drm/i915: fixup interlaced support on ilk+
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_update_watermarks(struct drm_device *dev);
48 static void intel_increase_pllclock(struct drm_crtc *crtc);
49 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
50
51 typedef struct {
52         /* given values */
53         int n;
54         int m1, m2;
55         int p1, p2;
56         /* derived values */
57         int     dot;
58         int     vco;
59         int     m;
60         int     p;
61 } intel_clock_t;
62
63 typedef struct {
64         int     min, max;
65 } intel_range_t;
66
67 typedef struct {
68         int     dot_limit;
69         int     p2_slow, p2_fast;
70 } intel_p2_t;
71
72 #define INTEL_P2_NUM                  2
73 typedef struct intel_limit intel_limit_t;
74 struct intel_limit {
75         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
76         intel_p2_t          p2;
77         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
78                         int, int, intel_clock_t *, intel_clock_t *);
79 };
80
81 /* FDI */
82 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
83
84 static bool
85 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
86                     int target, int refclk, intel_clock_t *match_clock,
87                     intel_clock_t *best_clock);
88 static bool
89 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
90                         int target, int refclk, intel_clock_t *match_clock,
91                         intel_clock_t *best_clock);
92
93 static bool
94 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
95                       int target, int refclk, intel_clock_t *match_clock,
96                       intel_clock_t *best_clock);
97 static bool
98 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
99                            int target, int refclk, intel_clock_t *match_clock,
100                            intel_clock_t *best_clock);
101
102 static inline u32 /* units of 100MHz */
103 intel_fdi_link_freq(struct drm_device *dev)
104 {
105         if (IS_GEN5(dev)) {
106                 struct drm_i915_private *dev_priv = dev->dev_private;
107                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
108         } else
109                 return 27;
110 }
111
112 static const intel_limit_t intel_limits_i8xx_dvo = {
113         .dot = { .min = 25000, .max = 350000 },
114         .vco = { .min = 930000, .max = 1400000 },
115         .n = { .min = 3, .max = 16 },
116         .m = { .min = 96, .max = 140 },
117         .m1 = { .min = 18, .max = 26 },
118         .m2 = { .min = 6, .max = 16 },
119         .p = { .min = 4, .max = 128 },
120         .p1 = { .min = 2, .max = 33 },
121         .p2 = { .dot_limit = 165000,
122                 .p2_slow = 4, .p2_fast = 2 },
123         .find_pll = intel_find_best_PLL,
124 };
125
126 static const intel_limit_t intel_limits_i8xx_lvds = {
127         .dot = { .min = 25000, .max = 350000 },
128         .vco = { .min = 930000, .max = 1400000 },
129         .n = { .min = 3, .max = 16 },
130         .m = { .min = 96, .max = 140 },
131         .m1 = { .min = 18, .max = 26 },
132         .m2 = { .min = 6, .max = 16 },
133         .p = { .min = 4, .max = 128 },
134         .p1 = { .min = 1, .max = 6 },
135         .p2 = { .dot_limit = 165000,
136                 .p2_slow = 14, .p2_fast = 7 },
137         .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i9xx_sdvo = {
141         .dot = { .min = 20000, .max = 400000 },
142         .vco = { .min = 1400000, .max = 2800000 },
143         .n = { .min = 1, .max = 6 },
144         .m = { .min = 70, .max = 120 },
145         .m1 = { .min = 10, .max = 22 },
146         .m2 = { .min = 5, .max = 9 },
147         .p = { .min = 5, .max = 80 },
148         .p1 = { .min = 1, .max = 8 },
149         .p2 = { .dot_limit = 200000,
150                 .p2_slow = 10, .p2_fast = 5 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_lvds = {
155         .dot = { .min = 20000, .max = 400000 },
156         .vco = { .min = 1400000, .max = 2800000 },
157         .n = { .min = 1, .max = 6 },
158         .m = { .min = 70, .max = 120 },
159         .m1 = { .min = 10, .max = 22 },
160         .m2 = { .min = 5, .max = 9 },
161         .p = { .min = 7, .max = 98 },
162         .p1 = { .min = 1, .max = 8 },
163         .p2 = { .dot_limit = 112000,
164                 .p2_slow = 14, .p2_fast = 7 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168
169 static const intel_limit_t intel_limits_g4x_sdvo = {
170         .dot = { .min = 25000, .max = 270000 },
171         .vco = { .min = 1750000, .max = 3500000},
172         .n = { .min = 1, .max = 4 },
173         .m = { .min = 104, .max = 138 },
174         .m1 = { .min = 17, .max = 23 },
175         .m2 = { .min = 5, .max = 11 },
176         .p = { .min = 10, .max = 30 },
177         .p1 = { .min = 1, .max = 3},
178         .p2 = { .dot_limit = 270000,
179                 .p2_slow = 10,
180                 .p2_fast = 10
181         },
182         .find_pll = intel_g4x_find_best_PLL,
183 };
184
185 static const intel_limit_t intel_limits_g4x_hdmi = {
186         .dot = { .min = 22000, .max = 400000 },
187         .vco = { .min = 1750000, .max = 3500000},
188         .n = { .min = 1, .max = 4 },
189         .m = { .min = 104, .max = 138 },
190         .m1 = { .min = 16, .max = 23 },
191         .m2 = { .min = 5, .max = 11 },
192         .p = { .min = 5, .max = 80 },
193         .p1 = { .min = 1, .max = 8},
194         .p2 = { .dot_limit = 165000,
195                 .p2_slow = 10, .p2_fast = 5 },
196         .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
200         .dot = { .min = 20000, .max = 115000 },
201         .vco = { .min = 1750000, .max = 3500000 },
202         .n = { .min = 1, .max = 3 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 17, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 28, .max = 112 },
207         .p1 = { .min = 2, .max = 8 },
208         .p2 = { .dot_limit = 0,
209                 .p2_slow = 14, .p2_fast = 14
210         },
211         .find_pll = intel_g4x_find_best_PLL,
212 };
213
214 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
215         .dot = { .min = 80000, .max = 224000 },
216         .vco = { .min = 1750000, .max = 3500000 },
217         .n = { .min = 1, .max = 3 },
218         .m = { .min = 104, .max = 138 },
219         .m1 = { .min = 17, .max = 23 },
220         .m2 = { .min = 5, .max = 11 },
221         .p = { .min = 14, .max = 42 },
222         .p1 = { .min = 2, .max = 6 },
223         .p2 = { .dot_limit = 0,
224                 .p2_slow = 7, .p2_fast = 7
225         },
226         .find_pll = intel_g4x_find_best_PLL,
227 };
228
229 static const intel_limit_t intel_limits_g4x_display_port = {
230         .dot = { .min = 161670, .max = 227000 },
231         .vco = { .min = 1750000, .max = 3500000},
232         .n = { .min = 1, .max = 2 },
233         .m = { .min = 97, .max = 108 },
234         .m1 = { .min = 0x10, .max = 0x12 },
235         .m2 = { .min = 0x05, .max = 0x06 },
236         .p = { .min = 10, .max = 20 },
237         .p1 = { .min = 1, .max = 2},
238         .p2 = { .dot_limit = 0,
239                 .p2_slow = 10, .p2_fast = 10 },
240         .find_pll = intel_find_pll_g4x_dp,
241 };
242
243 static const intel_limit_t intel_limits_pineview_sdvo = {
244         .dot = { .min = 20000, .max = 400000},
245         .vco = { .min = 1700000, .max = 3500000 },
246         /* Pineview's Ncounter is a ring counter */
247         .n = { .min = 3, .max = 6 },
248         .m = { .min = 2, .max = 256 },
249         /* Pineview only has one combined m divider, which we treat as m2. */
250         .m1 = { .min = 0, .max = 0 },
251         .m2 = { .min = 0, .max = 254 },
252         .p = { .min = 5, .max = 80 },
253         .p1 = { .min = 1, .max = 8 },
254         .p2 = { .dot_limit = 200000,
255                 .p2_slow = 10, .p2_fast = 5 },
256         .find_pll = intel_find_best_PLL,
257 };
258
259 static const intel_limit_t intel_limits_pineview_lvds = {
260         .dot = { .min = 20000, .max = 400000 },
261         .vco = { .min = 1700000, .max = 3500000 },
262         .n = { .min = 3, .max = 6 },
263         .m = { .min = 2, .max = 256 },
264         .m1 = { .min = 0, .max = 0 },
265         .m2 = { .min = 0, .max = 254 },
266         .p = { .min = 7, .max = 112 },
267         .p1 = { .min = 1, .max = 8 },
268         .p2 = { .dot_limit = 112000,
269                 .p2_slow = 14, .p2_fast = 14 },
270         .find_pll = intel_find_best_PLL,
271 };
272
273 /* Ironlake / Sandybridge
274  *
275  * We calculate clock using (register_value + 2) for N/M1/M2, so here
276  * the range value for them is (actual_value - 2).
277  */
278 static const intel_limit_t intel_limits_ironlake_dac = {
279         .dot = { .min = 25000, .max = 350000 },
280         .vco = { .min = 1760000, .max = 3510000 },
281         .n = { .min = 1, .max = 5 },
282         .m = { .min = 79, .max = 127 },
283         .m1 = { .min = 12, .max = 22 },
284         .m2 = { .min = 5, .max = 9 },
285         .p = { .min = 5, .max = 80 },
286         .p1 = { .min = 1, .max = 8 },
287         .p2 = { .dot_limit = 225000,
288                 .p2_slow = 10, .p2_fast = 5 },
289         .find_pll = intel_g4x_find_best_PLL,
290 };
291
292 static const intel_limit_t intel_limits_ironlake_single_lvds = {
293         .dot = { .min = 25000, .max = 350000 },
294         .vco = { .min = 1760000, .max = 3510000 },
295         .n = { .min = 1, .max = 3 },
296         .m = { .min = 79, .max = 118 },
297         .m1 = { .min = 12, .max = 22 },
298         .m2 = { .min = 5, .max = 9 },
299         .p = { .min = 28, .max = 112 },
300         .p1 = { .min = 2, .max = 8 },
301         .p2 = { .dot_limit = 225000,
302                 .p2_slow = 14, .p2_fast = 14 },
303         .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 3 },
310         .m = { .min = 79, .max = 127 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 14, .max = 56 },
314         .p1 = { .min = 2, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 7, .p2_fast = 7 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 /* LVDS 100mhz refclk limits. */
321 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
322         .dot = { .min = 25000, .max = 350000 },
323         .vco = { .min = 1760000, .max = 3510000 },
324         .n = { .min = 1, .max = 2 },
325         .m = { .min = 79, .max = 126 },
326         .m1 = { .min = 12, .max = 22 },
327         .m2 = { .min = 5, .max = 9 },
328         .p = { .min = 28, .max = 112 },
329         .p1 = { .min = 2, .max = 8 },
330         .p2 = { .dot_limit = 225000,
331                 .p2_slow = 14, .p2_fast = 14 },
332         .find_pll = intel_g4x_find_best_PLL,
333 };
334
335 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
336         .dot = { .min = 25000, .max = 350000 },
337         .vco = { .min = 1760000, .max = 3510000 },
338         .n = { .min = 1, .max = 3 },
339         .m = { .min = 79, .max = 126 },
340         .m1 = { .min = 12, .max = 22 },
341         .m2 = { .min = 5, .max = 9 },
342         .p = { .min = 14, .max = 42 },
343         .p1 = { .min = 2, .max = 6 },
344         .p2 = { .dot_limit = 225000,
345                 .p2_slow = 7, .p2_fast = 7 },
346         .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_display_port = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000},
352         .n = { .min = 1, .max = 2 },
353         .m = { .min = 81, .max = 90 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 10, .max = 20 },
357         .p1 = { .min = 1, .max = 2},
358         .p2 = { .dot_limit = 0,
359                 .p2_slow = 10, .p2_fast = 10 },
360         .find_pll = intel_find_pll_ironlake_dp,
361 };
362
363 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
364                                                 int refclk)
365 {
366         struct drm_device *dev = crtc->dev;
367         struct drm_i915_private *dev_priv = dev->dev_private;
368         const intel_limit_t *limit;
369
370         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
371                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
372                     LVDS_CLKB_POWER_UP) {
373                         /* LVDS dual channel */
374                         if (refclk == 100000)
375                                 limit = &intel_limits_ironlake_dual_lvds_100m;
376                         else
377                                 limit = &intel_limits_ironlake_dual_lvds;
378                 } else {
379                         if (refclk == 100000)
380                                 limit = &intel_limits_ironlake_single_lvds_100m;
381                         else
382                                 limit = &intel_limits_ironlake_single_lvds;
383                 }
384         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
385                         HAS_eDP)
386                 limit = &intel_limits_ironlake_display_port;
387         else
388                 limit = &intel_limits_ironlake_dac;
389
390         return limit;
391 }
392
393 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
394 {
395         struct drm_device *dev = crtc->dev;
396         struct drm_i915_private *dev_priv = dev->dev_private;
397         const intel_limit_t *limit;
398
399         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
400                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
401                     LVDS_CLKB_POWER_UP)
402                         /* LVDS with dual channel */
403                         limit = &intel_limits_g4x_dual_channel_lvds;
404                 else
405                         /* LVDS with dual channel */
406                         limit = &intel_limits_g4x_single_channel_lvds;
407         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
408                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
409                 limit = &intel_limits_g4x_hdmi;
410         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
411                 limit = &intel_limits_g4x_sdvo;
412         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
413                 limit = &intel_limits_g4x_display_port;
414         } else /* The option is for other outputs */
415                 limit = &intel_limits_i9xx_sdvo;
416
417         return limit;
418 }
419
420 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
421 {
422         struct drm_device *dev = crtc->dev;
423         const intel_limit_t *limit;
424
425         if (HAS_PCH_SPLIT(dev))
426                 limit = intel_ironlake_limit(crtc, refclk);
427         else if (IS_G4X(dev)) {
428                 limit = intel_g4x_limit(crtc);
429         } else if (IS_PINEVIEW(dev)) {
430                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
431                         limit = &intel_limits_pineview_lvds;
432                 else
433                         limit = &intel_limits_pineview_sdvo;
434         } else if (!IS_GEN2(dev)) {
435                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
436                         limit = &intel_limits_i9xx_lvds;
437                 else
438                         limit = &intel_limits_i9xx_sdvo;
439         } else {
440                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
441                         limit = &intel_limits_i8xx_lvds;
442                 else
443                         limit = &intel_limits_i8xx_dvo;
444         }
445         return limit;
446 }
447
448 /* m1 is reserved as 0 in Pineview, n is a ring counter */
449 static void pineview_clock(int refclk, intel_clock_t *clock)
450 {
451         clock->m = clock->m2 + 2;
452         clock->p = clock->p1 * clock->p2;
453         clock->vco = refclk * clock->m / clock->n;
454         clock->dot = clock->vco / clock->p;
455 }
456
457 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
458 {
459         if (IS_PINEVIEW(dev)) {
460                 pineview_clock(refclk, clock);
461                 return;
462         }
463         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
464         clock->p = clock->p1 * clock->p2;
465         clock->vco = refclk * clock->m / (clock->n + 2);
466         clock->dot = clock->vco / clock->p;
467 }
468
469 /**
470  * Returns whether any output on the specified pipe is of the specified type
471  */
472 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
473 {
474         struct drm_device *dev = crtc->dev;
475         struct drm_mode_config *mode_config = &dev->mode_config;
476         struct intel_encoder *encoder;
477
478         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
479                 if (encoder->base.crtc == crtc && encoder->type == type)
480                         return true;
481
482         return false;
483 }
484
485 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
486 /**
487  * Returns whether the given set of divisors are valid for a given refclk with
488  * the given connectors.
489  */
490
491 static bool intel_PLL_is_valid(struct drm_device *dev,
492                                const intel_limit_t *limit,
493                                const intel_clock_t *clock)
494 {
495         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
496                 INTELPllInvalid("p1 out of range\n");
497         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
498                 INTELPllInvalid("p out of range\n");
499         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
500                 INTELPllInvalid("m2 out of range\n");
501         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
502                 INTELPllInvalid("m1 out of range\n");
503         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
504                 INTELPllInvalid("m1 <= m2\n");
505         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
506                 INTELPllInvalid("m out of range\n");
507         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
508                 INTELPllInvalid("n out of range\n");
509         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
510                 INTELPllInvalid("vco out of range\n");
511         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
512          * connector, etc., rather than just a single range.
513          */
514         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
515                 INTELPllInvalid("dot out of range\n");
516
517         return true;
518 }
519
520 static bool
521 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
522                     int target, int refclk, intel_clock_t *match_clock,
523                     intel_clock_t *best_clock)
524
525 {
526         struct drm_device *dev = crtc->dev;
527         struct drm_i915_private *dev_priv = dev->dev_private;
528         intel_clock_t clock;
529         int err = target;
530
531         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
532             (I915_READ(LVDS)) != 0) {
533                 /*
534                  * For LVDS, if the panel is on, just rely on its current
535                  * settings for dual-channel.  We haven't figured out how to
536                  * reliably set up different single/dual channel state, if we
537                  * even can.
538                  */
539                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
540                     LVDS_CLKB_POWER_UP)
541                         clock.p2 = limit->p2.p2_fast;
542                 else
543                         clock.p2 = limit->p2.p2_slow;
544         } else {
545                 if (target < limit->p2.dot_limit)
546                         clock.p2 = limit->p2.p2_slow;
547                 else
548                         clock.p2 = limit->p2.p2_fast;
549         }
550
551         memset(best_clock, 0, sizeof(*best_clock));
552
553         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
554              clock.m1++) {
555                 for (clock.m2 = limit->m2.min;
556                      clock.m2 <= limit->m2.max; clock.m2++) {
557                         /* m1 is always 0 in Pineview */
558                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
559                                 break;
560                         for (clock.n = limit->n.min;
561                              clock.n <= limit->n.max; clock.n++) {
562                                 for (clock.p1 = limit->p1.min;
563                                         clock.p1 <= limit->p1.max; clock.p1++) {
564                                         int this_err;
565
566                                         intel_clock(dev, refclk, &clock);
567                                         if (!intel_PLL_is_valid(dev, limit,
568                                                                 &clock))
569                                                 continue;
570                                         if (match_clock &&
571                                             clock.p != match_clock->p)
572                                                 continue;
573
574                                         this_err = abs(clock.dot - target);
575                                         if (this_err < err) {
576                                                 *best_clock = clock;
577                                                 err = this_err;
578                                         }
579                                 }
580                         }
581                 }
582         }
583
584         return (err != target);
585 }
586
587 static bool
588 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
589                         int target, int refclk, intel_clock_t *match_clock,
590                         intel_clock_t *best_clock)
591 {
592         struct drm_device *dev = crtc->dev;
593         struct drm_i915_private *dev_priv = dev->dev_private;
594         intel_clock_t clock;
595         int max_n;
596         bool found;
597         /* approximately equals target * 0.00585 */
598         int err_most = (target >> 8) + (target >> 9);
599         found = false;
600
601         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
602                 int lvds_reg;
603
604                 if (HAS_PCH_SPLIT(dev))
605                         lvds_reg = PCH_LVDS;
606                 else
607                         lvds_reg = LVDS;
608                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
609                     LVDS_CLKB_POWER_UP)
610                         clock.p2 = limit->p2.p2_fast;
611                 else
612                         clock.p2 = limit->p2.p2_slow;
613         } else {
614                 if (target < limit->p2.dot_limit)
615                         clock.p2 = limit->p2.p2_slow;
616                 else
617                         clock.p2 = limit->p2.p2_fast;
618         }
619
620         memset(best_clock, 0, sizeof(*best_clock));
621         max_n = limit->n.max;
622         /* based on hardware requirement, prefer smaller n to precision */
623         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
624                 /* based on hardware requirement, prefere larger m1,m2 */
625                 for (clock.m1 = limit->m1.max;
626                      clock.m1 >= limit->m1.min; clock.m1--) {
627                         for (clock.m2 = limit->m2.max;
628                              clock.m2 >= limit->m2.min; clock.m2--) {
629                                 for (clock.p1 = limit->p1.max;
630                                      clock.p1 >= limit->p1.min; clock.p1--) {
631                                         int this_err;
632
633                                         intel_clock(dev, refclk, &clock);
634                                         if (!intel_PLL_is_valid(dev, limit,
635                                                                 &clock))
636                                                 continue;
637                                         if (match_clock &&
638                                             clock.p != match_clock->p)
639                                                 continue;
640
641                                         this_err = abs(clock.dot - target);
642                                         if (this_err < err_most) {
643                                                 *best_clock = clock;
644                                                 err_most = this_err;
645                                                 max_n = clock.n;
646                                                 found = true;
647                                         }
648                                 }
649                         }
650                 }
651         }
652         return found;
653 }
654
655 static bool
656 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
657                            int target, int refclk, intel_clock_t *match_clock,
658                            intel_clock_t *best_clock)
659 {
660         struct drm_device *dev = crtc->dev;
661         intel_clock_t clock;
662
663         if (target < 200000) {
664                 clock.n = 1;
665                 clock.p1 = 2;
666                 clock.p2 = 10;
667                 clock.m1 = 12;
668                 clock.m2 = 9;
669         } else {
670                 clock.n = 2;
671                 clock.p1 = 1;
672                 clock.p2 = 10;
673                 clock.m1 = 14;
674                 clock.m2 = 8;
675         }
676         intel_clock(dev, refclk, &clock);
677         memcpy(best_clock, &clock, sizeof(intel_clock_t));
678         return true;
679 }
680
681 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
682 static bool
683 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
684                       int target, int refclk, intel_clock_t *match_clock,
685                       intel_clock_t *best_clock)
686 {
687         intel_clock_t clock;
688         if (target < 200000) {
689                 clock.p1 = 2;
690                 clock.p2 = 10;
691                 clock.n = 2;
692                 clock.m1 = 23;
693                 clock.m2 = 8;
694         } else {
695                 clock.p1 = 1;
696                 clock.p2 = 10;
697                 clock.n = 1;
698                 clock.m1 = 14;
699                 clock.m2 = 2;
700         }
701         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
702         clock.p = (clock.p1 * clock.p2);
703         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
704         clock.vco = 0;
705         memcpy(best_clock, &clock, sizeof(intel_clock_t));
706         return true;
707 }
708
709 /**
710  * intel_wait_for_vblank - wait for vblank on a given pipe
711  * @dev: drm device
712  * @pipe: pipe to wait for
713  *
714  * Wait for vblank to occur on a given pipe.  Needed for various bits of
715  * mode setting code.
716  */
717 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
718 {
719         struct drm_i915_private *dev_priv = dev->dev_private;
720         int pipestat_reg = PIPESTAT(pipe);
721
722         /* Clear existing vblank status. Note this will clear any other
723          * sticky status fields as well.
724          *
725          * This races with i915_driver_irq_handler() with the result
726          * that either function could miss a vblank event.  Here it is not
727          * fatal, as we will either wait upon the next vblank interrupt or
728          * timeout.  Generally speaking intel_wait_for_vblank() is only
729          * called during modeset at which time the GPU should be idle and
730          * should *not* be performing page flips and thus not waiting on
731          * vblanks...
732          * Currently, the result of us stealing a vblank from the irq
733          * handler is that a single frame will be skipped during swapbuffers.
734          */
735         I915_WRITE(pipestat_reg,
736                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
737
738         /* Wait for vblank interrupt bit to set */
739         if (wait_for(I915_READ(pipestat_reg) &
740                      PIPE_VBLANK_INTERRUPT_STATUS,
741                      50))
742                 DRM_DEBUG_KMS("vblank wait timed out\n");
743 }
744
745 /*
746  * intel_wait_for_pipe_off - wait for pipe to turn off
747  * @dev: drm device
748  * @pipe: pipe to wait for
749  *
750  * After disabling a pipe, we can't wait for vblank in the usual way,
751  * spinning on the vblank interrupt status bit, since we won't actually
752  * see an interrupt when the pipe is disabled.
753  *
754  * On Gen4 and above:
755  *   wait for the pipe register state bit to turn off
756  *
757  * Otherwise:
758  *   wait for the display line value to settle (it usually
759  *   ends up stopping at the start of the next frame).
760  *
761  */
762 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
763 {
764         struct drm_i915_private *dev_priv = dev->dev_private;
765
766         if (INTEL_INFO(dev)->gen >= 4) {
767                 int reg = PIPECONF(pipe);
768
769                 /* Wait for the Pipe State to go off */
770                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
771                              100))
772                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
773         } else {
774                 u32 last_line;
775                 int reg = PIPEDSL(pipe);
776                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
777
778                 /* Wait for the display line to settle */
779                 do {
780                         last_line = I915_READ(reg) & DSL_LINEMASK;
781                         mdelay(5);
782                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
783                          time_after(timeout, jiffies));
784                 if (time_after(jiffies, timeout))
785                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
786         }
787 }
788
789 static const char *state_string(bool enabled)
790 {
791         return enabled ? "on" : "off";
792 }
793
794 /* Only for pre-ILK configs */
795 static void assert_pll(struct drm_i915_private *dev_priv,
796                        enum pipe pipe, bool state)
797 {
798         int reg;
799         u32 val;
800         bool cur_state;
801
802         reg = DPLL(pipe);
803         val = I915_READ(reg);
804         cur_state = !!(val & DPLL_VCO_ENABLE);
805         WARN(cur_state != state,
806              "PLL state assertion failure (expected %s, current %s)\n",
807              state_string(state), state_string(cur_state));
808 }
809 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
810 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
811
812 /* For ILK+ */
813 static void assert_pch_pll(struct drm_i915_private *dev_priv,
814                            enum pipe pipe, bool state)
815 {
816         int reg;
817         u32 val;
818         bool cur_state;
819
820         if (HAS_PCH_CPT(dev_priv->dev)) {
821                 u32 pch_dpll;
822
823                 pch_dpll = I915_READ(PCH_DPLL_SEL);
824
825                 /* Make sure the selected PLL is enabled to the transcoder */
826                 WARN(!((pch_dpll >> (4 * pipe)) & 8),
827                      "transcoder %d PLL not enabled\n", pipe);
828
829                 /* Convert the transcoder pipe number to a pll pipe number */
830                 pipe = (pch_dpll >> (4 * pipe)) & 1;
831         }
832
833         reg = PCH_DPLL(pipe);
834         val = I915_READ(reg);
835         cur_state = !!(val & DPLL_VCO_ENABLE);
836         WARN(cur_state != state,
837              "PCH PLL state assertion failure (expected %s, current %s)\n",
838              state_string(state), state_string(cur_state));
839 }
840 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
841 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
842
843 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
844                           enum pipe pipe, bool state)
845 {
846         int reg;
847         u32 val;
848         bool cur_state;
849
850         reg = FDI_TX_CTL(pipe);
851         val = I915_READ(reg);
852         cur_state = !!(val & FDI_TX_ENABLE);
853         WARN(cur_state != state,
854              "FDI TX state assertion failure (expected %s, current %s)\n",
855              state_string(state), state_string(cur_state));
856 }
857 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
858 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
859
860 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
861                           enum pipe pipe, bool state)
862 {
863         int reg;
864         u32 val;
865         bool cur_state;
866
867         reg = FDI_RX_CTL(pipe);
868         val = I915_READ(reg);
869         cur_state = !!(val & FDI_RX_ENABLE);
870         WARN(cur_state != state,
871              "FDI RX state assertion failure (expected %s, current %s)\n",
872              state_string(state), state_string(cur_state));
873 }
874 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
875 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
876
877 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
878                                       enum pipe pipe)
879 {
880         int reg;
881         u32 val;
882
883         /* ILK FDI PLL is always enabled */
884         if (dev_priv->info->gen == 5)
885                 return;
886
887         reg = FDI_TX_CTL(pipe);
888         val = I915_READ(reg);
889         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
890 }
891
892 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
893                                       enum pipe pipe)
894 {
895         int reg;
896         u32 val;
897
898         reg = FDI_RX_CTL(pipe);
899         val = I915_READ(reg);
900         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
901 }
902
903 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
904                                   enum pipe pipe)
905 {
906         int pp_reg, lvds_reg;
907         u32 val;
908         enum pipe panel_pipe = PIPE_A;
909         bool locked = true;
910
911         if (HAS_PCH_SPLIT(dev_priv->dev)) {
912                 pp_reg = PCH_PP_CONTROL;
913                 lvds_reg = PCH_LVDS;
914         } else {
915                 pp_reg = PP_CONTROL;
916                 lvds_reg = LVDS;
917         }
918
919         val = I915_READ(pp_reg);
920         if (!(val & PANEL_POWER_ON) ||
921             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
922                 locked = false;
923
924         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
925                 panel_pipe = PIPE_B;
926
927         WARN(panel_pipe == pipe && locked,
928              "panel assertion failure, pipe %c regs locked\n",
929              pipe_name(pipe));
930 }
931
932 void assert_pipe(struct drm_i915_private *dev_priv,
933                  enum pipe pipe, bool state)
934 {
935         int reg;
936         u32 val;
937         bool cur_state;
938
939         /* if we need the pipe A quirk it must be always on */
940         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
941                 state = true;
942
943         reg = PIPECONF(pipe);
944         val = I915_READ(reg);
945         cur_state = !!(val & PIPECONF_ENABLE);
946         WARN(cur_state != state,
947              "pipe %c assertion failure (expected %s, current %s)\n",
948              pipe_name(pipe), state_string(state), state_string(cur_state));
949 }
950
951 static void assert_plane(struct drm_i915_private *dev_priv,
952                          enum plane plane, bool state)
953 {
954         int reg;
955         u32 val;
956         bool cur_state;
957
958         reg = DSPCNTR(plane);
959         val = I915_READ(reg);
960         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
961         WARN(cur_state != state,
962              "plane %c assertion failure (expected %s, current %s)\n",
963              plane_name(plane), state_string(state), state_string(cur_state));
964 }
965
966 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
967 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
968
969 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
970                                    enum pipe pipe)
971 {
972         int reg, i;
973         u32 val;
974         int cur_pipe;
975
976         /* Planes are fixed to pipes on ILK+ */
977         if (HAS_PCH_SPLIT(dev_priv->dev)) {
978                 reg = DSPCNTR(pipe);
979                 val = I915_READ(reg);
980                 WARN((val & DISPLAY_PLANE_ENABLE),
981                      "plane %c assertion failure, should be disabled but not\n",
982                      plane_name(pipe));
983                 return;
984         }
985
986         /* Need to check both planes against the pipe */
987         for (i = 0; i < 2; i++) {
988                 reg = DSPCNTR(i);
989                 val = I915_READ(reg);
990                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
991                         DISPPLANE_SEL_PIPE_SHIFT;
992                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
993                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
994                      plane_name(i), pipe_name(pipe));
995         }
996 }
997
998 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
999 {
1000         u32 val;
1001         bool enabled;
1002
1003         val = I915_READ(PCH_DREF_CONTROL);
1004         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1005                             DREF_SUPERSPREAD_SOURCE_MASK));
1006         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1007 }
1008
1009 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1010                                        enum pipe pipe)
1011 {
1012         int reg;
1013         u32 val;
1014         bool enabled;
1015
1016         reg = TRANSCONF(pipe);
1017         val = I915_READ(reg);
1018         enabled = !!(val & TRANS_ENABLE);
1019         WARN(enabled,
1020              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1021              pipe_name(pipe));
1022 }
1023
1024 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1025                             enum pipe pipe, u32 port_sel, u32 val)
1026 {
1027         if ((val & DP_PORT_EN) == 0)
1028                 return false;
1029
1030         if (HAS_PCH_CPT(dev_priv->dev)) {
1031                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1032                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1033                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1034                         return false;
1035         } else {
1036                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1037                         return false;
1038         }
1039         return true;
1040 }
1041
1042 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1043                               enum pipe pipe, u32 val)
1044 {
1045         if ((val & PORT_ENABLE) == 0)
1046                 return false;
1047
1048         if (HAS_PCH_CPT(dev_priv->dev)) {
1049                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1050                         return false;
1051         } else {
1052                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1053                         return false;
1054         }
1055         return true;
1056 }
1057
1058 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1059                               enum pipe pipe, u32 val)
1060 {
1061         if ((val & LVDS_PORT_EN) == 0)
1062                 return false;
1063
1064         if (HAS_PCH_CPT(dev_priv->dev)) {
1065                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1066                         return false;
1067         } else {
1068                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1069                         return false;
1070         }
1071         return true;
1072 }
1073
1074 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1075                               enum pipe pipe, u32 val)
1076 {
1077         if ((val & ADPA_DAC_ENABLE) == 0)
1078                 return false;
1079         if (HAS_PCH_CPT(dev_priv->dev)) {
1080                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1081                         return false;
1082         } else {
1083                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1084                         return false;
1085         }
1086         return true;
1087 }
1088
1089 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1090                                    enum pipe pipe, int reg, u32 port_sel)
1091 {
1092         u32 val = I915_READ(reg);
1093         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1094              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1095              reg, pipe_name(pipe));
1096 }
1097
1098 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1099                                      enum pipe pipe, int reg)
1100 {
1101         u32 val = I915_READ(reg);
1102         WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1103              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1104              reg, pipe_name(pipe));
1105 }
1106
1107 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1108                                       enum pipe pipe)
1109 {
1110         int reg;
1111         u32 val;
1112
1113         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1114         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1115         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1116
1117         reg = PCH_ADPA;
1118         val = I915_READ(reg);
1119         WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1120              "PCH VGA enabled on transcoder %c, should be disabled\n",
1121              pipe_name(pipe));
1122
1123         reg = PCH_LVDS;
1124         val = I915_READ(reg);
1125         WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1126              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1127              pipe_name(pipe));
1128
1129         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1130         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1131         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1132 }
1133
1134 /**
1135  * intel_enable_pll - enable a PLL
1136  * @dev_priv: i915 private structure
1137  * @pipe: pipe PLL to enable
1138  *
1139  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1140  * make sure the PLL reg is writable first though, since the panel write
1141  * protect mechanism may be enabled.
1142  *
1143  * Note!  This is for pre-ILK only.
1144  */
1145 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1146 {
1147         int reg;
1148         u32 val;
1149
1150         /* No really, not for ILK+ */
1151         BUG_ON(dev_priv->info->gen >= 5);
1152
1153         /* PLL is protected by panel, make sure we can write it */
1154         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1155                 assert_panel_unlocked(dev_priv, pipe);
1156
1157         reg = DPLL(pipe);
1158         val = I915_READ(reg);
1159         val |= DPLL_VCO_ENABLE;
1160
1161         /* We do this three times for luck */
1162         I915_WRITE(reg, val);
1163         POSTING_READ(reg);
1164         udelay(150); /* wait for warmup */
1165         I915_WRITE(reg, val);
1166         POSTING_READ(reg);
1167         udelay(150); /* wait for warmup */
1168         I915_WRITE(reg, val);
1169         POSTING_READ(reg);
1170         udelay(150); /* wait for warmup */
1171 }
1172
1173 /**
1174  * intel_disable_pll - disable a PLL
1175  * @dev_priv: i915 private structure
1176  * @pipe: pipe PLL to disable
1177  *
1178  * Disable the PLL for @pipe, making sure the pipe is off first.
1179  *
1180  * Note!  This is for pre-ILK only.
1181  */
1182 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1183 {
1184         int reg;
1185         u32 val;
1186
1187         /* Don't disable pipe A or pipe A PLLs if needed */
1188         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1189                 return;
1190
1191         /* Make sure the pipe isn't still relying on us */
1192         assert_pipe_disabled(dev_priv, pipe);
1193
1194         reg = DPLL(pipe);
1195         val = I915_READ(reg);
1196         val &= ~DPLL_VCO_ENABLE;
1197         I915_WRITE(reg, val);
1198         POSTING_READ(reg);
1199 }
1200
1201 /**
1202  * intel_enable_pch_pll - enable PCH PLL
1203  * @dev_priv: i915 private structure
1204  * @pipe: pipe PLL to enable
1205  *
1206  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1207  * drives the transcoder clock.
