_i915_gem_object *obj)
6277 {
6278         struct drm_i915_private *dev_priv = dev->dev_private;
6279         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6280         uint32_t pf, pipesrc;
6281         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6282         int ret;
6283
6284         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6285         if (ret)
6286                 goto err;
6287
6288         ret = intel_ring_begin(ring, 4);
6289         if (ret)
6290                 goto err_unpin;
6291
6292         /* i965+ uses the linear or tiled offsets from the
6293          * Display Registers (which do not change across a page-flip)
6294          * so we need only reprogram the base address.
6295          */
6296         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6297                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6298         intel_ring_emit(ring, fb->pitches[0]);
6299         intel_ring_emit(ring,
6300                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6301                         obj->tiling_mode);
6302
6303         /* XXX Enabling the panel-fitter across page-flip is so far
6304          * untested on non-native modes, so ignore it for now.
6305          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6306          */
6307         pf = 0;
6308         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6309         intel_ring_emit(ring, pf | pipesrc);
6310         intel_ring_advance(ring);
6311         return 0;
6312
6313 err_unpin:
6314         intel_unpin_fb_obj(obj);
6315 err:
6316         return ret;
6317 }
6318
6319 static int intel_gen6_queue_flip(struct drm_device *dev,
6320                                  struct drm_crtc *crtc,
6321                                  struct drm_framebuffer *fb,
6322                                  struct drm_i915_gem_object *obj)
6323 {
6324         struct drm_i915_private *dev_priv = dev->dev_private;
6325         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6326         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6327         uint32_t pf, pipesrc;
6328         int ret;
6329
6330         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6331         if (ret)
6332                 goto err;
6333
6334         ret = intel_ring_begin(ring, 4);
6335         if (ret)
6336                 goto err_unpin;
6337
6338         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6339                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6340         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
6341         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6342
6343         /* Contrary to the suggestions in the documentation,
6344          * "Enable Panel Fitter" does not seem to be required when page
6345          * flipping with a non-native mode, and worse causes a normal
6346          * modeset to fail.
6347          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6348          */
6349         pf = 0;
6350         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6351         intel_ring_emit(ring, pf | pipesrc);
6352         intel_ring_advance(ring);
6353         return 0;
6354
6355 err_unpin:
6356         intel_unpin_fb_obj(obj);
6357 err:
6358         return ret;
6359 }
6360
6361 /*
6362  * On gen7 we currently use the blit ring because (in early silicon at least)
6363  * the render ring doesn't give us interrpts for page flip completion, which
6364  * means clients will hang after the first flip is queued.  Fortunately the
6365  * blit ring generates interrupts properly, so use it instead.
6366  */
6367 static int intel_gen7_queue_flip(struct drm_device *dev,
6368                                  struct drm_crtc *crtc,
6369                                  struct drm_framebuffer *fb,
6370                                  struct drm_i915_gem_object *obj)
6371 {
6372         struct drm_i915_private *dev_priv = dev->dev_private;
6373         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6374         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6375         uint32_t plane_bit = 0;
6376         int ret;
6377
6378         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6379         if (ret)
6380                 goto err;
6381
6382         switch(intel_crtc->plane) {
6383         case PLANE_A:
6384                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6385                 break;
6386         case PLANE_B:
6387                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6388                 break;
6389         case PLANE_C:
6390                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6391                 break;
6392         default:
6393                 WARN_ONCE(1, "unknown plane in flip command\n");
6394                 ret = -ENODEV;
6395                 goto err;
6396         }
6397
6398         ret = intel_ring_begin(ring, 4);
6399         if (ret)
6400                 goto err_unpin;
6401
6402         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
6403         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
6404         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6405         intel_ring_emit(ring, (MI_NOOP));
6406         intel_ring_advance(ring);
6407         return 0;
6408
6409 err_unpin:
6410         intel_unpin_fb_obj(obj);
6411 err:
6412         return ret;
6413 }
6414
6415 static int intel_default_queue_flip(struct drm_device *dev,
6416                                     struct drm_crtc *crtc,
6417                                     struct drm_framebuffer *fb,
6418                                     struct drm_i915_gem_object *obj)
6419 {
6420         return -ENODEV;
6421 }
6422
6423 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6424                                 struct drm_framebuffer *fb,
6425                                 struct drm_pending_vblank_event *event)
6426 {
6427         struct drm_device *dev = crtc->dev;
6428         struct drm_i915_private *dev_priv = dev->dev_private;
6429         struct intel_framebuffer *intel_fb;
6430         struct drm_i915_gem_object *obj;
6431         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6432         struct intel_unpin_work *work;
6433         unsigned long flags;
6434         int ret;
6435
6436         /* Can't change pixel format via MI display flips. */
6437         if (fb->pixel_format != crtc->fb->pixel_format)
6438                 return -EINVAL;
6439
6440         /*
6441          * TILEOFF/LINOFF registers can't be changed via MI display flips.
