Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_gem_dmabuf.h"
40 #include "intel_dsi.h"
41 #include "i915_trace.h"
42 #include <drm/drm_atomic.h>
43 #include <drm/drm_atomic_helper.h>
44 #include <drm/drm_dp_helper.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_plane_helper.h>
47 #include <drm/drm_rect.h>
48 #include <linux/dma_remapping.h>
49 #include <linux/reservation.h>
50
51 static bool is_mmio_work(struct intel_flip_work *work)
52 {
53         return work->mmio_work.func;
54 }
55
56 /* Primary plane formats for gen <= 3 */
57 static const uint32_t i8xx_primary_formats[] = {
58         DRM_FORMAT_C8,
59         DRM_FORMAT_RGB565,
60         DRM_FORMAT_XRGB1555,
61         DRM_FORMAT_XRGB8888,
62 };
63
64 /* Primary plane formats for gen >= 4 */
65 static const uint32_t i965_primary_formats[] = {
66         DRM_FORMAT_C8,
67         DRM_FORMAT_RGB565,
68         DRM_FORMAT_XRGB8888,
69         DRM_FORMAT_XBGR8888,
70         DRM_FORMAT_XRGB2101010,
71         DRM_FORMAT_XBGR2101010,
72 };
73
74 static const uint32_t skl_primary_formats[] = {
75         DRM_FORMAT_C8,
76         DRM_FORMAT_RGB565,
77         DRM_FORMAT_XRGB8888,
78         DRM_FORMAT_XBGR8888,
79         DRM_FORMAT_ARGB8888,
80         DRM_FORMAT_ABGR8888,
81         DRM_FORMAT_XRGB2101010,
82         DRM_FORMAT_XBGR2101010,
83         DRM_FORMAT_YUYV,
84         DRM_FORMAT_YVYU,
85         DRM_FORMAT_UYVY,
86         DRM_FORMAT_VYUY,
87 };
88
89 /* Cursor formats */
90 static const uint32_t intel_cursor_formats[] = {
91         DRM_FORMAT_ARGB8888,
92 };
93
94 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
95                                 struct intel_crtc_state *pipe_config);
96 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
97                                    struct intel_crtc_state *pipe_config);
98
99 static int intel_framebuffer_init(struct drm_device *dev,
100                                   struct intel_framebuffer *ifb,
101                                   struct drm_mode_fb_cmd2 *mode_cmd,
102                                   struct drm_i915_gem_object *obj);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107                                          struct intel_link_m_n *m_n,
108                                          struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113                             const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115                             const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
119         struct intel_crtc_state *crtc_state);
120 static void skylake_pfit_enable(struct intel_crtc *crtc);
121 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
122 static void ironlake_pfit_enable(struct intel_crtc *crtc);
123 static void intel_modeset_setup_hw_state(struct drm_device *dev);
124 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
125 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
126 static int bxt_calc_cdclk(int max_pixclk);
127
128 struct intel_limit {
129         struct {
130                 int min, max;
131         } dot, vco, n, m, m1, m2, p, p1;
132
133         struct {
134                 int dot_limit;
135                 int p2_slow, p2_fast;
136         } p2;
137 };
138
139 /* returns HPLL frequency in kHz */
140 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
141 {
142         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
143
144         /* Obtain SKU information */
145         mutex_lock(&dev_priv->sb_lock);
146         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
147                 CCK_FUSE_HPLL_FREQ_MASK;
148         mutex_unlock(&dev_priv->sb_lock);
149
150         return vco_freq[hpll_freq] * 1000;
151 }
152
153 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
154                       const char *name, u32 reg, int ref_freq)
155 {
156         u32 val;
157         int divider;
158
159         mutex_lock(&dev_priv->sb_lock);
160         val = vlv_cck_read(dev_priv, reg);
161         mutex_unlock(&dev_priv->sb_lock);
162
163         divider = val & CCK_FREQUENCY_VALUES;
164
165         WARN((val & CCK_FREQUENCY_STATUS) !=
166              (divider << CCK_FREQUENCY_STATUS_SHIFT),
167              "%s change in progress\n", name);
168
169         return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
170 }
171
172 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
173                                   const char *name, u32 reg)
174 {
175         if (dev_priv->hpll_freq == 0)
176                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
177
178         return vlv_get_cck_clock(dev_priv, name, reg,
179                                  dev_priv->hpll_freq);
180 }
181
182 static int
183 intel_pch_rawclk(struct drm_i915_private *dev_priv)
184 {
185         return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
186 }
187
188 static int
189 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
190 {
191         /* RAWCLK_FREQ_VLV register updated from power well code */
192         return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
193                                       CCK_DISPLAY_REF_CLOCK_CONTROL);
194 }
195
196 static int
197 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
198 {
199         uint32_t clkcfg;
200
201         /* hrawclock is 1/4 the FSB frequency */
202         clkcfg = I915_READ(CLKCFG);
203         switch (clkcfg & CLKCFG_FSB_MASK) {
204         case CLKCFG_FSB_400:
205                 return 100000;
206         case CLKCFG_FSB_533:
207                 return 133333;
208         case CLKCFG_FSB_667:
209                 return 166667;
210         case CLKCFG_FSB_800:
211                 return 200000;
212         case CLKCFG_FSB_1067:
213                 return 266667;
214         case CLKCFG_FSB_1333:
215                 return 333333;
216         /* these two are just a guess; one of them might be right */
217         case CLKCFG_FSB_1600:
218         case CLKCFG_FSB_1600_ALT:
219                 return 400000;
220         default:
221                 return 133333;
222         }
223 }
224
225 void intel_update_rawclk(struct drm_i915_private *dev_priv)
226 {
227         if (HAS_PCH_SPLIT(dev_priv))
228                 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
229         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
230                 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
231         else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
232                 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
233         else
234                 return; /* no rawclk on other platforms, or no need to know it */
235
236         DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
237 }
238
239 static void intel_update_czclk(struct drm_i915_private *dev_priv)
240 {
241         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
242                 return;
243
244         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
245                                                       CCK_CZ_CLOCK_CONTROL);
246
247         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
248 }
249
250 static inline u32 /* units of 100MHz */
251 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
252                     const struct intel_crtc_state *pipe_config)
253 {
254         if (HAS_DDI(dev_priv))
255                 return pipe_config->port_clock; /* SPLL */
256         else if (IS_GEN5(dev_priv))
257                 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
258         else
259                 return 270000;
260 }
261
262 static const struct intel_limit intel_limits_i8xx_dac = {
263         .dot = { .min = 25000, .max = 350000 },
264         .vco = { .min = 908000, .max = 1512000 },
265         .n = { .min = 2, .max = 16 },
266         .m = { .min = 96, .max = 140 },
267         .m1 = { .min = 18, .max = 26 },
268         .m2 = { .min = 6, .max = 16 },
269         .p = { .min = 4, .max = 128 },
270         .p1 = { .min = 2, .max = 33 },
271         .p2 = { .dot_limit = 165000,
272                 .p2_slow = 4, .p2_fast = 2 },
273 };
274
275 static const struct intel_limit intel_limits_i8xx_dvo = {
276         .dot = { .min = 25000, .max = 350000 },
277         .vco = { .min = 908000, .max = 1512000 },
278         .n = { .min = 2, .max = 16 },
279         .m = { .min = 96, .max = 140 },
280         .m1 = { .min = 18, .max = 26 },
281         .m2 = { .min = 6, .max = 16 },
282         .p = { .min = 4, .max = 128 },
283         .p1 = { .min = 2, .max = 33 },
284         .p2 = { .dot_limit = 165000,
285                 .p2_slow = 4, .p2_fast = 4 },
286 };
287
288 static const struct intel_limit intel_limits_i8xx_lvds = {
289         .dot = { .min = 25000, .max = 350000 },
290         .vco = { .min = 908000, .max = 1512000 },
291         .n = { .min = 2, .max = 16 },
292         .m = { .min = 96, .max = 140 },
293         .m1 = { .min = 18, .max = 26 },
294         .m2 = { .min = 6, .max = 16 },
295         .p = { .min = 4, .max = 128 },
296         .p1 = { .min = 1, .max = 6 },
297         .p2 = { .dot_limit = 165000,
298                 .p2_slow = 14, .p2_fast = 7 },
299 };
300
301 static const struct intel_limit intel_limits_i9xx_sdvo = {
302         .dot = { .min = 20000, .max = 400000 },
303         .vco = { .min = 1400000, .max = 2800000 },
304         .n = { .min = 1, .max = 6 },
305         .m = { .min = 70, .max = 120 },
306         .m1 = { .min = 8, .max = 18 },
307         .m2 = { .min = 3, .max = 7 },
308         .p = { .min = 5, .max = 80 },
309         .p1 = { .min = 1, .max = 8 },
310         .p2 = { .dot_limit = 200000,
311                 .p2_slow = 10, .p2_fast = 5 },
312 };
313
314 static const struct intel_limit intel_limits_i9xx_lvds = {
315         .dot = { .min = 20000, .max = 400000 },
316         .vco = { .min = 1400000, .max = 2800000 },
317         .n = { .min = 1, .max = 6 },
318         .m = { .min = 70, .max = 120 },
319         .m1 = { .min = 8, .max = 18 },
320         .m2 = { .min = 3, .max = 7 },
321         .p = { .min = 7, .max = 98 },
322         .p1 = { .min = 1, .max = 8 },
323         .p2 = { .dot_limit = 112000,
324                 .p2_slow = 14, .p2_fast = 7 },
325 };
326
327
328 static const struct intel_limit intel_limits_g4x_sdvo = {
329         .dot = { .min = 25000, .max = 270000 },
330         .vco = { .min = 1750000, .max = 3500000},
331         .n = { .min = 1, .max = 4 },
332         .m = { .min = 104, .max = 138 },
333         .m1 = { .min = 17, .max = 23 },
334         .m2 = { .min = 5, .max = 11 },
335         .p = { .min = 10, .max = 30 },
336         .p1 = { .min = 1, .max = 3},
337         .p2 = { .dot_limit = 270000,
338                 .p2_slow = 10,
339                 .p2_fast = 10
340         },
341 };
342
343 static const struct intel_limit intel_limits_g4x_hdmi = {
344         .dot = { .min = 22000, .max = 400000 },
345         .vco = { .min = 1750000, .max = 3500000},
346         .n = { .min = 1, .max = 4 },
347         .m = { .min = 104, .max = 138 },
348         .m1 = { .min = 16, .max = 23 },
349         .m2 = { .min = 5, .max = 11 },
350         .p = { .min = 5, .max = 80 },
351         .p1 = { .min = 1, .max = 8},
352         .p2 = { .dot_limit = 165000,
353                 .p2_slow = 10, .p2_fast = 5 },
354 };
355
356 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
357         .dot = { .min = 20000, .max = 115000 },
358         .vco = { .min = 1750000, .max = 3500000 },
359         .n = { .min = 1, .max = 3 },
360         .m = { .min = 104, .max = 138 },
361         .m1 = { .min = 17, .max = 23 },
362         .m2 = { .min = 5, .max = 11 },
363         .p = { .min = 28, .max = 112 },
364         .p1 = { .min = 2, .max = 8 },
365         .p2 = { .dot_limit = 0,
366                 .p2_slow = 14, .p2_fast = 14
367         },
368 };
369
370 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
371         .dot = { .min = 80000, .max = 224000 },
372         .vco = { .min = 1750000, .max = 3500000 },
373         .n = { .min = 1, .max = 3 },
374         .m = { .min = 104, .max = 138 },
375         .m1 = { .min = 17, .max = 23 },
376         .m2 = { .min = 5, .max = 11 },
377         .p = { .min = 14, .max = 42 },
378         .p1 = { .min = 2, .max = 6 },
379         .p2 = { .dot_limit = 0,
380                 .p2_slow = 7, .p2_fast = 7
381         },
382 };
383
384 static const struct intel_limit intel_limits_pineview_sdvo = {
385         .dot = { .min = 20000, .max = 400000},
386         .vco = { .min = 1700000, .max = 3500000 },
387         /* Pineview's Ncounter is a ring counter */
388         .n = { .min = 3, .max = 6 },
389         .m = { .min = 2, .max = 256 },
390         /* Pineview only has one combined m divider, which we treat as m2. */
391         .m1 = { .min = 0, .max = 0 },
392         .m2 = { .min = 0, .max = 254 },
393         .p = { .min = 5, .max = 80 },
394         .p1 = { .min = 1, .max = 8 },
395         .p2 = { .dot_limit = 200000,
396                 .p2_slow = 10, .p2_fast = 5 },
397 };
398
399 static const struct intel_limit intel_limits_pineview_lvds = {
400         .dot = { .min = 20000, .max = 400000 },
401         .vco = { .min = 1700000, .max = 3500000 },
402         .n = { .min = 3, .max = 6 },
403         .m = { .min = 2, .max = 256 },
404         .m1 = { .min = 0, .max = 0 },
405         .m2 = { .min = 0, .max = 254 },
406         .p = { .min = 7, .max = 112 },
407         .p1 = { .min = 1, .max = 8 },
408         .p2 = { .dot_limit = 112000,
409                 .p2_slow = 14, .p2_fast = 14 },
410 };
411
412 /* Ironlake / Sandybridge
413  *
414  * We calculate clock using (register_value + 2) for N/M1/M2, so here
415  * the range value for them is (actual_value - 2).
416  */
417 static const struct intel_limit intel_limits_ironlake_dac = {
418         .dot = { .min = 25000, .max = 350000 },
419         .vco = { .min = 1760000, .max = 3510000 },
420         .n = { .min = 1, .max = 5 },
421         .m = { .min = 79, .max = 127 },
422         .m1 = { .min = 12, .max = 22 },
423         .m2 = { .min = 5, .max = 9 },
424         .p = { .min = 5, .max = 80 },
425         .p1 = { .min = 1, .max = 8 },
426         .p2 = { .dot_limit = 225000,
427                 .p2_slow = 10, .p2_fast = 5 },
428 };
429
430 static const struct intel_limit intel_limits_ironlake_single_lvds = {
431         .dot = { .min = 25000, .max = 350000 },
432         .vco = { .min = 1760000, .max = 3510000 },
433         .n = { .min = 1, .max = 3 },
434         .m = { .min = 79, .max = 118 },
435         .m1 = { .min = 12, .max = 22 },
436         .m2 = { .min = 5, .max = 9 },
437         .p = { .min = 28, .max = 112 },
438         .p1 = { .min = 2, .max = 8 },
439         .p2 = { .dot_limit = 225000,
440                 .p2_slow = 14, .p2_fast = 14 },
441 };
442
443 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
444         .dot = { .min = 25000, .max = 350000 },
445         .vco = { .min = 1760000, .max = 3510000 },
446         .n = { .min = 1, .max = 3 },
447         .m = { .min = 79, .max = 127 },
448         .m1 = { .min = 12, .max = 22 },
449         .m2 = { .min = 5, .max = 9 },
450         .p = { .min = 14, .max = 56 },
451         .p1 = { .min = 2, .max = 8 },
452         .p2 = { .dot_limit = 225000,
453                 .p2_slow = 7, .p2_fast = 7 },
454 };
455
456 /* LVDS 100mhz refclk limits. */
457 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
458         .dot = { .min = 25000, .max = 350000 },
459         .vco = { .min = 1760000, .max = 3510000 },
460         .n = { .min = 1, .max = 2 },
461         .m = { .min = 79, .max = 126 },
462         .m1 = { .min = 12, .max = 22 },
463         .m2 = { .min = 5, .max = 9 },
464         .p = { .min = 28, .max = 112 },
465         .p1 = { .min = 2, .max = 8 },
466         .p2 = { .dot_limit = 225000,
467                 .p2_slow = 14, .p2_fast = 14 },
468 };
469
470 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
471         .dot = { .min = 25000, .max = 350000 },
472         .vco = { .min = 1760000, .max = 3510000 },
473         .n = { .min = 1, .max = 3 },
474         .m = { .min = 79, .max = 126 },
475         .m1 = { .min = 12, .max = 22 },
476         .m2 = { .min = 5, .max = 9 },
477         .p = { .min = 14, .max = 42 },
478         .p1 = { .min = 2, .max = 6 },
479         .p2 = { .dot_limit = 225000,
480                 .p2_slow = 7, .p2_fast = 7 },
481 };
482
483 static const struct intel_limit intel_limits_vlv = {
484          /*
485           * These are the data rate limits (measured in fast clocks)
486           * since those are the strictest limits we have. The fast
487           * clock and actual rate limits are more relaxed, so checking
488           * them would make no difference.
489           */
490         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
491         .vco = { .min = 4000000, .max = 6000000 },
492         .n = { .min = 1, .max = 7 },
493         .m1 = { .min = 2, .max = 3 },
494         .m2 = { .min = 11, .max = 156 },
495         .p1 = { .min = 2, .max = 3 },
496         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
497 };
498
499 static const struct intel_limit intel_limits_chv = {
500         /*
501          * These are the data rate limits (measured in fast clocks)
502          * since those are the strictest limits we have.  The fast
503          * clock and actual rate limits are more relaxed, so checking
504          * them would make no difference.