1208  */
1209 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1210                                  enum pipe pipe)
1211 {
1212         int reg;
1213         u32 val;
1214
1215         if (pipe > 1)
1216                 return;
1217
1218         /* PCH only available on ILK+ */
1219         BUG_ON(dev_priv->info->gen < 5);
1220
1221         /* PCH refclock must be enabled first */
1222         assert_pch_refclk_enabled(dev_priv);
1223
1224         reg = PCH_DPLL(pipe);
1225         val = I915_READ(reg);
1226         val |= DPLL_VCO_ENABLE;
1227         I915_WRITE(reg, val);
1228         POSTING_READ(reg);
1229         udelay(200);
1230 }
1231
1232 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1233                                   enum pipe pipe)
1234 {
1235         int reg;
1236         u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
1237                 pll_sel = TRANSC_DPLL_ENABLE;
1238
1239         if (pipe > 1)
1240                 return;
1241
1242         /* PCH only available on ILK+ */
1243         BUG_ON(dev_priv->info->gen < 5);
1244
1245         /* Make sure transcoder isn't still depending on us */
1246         assert_transcoder_disabled(dev_priv, pipe);
1247
1248         if (pipe == 0)
1249                 pll_sel |= TRANSC_DPLLA_SEL;
1250         else if (pipe == 1)
1251                 pll_sel |= TRANSC_DPLLB_SEL;
1252
1253
1254         if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
1255                 return;
1256
1257         reg = PCH_DPLL(pipe);
1258         val = I915_READ(reg);
1259         val &= ~DPLL_VCO_ENABLE;
1260         I915_WRITE(reg, val);
1261         POSTING_READ(reg);
1262         udelay(200);
1263 }
1264
1265 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1266                                     enum pipe pipe)
1267 {
1268         int reg;
1269         u32 val;
1270
1271         /* PCH only available on ILK+ */
1272         BUG_ON(dev_priv->info->gen < 5);
1273
1274         /* Make sure PCH DPLL is enabled */
1275         assert_pch_pll_enabled(dev_priv, pipe);
1276
1277         /* FDI must be feeding us bits for PCH ports */
1278         assert_fdi_tx_enabled(dev_priv, pipe);
1279         assert_fdi_rx_enabled(dev_priv, pipe);
1280
1281         reg = TRANSCONF(pipe);
1282         val = I915_READ(reg);
1283
1284         if (HAS_PCH_IBX(dev_priv->dev)) {
1285                 /*
1286                  * make the BPC in transcoder be consistent with
1287                  * that in pipeconf reg.
1288                  */
1289                 val &= ~PIPE_BPC_MASK;
1290                 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1291         }
1292         I915_WRITE(reg, val | TRANS_ENABLE);
1293         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1294                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1295 }
1296
1297 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1298                                      enum pipe pipe)
1299 {
1300         int reg;
1301         u32 val;
1302
1303         /* FDI relies on the transcoder */
1304         assert_fdi_tx_disabled(dev_priv, pipe);
1305         assert_fdi_rx_disabled(dev_priv, pipe);
1306
1307         /* Ports must be off as well */
1308         assert_pch_ports_disabled(dev_priv, pipe);
1309
1310         reg = TRANSCONF(pipe);
1311         val = I915_READ(reg);
1312         val &= ~TRANS_ENABLE;
1313         I915_WRITE(reg, val);
1314         /* wait for PCH transcoder off, transcoder state */
1315         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1316                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1317 }
1318
1319 /**
1320  * intel_enable_pipe - enable a pipe, asserting requirements
1321  * @dev_priv: i915 private structure
1322  * @pipe: pipe to enable
1323  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1324  *
1325  * Enable @pipe, making sure that various hardware specific requirements
1326  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1327  *
1328  * @pipe should be %PIPE_A or %PIPE_B.
1329  *
1330  * Will wait until the pipe is actually running (i.e. first vblank) before
1331  * returning.
1332  */
1333 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1334                               bool pch_port)
1335 {
1336         int reg;
1337         u32 val;
1338
1339         /*
1340          * A pipe without a PLL won't actually be able to drive bits from
1341          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1342          * need the check.
1343          */
1344         if (!HAS_PCH_SPLIT(dev_priv->dev))
1345                 assert_pll_enabled(dev_priv, pipe);
1346         else {
1347                 if (pch_port) {
1348                         /* if driving the PCH, we need FDI enabled */
1349                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1350                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1351                 }
1352                 /* FIXME: assert CPU port conditions for SNB+ */
1353         }
1354
1355         reg = PIPECONF(pipe);
1356         val = I915_READ(reg);
1357         if (val & PIPECONF_ENABLE)
1358                 return;
1359
1360         I915_WRITE(reg, val | PIPECONF_ENABLE);
1361         intel_wait_for_vblank(dev_priv->dev, pipe);
1362 }
1363
1364 /**
1365  * intel_disable_pipe - disable a pipe, asserting requirements
1366  * @dev_priv: i915 private structure
1367  * @pipe: pipe to disable
1368  *
1369  * Disable @pipe, making sure that various hardware specific requirements
1370  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1371  *
1372  * @pipe should be %PIPE_A or %PIPE_B.
1373  *
1374  * Will wait until the pipe has shut down before returning.
1375  */
1376 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1377                                enum pipe pipe)
1378 {
1379         int reg;
1380         u32 val;
1381
1382         /*
1383          * Make sure planes won't keep trying to pump pixels to us,
1384          * or we might hang the display.
1385          */
1386         assert_planes_disabled(dev_priv, pipe);
1387
1388         /* Don't disable pipe A or pipe A PLLs if needed */
1389         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1390                 return;
1391
1392         reg = PIPECONF(pipe);
1393         val = I915_READ(reg);
1394         if ((val & PIPECONF_ENABLE) == 0)
1395                 return;
1396
1397         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1398         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1399 }
1400
1401 /*
1402  * Plane regs are double buffered, going from enabled->disabled needs a
1403  * trigger in order to latch.  The display address reg provides this.
1404  */
1405 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1406                                       enum plane plane)
1407 {
1408         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1409         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1410 }
1411
1412 /**
1413  * intel_enable_plane - enable a display plane on a given pipe
1414  * @dev_priv: i915 private structure
1415  * @plane: plane to enable
1416  * @pipe: pipe being fed
1417  *
1418  * Enable @plane on @pipe, making sure that @pipe is running first.
1419  */
1420 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1421                                enum plane plane, enum pipe pipe)
1422 {
1423         int reg;
1424         u32 val;
1425
1426         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1427         assert_pipe_enabled(dev_priv, pipe);
1428
1429         reg = DSPCNTR(plane);
1430         val = I915_READ(reg);
1431         if (val & DISPLAY_PLANE_ENABLE)
1432                 return;
1433
1434         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1435         intel_flush_display_plane(dev_priv, plane);
1436         intel_wait_for_vblank(dev_priv->dev, pipe);
1437 }
1438
1439 /**
1440  * intel_disable_plane - disable a display plane
1441  * @dev_priv: i915 private structure
1442  * @plane: plane to disable
1443  * @pipe: pipe consuming the data
1444  *
1445  * Disable @plane; should be an independent operation.
1446  */
1447 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1448                                 enum plane plane, enum pipe pipe)
1449 {
1450         int reg;
1451         u32 val;
1452
1453         reg = DSPCNTR(plane);
1454         val = I915_READ(reg);
1455         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1456                 return;
1457
1458         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1459         intel_flush_display_plane(dev_priv, plane);
1460         intel_wait_for_vblank(dev_priv->dev, pipe);
1461 }
1462
1463 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1464                            enum pipe pipe, int reg, u32 port_sel)
1465 {
1466         u32 val = I915_READ(reg);
1467         if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1468                 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1469                 I915_WRITE(reg, val & ~DP_PORT_EN);
1470         }
1471 }
1472
1473 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1474                              enum pipe pipe, int reg)
1475 {
1476         u32 val = I915_READ(reg);
1477         if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1478                 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1479                               reg, pipe);
1480                 I915_WRITE(reg, val & ~PORT_ENABLE);
1481         }
1482 }
1483
1484 /* Disable any ports connected to this transcoder */
1485 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1486                                     enum pipe pipe)
1487 {
1488         u32 reg, val;
1489
1490         val = I915_READ(PCH_PP_CONTROL);
1491         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1492
1493         disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1494         disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1495         disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1496
1497         reg = PCH_ADPA;
1498         val = I915_READ(reg);
1499         if (adpa_pipe_enabled(dev_priv, val, pipe))
1500                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1501
1502         reg = PCH_LVDS;
1503         val = I915_READ(reg);
1504         if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1505                 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1506                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1507                 POSTING_READ(reg);
1508                 udelay(100);
1509         }
1510
1511         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1512         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1513         disable_pch_hdmi(dev_priv, pipe, HDMID);
1514 }
1515
1516 static void i8xx_disable_fbc(struct drm_device *dev)
1517 {
1518         struct drm_i915_private *dev_priv = dev->dev_private;
1519         u32 fbc_ctl;
1520
1521         /* Disable compression */
1522         fbc_ctl = I915_READ(FBC_CONTROL);
1523         if ((fbc_ctl & FBC_CTL_EN) == 0)
1524                 return;
1525
1526         fbc_ctl &= ~FBC_CTL_EN;
1527         I915_WRITE(FBC_CONTROL, fbc_ctl);
1528
1529         /* Wait for compressing bit to clear */
1530         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1531                 DRM_DEBUG_KMS("FBC idle timed out\n");
1532                 return;
1533         }
1534
1535         DRM_DEBUG_KMS("disabled FBC\n");
1536 }
1537
1538 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1539 {
1540         struct drm_device *dev = crtc->dev;
1541         struct drm_i915_private *dev_priv = dev->dev_private;
1542         struct drm_framebuffer *fb = crtc->fb;
1543         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1544         struct drm_i915_gem_object *obj = intel_fb->obj;
1545         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1546         int cfb_pitch;
1547         int plane, i;
1548         u32 fbc_ctl, fbc_ctl2;
1549
1550         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1551         if (fb->pitches[0] < cfb_pitch)
1552                 cfb_pitch = fb->pitches[0];
1553
1554         /* FBC_CTL wants 64B units */
1555         cfb_pitch = (cfb_pitch / 64) - 1;
1556         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1557
1558         /* Clear old tags */
1559         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1560                 I915_WRITE(FBC_TAG + (i * 4), 0);
1561
1562         /* Set it up... */
1563         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1564         fbc_ctl2 |= plane;
1565         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1566         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1567
1568         /* enable it... */
1569         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1570         if (IS_I945GM(dev))
1571                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1572         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1573         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1574         fbc_ctl |= obj->fence_reg;
1575         I915_WRITE(FBC_CONTROL, fbc_ctl);
1576
1577         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1578                       cfb_pitch, crtc->y, intel_crtc->plane);
1579 }
1580
1581 static bool i8xx_fbc_enabled(struct drm_device *dev)
1582 {
1583         struct drm_i915_private *dev_priv = dev->dev_private;
1584
1585         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1586 }
1587
1588 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1589 {
1590         struct drm_device *dev = crtc->dev;
1591         struct drm_i915_private *dev_priv = dev->dev_private;
1592         struct drm_framebuffer *fb = crtc->fb;
1593         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1594         struct drm_i915_gem_object *obj = intel_fb->obj;
1595         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1596         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1597         unsigned long stall_watermark = 200;
1598         u32 dpfc_ctl;
1599
1600         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1601         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1602         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1603
1604         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1605                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1606                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1607         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1608
1609         /* enable it... */
1610         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1611
1612         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1613 }
1614
1615 static void g4x_disable_fbc(struct drm_device *dev)
1616 {
1617         struct drm_i915_private *dev_priv = dev->dev_private;
1618         u32 dpfc_ctl;
1619
1620         /* Disable compression */
1621         dpfc_ctl = I915_READ(DPFC_CONTROL);
1622         if (dpfc_ctl & DPFC_CTL_EN) {
1623                 dpfc_ctl &= ~DPFC_CTL_EN;
1624                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1625
1626                 DRM_DEBUG_KMS("disabled FBC\n");
1627         }
1628 }
1629
1630 static bool g4x_fbc_enabled(struct drm_device *dev)
1631 {
1632         struct drm_i915_private *dev_priv = dev->dev_private;
1633
1634         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1635 }
1636
1637 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1638 {
1639         struct drm_i915_private *dev_priv = dev->dev_private;
1640         u32 blt_ecoskpd;
1641
1642         /* Make sure blitter notifies FBC of writes */
1643         gen6_gt_force_wake_get(dev_priv);
1644         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1645         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1646                 GEN6_BLITTER_LOCK_SHIFT;
1647         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1648         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1649         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1650         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1651                          GEN6_BLITTER_LOCK_SHIFT);
1652         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1653         POSTING_READ(GEN6_BLITTER_ECOSKPD);
1654         gen6_gt_force_wake_put(dev_priv);
1655 }
1656
1657 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1658 {
1659         struct drm_device *dev = crtc->dev;
1660         struct drm_i915_private *dev_priv = dev->dev_private;
1661         struct drm_framebuffer *fb = crtc->fb;
1662         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1663         struct drm_i915_gem_object *obj = intel_fb->obj;
1664         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1665         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1666         unsigned long stall_watermark = 200;
1667         u32 dpfc_ctl;
1668
1669         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1670         dpfc_ctl &= DPFC_RESERVED;
1671         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1672         /* Set persistent mode for front-buffer rendering, ala X. */
1673         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1674         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1675         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1676
1677         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1678                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1679                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1680         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1681         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1682         /* enable it... */
1683         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1684
1685         if (IS_GEN6(dev)) {
1686                 I915_WRITE(SNB_DPFC_CTL_SA,
1687                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1688                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1689                 sandybridge_blit_fbc_update(dev);
1690         }
1691
1692         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1693 }
1694
1695 static void ironlake_disable_fbc(struct drm_device *dev)
1696 {
1697         struct drm_i915_private *dev_priv = dev->dev_private;
1698         u32 dpfc_ctl;
1699
1700         /* Disable compression */
1701         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1702         if (dpfc_ctl & DPFC_CTL_EN) {
1703                 dpfc_ctl &= ~DPFC_CTL_EN;
1704                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1705
1706                 DRM_DEBUG_KMS("disabled FBC\n");
1707         }
1708 }
1709
1710 static bool ironlake_fbc_enabled(struct drm_device *dev)
1711 {
1712         struct drm_i915_private *dev_priv = dev->dev_private;
1713
1714         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1715 }
1716
1717 bool intel_fbc_enabled(struct drm_device *dev)
1718 {
1719         struct drm_i915_private *dev_priv = dev->dev_private;
1720
1721         if (!dev_priv->display.fbc_enabled)
1722                 return false;
1723
1724         return dev_priv->display.fbc_enabled(dev);
1725 }
1726
1727 static void intel_fbc_work_fn(struct work_struct *__work)
1728 {
1729         struct intel_fbc_work *work =
1730                 container_of(to_delayed_work(__work),
1731                              struct intel_fbc_work, work);
1732         struct drm_device *dev = work->crtc->dev;
1733         struct drm_i915_private *dev_priv = dev->dev_private;
1734
1735         mutex_lock(&dev->struct_mutex);
1736         if (work == dev_priv->fbc_work) {
1737                 /* Double check that we haven't switched fb without cancelling
1738                  * the prior work.
1739                  */
1740                 if (work->crtc->fb == work->fb) {
1741                         dev_priv->display.enable_fbc(work->crtc,
1742                                                      work->interval);
1743
1744                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1745                         dev_priv->cfb_fb = work->crtc->fb->base.id;
1746                         dev_priv->cfb_y = work->crtc->y;
1747                 }
1748
1749                 dev_priv->fbc_work = NULL;
1750         }
1751         mutex_unlock(&dev->struct_mutex);
1752
1753         kfree(work);
1754 }
1755
1756 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1757 {
1758         if (dev_priv->fbc_work == NULL)
1759                 return;
1760
1761         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1762
1763         /* Synchronisation is provided by struct_mutex and checking of
1764          * dev_priv->fbc_work, so we can perform the cancellation
1765          * entirely asynchronously.
1766          */
1767         if (cancel_delayed_work(&dev_priv->fbc_work->work))
1768                 /* tasklet was killed before being run, clean up */
1769                 kfree(dev_priv->fbc_work);
1770
1771         /* Mark the work as no longer wanted so that if it does
1772          * wake-up (because the work was already running and waiting
1773          * for our mutex), it will discover that is no longer
1774          * necessary to run.
1775          */
1776         dev_priv->fbc_work = NULL;
1777 }
1778
1779 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1780 {
1781         struct intel_fbc_work *work;
1782         struct drm_device *dev = crtc->dev;
1783         struct drm_i915_private *dev_priv = dev->dev_private;
1784
1785         if (!dev_priv->display.enable_fbc)
1786                 return;
1787
1788         intel_cancel_fbc_work(dev_priv);
1789
1790         work = kzalloc(sizeof *work, GFP_KERNEL);
1791         if (work == NULL) {
1792                 dev_priv->display.enable_fbc(crtc, interval);
1793                 return;
1794         }
1795
1796         work->crtc = crtc;
1797         work->fb = crtc->fb;
1798         work->interval = interval;
1799         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1800
1801         dev_priv->fbc_work = work;
1802
1803         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1804
1805         /* Delay the actual enabling to let pageflipping cease and the
1806          * display to settle before starting the compression. Note that
1807          * this delay also serves a second purpose: it allows for a
1808          * vblank to pass after disabling the FBC before we attempt
1809          * to modify the control registers.
1810          *
1811          * A more complicated solution would involve tracking vblanks
1812          * following the termination of the page-flipping sequence
1813          * and indeed performing the enable as a co-routine and not
1814          * waiting synchronously upon the vblank.
1815          */
1816         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1817 }
1818
1819 void intel_disable_fbc(struct drm_device *dev)
1820 {
1821         struct drm_i915_private *dev_priv = dev->dev_private;
1822
1823         intel_cancel_fbc_work(dev_priv);
1824
1825         if (!dev_priv->display.disable_fbc)
1826                 return;
1827
1828         dev_priv->display.disable_fbc(dev);
1829         dev_priv->cfb_plane = -1;
1830 }
1831
1832 /**
1833  * intel_update_fbc - enable/disable FBC as needed
1834  * @dev: the drm_device
1835  *
1836  * Set up the framebuffer compression hardware at mode set time.  We
1837  * enable it if possible:
1838  *   - plane A only (on pre-965)
1839  *   - no pixel mulitply/line duplication
1840  *   - no alpha buffer discard
1841  *   - no dual wide
1842  *   - framebuffer <= 2048 in width, 1536 in height
1843  *
1844  * We can't assume that any compression will take place (worst case),
1845  * so the compressed buffer has to be the same size as the uncompressed
1846  * one.  It also must reside (along with the line length buffer) in
1847  * stolen memory.
1848  *
1849  * We need to enable/disable FBC on a global basis.
1850  */
1851 static void intel_update_fbc(struct drm_device *dev)
1852 {
1853         struct drm_i915_private *dev_priv = dev->dev_private;
1854         struct drm_crtc *crtc = NULL, *tmp_crtc;
1855         struct intel_crtc *intel_crtc;
1856         struct drm_framebuffer *fb;
1857         struct intel_framebuffer *intel_fb;
1858         struct drm_i915_gem_object *obj;
1859         int enable_fbc;
1860
1861         DRM_DEBUG_KMS("\n");
1862
1863         if (!i915_powersave)
1864                 return;
1865
1866         if (!I915_HAS_FBC(dev))
1867                 return;
1868
1869         /*
1870          * If FBC is already on, we just have to verify that we can
1871          * keep it that way...
1872          * Need to disable if:
1873          *   - more than one pipe is active
1874          *   - changing FBC params (stride, fence, mode)
1875          *   - new fb is too large to fit in compressed buffer
1876          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1877          */
1878         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1879                 if (tmp_crtc->enabled && tmp_crtc->fb) {
1880                         if (crtc) {
1881                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1882                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1883                                 goto out_disable;
1884                         }
1885                         crtc = tmp_crtc;
1886                 }
1887         }
1888
1889         if (!crtc || crtc->fb == NULL) {
1890                 DRM_DEBUG_KMS("no output, disabling\n");
1891                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1892                 goto out_disable;
1893         }
1894
1895         intel_crtc = to_intel_crtc(crtc);
1896         fb = crtc->fb;
1897         intel_fb = to_intel_framebuffer(fb);
1898         obj = intel_fb->obj;
1899
1900         enable_fbc = i915_enable_fbc;
1901         if (enable_fbc < 0) {
1902                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1903                 enable_fbc = 1;
1904                 if (INTEL_INFO(dev)->gen <= 6)
1905                         enable_fbc = 0;
1906         }
1907         if (!enable_fbc) {
1908                 DRM_DEBUG_KMS("fbc disabled per module param\n");
1909                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1910                 goto out_disable;
1911         }
1912         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1913                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1914                               "compression\n");
1915                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1916                 goto out_disable;
1917         }
1918         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1919             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1920                 DRM_DEBUG_KMS("mode incompatible with compression, "
1921                               "disabling\n");
1922                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1923                 goto out_disable;
1924         }
1925         if ((crtc->mode.hdisplay > 2048) ||
1926             (crtc->mode.vdisplay > 1536)) {
1927                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1928                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1929                 goto out_disable;
1930         }
1931         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1932                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1933                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1934                 goto out_disable;
1935         }
1936
1937         /* The use of a CPU fence is mandatory in order to detect writes
1938          * by the CPU to the scanout and trigger updates to the FBC.
1939          */
1940         if (obj->tiling_mode != I915_TILING_X ||
1941             obj->fence_reg == I915_FENCE_REG_NONE) {
1942                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1943                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1944                 goto out_disable;
1945         }
1946
1947         /* If the kernel debugger is active, always disable compression */
1948         if (in_dbg_master())
1949                 goto out_disable;
1950
1951         /* If the scanout has not changed, don't modify the FBC settings.
1952          * Note that we make the fundamental assumption that the fb->obj
1953          * cannot be unpinned (and have its GTT offset and fence revoked)
1954          * without first being decoupled from the scanout and FBC disabled.
1955          */
1956         if (dev_priv->cfb_plane == intel_crtc->plane &&
1957             dev_priv->cfb_fb == fb->base.id &&
1958             dev_priv->cfb_y == crtc->y)
1959                 return;
1960
1961         if (intel_fbc_enabled(dev)) {
1962                 /* We update FBC along two paths, after changing fb/crtc
1963                  * configuration (modeswitching) and after page-flipping
1964                  * finishes. For the latter, we know that not only did
1965                  * we disable the FBC at the start of the page-flip
1966                  * sequence, but also more than one vblank has passed.
1967                  *
1968                  * For the former case of modeswitching, it is possible
1969                  * to switch between two FBC valid configurations
1970                  * instantaneously so we do need to disable the FBC
1971                  * before we can modify its control registers. We also
1972                  * have to wait for the next vblank for that to take
1973                  * effect. However, since we delay enabling FBC we can
1974                  * assume that a vblank has passed since disabling and
1975                  * that we can safely alter the registers in the deferred
1976                  * callback.
1977                  *
1978                  * In the scenario that we go from a valid to invalid
1979                  * and then back to valid FBC configuration we have
1980                  * no strict enforcement that a vblank occurred since
1981                  * disabling the FBC. However, along all current pipe
1982                  * disabling paths we do need to wait for a vblank at
1983                  * some point. And we wait before enabling FBC anyway.
1984                  */
1985                 DRM_DEBUG_KMS("disabling active FBC for update\n");
1986                 intel_disable_fbc(dev);
1987         }
1988
1989         intel_enable_fbc(crtc, 500);
1990         return;
1991
1992 out_disable:
1993         /* Multiple disables should be harmless */
1994         if (intel_fbc_enabled(dev)) {
1995                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1996                 intel_disable_fbc(dev);
1997         }
1998 }
1999
2000 int
2001 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2002                            struct drm_i915_gem_object *obj,
2003                            struct intel_ring_buffer *pipelined)
2004 {
2005         struct drm_i915_private *dev_priv = dev->dev_private;
2006         u32 alignment;
2007         int ret;
2008
2009         switch (obj->tiling_mode) {
2010         case I915_TILING_NONE:
2011                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2012                         alignment = 128 * 1024;
2013                 else if (INTEL_INFO(dev)->gen >= 4)
2014                         alignment = 4 * 1024;
2015                 else
2016                         alignment = 64 * 1024;
2017                 break;
2018         case I915_TILING_X:
2019                 /* pin() will align the object as required by fence */
2020                 alignment = 0;
2021                 break;
2022         case I915_TILING_Y:
2023                 /* FIXME: Is this true? */
2024                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
2025                 return -EINVAL;
2026         default:
2027                 BUG();
2028         }
2029
2030         dev_priv->mm.interruptible = false;
2031         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2032         if (ret)
2033                 goto err_interruptible;
2034
2035         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2036          * fence, whereas 965+ only requires a fence if using
2037          * framebuffer compression.  For simplicity, we always install
2038          * a fence as the cost is not that onerous.
2039          */
2040         if (obj->tiling_mode != I915_TILING_NONE) {
2041                 ret = i915_gem_object_get_fence(obj, pipelined);
2042                 if (ret)
2043                         goto err_unpin;
2044
2045                 i915_gem_object_pin_fence(obj);
2046         }
2047
2048         dev_priv->mm.interruptible = true;
2049         return 0;
2050
2051 err_unpin:
2052         i915_gem_object_unpin(obj);
2053 err_interruptible:
2054         dev_priv->mm.interruptible = true;
2055         return ret;
2056 }
2057
2058 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2059 {
2060         i915_gem_object_unpin_fence(obj);
2061         i915_gem_object_unpin(obj);
2062 }
2063
2064 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2065                              int x, int y)
2066 {
2067         struct drm_device *dev = crtc->dev;
2068         struct drm_i915_private *dev_priv = dev->dev_private;
2069         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2070         struct intel_framebuffer *intel_fb;
2071         struct drm_i915_gem_object *obj;
2072         int plane = intel_crtc->plane;
2073         unsigned long Start, Offset;
2074         u32 dspcntr;
2075         u32 reg;
2076
2077         switch (plane) {
2078         case 0:
2079         case 1:
2080                 break;
2081         default:
2082                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2083                 return -EINVAL;
2084         }
2085
2086         intel_fb = to_intel_framebuffer(fb);
2087         obj = intel_fb->obj;
2088
2089         reg = DSPCNTR(plane);
2090         dspcntr = I915_READ(reg);
2091         /* Mask out pixel format bits in case we change it */
2092         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2093         switch (fb->bits_per_pixel) {
2094         case 8:
2095                 dspcntr |= DISPPLANE_8BPP;
2096                 break;
2097         case 16:
2098                 if (fb->depth == 15)
2099                         dspcntr |= DISPPLANE_15_16BPP;
2100                 else
2101                         dspcntr |= DISPPLANE_16BPP;
2102                 break;
2103         case 24:
2104         case 32:
2105                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2106                 break;
2107         default:
2108                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2109                 return -EINVAL;
2110         }
2111         if (INTEL_INFO(dev)->gen >= 4) {
2112                 if (obj->tiling_mode != I915_TILING_NONE)
2113                         dspcntr |= DISPPLANE_TILED;
2114                 else
2115                         dspcntr &= ~DISPPLANE_TILED;
2116         }
2117
2118         I915_WRITE(reg, dspcntr);
2119
2120         Start = obj->gtt_offset;
2121         Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2122
2123         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2124                       Start, Offset, x, y, fb->pitches[0]);
2125         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2126         if (INTEL_INFO(dev)->gen >= 4) {
2127                 I915_WRITE(DSPSURF(plane), Start);
2128                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2129                 I915_WRITE(DSPADDR(plane), Offset);
2130         } else
2131                 I915_WRITE(DSPADDR(plane), Start + Offset);
2132         POSTING_READ(reg);
2133
2134         return 0;
2135 }
2136
2137 static int ironlake_update_plane(struct drm_crtc *crtc,
2138                                  struct drm_framebuffer *fb, int x, int y)
2139 {
2140         struct drm_device *dev = crtc->dev;
2141         struct drm_i915_private *dev_priv = dev->dev_private;
2142         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2143         struct intel_framebuffer *intel_fb;
2144         struct drm_i915_gem_object *obj;
2145         int plane = intel_crtc->plane;
2146         unsigned long Start, Offset;
2147         u32 dspcntr;
2148         u32 reg;
2149
2150         switch (plane) {
2151         case 0:
2152         case 1:
2153         case 2:
2154                 break;
2155         default:
2156                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2157                 return -EINVAL;
2158         }
2159
2160         intel_fb = to_intel_framebuffer(fb);
2161         obj = intel_fb->obj;
2162
2163         reg = DSPCNTR(plane);
2164         dspcntr = I915_READ(reg);
2165         /* Mask out pixel format bits in case we change it */
2166         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2167         switch (fb->bits_per_pixel) {
2168         case 8:
2169                 dspcntr |= DISPPLANE_8BPP;
2170                 break;
2171         case 16:
2172                 if (fb->depth != 16)
2173                         return -EINVAL;
2174
2175                 dspcntr |= DISPPLANE_16BPP;
2176                 break;
2177         case 24:
2178         case 32:
2179                 if (fb->depth == 24)
2180                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2181                 else if (fb->depth == 30)
2182                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2183                 else
2184                         return -EINVAL;
2185                 break;
2186         default:
2187                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2188                 return -EINVAL;
2189         }
2190
2191         if (obj->tiling_mode != I915_TILING_NONE)
2192                 dspcntr |= DISPPLANE_TILED;
2193         else
2194                 dspcntr &= ~DISPPLANE_TILED;
2195
2196         /* must disable */
2197         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2198
2199         I915_WRITE(reg, dspcntr);
2200
2201         Start = obj->gtt_offset;
2202         Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2203
2204         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2205                       Start, Offset, x, y, fb->pitches[0]);
2206         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2207         I915_WRITE(DSPSURF(plane), Start);
2208         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2209         I915_WRITE(DSPADDR(plane), Offset);
2210         POSTING_READ(reg);
2211
2212         return 0;
2213 }
2214
2215 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2216 static int
2217 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2218                            int x, int y, enum mode_set_atomic state)
2219 {
2220         struct drm_device *dev = crtc->dev;
2221         struct drm_i915_private *dev_priv = dev->dev_private;
2222         int ret;
2223
2224         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2225         if (ret)
2226                 return ret;
2227
2228         intel_update_fbc(dev);
2229         intel_increase_pllclock(crtc);
2230
2231         return 0;
2232 }
2233
2234 static int
2235 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2236                     struct drm_framebuffer *old_fb)
2237 {
2238         struct drm_device *dev = crtc->dev;
2239         struct drm_i915_master_private *master_priv;
2240         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2241         int ret;
2242
2243         /* no fb bound */
2244         if (!crtc->fb) {
2245                 DRM_ERROR("No FB bound\n");
2246                 return 0;
2247         }
2248
2249         switch (intel_crtc->plane) {
2250         case 0:
2251         case 1:
2252                 break;
2253         case 2:
2254                 if (IS_IVYBRIDGE(dev))
2255                         break;
2256                 /* fall through otherwise */
2257         default:
2258                 DRM_ERROR("no plane for crtc\n");
2259                 return -EINVAL;
2260         }
2261
2262         mutex_lock(&dev->struct_mutex);
2263         ret = intel_pin_and_fence_fb_obj(dev,
2264                                          to_intel_framebuffer(crtc->fb)->obj,
2265                                          NULL);
2266         if (ret != 0) {
2267                 mutex_unlock(&dev->struct_mutex);
2268                 DRM_ERROR("pin & fence failed\n");
2269                 return ret;
2270         }
2271
2272         if (old_fb) {
2273                 struct drm_i915_private *dev_priv = dev->dev_private;
2274                 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2275
2276                 wait_event(dev_priv->pending_flip_queue,
2277                            atomic_read(&dev_priv->mm.wedged) ||
2278                            atomic_read(&obj->pending_flip) == 0);
2279
2280                 /* Big Hammer, we also need to ensure that any pending
2281                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2282                  * current scanout is retired before unpinning the old
2283                  * framebuffer.
2284                  *
2285                  * This should only fail upon a hung GPU, in which case we
2286                  * can safely continue.