6442          * Note that pitch changes could also affect these register.
6443          */
6444         if (INTEL_INFO(dev)->gen > 3 &&
6445             (fb->offsets[0] != crtc->fb->offsets[0] ||
6446              fb->pitches[0] != crtc->fb->pitches[0]))
6447                 return -EINVAL;
6448
6449         work = kzalloc(sizeof *work, GFP_KERNEL);
6450         if (work == NULL)
6451                 return -ENOMEM;
6452
6453         work->event = event;
6454         work->dev = crtc->dev;
6455         intel_fb = to_intel_framebuffer(crtc->fb);
6456         work->old_fb_obj = intel_fb->obj;
6457         INIT_WORK(&work->work, intel_unpin_work_fn);
6458
6459         ret = drm_vblank_get(dev, intel_crtc->pipe);
6460         if (ret)
6461                 goto free_work;
6462
6463         /* We borrow the event spin lock for protecting unpin_work */
6464         spin_lock_irqsave(&dev->event_lock, flags);
6465         if (intel_crtc->unpin_work) {
6466                 spin_unlock_irqrestore(&dev->event_lock, flags);
6467                 kfree(work);
6468                 drm_vblank_put(dev, intel_crtc->pipe);
6469
6470                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6471                 return -EBUSY;
6472         }
6473         intel_crtc->unpin_work = work;
6474         spin_unlock_irqrestore(&dev->event_lock, flags);
6475
6476         intel_fb = to_intel_framebuffer(fb);
6477         obj = intel_fb->obj;
6478
6479         ret = i915_mutex_lock_interruptible(dev);
6480         if (ret)
6481                 goto cleanup;
6482
6483         /* Reference the objects for the scheduled work. */
6484         drm_gem_object_reference(&work->old_fb_obj->base);
6485         drm_gem_object_reference(&obj->base);
6486
6487         crtc->fb = fb;
6488
6489         work->pending_flip_obj = obj;
6490
6491         work->enable_stall_check = true;
6492
6493         /* Block clients from rendering to the new back buffer until
6494          * the flip occurs and the object is no longer visible.
6495          */
6496         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6497
6498         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6499         if (ret)
6500                 goto cleanup_pending;
6501
6502         intel_disable_fbc(dev);
6503         intel_mark_busy(dev, obj);
6504         mutex_unlock(&dev->struct_mutex);
6505
6506         trace_i915_flip_request(intel_crtc->plane, obj);
6507
6508         return 0;
6509
6510 cleanup_pending:
6511         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6512         drm_gem_object_unreference(&work->old_fb_obj->base);
6513         drm_gem_object_unreference(&obj->base);
6514         mutex_unlock(&dev->struct_mutex);
6515
6516 cleanup:
6517         spin_lock_irqsave(&dev->event_lock, flags);
6518         intel_crtc->unpin_work = NULL;
6519         spin_unlock_irqrestore(&dev->event_lock, flags);
6520
6521         drm_vblank_put(dev, intel_crtc->pipe);
6522 free_work:
6523         kfree(work);
6524
6525         return ret;
6526 }
6527
6528 static void intel_sanitize_modesetting(struct drm_device *dev,
6529                                        int pipe, int plane)
6530 {
6531         struct drm_i915_private *dev_priv = dev->dev_private;
6532         u32 reg, val;
6533         int i;
6534
6535         /* Clear any frame start delays used for debugging left by the BIOS */
6536         for_each_pipe(i) {
6537                 reg = PIPECONF(i);
6538                 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
6539         }
6540
6541         if (HAS_PCH_SPLIT(dev))
6542                 return;
6543
6544         /* Who knows what state these registers were left in by the BIOS or
6545          * grub?
6546          *
6547          * If we leave the registers in a conflicting state (e.g. with the
6548          * display plane reading from the other pipe than the one we intend
6549          * to use) then when we attempt to teardown the active mode, we will
6550          * not disable the pipes and planes in the correct order -- leaving
6551          * a plane reading from a disabled pipe and possibly leading to
6552          * undefined behaviour.
6553          */
6554
6555         reg = DSPCNTR(plane);
6556         val = I915_READ(reg);
6557
6558         if ((val & DISPLAY_PLANE_ENABLE) == 0)
6559                 return;
6560         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6561                 return;
6562
6563         /* This display plane is active and attached to the other CPU pipe. */
6564         pipe = !pipe;
6565
6566         /* Disable the plane and wait for it to stop reading from the pipe. */
6567         intel_disable_plane(dev_priv, plane, pipe);
6568         intel_disable_pipe(dev_priv, pipe);
6569 }
6570
6571 static void intel_crtc_reset(struct drm_crtc *crtc)
6572 {
6573         struct drm_device *dev = crtc->dev;
6574         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6575
6576         /* Reset flags back to the 'unknown' status so that they
6577          * will be correctly set on the initial modeset.