505          */
506         .dot = { .min = 25000 * 5, .max = 540000 * 5},
507         .vco = { .min = 4800000, .max = 6480000 },
508         .n = { .min = 1, .max = 1 },
509         .m1 = { .min = 2, .max = 2 },
510         .m2 = { .min = 24 << 22, .max = 175 << 22 },
511         .p1 = { .min = 2, .max = 4 },
512         .p2 = { .p2_slow = 1, .p2_fast = 14 },
513 };
514
515 static const struct intel_limit intel_limits_bxt = {
516         /* FIXME: find real dot limits */
517         .dot = { .min = 0, .max = INT_MAX },
518         .vco = { .min = 4800000, .max = 6700000 },
519         .n = { .min = 1, .max = 1 },
520         .m1 = { .min = 2, .max = 2 },
521         /* FIXME: find real m2 limits */
522         .m2 = { .min = 2 << 22, .max = 255 << 22 },
523         .p1 = { .min = 2, .max = 4 },
524         .p2 = { .p2_slow = 1, .p2_fast = 20 },
525 };
526
527 static bool
528 needs_modeset(struct drm_crtc_state *state)
529 {
530         return drm_atomic_crtc_needs_modeset(state);
531 }
532
533 /*
534  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
535  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
536  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
537  * The helpers' return value is the rate of the clock that is fed to the
538  * display engine's pipe which can be the above fast dot clock rate or a
539  * divided-down version of it.
540  */
541 /* m1 is reserved as 0 in Pineview, n is a ring counter */
542 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
543 {
544         clock->m = clock->m2 + 2;
545         clock->p = clock->p1 * clock->p2;
546         if (WARN_ON(clock->n == 0 || clock->p == 0))
547                 return 0;
548         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
549         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
550
551         return clock->dot;
552 }
553
554 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
555 {
556         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
557 }
558
559 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
560 {
561         clock->m = i9xx_dpll_compute_m(clock);
562         clock->p = clock->p1 * clock->p2;
563         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
564                 return 0;
565         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
566         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
567
568         return clock->dot;
569 }
570
571 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
572 {
573         clock->m = clock->m1 * clock->m2;
574         clock->p = clock->p1 * clock->p2;
575         if (WARN_ON(clock->n == 0 || clock->p == 0))
576                 return 0;
577         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
578         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
579
580         return clock->dot / 5;
581 }
582
583 int chv_calc_dpll_params(int refclk, struct dpll *clock)
584 {
585         clock->m = clock->m1 * clock->m2;
586         clock->p = clock->p1 * clock->p2;
587         if (WARN_ON(clock->n == 0 || clock->p == 0))
588                 return 0;
589         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
590                         clock->n << 22);
591         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
592
593         return clock->dot / 5;
594 }
595
596 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
597 /**
598  * Returns whether the given set of divisors are valid for a given refclk with
599  * the given connectors.
600  */
601
602 static bool intel_PLL_is_valid(struct drm_device *dev,
603                                const struct intel_limit *limit,
604                                const struct dpll *clock)
605 {
606         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
607                 INTELPllInvalid("n out of range\n");
608         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
609                 INTELPllInvalid("p1 out of range\n");
610         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
611                 INTELPllInvalid("m2 out of range\n");
612         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
613                 INTELPllInvalid("m1 out of range\n");
614
615         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
616             !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
617                 if (clock->m1 <= clock->m2)
618                         INTELPllInvalid("m1 <= m2\n");
619
620         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
621                 if (clock->p < limit->p.min || limit->p.max < clock->p)
622                         INTELPllInvalid("p out of range\n");
623                 if (clock->m < limit->m.min || limit->m.max < clock->m)
624                         INTELPllInvalid("m out of range\n");
625         }
626
627         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
628                 INTELPllInvalid("vco out of range\n");
629         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
630          * connector, etc., rather than just a single range.
631          */
632         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
633                 INTELPllInvalid("dot out of range\n");
634
635         return true;
636 }
637
638 static int
639 i9xx_select_p2_div(const struct intel_limit *limit,
640                    const struct intel_crtc_state *crtc_state,
641                    int target)
642 {
643         struct drm_device *dev = crtc_state->base.crtc->dev;
644
645         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
646                 /*
647                  * For LVDS just rely on its current settings for dual-channel.
648                  * We haven't figured out how to reliably set up different
649                  * single/dual channel state, if we even can.
650                  */
651                 if (intel_is_dual_link_lvds(dev))
652                         return limit->p2.p2_fast;
653                 else
654                         return limit->p2.p2_slow;
655         } else {
656                 if (target < limit->p2.dot_limit)
657                         return limit->p2.p2_slow;
658                 else
659                         return limit->p2.p2_fast;
660         }
661 }
662
663 /*
664  * Returns a set of divisors for the desired target clock with the given
665  * refclk, or FALSE.  The returned values represent the clock equation:
666  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
667  *
668  * Target and reference clocks are specified in kHz.
669  *
670  * If match_clock is provided, then best_clock P divider must match the P
671  * divider from @match_clock used for LVDS downclocking.
672  */
673 static bool
674 i9xx_find_best_dpll(const struct intel_limit *limit,
675                     struct intel_crtc_state *crtc_state,
676                     int target, int refclk, struct dpll *match_clock,
677                     struct dpll *best_clock)
678 {
679         struct drm_device *dev = crtc_state->base.crtc->dev;
680         struct dpll clock;
681         int err = target;
682
683         memset(best_clock, 0, sizeof(*best_clock));
684
685         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
686
687         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688              clock.m1++) {
689                 for (clock.m2 = limit->m2.min;
690                      clock.m2 <= limit->m2.max; clock.m2++) {
691                         if (clock.m2 >= clock.m1)
692                                 break;
693                         for (clock.n = limit->n.min;
694                              clock.n <= limit->n.max; clock.n++) {
695                                 for (clock.p1 = limit->p1.min;
696                                         clock.p1 <= limit->p1.max; clock.p1++) {
697                                         int this_err;
698
699                                         i9xx_calc_dpll_params(refclk, &clock);
700                                         if (!intel_PLL_is_valid(dev, limit,
701                                                                 &clock))
702                                                 continue;
703                                         if (match_clock &&
704                                             clock.p != match_clock->p)
705                                                 continue;
706
707                                         this_err = abs(clock.dot - target);
708                                         if (this_err < err) {
709                                                 *best_clock = clock;
710                                                 err = this_err;
711                                         }
712                                 }
713                         }
714                 }
715         }
716
717         return (err != target);
718 }
719
720 /*
721  * Returns a set of divisors for the desired target clock with the given
722  * refclk, or FALSE.  The returned values represent the clock equation:
723  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
724  *
725  * Target and reference clocks are specified in kHz.
726  *
727  * If match_clock is provided, then best_clock P divider must match the P
728  * divider from @match_clock used for LVDS downclocking.
729  */
730 static bool
731 pnv_find_best_dpll(const struct intel_limit *limit,
732                    struct intel_crtc_state *crtc_state,
733                    int target, int refclk, struct dpll *match_clock,
734                    struct dpll *best_clock)
735 {
736         struct drm_device *dev = crtc_state->base.crtc->dev;
737         struct dpll clock;
738         int err = target;
739
740         memset(best_clock, 0, sizeof(*best_clock));
741
742         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
743
744         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
745              clock.m1++) {
746                 for (clock.m2 = limit->m2.min;
747                      clock.m2 <= limit->m2.max; clock.m2++) {
748                         for (clock.n = limit->n.min;
749                              clock.n <= limit->n.max; clock.n++) {
750                                 for (clock.p1 = limit->p1.min;
751                                         clock.p1 <= limit->p1.max; clock.p1++) {
752                                         int this_err;
753
754                                         pnv_calc_dpll_params(refclk, &clock);
755                                         if (!intel_PLL_is_valid(dev, limit,
756                                                                 &clock))
757                                                 continue;
758                                         if (match_clock &&
759                                             clock.p != match_clock->p)
760                                                 continue;
761
762                                         this_err = abs(clock.dot - target);
763                                         if (this_err < err) {
764                                                 *best_clock = clock;
765                                                 err = this_err;
766                                         }
767                                 }
768                         }
769                 }
770         }
771
772         return (err != target);
773 }
774
775 /*
776  * Returns a set of divisors for the desired target clock with the given
777  * refclk, or FALSE.  The returned values represent the clock equation:
778  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
779  *
780  * Target and reference clocks are specified in kHz.
781  *
782  * If match_clock is provided, then best_clock P divider must match the P
783  * divider from @match_clock used for LVDS downclocking.
784  */
785 static bool
786 g4x_find_best_dpll(const struct intel_limit *limit,
787                    struct intel_crtc_state *crtc_state,
788                    int target, int refclk, struct dpll *match_clock,
789                    struct dpll *best_clock)
790 {
791         struct drm_device *dev = crtc_state->base.crtc->dev;
792         struct dpll clock;
793         int max_n;
794         bool found = false;
795         /* approximately equals target * 0.00585 */
796         int err_most = (target >> 8) + (target >> 9);
797
798         memset(best_clock, 0, sizeof(*best_clock));
799
800         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
801
802         max_n = limit->n.max;
803         /* based on hardware requirement, prefer smaller n to precision */
804         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
805                 /* based on hardware requirement, prefere larger m1,m2 */
806                 for (clock.m1 = limit->m1.max;
807                      clock.m1 >= limit->m1.min; clock.m1--) {
808                         for (clock.m2 = limit->m2.max;
809                              clock.m2 >= limit->m2.min; clock.m2--) {
810                                 for (clock.p1 = limit->p1.max;
811                                      clock.p1 >= limit->p1.min; clock.p1--) {
812                                         int this_err;
813
814                                         i9xx_calc_dpll_params(refclk, &clock);
815                                         if (!intel_PLL_is_valid(dev, limit,
816                                                                 &clock))
817                                                 continue;
818
819                                         this_err = abs(clock.dot - target);
820                                         if (this_err < err_most) {
821                                                 *best_clock = clock;
822                                                 err_most = this_err;
823                                                 max_n = clock.n;
824                                                 found = true;
825                                         }
826                                 }
827                         }
828                 }
829         }
830         return found;
831 }
832
833 /*
834  * Check if the calculated PLL configuration is more optimal compared to the
835  * best configuration and error found so far. Return the calculated error.
836  */
837 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
838                                const struct dpll *calculated_clock,
839                                const struct dpll *best_clock,
840                                unsigned int best_error_ppm,
841                                unsigned int *error_ppm)
842 {
843         /*
844          * For CHV ignore the error and consider only the P value.
845          * Prefer a bigger P value based on HW requirements.
846          */
847         if (IS_CHERRYVIEW(dev)) {
848                 *error_ppm = 0;
849
850                 return calculated_clock->p > best_clock->p;
851         }
852
853         if (WARN_ON_ONCE(!target_freq))
854                 return false;
855
856         *error_ppm = div_u64(1000000ULL *
857                                 abs(target_freq - calculated_clock->dot),
858                              target_freq);
859         /*
860          * Prefer a better P value over a better (smaller) error if the error
861          * is small. Ensure this preference for future configurations too by
862          * setting the error to 0.
863          */
864         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
865                 *error_ppm = 0;
866
867                 return true;
868         }
869
870         return *error_ppm + 10 < best_error_ppm;
871 }
872
873 /*
874  * Returns a set of divisors for the desired target clock with the given
875  * refclk, or FALSE.  The returned values represent the clock equation:
876  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
877  */
878 static bool
879 vlv_find_best_dpll(const struct intel_limit *limit,
880                    struct intel_crtc_state *crtc_state,
881                    int target, int refclk, struct dpll *match_clock,
882                    struct dpll *best_clock)
883 {
884         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
885         struct drm_device *dev = crtc->base.dev;
886         struct dpll clock;
887         unsigned int bestppm = 1000000;
888         /* min update 19.2 MHz */
889         int max_n = min(limit->n.max, refclk / 19200);
890         bool found = false;
891
892         target *= 5; /* fast clock */
893
894         memset(best_clock, 0, sizeof(*best_clock));
895
896         /* based on hardware requirement, prefer smaller n to precision */
897         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
898                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
899                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
900                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
901                                 clock.p = clock.p1 * clock.p2;
902                                 /* based on hardware requirement, prefer bigger m1,m2 values */
903                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
904                                         unsigned int ppm;
905
906                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
907                                                                      refclk * clock.m1);
908
909                                         vlv_calc_dpll_params(refclk, &clock);
910
911                                         if (!intel_PLL_is_valid(dev, limit,
912                                                                 &clock))
913                                                 continue;
914
915                                         if (!vlv_PLL_is_optimal(dev, target,
916                                                                 &clock,
917                                                                 best_clock,
918                                                                 bestppm, &ppm))
919                                                 continue;
920
921                                         *best_clock = clock;
922                                         bestppm = ppm;
923                                         found = true;
924                                 }
925                         }
926                 }
927         }
928
929         return found;
930 }
931
932 /*
933  * Returns a set of divisors for the desired target clock with the given
934  * refclk, or FALSE.  The returned values represent the clock equation:
935  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
936  */
937 static bool
938 chv_find_best_dpll(const struct intel_limit *limit,
939                    struct intel_crtc_state *crtc_state,
940                    int target, int refclk, struct dpll *match_clock,
941                    struct dpll *best_clock)
942 {
943         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
944         struct drm_device *dev = crtc->base.dev;
945         unsigned int best_error_ppm;
946         struct dpll clock;
947         uint64_t m2;
948         int found = false;
949
950         memset(best_clock, 0, sizeof(*best_clock));
951         best_error_ppm = 1000000;
952
953         /*
954          * Based on hardware doc, the n always set to 1, and m1 always
955          * set to 2.  If requires to support 200Mhz refclk, we need to
956          * revisit this because n may not 1 anymore.
957          */
958         clock.n = 1, clock.m1 = 2;
959         target *= 5;    /* fast clock */
960
961         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
962                 for (clock.p2 = limit->p2.p2_fast;
963                                 clock.p2 >= limit->p2.p2_slow;
964                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
965                         unsigned int error_ppm;
966
967                         clock.p = clock.p1 * clock.p2;
968
969                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
970                                         clock.n) << 22, refclk * clock.m1);
971
972                         if (m2 > INT_MAX/clock.m1)
973                                 continue;
974
975                         clock.m2 = m2;
976
977                         chv_calc_dpll_params(refclk, &clock);
978
979                         if (!intel_PLL_is_valid(dev, limit, &clock))
980                                 continue;
981
982                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
983                                                 best_error_ppm, &error_ppm))
984                                 continue;
985
986                         *best_clock = clock;
987                         best_error_ppm = error_ppm;
988                         found = true;
989                 }
990         }
991
992         return found;
993 }
994
995 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
996                         struct dpll *best_clock)
997 {
998         int refclk = 100000;
999         const struct intel_limit *limit = &intel_limits_bxt;
1000
1001         return chv_find_best_dpll(limit, crtc_state,
1002                                   target_clock, refclk, NULL, best_clock);
1003 }
1004
1005 bool intel_crtc_active(struct drm_crtc *crtc)
1006 {
1007         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1008
1009         /* Be paranoid as we can arrive here with only partial
1010          * state retrieved from the hardware during setup.
1011          *
1012          * We can ditch the adjusted_mode.crtc_clock check as soon
1013          * as Haswell has gained clock readout/fastboot support.
1014          *
1015          * We can ditch the crtc->primary->fb check as soon as we can
1016          * properly reconstruct framebuffers.
1017          *
1018          * FIXME: The intel_crtc->active here should be switched to
1019          * crtc->state->active once we have proper CRTC states wired up
1020          * for atomic.
1021          */
1022         return intel_crtc->active && crtc->primary->state->fb &&
1023                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1024 }
1025
1026 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1027                                              enum pipe pipe)
1028 {
1029         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1030         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1031
1032         return intel_crtc->config->cpu_transcoder;
1033 }
1034
1035 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1036 {
1037         struct drm_i915_private *dev_priv = to_i915(dev);
1038         i915_reg_t reg = PIPEDSL(pipe);
1039         u32 line1, line2;
1040         u32 line_mask;
1041
1042         if (IS_GEN2(dev))
1043                 line_mask = DSL_LINEMASK_GEN2;
1044         else
1045                 line_mask = DSL_LINEMASK_GEN3;
1046
1047         line1 = I915_READ(reg) & line_mask;
1048         msleep(5);
1049         line2 = I915_READ(reg) & line_mask;
1050
1051         return line1 == line2;
1052 }
1053
1054 /*
1055  * intel_wait_for_pipe_off - wait for pipe to turn off
1056  * @crtc: crtc whose pipe to wait for
1057  *
1058  * After disabling a pipe, we can't wait for vblank in the usual way,
1059  * spinning on the vblank interrupt status bit, since we won't actually
1060  * see an interrupt when the pipe is disabled.
1061  *
1062  * On Gen4 and above:
1063  *   wait for the pipe register state bit to turn off
1064  *
1065  * Otherwise:
1066  *   wait for the display line value to settle (it usually
1067  *   ends up stopping at the start of the next frame).