2287                  */
2288                 ret = i915_gem_object_finish_gpu(obj);
2289                 (void) ret;
2290         }
2291
2292         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2293                                          LEAVE_ATOMIC_MODE_SET);
2294         if (ret) {
2295                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2296                 mutex_unlock(&dev->struct_mutex);
2297                 DRM_ERROR("failed to update base address\n");
2298                 return ret;
2299         }
2300
2301         if (old_fb) {
2302                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2303                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2304         }
2305
2306         mutex_unlock(&dev->struct_mutex);
2307
2308         if (!dev->primary->master)
2309                 return 0;
2310
2311         master_priv = dev->primary->master->driver_priv;
2312         if (!master_priv->sarea_priv)
2313                 return 0;
2314
2315         if (intel_crtc->pipe) {
2316                 master_priv->sarea_priv->pipeB_x = x;
2317                 master_priv->sarea_priv->pipeB_y = y;
2318         } else {
2319                 master_priv->sarea_priv->pipeA_x = x;
2320                 master_priv->sarea_priv->pipeA_y = y;
2321         }
2322
2323         return 0;
2324 }
2325
2326 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2327 {
2328         struct drm_device *dev = crtc->dev;
2329         struct drm_i915_private *dev_priv = dev->dev_private;
2330         u32 dpa_ctl;
2331
2332         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2333         dpa_ctl = I915_READ(DP_A);
2334         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2335
2336         if (clock < 200000) {
2337                 u32 temp;
2338                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2339                 /* workaround for 160Mhz:
2340                    1) program 0x4600c bits 15:0 = 0x8124
2341                    2) program 0x46010 bit 0 = 1
2342                    3) program 0x46034 bit 24 = 1
2343                    4) program 0x64000 bit 14 = 1
2344                    */
2345                 temp = I915_READ(0x4600c);
2346                 temp &= 0xffff0000;
2347                 I915_WRITE(0x4600c, temp | 0x8124);
2348
2349                 temp = I915_READ(0x46010);
2350                 I915_WRITE(0x46010, temp | 1);
2351
2352                 temp = I915_READ(0x46034);
2353                 I915_WRITE(0x46034, temp | (1 << 24));
2354         } else {
2355                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2356         }
2357         I915_WRITE(DP_A, dpa_ctl);
2358
2359         POSTING_READ(DP_A);
2360         udelay(500);
2361 }
2362
2363 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2364 {
2365         struct drm_device *dev = crtc->dev;
2366         struct drm_i915_private *dev_priv = dev->dev_private;
2367         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2368         int pipe = intel_crtc->pipe;
2369         u32 reg, temp;
2370
2371         /* enable normal train */
2372         reg = FDI_TX_CTL(pipe);
2373         temp = I915_READ(reg);
2374         if (IS_IVYBRIDGE(dev)) {
2375                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2376                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2377         } else {
2378                 temp &= ~FDI_LINK_TRAIN_NONE;
2379                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2380         }
2381         I915_WRITE(reg, temp);
2382
2383         reg = FDI_RX_CTL(pipe);
2384         temp = I915_READ(reg);
2385         if (HAS_PCH_CPT(dev)) {
2386                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2387                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2388         } else {
2389                 temp &= ~FDI_LINK_TRAIN_NONE;
2390                 temp |= FDI_LINK_TRAIN_NONE;
2391         }
2392         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2393
2394         /* wait one idle pattern time */
2395         POSTING_READ(reg);
2396         udelay(1000);
2397
2398         /* IVB wants error correction enabled */
2399         if (IS_IVYBRIDGE(dev))
2400                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2401                            FDI_FE_ERRC_ENABLE);
2402 }
2403
2404 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2405 {
2406         struct drm_i915_private *dev_priv = dev->dev_private;
2407         u32 flags = I915_READ(SOUTH_CHICKEN1);
2408
2409         flags |= FDI_PHASE_SYNC_OVR(pipe);
2410         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2411         flags |= FDI_PHASE_SYNC_EN(pipe);
2412         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2413         POSTING_READ(SOUTH_CHICKEN1);
2414 }
2415
2416 /* The FDI link training functions for ILK/Ibexpeak. */
2417 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2418 {
2419         struct drm_device *dev = crtc->dev;
2420         struct drm_i915_private *dev_priv = dev->dev_private;
2421         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2422         int pipe = intel_crtc->pipe;
2423         int plane = intel_crtc->plane;
2424         u32 reg, temp, tries;
2425
2426         /* FDI needs bits from pipe & plane first */
2427         assert_pipe_enabled(dev_priv, pipe);
2428         assert_plane_enabled(dev_priv, plane);
2429
2430         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2431            for train result */
2432         reg = FDI_RX_IMR(pipe);
2433         temp = I915_READ(reg);
2434         temp &= ~FDI_RX_SYMBOL_LOCK;
2435         temp &= ~FDI_RX_BIT_LOCK;
2436         I915_WRITE(reg, temp);
2437         I915_READ(reg);
2438         udelay(150);
2439
2440         /* enable CPU FDI TX and PCH FDI RX */
2441         reg = FDI_TX_CTL(pipe);
2442         temp = I915_READ(reg);
2443         temp &= ~(7 << 19);
2444         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2445         temp &= ~FDI_LINK_TRAIN_NONE;
2446         temp |= FDI_LINK_TRAIN_PATTERN_1;
2447         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2448
2449         reg = FDI_RX_CTL(pipe);
2450         temp = I915_READ(reg);
2451         temp &= ~FDI_LINK_TRAIN_NONE;
2452         temp |= FDI_LINK_TRAIN_PATTERN_1;
2453         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2454
2455         POSTING_READ(reg);
2456         udelay(150);
2457
2458         /* Ironlake workaround, enable clock pointer after FDI enable*/
2459         if (HAS_PCH_IBX(dev)) {
2460                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2461                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2462                            FDI_RX_PHASE_SYNC_POINTER_EN);
2463         }
2464
2465         reg = FDI_RX_IIR(pipe);
2466         for (tries = 0; tries < 5; tries++) {
2467                 temp = I915_READ(reg);
2468                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2469
2470                 if ((temp & FDI_RX_BIT_LOCK)) {
2471                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2472                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2473                         break;
2474                 }
2475         }
2476         if (tries == 5)
2477                 DRM_ERROR("FDI train 1 fail!\n");
2478
2479         /* Train 2 */
2480         reg = FDI_TX_CTL(pipe);
2481         temp = I915_READ(reg);
2482         temp &= ~FDI_LINK_TRAIN_NONE;
2483         temp |= FDI_LINK_TRAIN_PATTERN_2;
2484         I915_WRITE(reg, temp);
2485
2486         reg = FDI_RX_CTL(pipe);
2487         temp = I915_READ(reg);
2488         temp &= ~FDI_LINK_TRAIN_NONE;
2489         temp |= FDI_LINK_TRAIN_PATTERN_2;
2490         I915_WRITE(reg, temp);
2491
2492         POSTING_READ(reg);
2493         udelay(150);
2494
2495         reg = FDI_RX_IIR(pipe);
2496         for (tries = 0; tries < 5; tries++) {
2497                 temp = I915_READ(reg);
2498                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2499
2500                 if (temp & FDI_RX_SYMBOL_LOCK) {
2501                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2502                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2503                         break;
2504                 }
2505         }
2506         if (tries == 5)
2507                 DRM_ERROR("FDI train 2 fail!\n");
2508
2509         DRM_DEBUG_KMS("FDI train done\n");
2510
2511 }
2512
2513 static const int snb_b_fdi_train_param[] = {
2514         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2515         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2516         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2517         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2518 };
2519
2520 /* The FDI link training functions for SNB/Cougarpoint. */
2521 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2522 {
2523         struct drm_device *dev = crtc->dev;
2524         struct drm_i915_private *dev_priv = dev->dev_private;
2525         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2526         int pipe = intel_crtc->pipe;
2527         u32 reg, temp, i;
2528
2529         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2530            for train result */
2531         reg = FDI_RX_IMR(pipe);
2532         temp = I915_READ(reg);
2533         temp &= ~FDI_RX_SYMBOL_LOCK;
2534         temp &= ~FDI_RX_BIT_LOCK;
2535         I915_WRITE(reg, temp);
2536
2537         POSTING_READ(reg);
2538         udelay(150);
2539
2540         /* enable CPU FDI TX and PCH FDI RX */
2541         reg = FDI_TX_CTL(pipe);
2542         temp = I915_READ(reg);
2543         temp &= ~(7 << 19);
2544         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2545         temp &= ~FDI_LINK_TRAIN_NONE;
2546         temp |= FDI_LINK_TRAIN_PATTERN_1;
2547         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2548         /* SNB-B */
2549         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2550         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2551
2552         reg = FDI_RX_CTL(pipe);
2553         temp = I915_READ(reg);
2554         if (HAS_PCH_CPT(dev)) {
2555                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2556                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2557         } else {
2558                 temp &= ~FDI_LINK_TRAIN_NONE;
2559                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2560         }
2561         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2562
2563         POSTING_READ(reg);
2564         udelay(150);
2565
2566         if (HAS_PCH_CPT(dev))
2567                 cpt_phase_pointer_enable(dev, pipe);
2568
2569         for (i = 0; i < 4; i++) {
2570                 reg = FDI_TX_CTL(pipe);
2571                 temp = I915_READ(reg);
2572                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2573                 temp |= snb_b_fdi_train_param[i];
2574                 I915_WRITE(reg, temp);
2575
2576                 POSTING_READ(reg);
2577                 udelay(500);
2578
2579                 reg = FDI_RX_IIR(pipe);
2580                 temp = I915_READ(reg);
2581                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2582
2583                 if (temp & FDI_RX_BIT_LOCK) {
2584                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2585                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2586                         break;
2587                 }
2588         }
2589         if (i == 4)
2590                 DRM_ERROR("FDI train 1 fail!\n");
2591
2592         /* Train 2 */
2593         reg = FDI_TX_CTL(pipe);
2594         temp = I915_READ(reg);
2595         temp &= ~FDI_LINK_TRAIN_NONE;
2596         temp |= FDI_LINK_TRAIN_PATTERN_2;
2597         if (IS_GEN6(dev)) {
2598                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2599                 /* SNB-B */
2600                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2601         }
2602         I915_WRITE(reg, temp);
2603
2604         reg = FDI_RX_CTL(pipe);
2605         temp = I915_READ(reg);
2606         if (HAS_PCH_CPT(dev)) {
2607                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2608                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2609         } else {
2610                 temp &= ~FDI_LINK_TRAIN_NONE;
2611                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2612         }
2613         I915_WRITE(reg, temp);
2614
2615         POSTING_READ(reg);
2616         udelay(150);
2617
2618         for (i = 0; i < 4; i++) {
2619                 reg = FDI_TX_CTL(pipe);
2620                 temp = I915_READ(reg);
2621                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2622                 temp |= snb_b_fdi_train_param[i];
2623                 I915_WRITE(reg, temp);
2624
2625                 POSTING_READ(reg);
2626                 udelay(500);
2627
2628                 reg = FDI_RX_IIR(pipe);
2629                 temp = I915_READ(reg);
2630                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2631
2632                 if (temp & FDI_RX_SYMBOL_LOCK) {
2633                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2634                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2635                         break;
2636                 }
2637         }
2638         if (i == 4)
2639                 DRM_ERROR("FDI train 2 fail!\n");
2640
2641         DRM_DEBUG_KMS("FDI train done.\n");
2642 }
2643
2644 /* Manual link training for Ivy Bridge A0 parts */
2645 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2646 {
2647         struct drm_device *dev = crtc->dev;
2648         struct drm_i915_private *dev_priv = dev->dev_private;
2649         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2650         int pipe = intel_crtc->pipe;
2651         u32 reg, temp, i;
2652
2653         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2654            for train result */
2655         reg = FDI_RX_IMR(pipe);
2656         temp = I915_READ(reg);
2657         temp &= ~FDI_RX_SYMBOL_LOCK;
2658         temp &= ~FDI_RX_BIT_LOCK;
2659         I915_WRITE(reg, temp);
2660
2661         POSTING_READ(reg);
2662         udelay(150);
2663
2664         /* enable CPU FDI TX and PCH FDI RX */
2665         reg = FDI_TX_CTL(pipe);
2666         temp = I915_READ(reg);
2667         temp &= ~(7 << 19);
2668         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2669         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2670         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2671         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2672         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2673         temp |= FDI_COMPOSITE_SYNC;
2674         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2675
2676         reg = FDI_RX_CTL(pipe);
2677         temp = I915_READ(reg);
2678         temp &= ~FDI_LINK_TRAIN_AUTO;
2679         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2680         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2681         temp |= FDI_COMPOSITE_SYNC;
2682         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2683
2684         POSTING_READ(reg);
2685         udelay(150);
2686
2687         if (HAS_PCH_CPT(dev))
2688                 cpt_phase_pointer_enable(dev, pipe);
2689
2690         for (i = 0; i < 4; i++) {
2691                 reg = FDI_TX_CTL(pipe);
2692                 temp = I915_READ(reg);
2693                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2694                 temp |= snb_b_fdi_train_param[i];
2695                 I915_WRITE(reg, temp);
2696
2697                 POSTING_READ(reg);
2698                 udelay(500);
2699
2700                 reg = FDI_RX_IIR(pipe);
2701                 temp = I915_READ(reg);
2702                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2703
2704                 if (temp & FDI_RX_BIT_LOCK ||
2705                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2706                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2707                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2708                         break;
2709                 }
2710         }
2711         if (i == 4)
2712                 DRM_ERROR("FDI train 1 fail!\n");
2713
2714         /* Train 2 */
2715         reg = FDI_TX_CTL(pipe);
2716         temp = I915_READ(reg);
2717         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2718         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2719         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2720         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2721         I915_WRITE(reg, temp);
2722
2723         reg = FDI_RX_CTL(pipe);
2724         temp = I915_READ(reg);
2725         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2726         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2727         I915_WRITE(reg, temp);
2728
2729         POSTING_READ(reg);
2730         udelay(150);
2731
2732         for (i = 0; i < 4; i++) {
2733                 reg = FDI_TX_CTL(pipe);
2734                 temp = I915_READ(reg);
2735                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2736                 temp |= snb_b_fdi_train_param[i];
2737                 I915_WRITE(reg, temp);
2738
2739                 POSTING_READ(reg);
2740                 udelay(500);
2741
2742                 reg = FDI_RX_IIR(pipe);
2743                 temp = I915_READ(reg);
2744                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2745
2746                 if (temp & FDI_RX_SYMBOL_LOCK) {
2747                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2748                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2749                         break;
2750                 }
2751         }
2752         if (i == 4)
2753                 DRM_ERROR("FDI train 2 fail!\n");
2754
2755         DRM_DEBUG_KMS("FDI train done.\n");
2756 }
2757
2758 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2759 {
2760         struct drm_device *dev = crtc->dev;
2761         struct drm_i915_private *dev_priv = dev->dev_private;
2762         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2763         int pipe = intel_crtc->pipe;
2764         u32 reg, temp;
2765
2766         /* Write the TU size bits so error detection works */
2767         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2768                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2769
2770         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2771         reg = FDI_RX_CTL(pipe);
2772         temp = I915_READ(reg);
2773         temp &= ~((0x7 << 19) | (0x7 << 16));
2774         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2775         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2776         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2777
2778         POSTING_READ(reg);
2779         udelay(200);
2780
2781         /* Switch from Rawclk to PCDclk */
2782         temp = I915_READ(reg);
2783         I915_WRITE(reg, temp | FDI_PCDCLK);
2784
2785         POSTING_READ(reg);
2786         udelay(200);
2787
2788         /* Enable CPU FDI TX PLL, always on for Ironlake */
2789         reg = FDI_TX_CTL(pipe);
2790         temp = I915_READ(reg);
2791         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2792                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2793
2794                 POSTING_READ(reg);
2795                 udelay(100);
2796         }
2797 }
2798
2799 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2800 {
2801         struct drm_i915_private *dev_priv = dev->dev_private;
2802         u32 flags = I915_READ(SOUTH_CHICKEN1);
2803
2804         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2805         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2806         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2807         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2808         POSTING_READ(SOUTH_CHICKEN1);
2809 }
2810 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2811 {
2812         struct drm_device *dev = crtc->dev;
2813         struct drm_i915_private *dev_priv = dev->dev_private;
2814         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2815         int pipe = intel_crtc->pipe;
2816         u32 reg, temp;
2817
2818         /* disable CPU FDI tx and PCH FDI rx */
2819         reg = FDI_TX_CTL(pipe);
2820         temp = I915_READ(reg);
2821         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2822         POSTING_READ(reg);
2823
2824         reg = FDI_RX_CTL(pipe);
2825         temp = I915_READ(reg);
2826         temp &= ~(0x7 << 16);
2827         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2828         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2829
2830         POSTING_READ(reg);
2831         udelay(100);
2832
2833         /* Ironlake workaround, disable clock pointer after downing FDI */
2834         if (HAS_PCH_IBX(dev)) {
2835                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2836                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2837                            I915_READ(FDI_RX_CHICKEN(pipe) &
2838                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2839         } else if (HAS_PCH_CPT(dev)) {
2840                 cpt_phase_pointer_disable(dev, pipe);
2841         }
2842
2843         /* still set train pattern 1 */
2844         reg = FDI_TX_CTL(pipe);
2845         temp = I915_READ(reg);
2846         temp &= ~FDI_LINK_TRAIN_NONE;
2847         temp |= FDI_LINK_TRAIN_PATTERN_1;
2848         I915_WRITE(reg, temp);
2849
2850         reg = FDI_RX_CTL(pipe);
2851         temp = I915_READ(reg);
2852         if (HAS_PCH_CPT(dev)) {
2853                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2854                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2855         } else {
2856                 temp &= ~FDI_LINK_TRAIN_NONE;
2857                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2858         }
2859         /* BPC in FDI rx is consistent with that in PIPECONF */
2860         temp &= ~(0x07 << 16);
2861         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2862         I915_WRITE(reg, temp);
2863
2864         POSTING_READ(reg);
2865         udelay(100);
2866 }
2867
2868 /*
2869  * When we disable a pipe, we need to clear any pending scanline wait events
2870  * to avoid hanging the ring, which we assume we are waiting on.
2871  */
2872 static void intel_clear_scanline_wait(struct drm_device *dev)
2873 {
2874         struct drm_i915_private *dev_priv = dev->dev_private;
2875         struct intel_ring_buffer *ring;
2876         u32 tmp;
2877
2878         if (IS_GEN2(dev))
2879                 /* Can't break the hang on i8xx */
2880                 return;
2881
2882         ring = LP_RING(dev_priv);
2883         tmp = I915_READ_CTL(ring);
2884         if (tmp & RING_WAIT)
2885                 I915_WRITE_CTL(ring, tmp);
2886 }
2887
2888 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2889 {
2890         struct drm_i915_gem_object *obj;
2891         struct drm_i915_private *dev_priv;
2892
2893         if (crtc->fb == NULL)
2894                 return;
2895
2896         obj = to_intel_framebuffer(crtc->fb)->obj;
2897         dev_priv = crtc->dev->dev_private;
2898         wait_event(dev_priv->pending_flip_queue,
2899                    atomic_read(&obj->pending_flip) == 0);
2900 }
2901
2902 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2903 {
2904         struct drm_device *dev = crtc->dev;
2905         struct drm_mode_config *mode_config = &dev->mode_config;
2906         struct intel_encoder *encoder;
2907
2908         /*
2909          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2910          * must be driven by its own crtc; no sharing is possible.
2911          */
2912         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2913                 if (encoder->base.crtc != crtc)
2914                         continue;
2915
2916                 switch (encoder->type) {
2917                 case INTEL_OUTPUT_EDP:
2918                         if (!intel_encoder_is_pch_edp(&encoder->base))
2919                                 return false;
2920                         continue;
2921                 }
2922         }
2923
2924         return true;
2925 }
2926
2927 /*
2928  * Enable PCH resources required for PCH ports:
2929  *   - PCH PLLs
2930  *   - FDI training & RX/TX
2931  *   - update transcoder timings
2932  *   - DP transcoding bits
2933  *   - transcoder
2934  */
2935 static void ironlake_pch_enable(struct drm_crtc *crtc)
2936 {
2937         struct drm_device *dev = crtc->dev;
2938         struct drm_i915_private *dev_priv = dev->dev_private;
2939         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2940         int pipe = intel_crtc->pipe;
2941         u32 reg, temp, transc_sel;
2942
2943         /* For PCH output, training FDI link */
2944         dev_priv->display.fdi_link_train(crtc);
2945
2946         intel_enable_pch_pll(dev_priv, pipe);
2947
2948         if (HAS_PCH_CPT(dev)) {
2949                 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
2950                         TRANSC_DPLLB_SEL;
2951
2952                 /* Be sure PCH DPLL SEL is set */
2953                 temp = I915_READ(PCH_DPLL_SEL);
2954                 if (pipe == 0) {
2955                         temp &= ~(TRANSA_DPLLB_SEL);
2956                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2957                 } else if (pipe == 1) {
2958                         temp &= ~(TRANSB_DPLLB_SEL);
2959                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2960                 } else if (pipe == 2) {
2961                         temp &= ~(TRANSC_DPLLB_SEL);
2962                         temp |= (TRANSC_DPLL_ENABLE | transc_sel);
2963                 }
2964                 I915_WRITE(PCH_DPLL_SEL, temp);
2965         }
2966
2967         /* set transcoder timing, panel must allow it */
2968         assert_panel_unlocked(dev_priv, pipe);
2969         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2970         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2971         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2972
2973         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2974         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2975         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2976
2977         intel_fdi_normal_train(crtc);
2978
2979         /* For PCH DP, enable TRANS_DP_CTL */
2980         if (HAS_PCH_CPT(dev) &&
2981             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2982              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2983                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2984                 reg = TRANS_DP_CTL(pipe);
2985                 temp = I915_READ(reg);
2986                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2987                           TRANS_DP_SYNC_MASK |
2988                           TRANS_DP_BPC_MASK);
2989                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2990                          TRANS_DP_ENH_FRAMING);
2991                 temp |= bpc << 9; /* same format but at 11:9 */
2992
2993                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2994                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2995                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2996                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2997
2998                 switch (intel_trans_dp_port_sel(crtc)) {
2999                 case PCH_DP_B:
3000                         temp |= TRANS_DP_PORT_SEL_B;
3001                         break;
3002                 case PCH_DP_C:
3003                         temp |= TRANS_DP_PORT_SEL_C;
3004                         break;
3005                 case PCH_DP_D:
3006                         temp |= TRANS_DP_PORT_SEL_D;
3007                         break;
3008                 default:
3009                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3010                         temp |= TRANS_DP_PORT_SEL_B;
3011                         break;
3012                 }
3013
3014                 I915_WRITE(reg, temp);
3015         }
3016
3017         intel_enable_transcoder(dev_priv, pipe);
3018 }
3019
3020 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3021 {
3022         struct drm_i915_private *dev_priv = dev->dev_private;
3023         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3024         u32 temp;
3025
3026         temp = I915_READ(dslreg);
3027         udelay(500);
3028         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3029                 /* Without this, mode sets may fail silently on FDI */
3030                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3031                 udelay(250);
3032                 I915_WRITE(tc2reg, 0);
3033                 if (wait_for(I915_READ(dslreg) != temp, 5))
3034                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3035         }
3036 }
3037
3038 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3039 {
3040         struct drm_device *dev = crtc->dev;
3041         struct drm_i915_private *dev_priv = dev->dev_private;
3042         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3043         int pipe = intel_crtc->pipe;
3044         int plane = intel_crtc->plane;
3045         u32 temp;
3046         bool is_pch_port;
3047
3048         if (intel_crtc->active)
3049                 return;
3050
3051         intel_crtc->active = true;
3052         intel_update_watermarks(dev);
3053
3054         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3055                 temp = I915_READ(PCH_LVDS);
3056                 if ((temp & LVDS_PORT_EN) == 0)
3057                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3058         }
3059
3060         is_pch_port = intel_crtc_driving_pch(crtc);
3061
3062         if (is_pch_port)
3063                 ironlake_fdi_pll_enable(crtc);
3064         else
3065                 ironlake_fdi_disable(crtc);
3066
3067         /* Enable panel fitting for LVDS */
3068         if (dev_priv->pch_pf_size &&
3069             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3070                 /* Force use of hard-coded filter coefficients
3071                  * as some pre-programmed values are broken,
3072                  * e.g. x201.
3073                  */
3074                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3075                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3076                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3077         }
3078
3079         /*
3080          * On ILK+ LUT must be loaded before the pipe is running but with
3081          * clocks enabled
3082          */
3083         intel_crtc_load_lut(crtc);
3084
3085         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3086         intel_enable_plane(dev_priv, plane, pipe);
3087
3088         if (is_pch_port)
3089                 ironlake_pch_enable(crtc);
3090
3091         mutex_lock(&dev->struct_mutex);
3092         intel_update_fbc(dev);
3093         mutex_unlock(&dev->struct_mutex);
3094
3095         intel_crtc_update_cursor(crtc, true);
3096 }
3097
3098 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3099 {
3100         struct drm_device *dev = crtc->dev;
3101         struct drm_i915_private *dev_priv = dev->dev_private;
3102         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3103         int pipe = intel_crtc->pipe;
3104         int plane = intel_crtc->plane;
3105         u32 reg, temp;
3106
3107         if (!intel_crtc->active)
3108                 return;
3109
3110         intel_crtc_wait_for_pending_flips(crtc);
3111         drm_vblank_off(dev, pipe);
3112         intel_crtc_update_cursor(crtc, false);
3113
3114         intel_disable_plane(dev_priv, plane, pipe);
3115
3116         if (dev_priv->cfb_plane == plane)
3117                 intel_disable_fbc(dev);
3118
3119         intel_disable_pipe(dev_priv, pipe);
3120
3121         /* Disable PF */
3122         I915_WRITE(PF_CTL(pipe), 0);
3123         I915_WRITE(PF_WIN_SZ(pipe), 0);
3124
3125         ironlake_fdi_disable(crtc);
3126
3127         /* This is a horrible layering violation; we should be doing this in
3128          * the connector/encoder ->prepare instead, but we don't always have
3129          * enough information there about the config to know whether it will
3130          * actually be necessary or just cause undesired flicker.
3131          */
3132         intel_disable_pch_ports(dev_priv, pipe);
3133
3134         intel_disable_transcoder(dev_priv, pipe);
3135
3136         if (HAS_PCH_CPT(dev)) {
3137                 /* disable TRANS_DP_CTL */
3138                 reg = TRANS_DP_CTL(pipe);
3139                 temp = I915_READ(reg);
3140                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3141                 temp |= TRANS_DP_PORT_SEL_NONE;
3142                 I915_WRITE(reg, temp);
3143
3144                 /* disable DPLL_SEL */
3145                 temp = I915_READ(PCH_DPLL_SEL);
3146                 switch (pipe) {
3147                 case 0:
3148                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3149                         break;
3150                 case 1:
3151                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3152                         break;
3153                 case 2:
3154                         /* C shares PLL A or B */
3155                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3156                         break;
3157                 default:
3158                         BUG(); /* wtf */
3159                 }
3160                 I915_WRITE(PCH_DPLL_SEL, temp);
3161         }
3162
3163         /* disable PCH DPLL */
3164         if (!intel_crtc->no_pll)
3165                 intel_disable_pch_pll(dev_priv, pipe);
3166
3167         /* Switch from PCDclk to Rawclk */
3168         reg = FDI_RX_CTL(pipe);
3169         temp = I915_READ(reg);
3170         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3171
3172         /* Disable CPU FDI TX PLL */
3173         reg = FDI_TX_CTL(pipe);
3174         temp = I915_READ(reg);
3175         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3176
3177         POSTING_READ(reg);
3178         udelay(100);
3179
3180         reg = FDI_RX_CTL(pipe);
3181         temp = I915_READ(reg);
3182         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3183
3184         /* Wait for the clocks to turn off. */
3185         POSTING_READ(reg);
3186         udelay(100);
3187
3188         intel_crtc->active = false;
3189         intel_update_watermarks(dev);
3190
3191         mutex_lock(&dev->struct_mutex);
3192         intel_update_fbc(dev);
3193         intel_clear_scanline_wait(dev);
3194         mutex_unlock(&dev->struct_mutex);
3195 }
3196
3197 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3198 {
3199         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3200         int pipe = intel_crtc->pipe;
3201         int plane = intel_crtc->plane;
3202
3203         /* XXX: When our outputs are all unaware of DPMS modes other than off
3204          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3205          */
3206         switch (mode) {
3207         case DRM_MODE_DPMS_ON:
3208         case DRM_MODE_DPMS_STANDBY:
3209         case DRM_MODE_DPMS_SUSPEND:
3210                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3211                 ironlake_crtc_enable(crtc);
3212                 break;
3213
3214         case DRM_MODE_DPMS_OFF:
3215                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3216                 ironlake_crtc_disable(crtc);
3217                 break;
3218         }
3219 }
3220
3221 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3222 {
3223         if (!enable && intel_crtc->overlay) {
3224                 struct drm_device *dev = intel_crtc->base.dev;
3225                 struct drm_i915_private *dev_priv = dev->dev_private;
3226
3227                 mutex_lock(&dev->struct_mutex);
3228                 dev_priv->mm.interruptible = false;
3229                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3230                 dev_priv->mm.interruptible = true;
3231                 mutex_unlock(&dev->struct_mutex);
3232         }
3233
3234         /* Let userspace switch the overlay on again. In most cases userspace
3235          * has to recompute where to put it anyway.
3236          */
3237 }
3238
3239 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3240 {
3241         struct drm_device *dev = crtc->dev;
3242         struct drm_i915_private *dev_priv = dev->dev_private;
3243         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3244         int pipe = intel_crtc->pipe;
3245         int plane = intel_crtc->plane;
3246
3247         if (intel_crtc->active)
3248                 return;
3249
3250         intel_crtc->active = true;
3251         intel_update_watermarks(dev);
3252
3253         intel_enable_pll(dev_priv, pipe);
3254         intel_enable_pipe(dev_priv, pipe, false);
3255         intel_enable_plane(dev_priv, plane, pipe);
3256
3257         intel_crtc_load_lut(crtc);
3258         intel_update_fbc(dev);
3259
3260         /* Give the overlay scaler a chance to enable if it's on this pipe */
3261         intel_crtc_dpms_overlay(intel_crtc, true);
3262         intel_crtc_update_cursor(crtc, true);
3263 }
3264
3265 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3266 {
3267         struct drm_device *dev = crtc->dev;
3268         struct drm_i915_private *dev_priv = dev->dev_private;
3269         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3270         int pipe = intel_crtc->pipe;
3271         int plane = intel_crtc->plane;
3272
3273         if (!intel_crtc->active)
3274                 return;
3275
3276         /* Give the overlay scaler a chance to disable if it's on this pipe */
3277         intel_crtc_wait_for_pending_flips(crtc);
3278         drm_vblank_off(dev, pipe);
3279         intel_crtc_dpms_overlay(intel_crtc, false);
3280         intel_crtc_update_cursor(crtc, false);
3281
3282         if (dev_priv->cfb_plane == plane)
3283                 intel_disable_fbc(dev);
3284
3285         intel_disable_plane(dev_priv, plane, pipe);
3286         intel_disable_pipe(dev_priv, pipe);
3287         intel_disable_pll(dev_priv, pipe);
3288
3289         intel_crtc->active = false;
3290         intel_update_fbc(dev);
3291         intel_update_watermarks(dev);
3292         intel_clear_scanline_wait(dev);
3293 }
3294
3295 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3296 {
3297         /* XXX: When our outputs are all unaware of DPMS modes other than off
3298          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3299          */
3300         switch (mode) {
3301         case DRM_MODE_DPMS_ON:
3302         case DRM_MODE_DPMS_STANDBY:
3303         case DRM_MODE_DPMS_SUSPEND:
3304                 i9xx_crtc_enable(crtc);
3305                 break;
3306         case DRM_MODE_DPMS_OFF:
3307                 i9xx_crtc_disable(crtc);
3308                 break;
3309         }
3310 }
3311
3312 /**
3313  * Sets the power management mode of the pipe and plane.
3314  */
3315 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3316 {
3317         struct drm_device *dev = crtc->dev;
3318         struct drm_i915_private *dev_priv = dev->dev_private;
3319         struct drm_i915_master_private *master_priv;
3320         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3321         int pipe = intel_crtc->pipe;
3322         bool enabled;
3323
3324         if (intel_crtc->dpms_mode == mode)
3325                 return;
3326
3327         intel_crtc->dpms_mode = mode;
3328
3329         dev_priv->display.dpms(crtc, mode);
3330
3331         if (!dev->primary->master)
3332                 return;
3333
3334         master_priv = dev->primary->master->driver_priv;
3335         if (!master_priv->sarea_priv)
3336                 return;
3337
3338         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3339
3340         switch (pipe) {
3341         case 0:
3342                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3343                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3344                 break;
3345         case 1:
3346                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3347                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3348                 break;
3349         default:
3350                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3351                 break;
3352         }
3353 }
3354
3355 static void intel_crtc_disable(struct drm_crtc *crtc)
3356 {
3357         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3358         struct drm_device *dev = crtc->dev;
3359
3360         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3361         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3362         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3363
3364         if (crtc->fb) {
3365                 mutex_lock(&dev->struct_mutex);
3366                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3367                 mutex_unlock(&dev->struct_mutex);
3368         }
3369 }
3370
3371 /* Prepare for a mode set.
3372  *
3373  * Note we could be a lot smarter here.  We need to figure out which outputs
3374  * will be enabled, which disabled (in short, how the config will changes)
3375  * and perform the minimum necessary steps to accomplish that, e.g. updating
3376  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3377  * panel fitting is in the proper state, etc.
3378  */
3379 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3380 {
3381         i9xx_crtc_disable(crtc);
3382 }
3383
3384 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3385 {
3386         i9xx_crtc_enable(crtc);
3387 }
3388
3389 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3390 {
3391         ironlake_crtc_disable(crtc);
3392 }
3393
3394 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3395 {
3396         ironlake_crtc_enable(crtc);
3397 }
3398
3399 void intel_encoder_prepare(struct drm_encoder *encoder)
3400 {
3401         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3402         /* lvds has its own version of prepare see intel_lvds_prepare */
3403         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3404 }
3405
3406 void intel_encoder_commit(struct drm_encoder *encoder)
3407 {
3408         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3409         struct drm_device *dev = encoder->dev;
3410         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3411         struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3412
3413         /* lvds has its own version of commit see intel_lvds_commit */
3414         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3415
3416         if (HAS_PCH_CPT(dev))
3417                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3418 }
3419
3420 void intel_encoder_destroy(struct drm_encoder *encoder)
3421 {
3422         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3423
3424         drm_encoder_cleanup(encoder);
3425         kfree(intel_encoder);
3426 }
3427
3428 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3429                                   struct drm_display_mode *mode,
3430                                   struct drm_display_mode *adjusted_mode)
3431 {
3432         struct drm_device *dev = crtc->dev;
3433
3434         if (HAS_PCH_SPLIT(dev)) {
3435                 /* FDI link clock is fixed at 2.7G */
3436                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3437                         return false;
3438         }
3439
3440         /* All interlaced capable intel hw wants timings in frames. */
3441         drm_mode_set_crtcinfo(adjusted_mode, 0);
3442
3443         return true;
3444 }
3445
3446 static int i945_get_display_clock_speed(struct drm_device *dev)
3447 {
3448         return 400000;
3449 }
3450
3451 static int i915_get_display_clock_speed(struct drm_device *dev)
3452 {
3453         return 333000;
3454 }
3455
3456 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3457 {
3458         return 200000;
3459 }
3460
3461 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3462 {
3463         u16 gcfgc = 0;
3464
3465         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3466
3467         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3468                 return 133000;
3469         else {
3470                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3471                 case GC_DISPLAY_CLOCK_333_MHZ:
3472                         return 333000;
3473                 default:
3474                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3475                         return 190000;
3476                 }
3477         }
3478 }
3479
3480 static int i865_get_display_clock_speed(struct drm_device *dev)
3481 {
3482         return 266000;
3483 }
3484
3485 static int i855_get_display_clock_speed(struct drm_device *dev)
3486 {
3487         u16 hpllcc = 0;
3488         /* Assume that the hardware is in the high speed state.  This
3489          * should be the default.
3490          */
3491         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3492         case GC_CLOCK_133_200:
3493         case GC_CLOCK_100_200:
3494                 return 200000;
3495         case GC_CLOCK_166_250:
3496                 return 250000;
3497         case GC_CLOCK_100_133:
3498                 return 133000;
3499         }
3500
3501         /* Shouldn't happen */
3502         return 0;
3503 }
3504
3505 static int i830_get_display_clock_speed(struct drm_device *dev)
3506 {
3507         return 133000;
3508 }
3509
3510 struct fdi_m_n {
3511         u32        tu;
3512         u32        gmch_m;
3513         u32        gmch_n;
3514         u32        link_m;
3515         u32        link_n;
3516 };
3517
3518 static void
3519 fdi_reduce_ratio(u32 *num, u32 *den)
3520 {
3521         while (*num > 0xffffff || *den > 0xffffff) {
3522                 *num >>= 1;
3523                 *den >>= 1;
3524         }
3525 }
3526
3527 static void
3528 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3529                      int link_clock, struct fdi_m_n *m_n)
3530 {
3531         m_n->tu = 64; /* default size */
3532
3533         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3534         m_n->gmch_m = bits_per_pixel * pixel_clock;
3535         m_n->gmch_n = link_clock * nlanes * 8;
3536         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3537
3538         m_n->link_m = pixel_clock;
3539         m_n->link_n = link_clock;
3540         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3541 }
3542
3543
3544 struct intel_watermark_params {
3545         unsigned long fifo_size;
3546         unsigned long max_wm;
3547         unsigned long default_wm;
3548         unsigned long guard_size;
3549         unsigned long cacheline_size;
3550 };
3551
3552 /* Pineview has different values for various configs */
3553 static const struct intel_watermark_params pineview_display_wm = {
3554         PINEVIEW_DISPLAY_FIFO,
3555         PINEVIEW_MAX_WM,
3556         PINEVIEW_DFT_WM,
3557         PINEVIEW_GUARD_WM,
3558         PINEVIEW_FIFO_LINE_SIZE
3559 };
3560 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3561         PINEVIEW_DISPLAY_FIFO,
3562         PINEVIEW_MAX_WM,
3563         PINEVIEW_DFT_HPLLOFF_WM,
3564         PINEVIEW_GUARD_WM,
3565         PINEVIEW_FIFO_LINE_SIZE
3566 };
3567 static const struct intel_watermark_params pineview_cursor_wm = {
3568         PINEVIEW_CURSOR_FIFO,
3569         PINEVIEW_CURSOR_MAX_WM,
3570         PINEVIEW_CURSOR_DFT_WM,
3571         PINEVIEW_CURSOR_GUARD_WM,
3572         PINEVIEW_FIFO_LINE_SIZE,
3573 };
3574 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3575         PINEVIEW_CURSOR_FIFO,
3576         PINEVIEW_CURSOR_MAX_WM,
3577         PINEVIEW_CURSOR_DFT_WM,
3578         PINEVIEW_CURSOR_GUARD_WM,
3579         PINEVIEW_FIFO_LINE_SIZE
3580 };
3581 static const struct intel_watermark_params g4x_wm_info = {
3582         G4X_FIFO_SIZE,
3583         G4X_MAX_WM,
3584         G4X_MAX_WM,
3585         2,
3586         G4X_FIFO_LINE_SIZE,
3587 };
3588 static const struct intel_watermark_params g4x_cursor_wm_info = {
3589         I965_CURSOR_FIFO,
3590         I965_CURSOR_MAX_WM,
3591         I965_CURSOR_DFT_WM,
3592         2,
3593         G4X_FIFO_LINE_SIZE,
3594 };
3595 static const struct intel_watermark_params i965_cursor_wm_info = {
3596         I965_CURSOR_FIFO,
3597         I965_CURSOR_MAX_WM,
3598         I965_CURSOR_DFT_WM,
3599         2,
3600         I915_FIFO_LINE_SIZE,
3601 };
3602 static const struct intel_watermark_params i945_wm_info = {
3603         I945_FIFO_SIZE,
3604         I915_MAX_WM,
3605         1,
3606         2,
3607         I915_FIFO_LINE_SIZE
3608 };
3609 static const struct intel_watermark_params i915_wm_info = {
3610         I915_FIFO_SIZE,
3611         I915_MAX_WM,
3612         1,
3613         2,
3614         I915_FIFO_LINE_SIZE
3615 };
3616 static const struct intel_watermark_params i855_wm_info = {
3617         I855GM_FIFO_SIZE,
3618         I915_MAX_WM,
3619         1,
3620         2,
3621         I830_FIFO_LINE_SIZE
3622 };
3623 static const struct intel_watermark_params i830_wm_info = {
3624         I830_FIFO_SIZE,
3625         I915_MAX_WM,
3626         1,
3627         2,
3628         I830_FIFO_LINE_SIZE
3629 };
3630
3631 static const struct intel_watermark_params ironlake_display_wm_info = {
3632         ILK_DISPLAY_FIFO,
3633         ILK_DISPLAY_MAXWM,
3634         ILK_DISPLAY_DFTWM,
3635         2,
3636         ILK_FIFO_LINE_SIZE
3637 };
3638 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3639         ILK_CURSOR_FIFO,
3640         ILK_CURSOR_MAXWM,
3641         ILK_CURSOR_DFTWM,
3642         2,
3643         ILK_FIFO_LINE_SIZE
3644 };
3645 static const struct intel_watermark_params ironlake_display_srwm_info = {
3646         ILK_DISPLAY_SR_FIFO,
3647         ILK_DISPLAY_MAX_SRWM,
3648         ILK_DISPLAY_DFT_SRWM,
3649         2,
3650         ILK_FIFO_LINE_SIZE
3651 };
3652 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3653         ILK_CURSOR_SR_FIFO,
3654         ILK_CURSOR_MAX_SRWM,
3655         ILK_CURSOR_DFT_SRWM,
3656         2,
3657         ILK_FIFO_LINE_SIZE
3658 };
3659
3660 static const struct intel_watermark_params sandybridge_display_wm_info = {
3661         SNB_DISPLAY_FIFO,
3662         SNB_DISPLAY_MAXWM,
3663         SNB_DISPLAY_DFTWM,
3664         2,
3665         SNB_FIFO_LINE_SIZE
3666 };
3667 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3668         SNB_CURSOR_FIFO,
3669         SNB_CURSOR_MAXWM,
3670         SNB_CURSOR_DFTWM,
3671         2,
3672         SNB_FIFO_LINE_SIZE
3673 };
3674 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3675         SNB_DISPLAY_SR_FIFO,
3676         SNB_DISPLAY_MAX_SRWM,
3677         SNB_DISPLAY_DFT_SRWM,
3678         2,
3679         SNB_FIFO_LINE_SIZE
3680 };
3681 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3682         SNB_CURSOR_SR_FIFO,
3683         SNB_CURSOR_MAX_SRWM,
3684         SNB_CURSOR_DFT_SRWM,
3685         2,
3686         SNB_FIFO_LINE_SIZE
3687 };
3688
3689
3690 /**
3691  * intel_calculate_wm - calculate watermark level
3692  * @clock_in_khz: pixel clock
3693  * @wm: chip FIFO params
3694  * @pixel_size: display pixel size
3695  * @latency_ns: memory latency for the platform
3696  *
3697  * Calculate the watermark level (the level at which the display plane will
3698  * start fetching from memory again).  Each chip has a different display
3699  * FIFO size and allocation, so the caller needs to figure that out and pass
3700  * in the correct intel_watermark_params structure.