6578          */
6579         intel_crtc->dpms_mode = -1;
6580
6581         /* We need to fix up any BIOS configuration that conflicts with
6582          * our expectations.
6583          */
6584         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6585 }
6586
6587 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6588         .dpms = intel_crtc_dpms,
6589         .mode_fixup = intel_crtc_mode_fixup,
6590         .mode_set = intel_crtc_mode_set,
6591         .mode_set_base = intel_pipe_set_base,
6592         .mode_set_base_atomic = intel_pipe_set_base_atomic,
6593         .load_lut = intel_crtc_load_lut,
6594         .disable = intel_crtc_disable,
6595 };
6596
6597 static const struct drm_crtc_funcs intel_crtc_funcs = {
6598         .reset = intel_crtc_reset,
6599         .cursor_set = intel_crtc_cursor_set,
6600         .cursor_move = intel_crtc_cursor_move,
6601         .gamma_set = intel_crtc_gamma_set,
6602         .set_config = drm_crtc_helper_set_config,
6603         .destroy = intel_crtc_destroy,
6604         .page_flip = intel_crtc_page_flip,
6605 };
6606
6607 static void intel_pch_pll_init(struct drm_device *dev)
6608 {
6609         drm_i915_private_t *dev_priv = dev->dev_private;
6610         int i;
6611
6612         if (dev_priv->num_pch_pll == 0) {
6613                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
6614                 return;
6615         }
6616
6617         for (i = 0; i < dev_priv->num_pch_pll; i++) {
6618                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
6619                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
6620                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
6621         }
6622 }
6623
6624 static void intel_crtc_init(struct drm_device *dev, int pipe)
6625 {
6626         drm_i915_private_t *dev_priv = dev->dev_private;
6627         struct intel_crtc *intel_crtc;
6628         int i;
6629
6630         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6631         if (intel_crtc == NULL)
6632                 return;
6633
6634         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6635
6636         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6637         for (i = 0; i < 256; i++) {
6638                 intel_crtc->lut_r[i] = i;
6639                 intel_crtc->lut_g[i] = i;
6640                 intel_crtc->lut_b[i] = i;
6641         }
6642
6643         /* Swap pipes & planes for FBC on pre-965 */
6644         intel_crtc->pipe = pipe;
6645         intel_crtc->plane = pipe;
6646         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6647                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6648                 intel_crtc->plane = !pipe;
6649         }
6650
6651         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6652                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6653         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6654         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6655
6656         intel_crtc_reset(&intel_crtc->base);
6657         intel_crtc->active = true; /* force the pipe off on setup_init_config */
6658         intel_crtc->bpp = 24; /* default for pre-Ironlake */
6659
6660         if (HAS_PCH_SPLIT(dev)) {
6661                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6662                 intel_helper_funcs.commit = ironlake_crtc_commit;
6663         } else {
6664                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6665                 intel_helper_funcs.commit = i9xx_crtc_commit;
6666         }
6667
6668         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6669
6670         intel_crtc->busy = false;
6671
6672         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6673                     (unsigned long)intel_crtc);
6674 }
6675
6676 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6677                                 struct drm_file *file)
6678 {
6679         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6680         struct drm_mode_object *drmmode_obj;
6681         struct intel_crtc *crtc;
6682
6683         if (!drm_core_check_feature(dev, DRIVER_MODESET))
6684                 return -ENODEV;
6685
6686         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6687                         DRM_MODE_OBJECT_CRTC);
6688
6689         if (!drmmode_obj) {
6690                 DRM_ERROR("no such CRTC id\n");
6691                 return -EINVAL;
6692         }
6693
6694         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6695         pipe_from_crtc_id->pipe = crtc->pipe;
6696
6697         return 0;
6698 }
6699
6700 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6701 {
6702         struct intel_encoder *encoder;
6703         int index_mask = 0;
6704         int entry = 0;
6705
6706         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6707                 if (type_mask & encoder->clone_mask)
6708                         index_mask |= (1 << entry);
6709                 entry++;
6710         }
6711
6712         return index_mask;
6713 }
6714
6715 static bool has_edp_a(struct drm_device *dev)
6716 {
6717         struct drm_i915_private *dev_priv = dev->dev_private;
6718
6719         if (!IS_MOBILE(dev))
6720                 return false;
6721
6722         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6723                 return false;
6724
6725         if (IS_GEN5(dev) &&
6726             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6727                 return false;
6728
6729         return true;
6730 }
6731
6732 static void intel_setup_outputs(struct drm_device *dev)
6733 {
6734         struct drm_i915_private *dev_priv = dev->dev_private;
6735         struct intel_encoder *encoder;
6736         bool dpd_is_edp = false;
6737         bool has_lvds;
6738
6739         has_lvds = intel_lvds_init(dev);
6740         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6741                 /* disable the panel fitter on everything but LVDS */