1068  *
1069  */
1070 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1071 {
1072         struct drm_device *dev = crtc->base.dev;
1073         struct drm_i915_private *dev_priv = to_i915(dev);
1074         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1075         enum pipe pipe = crtc->pipe;
1076
1077         if (INTEL_INFO(dev)->gen >= 4) {
1078                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1079
1080                 /* Wait for the Pipe State to go off */
1081                 if (intel_wait_for_register(dev_priv,
1082                                             reg, I965_PIPECONF_ACTIVE, 0,
1083                                             100))
1084                         WARN(1, "pipe_off wait timed out\n");
1085         } else {
1086                 /* Wait for the display line to settle */
1087                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1088                         WARN(1, "pipe_off wait timed out\n");
1089         }
1090 }
1091
1092 /* Only for pre-ILK configs */
1093 void assert_pll(struct drm_i915_private *dev_priv,
1094                 enum pipe pipe, bool state)
1095 {
1096         u32 val;
1097         bool cur_state;
1098
1099         val = I915_READ(DPLL(pipe));
1100         cur_state = !!(val & DPLL_VCO_ENABLE);
1101         I915_STATE_WARN(cur_state != state,
1102              "PLL state assertion failure (expected %s, current %s)\n",
1103                         onoff(state), onoff(cur_state));
1104 }
1105
1106 /* XXX: the dsi pll is shared between MIPI DSI ports */
1107 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1108 {
1109         u32 val;
1110         bool cur_state;
1111
1112         mutex_lock(&dev_priv->sb_lock);
1113         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1114         mutex_unlock(&dev_priv->sb_lock);
1115
1116         cur_state = val & DSI_PLL_VCO_EN;
1117         I915_STATE_WARN(cur_state != state,
1118              "DSI PLL state assertion failure (expected %s, current %s)\n",
1119                         onoff(state), onoff(cur_state));
1120 }
1121
1122 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1123                           enum pipe pipe, bool state)
1124 {
1125         bool cur_state;
1126         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1127                                                                       pipe);
1128
1129         if (HAS_DDI(dev_priv)) {
1130                 /* DDI does not have a specific FDI_TX register */
1131                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1132                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1133         } else {
1134                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1135                 cur_state = !!(val & FDI_TX_ENABLE);
1136         }
1137         I915_STATE_WARN(cur_state != state,
1138              "FDI TX state assertion failure (expected %s, current %s)\n",
1139                         onoff(state), onoff(cur_state));
1140 }
1141 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1142 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1143
1144 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1145                           enum pipe pipe, bool state)
1146 {
1147         u32 val;
1148         bool cur_state;
1149
1150         val = I915_READ(FDI_RX_CTL(pipe));
1151         cur_state = !!(val & FDI_RX_ENABLE);
1152         I915_STATE_WARN(cur_state != state,
1153              "FDI RX state assertion failure (expected %s, current %s)\n",
1154                         onoff(state), onoff(cur_state));
1155 }
1156 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1157 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1158
1159 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1160                                       enum pipe pipe)
1161 {
1162         u32 val;
1163
1164         /* ILK FDI PLL is always enabled */
1165         if (IS_GEN5(dev_priv))
1166                 return;
1167
1168         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169         if (HAS_DDI(dev_priv))
1170                 return;
1171
1172         val = I915_READ(FDI_TX_CTL(pipe));
1173         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1174 }
1175
1176 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1177                        enum pipe pipe, bool state)
1178 {
1179         u32 val;
1180         bool cur_state;
1181
1182         val = I915_READ(FDI_RX_CTL(pipe));
1183         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1184         I915_STATE_WARN(cur_state != state,
1185              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1186                         onoff(state), onoff(cur_state));
1187 }
1188
1189 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1190                            enum pipe pipe)
1191 {
1192         struct drm_device *dev = &dev_priv->drm;
1193         i915_reg_t pp_reg;
1194         u32 val;
1195         enum pipe panel_pipe = PIPE_A;
1196         bool locked = true;
1197
1198         if (WARN_ON(HAS_DDI(dev)))
1199                 return;
1200
1201         if (HAS_PCH_SPLIT(dev)) {
1202                 u32 port_sel;
1203
1204                 pp_reg = PCH_PP_CONTROL;
1205                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1206
1207                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1208                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1209                         panel_pipe = PIPE_B;
1210                 /* XXX: else fix for eDP */
1211         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1212                 /* presumably write lock depends on pipe, not port select */
1213                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1214                 panel_pipe = pipe;
1215         } else {
1216                 pp_reg = PP_CONTROL;
1217                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1218                         panel_pipe = PIPE_B;
1219         }
1220
1221         val = I915_READ(pp_reg);
1222         if (!(val & PANEL_POWER_ON) ||
1223             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1224                 locked = false;
1225
1226         I915_STATE_WARN(panel_pipe == pipe && locked,
1227              "panel assertion failure, pipe %c regs locked\n",
1228              pipe_name(pipe));
1229 }
1230
1231 static void assert_cursor(struct drm_i915_private *dev_priv,
1232                           enum pipe pipe, bool state)
1233 {
1234         struct drm_device *dev = &dev_priv->drm;
1235         bool cur_state;
1236
1237         if (IS_845G(dev) || IS_I865G(dev))
1238                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1239         else
1240                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1241
1242         I915_STATE_WARN(cur_state != state,
1243              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1244                         pipe_name(pipe), onoff(state), onoff(cur_state));
1245 }
1246 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1247 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1248
1249 void assert_pipe(struct drm_i915_private *dev_priv,
1250                  enum pipe pipe, bool state)
1251 {
1252         bool cur_state;
1253         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1254                                                                       pipe);
1255         enum intel_display_power_domain power_domain;
1256
1257         /* if we need the pipe quirk it must be always on */
1258         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1259             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1260                 state = true;
1261
1262         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1263         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1264                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1265                 cur_state = !!(val & PIPECONF_ENABLE);
1266
1267                 intel_display_power_put(dev_priv, power_domain);
1268         } else {
1269                 cur_state = false;
1270         }
1271
1272         I915_STATE_WARN(cur_state != state,
1273              "pipe %c assertion failure (expected %s, current %s)\n",
1274                         pipe_name(pipe), onoff(state), onoff(cur_state));
1275 }
1276
1277 static void assert_plane(struct drm_i915_private *dev_priv,
1278                          enum plane plane, bool state)
1279 {
1280         u32 val;
1281         bool cur_state;
1282
1283         val = I915_READ(DSPCNTR(plane));
1284         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1285         I915_STATE_WARN(cur_state != state,
1286              "plane %c assertion failure (expected %s, current %s)\n",
1287                         plane_name(plane), onoff(state), onoff(cur_state));
1288 }
1289
1290 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1291 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1292
1293 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1294                                    enum pipe pipe)
1295 {
1296         struct drm_device *dev = &dev_priv->drm;
1297         int i;
1298
1299         /* Primary planes are fixed to pipes on gen4+ */
1300         if (INTEL_INFO(dev)->gen >= 4) {
1301                 u32 val = I915_READ(DSPCNTR(pipe));
1302                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1303                      "plane %c assertion failure, should be disabled but not\n",
1304                      plane_name(pipe));
1305                 return;
1306         }
1307
1308         /* Need to check both planes against the pipe */
1309         for_each_pipe(dev_priv, i) {
1310                 u32 val = I915_READ(DSPCNTR(i));
1311                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1312                         DISPPLANE_SEL_PIPE_SHIFT;
1313                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1314                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1315                      plane_name(i), pipe_name(pipe));
1316         }
1317 }
1318
1319 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1320                                     enum pipe pipe)
1321 {
1322         struct drm_device *dev = &dev_priv->drm;
1323         int sprite;
1324
1325         if (INTEL_INFO(dev)->gen >= 9) {
1326                 for_each_sprite(dev_priv, pipe, sprite) {
1327                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1328                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1329                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1330                              sprite, pipe_name(pipe));
1331                 }
1332         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1333                 for_each_sprite(dev_priv, pipe, sprite) {
1334                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1335                         I915_STATE_WARN(val & SP_ENABLE,
1336                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1337                              sprite_name(pipe, sprite), pipe_name(pipe));
1338                 }
1339         } else if (INTEL_INFO(dev)->gen >= 7) {
1340                 u32 val = I915_READ(SPRCTL(pipe));
1341                 I915_STATE_WARN(val & SPRITE_ENABLE,
1342                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1343                      plane_name(pipe), pipe_name(pipe));
1344         } else if (INTEL_INFO(dev)->gen >= 5) {
1345                 u32 val = I915_READ(DVSCNTR(pipe));
1346                 I915_STATE_WARN(val & DVS_ENABLE,
1347                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1348                      plane_name(pipe), pipe_name(pipe));
1349         }
1350 }
1351
1352 static void assert_vblank_disabled(struct drm_crtc *crtc)
1353 {
1354         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1355                 drm_crtc_vblank_put(crtc);
1356 }
1357
1358 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1359                                     enum pipe pipe)
1360 {
1361         u32 val;
1362         bool enabled;
1363
1364         val = I915_READ(PCH_TRANSCONF(pipe));
1365         enabled = !!(val & TRANS_ENABLE);
1366         I915_STATE_WARN(enabled,
1367              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1368              pipe_name(pipe));
1369 }
1370
1371 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1372                             enum pipe pipe, u32 port_sel, u32 val)
1373 {
1374         if ((val & DP_PORT_EN) == 0)
1375                 return false;
1376
1377         if (HAS_PCH_CPT(dev_priv)) {
1378                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1379                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1380                         return false;
1381         } else if (IS_CHERRYVIEW(dev_priv)) {
1382                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1383                         return false;
1384         } else {
1385                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1386                         return false;
1387         }
1388         return true;
1389 }
1390
1391 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1392                               enum pipe pipe, u32 val)
1393 {
1394         if ((val & SDVO_ENABLE) == 0)
1395                 return false;
1396
1397         if (HAS_PCH_CPT(dev_priv)) {
1398                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1399                         return false;
1400         } else if (IS_CHERRYVIEW(dev_priv)) {
1401                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1402                         return false;
1403         } else {
1404                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1405                         return false;
1406         }
1407         return true;
1408 }
1409
1410 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1411                               enum pipe pipe, u32 val)
1412 {
1413         if ((val & LVDS_PORT_EN) == 0)
1414                 return false;
1415
1416         if (HAS_PCH_CPT(dev_priv)) {
1417                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1418                         return false;
1419         } else {
1420                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1421                         return false;
1422         }
1423         return true;
1424 }
1425
1426 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1427                               enum pipe pipe, u32 val)
1428 {
1429         if ((val & ADPA_DAC_ENABLE) == 0)
1430                 return false;
1431         if (HAS_PCH_CPT(dev_priv)) {
1432                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1433                         return false;
1434         } else {
1435                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1436                         return false;
1437         }
1438         return true;
1439 }
1440
1441 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1442                                    enum pipe pipe, i915_reg_t reg,
1443                                    u32 port_sel)
1444 {
1445         u32 val = I915_READ(reg);
1446         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1447              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1448              i915_mmio_reg_offset(reg), pipe_name(pipe));
1449
1450         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1451              && (val & DP_PIPEB_SELECT),
1452              "IBX PCH dp port still using transcoder B\n");
1453 }
1454
1455 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1456                                      enum pipe pipe, i915_reg_t reg)
1457 {
1458         u32 val = I915_READ(reg);
1459         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1460              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1461              i915_mmio_reg_offset(reg), pipe_name(pipe));
1462
1463         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1464              && (val & SDVO_PIPE_B_SELECT),
1465              "IBX PCH hdmi port still using transcoder B\n");
1466 }
1467
1468 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1469                                       enum pipe pipe)
1470 {
1471         u32 val;
1472
1473         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1474         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1475         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1476
1477         val = I915_READ(PCH_ADPA);
1478         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1479              "PCH VGA enabled on transcoder %c, should be disabled\n",
1480              pipe_name(pipe));
1481
1482         val = I915_READ(PCH_LVDS);
1483         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1484              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1485              pipe_name(pipe));
1486
1487         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1488         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1489         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1490 }
1491
1492 static void _vlv_enable_pll(struct intel_crtc *crtc,
1493                             const struct intel_crtc_state *pipe_config)
1494 {
1495         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1496         enum pipe pipe = crtc->pipe;
1497
1498         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1499         POSTING_READ(DPLL(pipe));
1500         udelay(150);
1501
1502         if (intel_wait_for_register(dev_priv,
1503                                     DPLL(pipe),
1504                                     DPLL_LOCK_VLV,
1505                                     DPLL_LOCK_VLV,
1506                                     1))
1507                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1508 }
1509
1510 static void vlv_enable_pll(struct intel_crtc *crtc,
1511                            const struct intel_crtc_state *pipe_config)
1512 {
1513         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1514         enum pipe pipe = crtc->pipe;
1515
1516         assert_pipe_disabled(dev_priv, pipe);
1517
1518         /* PLL is protected by panel, make sure we can write it */
1519         assert_panel_unlocked(dev_priv, pipe);
1520
1521         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1522                 _vlv_enable_pll(crtc, pipe_config);
1523
1524         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1525         POSTING_READ(DPLL_MD(pipe));
1526 }
1527
1528
1529 static void _chv_enable_pll(struct intel_crtc *crtc,
1530                             const struct intel_crtc_state *pipe_config)
1531 {
1532         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1533         enum pipe pipe = crtc->pipe;
1534         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1535         u32 tmp;
1536
1537         mutex_lock(&dev_priv->sb_lock);
1538
1539         /* Enable back the 10bit clock to display controller */
1540         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1541         tmp |= DPIO_DCLKP_EN;
1542         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1543
1544         mutex_unlock(&dev_priv->sb_lock);
1545
1546         /*
1547          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1548          */
1549         udelay(1);
1550
1551         /* Enable PLL */
1552         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1553
1554         /* Check PLL is locked */
1555         if (intel_wait_for_register(dev_priv,
1556                                     DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1557                                     1))
1558                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1559 }
1560
1561 static void chv_enable_pll(struct intel_crtc *crtc,
1562                            const struct intel_crtc_state *pipe_config)
1563 {
1564         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1565         enum pipe pipe = crtc->pipe;
1566
1567         assert_pipe_disabled(dev_priv, pipe);
1568
1569         /* PLL is protected by panel, make sure we can write it */
1570         assert_panel_unlocked(dev_priv, pipe);
1571
1572         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1573                 _chv_enable_pll(crtc, pipe_config);
1574
1575         if (pipe != PIPE_A) {
1576                 /*
1577                  * WaPixelRepeatModeFixForC0:chv
1578                  *
1579                  * DPLLCMD is AWOL. Use chicken bits to propagate
1580                  * the value from DPLLBMD to either pipe B or C.
1581                  */
1582                 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1583                 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1584                 I915_WRITE(CBR4_VLV, 0);
1585                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1586
1587                 /*
1588                  * DPLLB VGA mode also seems to cause problems.
1589                  * We should always have it disabled.
1590                  */
1591                 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1592         } else {
1593                 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1594                 POSTING_READ(DPLL_MD(pipe));
1595         }
1596 }
1597
1598 static int intel_num_dvo_pipes(struct drm_device *dev)
1599 {
1600         struct intel_crtc *crtc;
1601         int count = 0;
1602
1603         for_each_intel_crtc(dev, crtc) {
1604                 count += crtc->base.state->active &&
1605                         intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1606         }
1607
1608         return count;
1609 }
1610
1611 static void i9xx_enable_pll(struct intel_crtc *crtc)
1612 {
1613         struct drm_device *dev = crtc->base.dev;
1614         struct drm_i915_private *dev_priv = to_i915(dev);
1615         i915_reg_t reg = DPLL(crtc->pipe);
1616         u32 dpll = crtc->config->dpll_hw_state.dpll;
1617
1618         assert_pipe_disabled(dev_priv, crtc->pipe);
1619
1620         /* PLL is protected by panel, make sure we can write it */
1621         if (IS_MOBILE(dev) && !IS_I830(dev))
1622                 assert_panel_unlocked(dev_priv, crtc->pipe);
1623
1624         /* Enable DVO 2x clock on both PLLs if necessary */
1625         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1626                 /*
1627                  * It appears to be important that we don't enable this
1628                  * for the current pipe before otherwise configuring the
1629                  * PLL. No idea how this should be handled if multiple
1630                  * DVO outputs are enabled simultaneosly.
1631                  */
1632                 dpll |= DPLL_DVO_2X_MODE;
1633                 I915_WRITE(DPLL(!crtc->pipe),
1634                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1635         }
1636
1637         /*
1638          * Apparently we need to have VGA mode enabled prior to changing
1639          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1640          * dividers, even though the register value does change.
1641          */
1642         I915_WRITE(reg, 0);
1643
1644         I915_WRITE(reg, dpll);
1645
1646         /* Wait for the clocks to stabilize. */
1647         POSTING_READ(reg);
1648         udelay(150);
1649
1650         if (INTEL_INFO(dev)->gen >= 4) {
1651                 I915_WRITE(DPLL_MD(crtc->pipe),
1652                            crtc->config->dpll_hw_state.dpll_md);
1653         } else {
1654                 /* The pixel multiplier can only be updated once the
1655                  * DPLL is enabled and the clocks are stable.
1656                  *
1657                  * So write it again.
1658                  */
1659                 I915_WRITE(reg, dpll);
1660         }
1661
1662         /* We do this three times for luck */
1663         I915_WRITE(reg, dpll);
1664         POSTING_READ(reg);
1665         udelay(150); /* wait for warmup */
1666         I915_WRITE(reg, dpll);
1667         POSTING_READ(reg);
1668         udelay(150); /* wait for warmup */
1669         I915_WRITE(reg, dpll);
1670         POSTING_READ(reg);
1671         udelay(150); /* wait for warmup */
1672 }
1673
1674 /**
1675  * i9xx_disable_pll - disable a PLL
1676  * @dev_priv: i915 private structure
1677  * @pipe: pipe PLL to disable
1678  *
1679  * Disable the PLL for @pipe, making sure the pipe is off first.
1680  *
1681  * Note!  This is for pre-ILK only.