3701  *
3702  * As the pixel clock runs, the FIFO will be drained at a rate that depends
3703  * on the pixel size.  When it reaches the watermark level, it'll start
3704  * fetching FIFO line sized based chunks from memory until the FIFO fills
3705  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
3706  * will occur, and a display engine hang could result.
3707  */
3708 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3709                                         const struct intel_watermark_params *wm,
3710                                         int fifo_size,
3711                                         int pixel_size,
3712                                         unsigned long latency_ns)
3713 {
3714         long entries_required, wm_size;
3715
3716         /*
3717          * Note: we need to make sure we don't overflow for various clock &
3718          * latency values.
3719          * clocks go from a few thousand to several hundred thousand.
3720          * latency is usually a few thousand
3721          */
3722         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3723                 1000;
3724         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3725
3726         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3727
3728         wm_size = fifo_size - (entries_required + wm->guard_size);
3729
3730         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3731
3732         /* Don't promote wm_size to unsigned... */
3733         if (wm_size > (long)wm->max_wm)
3734                 wm_size = wm->max_wm;
3735         if (wm_size <= 0)
3736                 wm_size = wm->default_wm;
3737         return wm_size;
3738 }
3739
3740 struct cxsr_latency {
3741         int is_desktop;
3742         int is_ddr3;
3743         unsigned long fsb_freq;
3744         unsigned long mem_freq;
3745         unsigned long display_sr;
3746         unsigned long display_hpll_disable;
3747         unsigned long cursor_sr;
3748         unsigned long cursor_hpll_disable;
3749 };
3750
3751 static const struct cxsr_latency cxsr_latency_table[] = {
3752         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
3753         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
3754         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
3755         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
3756         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
3757
3758         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
3759         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
3760         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
3761         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
3762         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
3763
3764         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
3765         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
3766         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
3767         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
3768         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
3769
3770         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
3771         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
3772         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
3773         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
3774         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
3775
3776         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
3777         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
3778         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
3779         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
3780         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
3781
3782         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
3783         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
3784         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
3785         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
3786         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
3787 };
3788
3789 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3790                                                          int is_ddr3,
3791                                                          int fsb,
3792                                                          int mem)
3793 {
3794         const struct cxsr_latency *latency;
3795         int i;
3796
3797         if (fsb == 0 || mem == 0)
3798                 return NULL;
3799
3800         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3801                 latency = &cxsr_latency_table[i];
3802                 if (is_desktop == latency->is_desktop &&
3803                     is_ddr3 == latency->is_ddr3 &&
3804                     fsb == latency->fsb_freq && mem == latency->mem_freq)
3805                         return latency;
3806         }
3807
3808         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3809
3810         return NULL;
3811 }
3812
3813 static void pineview_disable_cxsr(struct drm_device *dev)
3814 {
3815         struct drm_i915_private *dev_priv = dev->dev_private;
3816
3817         /* deactivate cxsr */
3818         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3819 }
3820
3821 /*
3822  * Latency for FIFO fetches is dependent on several factors:
3823  *   - memory configuration (speed, channels)
3824  *   - chipset
3825  *   - current MCH state
3826  * It can be fairly high in some situations, so here we assume a fairly
3827  * pessimal value.  It's a tradeoff between extra memory fetches (if we
3828  * set this value too high, the FIFO will fetch frequently to stay full)
3829  * and power consumption (set it too low to save power and we might see
3830  * FIFO underruns and display "flicker").
3831  *
3832  * A value of 5us seems to be a good balance; safe for very low end
3833  * platforms but not overly aggressive on lower latency configs.
3834  */
3835 static const int latency_ns = 5000;
3836
3837 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3838 {
3839         struct drm_i915_private *dev_priv = dev->dev_private;
3840         uint32_t dsparb = I915_READ(DSPARB);
3841         int size;
3842
3843         size = dsparb & 0x7f;
3844         if (plane)
3845                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3846
3847         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3848                       plane ? "B" : "A", size);
3849
3850         return size;
3851 }
3852
3853 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3854 {
3855         struct drm_i915_private *dev_priv = dev->dev_private;
3856         uint32_t dsparb = I915_READ(DSPARB);
3857         int size;
3858
3859         size = dsparb & 0x1ff;
3860         if (plane)
3861                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3862         size >>= 1; /* Convert to cachelines */
3863
3864         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3865                       plane ? "B" : "A", size);
3866
3867         return size;
3868 }
3869
3870 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3871 {
3872         struct drm_i915_private *dev_priv = dev->dev_private;
3873         uint32_t dsparb = I915_READ(DSPARB);
3874         int size;
3875
3876         size = dsparb & 0x7f;
3877         size >>= 2; /* Convert to cachelines */
3878
3879         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3880                       plane ? "B" : "A",
3881                       size);
3882
3883         return size;
3884 }
3885
3886 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3887 {
3888         struct drm_i915_private *dev_priv = dev->dev_private;
3889         uint32_t dsparb = I915_READ(DSPARB);
3890         int size;
3891
3892         size = dsparb & 0x7f;
3893         size >>= 1; /* Convert to cachelines */
3894
3895         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3896                       plane ? "B" : "A", size);
3897
3898         return size;
3899 }
3900
3901 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3902 {
3903         struct drm_crtc *crtc, *enabled = NULL;
3904
3905         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3906                 if (crtc->enabled && crtc->fb) {
3907                         if (enabled)
3908                                 return NULL;
3909                         enabled = crtc;
3910                 }
3911         }
3912
3913         return enabled;
3914 }
3915
3916 static void pineview_update_wm(struct drm_device *dev)
3917 {
3918         struct drm_i915_private *dev_priv = dev->dev_private;
3919         struct drm_crtc *crtc;
3920         const struct cxsr_latency *latency;
3921         u32 reg;
3922         unsigned long wm;
3923
3924         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3925                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3926         if (!latency) {
3927                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3928                 pineview_disable_cxsr(dev);
3929                 return;
3930         }
3931
3932         crtc = single_enabled_crtc(dev);
3933         if (crtc) {
3934                 int clock = crtc->mode.clock;
3935                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3936
3937                 /* Display SR */
3938                 wm = intel_calculate_wm(clock, &pineview_display_wm,
3939                                         pineview_display_wm.fifo_size,
3940                                         pixel_size, latency->display_sr);
3941                 reg = I915_READ(DSPFW1);
3942                 reg &= ~DSPFW_SR_MASK;
3943                 reg |= wm << DSPFW_SR_SHIFT;
3944                 I915_WRITE(DSPFW1, reg);
3945                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3946
3947                 /* cursor SR */
3948                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3949                                         pineview_display_wm.fifo_size,
3950                                         pixel_size, latency->cursor_sr);
3951                 reg = I915_READ(DSPFW3);
3952                 reg &= ~DSPFW_CURSOR_SR_MASK;
3953                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3954                 I915_WRITE(DSPFW3, reg);
3955
3956                 /* Display HPLL off SR */
3957                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3958                                         pineview_display_hplloff_wm.fifo_size,
3959                                         pixel_size, latency->display_hpll_disable);
3960                 reg = I915_READ(DSPFW3);
3961                 reg &= ~DSPFW_HPLL_SR_MASK;
3962                 reg |= wm & DSPFW_HPLL_SR_MASK;
3963                 I915_WRITE(DSPFW3, reg);
3964
3965                 /* cursor HPLL off SR */
3966                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3967                                         pineview_display_hplloff_wm.fifo_size,
3968                                         pixel_size, latency->cursor_hpll_disable);
3969                 reg = I915_READ(DSPFW3);
3970                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3971                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3972                 I915_WRITE(DSPFW3, reg);
3973                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3974
3975                 /* activate cxsr */
3976                 I915_WRITE(DSPFW3,
3977                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3978                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3979         } else {
3980                 pineview_disable_cxsr(dev);
3981                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3982         }
3983 }
3984
3985 static bool g4x_compute_wm0(struct drm_device *dev,
3986                             int plane,
3987                             const struct intel_watermark_params *display,
3988                             int display_latency_ns,
3989                             const struct intel_watermark_params *cursor,
3990                             int cursor_latency_ns,
3991                             int *plane_wm,
3992                             int *cursor_wm)
3993 {
3994         struct drm_crtc *crtc;
3995         int htotal, hdisplay, clock, pixel_size;
3996         int line_time_us, line_count;
3997         int entries, tlb_miss;
3998
3999         crtc = intel_get_crtc_for_plane(dev, plane);
4000         if (crtc->fb == NULL || !crtc->enabled) {
4001                 *cursor_wm = cursor->guard_size;
4002                 *plane_wm = display->guard_size;
4003                 return false;
4004         }
4005
4006         htotal = crtc->mode.htotal;
4007         hdisplay = crtc->mode.hdisplay;
4008         clock = crtc->mode.clock;
4009         pixel_size = crtc->fb->bits_per_pixel / 8;
4010
4011         /* Use the small buffer method to calculate plane watermark */
4012         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4013         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
4014         if (tlb_miss > 0)
4015                 entries += tlb_miss;
4016         entries = DIV_ROUND_UP(entries, display->cacheline_size);
4017         *plane_wm = entries + display->guard_size;
4018         if (*plane_wm > (int)display->max_wm)
4019                 *plane_wm = display->max_wm;
4020
4021         /* Use the large buffer method to calculate cursor watermark */
4022         line_time_us = ((htotal * 1000) / clock);
4023         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
4024         entries = line_count * 64 * pixel_size;
4025         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
4026         if (tlb_miss > 0)
4027                 entries += tlb_miss;
4028         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4029         *cursor_wm = entries + cursor->guard_size;
4030         if (*cursor_wm > (int)cursor->max_wm)
4031                 *cursor_wm = (int)cursor->max_wm;
4032
4033         return true;
4034 }
4035
4036 /*
4037  * Check the wm result.
4038  *
4039  * If any calculated watermark values is larger than the maximum value that
4040  * can be programmed into the associated watermark register, that watermark
4041  * must be disabled.
4042  */
4043 static bool g4x_check_srwm(struct drm_device *dev,
4044                            int display_wm, int cursor_wm,
4045                            const struct intel_watermark_params *display,
4046                            const struct intel_watermark_params *cursor)
4047 {
4048         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4049                       display_wm, cursor_wm);
4050
4051         if (display_wm > display->max_wm) {
4052                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4053                               display_wm, display->max_wm);
4054                 return false;
4055         }
4056
4057         if (cursor_wm > cursor->max_wm) {
4058                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4059                               cursor_wm, cursor->max_wm);
4060                 return false;
4061         }
4062
4063         if (!(display_wm || cursor_wm)) {
4064                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4065                 return false;
4066         }
4067
4068         return true;
4069 }
4070
4071 static bool g4x_compute_srwm(struct drm_device *dev,
4072                              int plane,
4073                              int latency_ns,
4074                              const struct intel_watermark_params *display,
4075                              const struct intel_watermark_params *cursor,
4076                              int *display_wm, int *cursor_wm)
4077 {
4078         struct drm_crtc *crtc;
4079         int hdisplay, htotal, pixel_size, clock;
4080         unsigned long line_time_us;
4081         int line_count, line_size;
4082         int small, large;
4083         int entries;
4084
4085         if (!latency_ns) {
4086                 *display_wm = *cursor_wm = 0;
4087                 return false;
4088         }
4089
4090         crtc = intel_get_crtc_for_plane(dev, plane);
4091         hdisplay = crtc->mode.hdisplay;
4092         htotal = crtc->mode.htotal;
4093         clock = crtc->mode.clock;
4094         pixel_size = crtc->fb->bits_per_pixel / 8;
4095
4096         line_time_us = (htotal * 1000) / clock;
4097         line_count = (latency_ns / line_time_us + 1000) / 1000;
4098         line_size = hdisplay * pixel_size;
4099
4100         /* Use the minimum of the small and large buffer method for primary */
4101         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4102         large = line_count * line_size;
4103
4104         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4105         *display_wm = entries + display->guard_size;
4106
4107         /* calculate the self-refresh watermark for display cursor */
4108         entries = line_count * pixel_size * 64;
4109         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4110         *cursor_wm = entries + cursor->guard_size;
4111
4112         return g4x_check_srwm(dev,
4113                               *display_wm, *cursor_wm,
4114                               display, cursor);
4115 }
4116
4117 #define single_plane_enabled(mask) is_power_of_2(mask)
4118
4119 static void g4x_update_wm(struct drm_device *dev)
4120 {
4121         static const int sr_latency_ns = 12000;
4122         struct drm_i915_private *dev_priv = dev->dev_private;
4123         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4124         int plane_sr, cursor_sr;
4125         unsigned int enabled = 0;
4126
4127         if (g4x_compute_wm0(dev, 0,
4128                             &g4x_wm_info, latency_ns,
4129                             &g4x_cursor_wm_info, latency_ns,
4130                             &planea_wm, &cursora_wm))
4131                 enabled |= 1;
4132
4133         if (g4x_compute_wm0(dev, 1,
4134                             &g4x_wm_info, latency_ns,
4135                             &g4x_cursor_wm_info, latency_ns,
4136                             &planeb_wm, &cursorb_wm))
4137                 enabled |= 2;
4138
4139         plane_sr = cursor_sr = 0;
4140         if (single_plane_enabled(enabled) &&
4141             g4x_compute_srwm(dev, ffs(enabled) - 1,
4142                              sr_latency_ns,
4143                              &g4x_wm_info,
4144                              &g4x_cursor_wm_info,
4145                              &plane_sr, &cursor_sr))
4146                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4147         else
4148                 I915_WRITE(FW_BLC_SELF,
4149                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4150
4151         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4152                       planea_wm, cursora_wm,
4153                       planeb_wm, cursorb_wm,
4154                       plane_sr, cursor_sr);
4155
4156         I915_WRITE(DSPFW1,
4157                    (plane_sr << DSPFW_SR_SHIFT) |
4158                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4159                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
4160                    planea_wm);
4161         I915_WRITE(DSPFW2,
4162                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4163                    (cursora_wm << DSPFW_CURSORA_SHIFT));
4164         /* HPLL off in SR has some issues on G4x... disable it */
4165         I915_WRITE(DSPFW3,
4166                    (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4167                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4168 }
4169
4170 static void i965_update_wm(struct drm_device *dev)
4171 {
4172         struct drm_i915_private *dev_priv = dev->dev_private;
4173         struct drm_crtc *crtc;
4174         int srwm = 1;
4175         int cursor_sr = 16;
4176
4177         /* Calc sr entries for one plane configs */
4178         crtc = single_enabled_crtc(dev);
4179         if (crtc) {
4180                 /* self-refresh has much higher latency */
4181                 static const int sr_latency_ns = 12000;
4182                 int clock = crtc->mode.clock;
4183                 int htotal = crtc->mode.htotal;
4184                 int hdisplay = crtc->mode.hdisplay;
4185                 int pixel_size = crtc->fb->bits_per_pixel / 8;
4186                 unsigned long line_time_us;
4187                 int entries;
4188
4189                 line_time_us = ((htotal * 1000) / clock);
4190
4191                 /* Use ns/us then divide to preserve precision */
4192                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4193                         pixel_size * hdisplay;
4194                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
4195                 srwm = I965_FIFO_SIZE - entries;
4196                 if (srwm < 0)
4197                         srwm = 1;
4198                 srwm &= 0x1ff;
4199                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4200                               entries, srwm);
4201
4202                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4203                         pixel_size * 64;
4204                 entries = DIV_ROUND_UP(entries,
4205                                           i965_cursor_wm_info.cacheline_size);
4206                 cursor_sr = i965_cursor_wm_info.fifo_size -
4207                         (entries + i965_cursor_wm_info.guard_size);
4208
4209                 if (cursor_sr > i965_cursor_wm_info.max_wm)
4210                         cursor_sr = i965_cursor_wm_info.max_wm;
4211
4212                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4213                               "cursor %d\n", srwm, cursor_sr);
4214
4215                 if (IS_CRESTLINE(dev))
4216                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4217         } else {
4218                 /* Turn off self refresh if both pipes are enabled */
4219                 if (IS_CRESTLINE(dev))
4220                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4221                                    & ~FW_BLC_SELF_EN);
4222         }
4223
4224         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4225                       srwm);
4226
4227         /* 965 has limitations... */
4228         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4229                    (8 << 16) | (8 << 8) | (8 << 0));
4230         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4231         /* update cursor SR watermark */
4232         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4233 }
4234
4235 static void i9xx_update_wm(struct drm_device *dev)
4236 {
4237         struct drm_i915_private *dev_priv = dev->dev_private;
4238         const struct intel_watermark_params *wm_info;
4239         uint32_t fwater_lo;
4240         uint32_t fwater_hi;
4241         int cwm, srwm = 1;
4242         int fifo_size;
4243         int planea_wm, planeb_wm;
4244         struct drm_crtc *crtc, *enabled = NULL;
4245
4246         if (IS_I945GM(dev))
4247                 wm_info = &i945_wm_info;
4248         else if (!IS_GEN2(dev))
4249                 wm_info = &i915_wm_info;
4250         else
4251                 wm_info = &i855_wm_info;
4252
4253         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4254         crtc = intel_get_crtc_for_plane(dev, 0);
4255         if (crtc->enabled && crtc->fb) {
4256                 planea_wm = intel_calculate_wm(crtc->mode.clock,
4257                                                wm_info, fifo_size,
4258                                                crtc->fb->bits_per_pixel / 8,
4259                                                latency_ns);
4260                 enabled = crtc;
4261         } else
4262                 planea_wm = fifo_size - wm_info->guard_size;
4263
4264         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4265         crtc = intel_get_crtc_for_plane(dev, 1);
4266         if (crtc->enabled && crtc->fb) {
4267                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4268                                                wm_info, fifo_size,
4269                                                crtc->fb->bits_per_pixel / 8,
4270                                                latency_ns);
4271                 if (enabled == NULL)
4272                         enabled = crtc;
4273                 else
4274                         enabled = NULL;
4275         } else
4276                 planeb_wm = fifo_size - wm_info->guard_size;
4277
4278         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4279
4280         /*
4281          * Overlay gets an aggressive default since video jitter is bad.
4282          */
4283         cwm = 2;
4284
4285         /* Play safe and disable self-refresh before adjusting watermarks. */
4286         if (IS_I945G(dev) || IS_I945GM(dev))
4287                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4288         else if (IS_I915GM(dev))
4289                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4290
4291         /* Calc sr entries for one plane configs */
4292         if (HAS_FW_BLC(dev) && enabled) {
4293                 /* self-refresh has much higher latency */
4294                 static const int sr_latency_ns = 6000;
4295                 int clock = enabled->mode.clock;
4296                 int htotal = enabled->mode.htotal;
4297                 int hdisplay = enabled->mode.hdisplay;
4298                 int pixel_size = enabled->fb->bits_per_pixel / 8;
4299                 unsigned long line_time_us;
4300                 int entries;
4301
4302                 line_time_us = (htotal * 1000) / clock;
4303
4304                 /* Use ns/us then divide to preserve precision */
4305                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4306                         pixel_size * hdisplay;
4307                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4308                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4309                 srwm = wm_info->fifo_size - entries;
4310                 if (srwm < 0)
4311                         srwm = 1;
4312
4313                 if (IS_I945G(dev) || IS_I945GM(dev))
4314                         I915_WRITE(FW_BLC_SELF,
4315                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4316                 else if (IS_I915GM(dev))
4317                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4318         }
4319
4320         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4321                       planea_wm, planeb_wm, cwm, srwm);
4322
4323         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4324         fwater_hi = (cwm & 0x1f);
4325
4326         /* Set request length to 8 cachelines per fetch */
4327         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4328         fwater_hi = fwater_hi | (1 << 8);
4329
4330         I915_WRITE(FW_BLC, fwater_lo);
4331         I915_WRITE(FW_BLC2, fwater_hi);
4332
4333         if (HAS_FW_BLC(dev)) {
4334                 if (enabled) {
4335                         if (IS_I945G(dev) || IS_I945GM(dev))
4336                                 I915_WRITE(FW_BLC_SELF,
4337                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4338                         else if (IS_I915GM(dev))
4339                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4340                         DRM_DEBUG_KMS("memory self refresh enabled\n");
4341                 } else
4342                         DRM_DEBUG_KMS("memory self refresh disabled\n");
4343         }
4344 }
4345
4346 static void i830_update_wm(struct drm_device *dev)
4347 {
4348         struct drm_i915_private *dev_priv = dev->dev_private;
4349         struct drm_crtc *crtc;
4350         uint32_t fwater_lo;
4351         int planea_wm;
4352
4353         crtc = single_enabled_crtc(dev);
4354         if (crtc == NULL)
4355                 return;
4356
4357         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4358                                        dev_priv->display.get_fifo_size(dev, 0),
4359                                        crtc->fb->bits_per_pixel / 8,
4360                                        latency_ns);
4361         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4362         fwater_lo |= (3<<8) | planea_wm;
4363
4364         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4365
4366         I915_WRITE(FW_BLC, fwater_lo);
4367 }
4368
4369 #define ILK_LP0_PLANE_LATENCY           700
4370 #define ILK_LP0_CURSOR_LATENCY          1300
4371
4372 /*
4373  * Check the wm result.
4374  *
4375  * If any calculated watermark values is larger than the maximum value that
4376  * can be programmed into the associated watermark register, that watermark
4377  * must be disabled.
4378  */
4379 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4380                                 int fbc_wm, int display_wm, int cursor_wm,
4381                                 const struct intel_watermark_params *display,
4382                                 const struct intel_watermark_params *cursor)
4383 {
4384         struct drm_i915_private *dev_priv = dev->dev_private;
4385
4386         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4387                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4388
4389         if (fbc_wm > SNB_FBC_MAX_SRWM) {
4390                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4391                               fbc_wm, SNB_FBC_MAX_SRWM, level);
4392
4393                 /* fbc has it's own way to disable FBC WM */
4394                 I915_WRITE(DISP_ARB_CTL,
4395                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4396                 return false;
4397         }
4398
4399         if (display_wm > display->max_wm) {
4400                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4401                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
4402                 return false;
4403         }
4404
4405         if (cursor_wm > cursor->max_wm) {
4406                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4407                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4408                 return false;
4409         }
4410
4411         if (!(fbc_wm || display_wm || cursor_wm)) {
4412                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4413                 return false;
4414         }
4415
4416         return true;
4417 }
4418
4419 /*
4420  * Compute watermark values of WM[1-3],
4421  */
4422 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4423                                   int latency_ns,
4424                                   const struct intel_watermark_params *display,
4425                                   const struct intel_watermark_params *cursor,
4426                                   int *fbc_wm, int *display_wm, int *cursor_wm)
4427 {
4428         struct drm_crtc *crtc;
4429         unsigned long line_time_us;
4430         int hdisplay, htotal, pixel_size, clock;
4431         int line_count, line_size;
4432         int small, large;
4433         int entries;
4434
4435         if (!latency_ns) {
4436                 *fbc_wm = *display_wm = *cursor_wm = 0;
4437                 return false;
4438         }
4439
4440         crtc = intel_get_crtc_for_plane(dev, plane);
4441         hdisplay = crtc->mode.hdisplay;
4442         htotal = crtc->mode.htotal;
4443         clock = crtc->mode.clock;
4444         pixel_size = crtc->fb->bits_per_pixel / 8;
4445
4446         line_time_us = (htotal * 1000) / clock;
4447         line_count = (latency_ns / line_time_us + 1000) / 1000;
4448         line_size = hdisplay * pixel_size;
4449
4450         /* Use the minimum of the small and large buffer method for primary */
4451         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4452         large = line_count * line_size;
4453
4454         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4455         *display_wm = entries + display->guard_size;
4456
4457         /*
4458          * Spec says:
4459          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4460          */
4461         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4462
4463         /* calculate the self-refresh watermark for display cursor */
4464         entries = line_count * pixel_size * 64;
4465         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4466         *cursor_wm = entries + cursor->guard_size;
4467
4468         return ironlake_check_srwm(dev, level,
4469                                    *fbc_wm, *display_wm, *cursor_wm,
4470                                    display, cursor);
4471 }
4472
4473 static void ironlake_update_wm(struct drm_device *dev)
4474 {
4475         struct drm_i915_private *dev_priv = dev->dev_private;
4476         int fbc_wm, plane_wm, cursor_wm;
4477         unsigned int enabled;
4478
4479         enabled = 0;
4480         if (g4x_compute_wm0(dev, 0,
4481                             &ironlake_display_wm_info,
4482                             ILK_LP0_PLANE_LATENCY,
4483                             &ironlake_cursor_wm_info,
4484                             ILK_LP0_CURSOR_LATENCY,
4485                             &plane_wm, &cursor_wm)) {
4486                 I915_WRITE(WM0_PIPEA_ILK,
4487                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4488                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4489                               " plane %d, " "cursor: %d\n",
4490                               plane_wm, cursor_wm);
4491                 enabled |= 1;
4492         }
4493
4494         if (g4x_compute_wm0(dev, 1,
4495                             &ironlake_display_wm_info,
4496                             ILK_LP0_PLANE_LATENCY,
4497                             &ironlake_cursor_wm_info,
4498                             ILK_LP0_CURSOR_LATENCY,
4499                             &plane_wm, &cursor_wm)) {
4500                 I915_WRITE(WM0_PIPEB_ILK,
4501                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4502                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4503                               " plane %d, cursor: %d\n",
4504                               plane_wm, cursor_wm);
4505                 enabled |= 2;
4506         }
4507
4508         /*
4509          * Calculate and update the self-refresh watermark only when one
4510          * display plane is used.
4511          */
4512         I915_WRITE(WM3_LP_ILK, 0);
4513         I915_WRITE(WM2_LP_ILK, 0);
4514         I915_WRITE(WM1_LP_ILK, 0);
4515
4516         if (!single_plane_enabled(enabled))
4517                 return;
4518         enabled = ffs(enabled) - 1;
4519
4520         /* WM1 */
4521         if (!ironlake_compute_srwm(dev, 1, enabled,
4522                                    ILK_READ_WM1_LATENCY() * 500,
4523                                    &ironlake_display_srwm_info,
4524                                    &ironlake_cursor_srwm_info,
4525                                    &fbc_wm, &plane_wm, &cursor_wm))
4526                 return;
4527
4528         I915_WRITE(WM1_LP_ILK,
4529                    WM1_LP_SR_EN |
4530                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4531                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4532                    (plane_wm << WM1_LP_SR_SHIFT) |
4533                    cursor_wm);
4534
4535         /* WM2 */
4536         if (!ironlake_compute_srwm(dev, 2, enabled,
4537                                    ILK_READ_WM2_LATENCY() * 500,
4538                                    &ironlake_display_srwm_info,
4539                                    &ironlake_cursor_srwm_info,
4540                                    &fbc_wm, &plane_wm, &cursor_wm))
4541                 return;
4542
4543         I915_WRITE(WM2_LP_ILK,
4544                    WM2_LP_EN |
4545                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4546                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4547                    (plane_wm << WM1_LP_SR_SHIFT) |
4548                    cursor_wm);
4549
4550         /*
4551          * WM3 is unsupported on ILK, probably because we don't have latency
4552          * data for that power state
4553          */
4554 }
4555
4556 void sandybridge_update_wm(struct drm_device *dev)
4557 {
4558         struct drm_i915_private *dev_priv = dev->dev_private;
4559         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4560         u32 val;
4561         int fbc_wm, plane_wm, cursor_wm;
4562         unsigned int enabled;
4563
4564         enabled = 0;
4565         if (g4x_compute_wm0(dev, 0,
4566                             &sandybridge_display_wm_info, latency,
4567                             &sandybridge_cursor_wm_info, latency,
4568                             &plane_wm, &cursor_wm)) {
4569                 val = I915_READ(WM0_PIPEA_ILK);
4570                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4571                 I915_WRITE(WM0_PIPEA_ILK, val |
4572                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4573                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4574                               " plane %d, " "cursor: %d\n",
4575                               plane_wm, cursor_wm);
4576                 enabled |= 1;
4577         }
4578
4579         if (g4x_compute_wm0(dev, 1,
4580                             &sandybridge_display_wm_info, latency,
4581                             &sandybridge_cursor_wm_info, latency,
4582                             &plane_wm, &cursor_wm)) {
4583                 val = I915_READ(WM0_PIPEB_ILK);
4584                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4585                 I915_WRITE(WM0_PIPEB_ILK, val |
4586                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4587                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4588                               " plane %d, cursor: %d\n",
4589                               plane_wm, cursor_wm);
4590                 enabled |= 2;
4591         }
4592
4593         /* IVB has 3 pipes */
4594         if (IS_IVYBRIDGE(dev) &&
4595             g4x_compute_wm0(dev, 2,
4596                             &sandybridge_display_wm_info, latency,
4597                             &sandybridge_cursor_wm_info, latency,
4598                             &plane_wm, &cursor_wm)) {
4599                 val = I915_READ(WM0_PIPEC_IVB);
4600                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4601                 I915_WRITE(WM0_PIPEC_IVB, val |
4602                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4603                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4604                               " plane %d, cursor: %d\n",
4605                               plane_wm, cursor_wm);
4606                 enabled |= 3;
4607         }
4608
4609         /*
4610          * Calculate and update the self-refresh watermark only when one
4611          * display plane is used.
4612          *
4613          * SNB support 3 levels of watermark.
4614          *
4615          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4616          * and disabled in the descending order
4617          *
4618          */
4619         I915_WRITE(WM3_LP_ILK, 0);
4620         I915_WRITE(WM2_LP_ILK, 0);
4621         I915_WRITE(WM1_LP_ILK, 0);
4622
4623         if (!single_plane_enabled(enabled) ||
4624             dev_priv->sprite_scaling_enabled)
4625                 return;
4626         enabled = ffs(enabled) - 1;
4627
4628         /* WM1 */
4629         if (!ironlake_compute_srwm(dev, 1, enabled,
4630                                    SNB_READ_WM1_LATENCY() * 500,
4631                                    &sandybridge_display_srwm_info,
4632                                    &sandybridge_cursor_srwm_info,
4633                                    &fbc_wm, &plane_wm, &cursor_wm))
4634                 return;
4635
4636         I915_WRITE(WM1_LP_ILK,
4637                    WM1_LP_SR_EN |
4638                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4639                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4640                    (plane_wm << WM1_LP_SR_SHIFT) |
4641                    cursor_wm);
4642
4643         /* WM2 */
4644         if (!ironlake_compute_srwm(dev, 2, enabled,
4645                                    SNB_READ_WM2_LATENCY() * 500,
4646                                    &sandybridge_display_srwm_info,
4647                                    &sandybridge_cursor_srwm_info,
4648                                    &fbc_wm, &plane_wm, &cursor_wm))
4649                 return;
4650
4651         I915_WRITE(WM2_LP_ILK,
4652                    WM2_LP_EN |
4653                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4654                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4655                    (plane_wm << WM1_LP_SR_SHIFT) |
4656                    cursor_wm);
4657
4658         /* WM3 */
4659         if (!ironlake_compute_srwm(dev, 3, enabled,
4660                                    SNB_READ_WM3_LATENCY() * 500,
4661                                    &sandybridge_display_srwm_info,
4662                                    &sandybridge_cursor_srwm_info,
4663                                    &fbc_wm, &plane_wm, &cursor_wm))
4664                 return;
4665
4666         I915_WRITE(WM3_LP_ILK,
4667                    WM3_LP_EN |
4668                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4669                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4670                    (plane_wm << WM1_LP_SR_SHIFT) |
4671                    cursor_wm);
4672 }
4673
4674 static bool
4675 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
4676                               uint32_t sprite_width, int pixel_size,
4677                               const struct intel_watermark_params *display,
4678                               int display_latency_ns, int *sprite_wm)
4679 {
4680         struct drm_crtc *crtc;
4681         int clock;
4682         int entries, tlb_miss;
4683
4684         crtc = intel_get_crtc_for_plane(dev, plane);
4685         if (crtc->fb == NULL || !crtc->enabled) {
4686                 *sprite_wm = display->guard_size;
4687                 return false;
4688         }
4689
4690         clock = crtc->mode.clock;
4691
4692         /* Use the small buffer method to calculate the sprite watermark */
4693         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4694         tlb_miss = display->fifo_size*display->cacheline_size -
4695                 sprite_width * 8;
4696         if (tlb_miss > 0)
4697                 entries += tlb_miss;
4698         entries = DIV_ROUND_UP(entries, display->cacheline_size);
4699         *sprite_wm = entries + display->guard_size;
4700         if (*sprite_wm > (int)display->max_wm)
4701                 *sprite_wm = display->max_wm;
4702
4703         return true;
4704 }
4705
4706 static bool
4707 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
4708                                 uint32_t sprite_width, int pixel_size,
4709                                 const struct intel_watermark_params *display,
4710                                 int latency_ns, int *sprite_wm)
4711 {
4712         struct drm_crtc *crtc;
4713         unsigned long line_time_us;
4714         int clock;
4715         int line_count, line_size;
4716         int small, large;
4717         int entries;
4718
4719         if (!latency_ns) {
4720                 *sprite_wm = 0;
4721                 return false;
4722         }
4723
4724         crtc = intel_get_crtc_for_plane(dev, plane);
4725         clock = crtc->mode.clock;
4726
4727         line_time_us = (sprite_width * 1000) / clock;
4728         line_count = (latency_ns / line_time_us + 1000) / 1000;
4729         line_size = sprite_width * pixel_size;
4730
4731         /* Use the minimum of the small and large buffer method for primary */
4732         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4733         large = line_count * line_size;
4734
4735         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4736         *sprite_wm = entries + display->guard_size;
4737
4738         return *sprite_wm > 0x3ff ? false : true;
4739 }
4740
4741 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
4742                                          uint32_t sprite_width, int pixel_size)
4743 {
4744         struct drm_i915_private *dev_priv = dev->dev_private;
4745         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4746         u32 val;
4747         int sprite_wm, reg;
4748         int ret;
4749
4750         switch (pipe) {
4751         case 0:
4752                 reg = WM0_PIPEA_ILK;
4753                 break;
4754         case 1:
4755                 reg = WM0_PIPEB_ILK;
4756                 break;
4757         case 2:
4758                 reg = WM0_PIPEC_IVB;
4759                 break;
4760         default:
4761                 return; /* bad pipe */
4762         }
4763
4764         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
4765                                             &sandybridge_display_wm_info,
4766                                             latency, &sprite_wm);
4767         if (!ret) {
4768                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
4769                               pipe);
4770                 return;
4771         }
4772
4773         val = I915_READ(reg);
4774         val &= ~WM0_PIPE_SPRITE_MASK;
4775         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
4776         DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
4777
4778
4779         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4780                                               pixel_size,
4781                                               &sandybridge_display_srwm_info,
4782                                               SNB_READ_WM1_LATENCY() * 500,
4783                                               &sprite_wm);
4784         if (!ret) {
4785                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
4786                               pipe);
4787                 return;
4788         }
4789         I915_WRITE(WM1S_LP_ILK, sprite_wm);
4790
4791         /* Only IVB has two more LP watermarks for sprite */
4792         if (!IS_IVYBRIDGE(dev))
4793                 return;
4794
4795         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4796                                               pixel_size,
4797                                               &sandybridge_display_srwm_info,
4798                                               SNB_READ_WM2_LATENCY() * 500,
4799                                               &sprite_wm);
4800         if (!ret) {
4801                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
4802                               pipe);
4803                 return;
4804         }
4805         I915_WRITE(WM2S_LP_IVB, sprite_wm);
4806
4807         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4808                                               pixel_size,
4809                                               &sandybridge_display_srwm_info,
4810                                               SNB_READ_WM3_LATENCY() * 500,
4811                                               &sprite_wm);
4812         if (!ret) {
4813                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
4814                               pipe);
4815                 return;
4816         }
4817         I915_WRITE(WM3S_LP_IVB, sprite_wm);
4818 }
4819
4820 /**
4821  * intel_update_watermarks - update FIFO watermark values based on current modes
4822  *
4823  * Calculate watermark values for the various WM regs based on current mode
4824  * and plane configuration.