6742                 I915_WRITE(PFIT_CONTROL, 0);
6743         }
6744
6745         if (HAS_PCH_SPLIT(dev)) {
6746                 dpd_is_edp = intel_dpd_is_edp(dev);
6747
6748                 if (has_edp_a(dev))
6749                         intel_dp_init(dev, DP_A);
6750
6751                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6752                         intel_dp_init(dev, PCH_DP_D);
6753         }
6754
6755         intel_crt_init(dev);
6756
6757         if (IS_HASWELL(dev)) {
6758                 int found;
6759
6760                 /* Haswell uses DDI functions to detect digital outputs */
6761                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
6762                 /* DDI A only supports eDP */
6763                 if (found)
6764                         intel_ddi_init(dev, PORT_A);
6765
6766                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
6767                  * register */
6768                 found = I915_READ(SFUSE_STRAP);
6769
6770                 if (found & SFUSE_STRAP_DDIB_DETECTED)
6771                         intel_ddi_init(dev, PORT_B);
6772                 if (found & SFUSE_STRAP_DDIC_DETECTED)
6773                         intel_ddi_init(dev, PORT_C);
6774                 if (found & SFUSE_STRAP_DDID_DETECTED)
6775                         intel_ddi_init(dev, PORT_D);
6776         } else if (HAS_PCH_SPLIT(dev)) {
6777                 int found;
6778
6779                 if (I915_READ(HDMIB) & PORT_DETECTED) {
6780                         /* PCH SDVOB multiplex with HDMIB */
6781                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
6782                         if (!found)
6783                                 intel_hdmi_init(dev, HDMIB);
6784                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6785                                 intel_dp_init(dev, PCH_DP_B);
6786                 }
6787
6788                 if (I915_READ(HDMIC) & PORT_DETECTED)
6789                         intel_hdmi_init(dev, HDMIC);
6790
6791                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
6792                         intel_hdmi_init(dev, HDMID);
6793
6794                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
6795                         intel_dp_init(dev, PCH_DP_C);
6796
6797                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6798                         intel_dp_init(dev, PCH_DP_D);
6799         } else if (IS_VALLEYVIEW(dev)) {
6800                 int found;
6801
6802                 if (I915_READ(SDVOB) & PORT_DETECTED) {
6803                         /* SDVOB multiplex with HDMIB */
6804                         found = intel_sdvo_init(dev, SDVOB, true);
6805                         if (!found)
6806                                 intel_hdmi_init(dev, SDVOB);
6807                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
6808                                 intel_dp_init(dev, DP_B);
6809                 }
6810
6811                 if (I915_READ(SDVOC) & PORT_DETECTED)
6812                         intel_hdmi_init(dev, SDVOC);
6813
6814                 /* Shares lanes with HDMI on SDVOC */
6815                 if (I915_READ(DP_C) & DP_DETECTED)
6816                         intel_dp_init(dev, DP_C);
6817         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6818                 bool found = false;
6819
6820                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6821                         DRM_DEBUG_KMS("probing SDVOB\n");
6822                         found = intel_sdvo_init(dev, SDVOB, true);
6823                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6824                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6825                                 intel_hdmi_init(dev, SDVOB);
6826                         }
6827
6828                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6829                                 DRM_DEBUG_KMS("probing DP_B\n");
6830                                 intel_dp_init(dev, DP_B);
6831                         }
6832                 }
6833
6834                 /* Before G4X SDVOC doesn't have its own detect register */
6835
6836                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6837                         DRM_DEBUG_KMS("probing SDVOC\n");
6838                         found = intel_sdvo_init(dev, SDVOC, false);
6839                 }
6840
6841                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6842
6843                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6844                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6845                                 intel_hdmi_init(dev, SDVOC);
6846                         }
6847                         if (SUPPORTS_INTEGRATED_DP(dev)) {
6848                                 DRM_DEBUG_KMS("probing DP_C\n");
6849                                 intel_dp_init(dev, DP_C);
6850                         }
6851                 }
6852
6853                 if (SUPPORTS_INTEGRATED_DP(dev) &&
6854                     (I915_READ(DP_D) & DP_DETECTED)) {
6855                         DRM_DEBUG_KMS("probing DP_D\n");
6856                         intel_dp_init(dev, DP_D);
6857                 }
6858         } else if (IS_GEN2(dev))
6859                 intel_dvo_init(dev);
6860
6861         if (SUPPORTS_TV(dev))
6862                 intel_tv_init(dev);
6863
6864         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6865                 encoder->base.possible_crtcs = encoder->crtc_mask;
6866                 encoder->base.possible_clones =
6867                         intel_encoder_clones(dev, encoder->clone_mask);
6868         }
6869
6870         /* disable all the possible outputs/crtcs before entering KMS mode */
6871         drm_helper_disable_unused_functions(dev);
6872
6873         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6874                 ironlake_init_pch_refclk(dev);
6875 }
6876