1682  */
1683 static void i9xx_disable_pll(struct intel_crtc *crtc)
1684 {
1685         struct drm_device *dev = crtc->base.dev;
1686         struct drm_i915_private *dev_priv = to_i915(dev);
1687         enum pipe pipe = crtc->pipe;
1688
1689         /* Disable DVO 2x clock on both PLLs if necessary */
1690         if (IS_I830(dev) &&
1691             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1692             !intel_num_dvo_pipes(dev)) {
1693                 I915_WRITE(DPLL(PIPE_B),
1694                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1695                 I915_WRITE(DPLL(PIPE_A),
1696                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1697         }
1698
1699         /* Don't disable pipe or pipe PLLs if needed */
1700         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1701             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1702                 return;
1703
1704         /* Make sure the pipe isn't still relying on us */
1705         assert_pipe_disabled(dev_priv, pipe);
1706
1707         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1708         POSTING_READ(DPLL(pipe));
1709 }
1710
1711 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1712 {
1713         u32 val;
1714
1715         /* Make sure the pipe isn't still relying on us */
1716         assert_pipe_disabled(dev_priv, pipe);
1717
1718         val = DPLL_INTEGRATED_REF_CLK_VLV |
1719                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1720         if (pipe != PIPE_A)
1721                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1722
1723         I915_WRITE(DPLL(pipe), val);
1724         POSTING_READ(DPLL(pipe));
1725 }
1726
1727 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1728 {
1729         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1730         u32 val;
1731
1732         /* Make sure the pipe isn't still relying on us */
1733         assert_pipe_disabled(dev_priv, pipe);
1734
1735         val = DPLL_SSC_REF_CLK_CHV |
1736                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1737         if (pipe != PIPE_A)
1738                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1739
1740         I915_WRITE(DPLL(pipe), val);
1741         POSTING_READ(DPLL(pipe));
1742
1743         mutex_lock(&dev_priv->sb_lock);
1744
1745         /* Disable 10bit clock to display controller */
1746         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1747         val &= ~DPIO_DCLKP_EN;
1748         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1749
1750         mutex_unlock(&dev_priv->sb_lock);
1751 }
1752
1753 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1754                          struct intel_digital_port *dport,
1755                          unsigned int expected_mask)
1756 {
1757         u32 port_mask;
1758         i915_reg_t dpll_reg;
1759
1760         switch (dport->port) {
1761         case PORT_B:
1762                 port_mask = DPLL_PORTB_READY_MASK;
1763                 dpll_reg = DPLL(0);
1764                 break;
1765         case PORT_C:
1766                 port_mask = DPLL_PORTC_READY_MASK;
1767                 dpll_reg = DPLL(0);
1768                 expected_mask <<= 4;
1769                 break;
1770         case PORT_D:
1771                 port_mask = DPLL_PORTD_READY_MASK;
1772                 dpll_reg = DPIO_PHY_STATUS;
1773                 break;
1774         default:
1775                 BUG();
1776         }
1777
1778         if (intel_wait_for_register(dev_priv,
1779                                     dpll_reg, port_mask, expected_mask,
1780                                     1000))
1781                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1782                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1783 }
1784
1785 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1786                                            enum pipe pipe)
1787 {
1788         struct drm_device *dev = &dev_priv->drm;
1789         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1790         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1791         i915_reg_t reg;
1792         uint32_t val, pipeconf_val;
1793
1794         /* Make sure PCH DPLL is enabled */
1795         assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1796
1797         /* FDI must be feeding us bits for PCH ports */
1798         assert_fdi_tx_enabled(dev_priv, pipe);
1799         assert_fdi_rx_enabled(dev_priv, pipe);
1800
1801         if (HAS_PCH_CPT(dev)) {
1802                 /* Workaround: Set the timing override bit before enabling the
1803                  * pch transcoder. */
1804                 reg = TRANS_CHICKEN2(pipe);
1805                 val = I915_READ(reg);
1806                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1807                 I915_WRITE(reg, val);
1808         }
1809
1810         reg = PCH_TRANSCONF(pipe);
1811         val = I915_READ(reg);
1812         pipeconf_val = I915_READ(PIPECONF(pipe));
1813
1814         if (HAS_PCH_IBX(dev_priv)) {
1815                 /*
1816                  * Make the BPC in transcoder be consistent with
1817                  * that in pipeconf reg. For HDMI we must use 8bpc
1818                  * here for both 8bpc and 12bpc.
1819                  */
1820                 val &= ~PIPECONF_BPC_MASK;
1821                 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1822                         val |= PIPECONF_8BPC;
1823                 else
1824                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1825         }
1826
1827         val &= ~TRANS_INTERLACE_MASK;
1828         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1829                 if (HAS_PCH_IBX(dev_priv) &&
1830                     intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1831                         val |= TRANS_LEGACY_INTERLACED_ILK;
1832                 else
1833                         val |= TRANS_INTERLACED;
1834         else
1835                 val |= TRANS_PROGRESSIVE;
1836
1837         I915_WRITE(reg, val | TRANS_ENABLE);
1838         if (intel_wait_for_register(dev_priv,
1839                                     reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1840                                     100))
1841                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1842 }
1843
1844 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1845                                       enum transcoder cpu_transcoder)
1846 {
1847         u32 val, pipeconf_val;
1848
1849         /* FDI must be feeding us bits for PCH ports */
1850         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1851         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1852
1853         /* Workaround: set timing override bit. */
1854         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1855         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1856         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1857
1858         val = TRANS_ENABLE;
1859         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1860
1861         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1862             PIPECONF_INTERLACED_ILK)
1863                 val |= TRANS_INTERLACED;
1864         else
1865                 val |= TRANS_PROGRESSIVE;
1866
1867         I915_WRITE(LPT_TRANSCONF, val);
1868         if (intel_wait_for_register(dev_priv,
1869                                     LPT_TRANSCONF,
1870                                     TRANS_STATE_ENABLE,
1871                                     TRANS_STATE_ENABLE,
1872                                     100))
1873                 DRM_ERROR("Failed to enable PCH transcoder\n");
1874 }
1875
1876 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1877                                             enum pipe pipe)
1878 {
1879         struct drm_device *dev = &dev_priv->drm;
1880         i915_reg_t reg;
1881         uint32_t val;
1882
1883         /* FDI relies on the transcoder */
1884         assert_fdi_tx_disabled(dev_priv, pipe);
1885         assert_fdi_rx_disabled(dev_priv, pipe);
1886
1887         /* Ports must be off as well */
1888         assert_pch_ports_disabled(dev_priv, pipe);
1889
1890         reg = PCH_TRANSCONF(pipe);
1891         val = I915_READ(reg);
1892         val &= ~TRANS_ENABLE;
1893         I915_WRITE(reg, val);
1894         /* wait for PCH transcoder off, transcoder state */
1895         if (intel_wait_for_register(dev_priv,
1896                                     reg, TRANS_STATE_ENABLE, 0,
1897                                     50))
1898                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1899
1900         if (HAS_PCH_CPT(dev)) {
1901                 /* Workaround: Clear the timing override chicken bit again. */
1902                 reg = TRANS_CHICKEN2(pipe);
1903                 val = I915_READ(reg);
1904                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1905                 I915_WRITE(reg, val);
1906         }
1907 }
1908
1909 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1910 {
1911         u32 val;
1912
1913         val = I915_READ(LPT_TRANSCONF);
1914         val &= ~TRANS_ENABLE;
1915         I915_WRITE(LPT_TRANSCONF, val);
1916         /* wait for PCH transcoder off, transcoder state */
1917         if (intel_wait_for_register(dev_priv,
1918                                     LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1919                                     50))
1920                 DRM_ERROR("Failed to disable PCH transcoder\n");
1921
1922         /* Workaround: clear timing override bit. */
1923         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1924         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1925         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1926 }
1927
1928 /**
1929  * intel_enable_pipe - enable a pipe, asserting requirements
1930  * @crtc: crtc responsible for the pipe
1931  *
1932  * Enable @crtc's pipe, making sure that various hardware specific requirements
1933  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1934  */
1935 static void intel_enable_pipe(struct intel_crtc *crtc)
1936 {
1937         struct drm_device *dev = crtc->base.dev;
1938         struct drm_i915_private *dev_priv = to_i915(dev);
1939         enum pipe pipe = crtc->pipe;
1940         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1941         enum pipe pch_transcoder;
1942         i915_reg_t reg;
1943         u32 val;
1944
1945         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1946
1947         assert_planes_disabled(dev_priv, pipe);
1948         assert_cursor_disabled(dev_priv, pipe);
1949         assert_sprites_disabled(dev_priv, pipe);
1950
1951         if (HAS_PCH_LPT(dev_priv))
1952                 pch_transcoder = TRANSCODER_A;
1953         else
1954                 pch_transcoder = pipe;
1955
1956         /*
1957          * A pipe without a PLL won't actually be able to drive bits from
1958          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1959          * need the check.
1960          */
1961         if (HAS_GMCH_DISPLAY(dev_priv))
1962                 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1963                         assert_dsi_pll_enabled(dev_priv);
1964                 else
1965                         assert_pll_enabled(dev_priv, pipe);
1966         else {
1967                 if (crtc->config->has_pch_encoder) {
1968                         /* if driving the PCH, we need FDI enabled */
1969                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1970                         assert_fdi_tx_pll_enabled(dev_priv,
1971                                                   (enum pipe) cpu_transcoder);
1972                 }
1973                 /* FIXME: assert CPU port conditions for SNB+ */
1974         }
1975
1976         reg = PIPECONF(cpu_transcoder);
1977         val = I915_READ(reg);
1978         if (val & PIPECONF_ENABLE) {
1979                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1980                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1981                 return;
1982         }
1983
1984         I915_WRITE(reg, val | PIPECONF_ENABLE);
1985         POSTING_READ(reg);
1986
1987         /*
1988          * Until the pipe starts DSL will read as 0, which would cause
1989          * an apparent vblank timestamp jump, which messes up also the
1990          * frame count when it's derived from the timestamps. So let's
1991          * wait for the pipe to start properly before we call
1992          * drm_crtc_vblank_on()
1993          */
1994         if (dev->max_vblank_count == 0 &&
1995             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1996                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1997 }
1998
1999 /**
2000  * intel_disable_pipe - disable a pipe, asserting requirements
2001  * @crtc: crtc whose pipes is to be disabled
2002  *
2003  * Disable the pipe of @crtc, making sure that various hardware
2004  * specific requirements are met, if applicable, e.g. plane
2005  * disabled, panel fitter off, etc.
2006  *
2007  * Will wait until the pipe has shut down before returning.
2008  */
2009 static void intel_disable_pipe(struct intel_crtc *crtc)
2010 {
2011         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2012         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2013         enum pipe pipe = crtc->pipe;
2014         i915_reg_t reg;
2015         u32 val;
2016
2017         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2018
2019         /*
2020          * Make sure planes won't keep trying to pump pixels to us,
2021          * or we might hang the display.
2022          */
2023         assert_planes_disabled(dev_priv, pipe);
2024         assert_cursor_disabled(dev_priv, pipe);
2025         assert_sprites_disabled(dev_priv, pipe);
2026
2027         reg = PIPECONF(cpu_transcoder);
2028         val = I915_READ(reg);
2029         if ((val & PIPECONF_ENABLE) == 0)
2030                 return;
2031
2032         /*
2033          * Double wide has implications for planes
2034          * so best keep it disabled when not needed.
2035          */
2036         if (crtc->config->double_wide)
2037                 val &= ~PIPECONF_DOUBLE_WIDE;
2038
2039         /* Don't disable pipe or pipe PLLs if needed */
2040         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2041             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2042                 val &= ~PIPECONF_ENABLE;
2043
2044         I915_WRITE(reg, val);
2045         if ((val & PIPECONF_ENABLE) == 0)
2046                 intel_wait_for_pipe_off(crtc);
2047 }
2048
2049 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2050 {
2051         return IS_GEN2(dev_priv) ? 2048 : 4096;
2052 }
2053
2054 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2055                                            uint64_t fb_modifier, unsigned int cpp)
2056 {
2057         switch (fb_modifier) {
2058         case DRM_FORMAT_MOD_NONE:
2059                 return cpp;
2060         case I915_FORMAT_MOD_X_TILED:
2061                 if (IS_GEN2(dev_priv))
2062                         return 128;
2063                 else
2064                         return 512;
2065         case I915_FORMAT_MOD_Y_TILED:
2066                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2067                         return 128;
2068                 else
2069                         return 512;
2070         case I915_FORMAT_MOD_Yf_TILED:
2071                 switch (cpp) {
2072                 case 1:
2073                         return 64;
2074                 case 2:
2075                 case 4:
2076                         return 128;
2077                 case 8:
2078                 case 16:
2079                         return 256;
2080                 default:
2081                         MISSING_CASE(cpp);
2082                         return cpp;
2083                 }
2084                 break;
2085         default:
2086                 MISSING_CASE(fb_modifier);
2087                 return cpp;
2088         }
2089 }
2090
2091 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2092                                uint64_t fb_modifier, unsigned int cpp)
2093 {
2094         if (fb_modifier == DRM_FORMAT_MOD_NONE)
2095                 return 1;
2096         else
2097                 return intel_tile_size(dev_priv) /
2098                         intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2099 }
2100
2101 /* Return the tile dimensions in pixel units */
2102 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2103                             unsigned int *tile_width,
2104                             unsigned int *tile_height,
2105                             uint64_t fb_modifier,
2106                             unsigned int cpp)
2107 {
2108         unsigned int tile_width_bytes =
2109                 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2110
2111         *tile_width = tile_width_bytes / cpp;
2112         *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2113 }
2114
2115 unsigned int
2116 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2117                       uint32_t pixel_format, uint64_t fb_modifier)
2118 {
2119         unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2120         unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2121
2122         return ALIGN(height, tile_height);
2123 }
2124
2125 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2126 {
2127         unsigned int size = 0;
2128         int i;
2129
2130         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2131                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2132
2133         return size;
2134 }
2135
2136 static void
2137 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2138                         const struct drm_framebuffer *fb,
2139                         unsigned int rotation)
2140 {
2141         if (intel_rotation_90_or_270(rotation)) {
2142                 *view = i915_ggtt_view_rotated;
2143                 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2144         } else {
2145                 *view = i915_ggtt_view_normal;
2146         }
2147 }
2148
2149 static void
2150 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2151                    struct drm_framebuffer *fb)
2152 {
2153         struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2154         unsigned int tile_size, tile_width, tile_height, cpp;
2155
2156         tile_size = intel_tile_size(dev_priv);
2157
2158         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2159         intel_tile_dims(dev_priv, &tile_width, &tile_height,
2160                         fb->modifier[0], cpp);
2161
2162         info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2163         info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
2164
2165         if (info->pixel_format == DRM_FORMAT_NV12) {
2166                 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2167                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2168                                 fb->modifier[1], cpp);
2169
2170                 info->uv_offset = fb->offsets[1];
2171                 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2172                 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
2173         }
2174 }
2175
2176 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2177 {
2178         if (INTEL_INFO(dev_priv)->gen >= 9)
2179                 return 256 * 1024;
2180         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2181                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2182                 return 128 * 1024;
2183         else if (INTEL_INFO(dev_priv)->gen >= 4)
2184                 return 4 * 1024;
2185         else
2186                 return 0;
2187 }
2188
2189 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2190                                          uint64_t fb_modifier)
2191 {
2192         switch (fb_modifier) {
2193         case DRM_FORMAT_MOD_NONE:
2194                 return intel_linear_alignment(dev_priv);
2195         case I915_FORMAT_MOD_X_TILED:
2196                 if (INTEL_INFO(dev_priv)->gen >= 9)
2197                         return 256 * 1024;
2198                 return 0;
2199         case I915_FORMAT_MOD_Y_TILED:
2200         case I915_FORMAT_MOD_Yf_TILED:
2201                 return 1 * 1024 * 1024;
2202         default:
2203                 MISSING_CASE(fb_modifier);
2204                 return 0;
2205         }
2206 }
2207
2208 int
2209 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2210                            unsigned int rotation)
2211 {
2212         struct drm_device *dev = fb->dev;
2213         struct drm_i915_private *dev_priv = to_i915(dev);
2214         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2215         struct i915_ggtt_view view;
2216         u32 alignment;
2217         int ret;
2218
2219         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2220
2221         alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2222
2223         intel_fill_fb_ggtt_view(&view, fb, rotation);
2224
2225         /* Note that the w/a also requires 64 PTE of padding following the
2226          * bo. We currently fill all unused PTE with the shadow page and so
2227          * we should always have valid PTE following the scanout preventing
2228          * the VT-d warning.
2229          */
2230         if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2231                 alignment = 256 * 1024;
2232
2233         /*
2234          * Global gtt pte registers are special registers which actually forward
2235          * writes to a chunk of system memory. Which means that there is no risk
2236          * that the register values disappear as soon as we call
2237          * intel_runtime_pm_put(), so it is correct to wrap only the
2238          * pin/unpin/fence and not more.
2239          */
2240         intel_runtime_pm_get(dev_priv);
2241
2242         ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2243                                                    &view);
2244         if (ret)
2245                 goto err_pm;
2246
2247         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2248          * fence, whereas 965+ only requires a fence if using
2249          * framebuffer compression.  For simplicity, we always install
2250          * a fence as the cost is not that onerous.
2251          */
2252         if (view.type == I915_GGTT_VIEW_NORMAL) {
2253                 ret = i915_gem_object_get_fence(obj);
2254                 if (ret == -EDEADLK) {
2255                         /*
2256                          * -EDEADLK means there are no free fences
2257                          * no pending flips.
2258                          *
2259                          * This is propagated to atomic, but it uses
2260                          * -EDEADLK to force a locking recovery, so
2261                          * change the returned error to -EBUSY.