4825  *
4826  * There are several cases to deal with here:
4827  *   - normal (i.e. non-self-refresh)
4828  *   - self-refresh (SR) mode
4829  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4830  *   - lines are small relative to FIFO size (buffer can hold more than 2
4831  *     lines), so need to account for TLB latency
4832  *
4833  *   The normal calculation is:
4834  *     watermark = dotclock * bytes per pixel * latency
4835  *   where latency is platform & configuration dependent (we assume pessimal
4836  *   values here).
4837  *
4838  *   The SR calculation is:
4839  *     watermark = (trunc(latency/line time)+1) * surface width *
4840  *       bytes per pixel
4841  *   where
4842  *     line time = htotal / dotclock
4843  *     surface width = hdisplay for normal plane and 64 for cursor
4844  *   and latency is assumed to be high, as above.
4845  *
4846  * The final value programmed to the register should always be rounded up,
4847  * and include an extra 2 entries to account for clock crossings.
4848  *
4849  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4850  * to set the non-SR watermarks to 8.
4851  */
4852 static void intel_update_watermarks(struct drm_device *dev)
4853 {
4854         struct drm_i915_private *dev_priv = dev->dev_private;
4855
4856         if (dev_priv->display.update_wm)
4857                 dev_priv->display.update_wm(dev);
4858 }
4859
4860 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
4861                                     uint32_t sprite_width, int pixel_size)
4862 {
4863         struct drm_i915_private *dev_priv = dev->dev_private;
4864
4865         if (dev_priv->display.update_sprite_wm)
4866                 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
4867                                                    pixel_size);
4868 }
4869
4870 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4871 {
4872         if (i915_panel_use_ssc >= 0)
4873                 return i915_panel_use_ssc != 0;
4874         return dev_priv->lvds_use_ssc
4875                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4876 }
4877
4878 /**
4879  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4880  * @crtc: CRTC structure
4881  * @mode: requested mode
4882  *
4883  * A pipe may be connected to one or more outputs.  Based on the depth of the
4884  * attached framebuffer, choose a good color depth to use on the pipe.
4885  *
4886  * If possible, match the pipe depth to the fb depth.  In some cases, this
4887  * isn't ideal, because the connected output supports a lesser or restricted
4888  * set of depths.  Resolve that here:
4889  *    LVDS typically supports only 6bpc, so clamp down in that case
4890  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4891  *    Displays may support a restricted set as well, check EDID and clamp as
4892  *      appropriate.
4893  *    DP may want to dither down to 6bpc to fit larger modes
4894  *
4895  * RETURNS:
4896  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4897  * true if they don't match).
4898  */
4899 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4900                                          unsigned int *pipe_bpp,
4901                                          struct drm_display_mode *mode)
4902 {
4903         struct drm_device *dev = crtc->dev;
4904         struct drm_i915_private *dev_priv = dev->dev_private;
4905         struct drm_encoder *encoder;
4906         struct drm_connector *connector;
4907         unsigned int display_bpc = UINT_MAX, bpc;
4908
4909         /* Walk the encoders & connectors on this crtc, get min bpc */
4910         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4911                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4912
4913                 if (encoder->crtc != crtc)
4914                         continue;
4915
4916                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4917                         unsigned int lvds_bpc;
4918
4919                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4920                             LVDS_A3_POWER_UP)
4921                                 lvds_bpc = 8;
4922                         else
4923                                 lvds_bpc = 6;
4924
4925                         if (lvds_bpc < display_bpc) {
4926                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4927                                 display_bpc = lvds_bpc;
4928                         }
4929                         continue;
4930                 }
4931
4932                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4933                         /* Use VBT settings if we have an eDP panel */
4934                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4935
4936                         if (edp_bpc < display_bpc) {
4937                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4938                                 display_bpc = edp_bpc;
4939                         }
4940                         continue;
4941                 }
4942
4943                 /* Not one of the known troublemakers, check the EDID */
4944                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4945                                     head) {
4946                         if (connector->encoder != encoder)
4947                                 continue;
4948
4949                         /* Don't use an invalid EDID bpc value */
4950                         if (connector->display_info.bpc &&
4951                             connector->display_info.bpc < display_bpc) {
4952                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4953                                 display_bpc = connector->display_info.bpc;
4954                         }
4955                 }
4956
4957                 /*
4958                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4959                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4960                  */
4961                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4962                         if (display_bpc > 8 && display_bpc < 12) {
4963                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4964                                 display_bpc = 12;
4965                         } else {
4966                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4967                                 display_bpc = 8;
4968                         }
4969                 }
4970         }
4971
4972         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4973                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4974                 display_bpc = 6;
4975         }
4976
4977         /*
4978          * We could just drive the pipe at the highest bpc all the time and
4979          * enable dithering as needed, but that costs bandwidth.  So choose
4980          * the minimum value that expresses the full color range of the fb but
4981          * also stays within the max display bpc discovered above.
4982          */
4983
4984         switch (crtc->fb->depth) {
4985         case 8:
4986                 bpc = 8; /* since we go through a colormap */
4987                 break;
4988         case 15:
4989         case 16:
4990                 bpc = 6; /* min is 18bpp */
4991                 break;
4992         case 24:
4993                 bpc = 8;
4994                 break;
4995         case 30:
4996                 bpc = 10;
4997                 break;
4998         case 48:
4999                 bpc = 12;
5000                 break;
5001         default:
5002                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
5003                 bpc = min((unsigned int)8, display_bpc);
5004                 break;
5005         }
5006
5007         display_bpc = min(display_bpc, bpc);
5008
5009         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
5010                       bpc, display_bpc);
5011
5012         *pipe_bpp = display_bpc * 3;
5013
5014         return display_bpc != bpc;
5015 }
5016
5017 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5018 {
5019         struct drm_device *dev = crtc->dev;
5020         struct drm_i915_private *dev_priv = dev->dev_private;
5021         int refclk;
5022
5023         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5024             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5025                 refclk = dev_priv->lvds_ssc_freq * 1000;
5026                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5027                               refclk / 1000);
5028         } else if (!IS_GEN2(dev)) {
5029                 refclk = 96000;
5030         } else {
5031                 refclk = 48000;
5032         }
5033
5034         return refclk;
5035 }
5036
5037 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
5038                                       intel_clock_t *clock)
5039 {
5040         /* SDVO TV has fixed PLL values depend on its clock range,
5041            this mirrors vbios setting. */
5042         if (adjusted_mode->clock >= 100000
5043             && adjusted_mode->clock < 140500) {
5044                 clock->p1 = 2;
5045                 clock->p2 = 10;
5046                 clock->n = 3;
5047                 clock->m1 = 16;
5048                 clock->m2 = 8;
5049         } else if (adjusted_mode->clock >= 140500
5050                    && adjusted_mode->clock <= 200000) {
5051                 clock->p1 = 1;
5052                 clock->p2 = 10;
5053                 clock->n = 6;
5054                 clock->m1 = 12;
5055                 clock->m2 = 8;
5056         }
5057 }
5058
5059 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
5060                                      intel_clock_t *clock,
5061                                      intel_clock_t *reduced_clock)
5062 {
5063         struct drm_device *dev = crtc->dev;
5064         struct drm_i915_private *dev_priv = dev->dev_private;
5065         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5066         int pipe = intel_crtc->pipe;
5067         u32 fp, fp2 = 0;
5068
5069         if (IS_PINEVIEW(dev)) {
5070                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
5071                 if (reduced_clock)
5072                         fp2 = (1 << reduced_clock->n) << 16 |
5073                                 reduced_clock->m1 << 8 | reduced_clock->m2;
5074         } else {
5075                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
5076                 if (reduced_clock)
5077                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
5078                                 reduced_clock->m2;
5079         }
5080
5081         I915_WRITE(FP0(pipe), fp);
5082
5083         intel_crtc->lowfreq_avail = false;
5084         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5085             reduced_clock && i915_powersave) {
5086                 I915_WRITE(FP1(pipe), fp2);
5087                 intel_crtc->lowfreq_avail = true;
5088         } else {
5089                 I915_WRITE(FP1(pipe), fp);
5090         }
5091 }
5092
5093 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5094                               struct drm_display_mode *mode,
5095                               struct drm_display_mode *adjusted_mode,
5096                               int x, int y,
5097                               struct drm_framebuffer *old_fb)
5098 {
5099         struct drm_device *dev = crtc->dev;
5100         struct drm_i915_private *dev_priv = dev->dev_private;
5101         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5102         int pipe = intel_crtc->pipe;
5103         int plane = intel_crtc->plane;
5104         int refclk, num_connectors = 0;
5105         intel_clock_t clock, reduced_clock;
5106         u32 dpll, dspcntr, pipeconf;
5107         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
5108         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5109         struct drm_mode_config *mode_config = &dev->mode_config;
5110         struct intel_encoder *encoder;
5111         const intel_limit_t *limit;
5112         int ret;
5113         u32 temp;
5114         u32 lvds_sync = 0;
5115
5116         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5117                 if (encoder->base.crtc != crtc)
5118                         continue;
5119
5120                 switch (encoder->type) {
5121                 case INTEL_OUTPUT_LVDS:
5122                         is_lvds = true;
5123                         break;
5124                 case INTEL_OUTPUT_SDVO:
5125                 case INTEL_OUTPUT_HDMI:
5126                         is_sdvo = true;
5127                         if (encoder->needs_tv_clock)
5128                                 is_tv = true;
5129                         break;
5130                 case INTEL_OUTPUT_DVO:
5131                         is_dvo = true;
5132                         break;
5133                 case INTEL_OUTPUT_TVOUT:
5134                         is_tv = true;
5135                         break;
5136                 case INTEL_OUTPUT_ANALOG:
5137                         is_crt = true;
5138                         break;
5139                 case INTEL_OUTPUT_DISPLAYPORT:
5140                         is_dp = true;
5141                         break;
5142                 }
5143
5144                 num_connectors++;
5145         }
5146
5147         refclk = i9xx_get_refclk(crtc, num_connectors);
5148
5149         /*
5150          * Returns a set of divisors for the desired target clock with the given
5151          * refclk, or FALSE.  The returned values represent the clock equation:
5152          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5153          */
5154         limit = intel_limit(crtc, refclk);
5155         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5156                              &clock);
5157         if (!ok) {
5158                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5159                 return -EINVAL;
5160         }
5161
5162         /* Ensure that the cursor is valid for the new mode before changing... */
5163         intel_crtc_update_cursor(crtc, true);
5164
5165         if (is_lvds && dev_priv->lvds_downclock_avail) {
5166                 /*
5167                  * Ensure we match the reduced clock's P to the target clock.
5168                  * If the clocks don't match, we can't switch the display clock
5169                  * by using the FP0/FP1. In such case we will disable the LVDS
5170                  * downclock feature.
5171                 */
5172                 has_reduced_clock = limit->find_pll(limit, crtc,
5173                                                     dev_priv->lvds_downclock,
5174                                                     refclk,
5175                                                     &clock,
5176                                                     &reduced_clock);
5177         }
5178
5179         if (is_sdvo && is_tv)
5180                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
5181
5182         i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
5183                                  &reduced_clock : NULL);
5184
5185         dpll = DPLL_VGA_MODE_DIS;
5186
5187         if (!IS_GEN2(dev)) {
5188                 if (is_lvds)
5189                         dpll |= DPLLB_MODE_LVDS;
5190                 else
5191                         dpll |= DPLLB_MODE_DAC_SERIAL;
5192                 if (is_sdvo) {
5193                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5194                         if (pixel_multiplier > 1) {
5195                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5196                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
5197                         }
5198                         dpll |= DPLL_DVO_HIGH_SPEED;
5199                 }
5200                 if (is_dp)
5201                         dpll |= DPLL_DVO_HIGH_SPEED;
5202
5203                 /* compute bitmask from p1 value */
5204                 if (IS_PINEVIEW(dev))
5205                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5206                 else {
5207                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5208                         if (IS_G4X(dev) && has_reduced_clock)
5209                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5210                 }
5211                 switch (clock.p2) {
5212                 case 5:
5213                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5214                         break;
5215                 case 7:
5216                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5217                         break;
5218                 case 10:
5219                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5220                         break;
5221                 case 14:
5222                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5223                         break;
5224                 }
5225                 if (INTEL_INFO(dev)->gen >= 4)
5226                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5227         } else {
5228                 if (is_lvds) {
5229                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5230                 } else {
5231                         if (clock.p1 == 2)
5232                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
5233                         else
5234                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5235                         if (clock.p2 == 4)
5236                                 dpll |= PLL_P2_DIVIDE_BY_4;
5237                 }
5238         }
5239
5240         if (is_sdvo && is_tv)
5241                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5242         else if (is_tv)
5243                 /* XXX: just matching BIOS for now */
5244                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5245                 dpll |= 3;
5246         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5247                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5248         else
5249                 dpll |= PLL_REF_INPUT_DREFCLK;
5250
5251         /* setup pipeconf */
5252         pipeconf = I915_READ(PIPECONF(pipe));
5253
5254         /* Set up the display plane register */
5255         dspcntr = DISPPLANE_GAMMA_ENABLE;
5256
5257         if (pipe == 0)
5258                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5259         else
5260                 dspcntr |= DISPPLANE_SEL_PIPE_B;
5261
5262         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
5263                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5264                  * core speed.
5265                  *
5266                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5267                  * pipe == 0 check?
5268                  */
5269                 if (mode->clock >
5270                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5271                         pipeconf |= PIPECONF_DOUBLE_WIDE;
5272                 else
5273                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
5274         }
5275
5276         /* default to 8bpc */
5277         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
5278         if (is_dp) {
5279                 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5280                         pipeconf |= PIPECONF_BPP_6 |
5281                                     PIPECONF_DITHER_EN |
5282                                     PIPECONF_DITHER_TYPE_SP;
5283                 }
5284         }
5285
5286         dpll |= DPLL_VCO_ENABLE;
5287
5288         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5289         drm_mode_debug_printmodeline(mode);
5290
5291         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5292
5293         POSTING_READ(DPLL(pipe));
5294         udelay(150);
5295
5296         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5297          * This is an exception to the general rule that mode_set doesn't turn
5298          * things on.
5299          */
5300         if (is_lvds) {
5301                 temp = I915_READ(LVDS);
5302                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5303                 if (pipe == 1) {
5304                         temp |= LVDS_PIPEB_SELECT;
5305                 } else {
5306                         temp &= ~LVDS_PIPEB_SELECT;
5307                 }
5308                 /* set the corresponsding LVDS_BORDER bit */
5309                 temp |= dev_priv->lvds_border_bits;
5310                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5311                  * set the DPLLs for dual-channel mode or not.
5312                  */
5313                 if (clock.p2 == 7)
5314                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5315                 else
5316                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5317
5318                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5319                  * appropriately here, but we need to look more thoroughly into how
5320                  * panels behave in the two modes.
5321                  */
5322                 /* set the dithering flag on LVDS as needed */
5323                 if (INTEL_INFO(dev)->gen >= 4) {
5324                         if (dev_priv->lvds_dither)
5325                                 temp |= LVDS_ENABLE_DITHER;
5326                         else
5327                                 temp &= ~LVDS_ENABLE_DITHER;
5328                 }
5329                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5330                         lvds_sync |= LVDS_HSYNC_POLARITY;
5331                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5332                         lvds_sync |= LVDS_VSYNC_POLARITY;
5333                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5334                     != lvds_sync) {
5335                         char flags[2] = "-+";
5336                         DRM_INFO("Changing LVDS panel from "
5337                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5338                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5339                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5340                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5341                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5342                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5343                         temp |= lvds_sync;
5344                 }
5345                 I915_WRITE(LVDS, temp);
5346         }
5347
5348         if (is_dp) {
5349                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5350         }
5351
5352         I915_WRITE(DPLL(pipe), dpll);
5353
5354         /* Wait for the clocks to stabilize. */
5355         POSTING_READ(DPLL(pipe));
5356         udelay(150);
5357
5358         if (INTEL_INFO(dev)->gen >= 4) {
5359                 temp = 0;
5360                 if (is_sdvo) {
5361                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5362                         if (temp > 1)
5363                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5364                         else
5365                                 temp = 0;
5366                 }
5367                 I915_WRITE(DPLL_MD(pipe), temp);
5368         } else {
5369                 /* The pixel multiplier can only be updated once the
5370                  * DPLL is enabled and the clocks are stable.
5371                  *
5372                  * So write it again.
5373                  */
5374                 I915_WRITE(DPLL(pipe), dpll);
5375         }
5376
5377         if (HAS_PIPE_CXSR(dev)) {
5378                 if (intel_crtc->lowfreq_avail) {
5379                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5380                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5381                 } else {
5382                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5383                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5384                 }
5385         }
5386
5387         pipeconf &= ~PIPECONF_INTERLACE_MASK;
5388         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5389                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5390                 /* the chip adds 2 halflines automatically */
5391                 adjusted_mode->crtc_vtotal -= 1;
5392                 adjusted_mode->crtc_vblank_end -= 1;
5393         } else
5394                 pipeconf |= PIPECONF_PROGRESSIVE;
5395
5396         I915_WRITE(HTOTAL(pipe),
5397                    (adjusted_mode->crtc_hdisplay - 1) |
5398                    ((adjusted_mode->crtc_htotal - 1) << 16));
5399         I915_WRITE(HBLANK(pipe),
5400                    (adjusted_mode->crtc_hblank_start - 1) |
5401                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5402         I915_WRITE(HSYNC(pipe),
5403                    (adjusted_mode->crtc_hsync_start - 1) |
5404                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5405
5406         I915_WRITE(VTOTAL(pipe),
5407                    (adjusted_mode->crtc_vdisplay - 1) |
5408                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5409         I915_WRITE(VBLANK(pipe),
5410                    (adjusted_mode->crtc_vblank_start - 1) |
5411                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5412         I915_WRITE(VSYNC(pipe),
5413                    (adjusted_mode->crtc_vsync_start - 1) |
5414                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5415
5416         /* pipesrc and dspsize control the size that is scaled from,
5417          * which should always be the user's requested size.
5418          */
5419         I915_WRITE(DSPSIZE(plane),
5420                    ((mode->vdisplay - 1) << 16) |
5421                    (mode->hdisplay - 1));
5422         I915_WRITE(DSPPOS(plane), 0);
5423         I915_WRITE(PIPESRC(pipe),
5424                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5425
5426         I915_WRITE(PIPECONF(pipe), pipeconf);
5427         POSTING_READ(PIPECONF(pipe));
5428         intel_enable_pipe(dev_priv, pipe, false);
5429
5430         intel_wait_for_vblank(dev, pipe);
5431
5432         I915_WRITE(DSPCNTR(plane), dspcntr);
5433         POSTING_READ(DSPCNTR(plane));
5434         intel_enable_plane(dev_priv, plane, pipe);
5435
5436         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5437
5438         intel_update_watermarks(dev);
5439
5440         return ret;
5441 }
5442
5443 /*
5444  * Initialize reference clocks when the driver loads
5445  */
5446 void ironlake_init_pch_refclk(struct drm_device *dev)
5447 {
5448         struct drm_i915_private *dev_priv = dev->dev_private;
5449         struct drm_mode_config *mode_config = &dev->mode_config;
5450         struct intel_encoder *encoder;
5451         u32 temp;
5452         bool has_lvds = false;
5453         bool has_cpu_edp = false;
5454         bool has_pch_edp = false;
5455         bool has_panel = false;
5456         bool has_ck505 = false;
5457         bool can_ssc = false;
5458
5459         /* We need to take the global config into account */
5460         list_for_each_entry(encoder, &mode_config->encoder_list,
5461                             base.head) {
5462                 switch (encoder->type) {
5463                 case INTEL_OUTPUT_LVDS:
5464                         has_panel = true;
5465                         has_lvds = true;
5466                         break;
5467                 case INTEL_OUTPUT_EDP:
5468                         has_panel = true;
5469                         if (intel_encoder_is_pch_edp(&encoder->base))
5470                                 has_pch_edp = true;
5471                         else
5472                                 has_cpu_edp = true;
5473                         break;
5474                 }
5475         }
5476
5477         if (HAS_PCH_IBX(dev)) {
5478                 has_ck505 = dev_priv->display_clock_mode;
5479                 can_ssc = has_ck505;
5480         } else {
5481                 has_ck505 = false;
5482                 can_ssc = true;
5483         }
5484
5485         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5486                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5487                       has_ck505);
5488
5489         /* Ironlake: try to setup display ref clock before DPLL
5490          * enabling. This is only under driver's control after
5491          * PCH B stepping, previous chipset stepping should be
5492          * ignoring this setting.
5493          */
5494         temp = I915_READ(PCH_DREF_CONTROL);
5495         /* Always enable nonspread source */
5496         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5497
5498         if (has_ck505)
5499                 temp |= DREF_NONSPREAD_CK505_ENABLE;
5500         else
5501                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5502
5503         if (has_panel) {
5504                 temp &= ~DREF_SSC_SOURCE_MASK;
5505                 temp |= DREF_SSC_SOURCE_ENABLE;
5506
5507                 /* SSC must be turned on before enabling the CPU output  */
5508                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5509                         DRM_DEBUG_KMS("Using SSC on panel\n");
5510                         temp |= DREF_SSC1_ENABLE;
5511                 }
5512
5513                 /* Get SSC going before enabling the outputs */
5514                 I915_WRITE(PCH_DREF_CONTROL, temp);
5515                 POSTING_READ(PCH_DREF_CONTROL);
5516                 udelay(200);
5517
5518                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5519
5520                 /* Enable CPU source on CPU attached eDP */
5521                 if (has_cpu_edp) {
5522                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5523                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5524                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5525                         }
5526                         else
5527                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5528                 } else
5529                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5530
5531                 I915_WRITE(PCH_DREF_CONTROL, temp);
5532                 POSTING_READ(PCH_DREF_CONTROL);
5533                 udelay(200);
5534         } else {
5535                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5536
5537                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5538
5539                 /* Turn off CPU output */
5540                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5541
5542                 I915_WRITE(PCH_DREF_CONTROL, temp);
5543                 POSTING_READ(PCH_DREF_CONTROL);
5544                 udelay(200);
5545
5546                 /* Turn off the SSC source */
5547                 temp &= ~DREF_SSC_SOURCE_MASK;
5548                 temp |= DREF_SSC_SOURCE_DISABLE;
5549
5550                 /* Turn off SSC1 */
5551                 temp &= ~ DREF_SSC1_ENABLE;
5552
5553                 I915_WRITE(PCH_DREF_CONTROL, temp);
5554                 POSTING_READ(PCH_DREF_CONTROL);
5555                 udelay(200);
5556         }
5557 }
5558
5559 static int ironlake_get_refclk(struct drm_crtc *crtc)
5560 {
5561         struct drm_device *dev = crtc->dev;
5562         struct drm_i915_private *dev_priv = dev->dev_private;
5563         struct intel_encoder *encoder;
5564         struct drm_mode_config *mode_config = &dev->mode_config;
5565         struct intel_encoder *edp_encoder = NULL;
5566         int num_connectors = 0;
5567         bool is_lvds = false;
5568
5569         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5570                 if (encoder->base.crtc != crtc)
5571                         continue;
5572
5573                 switch (encoder->type) {
5574                 case INTEL_OUTPUT_LVDS:
5575                         is_lvds = true;
5576                         break;
5577                 case INTEL_OUTPUT_EDP:
5578                         edp_encoder = encoder;
5579                         break;
5580                 }
5581                 num_connectors++;
5582         }
5583
5584         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5585                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5586                               dev_priv->lvds_ssc_freq);
5587                 return dev_priv->lvds_ssc_freq * 1000;
5588         }
5589
5590         return 120000;
5591 }
5592
5593 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5594                                   struct drm_display_mode *mode,
5595                                   struct drm_display_mode *adjusted_mode,
5596                                   int x, int y,
5597                                   struct drm_framebuffer *old_fb)
5598 {
5599         struct drm_device *dev = crtc->dev;
5600         struct drm_i915_private *dev_priv = dev->dev_private;
5601         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5602         int pipe = intel_crtc->pipe;
5603         int plane = intel_crtc->plane;
5604         int refclk, num_connectors = 0;
5605         intel_clock_t clock, reduced_clock;
5606         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5607         bool ok, has_reduced_clock = false, is_sdvo = false;
5608         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5609         struct intel_encoder *has_edp_encoder = NULL;
5610         struct drm_mode_config *mode_config = &dev->mode_config;
5611         struct intel_encoder *encoder;
5612         const intel_limit_t *limit;
5613         int ret;
5614         struct fdi_m_n m_n = {0};
5615         u32 temp;
5616         u32 lvds_sync = 0;
5617         int target_clock, pixel_multiplier, lane, link_bw, factor;
5618         unsigned int pipe_bpp;
5619         bool dither;
5620
5621         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5622                 if (encoder->base.crtc != crtc)
5623                         continue;
5624
5625                 switch (encoder->type) {
5626                 case INTEL_OUTPUT_LVDS:
5627                         is_lvds = true;
5628                         break;
5629                 case INTEL_OUTPUT_SDVO:
5630                 case INTEL_OUTPUT_HDMI:
5631                         is_sdvo = true;
5632                         if (encoder->needs_tv_clock)
5633                                 is_tv = true;
5634                         break;
5635                 case INTEL_OUTPUT_TVOUT:
5636                         is_tv = true;
5637                         break;
5638                 case INTEL_OUTPUT_ANALOG:
5639                         is_crt = true;
5640                         break;
5641                 case INTEL_OUTPUT_DISPLAYPORT:
5642                         is_dp = true;
5643                         break;
5644                 case INTEL_OUTPUT_EDP:
5645                         has_edp_encoder = encoder;
5646                         break;
5647                 }
5648
5649                 num_connectors++;
5650         }
5651
5652         refclk = ironlake_get_refclk(crtc);
5653
5654         /*
5655          * Returns a set of divisors for the desired target clock with the given
5656          * refclk, or FALSE.  The returned values represent the clock equation:
5657          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5658          */
5659         limit = intel_limit(crtc, refclk);
5660         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5661                              &clock);
5662         if (!ok) {
5663                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5664                 return -EINVAL;
5665         }
5666
5667         /* Ensure that the cursor is valid for the new mode before changing... */
5668         intel_crtc_update_cursor(crtc, true);
5669
5670         if (is_lvds && dev_priv->lvds_downclock_avail) {
5671                 /*
5672                  * Ensure we match the reduced clock's P to the target clock.
5673                  * If the clocks don't match, we can't switch the display clock
5674                  * by using the FP0/FP1. In such case we will disable the LVDS
5675                  * downclock feature.
5676                 */
5677                 has_reduced_clock = limit->find_pll(limit, crtc,
5678                                                     dev_priv->lvds_downclock,
5679                                                     refclk,
5680                                                     &clock,
5681                                                     &reduced_clock);
5682         }
5683         /* SDVO TV has fixed PLL values depend on its clock range,
5684            this mirrors vbios setting. */
5685         if (is_sdvo && is_tv) {
5686                 if (adjusted_mode->clock >= 100000
5687                     && adjusted_mode->clock < 140500) {
5688                         clock.p1 = 2;
5689                         clock.p2 = 10;
5690                         clock.n = 3;
5691                         clock.m1 = 16;
5692                         clock.m2 = 8;
5693                 } else if (adjusted_mode->clock >= 140500
5694                            && adjusted_mode->clock <= 200000) {
5695                         clock.p1 = 1;
5696                         clock.p2 = 10;
5697                         clock.n = 6;
5698                         clock.m1 = 12;
5699                         clock.m2 = 8;
5700                 }
5701         }
5702
5703         /* FDI link */
5704         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5705         lane = 0;
5706         /* CPU eDP doesn't require FDI link, so just set DP M/N
5707            according to current link config */
5708         if (has_edp_encoder &&
5709             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5710                 target_clock = mode->clock;
5711                 intel_edp_link_config(has_edp_encoder,
5712                                       &lane, &link_bw);
5713         } else {
5714                 /* [e]DP over FDI requires target mode clock
5715                    instead of link clock */
5716                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5717                         target_clock = mode->clock;
5718                 else
5719                         target_clock = adjusted_mode->clock;
5720
5721                 /* FDI is a binary signal running at ~2.7GHz, encoding
5722                  * each output octet as 10 bits. The actual frequency
5723                  * is stored as a divider into a 100MHz clock, and the
5724                  * mode pixel clock is stored in units of 1KHz.
5725                  * Hence the bw of each lane in terms of the mode signal
5726                  * is:
5727                  */
5728                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5729         }
5730
5731         /* determine panel color depth */
5732         temp = I915_READ(PIPECONF(pipe));
5733         temp &= ~PIPE_BPC_MASK;
5734         dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
5735         switch (pipe_bpp) {
5736         case 18:
5737                 temp |= PIPE_6BPC;
5738                 break;
5739         case 24:
5740                 temp |= PIPE_8BPC;
5741                 break;
5742         case 30:
5743                 temp |= PIPE_10BPC;
5744                 break;
5745         case 36:
5746                 temp |= PIPE_12BPC;
5747                 break;
5748         default:
5749                 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5750                         pipe_bpp);
5751                 temp |= PIPE_8BPC;
5752                 pipe_bpp = 24;
5753                 break;
5754         }
5755
5756         intel_crtc->bpp = pipe_bpp;
5757         I915_WRITE(PIPECONF(pipe), temp);
5758
5759         if (!lane) {
5760                 /*
5761                  * Account for spread spectrum to avoid
5762                  * oversubscribing the link. Max center spread
5763                  * is 2.5%; use 5% for safety's sake.
5764                  */
5765                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5766                 lane = bps / (link_bw * 8) + 1;
5767         }
5768
5769         intel_crtc->fdi_lanes = lane;
5770
5771         if (pixel_multiplier > 1)
5772                 link_bw *= pixel_multiplier;
5773         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5774                              &m_n);
5775
5776         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5777         if (has_reduced_clock)
5778                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5779                         reduced_clock.m2;
5780
5781         /* Enable autotuning of the PLL clock (if permissible) */
5782         factor = 21;
5783         if (is_lvds) {
5784                 if ((intel_panel_use_ssc(dev_priv) &&
5785                      dev_priv->lvds_ssc_freq == 100) ||
5786                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5787                         factor = 25;
5788         } else if (is_sdvo && is_tv)
5789                 factor = 20;
5790
5791         if (clock.m < factor * clock.n)
5792                 fp |= FP_CB_TUNE;
5793
5794         dpll = 0;
5795
5796         if (is_lvds)
5797                 dpll |= DPLLB_MODE_LVDS;
5798         else
5799                 dpll |= DPLLB_MODE_DAC_SERIAL;
5800         if (is_sdvo) {
5801                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5802                 if (pixel_multiplier > 1) {
5803                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5804                 }
5805                 dpll |= DPLL_DVO_HIGH_SPEED;
5806         }
5807         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5808                 dpll |= DPLL_DVO_HIGH_SPEED;
5809
5810         /* compute bitmask from p1 value */
5811         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5812         /* also FPA1 */
5813         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5814
5815         switch (clock.p2) {
5816         case 5:
5817                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5818                 break;
5819         case 7:
5820                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5821                 break;
5822         case 10:
5823                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5824                 break;
5825         case 14:
5826                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5827                 break;
5828         }
5829
5830         if (is_sdvo && is_tv)
5831                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5832         else if (is_tv)
5833                 /* XXX: just matching BIOS for now */
5834                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5835                 dpll |= 3;
5836         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5837                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5838         else
5839                 dpll |= PLL_REF_INPUT_DREFCLK;
5840
5841         /* setup pipeconf */
5842         pipeconf = I915_READ(PIPECONF(pipe));
5843
5844         /* Set up the display plane register */
5845         dspcntr = DISPPLANE_GAMMA_ENABLE;
5846
5847         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5848         drm_mode_debug_printmodeline(mode);
5849
5850         /* PCH eDP needs FDI, but CPU eDP does not */
5851         if (!intel_crtc->no_pll) {
5852                 if (!has_edp_encoder ||
5853                     intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5854                         I915_WRITE(PCH_FP0(pipe), fp);
5855                         I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5856
5857                         POSTING_READ(PCH_DPLL(pipe));
5858                         udelay(150);
5859                 }
5860         } else {
5861                 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5862                     fp == I915_READ(PCH_FP0(0))) {
5863                         intel_crtc->use_pll_a = true;
5864                         DRM_DEBUG_KMS("using pipe a dpll\n");
5865                 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5866                            fp == I915_READ(PCH_FP0(1))) {
5867                         intel_crtc->use_pll_a = false;
5868                         DRM_DEBUG_KMS("using pipe b dpll\n");
5869                 } else {
5870                         DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5871                         return -EINVAL;
5872                 }
5873         }
5874
5875         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5876          * This is an exception to the general rule that mode_set doesn't turn
5877          * things on.
5878          */
5879         if (is_lvds) {
5880                 temp = I915_READ(PCH_LVDS);
5881                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5882                 if (HAS_PCH_CPT(dev)) {
5883                         temp &= ~PORT_TRANS_SEL_MASK;
5884                         temp |= PORT_TRANS_SEL_CPT(pipe);
5885                 } else {
5886                         if (pipe == 1)
5887                                 temp |= LVDS_PIPEB_SELECT;
5888                         else
5889                                 temp &= ~LVDS_PIPEB_SELECT;
5890                 }
5891
5892                 /* set the corresponsding LVDS_BORDER bit */
5893                 temp |= dev_priv->lvds_border_bits;
5894                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5895                  * set the DPLLs for dual-channel mode or not.
5896                  */
5897                 if (clock.p2 == 7)
5898                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5899                 else
5900                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5901
5902                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5903                  * appropriately here, but we need to look more thoroughly into how
5904                  * panels behave in the two modes.
5905                  */
5906                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5907                         lvds_sync |= LVDS_HSYNC_POLARITY;
5908                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5909                         lvds_sync |= LVDS_VSYNC_POLARITY;
5910                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5911                     != lvds_sync) {
5912                         char flags[2] = "-+";
5913                         DRM_INFO("Changing LVDS panel from "
5914                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5915                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5916                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5917                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5918                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5919                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5920                         temp |= lvds_sync;
5921                 }
5922                 I915_WRITE(PCH_LVDS, temp);
5923         }
5924
5925         pipeconf &= ~PIPECONF_DITHER_EN;
5926         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5927         if ((is_lvds && dev_priv->lvds_dither) || dither) {
5928                 pipeconf |= PIPECONF_DITHER_EN;
5929                 pipeconf |= PIPECONF_DITHER_TYPE_SP;
5930         }
5931         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5932                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5933         } else {
5934                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5935                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5936                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5937                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5938                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5939         }
5940
5941         if (!intel_crtc->no_pll &&
5942             (!has_edp_encoder ||
5943              intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
5944                 I915_WRITE(PCH_DPLL(pipe), dpll);
5945
5946                 /* Wait for the clocks to stabilize. */
5947                 POSTING_READ(PCH_DPLL(pipe));
5948                 udelay(150);
5949
5950                 /* The pixel multiplier can only be updated once the
5951                  * DPLL is enabled and the clocks are stable.