6877 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6878 {
6879         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6880
6881         drm_framebuffer_cleanup(fb);
6882         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6883
6884         kfree(intel_fb);
6885 }
6886
6887 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6888                                                 struct drm_file *file,
6889                                                 unsigned int *handle)
6890 {
6891         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6892         struct drm_i915_gem_object *obj = intel_fb->obj;
6893
6894         return drm_gem_handle_create(file, &obj->base, handle);
6895 }
6896
6897 static const struct drm_framebuffer_funcs intel_fb_funcs = {
6898         .destroy = intel_user_framebuffer_destroy,
6899         .create_handle = intel_user_framebuffer_create_handle,
6900 };
6901
6902 int intel_framebuffer_init(struct drm_device *dev,
6903                            struct intel_framebuffer *intel_fb,
6904                            struct drm_mode_fb_cmd2 *mode_cmd,
6905                            struct drm_i915_gem_object *obj)
6906 {
6907         int ret;
6908
6909         if (obj->tiling_mode == I915_TILING_Y)
6910                 return -EINVAL;
6911
6912         if (mode_cmd->pitches[0] & 63)
6913                 return -EINVAL;
6914
6915         switch (mode_cmd->pixel_format) {
6916         case DRM_FORMAT_RGB332:
6917         case DRM_FORMAT_RGB565:
6918         case DRM_FORMAT_XRGB8888:
6919         case DRM_FORMAT_XBGR8888:
6920         case DRM_FORMAT_ARGB8888:
6921         case DRM_FORMAT_XRGB2101010:
6922         case DRM_FORMAT_ARGB2101010:
6923                 /* RGB formats are common across chipsets */
6924                 break;
6925         case DRM_FORMAT_YUYV:
6926         case DRM_FORMAT_UYVY:
6927         case DRM_FORMAT_YVYU:
6928         case DRM_FORMAT_VYUY:
6929                 break;
6930         default:
6931                 DRM_DEBUG_KMS("unsupported pixel format %u\n",
6932                                 mode_cmd->pixel_format);
6933                 return -EINVAL;
6934         }
6935
6936         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6937         if (ret) {
6938                 DRM_ERROR("framebuffer init failed %d\n", ret);
6939                 return ret;
6940         }
6941
6942         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6943         intel_fb->obj = obj;
6944         return 0;
6945 }
6946
6947 static struct drm_framebuffer *
6948 intel_user_framebuffer_create(struct drm_device *dev,
6949                               struct drm_file *filp,
6950                               struct drm_mode_fb_cmd2 *mode_cmd)
6951 {
6952         struct drm_i915_gem_object *obj;
6953
6954         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
6955                                                 mode_cmd->handles[0]));
6956         if (&obj->base == NULL)
6957                 return ERR_PTR(-ENOENT);
6958
6959         return intel_framebuffer_create(dev, mode_cmd, obj);
6960 }
6961
6962 static const struct drm_mode_config_funcs intel_mode_funcs = {
6963         .fb_create = intel_user_framebuffer_create,
6964         .output_poll_changed = intel_fb_output_poll_changed,
6965 };
6966
6967 /* Set up chip specific display functions */
6968 static void intel_init_display(struct drm_device *dev)
6969 {
6970         struct drm_i915_private *dev_priv = dev->dev_private;
6971
6972         /* We always want a DPMS function */
6973         if (HAS_PCH_SPLIT(dev)) {
6974                 dev_priv->display.dpms = ironlake_crtc_dpms;
6975                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
6976                 dev_priv->display.off = ironlake_crtc_off;
6977                 dev_priv->display.update_plane = ironlake_update_plane;
6978         } else {
6979                 dev_priv->display.dpms = i9xx_crtc_dpms;
6980                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
6981                 dev_priv->display.off = i9xx_crtc_off;
6982                 dev_priv->display.update_plane = i9xx_update_plane;
6983         }
6984
6985         /* Returns the core display clock speed */
6986         if (IS_VALLEYVIEW(dev))
6987                 dev_priv->display.get_display_clock_speed =
6988                         valleyview_get_display_clock_speed;
6989         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
6990                 dev_priv->display.get_display_clock_speed =
6991                         i945_get_display_clock_speed;
6992         else if (IS_I915G(dev))
6993                 dev_priv->display.get_display_clock_speed =
6994                         i915_get_display_clock_speed;
6995         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
6996                 dev_priv->display.get_display_clock_speed =
6997                         i9xx_misc_get_display_clock_speed;
6998         else if (IS_I915GM(dev))
6999                 dev_priv->display.get_display_clock_speed =
7000                         i915gm_get_display_clock_speed;
7001         else if (IS_I865G(dev))
7002                 dev_priv->display.get_display_clock_speed =
7003                         i865_get_display_clock_speed;
7004         else if (IS_I85X(dev))
7005                 dev_priv->display.get_display_clock_speed =
7006                         i855_get_display_clock_speed;
7007         else /* 852, 830 */
7008                 dev_priv->display.get_display_clock_speed =
7009                         i830_get_display_clock_speed;
7010
7011         if (HAS_PCH_SPLIT(dev)) {
7012                 if (IS_GEN5(dev)) {
7013                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
7014                         dev_priv->display.write_eld = ironlake_write_eld;
7015                 } else if (IS_GEN6(dev)) {
7016                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
7017                         dev_priv->display.write_eld = ironlake_write_eld;