2262                          */
2263                         ret = -EBUSY;
2264                         goto err_unpin;
2265                 } else if (ret)
2266                         goto err_unpin;
2267
2268                 i915_gem_object_pin_fence(obj);
2269         }
2270
2271         intel_runtime_pm_put(dev_priv);
2272         return 0;
2273
2274 err_unpin:
2275         i915_gem_object_unpin_from_display_plane(obj, &view);
2276 err_pm:
2277         intel_runtime_pm_put(dev_priv);
2278         return ret;
2279 }
2280
2281 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2282 {
2283         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2284         struct i915_ggtt_view view;
2285
2286         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2287
2288         intel_fill_fb_ggtt_view(&view, fb, rotation);
2289
2290         if (view.type == I915_GGTT_VIEW_NORMAL)
2291                 i915_gem_object_unpin_fence(obj);
2292
2293         i915_gem_object_unpin_from_display_plane(obj, &view);
2294 }
2295
2296 /*
2297  * Adjust the tile offset by moving the difference into
2298  * the x/y offsets.
2299  *
2300  * Input tile dimensions and pitch must already be
2301  * rotated to match x and y, and in pixel units.
2302  */
2303 static u32 intel_adjust_tile_offset(int *x, int *y,
2304                                     unsigned int tile_width,
2305                                     unsigned int tile_height,
2306                                     unsigned int tile_size,
2307                                     unsigned int pitch_tiles,
2308                                     u32 old_offset,
2309                                     u32 new_offset)
2310 {
2311         unsigned int tiles;
2312
2313         WARN_ON(old_offset & (tile_size - 1));
2314         WARN_ON(new_offset & (tile_size - 1));
2315         WARN_ON(new_offset > old_offset);
2316
2317         tiles = (old_offset - new_offset) / tile_size;
2318
2319         *y += tiles / pitch_tiles * tile_height;
2320         *x += tiles % pitch_tiles * tile_width;
2321
2322         return new_offset;
2323 }
2324
2325 /*
2326  * Computes the linear offset to the base tile and adjusts
2327  * x, y. bytes per pixel is assumed to be a power-of-two.
2328  *
2329  * In the 90/270 rotated case, x and y are assumed
2330  * to be already rotated to match the rotated GTT view, and
2331  * pitch is the tile_height aligned framebuffer height.
2332  */
2333 u32 intel_compute_tile_offset(int *x, int *y,
2334                               const struct drm_framebuffer *fb, int plane,
2335                               unsigned int pitch,
2336                               unsigned int rotation)
2337 {
2338         const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2339         uint64_t fb_modifier = fb->modifier[plane];
2340         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2341         u32 offset, offset_aligned, alignment;
2342
2343         alignment = intel_surf_alignment(dev_priv, fb_modifier);
2344         if (alignment)
2345                 alignment--;
2346
2347         if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2348                 unsigned int tile_size, tile_width, tile_height;
2349                 unsigned int tile_rows, tiles, pitch_tiles;
2350
2351                 tile_size = intel_tile_size(dev_priv);
2352                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2353                                 fb_modifier, cpp);
2354
2355                 if (intel_rotation_90_or_270(rotation)) {
2356                         pitch_tiles = pitch / tile_height;
2357                         swap(tile_width, tile_height);
2358                 } else {
2359                         pitch_tiles = pitch / (tile_width * cpp);
2360                 }
2361
2362                 tile_rows = *y / tile_height;
2363                 *y %= tile_height;
2364
2365                 tiles = *x / tile_width;
2366                 *x %= tile_width;
2367
2368                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2369                 offset_aligned = offset & ~alignment;
2370
2371                 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2372                                          tile_size, pitch_tiles,
2373                                          offset, offset_aligned);
2374         } else {
2375                 offset = *y * pitch + *x * cpp;
2376                 offset_aligned = offset & ~alignment;
2377
2378                 *y = (offset & alignment) / pitch;
2379                 *x = ((offset & alignment) - *y * pitch) / cpp;
2380         }
2381
2382         return offset_aligned;
2383 }
2384
2385 static int i9xx_format_to_fourcc(int format)
2386 {
2387         switch (format) {
2388         case DISPPLANE_8BPP:
2389                 return DRM_FORMAT_C8;
2390         case DISPPLANE_BGRX555:
2391                 return DRM_FORMAT_XRGB1555;
2392         case DISPPLANE_BGRX565:
2393                 return DRM_FORMAT_RGB565;
2394         default:
2395         case DISPPLANE_BGRX888:
2396                 return DRM_FORMAT_XRGB8888;
2397         case DISPPLANE_RGBX888:
2398                 return DRM_FORMAT_XBGR8888;
2399         case DISPPLANE_BGRX101010:
2400                 return DRM_FORMAT_XRGB2101010;
2401         case DISPPLANE_RGBX101010:
2402                 return DRM_FORMAT_XBGR2101010;
2403         }
2404 }
2405
2406 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2407 {
2408         switch (format) {
2409         case PLANE_CTL_FORMAT_RGB_565:
2410                 return DRM_FORMAT_RGB565;
2411         default:
2412         case PLANE_CTL_FORMAT_XRGB_8888:
2413                 if (rgb_order) {
2414                         if (alpha)
2415                                 return DRM_FORMAT_ABGR8888;
2416                         else
2417                                 return DRM_FORMAT_XBGR8888;
2418                 } else {
2419                         if (alpha)
2420                                 return DRM_FORMAT_ARGB8888;
2421                         else
2422                                 return DRM_FORMAT_XRGB8888;
2423                 }
2424         case PLANE_CTL_FORMAT_XRGB_2101010:
2425                 if (rgb_order)
2426                         return DRM_FORMAT_XBGR2101010;
2427                 else
2428                         return DRM_FORMAT_XRGB2101010;
2429         }
2430 }
2431
2432 static bool
2433 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2434                               struct intel_initial_plane_config *plane_config)
2435 {
2436         struct drm_device *dev = crtc->base.dev;
2437         struct drm_i915_private *dev_priv = to_i915(dev);
2438         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2439         struct drm_i915_gem_object *obj = NULL;
2440         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2441         struct drm_framebuffer *fb = &plane_config->fb->base;
2442         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2443         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2444                                     PAGE_SIZE);
2445
2446         size_aligned -= base_aligned;
2447
2448         if (plane_config->size == 0)
2449                 return false;
2450
2451         /* If the FB is too big, just don't use it since fbdev is not very
2452          * important and we should probably use that space with FBC or other
2453          * features. */
2454         if (size_aligned * 2 > ggtt->stolen_usable_size)
2455                 return false;
2456
2457         mutex_lock(&dev->struct_mutex);
2458
2459         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2460                                                              base_aligned,
2461                                                              base_aligned,
2462                                                              size_aligned);
2463         if (!obj) {
2464                 mutex_unlock(&dev->struct_mutex);
2465                 return false;
2466         }
2467
2468         obj->tiling_mode = plane_config->tiling;
2469         if (obj->tiling_mode == I915_TILING_X)
2470                 obj->stride = fb->pitches[0];
2471
2472         mode_cmd.pixel_format = fb->pixel_format;
2473         mode_cmd.width = fb->width;
2474         mode_cmd.height = fb->height;
2475         mode_cmd.pitches[0] = fb->pitches[0];
2476         mode_cmd.modifier[0] = fb->modifier[0];
2477         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2478
2479         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2480                                    &mode_cmd, obj)) {
2481                 DRM_DEBUG_KMS("intel fb init failed\n");
2482                 goto out_unref_obj;
2483         }
2484
2485         mutex_unlock(&dev->struct_mutex);
2486
2487         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2488         return true;
2489
2490 out_unref_obj:
2491         drm_gem_object_unreference(&obj->base);
2492         mutex_unlock(&dev->struct_mutex);
2493         return false;
2494 }
2495
2496 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2497 static void
2498 update_state_fb(struct drm_plane *plane)
2499 {
2500         if (plane->fb == plane->state->fb)
2501                 return;
2502
2503         if (plane->state->fb)
2504                 drm_framebuffer_unreference(plane->state->fb);
2505         plane->state->fb = plane->fb;
2506         if (plane->state->fb)
2507                 drm_framebuffer_reference(plane->state->fb);
2508 }
2509
2510 static void
2511 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2512                              struct intel_initial_plane_config *plane_config)
2513 {
2514         struct drm_device *dev = intel_crtc->base.dev;
2515         struct drm_i915_private *dev_priv = to_i915(dev);
2516         struct drm_crtc *c;
2517         struct intel_crtc *i;
2518         struct drm_i915_gem_object *obj;
2519         struct drm_plane *primary = intel_crtc->base.primary;
2520         struct drm_plane_state *plane_state = primary->state;
2521         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2522         struct intel_plane *intel_plane = to_intel_plane(primary);
2523         struct intel_plane_state *intel_state =
2524                 to_intel_plane_state(plane_state);
2525         struct drm_framebuffer *fb;
2526
2527         if (!plane_config->fb)
2528                 return;
2529
2530         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2531                 fb = &plane_config->fb->base;
2532                 goto valid_fb;
2533         }
2534
2535         kfree(plane_config->fb);
2536
2537         /*
2538          * Failed to alloc the obj, check to see if we should share
2539          * an fb with another CRTC instead
2540          */
2541         for_each_crtc(dev, c) {
2542                 i = to_intel_crtc(c);
2543
2544                 if (c == &intel_crtc->base)
2545                         continue;
2546
2547                 if (!i->active)
2548                         continue;
2549
2550                 fb = c->primary->fb;
2551                 if (!fb)
2552                         continue;
2553
2554                 obj = intel_fb_obj(fb);
2555                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2556                         drm_framebuffer_reference(fb);
2557                         goto valid_fb;
2558                 }
2559         }
2560
2561         /*
2562          * We've failed to reconstruct the BIOS FB.  Current display state
2563          * indicates that the primary plane is visible, but has a NULL FB,
2564          * which will lead to problems later if we don't fix it up.  The
2565          * simplest solution is to just disable the primary plane now and
2566          * pretend the BIOS never had it enabled.
2567          */
2568         to_intel_plane_state(plane_state)->visible = false;
2569         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2570         intel_pre_disable_primary_noatomic(&intel_crtc->base);
2571         intel_plane->disable_plane(primary, &intel_crtc->base);
2572
2573         return;
2574
2575 valid_fb:
2576         plane_state->src_x = 0;
2577         plane_state->src_y = 0;
2578         plane_state->src_w = fb->width << 16;
2579         plane_state->src_h = fb->height << 16;
2580
2581         plane_state->crtc_x = 0;
2582         plane_state->crtc_y = 0;
2583         plane_state->crtc_w = fb->width;
2584         plane_state->crtc_h = fb->height;
2585
2586         intel_state->src.x1 = plane_state->src_x;
2587         intel_state->src.y1 = plane_state->src_y;
2588         intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2589         intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2590         intel_state->dst.x1 = plane_state->crtc_x;
2591         intel_state->dst.y1 = plane_state->crtc_y;
2592         intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2593         intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2594
2595         obj = intel_fb_obj(fb);
2596         if (obj->tiling_mode != I915_TILING_NONE)
2597                 dev_priv->preserve_bios_swizzle = true;
2598
2599         drm_framebuffer_reference(fb);
2600         primary->fb = primary->state->fb = fb;
2601         primary->crtc = primary->state->crtc = &intel_crtc->base;
2602         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2603         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2604 }
2605
2606 static void i9xx_update_primary_plane(struct drm_plane *primary,
2607                                       const struct intel_crtc_state *crtc_state,
2608                                       const struct intel_plane_state *plane_state)
2609 {
2610         struct drm_device *dev = primary->dev;
2611         struct drm_i915_private *dev_priv = to_i915(dev);
2612         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2613         struct drm_framebuffer *fb = plane_state->base.fb;
2614         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2615         int plane = intel_crtc->plane;
2616         u32 linear_offset;
2617         u32 dspcntr;
2618         i915_reg_t reg = DSPCNTR(plane);
2619         unsigned int rotation = plane_state->base.rotation;
2620         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2621         int x = plane_state->src.x1 >> 16;
2622         int y = plane_state->src.y1 >> 16;
2623
2624         dspcntr = DISPPLANE_GAMMA_ENABLE;
2625
2626         dspcntr |= DISPLAY_PLANE_ENABLE;
2627
2628         if (INTEL_INFO(dev)->gen < 4) {
2629                 if (intel_crtc->pipe == PIPE_B)
2630                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2631
2632                 /* pipesrc and dspsize control the size that is scaled from,
2633                  * which should always be the user's requested size.
2634                  */
2635                 I915_WRITE(DSPSIZE(plane),
2636                            ((crtc_state->pipe_src_h - 1) << 16) |
2637                            (crtc_state->pipe_src_w - 1));
2638                 I915_WRITE(DSPPOS(plane), 0);
2639         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2640                 I915_WRITE(PRIMSIZE(plane),
2641                            ((crtc_state->pipe_src_h - 1) << 16) |
2642                            (crtc_state->pipe_src_w - 1));
2643                 I915_WRITE(PRIMPOS(plane), 0);
2644                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2645         }
2646
2647         switch (fb->pixel_format) {
2648         case DRM_FORMAT_C8:
2649                 dspcntr |= DISPPLANE_8BPP;
2650                 break;
2651         case DRM_FORMAT_XRGB1555:
2652                 dspcntr |= DISPPLANE_BGRX555;
2653                 break;
2654         case DRM_FORMAT_RGB565:
2655                 dspcntr |= DISPPLANE_BGRX565;
2656                 break;
2657         case DRM_FORMAT_XRGB8888:
2658                 dspcntr |= DISPPLANE_BGRX888;
2659                 break;
2660         case DRM_FORMAT_XBGR8888:
2661                 dspcntr |= DISPPLANE_RGBX888;
2662                 break;
2663         case DRM_FORMAT_XRGB2101010:
2664                 dspcntr |= DISPPLANE_BGRX101010;
2665                 break;
2666         case DRM_FORMAT_XBGR2101010:
2667                 dspcntr |= DISPPLANE_RGBX101010;
2668                 break;
2669         default:
2670                 BUG();
2671         }
2672
2673         if (INTEL_INFO(dev)->gen >= 4 &&
2674             obj->tiling_mode != I915_TILING_NONE)
2675                 dspcntr |= DISPPLANE_TILED;
2676
2677         if (IS_G4X(dev))
2678                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2679
2680         linear_offset = y * fb->pitches[0] + x * cpp;
2681
2682         if (INTEL_INFO(dev)->gen >= 4) {
2683                 intel_crtc->dspaddr_offset =
2684                         intel_compute_tile_offset(&x, &y, fb, 0,
2685                                                   fb->pitches[0], rotation);
2686                 linear_offset -= intel_crtc->dspaddr_offset;
2687         } else {
2688                 intel_crtc->dspaddr_offset = linear_offset;
2689         }
2690
2691         if (rotation == BIT(DRM_ROTATE_180)) {
2692                 dspcntr |= DISPPLANE_ROTATE_180;
2693
2694                 x += (crtc_state->pipe_src_w - 1);
2695                 y += (crtc_state->pipe_src_h - 1);
2696
2697                 /* Finding the last pixel of the last line of the display
2698                 data and adding to linear_offset*/
2699                 linear_offset +=
2700                         (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2701                         (crtc_state->pipe_src_w - 1) * cpp;
2702         }
2703
2704         intel_crtc->adjusted_x = x;
2705         intel_crtc->adjusted_y = y;
2706
2707         I915_WRITE(reg, dspcntr);
2708
2709         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2710         if (INTEL_INFO(dev)->gen >= 4) {
2711                 I915_WRITE(DSPSURF(plane),
2712                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2713                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2714                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2715         } else
2716                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2717         POSTING_READ(reg);
2718 }
2719
2720 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2721                                        struct drm_crtc *crtc)
2722 {
2723         struct drm_device *dev = crtc->dev;
2724         struct drm_i915_private *dev_priv = to_i915(dev);
2725         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2726         int plane = intel_crtc->plane;
2727
2728         I915_WRITE(DSPCNTR(plane), 0);
2729         if (INTEL_INFO(dev_priv)->gen >= 4)
2730                 I915_WRITE(DSPSURF(plane), 0);
2731         else
2732                 I915_WRITE(DSPADDR(plane), 0);
2733         POSTING_READ(DSPCNTR(plane));
2734 }
2735
2736 static void ironlake_update_primary_plane(struct drm_plane *primary,
2737                                           const struct intel_crtc_state *crtc_state,
2738                                           const struct intel_plane_state *plane_state)
2739 {
2740         struct drm_device *dev = primary->dev;
2741         struct drm_i915_private *dev_priv = to_i915(dev);
2742         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2743         struct drm_framebuffer *fb = plane_state->base.fb;
2744         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2745         int plane = intel_crtc->plane;
2746         u32 linear_offset;
2747         u32 dspcntr;
2748         i915_reg_t reg = DSPCNTR(plane);
2749         unsigned int rotation = plane_state->base.rotation;
2750         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2751         int x = plane_state->src.x1 >> 16;
2752         int y = plane_state->src.y1 >> 16;
2753
2754         dspcntr = DISPPLANE_GAMMA_ENABLE;
2755         dspcntr |= DISPLAY_PLANE_ENABLE;
2756
2757         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2758                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2759
2760         switch (fb->pixel_format) {
2761         case DRM_FORMAT_C8:
2762                 dspcntr |= DISPPLANE_8BPP;
2763                 break;
2764         case DRM_FORMAT_RGB565:
2765                 dspcntr |= DISPPLANE_BGRX565;
2766                 break;
2767         case DRM_FORMAT_XRGB8888:
2768                 dspcntr |= DISPPLANE_BGRX888;
2769                 break;
2770         case DRM_FORMAT_XBGR8888:
2771                 dspcntr |= DISPPLANE_RGBX888;
2772                 break;
2773         case DRM_FORMAT_XRGB2101010:
2774                 dspcntr |= DISPPLANE_BGRX101010;
2775                 break;
2776         case DRM_FORMAT_XBGR2101010:
2777                 dspcntr |= DISPPLANE_RGBX101010;
2778                 break;
2779         default:
2780                 BUG();
2781         }
2782
2783         if (obj->tiling_mode != I915_TILING_NONE)
2784                 dspcntr |= DISPPLANE_TILED;
2785
2786         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2787                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2788
2789         linear_offset = y * fb->pitches[0] + x * cpp;
2790         intel_crtc->dspaddr_offset =
2791                 intel_compute_tile_offset(&x, &y, fb, 0,
2792                                           fb->pitches[0], rotation);
2793         linear_offset -= intel_crtc->dspaddr_offset;
2794         if (rotation == BIT(DRM_ROTATE_180)) {
2795                 dspcntr |= DISPPLANE_ROTATE_180;
2796
2797                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2798                         x += (crtc_state->pipe_src_w - 1);
2799                         y += (crtc_state->pipe_src_h - 1);
2800
2801                         /* Finding the last pixel of the last line of the display
2802                         data and adding to linear_offset*/
2803                         linear_offset +=
2804                                 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2805                                 (crtc_state->pipe_src_w - 1) * cpp;
2806                 }
2807         }
2808
2809         intel_crtc->adjusted_x = x;
2810         intel_crtc->adjusted_y = y;
2811
2812         I915_WRITE(reg, dspcntr);
2813
2814         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2815         I915_WRITE(DSPSURF(plane),
2816                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2817         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2818                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2819         } else {
2820                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2821                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2822         }
2823         POSTING_READ(reg);
2824 }
2825
2826 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2827                               uint64_t fb_modifier, uint32_t pixel_format)
2828 {
2829         if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2830                 return 64;
2831         } else {
2832                 int cpp = drm_format_plane_cpp(pixel_format, 0);
2833
2834                 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2835         }
2836 }
2837
2838 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2839                            struct drm_i915_gem_object *obj,
2840                            unsigned int plane)
2841 {
2842         struct i915_ggtt_view view;
2843         struct i915_vma *vma;
2844         u64 offset;
2845
2846         intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2847                                 intel_plane->base.state->rotation);
2848
2849         vma = i915_gem_obj_to_ggtt_view(obj, &view);
2850         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2851                 view.type))
2852                 return -1;
2853
2854         offset = vma->node.start;
2855
2856         if (plane == 1) {
2857                 offset += vma->ggtt_view.params.rotated.uv_start_page *
2858                           PAGE_SIZE;
2859         }
2860
2861         WARN_ON(upper_32_bits(offset));
2862
2863         return lower_32_bits(offset);
2864 }
2865
2866 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2867 {
2868         struct drm_device *dev = intel_crtc->base.dev;
2869         struct drm_i915_private *dev_priv = to_i915(dev);
2870
2871         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2872         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2873         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2874 }
2875
2876 /*
2877  * This function detaches (aka. unbinds) unused scalers in hardware
2878  */
2879 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2880 {
2881         struct intel_crtc_scaler_state *scaler_state;
2882         int i;
2883
2884         scaler_state = &intel_crtc->config->scaler_state;
2885
2886         /* loop through and disable scalers that aren't in use */
2887         for (i = 0; i < intel_crtc->num_scalers; i++) {
2888                 if (!scaler_state->scalers[i].in_use)
2889                         skl_detach_scaler(intel_crtc, i);
2890         }
2891 }
2892
2893 u32 skl_plane_ctl_format(uint32_t pixel_format)
2894 {
2895         switch (pixel_format) {
2896         case DRM_FORMAT_C8:
2897                 return PLANE_CTL_FORMAT_INDEXED;
2898         case DRM_FORMAT_RGB565:
2899                 return PLANE_CTL_FORMAT_RGB_565;
2900         case DRM_FORMAT_XBGR8888:
2901                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2902         case DRM_FORMAT_XRGB8888:
2903                 return PLANE_CTL_FORMAT_XRGB_8888;
2904         /*
2905          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2906          * to be already pre-multiplied. We need to add a knob (or a different
2907          * DRM_FORMAT) for user-space to configure that.