5952                  *
5953                  * So write it again.
5954                  */
5955                 I915_WRITE(PCH_DPLL(pipe), dpll);
5956         }
5957
5958         intel_crtc->lowfreq_avail = false;
5959         if (!intel_crtc->no_pll) {
5960                 if (is_lvds && has_reduced_clock && i915_powersave) {
5961                         I915_WRITE(PCH_FP1(pipe), fp2);
5962                         intel_crtc->lowfreq_avail = true;
5963                         if (HAS_PIPE_CXSR(dev)) {
5964                                 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5965                                 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5966                         }
5967                 } else {
5968                         I915_WRITE(PCH_FP1(pipe), fp);
5969                         if (HAS_PIPE_CXSR(dev)) {
5970                                 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5971                                 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5972                         }
5973                 }
5974         }
5975
5976         pipeconf &= ~PIPECONF_INTERLACE_MASK;
5977         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5978                 pipeconf |= PIPECONF_INTERLACED_ILK;
5979                 /* the chip adds 2 halflines automatically */
5980                 adjusted_mode->crtc_vtotal -= 1;
5981                 adjusted_mode->crtc_vblank_end -= 1;
5982         } else
5983                 pipeconf |= PIPECONF_PROGRESSIVE;
5984
5985         I915_WRITE(HTOTAL(pipe),
5986                    (adjusted_mode->crtc_hdisplay - 1) |
5987                    ((adjusted_mode->crtc_htotal - 1) << 16));
5988         I915_WRITE(HBLANK(pipe),
5989                    (adjusted_mode->crtc_hblank_start - 1) |
5990                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5991         I915_WRITE(HSYNC(pipe),
5992                    (adjusted_mode->crtc_hsync_start - 1) |
5993                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5994
5995         I915_WRITE(VTOTAL(pipe),
5996                    (adjusted_mode->crtc_vdisplay - 1) |
5997                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5998         I915_WRITE(VBLANK(pipe),
5999                    (adjusted_mode->crtc_vblank_start - 1) |
6000                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
6001         I915_WRITE(VSYNC(pipe),
6002                    (adjusted_mode->crtc_vsync_start - 1) |
6003                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6004
6005         /* pipesrc controls the size that is scaled from, which should
6006          * always be the user's requested size.
6007          */
6008         I915_WRITE(PIPESRC(pipe),
6009                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
6010
6011         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
6012         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
6013         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
6014         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
6015
6016         if (has_edp_encoder &&
6017             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
6018                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
6019         }
6020
6021         I915_WRITE(PIPECONF(pipe), pipeconf);
6022         POSTING_READ(PIPECONF(pipe));
6023
6024         intel_wait_for_vblank(dev, pipe);
6025
6026         I915_WRITE(DSPCNTR(plane), dspcntr);
6027         POSTING_READ(DSPCNTR(plane));
6028
6029         ret = intel_pipe_set_base(crtc, x, y, old_fb);
6030
6031         intel_update_watermarks(dev);
6032
6033         return ret;
6034 }
6035
6036 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6037                                struct drm_display_mode *mode,
6038                                struct drm_display_mode *adjusted_mode,
6039                                int x, int y,
6040                                struct drm_framebuffer *old_fb)
6041 {
6042         struct drm_device *dev = crtc->dev;
6043         struct drm_i915_private *dev_priv = dev->dev_private;
6044         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6045         int pipe = intel_crtc->pipe;
6046         int ret;
6047
6048         drm_vblank_pre_modeset(dev, pipe);
6049
6050         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
6051                                               x, y, old_fb);
6052         drm_vblank_post_modeset(dev, pipe);
6053
6054         if (ret)
6055                 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
6056         else
6057                 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
6058
6059         return ret;
6060 }
6061
6062 static bool intel_eld_uptodate(struct drm_connector *connector,
6063                                int reg_eldv, uint32_t bits_eldv,
6064                                int reg_elda, uint32_t bits_elda,
6065                                int reg_edid)
6066 {
6067         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6068         uint8_t *eld = connector->eld;
6069         uint32_t i;
6070
6071         i = I915_READ(reg_eldv);
6072         i &= bits_eldv;
6073
6074         if (!eld[0])
6075                 return !i;
6076
6077         if (!i)
6078                 return false;
6079
6080         i = I915_READ(reg_elda);
6081         i &= ~bits_elda;
6082         I915_WRITE(reg_elda, i);
6083
6084         for (i = 0; i < eld[2]; i++)
6085                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6086                         return false;
6087
6088         return true;
6089 }
6090
6091 static void g4x_write_eld(struct drm_connector *connector,
6092                           struct drm_crtc *crtc)
6093 {
6094         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6095         uint8_t *eld = connector->eld;
6096         uint32_t eldv;
6097         uint32_t len;
6098         uint32_t i;
6099
6100         i = I915_READ(G4X_AUD_VID_DID);
6101
6102         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6103                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6104         else
6105                 eldv = G4X_ELDV_DEVCTG;
6106
6107         if (intel_eld_uptodate(connector,
6108                                G4X_AUD_CNTL_ST, eldv,
6109                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6110                                G4X_HDMIW_HDMIEDID))
6111                 return;
6112
6113         i = I915_READ(G4X_AUD_CNTL_ST);
6114         i &= ~(eldv | G4X_ELD_ADDR);
6115         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6116         I915_WRITE(G4X_AUD_CNTL_ST, i);
6117
6118         if (!eld[0])
6119                 return;
6120
6121         len = min_t(uint8_t, eld[2], len);
6122         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6123         for (i = 0; i < len; i++)
6124                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6125
6126         i = I915_READ(G4X_AUD_CNTL_ST);
6127         i |= eldv;
6128         I915_WRITE(G4X_AUD_CNTL_ST, i);
6129 }
6130
6131 static void ironlake_write_eld(struct drm_connector *connector,
6132                                      struct drm_crtc *crtc)
6133 {
6134         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6135         uint8_t *eld = connector->eld;
6136         uint32_t eldv;
6137         uint32_t i;
6138         int len;
6139         int hdmiw_hdmiedid;
6140         int aud_config;
6141         int aud_cntl_st;
6142         int aud_cntrl_st2;
6143
6144         if (HAS_PCH_IBX(connector->dev)) {
6145                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
6146                 aud_config = IBX_AUD_CONFIG_A;
6147                 aud_cntl_st = IBX_AUD_CNTL_ST_A;
6148                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6149         } else {
6150                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
6151                 aud_config = CPT_AUD_CONFIG_A;
6152                 aud_cntl_st = CPT_AUD_CNTL_ST_A;
6153                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6154         }
6155
6156         i = to_intel_crtc(crtc)->pipe;
6157         hdmiw_hdmiedid += i * 0x100;
6158         aud_cntl_st += i * 0x100;
6159         aud_config += i * 0x100;
6160
6161         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
6162
6163         i = I915_READ(aud_cntl_st);
6164         i = (i >> 29) & 0x3;            /* DIP_Port_Select, 0x1 = PortB */
6165         if (!i) {
6166                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6167                 /* operate blindly on all ports */
6168                 eldv = IBX_ELD_VALIDB;
6169                 eldv |= IBX_ELD_VALIDB << 4;
6170                 eldv |= IBX_ELD_VALIDB << 8;
6171         } else {
6172                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6173                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6174         }
6175
6176         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6177                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6178                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6179                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6180         } else
6181                 I915_WRITE(aud_config, 0);
6182
6183         if (intel_eld_uptodate(connector,
6184                                aud_cntrl_st2, eldv,
6185                                aud_cntl_st, IBX_ELD_ADDRESS,
6186                                hdmiw_hdmiedid))
6187                 return;
6188
6189         i = I915_READ(aud_cntrl_st2);
6190         i &= ~eldv;
6191         I915_WRITE(aud_cntrl_st2, i);
6192
6193         if (!eld[0])
6194                 return;
6195
6196         i = I915_READ(aud_cntl_st);
6197         i &= ~IBX_ELD_ADDRESS;
6198         I915_WRITE(aud_cntl_st, i);
6199
6200         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6201         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6202         for (i = 0; i < len; i++)
6203                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6204
6205         i = I915_READ(aud_cntrl_st2);
6206         i |= eldv;
6207         I915_WRITE(aud_cntrl_st2, i);
6208 }
6209
6210 void intel_write_eld(struct drm_encoder *encoder,
6211                      struct drm_display_mode *mode)
6212 {
6213         struct drm_crtc *crtc = encoder->crtc;
6214         struct drm_connector *connector;
6215         struct drm_device *dev = encoder->dev;
6216         struct drm_i915_private *dev_priv = dev->dev_private;
6217
6218         connector = drm_select_eld(encoder, mode);
6219         if (!connector)
6220                 return;
6221
6222         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6223                          connector->base.id,
6224                          drm_get_connector_name(connector),
6225                          connector->encoder->base.id,
6226                          drm_get_encoder_name(connector->encoder));
6227
6228         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6229
6230         if (dev_priv->display.write_eld)
6231                 dev_priv->display.write_eld(connector, crtc);
6232 }
6233
6234 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6235 void intel_crtc_load_lut(struct drm_crtc *crtc)
6236 {
6237         struct drm_device *dev = crtc->dev;
6238         struct drm_i915_private *dev_priv = dev->dev_private;
6239         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6240         int palreg = PALETTE(intel_crtc->pipe);
6241         int i;
6242
6243         /* The clocks have to be on to load the palette. */
6244         if (!crtc->enabled)
6245                 return;
6246
6247         /* use legacy palette for Ironlake */
6248         if (HAS_PCH_SPLIT(dev))
6249                 palreg = LGC_PALETTE(intel_crtc->pipe);
6250
6251         for (i = 0; i < 256; i++) {
6252                 I915_WRITE(palreg + 4 * i,
6253                            (intel_crtc->lut_r[i] << 16) |
6254                            (intel_crtc->lut_g[i] << 8) |
6255                            intel_crtc->lut_b[i]);
6256         }
6257 }
6258
6259 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6260 {
6261         struct drm_device *dev = crtc->dev;
6262         struct drm_i915_private *dev_priv = dev->dev_private;
6263         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6264         bool visible = base != 0;
6265         u32 cntl;
6266
6267         if (intel_crtc->cursor_visible == visible)
6268                 return;
6269
6270         cntl = I915_READ(_CURACNTR);
6271         if (visible) {
6272                 /* On these chipsets we can only modify the base whilst
6273                  * the cursor is disabled.
6274                  */
6275                 I915_WRITE(_CURABASE, base);
6276
6277                 cntl &= ~(CURSOR_FORMAT_MASK);
6278                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6279                 cntl |= CURSOR_ENABLE |
6280                         CURSOR_GAMMA_ENABLE |
6281                         CURSOR_FORMAT_ARGB;
6282         } else
6283                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6284         I915_WRITE(_CURACNTR, cntl);
6285
6286         intel_crtc->cursor_visible = visible;
6287 }
6288
6289 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6290 {
6291         struct drm_device *dev = crtc->dev;
6292         struct drm_i915_private *dev_priv = dev->dev_private;
6293         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6294         int pipe = intel_crtc->pipe;
6295         bool visible = base != 0;
6296
6297         if (intel_crtc->cursor_visible != visible) {
6298                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6299                 if (base) {
6300                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6301                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6302                         cntl |= pipe << 28; /* Connect to correct pipe */
6303                 } else {
6304                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6305                         cntl |= CURSOR_MODE_DISABLE;
6306                 }
6307                 I915_WRITE(CURCNTR(pipe), cntl);
6308
6309                 intel_crtc->cursor_visible = visible;
6310         }
6311         /* and commit changes on next vblank */
6312         I915_WRITE(CURBASE(pipe), base);
6313 }
6314
6315 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6316 {
6317         struct drm_device *dev = crtc->dev;
6318         struct drm_i915_private *dev_priv = dev->dev_private;
6319         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6320         int pipe = intel_crtc->pipe;
6321         bool visible = base != 0;
6322
6323         if (intel_crtc->cursor_visible != visible) {
6324                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6325                 if (base) {
6326                         cntl &= ~CURSOR_MODE;
6327                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6328                 } else {
6329                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6330                         cntl |= CURSOR_MODE_DISABLE;
6331                 }
6332                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6333
6334                 intel_crtc->cursor_visible = visible;
6335         }
6336         /* and commit changes on next vblank */
6337         I915_WRITE(CURBASE_IVB(pipe), base);
6338 }
6339
6340 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6341 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6342                                      bool on)
6343 {
6344         struct drm_device *dev = crtc->dev;
6345         struct drm_i915_private *dev_priv = dev->dev_private;
6346         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6347         int pipe = intel_crtc->pipe;
6348         int x = intel_crtc->cursor_x;
6349         int y = intel_crtc->cursor_y;
6350         u32 base, pos;
6351         bool visible;
6352
6353         pos = 0;
6354
6355         if (on && crtc->enabled && crtc->fb) {
6356                 base = intel_crtc->cursor_addr;
6357                 if (x > (int) crtc->fb->width)
6358                         base = 0;
6359
6360                 if (y > (int) crtc->fb->height)
6361                         base = 0;
6362         } else
6363                 base = 0;
6364
6365         if (x < 0) {
6366                 if (x + intel_crtc->cursor_width < 0)
6367                         base = 0;
6368
6369                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6370                 x = -x;
6371         }
6372         pos |= x << CURSOR_X_SHIFT;
6373
6374         if (y < 0) {
6375                 if (y + intel_crtc->cursor_height < 0)
6376                         base = 0;
6377
6378                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6379                 y = -y;
6380         }
6381         pos |= y << CURSOR_Y_SHIFT;
6382
6383         visible = base != 0;
6384         if (!visible && !intel_crtc->cursor_visible)
6385                 return;
6386
6387         if (IS_IVYBRIDGE(dev)) {
6388                 I915_WRITE(CURPOS_IVB(pipe), pos);
6389                 ivb_update_cursor(crtc, base);
6390         } else {
6391                 I915_WRITE(CURPOS(pipe), pos);
6392                 if (IS_845G(dev) || IS_I865G(dev))
6393                         i845_update_cursor(crtc, base);
6394                 else
6395                         i9xx_update_cursor(crtc, base);
6396         }
6397
6398         if (visible)
6399                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6400 }
6401
6402 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6403                                  struct drm_file *file,
6404                                  uint32_t handle,
6405                                  uint32_t width, uint32_t height)
6406 {
6407         struct drm_device *dev = crtc->dev;
6408         struct drm_i915_private *dev_priv = dev->dev_private;
6409         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6410         struct drm_i915_gem_object *obj;
6411         uint32_t addr;
6412         int ret;
6413
6414         DRM_DEBUG_KMS("\n");
6415
6416         /* if we want to turn off the cursor ignore width and height */
6417         if (!handle) {
6418                 DRM_DEBUG_KMS("cursor off\n");
6419                 addr = 0;
6420                 obj = NULL;
6421                 mutex_lock(&dev->struct_mutex);
6422                 goto finish;
6423         }
6424
6425         /* Currently we only support 64x64 cursors */
6426         if (width != 64 || height != 64) {
6427                 DRM_ERROR("we currently only support 64x64 cursors\n");
6428                 return -EINVAL;
6429         }
6430
6431         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6432         if (&obj->base == NULL)
6433                 return -ENOENT;
6434
6435         if (obj->base.size < width * height * 4) {
6436                 DRM_ERROR("buffer is to small\n");
6437                 ret = -ENOMEM;
6438                 goto fail;
6439         }
6440
6441         /* we only need to pin inside GTT if cursor is non-phy */
6442         mutex_lock(&dev->struct_mutex);
6443         if (!dev_priv->info->cursor_needs_physical) {
6444                 if (obj->tiling_mode) {
6445                         DRM_ERROR("cursor cannot be tiled\n");
6446                         ret = -EINVAL;
6447                         goto fail_locked;
6448                 }
6449
6450                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6451                 if (ret) {
6452                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6453                         goto fail_locked;
6454                 }
6455
6456                 ret = i915_gem_object_put_fence(obj);
6457                 if (ret) {
6458                         DRM_ERROR("failed to release fence for cursor");
6459                         goto fail_unpin;
6460                 }
6461
6462                 addr = obj->gtt_offset;
6463         } else {
6464                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6465                 ret = i915_gem_attach_phys_object(dev, obj,
6466                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6467                                                   align);
6468                 if (ret) {
6469                         DRM_ERROR("failed to attach phys object\n");
6470                         goto fail_locked;
6471                 }
6472                 addr = obj->phys_obj->handle->busaddr;
6473         }
6474
6475         if (IS_GEN2(dev))
6476                 I915_WRITE(CURSIZE, (height << 12) | width);
6477
6478  finish:
6479         if (intel_crtc->cursor_bo) {
6480                 if (dev_priv->info->cursor_needs_physical) {
6481                         if (intel_crtc->cursor_bo != obj)
6482                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6483                 } else
6484                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6485                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6486         }
6487
6488         mutex_unlock(&dev->struct_mutex);
6489
6490         intel_crtc->cursor_addr = addr;
6491         intel_crtc->cursor_bo = obj;
6492         intel_crtc->cursor_width = width;
6493         intel_crtc->cursor_height = height;
6494
6495         intel_crtc_update_cursor(crtc, true);
6496
6497         return 0;
6498 fail_unpin:
6499         i915_gem_object_unpin(obj);
6500 fail_locked:
6501         mutex_unlock(&dev->struct_mutex);
6502 fail:
6503         drm_gem_object_unreference_unlocked(&obj->base);
6504         return ret;
6505 }
6506
6507 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6508 {
6509         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6510
6511         intel_crtc->cursor_x = x;
6512         intel_crtc->cursor_y = y;
6513
6514         intel_crtc_update_cursor(crtc, true);
6515
6516         return 0;
6517 }
6518
6519 /** Sets the color ramps on behalf of RandR */
6520 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6521                                  u16 blue, int regno)
6522 {
6523         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6524
6525         intel_crtc->lut_r[regno] = red >> 8;
6526         intel_crtc->lut_g[regno] = green >> 8;
6527         intel_crtc->lut_b[regno] = blue >> 8;
6528 }
6529
6530 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6531                              u16 *blue, int regno)
6532 {
6533         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6534
6535         *red = intel_crtc->lut_r[regno] << 8;
6536         *green = intel_crtc->lut_g[regno] << 8;
6537         *blue = intel_crtc->lut_b[regno] << 8;
6538 }
6539
6540 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6541                                  u16 *blue, uint32_t start, uint32_t size)
6542 {
6543         int end = (start + size > 256) ? 256 : start + size, i;
6544         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6545
6546         for (i = start; i < end; i++) {
6547                 intel_crtc->lut_r[i] = red[i] >> 8;
6548                 intel_crtc->lut_g[i] = green[i] >> 8;
6549                 intel_crtc->lut_b[i] = blue[i] >> 8;
6550         }
6551
6552         intel_crtc_load_lut(crtc);
6553 }
6554
6555 /**
6556  * Get a pipe with a simple mode set on it for doing load-based monitor
6557  * detection.
6558  *
6559  * It will be up to the load-detect code to adjust the pipe as appropriate for
6560  * its requirements.  The pipe will be connected to no other encoders.
6561  *
6562  * Currently this code will only succeed if there is a pipe with no encoders
6563  * configured for it.  In the future, it could choose to temporarily disable
6564  * some outputs to free up a pipe for its use.
6565  *
6566  * \return crtc, or NULL if no pipes are available.
6567  */
6568
6569 /* VESA 640x480x72Hz mode to set on the pipe */
6570 static struct drm_display_mode load_detect_mode = {
6571         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6572                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6573 };
6574
6575 static struct drm_framebuffer *
6576 intel_framebuffer_create(struct drm_device *dev,
6577                          struct drm_mode_fb_cmd2 *mode_cmd,
6578                          struct drm_i915_gem_object *obj)
6579 {
6580         struct intel_framebuffer *intel_fb;
6581         int ret;
6582
6583         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6584         if (!intel_fb) {
6585                 drm_gem_object_unreference_unlocked(&obj->base);
6586                 return ERR_PTR(-ENOMEM);
6587         }
6588
6589         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6590         if (ret) {
6591                 drm_gem_object_unreference_unlocked(&obj->base);
6592                 kfree(intel_fb);
6593                 return ERR_PTR(ret);
6594         }
6595
6596         return &intel_fb->base;
6597 }
6598
6599 static u32
6600 intel_framebuffer_pitch_for_width(int width, int bpp)
6601 {
6602         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6603         return ALIGN(pitch, 64);
6604 }
6605
6606 static u32
6607 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6608 {
6609         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6610         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6611 }
6612
6613 static struct drm_framebuffer *
6614 intel_framebuffer_create_for_mode(struct drm_device *dev,
6615                                   struct drm_display_mode *mode,
6616                                   int depth, int bpp)
6617 {
6618         struct drm_i915_gem_object *obj;
6619         struct drm_mode_fb_cmd2 mode_cmd;
6620
6621         obj = i915_gem_alloc_object(dev,
6622                                     intel_framebuffer_size_for_mode(mode, bpp));
6623         if (obj == NULL)
6624                 return ERR_PTR(-ENOMEM);
6625
6626         mode_cmd.width = mode->hdisplay;
6627         mode_cmd.height = mode->vdisplay;
6628         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6629                                                                 bpp);
6630         mode_cmd.pixel_format = 0;
6631
6632         return intel_framebuffer_create(dev, &mode_cmd, obj);
6633 }
6634
6635 static struct drm_framebuffer *
6636 mode_fits_in_fbdev(struct drm_device *dev,
6637                    struct drm_display_mode *mode)
6638 {
6639         struct drm_i915_private *dev_priv = dev->dev_private;
6640         struct drm_i915_gem_object *obj;
6641         struct drm_framebuffer *fb;
6642
6643         if (dev_priv->fbdev == NULL)
6644                 return NULL;
6645
6646         obj = dev_priv->fbdev->ifb.obj;
6647         if (obj == NULL)
6648                 return NULL;
6649
6650         fb = &dev_priv->fbdev->ifb.base;
6651         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6652                                                                fb->bits_per_pixel))
6653                 return NULL;
6654
6655         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6656                 return NULL;
6657
6658         return fb;
6659 }
6660
6661 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6662                                 struct drm_connector *connector,
6663                                 struct drm_display_mode *mode,
6664                                 struct intel_load_detect_pipe *old)
6665 {
6666         struct intel_crtc *intel_crtc;
6667         struct drm_crtc *possible_crtc;
6668         struct drm_encoder *encoder = &intel_encoder->base;
6669         struct drm_crtc *crtc = NULL;
6670         struct drm_device *dev = encoder->dev;
6671         struct drm_framebuffer *old_fb;
6672         int i = -1;
6673
6674         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6675                       connector->base.id, drm_get_connector_name(connector),
6676                       encoder->base.id, drm_get_encoder_name(encoder));
6677
6678         /*
6679          * Algorithm gets a little messy:
6680          *
6681          *   - if the connector already has an assigned crtc, use it (but make
6682          *     sure it's on first)
6683          *
6684          *   - try to find the first unused crtc that can drive this connector,
6685          *     and use that if we find one
6686          */
6687
6688         /* See if we already have a CRTC for this connector */
6689         if (encoder->crtc) {
6690                 crtc = encoder->crtc;
6691
6692                 intel_crtc = to_intel_crtc(crtc);
6693                 old->dpms_mode = intel_crtc->dpms_mode;
6694                 old->load_detect_temp = false;
6695
6696                 /* Make sure the crtc and connector are running */
6697                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6698                         struct drm_encoder_helper_funcs *encoder_funcs;
6699                         struct drm_crtc_helper_funcs *crtc_funcs;
6700
6701                         crtc_funcs = crtc->helper_private;
6702                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6703
6704                         encoder_funcs = encoder->helper_private;
6705                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6706                 }
6707
6708                 return true;
6709         }
6710
6711         /* Find an unused one (if possible) */
6712         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6713                 i++;
6714                 if (!(encoder->possible_crtcs & (1 << i)))
6715                         continue;
6716                 if (!possible_crtc->enabled) {
6717                         crtc = possible_crtc;
6718                         break;
6719                 }
6720         }
6721
6722         /*
6723          * If we didn't find an unused CRTC, don't use any.
6724          */
6725         if (!crtc) {
6726                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6727                 return false;
6728         }
6729
6730         encoder->crtc = crtc;
6731         connector->encoder = encoder;
6732
6733         intel_crtc = to_intel_crtc(crtc);
6734         old->dpms_mode = intel_crtc->dpms_mode;
6735         old->load_detect_temp = true;
6736         old->release_fb = NULL;
6737
6738         if (!mode)
6739                 mode = &load_detect_mode;
6740
6741         old_fb = crtc->fb;
6742
6743         /* We need a framebuffer large enough to accommodate all accesses
6744          * that the plane may generate whilst we perform load detection.
6745          * We can not rely on the fbcon either being present (we get called
6746          * during its initialisation to detect all boot displays, or it may
6747          * not even exist) or that it is large enough to satisfy the
6748          * requested mode.
6749          */
6750         crtc->fb = mode_fits_in_fbdev(dev, mode);
6751         if (crtc->fb == NULL) {
6752                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6753                 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6754                 old->release_fb = crtc->fb;
6755         } else
6756                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6757         if (IS_ERR(crtc->fb)) {
6758                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6759                 crtc->fb = old_fb;
6760                 return false;
6761         }
6762
6763         if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6764                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6765                 if (old->release_fb)
6766                         old->release_fb->funcs->destroy(old->release_fb);
6767                 crtc->fb = old_fb;
6768                 return false;
6769         }
6770
6771         /* let the connector get through one full cycle before testing */
6772         intel_wait_for_vblank(dev, intel_crtc->pipe);
6773
6774         return true;
6775 }
6776
6777 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6778                                     struct drm_connector *connector,
6779                                     struct intel_load_detect_pipe *old)
6780 {
6781         struct drm_encoder *encoder = &intel_encoder->base;
6782         struct drm_device *dev = encoder->dev;
6783         struct drm_crtc *crtc = encoder->crtc;
6784         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6785         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6786
6787         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6788                       connector->base.id, drm_get_connector_name(connector),
6789                       encoder->base.id, drm_get_encoder_name(encoder));
6790
6791         if (old->load_detect_temp) {
6792                 connector->encoder = NULL;
6793                 drm_helper_disable_unused_functions(dev);
6794
6795                 if (old->release_fb)
6796                         old->release_fb->funcs->destroy(old->release_fb);
6797
6798                 return;
6799         }
6800
6801         /* Switch crtc and encoder back off if necessary */
6802         if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6803                 encoder_funcs->dpms(encoder, old->dpms_mode);
6804                 crtc_funcs->dpms(crtc, old->dpms_mode);
6805         }
6806 }
6807
6808 /* Returns the clock of the currently programmed mode of the given pipe. */
6809 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6810 {
6811         struct drm_i915_private *dev_priv = dev->dev_private;
6812         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6813         int pipe = intel_crtc->pipe;
6814         u32 dpll = I915_READ(DPLL(pipe));
6815         u32 fp;
6816         intel_clock_t clock;
6817
6818         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6819                 fp = I915_READ(FP0(pipe));
6820         else
6821                 fp = I915_READ(FP1(pipe));
6822
6823         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6824         if (IS_PINEVIEW(dev)) {
6825                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6826                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6827         } else {
6828                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6829                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6830         }
6831
6832         if (!IS_GEN2(dev)) {
6833                 if (IS_PINEVIEW(dev))
6834                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6835                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6836                 else
6837                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6838                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6839
6840                 switch (dpll & DPLL_MODE_MASK) {
6841                 case DPLLB_MODE_DAC_SERIAL:
6842                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6843                                 5 : 10;
6844                         break;
6845                 case DPLLB_MODE_LVDS:
6846                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6847                                 7 : 14;
6848                         break;
6849                 default:
6850                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6851                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6852                         return 0;
6853                 }
6854
6855                 /* XXX: Handle the 100Mhz refclk */
6856                 intel_clock(dev, 96000, &clock);
6857         } else {
6858                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6859
6860                 if (is_lvds) {
6861                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6862                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6863                         clock.p2 = 14;
6864
6865                         if ((dpll & PLL_REF_INPUT_MASK) ==
6866                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6867                                 /* XXX: might not be 66MHz */
6868                                 intel_clock(dev, 66000, &clock);
6869                         } else
6870                                 intel_clock(dev, 48000, &clock);
6871                 } else {
6872                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6873                                 clock.p1 = 2;
6874                         else {
6875                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6876                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6877                         }
6878                         if (dpll & PLL_P2_DIVIDE_BY_4)
6879                                 clock.p2 = 4;
6880                         else
6881                                 clock.p2 = 2;
6882
6883                         intel_clock(dev, 48000, &clock);
6884                 }
6885         }
6886
6887         /* XXX: It would be nice to validate the clocks, but we can't reuse
6888          * i830PllIsValid() because it relies on the xf86_config connector
6889          * configuration being accurate, which it isn't necessarily.
6890          */
6891
6892         return clock.dot;
6893 }
6894
6895 /** Returns the currently programmed mode of the given pipe. */
6896 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6897                                              struct drm_crtc *crtc)
6898 {
6899         struct drm_i915_private *dev_priv = dev->dev_private;
6900         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6901         int pipe = intel_crtc->pipe;
6902         struct drm_display_mode *mode;
6903         int htot = I915_READ(HTOTAL(pipe));
6904         int hsync = I915_READ(HSYNC(pipe));
6905         int vtot = I915_READ(VTOTAL(pipe));
6906         int vsync = I915_READ(VSYNC(pipe));
6907
6908         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6909         if (!mode)
6910                 return NULL;
6911
6912         mode->clock = intel_crtc_clock_get(dev, crtc);
6913         mode->hdisplay = (htot & 0xffff) + 1;
6914         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6915         mode->hsync_start = (hsync & 0xffff) + 1;
6916         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6917         mode->vdisplay = (vtot & 0xffff) + 1;
6918         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6919         mode->vsync_start = (vsync & 0xffff) + 1;
6920         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6921
6922         drm_mode_set_name(mode);
6923         drm_mode_set_crtcinfo(mode, 0);
6924
6925         return mode;
6926 }
6927
6928 #define GPU_IDLE_TIMEOUT 500 /* ms */
6929
6930 /* When this timer fires, we've been idle for awhile */
6931 static void intel_gpu_idle_timer(unsigned long arg)
6932 {
6933         struct drm_device *dev = (struct drm_device *)arg;
6934         drm_i915_private_t *dev_priv = dev->dev_private;
6935
6936         if (!list_empty(&dev_priv->mm.active_list)) {
6937                 /* Still processing requests, so just re-arm the timer. */
6938                 mod_timer(&dev_priv->idle_timer, jiffies +
6939                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6940                 return;
6941         }
6942
6943         dev_priv->busy = false;
6944         queue_work(dev_priv->wq, &dev_priv->idle_work);
6945 }
6946
6947 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6948
6949 static void intel_crtc_idle_timer(unsigned long arg)
6950 {
6951         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6952         struct drm_crtc *crtc = &intel_crtc->base;
6953         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
6954         struct intel_framebuffer *intel_fb;
6955
6956         intel_fb = to_intel_framebuffer(crtc->fb);
6957         if (intel_fb && intel_fb->obj->active) {
6958                 /* The framebuffer is still being accessed by the GPU. */
6959                 mod_timer(&intel_crtc->idle_timer, jiffies +
6960                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6961                 return;
6962         }
6963
6964         intel_crtc->busy = false;
6965         queue_work(dev_priv->wq, &dev_priv->idle_work);
6966 }
6967
6968 static void intel_increase_pllclock(struct drm_crtc *crtc)
6969 {
6970         struct drm_device *dev = crtc->dev;
6971         drm_i915_private_t *dev_priv = dev->dev_private;
6972         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6973         int pipe = intel_crtc->pipe;
6974         int dpll_reg = DPLL(pipe);
6975         int dpll;
6976
6977         if (HAS_PCH_SPLIT(dev))
6978                 return;
6979
6980         if (!dev_priv->lvds_downclock_avail)
6981                 return;
6982
6983         dpll = I915_READ(dpll_reg);
6984         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6985                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6986
6987                 /* Unlock panel regs */
6988                 I915_WRITE(PP_CONTROL,
6989                            I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
6990
6991                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6992                 I915_WRITE(dpll_reg, dpll);
6993                 intel_wait_for_vblank(dev, pipe);
6994
6995                 dpll = I915_READ(dpll_reg);
6996                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6997                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6998
6999                 /* ...and lock them again */
7000                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
7001         }
7002
7003         /* Schedule downclock */
7004         mod_timer(&intel_crtc->idle_timer, jiffies +
7005                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7006 }
7007
7008 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7009 {
7010         struct drm_device *dev = crtc->dev;
7011         drm_i915_private_t *dev_priv = dev->dev_private;
7012         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7013         int pipe = intel_crtc->pipe;
7014         int dpll_reg = DPLL(pipe);
7015         int dpll = I915_READ(dpll_reg);
7016
7017         if (HAS_PCH_SPLIT(dev))
7018                 return;
7019
7020         if (!dev_priv->lvds_downclock_avail)
7021                 return;
7022
7023         /*
7024          * Since this is called by a timer, we should never get here in
7025          * the manual case.
7026          */
7027         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7028                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7029
7030                 /* Unlock panel regs */
7031                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
7032                            PANEL_UNLOCK_REGS);
7033
7034                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7035                 I915_WRITE(dpll_reg, dpll);
7036                 intel_wait_for_vblank(dev, pipe);
7037                 dpll = I915_READ(dpll_reg);
7038                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7039                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7040
7041                 /* ...and lock them again */
7042                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
7043         }
7044
7045 }
7046
7047 /**
7048  * intel_idle_update - adjust clocks for idleness
7049  * @work: work struct
7050  *
7051  * Either the GPU or display (or both) went idle.  Check the busy status
7052  * here and adjust the CRTC and GPU clocks as necessary.
7053  */
7054 static void intel_idle_update(struct work_struct *work)
7055 {
7056         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
7057                                                     idle_work);
7058         struct drm_device *dev = dev_priv->dev;
7059         struct drm_crtc *crtc;
7060         struct intel_crtc *intel_crtc;
7061
7062         if (!i915_powersave)
7063                 return;
7064
7065         mutex_lock(&dev->struct_mutex);
7066
7067         i915_update_gfx_val(dev_priv);
7068
7069         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7070                 /* Skip inactive CRTCs */
7071                 if (!crtc->fb)
7072                         continue;
7073
7074                 intel_crtc = to_intel_crtc(crtc);
7075                 if (!intel_crtc->busy)
7076                         intel_decrease_pllclock(crtc);
7077         }
7078
7079
7080         mutex_unlock(&dev->struct_mutex);
7081 }
7082
7083 /**
7084  * intel_mark_busy - mark the GPU and possibly the display busy
7085  * @dev: drm device
7086  * @obj: object we're operating on
7087  *
7088  * Callers can use this function to indicate that the GPU is busy processing
7089  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
7090  * buffer), we'll also mark the display as busy, so we know to increase its
7091  * clock frequency.