7018                 } else if (IS_IVYBRIDGE(dev)) {
7019                         /* FIXME: detect B0+ stepping and use auto training */
7020                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
7021                         dev_priv->display.write_eld = ironlake_write_eld;
7022                 } else if (IS_HASWELL(dev)) {
7023                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
7024                         dev_priv->display.write_eld = ironlake_write_eld;
7025                 } else
7026                         dev_priv->display.update_wm = NULL;
7027         } else if (IS_G4X(dev)) {
7028                 dev_priv->display.write_eld = g4x_write_eld;
7029         }
7030
7031         /* Default just returns -ENODEV to indicate unsupported */
7032         dev_priv->display.queue_flip = intel_default_queue_flip;
7033
7034         switch (INTEL_INFO(dev)->gen) {
7035         case 2:
7036                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
7037                 break;
7038
7039         case 3:
7040                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
7041                 break;
7042
7043         case 4:
7044         case 5:
7045                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
7046                 break;
7047
7048         case 6:
7049                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
7050                 break;
7051         case 7:
7052                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
7053                 break;
7054         }
7055 }
7056
7057 /*
7058  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7059  * resume, or other times.  This quirk makes sure that's the case for
7060  * affected systems.
7061  */
7062 static void quirk_pipea_force(struct drm_device *dev)
7063 {
7064         struct drm_i915_private *dev_priv = dev->dev_private;
7065
7066         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7067         DRM_INFO("applying pipe a force quirk\n");
7068 }
7069
7070 /*
7071  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
7072  */
7073 static void quirk_ssc_force_disable(struct drm_device *dev)
7074 {
7075         struct drm_i915_private *dev_priv = dev->dev_private;
7076         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
7077         DRM_INFO("applying lvds SSC disable quirk\n");
7078 }
7079
7080 /*
7081  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
7082  * brightness value
7083  */
7084 static void quirk_invert_brightness(struct drm_device *dev)
7085 {
7086         struct drm_i915_private *dev_priv = dev->dev_private;
7087         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
7088         DRM_INFO("applying inverted panel brightness quirk\n");
7089 }
7090
7091 struct intel_quirk {
7092         int device;
7093         int subsystem_vendor;
7094         int subsystem_device;
7095         void (*hook)(struct drm_device *dev);
7096 };
7097
7098 static struct intel_quirk intel_quirks[] = {
7099         /* HP Mini needs pipe A force quirk (LP: #322104) */
7100         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
7101
7102         /* Thinkpad R31 needs pipe A force quirk */
7103         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
7104         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7105         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7106
7107         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
7108         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
7109         /* ThinkPad X40 needs pipe A force quirk */
7110
7111         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7112         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7113
7114         /* 855 & before need to leave pipe A & dpll A up */
7115         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7116         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7117
7118         /* Lenovo U160 cannot use SSC on LVDS */
7119         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
7120
7121         /* Sony Vaio Y cannot use SSC on LVDS */
7122         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
7123
7124         /* Acer Aspire 5734Z must invert backlight brightness */
7125         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
7126 };
7127
7128 static void intel_init_quirks(struct drm_device *dev)
7129 {
7130         struct pci_dev *d = dev->pdev;
7131         int i;
7132
7133         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7134                 struct intel_quirk *q = &intel_quirks[i];
7135
7136                 if (d->device == q->device &&
7137                     (d->subsystem_vendor == q->subsystem_vendor ||
7138                      q->subsystem_vendor == PCI_ANY_ID) &&
7139                     (d->subsystem_device == q->subsystem_device ||
7140                      q->subsystem_device == PCI_ANY_ID))
7141                         q->hook(dev);
7142         }
7143 }
7144
7145 /* Disable the VGA plane that we never use */
7146 static void i915_disable_vga(struct drm_device *dev)
7147 {
7148         struct drm_i915_private *dev_priv = dev->dev_private;
7149         u8 sr1;
7150         u32 vga_reg;
7151
7152         if (HAS_PCH_SPLIT(dev))
7153                 vga_reg = CPU_VGACNTRL;
7154         else
7155                 vga_reg = VGACNTRL;
7156
7157         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
7158         outb(SR01, VGA_SR_INDEX);
7159         sr1 = inb(VGA_SR_DATA);
7160         outb(sr1 | 1<<5, VGA_SR_DATA);
7161         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7162         udelay(300);
7163
7164         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7165         POSTING_READ(vga_reg);
7166 }
7167
7168 void intel_modeset_init_hw(struct drm_device *dev)
7169 {
7170         /* We attempt to init the necessary power wells early in the initialization
7171          * time, so the subsystems that expect power to be enabled can work.