2908          */
2909         case DRM_FORMAT_ABGR8888:
2910                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2911                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2912         case DRM_FORMAT_ARGB8888:
2913                 return PLANE_CTL_FORMAT_XRGB_8888 |
2914                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2915         case DRM_FORMAT_XRGB2101010:
2916                 return PLANE_CTL_FORMAT_XRGB_2101010;
2917         case DRM_FORMAT_XBGR2101010:
2918                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2919         case DRM_FORMAT_YUYV:
2920                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2921         case DRM_FORMAT_YVYU:
2922                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2923         case DRM_FORMAT_UYVY:
2924                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2925         case DRM_FORMAT_VYUY:
2926                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2927         default:
2928                 MISSING_CASE(pixel_format);
2929         }
2930
2931         return 0;
2932 }
2933
2934 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2935 {
2936         switch (fb_modifier) {
2937         case DRM_FORMAT_MOD_NONE:
2938                 break;
2939         case I915_FORMAT_MOD_X_TILED:
2940                 return PLANE_CTL_TILED_X;
2941         case I915_FORMAT_MOD_Y_TILED:
2942                 return PLANE_CTL_TILED_Y;
2943         case I915_FORMAT_MOD_Yf_TILED:
2944                 return PLANE_CTL_TILED_YF;
2945         default:
2946                 MISSING_CASE(fb_modifier);
2947         }
2948
2949         return 0;
2950 }
2951
2952 u32 skl_plane_ctl_rotation(unsigned int rotation)
2953 {
2954         switch (rotation) {
2955         case BIT(DRM_ROTATE_0):
2956                 break;
2957         /*
2958          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
2959          * while i915 HW rotation is clockwise, thats why this swapping.
2960          */
2961         case BIT(DRM_ROTATE_90):
2962                 return PLANE_CTL_ROTATE_270;
2963         case BIT(DRM_ROTATE_180):
2964                 return PLANE_CTL_ROTATE_180;
2965         case BIT(DRM_ROTATE_270):
2966                 return PLANE_CTL_ROTATE_90;
2967         default:
2968                 MISSING_CASE(rotation);
2969         }
2970
2971         return 0;
2972 }
2973
2974 static void skylake_update_primary_plane(struct drm_plane *plane,
2975                                          const struct intel_crtc_state *crtc_state,
2976                                          const struct intel_plane_state *plane_state)
2977 {
2978         struct drm_device *dev = plane->dev;
2979         struct drm_i915_private *dev_priv = to_i915(dev);
2980         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2981         struct drm_framebuffer *fb = plane_state->base.fb;
2982         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2983         int pipe = intel_crtc->pipe;
2984         u32 plane_ctl, stride_div, stride;
2985         u32 tile_height, plane_offset, plane_size;
2986         unsigned int rotation = plane_state->base.rotation;
2987         int x_offset, y_offset;
2988         u32 surf_addr;
2989         int scaler_id = plane_state->scaler_id;
2990         int src_x = plane_state->src.x1 >> 16;
2991         int src_y = plane_state->src.y1 >> 16;
2992         int src_w = drm_rect_width(&plane_state->src) >> 16;
2993         int src_h = drm_rect_height(&plane_state->src) >> 16;
2994         int dst_x = plane_state->dst.x1;
2995         int dst_y = plane_state->dst.y1;
2996         int dst_w = drm_rect_width(&plane_state->dst);
2997         int dst_h = drm_rect_height(&plane_state->dst);
2998
2999         plane_ctl = PLANE_CTL_ENABLE |
3000                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3001                     PLANE_CTL_PIPE_CSC_ENABLE;
3002
3003         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3004         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3005         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3006         plane_ctl |= skl_plane_ctl_rotation(rotation);
3007
3008         stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3009                                                fb->pixel_format);
3010         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3011
3012         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3013
3014         if (intel_rotation_90_or_270(rotation)) {
3015                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3016
3017                 /* stride = Surface height in tiles */
3018                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3019                 stride = DIV_ROUND_UP(fb->height, tile_height);
3020                 x_offset = stride * tile_height - src_y - src_h;
3021                 y_offset = src_x;
3022                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3023         } else {
3024                 stride = fb->pitches[0] / stride_div;
3025                 x_offset = src_x;
3026                 y_offset = src_y;
3027                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3028         }
3029         plane_offset = y_offset << 16 | x_offset;
3030
3031         intel_crtc->adjusted_x = x_offset;
3032         intel_crtc->adjusted_y = y_offset;
3033
3034         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3035         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3036         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3037         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3038
3039         if (scaler_id >= 0) {
3040                 uint32_t ps_ctrl = 0;
3041
3042                 WARN_ON(!dst_w || !dst_h);
3043                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3044                         crtc_state->scaler_state.scalers[scaler_id].mode;
3045                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3046                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3047                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3048                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3049                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3050         } else {
3051                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3052         }
3053
3054         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3055
3056         POSTING_READ(PLANE_SURF(pipe, 0));
3057 }
3058
3059 static void skylake_disable_primary_plane(struct drm_plane *primary,
3060                                           struct drm_crtc *crtc)
3061 {
3062         struct drm_device *dev = crtc->dev;
3063         struct drm_i915_private *dev_priv = to_i915(dev);
3064         int pipe = to_intel_crtc(crtc)->pipe;
3065
3066         I915_WRITE(PLANE_CTL(pipe, 0), 0);
3067         I915_WRITE(PLANE_SURF(pipe, 0), 0);
3068         POSTING_READ(PLANE_SURF(pipe, 0));
3069 }
3070
3071 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3072 static int
3073 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3074                            int x, int y, enum mode_set_atomic state)
3075 {
3076         /* Support for kgdboc is disabled, this needs a major rework. */
3077         DRM_ERROR("legacy panic handler not supported any more.\n");
3078
3079         return -ENODEV;
3080 }
3081
3082 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3083 {
3084         struct intel_crtc *crtc;
3085
3086         for_each_intel_crtc(&dev_priv->drm, crtc)
3087                 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3088 }
3089
3090 static void intel_update_primary_planes(struct drm_device *dev)
3091 {
3092         struct drm_crtc *crtc;
3093
3094         for_each_crtc(dev, crtc) {
3095                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3096                 struct intel_plane_state *plane_state;
3097
3098                 drm_modeset_lock_crtc(crtc, &plane->base);
3099                 plane_state = to_intel_plane_state(plane->base.state);
3100
3101                 if (plane_state->visible)
3102                         plane->update_plane(&plane->base,
3103                                             to_intel_crtc_state(crtc->state),
3104                                             plane_state);
3105
3106                 drm_modeset_unlock_crtc(crtc);
3107         }
3108 }
3109
3110 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3111 {
3112         /* no reset support for gen2 */
3113         if (IS_GEN2(dev_priv))
3114                 return;
3115
3116         /* reset doesn't touch the display */
3117         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
3118                 return;
3119
3120         drm_modeset_lock_all(&dev_priv->drm);
3121         /*
3122          * Disabling the crtcs gracefully seems nicer. Also the
3123          * g33 docs say we should at least disable all the planes.
3124          */
3125         intel_display_suspend(&dev_priv->drm);
3126 }
3127
3128 void intel_finish_reset(struct drm_i915_private *dev_priv)
3129 {
3130         /*
3131          * Flips in the rings will be nuked by the reset,
3132          * so complete all pending flips so that user space
3133          * will get its events and not get stuck.
3134          */
3135         intel_complete_page_flips(dev_priv);
3136
3137         /* no reset support for gen2 */
3138         if (IS_GEN2(dev_priv))
3139                 return;
3140
3141         /* reset doesn't touch the display */
3142         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
3143                 /*
3144                  * Flips in the rings have been nuked by the reset,
3145                  * so update the base address of all primary
3146                  * planes to the the last fb to make sure we're
3147                  * showing the correct fb after a reset.
3148                  *
3149                  * FIXME: Atomic will make this obsolete since we won't schedule
3150                  * CS-based flips (which might get lost in gpu resets) any more.
3151                  */
3152                 intel_update_primary_planes(&dev_priv->drm);
3153                 return;
3154         }
3155
3156         /*
3157          * The display has been reset as well,
3158          * so need a full re-initialization.
3159          */
3160         intel_runtime_pm_disable_interrupts(dev_priv);
3161         intel_runtime_pm_enable_interrupts(dev_priv);
3162
3163         intel_modeset_init_hw(&dev_priv->drm);
3164
3165         spin_lock_irq(&dev_priv->irq_lock);
3166         if (dev_priv->display.hpd_irq_setup)
3167                 dev_priv->display.hpd_irq_setup(dev_priv);
3168         spin_unlock_irq(&dev_priv->irq_lock);
3169
3170         intel_display_resume(&dev_priv->drm);
3171
3172         intel_hpd_init(dev_priv);
3173
3174         drm_modeset_unlock_all(&dev_priv->drm);
3175 }
3176
3177 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3178 {
3179         struct drm_device *dev = crtc->dev;
3180         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3181         unsigned reset_counter;
3182         bool pending;
3183
3184         reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error);
3185         if (intel_crtc->reset_counter != reset_counter)
3186                 return false;
3187
3188         spin_lock_irq(&dev->event_lock);
3189         pending = to_intel_crtc(crtc)->flip_work != NULL;
3190         spin_unlock_irq(&dev->event_lock);
3191
3192         return pending;
3193 }
3194
3195 static void intel_update_pipe_config(struct intel_crtc *crtc,
3196                                      struct intel_crtc_state *old_crtc_state)
3197 {
3198         struct drm_device *dev = crtc->base.dev;
3199         struct drm_i915_private *dev_priv = to_i915(dev);
3200         struct intel_crtc_state *pipe_config =
3201                 to_intel_crtc_state(crtc->base.state);
3202
3203         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3204         crtc->base.mode = crtc->base.state->mode;
3205
3206         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3207                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3208                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3209
3210         /*
3211          * Update pipe size and adjust fitter if needed: the reason for this is
3212          * that in compute_mode_changes we check the native mode (not the pfit
3213          * mode) to see if we can flip rather than do a full mode set. In the
3214          * fastboot case, we'll flip, but if we don't update the pipesrc and
3215          * pfit state, we'll end up with a big fb scanned out into the wrong
3216          * sized surface.