7092  */
7093 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
7094 {
7095         drm_i915_private_t *dev_priv = dev->dev_private;
7096         struct drm_crtc *crtc = NULL;
7097         struct intel_framebuffer *intel_fb;
7098         struct intel_crtc *intel_crtc;
7099
7100         if (!drm_core_check_feature(dev, DRIVER_MODESET))
7101                 return;
7102
7103         if (!dev_priv->busy)
7104                 dev_priv->busy = true;
7105         else
7106                 mod_timer(&dev_priv->idle_timer, jiffies +
7107                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
7108
7109         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7110                 if (!crtc->fb)
7111                         continue;
7112
7113                 intel_crtc = to_intel_crtc(crtc);
7114                 intel_fb = to_intel_framebuffer(crtc->fb);
7115                 if (intel_fb->obj == obj) {
7116                         if (!intel_crtc->busy) {
7117                                 /* Non-busy -> busy, upclock */
7118                                 intel_increase_pllclock(crtc);
7119                                 intel_crtc->busy = true;
7120                         } else {
7121                                 /* Busy -> busy, put off timer */
7122                                 mod_timer(&intel_crtc->idle_timer, jiffies +
7123                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7124                         }
7125                 }
7126         }
7127 }
7128
7129 static void intel_crtc_destroy(struct drm_crtc *crtc)
7130 {
7131         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7132         struct drm_device *dev = crtc->dev;
7133         struct intel_unpin_work *work;
7134         unsigned long flags;
7135
7136         spin_lock_irqsave(&dev->event_lock, flags);
7137         work = intel_crtc->unpin_work;
7138         intel_crtc->unpin_work = NULL;
7139         spin_unlock_irqrestore(&dev->event_lock, flags);
7140
7141         if (work) {
7142                 cancel_work_sync(&work->work);
7143                 kfree(work);
7144         }
7145
7146         drm_crtc_cleanup(crtc);
7147
7148         kfree(intel_crtc);
7149 }
7150
7151 static void intel_unpin_work_fn(struct work_struct *__work)
7152 {
7153         struct intel_unpin_work *work =
7154                 container_of(__work, struct intel_unpin_work, work);
7155
7156         mutex_lock(&work->dev->struct_mutex);
7157         intel_unpin_fb_obj(work->old_fb_obj);
7158         drm_gem_object_unreference(&work->pending_flip_obj->base);
7159         drm_gem_object_unreference(&work->old_fb_obj->base);
7160
7161         intel_update_fbc(work->dev);
7162         mutex_unlock(&work->dev->struct_mutex);
7163         kfree(work);
7164 }
7165
7166 static void do_intel_finish_page_flip(struct drm_device *dev,
7167                                       struct drm_crtc *crtc)
7168 {
7169         drm_i915_private_t *dev_priv = dev->dev_private;
7170         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7171         struct intel_unpin_work *work;
7172         struct drm_i915_gem_object *obj;
7173         struct drm_pending_vblank_event *e;
7174         struct timeval tnow, tvbl;
7175         unsigned long flags;
7176
7177         /* Ignore early vblank irqs */
7178         if (intel_crtc == NULL)
7179                 return;
7180
7181         do_gettimeofday(&tnow);
7182
7183         spin_lock_irqsave(&dev->event_lock, flags);
7184         work = intel_crtc->unpin_work;
7185         if (work == NULL || !work->pending) {
7186                 spin_unlock_irqrestore(&dev->event_lock, flags);
7187                 return;
7188         }
7189
7190         intel_crtc->unpin_work = NULL;
7191
7192         if (work->event) {
7193                 e = work->event;
7194                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
7195
7196                 /* Called before vblank count and timestamps have
7197                  * been updated for the vblank interval of flip
7198                  * completion? Need to increment vblank count and
7199                  * add one videorefresh duration to returned timestamp
7200                  * to account for this. We assume this happened if we
7201                  * get called over 0.9 frame durations after the last
7202                  * timestamped vblank.
7203                  *
7204                  * This calculation can not be used with vrefresh rates
7205                  * below 5Hz (10Hz to be on the safe side) without
7206                  * promoting to 64 integers.
7207                  */
7208                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
7209                     9 * crtc->framedur_ns) {
7210                         e->event.sequence++;
7211                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
7212                                              crtc->framedur_ns);
7213                 }
7214
7215                 e->event.tv_sec = tvbl.tv_sec;
7216                 e->event.tv_usec = tvbl.tv_usec;
7217
7218                 list_add_tail(&e->base.link,
7219                               &e->base.file_priv->event_list);
7220                 wake_up_interruptible(&e->base.file_priv->event_wait);
7221         }
7222
7223         drm_vblank_put(dev, intel_crtc->pipe);
7224
7225         spin_unlock_irqrestore(&dev->event_lock, flags);
7226
7227         obj = work->old_fb_obj;
7228
7229         atomic_clear_mask(1 << intel_crtc->plane,
7230                           &obj->pending_flip.counter);
7231         if (atomic_read(&obj->pending_flip) == 0)
7232                 wake_up(&dev_priv->pending_flip_queue);
7233
7234         schedule_work(&work->work);
7235
7236         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7237 }
7238
7239 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7240 {
7241         drm_i915_private_t *dev_priv = dev->dev_private;
7242         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7243
7244         do_intel_finish_page_flip(dev, crtc);
7245 }
7246
7247 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7248 {
7249         drm_i915_private_t *dev_priv = dev->dev_private;
7250         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7251
7252         do_intel_finish_page_flip(dev, crtc);
7253 }
7254
7255 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7256 {
7257         drm_i915_private_t *dev_priv = dev->dev_private;
7258         struct intel_crtc *intel_crtc =
7259                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7260         unsigned long flags;
7261
7262         spin_lock_irqsave(&dev->event_lock, flags);
7263         if (intel_crtc->unpin_work) {
7264                 if ((++intel_crtc->unpin_work->pending) > 1)
7265                         DRM_ERROR("Prepared flip multiple times\n");
7266         } else {
7267                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7268         }
7269         spin_unlock_irqrestore(&dev->event_lock, flags);
7270 }
7271
7272 static int intel_gen2_queue_flip(struct drm_device *dev,
7273                                  struct drm_crtc *crtc,
7274                                  struct drm_framebuffer *fb,
7275                                  struct drm_i915_gem_object *obj)
7276 {
7277         struct drm_i915_private *dev_priv = dev->dev_private;
7278         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7279         unsigned long offset;
7280         u32 flip_mask;
7281         int ret;
7282
7283         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7284         if (ret)
7285                 goto out;
7286
7287         /* Offset into the new buffer for cases of shared fbs between CRTCs */
7288         offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7289
7290         ret = BEGIN_LP_RING(6);
7291         if (ret)
7292                 goto out;
7293
7294         /* Can't queue multiple flips, so wait for the previous
7295          * one to finish before executing the next.
7296          */
7297         if (intel_crtc->plane)
7298                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7299         else
7300                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7301         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7302         OUT_RING(MI_NOOP);
7303         OUT_RING(MI_DISPLAY_FLIP |
7304                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7305         OUT_RING(fb->pitches[0]);
7306         OUT_RING(obj->gtt_offset + offset);
7307         OUT_RING(0); /* aux display base address, unused */
7308         ADVANCE_LP_RING();
7309 out:
7310         return ret;
7311 }
7312
7313 static int intel_gen3_queue_flip(struct drm_device *dev,
7314                                  struct drm_crtc *crtc,
7315                                  struct drm_framebuffer *fb,
7316                                  struct drm_i915_gem_object *obj)
7317 {
7318         struct drm_i915_private *dev_priv = dev->dev_private;
7319         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7320         unsigned long offset;
7321         u32 flip_mask;
7322         int ret;
7323
7324         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7325         if (ret)
7326                 goto out;
7327
7328         /* Offset into the new buffer for cases of shared fbs between CRTCs */
7329         offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7330
7331         ret = BEGIN_LP_RING(6);
7332         if (ret)
7333                 goto out;
7334
7335         if (intel_crtc->plane)
7336                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7337         else
7338                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7339         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7340         OUT_RING(MI_NOOP);
7341         OUT_RING(MI_DISPLAY_FLIP_I915 |
7342                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7343         OUT_RING(fb->pitches[0]);
7344         OUT_RING(obj->gtt_offset + offset);
7345         OUT_RING(MI_NOOP);
7346
7347         ADVANCE_LP_RING();
7348 out:
7349         return ret;
7350 }
7351
7352 static int intel_gen4_queue_flip(struct drm_device *dev,
7353                                  struct drm_crtc *crtc,
7354                                  struct drm_framebuffer *fb,
7355                                  struct drm_i915_gem_object *obj)
7356 {
7357         struct drm_i915_private *dev_priv = dev->dev_private;
7358         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7359         uint32_t pf, pipesrc;
7360         int ret;
7361
7362         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7363         if (ret)
7364                 goto out;
7365
7366         ret = BEGIN_LP_RING(4);
7367         if (ret)
7368                 goto out;
7369
7370         /* i965+ uses the linear or tiled offsets from the
7371          * Display Registers (which do not change across a page-flip)
7372          * so we need only reprogram the base address.
7373          */
7374         OUT_RING(MI_DISPLAY_FLIP |
7375                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7376         OUT_RING(fb->pitches[0]);
7377         OUT_RING(obj->gtt_offset | obj->tiling_mode);
7378
7379         /* XXX Enabling the panel-fitter across page-flip is so far
7380          * untested on non-native modes, so ignore it for now.
7381          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7382          */
7383         pf = 0;
7384         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7385         OUT_RING(pf | pipesrc);
7386         ADVANCE_LP_RING();
7387 out:
7388         return ret;
7389 }
7390
7391 static int intel_gen6_queue_flip(struct drm_device *dev,
7392                                  struct drm_crtc *crtc,
7393                                  struct drm_framebuffer *fb,
7394                                  struct drm_i915_gem_object *obj)
7395 {
7396         struct drm_i915_private *dev_priv = dev->dev_private;
7397         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7398         uint32_t pf, pipesrc;
7399         int ret;
7400
7401         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7402         if (ret)
7403                 goto out;
7404
7405         ret = BEGIN_LP_RING(4);
7406         if (ret)
7407                 goto out;
7408
7409         OUT_RING(MI_DISPLAY_FLIP |
7410                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7411         OUT_RING(fb->pitches[0] | obj->tiling_mode);
7412         OUT_RING(obj->gtt_offset);
7413
7414         pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7415         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7416         OUT_RING(pf | pipesrc);
7417         ADVANCE_LP_RING();
7418 out:
7419         return ret;
7420 }
7421
7422 /*
7423  * On gen7 we currently use the blit ring because (in early silicon at least)
7424  * the render ring doesn't give us interrpts for page flip completion, which
7425  * means clients will hang after the first flip is queued.  Fortunately the
7426  * blit ring generates interrupts properly, so use it instead.
7427  */
7428 static int intel_gen7_queue_flip(struct drm_device *dev,
7429                                  struct drm_crtc *crtc,
7430                                  struct drm_framebuffer *fb,
7431                                  struct drm_i915_gem_object *obj)
7432 {
7433         struct drm_i915_private *dev_priv = dev->dev_private;
7434         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7435         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7436         int ret;
7437
7438         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7439         if (ret)
7440                 goto out;
7441
7442         ret = intel_ring_begin(ring, 4);
7443         if (ret)
7444                 goto out;
7445
7446         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7447         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7448         intel_ring_emit(ring, (obj->gtt_offset));
7449         intel_ring_emit(ring, (MI_NOOP));
7450         intel_ring_advance(ring);
7451 out:
7452         return ret;
7453 }
7454
7455 static int intel_default_queue_flip(struct drm_device *dev,
7456                                     struct drm_crtc *crtc,
7457                                     struct drm_framebuffer *fb,
7458                                     struct drm_i915_gem_object *obj)
7459 {
7460         return -ENODEV;
7461 }
7462
7463 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7464                                 struct drm_framebuffer *fb,
7465                                 struct drm_pending_vblank_event *event)
7466 {
7467         struct drm_device *dev = crtc->dev;
7468         struct drm_i915_private *dev_priv = dev->dev_private;
7469         struct intel_framebuffer *intel_fb;
7470         struct drm_i915_gem_object *obj;
7471         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7472         struct intel_unpin_work *work;
7473         unsigned long flags;
7474         int ret;
7475
7476         work = kzalloc(sizeof *work, GFP_KERNEL);
7477         if (work == NULL)
7478                 return -ENOMEM;
7479
7480         work->event = event;
7481         work->dev = crtc->dev;
7482         intel_fb = to_intel_framebuffer(crtc->fb);
7483         work->old_fb_obj = intel_fb->obj;
7484         INIT_WORK(&work->work, intel_unpin_work_fn);
7485
7486         ret = drm_vblank_get(dev, intel_crtc->pipe);
7487         if (ret)
7488                 goto free_work;
7489
7490         /* We borrow the event spin lock for protecting unpin_work */
7491         spin_lock_irqsave(&dev->event_lock, flags);
7492         if (intel_crtc->unpin_work) {
7493                 spin_unlock_irqrestore(&dev->event_lock, flags);
7494                 kfree(work);
7495                 drm_vblank_put(dev, intel_crtc->pipe);
7496
7497                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7498                 return -EBUSY;
7499         }
7500         intel_crtc->unpin_work = work;
7501         spin_unlock_irqrestore(&dev->event_lock, flags);
7502
7503         intel_fb = to_intel_framebuffer(fb);
7504         obj = intel_fb->obj;
7505
7506         mutex_lock(&dev->struct_mutex);
7507
7508         /* Reference the objects for the scheduled work. */
7509         drm_gem_object_reference(&work->old_fb_obj->base);
7510         drm_gem_object_reference(&obj->base);
7511
7512         crtc->fb = fb;
7513
7514         work->pending_flip_obj = obj;
7515
7516         work->enable_stall_check = true;
7517
7518         /* Block clients from rendering to the new back buffer until
7519          * the flip occurs and the object is no longer visible.
7520          */
7521         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7522
7523         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7524         if (ret)
7525                 goto cleanup_pending;
7526
7527         intel_disable_fbc(dev);
7528         mutex_unlock(&dev->struct_mutex);
7529
7530         trace_i915_flip_request(intel_crtc->plane, obj);
7531
7532         return 0;
7533
7534 cleanup_pending:
7535         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7536         drm_gem_object_unreference(&work->old_fb_obj->base);
7537         drm_gem_object_unreference(&obj->base);
7538         mutex_unlock(&dev->struct_mutex);
7539
7540         spin_lock_irqsave(&dev->event_lock, flags);
7541         intel_crtc->unpin_work = NULL;
7542         spin_unlock_irqrestore(&dev->event_lock, flags);
7543
7544         drm_vblank_put(dev, intel_crtc->pipe);
7545 free_work:
7546         kfree(work);
7547
7548         return ret;
7549 }
7550
7551 static void intel_sanitize_modesetting(struct drm_device *dev,
7552                                        int pipe, int plane)
7553 {
7554         struct drm_i915_private *dev_priv = dev->dev_private;
7555         u32 reg, val;
7556
7557         if (HAS_PCH_SPLIT(dev))
7558                 return;
7559
7560         /* Who knows what state these registers were left in by the BIOS or
7561          * grub?
7562          *
7563          * If we leave the registers in a conflicting state (e.g. with the
7564          * display plane reading from the other pipe than the one we intend
7565          * to use) then when we attempt to teardown the active mode, we will
7566          * not disable the pipes and planes in the correct order -- leaving
7567          * a plane reading from a disabled pipe and possibly leading to
7568          * undefined behaviour.
7569          */
7570
7571         reg = DSPCNTR(plane);
7572         val = I915_READ(reg);
7573
7574         if ((val & DISPLAY_PLANE_ENABLE) == 0)
7575                 return;
7576         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7577                 return;
7578
7579         /* This display plane is active and attached to the other CPU pipe. */
7580         pipe = !pipe;
7581
7582         /* Disable the plane and wait for it to stop reading from the pipe. */
7583         intel_disable_plane(dev_priv, plane, pipe);
7584         intel_disable_pipe(dev_priv, pipe);
7585 }
7586
7587 static void intel_crtc_reset(struct drm_crtc *crtc)
7588 {
7589         struct drm_device *dev = crtc->dev;
7590         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7591
7592         /* Reset flags back to the 'unknown' status so that they
7593          * will be correctly set on the initial modeset.
7594          */
7595         intel_crtc->dpms_mode = -1;
7596
7597         /* We need to fix up any BIOS configuration that conflicts with
7598          * our expectations.
7599          */
7600         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7601 }
7602
7603 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7604         .dpms = intel_crtc_dpms,
7605         .mode_fixup = intel_crtc_mode_fixup,
7606         .mode_set = intel_crtc_mode_set,
7607         .mode_set_base = intel_pipe_set_base,
7608         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7609         .load_lut = intel_crtc_load_lut,
7610         .disable = intel_crtc_disable,
7611 };
7612
7613 static const struct drm_crtc_funcs intel_crtc_funcs = {
7614         .reset = intel_crtc_reset,
7615         .cursor_set = intel_crtc_cursor_set,
7616         .cursor_move = intel_crtc_cursor_move,
7617         .gamma_set = intel_crtc_gamma_set,
7618         .set_config = drm_crtc_helper_set_config,
7619         .destroy = intel_crtc_destroy,
7620         .page_flip = intel_crtc_page_flip,
7621 };
7622
7623 static void intel_crtc_init(struct drm_device *dev, int pipe)
7624 {
7625         drm_i915_private_t *dev_priv = dev->dev_private;
7626         struct intel_crtc *intel_crtc;
7627         int i;
7628
7629         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7630         if (intel_crtc == NULL)
7631                 return;
7632
7633         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7634
7635         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7636         for (i = 0; i < 256; i++) {
7637                 intel_crtc->lut_r[i] = i;
7638                 intel_crtc->lut_g[i] = i;
7639                 intel_crtc->lut_b[i] = i;
7640         }
7641
7642         /* Swap pipes & planes for FBC on pre-965 */
7643         intel_crtc->pipe = pipe;
7644         intel_crtc->plane = pipe;
7645         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7646                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7647                 intel_crtc->plane = !pipe;
7648         }
7649
7650         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7651                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7652         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7653         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7654
7655         intel_crtc_reset(&intel_crtc->base);
7656         intel_crtc->active = true; /* force the pipe off on setup_init_config */
7657         intel_crtc->bpp = 24; /* default for pre-Ironlake */
7658
7659         if (HAS_PCH_SPLIT(dev)) {
7660                 if (pipe == 2 && IS_IVYBRIDGE(dev))
7661                         intel_crtc->no_pll = true;
7662                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7663                 intel_helper_funcs.commit = ironlake_crtc_commit;
7664         } else {
7665                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7666                 intel_helper_funcs.commit = i9xx_crtc_commit;
7667         }
7668
7669         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7670
7671         intel_crtc->busy = false;
7672
7673         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7674                     (unsigned long)intel_crtc);
7675 }
7676
7677 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7678                                 struct drm_file *file)
7679 {
7680         drm_i915_private_t *dev_priv = dev->dev_private;
7681         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7682         struct drm_mode_object *drmmode_obj;
7683         struct intel_crtc *crtc;
7684
7685         if (!dev_priv) {
7686                 DRM_ERROR("called with no initialization\n");
7687                 return -EINVAL;
7688         }
7689
7690         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7691                         DRM_MODE_OBJECT_CRTC);
7692
7693         if (!drmmode_obj) {
7694                 DRM_ERROR("no such CRTC id\n");
7695                 return -EINVAL;
7696         }
7697
7698         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7699         pipe_from_crtc_id->pipe = crtc->pipe;
7700
7701         return 0;
7702 }
7703
7704 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
7705 {
7706         struct intel_encoder *encoder;
7707         int index_mask = 0;
7708         int entry = 0;
7709
7710         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7711                 if (type_mask & encoder->clone_mask)
7712                         index_mask |= (1 << entry);
7713                 entry++;
7714         }
7715
7716         return index_mask;
7717 }
7718
7719 static bool has_edp_a(struct drm_device *dev)
7720 {
7721         struct drm_i915_private *dev_priv = dev->dev_private;
7722
7723         if (!IS_MOBILE(dev))
7724                 return false;
7725
7726         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7727                 return false;
7728
7729         if (IS_GEN5(dev) &&
7730             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7731                 return false;
7732
7733         return true;
7734 }
7735
7736 static void intel_setup_outputs(struct drm_device *dev)
7737 {
7738         struct drm_i915_private *dev_priv = dev->dev_private;
7739         struct intel_encoder *encoder;
7740         bool dpd_is_edp = false;
7741         bool has_lvds = false;
7742
7743         if (IS_MOBILE(dev) && !IS_I830(dev))
7744                 has_lvds = intel_lvds_init(dev);
7745         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7746                 /* disable the panel fitter on everything but LVDS */
7747                 I915_WRITE(PFIT_CONTROL, 0);
7748         }
7749
7750         if (HAS_PCH_SPLIT(dev)) {
7751                 dpd_is_edp = intel_dpd_is_edp(dev);
7752
7753                 if (has_edp_a(dev))
7754                         intel_dp_init(dev, DP_A);
7755
7756                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7757                         intel_dp_init(dev, PCH_DP_D);
7758         }
7759
7760         intel_crt_init(dev);
7761
7762         if (HAS_PCH_SPLIT(dev)) {
7763                 int found;
7764
7765                 if (I915_READ(HDMIB) & PORT_DETECTED) {
7766                         /* PCH SDVOB multiplex with HDMIB */
7767                         found = intel_sdvo_init(dev, PCH_SDVOB);
7768                         if (!found)
7769                                 intel_hdmi_init(dev, HDMIB);
7770                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7771                                 intel_dp_init(dev, PCH_DP_B);
7772                 }
7773
7774                 if (I915_READ(HDMIC) & PORT_DETECTED)
7775                         intel_hdmi_init(dev, HDMIC);
7776
7777                 if (I915_READ(HDMID) & PORT_DETECTED)
7778                         intel_hdmi_init(dev, HDMID);
7779
7780                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7781                         intel_dp_init(dev, PCH_DP_C);
7782
7783                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7784                         intel_dp_init(dev, PCH_DP_D);
7785
7786         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7787                 bool found = false;
7788
7789                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7790                         DRM_DEBUG_KMS("probing SDVOB\n");
7791                         found = intel_sdvo_init(dev, SDVOB);
7792                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7793                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7794                                 intel_hdmi_init(dev, SDVOB);
7795                         }
7796
7797                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7798                                 DRM_DEBUG_KMS("probing DP_B\n");
7799                                 intel_dp_init(dev, DP_B);
7800                         }
7801                 }
7802
7803                 /* Before G4X SDVOC doesn't have its own detect register */
7804
7805                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7806                         DRM_DEBUG_KMS("probing SDVOC\n");
7807                         found = intel_sdvo_init(dev, SDVOC);
7808                 }
7809
7810                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7811
7812                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7813                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7814                                 intel_hdmi_init(dev, SDVOC);
7815                         }
7816                         if (SUPPORTS_INTEGRATED_DP(dev)) {
7817                                 DRM_DEBUG_KMS("probing DP_C\n");
7818                                 intel_dp_init(dev, DP_C);
7819                         }
7820                 }
7821
7822                 if (SUPPORTS_INTEGRATED_DP(dev) &&
7823                     (I915_READ(DP_D) & DP_DETECTED)) {
7824                         DRM_DEBUG_KMS("probing DP_D\n");
7825                         intel_dp_init(dev, DP_D);
7826                 }
7827         } else if (IS_GEN2(dev))
7828                 intel_dvo_init(dev);
7829
7830         if (SUPPORTS_TV(dev))
7831                 intel_tv_init(dev);
7832
7833         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7834                 encoder->base.possible_crtcs = encoder->crtc_mask;
7835                 encoder->base.possible_clones =
7836                         intel_encoder_clones(dev, encoder->clone_mask);
7837         }
7838
7839         /* disable all the possible outputs/crtcs before entering KMS mode */
7840         drm_helper_disable_unused_functions(dev);
7841
7842         if (HAS_PCH_SPLIT(dev))
7843                 ironlake_init_pch_refclk(dev);
7844 }
7845
7846 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7847 {
7848         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7849
7850         drm_framebuffer_cleanup(fb);
7851         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7852
7853         kfree(intel_fb);
7854 }
7855
7856 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7857                                                 struct drm_file *file,
7858                                                 unsigned int *handle)
7859 {
7860         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7861         struct drm_i915_gem_object *obj = intel_fb->obj;
7862
7863         return drm_gem_handle_create(file, &obj->base, handle);
7864 }
7865
7866 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7867         .destroy = intel_user_framebuffer_destroy,
7868         .create_handle = intel_user_framebuffer_create_handle,
7869 };
7870
7871 int intel_framebuffer_init(struct drm_device *dev,
7872                            struct intel_framebuffer *intel_fb,
7873                            struct drm_mode_fb_cmd2 *mode_cmd,
7874                            struct drm_i915_gem_object *obj)
7875 {
7876         int ret;
7877
7878         if (obj->tiling_mode == I915_TILING_Y)
7879                 return -EINVAL;
7880
7881         if (mode_cmd->pitches[0] & 63)
7882                 return -EINVAL;
7883
7884         switch (mode_cmd->pixel_format) {
7885         case DRM_FORMAT_RGB332:
7886         case DRM_FORMAT_RGB565:
7887         case DRM_FORMAT_XRGB8888:
7888         case DRM_FORMAT_ARGB8888:
7889         case DRM_FORMAT_XRGB2101010:
7890         case DRM_FORMAT_ARGB2101010:
7891                 /* RGB formats are common across chipsets */
7892                 break;
7893         case DRM_FORMAT_YUYV:
7894         case DRM_FORMAT_UYVY:
7895         case DRM_FORMAT_YVYU:
7896         case DRM_FORMAT_VYUY:
7897                 break;
7898         default:
7899                 DRM_DEBUG_KMS("unsupported pixel format %u\n",
7900                                 mode_cmd->pixel_format);
7901                 return -EINVAL;
7902         }
7903
7904         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7905         if (ret) {
7906                 DRM_ERROR("framebuffer init failed %d\n", ret);
7907                 return ret;
7908         }
7909
7910         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7911         intel_fb->obj = obj;
7912         return 0;
7913 }
7914
7915 static struct drm_framebuffer *
7916 intel_user_framebuffer_create(struct drm_device *dev,
7917                               struct drm_file *filp,
7918                               struct drm_mode_fb_cmd2 *mode_cmd)
7919 {
7920         struct drm_i915_gem_object *obj;
7921
7922         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
7923                                                 mode_cmd->handles[0]));
7924         if (&obj->base == NULL)
7925                 return ERR_PTR(-ENOENT);
7926
7927         return intel_framebuffer_create(dev, mode_cmd, obj);
7928 }
7929
7930 static const struct drm_mode_config_funcs intel_mode_funcs = {
7931         .fb_create = intel_user_framebuffer_create,
7932         .output_poll_changed = intel_fb_output_poll_changed,
7933 };
7934
7935 static struct drm_i915_gem_object *
7936 intel_alloc_context_page(struct drm_device *dev)
7937 {
7938         struct drm_i915_gem_object *ctx;
7939         int ret;
7940
7941         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7942
7943         ctx = i915_gem_alloc_object(dev, 4096);
7944         if (!ctx) {
7945                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7946                 return NULL;
7947         }
7948
7949         ret = i915_gem_object_pin(ctx, 4096, true);
7950         if (ret) {
7951                 DRM_ERROR("failed to pin power context: %d\n", ret);
7952                 goto err_unref;
7953         }
7954
7955         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
7956         if (ret) {
7957                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7958                 goto err_unpin;
7959         }
7960
7961         return ctx;
7962
7963 err_unpin:
7964         i915_gem_object_unpin(ctx);
7965 err_unref:
7966         drm_gem_object_unreference(&ctx->base);
7967         mutex_unlock(&dev->struct_mutex);
7968         return NULL;
7969 }
7970
7971 bool ironlake_set_drps(struct drm_device *dev, u8 val)
7972 {
7973         struct drm_i915_private *dev_priv = dev->dev_private;
7974         u16 rgvswctl;
7975
7976         rgvswctl = I915_READ16(MEMSWCTL);
7977         if (rgvswctl & MEMCTL_CMD_STS) {
7978                 DRM_DEBUG("gpu busy, RCS change rejected\n");
7979                 return false; /* still busy with another command */
7980         }
7981
7982         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7983                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7984         I915_WRITE16(MEMSWCTL, rgvswctl);
7985         POSTING_READ16(MEMSWCTL);
7986
7987         rgvswctl |= MEMCTL_CMD_STS;
7988         I915_WRITE16(MEMSWCTL, rgvswctl);
7989
7990         return true;
7991 }
7992
7993 void ironlake_enable_drps(struct drm_device *dev)
7994 {
7995         struct drm_i915_private *dev_priv = dev->dev_private;
7996         u32 rgvmodectl = I915_READ(MEMMODECTL);
7997         u8 fmax, fmin, fstart, vstart;
7998
7999         /* Enable temp reporting */
8000         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
8001         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
8002
8003         /* 100ms RC evaluation intervals */
8004         I915_WRITE(RCUPEI, 100000);
8005         I915_WRITE(RCDNEI, 100000);
8006
8007         /* Set max/min thresholds to 90ms and 80ms respectively */
8008         I915_WRITE(RCBMAXAVG, 90000);
8009         I915_WRITE(RCBMINAVG, 80000);
8010
8011         I915_WRITE(MEMIHYST, 1);
8012
8013         /* Set up min, max, and cur for interrupt handling */
8014         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
8015         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
8016         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
8017                 MEMMODE_FSTART_SHIFT;
8018
8019         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
8020                 PXVFREQ_PX_SHIFT;
8021
8022         dev_priv->fmax = fmax; /* IPS callback will increase this */
8023         dev_priv->fstart = fstart;
8024
8025         dev_priv->max_delay = fstart;
8026         dev_priv->min_delay = fmin;
8027         dev_priv->cur_delay = fstart;
8028
8029         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
8030                          fmax, fmin, fstart);
8031
8032         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
8033
8034         /*
8035          * Interrupts will be enabled in ironlake_irq_postinstall
8036          */
8037
8038         I915_WRITE(VIDSTART, vstart);
8039         POSTING_READ(VIDSTART);
8040
8041         rgvmodectl |= MEMMODE_SWMODE_EN;
8042         I915_WRITE(MEMMODECTL, rgvmodectl);
8043
8044         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
8045                 DRM_ERROR("stuck trying to change perf mode\n");
8046         msleep(1);
8047
8048         ironlake_set_drps(dev, fstart);
8049
8050         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
8051                 I915_READ(0x112e0);
8052         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
8053         dev_priv->last_count2 = I915_READ(0x112f4);
8054         getrawmonotonic(&dev_priv->last_time2);
8055 }
8056
8057 void ironlake_disable_drps(struct drm_device *dev)
8058 {
8059         struct drm_i915_private *dev_priv = dev->dev_private;
8060         u16 rgvswctl = I915_READ16(MEMSWCTL);
8061
8062         /* Ack interrupts, disable EFC interrupt */
8063         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
8064         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
8065         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
8066         I915_WRITE(DEIIR, DE_PCU_EVENT);
8067         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
8068
8069         /* Go back to the starting frequency */
8070         ironlake_set_drps(dev, dev_priv->fstart);
8071         msleep(1);
8072         rgvswctl |= MEMCTL_CMD_STS;
8073         I915_WRITE(MEMSWCTL, rgvswctl);
8074         msleep(1);
8075
8076 }
8077
8078 void gen6_set_rps(struct drm_device *dev, u8 val)
8079 {
8080         struct drm_i915_private *dev_priv = dev->dev_private;
8081         u32 swreq;
8082
8083         swreq = (val & 0x3ff) << 25;
8084         I915_WRITE(GEN6_RPNSWREQ, swreq);
8085 }
8086
8087 void gen6_disable_rps(struct drm_device *dev)
8088 {
8089         struct drm_i915_private *dev_priv = dev->dev_private;
8090
8091         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
8092         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
8093         I915_WRITE(GEN6_PMIER, 0);
8094         /* Complete PM interrupt masking here doesn't race with the rps work
8095          * item again unmasking PM interrupts because that is using a different
8096          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
8097          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
8098
8099         spin_lock_irq(&dev_priv->rps_lock);
8100         dev_priv->pm_iir = 0;
8101         spin_unlock_irq(&dev_priv->rps_lock);
8102
8103         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
8104 }
8105
8106 static unsigned long intel_pxfreq(u32 vidfreq)
8107 {
8108         unsigned long freq;
8109         int div = (vidfreq & 0x3f0000) >> 16;
8110         int post = (vidfreq & 0x3000) >> 12;
8111         int pre = (vidfreq & 0x7);
8112
8113         if (!pre)
8114                 return 0;
8115
8116         freq = ((div * 133333) / ((1<<post) * pre));
8117
8118         return freq;
8119 }
8120
8121 void intel_init_emon(struct drm_device *dev)
8122 {
8123         struct drm_i915_private *dev_priv = dev->dev_private;
8124         u32 lcfuse;
8125         u8 pxw[16];
8126         int i;
8127
8128         /* Disable to program */
8129         I915_WRITE(ECR, 0);
8130         POSTING_READ(ECR);
8131
8132         /* Program energy weights for various events */
8133         I915_WRITE(SDEW, 0x15040d00);
8134         I915_WRITE(CSIEW0, 0x007f0000);
8135         I915_WRITE(CSIEW1, 0x1e220004);
8136         I915_WRITE(CSIEW2, 0x04000004);
8137
8138         for (i = 0; i < 5; i++)
8139                 I915_WRITE(PEW + (i * 4), 0);
8140         for (i = 0; i < 3; i++)
8141                 I915_WRITE(DEW + (i * 4), 0);
8142
8143         /* Program P-state weights to account for frequency power adjustment */
8144         for (i = 0; i < 16; i++) {
8145                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
8146                 unsigned long freq = intel_pxfreq(pxvidfreq);
8147                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8148                         PXVFREQ_PX_SHIFT;
8149                 unsigned long val;
8150
8151                 val = vid * vid;
8152                 val *= (freq / 1000);
8153                 val *= 255;
8154                 val /= (127*127*900);
8155                 if (val > 0xff)
8156                         DRM_ERROR("bad pxval: %ld\n", val);
8157                 pxw[i] = val;
8158         }
8159         /* Render standby states get 0 weight */
8160         pxw[14] = 0;
8161         pxw[15] = 0;
8162
8163         for (i = 0; i < 4; i++) {
8164                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8165                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8166                 I915_WRITE(PXW + (i * 4), val);
8167         }
8168
8169         /* Adjust magic regs to magic values (more experimental results) */
8170         I915_WRITE(OGW0, 0);
8171         I915_WRITE(OGW1, 0);
8172         I915_WRITE(EG0, 0x00007f00);
8173         I915_WRITE(EG1, 0x0000000e);
8174         I915_WRITE(EG2, 0x000e0000);
8175         I915_WRITE(EG3, 0x68000300);
8176         I915_WRITE(EG4, 0x42000000);
8177         I915_WRITE(EG5, 0x00140031);
8178         I915_WRITE(EG6, 0);
8179         I915_WRITE(EG7, 0);
8180
8181         for (i = 0; i < 8; i++)
8182                 I915_WRITE(PXWL + (i * 4), 0);
8183
8184         /* Enable PMON + select events */
8185         I915_WRITE(ECR, 0x80000019);
8186
8187         lcfuse = I915_READ(LCFUSE02);
8188
8189         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
8190 }
8191
8192 static bool intel_enable_rc6(struct drm_device *dev)
8193 {
8194         /*
8195          * Respect the kernel parameter if it is set
8196          */
8197         if (i915_enable_rc6 >= 0)
8198                 return i915_enable_rc6;
8199
8200         /*
8201          * Disable RC6 on Ironlake
8202          */
8203         if (INTEL_INFO(dev)->gen == 5)
8204                 return 0;
8205
8206         /*
8207          * Disable rc6 on Sandybridge
8208          */
8209         if (INTEL_INFO(dev)->gen == 6) {
8210                 DRM_DEBUG_DRIVER("Sandybridge: RC6 disabled\n");
8211                 return 0;
8212         }
8213         DRM_DEBUG_DRIVER("RC6 enabled\n");
8214         return 1;
8215 }
8216
8217 void gen6_enable_rps(struct drm_i915_private *dev_priv)
8218 {
8219         u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
8220         u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
8221         u32 pcu_mbox, rc6_mask = 0;
8222         int cur_freq, min_freq, max_freq;
8223         int i;
8224
8225         /* Here begins a magic sequence of register writes to enable
8226          * auto-downclocking.
8227          *
8228          * Perhaps there might be some value in exposing these to
8229          * userspace...