7172          */
7173         intel_init_power_wells(dev);
7174
7175         intel_prepare_ddi(dev);
7176
7177         intel_init_clock_gating(dev);
7178
7179         mutex_lock(&dev->struct_mutex);
7180         intel_enable_gt_powersave(dev);
7181         mutex_unlock(&dev->struct_mutex);
7182 }
7183
7184 void intel_modeset_init(struct drm_device *dev)
7185 {
7186         struct drm_i915_private *dev_priv = dev->dev_private;
7187         int i, ret;
7188
7189         drm_mode_config_init(dev);
7190
7191         dev->mode_config.min_width = 0;
7192         dev->mode_config.min_height = 0;
7193
7194         dev->mode_config.preferred_depth = 24;
7195         dev->mode_config.prefer_shadow = 1;
7196
7197         dev->mode_config.funcs = &intel_mode_funcs;
7198
7199         intel_init_quirks(dev);
7200
7201         intel_init_pm(dev);
7202
7203         intel_init_display(dev);
7204
7205         if (IS_GEN2(dev)) {
7206                 dev->mode_config.max_width = 2048;
7207                 dev->mode_config.max_height = 2048;
7208         } else if (IS_GEN3(dev)) {
7209                 dev->mode_config.max_width = 4096;
7210                 dev->mode_config.max_height = 4096;
7211         } else {
7212                 dev->mode_config.max_width = 8192;
7213                 dev->mode_config.max_height = 8192;
7214         }
7215         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
7216
7217         DRM_DEBUG_KMS("%d display pipe%s available.\n",
7218                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
7219
7220         for (i = 0; i < dev_priv->num_pipe; i++) {
7221                 intel_crtc_init(dev, i);
7222                 ret = intel_plane_init(dev, i);
7223                 if (ret)
7224                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
7225         }
7226
7227         intel_pch_pll_init(dev);
7228
7229         /* Just disable it once at startup */
7230         i915_disable_vga(dev);
7231         intel_setup_outputs(dev);
7232
7233         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
7234         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
7235                     (unsigned long)dev);
7236 }
7237
7238 void intel_modeset_gem_init(struct drm_device *dev)
7239 {
7240         intel_modeset_init_hw(dev);
7241
7242         intel_setup_overlay(dev);
7243 }
7244
7245 void intel_modeset_cleanup(struct drm_device *dev)
7246 {
7247         struct drm_i915_private *dev_priv = dev->dev_private;
7248         struct drm_crtc *crtc;
7249         struct intel_crtc *intel_crtc;
7250
7251         drm_kms_helper_poll_fini(dev);
7252         mutex_lock(&dev->struct_mutex);
7253
7254         intel_unregister_dsm_handler();
7255
7256
7257         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7258                 /* Skip inactive CRTCs */
7259                 if (!crtc->fb)
7260                         continue;
7261
7262                 intel_crtc = to_intel_crtc(crtc);
7263                 intel_increase_pllclock(crtc);
7264         }
7265
7266         intel_disable_fbc(dev);
7267
7268         intel_disable_gt_powersave(dev);
7269
7270         ironlake_teardown_rc6(dev);
7271
7272         if (IS_VALLEYVIEW(dev))
7273                 vlv_init_dpio(dev);
7274
7275         mutex_unlock(&dev->struct_mutex);
7276
7277         /* Disable the irq before mode object teardown, for the irq might
7278          * enqueue unpin/hotplug work. */
7279         drm_irq_uninstall(dev);
7280         cancel_work_sync(&dev_priv->hotplug_work);
7281         cancel_work_sync(&dev_priv->rps_work);
7282
7283         /* flush any delayed tasks or pending work */
7284         flush_scheduled_work();
7285
7286         /* Shut off idle work before the crtcs get freed. */
7287         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7288                 intel_crtc = to_intel_crtc(crtc);
7289                 del_timer_sync(&intel_crtc->idle_timer);
7290         }
7291         del_timer_sync(&dev_priv->idle_timer);
7292         cancel_work_sync(&dev_priv->idle_work);
7293
7294         drm_mode_config_cleanup(dev);
7295 }
7296
7297 /*
7298  * Return which encoder is currently attached for connector.