3217          */
3218
3219         I915_WRITE(PIPESRC(crtc->pipe),
3220                    ((pipe_config->pipe_src_w - 1) << 16) |
3221                    (pipe_config->pipe_src_h - 1));
3222
3223         /* on skylake this is done by detaching scalers */
3224         if (INTEL_INFO(dev)->gen >= 9) {
3225                 skl_detach_scalers(crtc);
3226
3227                 if (pipe_config->pch_pfit.enabled)
3228                         skylake_pfit_enable(crtc);
3229         } else if (HAS_PCH_SPLIT(dev)) {
3230                 if (pipe_config->pch_pfit.enabled)
3231                         ironlake_pfit_enable(crtc);
3232                 else if (old_crtc_state->pch_pfit.enabled)
3233                         ironlake_pfit_disable(crtc, true);
3234         }
3235 }
3236
3237 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3238 {
3239         struct drm_device *dev = crtc->dev;
3240         struct drm_i915_private *dev_priv = to_i915(dev);
3241         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3242         int pipe = intel_crtc->pipe;
3243         i915_reg_t reg;
3244         u32 temp;
3245
3246         /* enable normal train */
3247         reg = FDI_TX_CTL(pipe);
3248         temp = I915_READ(reg);
3249         if (IS_IVYBRIDGE(dev)) {
3250                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3251                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3252         } else {
3253                 temp &= ~FDI_LINK_TRAIN_NONE;
3254                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3255         }
3256         I915_WRITE(reg, temp);
3257
3258         reg = FDI_RX_CTL(pipe);
3259         temp = I915_READ(reg);
3260         if (HAS_PCH_CPT(dev)) {
3261                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3262                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3263         } else {
3264                 temp &= ~FDI_LINK_TRAIN_NONE;
3265                 temp |= FDI_LINK_TRAIN_NONE;
3266         }
3267         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3268
3269         /* wait one idle pattern time */
3270         POSTING_READ(reg);
3271         udelay(1000);
3272
3273         /* IVB wants error correction enabled */
3274         if (IS_IVYBRIDGE(dev))
3275                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3276                            FDI_FE_ERRC_ENABLE);
3277 }
3278
3279 /* The FDI link training functions for ILK/Ibexpeak. */
3280 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3281 {
3282         struct drm_device *dev = crtc->dev;
3283         struct drm_i915_private *dev_priv = to_i915(dev);
3284         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3285         int pipe = intel_crtc->pipe;
3286         i915_reg_t reg;
3287         u32 temp, tries;
3288
3289         /* FDI needs bits from pipe first */
3290         assert_pipe_enabled(dev_priv, pipe);
3291
3292         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3293            for train result */
3294         reg = FDI_RX_IMR(pipe);
3295         temp = I915_READ(reg);
3296         temp &= ~FDI_RX_SYMBOL_LOCK;
3297         temp &= ~FDI_RX_BIT_LOCK;
3298         I915_WRITE(reg, temp);
3299         I915_READ(reg);
3300         udelay(150);
3301
3302         /* enable CPU FDI TX and PCH FDI RX */
3303         reg = FDI_TX_CTL(pipe);
3304         temp = I915_READ(reg);
3305         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3306         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3307         temp &= ~FDI_LINK_TRAIN_NONE;
3308         temp |= FDI_LINK_TRAIN_PATTERN_1;
3309         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3310
3311         reg = FDI_RX_CTL(pipe);
3312         temp = I915_READ(reg);
3313         temp &= ~FDI_LINK_TRAIN_NONE;
3314         temp |= FDI_LINK_TRAIN_PATTERN_1;
3315         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3316
3317         POSTING_READ(reg);
3318         udelay(150);
3319
3320         /* Ironlake workaround, enable clock pointer after FDI enable*/
3321         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3322         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3323                    FDI_RX_PHASE_SYNC_POINTER_EN);
3324
3325         reg = FDI_RX_IIR(pipe);
3326         for (tries = 0; tries < 5; tries++) {
3327                 temp = I915_READ(reg);
3328                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3329
3330                 if ((temp & FDI_RX_BIT_LOCK)) {
3331                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3332                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3333                         break;
3334                 }
3335         }
3336         if (tries == 5)
3337                 DRM_ERROR("FDI train 1 fail!\n");
3338
3339         /* Train 2 */
3340         reg = FDI_TX_CTL(pipe);
3341         temp = I915_READ(reg);
3342         temp &= ~FDI_LINK_TRAIN_NONE;
3343         temp |= FDI_LINK_TRAIN_PATTERN_2;
3344         I915_WRITE(reg, temp);
3345
3346         reg = FDI_RX_CTL(pipe);
3347         temp = I915_READ(reg);
3348         temp &= ~FDI_LINK_TRAIN_NONE;
3349         temp |= FDI_LINK_TRAIN_PATTERN_2;
3350         I915_WRITE(reg, temp);
3351
3352         POSTING_READ(reg);
3353         udelay(150);
3354
3355         reg = FDI_RX_IIR(pipe);
3356         for (tries = 0; tries < 5; tries++) {
3357                 temp = I915_READ(reg);
3358                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3359
3360                 if (temp & FDI_RX_SYMBOL_LOCK) {
3361                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3362                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3363                         break;
3364                 }
3365         }
3366         if (tries == 5)
3367                 DRM_ERROR("FDI train 2 fail!\n");
3368
3369         DRM_DEBUG_KMS("FDI train done\n");
3370
3371 }
3372
3373 static const int snb_b_fdi_train_param[] = {
3374         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3375         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3376         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3377         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3378 };
3379
3380 /* The FDI link training functions for SNB/Cougarpoint. */
3381 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3382 {
3383         struct drm_device *dev = crtc->dev;
3384         struct drm_i915_private *dev_priv = to_i915(dev);
3385         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3386         int pipe = intel_crtc->pipe;
3387         i915_reg_t reg;
3388         u32 temp, i, retry;
3389
3390         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3391            for train result */
3392         reg = FDI_RX_IMR(pipe);
3393         temp = I915_READ(reg);
3394         temp &= ~FDI_RX_SYMBOL_LOCK;
3395         temp &= ~FDI_RX_BIT_LOCK;
3396         I915_WRITE(reg, temp);
3397
3398         POSTING_READ(reg);
3399         udelay(150);
3400
3401         /* enable CPU FDI TX and PCH FDI RX */
3402         reg = FDI_TX_CTL(pipe);
3403         temp = I915_READ(reg);
3404         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3405         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3406         temp &= ~FDI_LINK_TRAIN_NONE;
3407         temp |= FDI_LINK_TRAIN_PATTERN_1;
3408         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3409         /* SNB-B */
3410         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3411         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3412
3413         I915_WRITE(FDI_RX_MISC(pipe),
3414                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3415
3416         reg = FDI_RX_CTL(pipe);
3417         temp = I915_READ(reg);
3418         if (HAS_PCH_CPT(dev)) {
3419                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3420                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3421         } else {
3422                 temp &= ~FDI_LINK_TRAIN_NONE;
3423                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3424         }
3425         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3426
3427         POSTING_READ(reg);
3428         udelay(150);
3429
3430         for (i = 0; i < 4; i++) {
3431                 reg = FDI_TX_CTL(pipe);
3432                 temp = I915_READ(reg);
3433                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3434                 temp |= snb_b_fdi_train_param[i];
3435                 I915_WRITE(reg, temp);
3436
3437                 POSTING_READ(reg);
3438                 udelay(500);
3439
3440                 for (retry = 0; retry < 5; retry++) {
3441                         reg = FDI_RX_IIR(pipe);
3442                         temp = I915_READ(reg);
3443                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3444                         if (temp & FDI_RX_BIT_LOCK) {
3445                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3446                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3447                                 break;
3448                         }
3449                         udelay(50);
3450                 }
3451                 if (retry < 5)
3452                         break;
3453         }
3454         if (i == 4)
3455                 DRM_ERROR("FDI train 1 fail!\n");
3456
3457         /* Train 2 */
3458         reg = FDI_TX_CTL(pipe);
3459         temp = I915_READ(reg);
3460         temp &= ~FDI_LINK_TRAIN_NONE;
3461         temp |= FDI_LINK_TRAIN_PATTERN_2;
3462         if (IS_GEN6(dev)) {
3463                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3464                 /* SNB-B */
3465                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3466         }
3467         I915_WRITE(reg, temp);
3468
3469         reg = FDI_RX_CTL(pipe);
3470         temp = I915_READ(reg);
3471         if (HAS_PCH_CPT(dev)) {
3472                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3473                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3474         } else {
3475                 temp &= ~FDI_LINK_TRAIN_NONE;
3476                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3477         }
3478         I915_WRITE(reg, temp);
3479
3480         POSTING_READ(reg);
3481         udelay(150);
3482
3483         for (i = 0; i < 4; i++) {
3484                 reg = FDI_TX_CTL(pipe);
3485                 temp = I915_READ(reg);
3486                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3487                 temp |= snb_b_fdi_train_param[i];
3488                 I915_WRITE(reg, temp);
3489
3490                 POSTING_READ(reg);
3491                 udelay(500);
3492
3493                 for (retry = 0; retry < 5; retry++) {
3494                         reg = FDI_RX_IIR(pipe);
3495                         temp = I915_READ(reg);
3496                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3497                         if (temp & FDI_RX_SYMBOL_LOCK) {
3498                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3499                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3500                                 break;
3501                         }
3502                         udelay(50);
3503                 }
3504                 if (retry < 5)
3505                         break;
3506         }
3507         if (i == 4)
3508                 DRM_ERROR("FDI train 2 fail!\n");
3509
3510         DRM_DEBUG_KMS("FDI train done.\n");
3511 }
3512
3513 /* Manual link training for Ivy Bridge A0 parts */
3514 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3515 {
3516         struct drm_device *dev = crtc->dev;
3517         struct drm_i915_private *dev_priv = to_i915(dev);
3518         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3519         int pipe = intel_crtc->pipe;
3520         i915_reg_t reg;
3521         u32 temp, i, j;
3522
3523         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3524            for train result */
3525         reg = FDI_RX_IMR(pipe);
3526         temp = I915_READ(reg);
3527         temp &= ~FDI_RX_SYMBOL_LOCK;
3528         temp &= ~FDI_RX_BIT_LOCK;
3529         I915_WRITE(reg, temp);
3530
3531         POSTING_READ(reg);
3532         udelay(150);
3533
3534         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3535                       I915_READ(FDI_RX_IIR(pipe)));
3536
3537         /* Try each vswing and preemphasis setting twice before moving on */
3538         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3539                 /* disable first in case we need to retry */
3540                 reg = FDI_TX_CTL(pipe);
3541                 temp = I915_READ(reg);
3542                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3543                 temp &= ~FDI_TX_ENABLE;
3544                 I915_WRITE(reg, temp);
3545
3546                 reg = FDI_RX_CTL(pipe);
3547                 temp = I915_READ(reg);
3548                 temp &= ~FDI_LINK_TRAIN_AUTO;
3549                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3550                 temp &= ~FDI_RX_ENABLE;
3551                 I915_WRITE(reg, temp);
3552
3553                 /* enable CPU FDI TX and PCH FDI RX */
3554                 reg = FDI_TX_CTL(pipe);
3555                 temp = I915_READ(reg);
3556                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3557                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3558                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3559                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3560                 temp |= snb_b_fdi_train_param[j/2];
3561                 temp |= FDI_COMPOSITE_SYNC;
3562                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3563
3564                 I915_WRITE(FDI_RX_MISC(pipe),
3565                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3566
3567                 reg = FDI_RX_CTL(pipe);
3568                 temp = I915_READ(reg);
3569                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3570                 temp |= FDI_COMPOSITE_SYNC;
3571                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3572
3573                 POSTING_READ(reg);
3574                 udelay(1); /* should be 0.5us */
3575
3576                 for (i = 0; i < 4; i++) {
3577                         reg = FDI_RX_IIR(pipe);
3578                         temp = I915_READ(reg);
3579                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3580
3581                         if (temp & FDI_RX_BIT_LOCK ||
3582                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3583                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3584                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3585                                               i);
3586                                 break;
3587                         }
3588                         udelay(1); /* should be 0.5us */
3589                 }
3590                 if (i == 4) {
3591                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3592                         continue;
3593                 }
3594
3595                 /* Train 2 */
3596                 reg = FDI_TX_CTL(pipe);
3597                 temp = I915_READ(reg);
3598                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3599                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3600                 I915_WRITE(reg, temp);
3601
3602                 reg = FDI_RX_CTL(pipe);
3603                 temp = I915_READ(reg);
3604                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3605                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3606                 I915_WRITE(reg, temp);
3607
3608                 POSTING_READ(reg);
3609                 udelay(2); /* should be 1.5us */
3610
3611                 for (i = 0; i < 4; i++) {
3612                         reg = FDI_RX_IIR(pipe);
3613                         temp = I915_READ(reg);
3614                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3615
3616                         if (temp & FDI_RX_SYMBOL_LOCK ||
3617                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3618                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3619                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3620                                               i);
3621                                 goto train_done;
3622                         }
3623                         udelay(2); /* should be 1.5us */
3624                 }
3625                 if (i == 4)
3626                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3627         }
3628
3629 train_done:
3630         DRM_DEBUG_KMS("FDI train done.\n");
3631 }
3632
3633 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3634 {
3635         struct drm_device *dev = intel_crtc->base.dev;
3636         struct drm_i915_private *dev_priv = to_i915(dev);
3637         int pipe = intel_crtc->pipe;
3638         i915_reg_t reg;
3639         u32 temp;
3640
3641         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3642         reg = FDI_RX_CTL(pipe);
3643         temp = I915_READ(reg);
3644         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3645         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3646         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3647         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3648
3649         POSTING_READ(reg);
3650         udelay(200);
3651
3652         /* Switch from Rawclk to PCDclk */
3653         temp = I915_READ(reg);
3654         I915_WRITE(reg, temp | FDI_PCDCLK);
3655
3656         POSTING_READ(reg);
3657         udelay(200);
3658
3659         /* Enable CPU FDI TX PLL, always on for Ironlake */
3660         reg = FDI_TX_CTL(pipe);
3661         temp = I915_READ(reg);
3662         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3663                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3664
3665                 POSTING_READ(reg);
3666                 udelay(100);
3667         }
3668 }
3669
3670 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3671 {
3672         struct drm_device *dev = intel_crtc->base.dev;
3673         struct drm_i915_private *dev_priv = to_i915(dev);
3674         int pipe = intel_crtc->pipe;
3675         i915_reg_t reg;
3676         u32 temp;
3677
3678         /* Switch from PCDclk to Rawclk */
3679         reg = FDI_RX_CTL(pipe);
3680         temp = I915_READ(reg);
3681         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3682
3683         /* Disable CPU FDI TX PLL */
3684         reg = FDI_TX_CTL(pipe);
3685         temp = I915_READ(reg);
3686         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3687
3688         POSTING_READ(reg);
3689         udelay(100);
3690
3691         reg = FDI_RX_CTL(pipe);
3692         temp = I915_READ(reg);
3693         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3694
3695         /* Wait for the clocks to turn off. */
3696         POSTING_READ(reg);
3697         udelay(100);
3698 }
3699
3700 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3701 {
3702         struct drm_device *dev = crtc->dev;
3703         struct drm_i915_private *dev_priv = to_i915(dev);
3704         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3705         int pipe = intel_crtc->pipe;
3706         i915_reg_t reg;
3707         u32 temp;
3708
3709         /* disable CPU FDI tx and PCH FDI rx */
3710         reg = FDI_TX_CTL(pipe);
3711         temp = I915_READ(reg);
3712         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3713         POSTING_READ(reg);
3714
3715         reg = FDI_RX_CTL(pipe);
3716         temp = I915_READ(reg);
3717         temp &= ~(0x7 << 16);
3718         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3719         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3720
3721         POSTING_READ(reg);
3722         udelay(100);
3723
3724         /* Ironlake workaround, disable clock pointer after downing FDI */
3725         if (HAS_PCH_IBX(dev))
3726                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3727
3728         /* still set train pattern 1 */
3729         reg = FDI_TX_CTL(pipe);
3730         temp = I915_READ(reg);
3731         temp &= ~FDI_LINK_TRAIN_NONE;
3732         temp |= FDI_LINK_TRAIN_PATTERN_1;
3733         I915_WRITE(reg, temp);
3734
3735         reg = FDI_RX_CTL(pipe);
3736         temp = I915_READ(reg);
3737         if (HAS_PCH_CPT(dev)) {
3738                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3739                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3740         } else {
3741                 temp &= ~FDI_LINK_TRAIN_NONE;
3742                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3743         }
3744         /* BPC in FDI rx is consistent with that in PIPECONF */
3745         temp &= ~(0x07 << 16);
3746         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3747         I915_WRITE(reg, temp);
3748
3749         POSTING_READ(reg);
3750         udelay(100);
3751 }
3752
3753 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3754 {
3755         struct intel_crtc *crtc;
3756
3757         /* Note that we don't need to be called with mode_config.lock here
3758          * as our list of CRTC objects is static for the lifetime of the
3759          * device and so cannot disappear as we iterate. Similarly, we can
3760          * happily treat the predicates as racy, atomic checks as userspace
3761          * cannot claim and pin a new fb without at least acquring the
3762          * struct_mutex and so serialising with us.
3763          */
3764         for_each_intel_crtc(dev, crtc) {
3765                 if (atomic_read(&crtc->unpin_work_count) == 0)
3766                         continue;
3767
3768                 if (crtc->flip_work)
3769                         intel_wait_for_vblank(dev, crtc->pipe);
3770
3771                 return true;
3772         }
3773
3774         return false;
3775 }
3776
3777 static void page_flip_completed(struct intel_crtc *intel_crtc)
3778 {
3779         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3780         struct intel_flip_work *work = intel_crtc->flip_work;
3781
3782         intel_crtc->flip_work = NULL;
3783
3784         if (work->event)
3785                 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
3786
3787         drm_crtc_vblank_put(&intel_crtc->base);
3788
3789         wake_up_all(&dev_priv->pending_flip_queue);
3790         queue_work(dev_priv->wq, &work->unpin_work);
3791
3792         trace_i915_flip_complete(intel_crtc->plane,
3793                                  work->pending_flip_obj);
3794 }
3795
3796 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3797 {
3798         struct drm_device *dev = crtc->dev;
3799         struct drm_i915_private *dev_priv = to_i915(dev);
3800         long ret;
3801
3802         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3803
3804         ret = wait_event_interruptible_timeout(
3805                                         dev_priv->pending_flip_queue,
3806                                         !intel_crtc_has_pending_flip(crtc),
3807                                         60*HZ);
3808
3809         if (ret < 0)
3810                 return ret;
3811
3812         if (ret == 0) {
3813                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3814                 struct intel_flip_work *work;
3815
3816                 spin_lock_irq(&dev->event_lock);
3817                 work = intel_crtc->flip_work;
3818                 if (work && !is_mmio_work(work)) {
3819                         WARN_ONCE(1, "Removing stuck page flip\n");
3820                         page_flip_completed(intel_crtc);
3821                 }
3822                 spin_unlock_irq(&dev->event_lock);
3823         }
3824
3825         return 0;
3826 }
3827
3828 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3829 {
3830         u32 temp;
3831
3832         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3833
3834         mutex_lock(&dev_priv->sb_lock);
3835
3836         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3837         temp |= SBI_SSCCTL_DISABLE;
3838         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3839
3840         mutex_unlock(&dev_priv->sb_lock);
3841 }
3842
3843 /* Program iCLKIP clock to the desired frequency */
3844 static void lpt_program_iclkip(struct drm_crtc *crtc)
3845 {
3846         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3847         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3848         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3849         u32 temp;
3850
3851         lpt_disable_iclkip(dev_priv);
3852
3853         /* The iCLK virtual clock root frequency is in MHz,
3854          * but the adjusted_mode->crtc_clock in in KHz. To get the
3855          * divisors, it is necessary to divide one by another, so we
3856          * convert the virtual clock precision to KHz here for higher
3857          * precision.