8230          */
8231         I915_WRITE(GEN6_RC_STATE, 0);
8232         mutex_lock(&dev_priv->dev->struct_mutex);
8233         gen6_gt_force_wake_get(dev_priv);
8234
8235         /* disable the counters and set deterministic thresholds */
8236         I915_WRITE(GEN6_RC_CONTROL, 0);
8237
8238         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
8239         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
8240         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
8241         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8242         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8243
8244         for (i = 0; i < I915_NUM_RINGS; i++)
8245                 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
8246
8247         I915_WRITE(GEN6_RC_SLEEP, 0);
8248         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
8249         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
8250         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
8251         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
8252
8253         if (intel_enable_rc6(dev_priv->dev))
8254                 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
8255                         GEN6_RC_CTL_RC6_ENABLE;
8256
8257         I915_WRITE(GEN6_RC_CONTROL,
8258                    rc6_mask |
8259                    GEN6_RC_CTL_EI_MODE(1) |
8260                    GEN6_RC_CTL_HW_ENABLE);
8261
8262         I915_WRITE(GEN6_RPNSWREQ,
8263                    GEN6_FREQUENCY(10) |
8264                    GEN6_OFFSET(0) |
8265                    GEN6_AGGRESSIVE_TURBO);
8266         I915_WRITE(GEN6_RC_VIDEO_FREQ,
8267                    GEN6_FREQUENCY(12));
8268
8269         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8270         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
8271                    18 << 24 |
8272                    6 << 16);
8273         I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
8274         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8275         I915_WRITE(GEN6_RP_UP_EI, 100000);
8276         I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8277         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8278         I915_WRITE(GEN6_RP_CONTROL,
8279                    GEN6_RP_MEDIA_TURBO |
8280                    GEN6_RP_MEDIA_HW_MODE |
8281                    GEN6_RP_MEDIA_IS_GFX |
8282                    GEN6_RP_ENABLE |
8283                    GEN6_RP_UP_BUSY_AVG |
8284                    GEN6_RP_DOWN_IDLE_CONT);
8285
8286         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8287                      500))
8288                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8289
8290         I915_WRITE(GEN6_PCODE_DATA, 0);
8291         I915_WRITE(GEN6_PCODE_MAILBOX,
8292                    GEN6_PCODE_READY |
8293                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8294         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8295                      500))
8296                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8297
8298         min_freq = (rp_state_cap & 0xff0000) >> 16;
8299         max_freq = rp_state_cap & 0xff;
8300         cur_freq = (gt_perf_status & 0xff00) >> 8;
8301
8302         /* Check for overclock support */
8303         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8304                      500))
8305                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8306         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
8307         pcu_mbox = I915_READ(GEN6_PCODE_DATA);
8308         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8309                      500))
8310                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8311         if (pcu_mbox & (1<<31)) { /* OC supported */
8312                 max_freq = pcu_mbox & 0xff;
8313                 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
8314         }
8315
8316         /* In units of 100MHz */
8317         dev_priv->max_delay = max_freq;
8318         dev_priv->min_delay = min_freq;
8319         dev_priv->cur_delay = cur_freq;
8320
8321         /* requires MSI enabled */
8322         I915_WRITE(GEN6_PMIER,
8323                    GEN6_PM_MBOX_EVENT |
8324                    GEN6_PM_THERMAL_EVENT |
8325                    GEN6_PM_RP_DOWN_TIMEOUT |
8326                    GEN6_PM_RP_UP_THRESHOLD |
8327                    GEN6_PM_RP_DOWN_THRESHOLD |
8328                    GEN6_PM_RP_UP_EI_EXPIRED |
8329                    GEN6_PM_RP_DOWN_EI_EXPIRED);
8330         spin_lock_irq(&dev_priv->rps_lock);
8331         WARN_ON(dev_priv->pm_iir != 0);
8332         I915_WRITE(GEN6_PMIMR, 0);
8333         spin_unlock_irq(&dev_priv->rps_lock);
8334         /* enable all PM interrupts */
8335         I915_WRITE(GEN6_PMINTRMSK, 0);
8336
8337         gen6_gt_force_wake_put(dev_priv);
8338         mutex_unlock(&dev_priv->dev->struct_mutex);
8339 }
8340
8341 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8342 {
8343         int min_freq = 15;
8344         int gpu_freq, ia_freq, max_ia_freq;
8345         int scaling_factor = 180;
8346
8347         max_ia_freq = cpufreq_quick_get_max(0);
8348         /*
8349          * Default to measured freq if none found, PCU will ensure we don't go
8350          * over
8351          */
8352         if (!max_ia_freq)
8353                 max_ia_freq = tsc_khz;
8354
8355         /* Convert from kHz to MHz */
8356         max_ia_freq /= 1000;
8357
8358         mutex_lock(&dev_priv->dev->struct_mutex);
8359
8360         /*
8361          * For each potential GPU frequency, load a ring frequency we'd like
8362          * to use for memory access.  We do this by specifying the IA frequency
8363          * the PCU should use as a reference to determine the ring frequency.
8364          */
8365         for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8366              gpu_freq--) {
8367                 int diff = dev_priv->max_delay - gpu_freq;
8368
8369                 /*
8370                  * For GPU frequencies less than 750MHz, just use the lowest
8371                  * ring freq.
8372                  */
8373                 if (gpu_freq < min_freq)
8374                         ia_freq = 800;
8375                 else
8376                         ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8377                 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
8378
8379                 I915_WRITE(GEN6_PCODE_DATA,
8380                            (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8381                            gpu_freq);
8382                 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8383                            GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8384                 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
8385                               GEN6_PCODE_READY) == 0, 10)) {
8386                         DRM_ERROR("pcode write of freq table timed out\n");
8387                         continue;
8388                 }
8389         }
8390
8391         mutex_unlock(&dev_priv->dev->struct_mutex);
8392 }
8393
8394 static void ironlake_init_clock_gating(struct drm_device *dev)
8395 {
8396         struct drm_i915_private *dev_priv = dev->dev_private;
8397         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8398
8399         /* Required for FBC */
8400         dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8401                 DPFCRUNIT_CLOCK_GATE_DISABLE |
8402                 DPFDUNIT_CLOCK_GATE_DISABLE;
8403         /* Required for CxSR */
8404         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8405
8406         I915_WRITE(PCH_3DCGDIS0,
8407                    MARIUNIT_CLOCK_GATE_DISABLE |
8408                    SVSMUNIT_CLOCK_GATE_DISABLE);
8409         I915_WRITE(PCH_3DCGDIS1,
8410                    VFMUNIT_CLOCK_GATE_DISABLE);
8411
8412         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8413
8414         /*
8415          * According to the spec the following bits should be set in
8416          * order to enable memory self-refresh
8417          * The bit 22/21 of 0x42004
8418          * The bit 5 of 0x42020
8419          * The bit 15 of 0x45000
8420          */
8421         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8422                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
8423                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8424         I915_WRITE(ILK_DSPCLK_GATE,
8425                    (I915_READ(ILK_DSPCLK_GATE) |
8426                     ILK_DPARB_CLK_GATE));
8427         I915_WRITE(DISP_ARB_CTL,
8428                    (I915_READ(DISP_ARB_CTL) |
8429                     DISP_FBC_WM_DIS));
8430         I915_WRITE(WM3_LP_ILK, 0);
8431         I915_WRITE(WM2_LP_ILK, 0);
8432         I915_WRITE(WM1_LP_ILK, 0);
8433
8434         /*
8435          * Based on the document from hardware guys the following bits
8436          * should be set unconditionally in order to enable FBC.
8437          * The bit 22 of 0x42000
8438          * The bit 22 of 0x42004
8439          * The bit 7,8,9 of 0x42020.
8440          */
8441         if (IS_IRONLAKE_M(dev)) {
8442                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8443                            I915_READ(ILK_DISPLAY_CHICKEN1) |
8444                            ILK_FBCQ_DIS);
8445                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8446                            I915_READ(ILK_DISPLAY_CHICKEN2) |
8447                            ILK_DPARB_GATE);
8448                 I915_WRITE(ILK_DSPCLK_GATE,
8449                            I915_READ(ILK_DSPCLK_GATE) |
8450                            ILK_DPFC_DIS1 |
8451                            ILK_DPFC_DIS2 |
8452                            ILK_CLK_FBC);
8453         }
8454
8455         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8456                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8457                    ILK_ELPIN_409_SELECT);
8458         I915_WRITE(_3D_CHICKEN2,
8459                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8460                    _3D_CHICKEN2_WM_READ_PIPELINED);
8461 }
8462
8463 static void gen6_init_clock_gating(struct drm_device *dev)
8464 {
8465         struct drm_i915_private *dev_priv = dev->dev_private;
8466         int pipe;
8467         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8468
8469         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8470
8471         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8472                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8473                    ILK_ELPIN_409_SELECT);
8474
8475         I915_WRITE(WM3_LP_ILK, 0);
8476         I915_WRITE(WM2_LP_ILK, 0);
8477         I915_WRITE(WM1_LP_ILK, 0);
8478
8479         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8480          * gating disable must be set.  Failure to set it results in
8481          * flickering pixels due to Z write ordering failures after
8482          * some amount of runtime in the Mesa "fire" demo, and Unigine
8483          * Sanctuary and Tropics, and apparently anything else with
8484          * alpha test or pixel discard.
8485          *
8486          * According to the spec, bit 11 (RCCUNIT) must also be set,
8487          * but we didn't debug actual testcases to find it out.
8488          */
8489         I915_WRITE(GEN6_UCGCTL2,
8490                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8491                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8492
8493         /*
8494          * According to the spec the following bits should be
8495          * set in order to enable memory self-refresh and fbc:
8496          * The bit21 and bit22 of 0x42000
8497          * The bit21 and bit22 of 0x42004
8498          * The bit5 and bit7 of 0x42020
8499          * The bit14 of 0x70180
8500          * The bit14 of 0x71180
8501          */
8502         I915_WRITE(ILK_DISPLAY_CHICKEN1,
8503                    I915_READ(ILK_DISPLAY_CHICKEN1) |
8504                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8505         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8506                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8507                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8508         I915_WRITE(ILK_DSPCLK_GATE,
8509                    I915_READ(ILK_DSPCLK_GATE) |
8510                    ILK_DPARB_CLK_GATE  |
8511                    ILK_DPFD_CLK_GATE);
8512
8513         for_each_pipe(pipe) {
8514                 I915_WRITE(DSPCNTR(pipe),
8515                            I915_READ(DSPCNTR(pipe)) |
8516                            DISPPLANE_TRICKLE_FEED_DISABLE);
8517                 intel_flush_display_plane(dev_priv, pipe);
8518         }
8519 }
8520
8521 static void ivybridge_init_clock_gating(struct drm_device *dev)
8522 {
8523         struct drm_i915_private *dev_priv = dev->dev_private;
8524         int pipe;
8525         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8526
8527         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8528
8529         I915_WRITE(WM3_LP_ILK, 0);
8530         I915_WRITE(WM2_LP_ILK, 0);
8531         I915_WRITE(WM1_LP_ILK, 0);
8532
8533         I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8534
8535         I915_WRITE(IVB_CHICKEN3,
8536                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8537                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
8538
8539         for_each_pipe(pipe) {
8540                 I915_WRITE(DSPCNTR(pipe),
8541                            I915_READ(DSPCNTR(pipe)) |
8542                            DISPPLANE_TRICKLE_FEED_DISABLE);
8543                 intel_flush_display_plane(dev_priv, pipe);
8544         }
8545 }
8546
8547 static void g4x_init_clock_gating(struct drm_device *dev)
8548 {
8549         struct drm_i915_private *dev_priv = dev->dev_private;
8550         uint32_t dspclk_gate;
8551
8552         I915_WRITE(RENCLK_GATE_D1, 0);
8553         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8554                    GS_UNIT_CLOCK_GATE_DISABLE |
8555                    CL_UNIT_CLOCK_GATE_DISABLE);
8556         I915_WRITE(RAMCLK_GATE_D, 0);
8557         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8558                 OVRUNIT_CLOCK_GATE_DISABLE |
8559                 OVCUNIT_CLOCK_GATE_DISABLE;
8560         if (IS_GM45(dev))
8561                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8562         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8563 }
8564
8565 static void crestline_init_clock_gating(struct drm_device *dev)
8566 {
8567         struct drm_i915_private *dev_priv = dev->dev_private;
8568
8569         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8570         I915_WRITE(RENCLK_GATE_D2, 0);
8571         I915_WRITE(DSPCLK_GATE_D, 0);
8572         I915_WRITE(RAMCLK_GATE_D, 0);
8573         I915_WRITE16(DEUC, 0);
8574 }
8575
8576 static void broadwater_init_clock_gating(struct drm_device *dev)
8577 {
8578         struct drm_i915_private *dev_priv = dev->dev_private;
8579
8580         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8581                    I965_RCC_CLOCK_GATE_DISABLE |
8582                    I965_RCPB_CLOCK_GATE_DISABLE |
8583                    I965_ISC_CLOCK_GATE_DISABLE |
8584                    I965_FBC_CLOCK_GATE_DISABLE);
8585         I915_WRITE(RENCLK_GATE_D2, 0);
8586 }
8587
8588 static void gen3_init_clock_gating(struct drm_device *dev)
8589 {
8590         struct drm_i915_private *dev_priv = dev->dev_private;
8591         u32 dstate = I915_READ(D_STATE);
8592
8593         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8594                 DSTATE_DOT_CLOCK_GATING;
8595         I915_WRITE(D_STATE, dstate);
8596 }
8597
8598 static void i85x_init_clock_gating(struct drm_device *dev)
8599 {
8600         struct drm_i915_private *dev_priv = dev->dev_private;
8601
8602         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8603 }
8604
8605 static void i830_init_clock_gating(struct drm_device *dev)
8606 {
8607         struct drm_i915_private *dev_priv = dev->dev_private;
8608
8609         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
8610 }
8611
8612 static void ibx_init_clock_gating(struct drm_device *dev)
8613 {
8614         struct drm_i915_private *dev_priv = dev->dev_private;
8615
8616         /*
8617          * On Ibex Peak and Cougar Point, we need to disable clock
8618          * gating for the panel power sequencer or it will fail to
8619          * start up when no ports are active.
8620          */
8621         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8622 }
8623
8624 static void cpt_init_clock_gating(struct drm_device *dev)
8625 {
8626         struct drm_i915_private *dev_priv = dev->dev_private;
8627         int pipe;
8628
8629         /*
8630          * On Ibex Peak and Cougar Point, we need to disable clock
8631          * gating for the panel power sequencer or it will fail to
8632          * start up when no ports are active.
8633          */
8634         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8635         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8636                    DPLS_EDP_PPS_FIX_DIS);
8637         /* Without this, mode sets may fail silently on FDI */
8638         for_each_pipe(pipe)
8639                 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
8640 }
8641
8642 static void ironlake_teardown_rc6(struct drm_device *dev)
8643 {
8644         struct drm_i915_private *dev_priv = dev->dev_private;
8645
8646         if (dev_priv->renderctx) {
8647                 i915_gem_object_unpin(dev_priv->renderctx);
8648                 drm_gem_object_unreference(&dev_priv->renderctx->base);
8649                 dev_priv->renderctx = NULL;
8650         }
8651
8652         if (dev_priv->pwrctx) {
8653                 i915_gem_object_unpin(dev_priv->pwrctx);
8654                 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8655                 dev_priv->pwrctx = NULL;
8656         }
8657 }
8658
8659 static void ironlake_disable_rc6(struct drm_device *dev)
8660 {
8661         struct drm_i915_private *dev_priv = dev->dev_private;
8662
8663         if (I915_READ(PWRCTXA)) {
8664                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8665                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8666                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8667                          50);
8668
8669                 I915_WRITE(PWRCTXA, 0);
8670                 POSTING_READ(PWRCTXA);
8671
8672                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8673                 POSTING_READ(RSTDBYCTL);
8674         }
8675
8676         ironlake_teardown_rc6(dev);
8677 }
8678
8679 static int ironlake_setup_rc6(struct drm_device *dev)
8680 {
8681         struct drm_i915_private *dev_priv = dev->dev_private;
8682
8683         if (dev_priv->renderctx == NULL)
8684                 dev_priv->renderctx = intel_alloc_context_page(dev);
8685         if (!dev_priv->renderctx)
8686                 return -ENOMEM;
8687
8688         if (dev_priv->pwrctx == NULL)
8689                 dev_priv->pwrctx = intel_alloc_context_page(dev);
8690         if (!dev_priv->pwrctx) {
8691                 ironlake_teardown_rc6(dev);
8692                 return -ENOMEM;
8693         }
8694
8695         return 0;
8696 }
8697
8698 void ironlake_enable_rc6(struct drm_device *dev)
8699 {
8700         struct drm_i915_private *dev_priv = dev->dev_private;
8701         int ret;
8702
8703         /* rc6 disabled by default due to repeated reports of hanging during
8704          * boot and resume.
8705          */
8706         if (!intel_enable_rc6(dev))
8707                 return;
8708
8709         mutex_lock(&dev->struct_mutex);
8710         ret = ironlake_setup_rc6(dev);
8711         if (ret) {
8712                 mutex_unlock(&dev->struct_mutex);
8713                 return;
8714         }
8715
8716         /*
8717          * GPU can automatically power down the render unit if given a page
8718          * to save state.
8719          */
8720         ret = BEGIN_LP_RING(6);
8721         if (ret) {
8722                 ironlake_teardown_rc6(dev);
8723                 mutex_unlock(&dev->struct_mutex);
8724                 return;
8725         }
8726
8727         OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8728         OUT_RING(MI_SET_CONTEXT);
8729         OUT_RING(dev_priv->renderctx->gtt_offset |
8730                  MI_MM_SPACE_GTT |
8731                  MI_SAVE_EXT_STATE_EN |
8732                  MI_RESTORE_EXT_STATE_EN |
8733                  MI_RESTORE_INHIBIT);
8734         OUT_RING(MI_SUSPEND_FLUSH);
8735         OUT_RING(MI_NOOP);
8736         OUT_RING(MI_FLUSH);
8737         ADVANCE_LP_RING();
8738
8739         /*
8740          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8741          * does an implicit flush, combined with MI_FLUSH above, it should be
8742          * safe to assume that renderctx is valid
8743          */
8744         ret = intel_wait_ring_idle(LP_RING(dev_priv));
8745         if (ret) {
8746                 DRM_ERROR("failed to enable ironlake power power savings\n");
8747                 ironlake_teardown_rc6(dev);
8748                 mutex_unlock(&dev->struct_mutex);
8749                 return;
8750         }
8751
8752         I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8753         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8754         mutex_unlock(&dev->struct_mutex);
8755 }
8756
8757 void intel_init_clock_gating(struct drm_device *dev)
8758 {
8759         struct drm_i915_private *dev_priv = dev->dev_private;
8760
8761         dev_priv->display.init_clock_gating(dev);
8762
8763         if (dev_priv->display.init_pch_clock_gating)
8764                 dev_priv->display.init_pch_clock_gating(dev);
8765 }
8766
8767 /* Set up chip specific display functions */
8768 static void intel_init_display(struct drm_device *dev)
8769 {
8770         struct drm_i915_private *dev_priv = dev->dev_private;
8771
8772         /* We always want a DPMS function */
8773         if (HAS_PCH_SPLIT(dev)) {
8774                 dev_priv->display.dpms = ironlake_crtc_dpms;
8775                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8776                 dev_priv->display.update_plane = ironlake_update_plane;
8777         } else {
8778                 dev_priv->display.dpms = i9xx_crtc_dpms;
8779                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8780                 dev_priv->display.update_plane = i9xx_update_plane;
8781         }
8782
8783         if (I915_HAS_FBC(dev)) {
8784                 if (HAS_PCH_SPLIT(dev)) {
8785                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8786                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
8787                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
8788                 } else if (IS_GM45(dev)) {
8789                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8790                         dev_priv->display.enable_fbc = g4x_enable_fbc;
8791                         dev_priv->display.disable_fbc = g4x_disable_fbc;
8792                 } else if (IS_CRESTLINE(dev)) {
8793                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8794                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
8795                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
8796                 }
8797                 /* 855GM needs testing */
8798         }
8799
8800         /* Returns the core display clock speed */
8801         if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8802                 dev_priv->display.get_display_clock_speed =
8803                         i945_get_display_clock_speed;
8804         else if (IS_I915G(dev))
8805                 dev_priv->display.get_display_clock_speed =
8806                         i915_get_display_clock_speed;
8807         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8808                 dev_priv->display.get_display_clock_speed =
8809                         i9xx_misc_get_display_clock_speed;
8810         else if (IS_I915GM(dev))
8811                 dev_priv->display.get_display_clock_speed =
8812                         i915gm_get_display_clock_speed;
8813         else if (IS_I865G(dev))
8814                 dev_priv->display.get_display_clock_speed =
8815                         i865_get_display_clock_speed;
8816         else if (IS_I85X(dev))
8817                 dev_priv->display.get_display_clock_speed =
8818                         i855_get_display_clock_speed;
8819         else /* 852, 830 */
8820                 dev_priv->display.get_display_clock_speed =
8821                         i830_get_display_clock_speed;
8822
8823         /* For FIFO watermark updates */
8824         if (HAS_PCH_SPLIT(dev)) {
8825                 dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
8826                 dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
8827
8828                 /* IVB configs may use multi-threaded forcewake */
8829                 if (IS_IVYBRIDGE(dev)) {
8830                         u32     ecobus;
8831
8832                         /* A small trick here - if the bios hasn't configured MT forcewake,
8833                          * and if the device is in RC6, then force_wake_mt_get will not wake
8834                          * the device and the ECOBUS read will return zero. Which will be
8835                          * (correctly) interpreted by the test below as MT forcewake being
8836                          * disabled.
8837                          */
8838                         mutex_lock(&dev->struct_mutex);
8839                         __gen6_gt_force_wake_mt_get(dev_priv);
8840                         ecobus = I915_READ_NOTRACE(ECOBUS);
8841                         __gen6_gt_force_wake_mt_put(dev_priv);
8842                         mutex_unlock(&dev->struct_mutex);
8843
8844                         if (ecobus & FORCEWAKE_MT_ENABLE) {
8845                                 DRM_DEBUG_KMS("Using MT version of forcewake\n");
8846                                 dev_priv->display.force_wake_get =
8847                                         __gen6_gt_force_wake_mt_get;
8848                                 dev_priv->display.force_wake_put =
8849                                         __gen6_gt_force_wake_mt_put;
8850                         }
8851                 }
8852
8853                 if (HAS_PCH_IBX(dev))
8854                         dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8855                 else if (HAS_PCH_CPT(dev))
8856                         dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8857
8858                 if (IS_GEN5(dev)) {
8859                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8860                                 dev_priv->display.update_wm = ironlake_update_wm;
8861                         else {
8862                                 DRM_DEBUG_KMS("Failed to get proper latency. "
8863                                               "Disable CxSR\n");
8864                                 dev_priv->display.update_wm = NULL;
8865                         }
8866                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8867                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8868                         dev_priv->display.write_eld = ironlake_write_eld;
8869                 } else if (IS_GEN6(dev)) {
8870                         if (SNB_READ_WM0_LATENCY()) {
8871                                 dev_priv->display.update_wm = sandybridge_update_wm;
8872                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
8873                         } else {
8874                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
8875                                               "Disable CxSR\n");
8876                                 dev_priv->display.update_wm = NULL;
8877                         }
8878                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8879                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8880                         dev_priv->display.write_eld = ironlake_write_eld;
8881                 } else if (IS_IVYBRIDGE(dev)) {
8882                         /* FIXME: detect B0+ stepping and use auto training */
8883                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8884                         if (SNB_READ_WM0_LATENCY()) {
8885                                 dev_priv->display.update_wm = sandybridge_update_wm;
8886                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
8887                         } else {
8888                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
8889                                               "Disable CxSR\n");
8890                                 dev_priv->display.update_wm = NULL;
8891                         }
8892                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8893                         dev_priv->display.write_eld = ironlake_write_eld;
8894                 } else
8895                         dev_priv->display.update_wm = NULL;
8896         } else if (IS_PINEVIEW(dev)) {
8897                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
8898                                             dev_priv->is_ddr3,
8899                                             dev_priv->fsb_freq,
8900                                             dev_priv->mem_freq)) {
8901                         DRM_INFO("failed to find known CxSR latency "
8902                                  "(found ddr%s fsb freq %d, mem freq %d), "
8903                                  "disabling CxSR\n",
8904                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
8905                                  dev_priv->fsb_freq, dev_priv->mem_freq);
8906                         /* Disable CxSR and never update its watermark again */
8907                         pineview_disable_cxsr(dev);
8908                         dev_priv->display.update_wm = NULL;
8909                 } else
8910                         dev_priv->display.update_wm = pineview_update_wm;
8911                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8912         } else if (IS_G4X(dev)) {
8913                 dev_priv->display.write_eld = g4x_write_eld;
8914                 dev_priv->display.update_wm = g4x_update_wm;
8915                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8916         } else if (IS_GEN4(dev)) {
8917                 dev_priv->display.update_wm = i965_update_wm;
8918                 if (IS_CRESTLINE(dev))
8919                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8920                 else if (IS_BROADWATER(dev))
8921                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8922         } else if (IS_GEN3(dev)) {
8923                 dev_priv->display.update_wm = i9xx_update_wm;
8924                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8925                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8926         } else if (IS_I865G(dev)) {
8927                 dev_priv->display.update_wm = i830_update_wm;
8928                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8929                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8930         } else if (IS_I85X(dev)) {
8931                 dev_priv->display.update_wm = i9xx_update_wm;
8932                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
8933                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8934         } else {
8935                 dev_priv->display.update_wm = i830_update_wm;
8936                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8937                 if (IS_845G(dev))
8938                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
8939                 else
8940                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
8941         }
8942
8943         /* Default just returns -ENODEV to indicate unsupported */
8944         dev_priv->display.queue_flip = intel_default_queue_flip;
8945
8946         switch (INTEL_INFO(dev)->gen) {
8947         case 2:
8948                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8949                 break;
8950
8951         case 3:
8952                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8953                 break;
8954
8955         case 4:
8956         case 5:
8957                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8958                 break;
8959
8960         case 6:
8961                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8962                 break;
8963         case 7:
8964                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8965                 break;
8966         }
8967 }
8968
8969 /*
8970  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8971  * resume, or other times.  This quirk makes sure that's the case for
8972  * affected systems.
8973  */
8974 static void quirk_pipea_force(struct drm_device *dev)
8975 {
8976         struct drm_i915_private *dev_priv = dev->dev_private;
8977
8978         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8979         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8980 }
8981
8982 /*
8983  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8984  */
8985 static void quirk_ssc_force_disable(struct drm_device *dev)
8986 {
8987         struct drm_i915_private *dev_priv = dev->dev_private;
8988         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8989 }
8990
8991 struct intel_quirk {
8992         int device;
8993         int subsystem_vendor;
8994         int subsystem_device;
8995         void (*hook)(struct drm_device *dev);
8996 };
8997
8998 struct intel_quirk intel_quirks[] = {
8999         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
9000         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
9001         /* HP Mini needs pipe A force quirk (LP: #322104) */
9002         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9003
9004         /* Thinkpad R31 needs pipe A force quirk */
9005         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
9006         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9007         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9008
9009         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
9010         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
9011         /* ThinkPad X40 needs pipe A force quirk */
9012
9013         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9014         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9015
9016         /* 855 & before need to leave pipe A & dpll A up */
9017         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9018         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9019
9020         /* Lenovo U160 cannot use SSC on LVDS */
9021         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9022
9023         /* Sony Vaio Y cannot use SSC on LVDS */
9024         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9025 };
9026
9027 static void intel_init_quirks(struct drm_device *dev)
9028 {
9029         struct pci_dev *d = dev->pdev;
9030         int i;
9031
9032         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9033                 struct intel_quirk *q = &intel_quirks[i];
9034
9035                 if (d->device == q->device &&
9036                     (d->subsystem_vendor == q->subsystem_vendor ||
9037                      q->subsystem_vendor == PCI_ANY_ID) &&
9038                     (d->subsystem_device == q->subsystem_device ||
9039                      q->subsystem_device == PCI_ANY_ID))
9040                         q->hook(dev);
9041         }
9042 }
9043
9044 /* Disable the VGA plane that we never use */
9045 static void i915_disable_vga(struct drm_device *dev)
9046 {
9047         struct drm_i915_private *dev_priv = dev->dev_private;
9048         u8 sr1;
9049         u32 vga_reg;
9050
9051         if (HAS_PCH_SPLIT(dev))
9052                 vga_reg = CPU_VGACNTRL;
9053         else
9054                 vga_reg = VGACNTRL;
9055
9056         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9057         outb(1, VGA_SR_INDEX);
9058         sr1 = inb(VGA_SR_DATA);
9059         outb(sr1 | 1<<5, VGA_SR_DATA);
9060         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9061         udelay(300);
9062
9063         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9064         POSTING_READ(vga_reg);
9065 }
9066
9067 void intel_modeset_init(struct drm_device *dev)
9068 {
9069         struct drm_i915_private *dev_priv = dev->dev_private;
9070         int i, ret;
9071
9072         drm_mode_config_init(dev);
9073
9074         dev->mode_config.min_width = 0;
9075         dev->mode_config.min_height = 0;
9076
9077         dev->mode_config.funcs = (void *)&intel_mode_funcs;
9078
9079         intel_init_quirks(dev);
9080
9081         intel_init_display(dev);
9082
9083         if (IS_GEN2(dev)) {
9084                 dev->mode_config.max_width = 2048;
9085                 dev->mode_config.max_height = 2048;
9086         } else if (IS_GEN3(dev)) {
9087                 dev->mode_config.max_width = 4096;
9088                 dev->mode_config.max_height = 4096;
9089         } else {
9090                 dev->mode_config.max_width = 8192;
9091                 dev->mode_config.max_height = 8192;
9092         }
9093         dev->mode_config.fb_base = dev->agp->base;
9094
9095         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9096                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
9097
9098         for (i = 0; i < dev_priv->num_pipe; i++) {
9099                 intel_crtc_init(dev, i);
9100                 ret = intel_plane_init(dev, i);
9101                 if (ret)
9102                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
9103         }
9104
9105         /* Just disable it once at startup */
9106         i915_disable_vga(dev);
9107         intel_setup_outputs(dev);
9108
9109         intel_init_clock_gating(dev);
9110
9111         if (IS_IRONLAKE_M(dev)) {
9112                 ironlake_enable_drps(dev);
9113                 intel_init_emon(dev);
9114         }
9115
9116         if (IS_GEN6(dev) || IS_GEN7(dev)) {
9117                 gen6_enable_rps(dev_priv);
9118                 gen6_update_ring_freq(dev_priv);
9119         }
9120
9121         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
9122         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
9123                     (unsigned long)dev);
9124 }
9125
9126 void intel_modeset_gem_init(struct drm_device *dev)
9127 {
9128         if (IS_IRONLAKE_M(dev))
9129                 ironlake_enable_rc6(dev);
9130
9131         intel_setup_overlay(dev);
9132 }
9133
9134 void intel_modeset_cleanup(struct drm_device *dev)
9135 {
9136         struct drm_i915_private *dev_priv = dev->dev_private;
9137         struct drm_crtc *crtc;
9138         struct intel_crtc *intel_crtc;
9139
9140         drm_kms_helper_poll_fini(dev);
9141         mutex_lock(&dev->struct_mutex);
9142
9143         intel_unregister_dsm_handler();
9144
9145
9146         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9147                 /* Skip inactive CRTCs */
9148                 if (!crtc->fb)
9149                         continue;
9150
9151                 intel_crtc = to_intel_crtc(crtc);
9152                 intel_increase_pllclock(crtc);
9153         }
9154
9155         intel_disable_fbc(dev);
9156
9157         if (IS_IRONLAKE_M(dev))
9158                 ironlake_disable_drps(dev);
9159         if (IS_GEN6(dev) || IS_GEN7(dev))
9160                 gen6_disable_rps(dev);
9161
9162         if (IS_IRONLAKE_M(dev))
9163                 ironlake_disable_rc6(dev);
9164
9165         mutex_unlock(&dev->struct_mutex);
9166
9167         /* Disable the irq before mode object teardown, for the irq might
9168          * enqueue unpin/hotplug work. */
9169         drm_irq_uninstall(dev);
9170         cancel_work_sync(&dev_priv->hotplug_work);
9171         cancel_work_sync(&dev_priv->rps_work);
9172
9173         /* flush any delayed tasks or pending work */
9174         flush_scheduled_work();
9175
9176         /* Shut off idle work before the crtcs get freed. */
9177         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9178                 intel_crtc = to_intel_crtc(crtc);
9179                 del_timer_sync(&intel_crtc->idle_timer);
9180         }
9181         del_timer_sync(&dev_priv->idle_timer);
9182         cancel_work_sync(&dev_priv->idle_work);
9183
9184         drm_mode_config_cleanup(dev);
9185 }
9186
9187 /*
9188  * Return which encoder is currently attached for connector.
9189  */
9190 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9191 {
9192         return &intel_attached_encoder(connector)->base;
9193 }
9194
9195 void intel_connector_attach_encoder(struct intel_connector *connector,
9196                                     struct intel_encoder *encoder)
9197 {
9198         connector->encoder = encoder;
9199         drm_mode_connector_attach_encoder(&connector->base,
9200                                           &encoder->base);
9201 }
9202
9203 /*
9204  * set vga decode state - true == enable VGA decode
9205  */
9206 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9207 {
9208         struct drm_i915_private *dev_priv = dev->dev_private;
9209         u16 gmch_ctrl;
9210
9211         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9212         if (state)
9213                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9214         else
9215                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9216         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9217         return 0;
9218 }
9219
9220 #ifdef CONFIG_DEBUG_FS
9221 #include <linux/seq_file.h>
9222
9223 struct intel_display_error_state {
9224         struct intel_cursor_error_state {
9225                 u32 control;
9226                 u32 position;
9227                 u32 base;
9228                 u32 size;
9229         } cursor[2];
9230
9231         struct intel_pipe_error_state {
9232                 u32 conf;
9233                 u32 source;
9234
9235                 u32 htotal;
9236                 u32 hblank;
9237                 u32 hsync;
9238                 u32 vtotal;
9239                 u32 vblank;
9240                 u32 vsync;
9241         } pipe[2];
9242
9243         struct intel_plane_error_state {
9244                 u32 control;
9245                 u32 stride;
9246                 u32 size;
9247                 u32 pos;
9248                 u32 addr;
9249                 u32 surface;
9250                 u32 tile_offset;
9251         } plane[2];
9252 };
9253
9254 struct intel_display_error_state *
9255 intel_display_capture_error_state(struct drm_device *dev)
9256 {
9257         drm_i915_private_t *dev_priv = dev->dev_private;
9258         struct intel_display_error_state *error;
9259         int i;
9260
9261         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9262         if (error == NULL)
9263                 return NULL;
9264
9265         for (i = 0; i < 2; i++) {
9266                 error->cursor[i].control = I915_READ(CURCNTR(i));
9267                 error->cursor[i].position = I915_READ(CURPOS(i));
9268                 error->cursor[i].base = I915_READ(CURBASE(i));
9269
9270                 error->plane[i].control = I915_READ(DSPCNTR(i));
9271                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9272                 error->plane[i].size = I915_READ(DSPSIZE(i));
9273                 error->plane[i].pos = I915_READ(DSPPOS(i));
9274                 error->plane[i].addr = I915_READ(DSPADDR(i));
9275                 if (INTEL_INFO(dev)->gen >= 4) {
9276                         error->plane[i].surface = I915_READ(DSPSURF(i));
9277                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9278                 }
9279
9280                 error->pipe[i].conf = I915_READ(PIPECONF(i));
9281                 error->pipe[i].source = I915_READ(PIPESRC(i));
9282                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
9283                 error->pipe[i].hblank = I915_READ(HBLANK(i));
9284                 error->pipe[i].hsync = I915_READ(HSYNC(i));
9285                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
9286                 error->pipe[i].vblank = I915_READ(VBLANK(i));
9287                 error->pipe[i].vsync = I915_READ(VSYNC(i));
9288         }
9289
9290         return error;
9291 }
9292
9293 void
9294 intel_display_print_error_state(struct seq_file *m,
9295                                 struct drm_device *dev,
9296                                 struct intel_display_error_state *error)
9297 {
9298         int i;
9299
9300         for (i = 0; i < 2; i++) {
9301                 seq_printf(m, "Pipe [%d]:\n", i);
9302                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9303                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9304                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9305                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9306                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9307                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9308                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9309                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9310
9311                 seq_printf(m, "Plane [%d]:\n", i);
9312                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9313                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9314                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9315                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9316                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9317                 if (INTEL_INFO(dev)->gen >= 4) {
9318                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9319                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9320                 }
9321
9322                 seq_printf(m, "Cursor [%d]:\n", i);
9323                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9324                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9325                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9326         }
9327 }
9328 #endif