7299  */
7300 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
7301 {
7302         return &intel_attached_encoder(connector)->base;
7303 }
7304
7305 void intel_connector_attach_encoder(struct intel_connector *connector,
7306                                     struct intel_encoder *encoder)
7307 {
7308         connector->encoder = encoder;
7309         drm_mode_connector_attach_encoder(&connector->base,
7310                                           &encoder->base);
7311 }
7312
7313 /*
7314  * set vga decode state - true == enable VGA decode
7315  */
7316 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
7317 {
7318         struct drm_i915_private *dev_priv = dev->dev_private;
7319         u16 gmch_ctrl;
7320
7321         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
7322         if (state)
7323                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
7324         else
7325                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
7326         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
7327         return 0;
7328 }
7329
7330 #ifdef CONFIG_DEBUG_FS
7331 #include <linux/seq_file.h>
7332
7333 struct intel_display_error_state {
7334         struct intel_cursor_error_state {
7335                 u32 control;
7336                 u32 position;
7337                 u32 base;
7338                 u32 size;
7339         } cursor[2];
7340
7341         struct intel_pipe_error_state {
7342                 u32 conf;
7343                 u32 source;
7344
7345                 u32 htotal;
7346                 u32 hblank;
7347                 u32 hsync;
7348                 u32 vtotal;
7349                 u32 vblank;
7350                 u32 vsync;
7351         } pipe[2];
7352
7353         struct intel_plane_error_state {
7354                 u32 control;
7355                 u32 stride;
7356                 u32 size;
7357                 u32 pos;
7358                 u32 addr;
7359                 u32 surface;
7360                 u32 tile_offset;
7361         } plane[2];
7362 };
7363
7364 struct intel_display_error_state *
7365 intel_display_capture_error_state(struct drm_device *dev)
7366 {
7367         drm_i915_private_t *dev_priv = dev->dev_private;
7368         struct intel_display_error_state *error;
7369         int i;
7370
7371         error = kmalloc(sizeof(*error), GFP_ATOMIC);
7372         if (error == NULL)
7373                 return NULL;
7374
7375         for (i = 0; i < 2; i++) {
7376                 error->cursor[i].control = I915_READ(CURCNTR(i));
7377                 error->cursor[i].position = I915_READ(CURPOS(i));
7378                 error->cursor[i].base = I915_READ(CURBASE(i));
7379
7380                 error->plane[i].control = I915_READ(DSPCNTR(i));
7381                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
7382                 error->plane[i].size = I915_READ(DSPSIZE(i));
7383                 error->plane[i].pos = I915_READ(DSPPOS(i));
7384                 error->plane[i].addr = I915_READ(DSPADDR(i));
7385                 if (INTEL_INFO(dev)->gen >= 4) {
7386                         error->plane[i].surface = I915_READ(DSPSURF(i));
7387                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
7388                 }
7389
7390                 error->pipe[i].conf = I915_READ(PIPECONF(i));
7391                 error->pipe[i].source = I915_READ(PIPESRC(i));
7392                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
7393                 error->pipe[i].hblank = I915_READ(HBLANK(i));
7394                 error->pipe[i].hsync = I915_READ(HSYNC(i));
7395                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
7396                 error->pipe[i].vblank = I915_READ(VBLANK(i));
7397                 error->pipe[i].vsync = I915_READ(VSYNC(i));
7398         }
7399
7400         return error;
7401 }
7402
7403 void
7404 intel_display_print_error_state(struct seq_file *m,
7405                                 struct drm_device *dev,
7406                                 struct intel_display_error_state *error)
7407 {
7408         int i;
7409
7410         for (i = 0; i < 2; i++) {
7411                 seq_printf(m, "Pipe [%d]:\n", i);
7412                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
7413                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
7414                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
7415                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
7416                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
7417                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
7418                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
7419                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
7420
7421                 seq_printf(m, "Plane [%d]:\n", i);
7422                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
7423                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
7424                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
7425                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
7426                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
7427                 if (INTEL_INFO(dev)->gen >= 4) {
7428                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
7429                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
7430                 }
7431
7432                 seq_printf(m, "Cursor [%d]:\n", i);
7433                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
7434                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
7435                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
7436         }
7437 }
7438 #endif