3858          */
3859         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
3860                 u32 iclk_virtual_root_freq = 172800 * 1000;
3861                 u32 iclk_pi_range = 64;
3862                 u32 desired_divisor;
3863
3864                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3865                                                     clock << auxdiv);
3866                 divsel = (desired_divisor / iclk_pi_range) - 2;
3867                 phaseinc = desired_divisor % iclk_pi_range;
3868
3869                 /*
3870                  * Near 20MHz is a corner case which is
3871                  * out of range for the 7-bit divisor
3872                  */
3873                 if (divsel <= 0x7f)
3874                         break;
3875         }
3876
3877         /* This should not happen with any sane values */
3878         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3879                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3880         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3881                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3882
3883         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3884                         clock,
3885                         auxdiv,
3886                         divsel,
3887                         phasedir,
3888                         phaseinc);
3889
3890         mutex_lock(&dev_priv->sb_lock);
3891
3892         /* Program SSCDIVINTPHASE6 */
3893         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3894         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3895         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3896         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3897         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3898         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3899         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3900         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3901
3902         /* Program SSCAUXDIV */
3903         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3904         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3905         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3906         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3907
3908         /* Enable modulator and associated divider */
3909         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3910         temp &= ~SBI_SSCCTL_DISABLE;
3911         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3912
3913         mutex_unlock(&dev_priv->sb_lock);
3914
3915         /* Wait for initialization time */
3916         udelay(24);
3917
3918         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3919 }
3920
3921 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3922 {
3923         u32 divsel, phaseinc, auxdiv;
3924         u32 iclk_virtual_root_freq = 172800 * 1000;
3925         u32 iclk_pi_range = 64;
3926         u32 desired_divisor;
3927         u32 temp;
3928
3929         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3930                 return 0;
3931
3932         mutex_lock(&dev_priv->sb_lock);
3933
3934         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3935         if (temp & SBI_SSCCTL_DISABLE) {
3936                 mutex_unlock(&dev_priv->sb_lock);
3937                 return 0;
3938         }
3939
3940         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3941         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
3942                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
3943         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
3944                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
3945
3946         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3947         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
3948                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
3949
3950         mutex_unlock(&dev_priv->sb_lock);
3951
3952         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
3953
3954         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3955                                  desired_divisor << auxdiv);
3956 }
3957
3958 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3959                                                 enum pipe pch_transcoder)
3960 {
3961         struct drm_device *dev = crtc->base.dev;
3962         struct drm_i915_private *dev_priv = to_i915(dev);
3963         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3964
3965         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3966                    I915_READ(HTOTAL(cpu_transcoder)));
3967         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3968                    I915_READ(HBLANK(cpu_transcoder)));
3969         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3970                    I915_READ(HSYNC(cpu_transcoder)));
3971
3972         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3973                    I915_READ(VTOTAL(cpu_transcoder)));
3974         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3975                    I915_READ(VBLANK(cpu_transcoder)));
3976         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3977                    I915_READ(VSYNC(cpu_transcoder)));
3978         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3979                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3980 }
3981
3982 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
3983 {
3984         struct drm_i915_private *dev_priv = to_i915(dev);
3985         uint32_t temp;
3986
3987         temp = I915_READ(SOUTH_CHICKEN1);
3988         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
3989                 return;
3990
3991         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3992         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3993
3994         temp &= ~FDI_BC_BIFURCATION_SELECT;
3995         if (enable)
3996                 temp |= FDI_BC_BIFURCATION_SELECT;
3997
3998         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
3999         I915_WRITE(SOUTH_CHICKEN1, temp);
4000         POSTING_READ(SOUTH_CHICKEN1);
4001 }
4002
4003 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4004 {
4005         struct drm_device *dev = intel_crtc->base.dev;
4006
4007         switch (intel_crtc->pipe) {
4008         case PIPE_A:
4009                 break;
4010         case PIPE_B:
4011                 if (intel_crtc->config->fdi_lanes > 2)
4012                         cpt_set_fdi_bc_bifurcation(dev, false);
4013                 else
4014                         cpt_set_fdi_bc_bifurcation(dev, true);
4015
4016                 break;
4017         case PIPE_C:
4018                 cpt_set_fdi_bc_bifurcation(dev, true);
4019
4020                 break;
4021         default:
4022                 BUG();
4023         }
4024 }
4025
4026 /* Return which DP Port should be selected for Transcoder DP control */
4027 static enum port
4028 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4029 {
4030         struct drm_device *dev = crtc->dev;
4031         struct intel_encoder *encoder;
4032
4033         for_each_encoder_on_crtc(dev, crtc, encoder) {
4034                 if (encoder->type == INTEL_OUTPUT_DP ||
4035                     encoder->type == INTEL_OUTPUT_EDP)
4036                         return enc_to_dig_port(&encoder->base)->port;
4037         }
4038
4039         return -1;
4040 }
4041
4042 /*
4043  * Enable PCH resources required for PCH ports:
4044  *   - PCH PLLs
4045  *   - FDI training & RX/TX
4046  *   - update transcoder timings
4047  *   - DP transcoding bits
4048  *   - transcoder
4049  */
4050 static void ironlake_pch_enable(struct drm_crtc *crtc)
4051 {
4052         struct drm_device *dev = crtc->dev;
4053         struct drm_i915_private *dev_priv = to_i915(dev);
4054         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4055         int pipe = intel_crtc->pipe;
4056         u32 temp;
4057
4058         assert_pch_transcoder_disabled(dev_priv, pipe);
4059
4060         if (IS_IVYBRIDGE(dev))
4061                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4062
4063         /* Write the TU size bits before fdi link training, so that error
4064          * detection works. */
4065         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4066                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4067
4068         /* For PCH output, training FDI link */
4069         dev_priv->display.fdi_link_train(crtc);
4070
4071         /* We need to program the right clock selection before writing the pixel
4072          * mutliplier into the DPLL. */
4073         if (HAS_PCH_CPT(dev)) {
4074                 u32 sel;
4075
4076                 temp = I915_READ(PCH_DPLL_SEL);
4077                 temp |= TRANS_DPLL_ENABLE(pipe);
4078                 sel = TRANS_DPLLB_SEL(pipe);
4079                 if (intel_crtc->config->shared_dpll ==
4080                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4081                         temp |= sel;
4082                 else
4083                         temp &= ~sel;
4084                 I915_WRITE(PCH_DPLL_SEL, temp);
4085         }
4086
4087         /* XXX: pch pll's can be enabled any time before we enable the PCH
4088          * transcoder, and we actually should do this to not upset any PCH
4089          * transcoder that already use the clock when we share it.
4090          *
4091          * Note that enable_shared_dpll tries to do the right thing, but
4092          * get_shared_dpll unconditionally resets the pll - we need that to have
4093          * the right LVDS enable sequence. */
4094         intel_enable_shared_dpll(intel_crtc);
4095
4096         /* set transcoder timing, panel must allow it */
4097         assert_panel_unlocked(dev_priv, pipe);
4098         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4099
4100         intel_fdi_normal_train(crtc);
4101
4102         /* For PCH DP, enable TRANS_DP_CTL */
4103         if (HAS_PCH_CPT(dev) && intel_crtc_has_dp_encoder(intel_crtc->config)) {
4104                 const struct drm_display_mode *adjusted_mode =
4105                         &intel_crtc->config->base.adjusted_mode;
4106                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4107                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4108                 temp = I915_READ(reg);
4109                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4110                           TRANS_DP_SYNC_MASK |
4111                           TRANS_DP_BPC_MASK);
4112                 temp |= TRANS_DP_OUTPUT_ENABLE;
4113                 temp |= bpc << 9; /* same format but at 11:9 */
4114
4115                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4116                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4117                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4118                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4119
4120                 switch (intel_trans_dp_port_sel(crtc)) {
4121                 case PORT_B:
4122                         temp |= TRANS_DP_PORT_SEL_B;
4123                         break;
4124                 case PORT_C:
4125                         temp |= TRANS_DP_PORT_SEL_C;
4126                         break;
4127                 case PORT_D:
4128                         temp |= TRANS_DP_PORT_SEL_D;
4129                         break;
4130                 default:
4131                         BUG();
4132                 }
4133
4134                 I915_WRITE(reg, temp);
4135         }
4136
4137         ironlake_enable_pch_transcoder(dev_priv, pipe);
4138 }
4139
4140 static void lpt_pch_enable(struct drm_crtc *crtc)
4141 {
4142         struct drm_device *dev = crtc->dev;
4143         struct drm_i915_private *dev_priv = to_i915(dev);
4144         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4145         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4146
4147         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4148
4149         lpt_program_iclkip(crtc);
4150
4151         /* Set transcoder timing. */
4152         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4153
4154         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4155 }
4156
4157 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4158 {
4159         struct drm_i915_private *dev_priv = to_i915(dev);
4160         i915_reg_t dslreg = PIPEDSL(pipe);
4161         u32 temp;
4162
4163         temp = I915_READ(dslreg);
4164         udelay(500);
4165         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4166                 if (wait_for(I915_READ(dslreg) != temp, 5))
4167                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4168         }
4169 }
4170
4171 static int
4172 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4173                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4174                   int src_w, int src_h, int dst_w, int dst_h)
4175 {
4176         struct intel_crtc_scaler_state *scaler_state =
4177                 &crtc_state->scaler_state;
4178         struct intel_crtc *intel_crtc =
4179                 to_intel_crtc(crtc_state->base.crtc);
4180         int need_scaling;
4181
4182         need_scaling = intel_rotation_90_or_270(rotation) ?
4183                 (src_h != dst_w || src_w != dst_h):
4184                 (src_w != dst_w || src_h != dst_h);
4185
4186         /*
4187          * if plane is being disabled or scaler is no more required or force detach
4188          *  - free scaler binded to this plane/crtc
4189          *  - in order to do this, update crtc->scaler_usage
4190          *
4191          * Here scaler state in crtc_state is set free so that
4192          * scaler can be assigned to other user. Actual register
4193          * update to free the scaler is done in plane/panel-fit programming.
4194          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4195          */
4196         if (force_detach || !need_scaling) {
4197                 if (*scaler_id >= 0) {
4198                         scaler_state->scaler_users &= ~(1 << scaler_user);
4199                         scaler_state->scalers[*scaler_id].in_use = 0;
4200
4201                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4202                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4203                                 intel_crtc->pipe, scaler_user, *scaler_id,
4204                                 scaler_state->scaler_users);
4205                         *scaler_id = -1;
4206                 }
4207                 return 0;
4208         }
4209
4210         /* range checks */
4211         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4212                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4213
4214                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4215                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4216                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4217                         "size is out of scaler range\n",
4218                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4219                 return -EINVAL;
4220         }
4221
4222         /* mark this plane as a scaler user in crtc_state */
4223         scaler_state->scaler_users |= (1 << scaler_user);
4224         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4225                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4226                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4227                 scaler_state->scaler_users);
4228
4229         return 0;
4230 }
4231
4232 /**
4233  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4234  *
4235  * @state: crtc's scaler state
4236  *
4237  * Return
4238  *     0 - scaler_usage updated successfully
4239  *    error - requested scaling cannot be supported or other error condition
4240  */
4241 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4242 {
4243         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4244         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4245
4246         DRM_DEBUG_KMS("Updating scaler for [CRTC:%d:%s] scaler_user index %u.%u\n",
4247                       intel_crtc->base.base.id, intel_crtc->base.name,
4248                       intel_crtc->pipe, SKL_CRTC_INDEX);
4249
4250         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4251                 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4252                 state->pipe_src_w, state->pipe_src_h,
4253                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4254 }
4255
4256 /**
4257  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4258  *
4259  * @state: crtc's scaler state
4260  * @plane_state: atomic plane state to update
4261  *
4262  * Return
4263  *     0 - scaler_usage updated successfully
4264  *    error - requested scaling cannot be supported or other error condition
4265  */
4266 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4267                                    struct intel_plane_state *plane_state)
4268 {
4269
4270         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4271         struct intel_plane *intel_plane =
4272                 to_intel_plane(plane_state->base.plane);
4273         struct drm_framebuffer *fb = plane_state->base.fb;
4274         int ret;
4275
4276         bool force_detach = !fb || !plane_state->visible;
4277
4278         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d:%s] scaler_user index %u.%u\n",
4279                       intel_plane->base.base.id, intel_plane->base.name,
4280                       intel_crtc->pipe, drm_plane_index(&intel_plane->base));
4281
4282         ret = skl_update_scaler(crtc_state, force_detach,
4283                                 drm_plane_index(&intel_plane->base),
4284                                 &plane_state->scaler_id,
4285                                 plane_state->base.rotation,
4286                                 drm_rect_width(&plane_state->src) >> 16,
4287                                 drm_rect_height(&plane_state->src) >> 16,
4288                                 drm_rect_width(&plane_state->dst),
4289                                 drm_rect_height(&plane_state->dst));
4290
4291         if (ret || plane_state->scaler_id < 0)
4292                 return ret;
4293
4294         /* check colorkey */
4295         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4296                 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4297                               intel_plane->base.base.id,
4298                               intel_plane->base.name);
4299                 return -EINVAL;
4300         }
4301
4302         /* Check src format */
4303         switch (fb->pixel_format) {
4304         case DRM_FORMAT_RGB565:
4305         case DRM_FORMAT_XBGR8888:
4306         case DRM_FORMAT_XRGB8888:
4307         case DRM_FORMAT_ABGR8888:
4308         case DRM_FORMAT_ARGB8888:
4309         case DRM_FORMAT_XRGB2101010:
4310         case DRM_FORMAT_XBGR2101010:
4311         case DRM_FORMAT_YUYV:
4312         case DRM_FORMAT_YVYU:
4313         case DRM_FORMAT_UYVY:
4314         case DRM_FORMAT_VYUY:
4315                 break;
4316         default:
4317                 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4318                               intel_plane->base.base.id, intel_plane->base.name,
4319                               fb->base.id, fb->pixel_format);
4320                 return -EINVAL;
4321         }
4322
4323         return 0;
4324 }
4325
4326 static void skylake_scaler_disable(struct intel_crtc *crtc)
4327 {
4328         int i;
4329
4330         for (i = 0; i < crtc->num_scalers; i++)
4331                 skl_detach_scaler(crtc, i);
4332 }
4333
4334 static void skylake_pfit_enable(struct intel_crtc *crtc)
4335 {
4336         struct drm_device *dev = crtc->base.dev;
4337         struct drm_i915_private *dev_priv = to_i915(dev);
4338         int pipe = crtc->pipe;
4339         struct intel_crtc_scaler_state *scaler_state =
4340                 &crtc->config->scaler_state;
4341
4342         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4343
4344         if (crtc->config->pch_pfit.enabled) {
4345                 int id;
4346
4347                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4348                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4349                         return;
4350                 }
4351
4352                 id = scaler_state->scaler_id;
4353                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4354                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4355                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4356                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4357
4358                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4359         }
4360 }
4361
4362 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4363 {
4364         struct drm_device *dev = crtc->base.dev;
4365         struct drm_i915_private *dev_priv = to_i915(dev);
4366         int pipe = crtc->pipe;
4367
4368         if (crtc->config->pch_pfit.enabled) {
4369                 /* Force use of hard-coded filter coefficients
4370                  * as some pre-programmed values are broken,
4371                  * e.g. x201.
4372                  */
4373                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4374                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4375                                                  PF_PIPE_SEL_IVB(pipe));
4376                 else
4377                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4378                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4379                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4380         }
4381 }
4382
4383 void hsw_enable_ips(struct intel_crtc *crtc)
4384 {
4385         struct drm_device *dev = crtc->base.dev;
4386         struct drm_i915_private *dev_priv = to_i915(dev);
4387
4388         if (!crtc->config->ips_enabled)
4389                 return;
4390
4391         /*
4392          * We can only enable IPS after we enable a plane and wait for a vblank
4393          * This function is called from post_plane_update, which is run after
4394          * a vblank wait.
4395          */
4396
4397         assert_plane_enabled(dev_priv, crtc->plane);
4398         if (IS_BROADWELL(dev)) {
4399                 mutex_lock(&dev_priv->rps.hw_lock);
4400                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4401                 mutex_unlock(&dev_priv->rps.hw_lock);
4402                 /* Quoting Art Runyan: "its not safe to expect any particular
4403                  * value in IPS_CTL bit 31 after enabling IPS through the
4404                  * mailbox." Moreover, the mailbox may return a bogus state,
4405                  * so we need to just enable it and continue on.
4406                  */
4407         } else {
4408                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4409                 /* The bit only becomes 1 in the next vblank, so this wait here
4410                  * is essentially intel_wait_for_vblank. If we don't have this
4411                  * and don't wait for vblanks until the end of crtc_enable, then
4412                  * the HW state readout code will complain that the expected
4413                  * IPS_CTL value is not the one we read. */
4414                 if (intel_wait_for_register(dev_priv,
4415                                             IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4416                                             50))
4417                         DRM_ERROR("Timed out waiting for IPS enable\n");
4418         }
4419 }
4420
4421 void hsw_disable_ips(struct intel_crtc *crtc)
4422 {
4423         struct drm_device *dev = crtc->base.dev;
4424         struct drm_i915_private *dev_priv = to_i915(dev);
4425
4426         if (!crtc->config->ips_enabled)
4427                 return;
4428
4429         assert_plane_enabled(dev_priv, crtc->plane);
4430         if (IS_BROADWELL(dev)) {
4431                 mutex_lock(&dev_priv->rps.hw_lock);
4432                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4433                 mutex_unlock(&dev_priv->rps.hw_lock);
4434                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4435                 if (intel_wait_for_register(dev_priv,
4436                                             IPS_CTL, IPS_ENABLE, 0,
4437                                             42))
4438                         DRM_ERROR("Timed out waiting for IPS disable\n");
4439         } else {
4440                 I915_WRITE(IPS_CTL, 0);
4441                 POSTING_READ(IPS_CTL);
4442         }
4443
4444         /* We need to wait for a vblank before we can disable the plane. */
4445         intel_wait_for_vblank(dev, crtc->pipe);
4446 }
4447
4448 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4449 {
4450         if (intel_crtc->overlay) {
4451                 struct drm_device *dev = intel_crtc->base.dev;
4452                 struct drm_i915_private *dev_priv = to_i915(dev);
4453
4454                 mutex_lock(&dev->struct_mutex);
4455                 dev_priv->mm.interruptible = false;
4456                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4457                 dev_priv->mm.interruptible = true;
4458                 mutex_unlock(&dev->struct_mutex);
4459         }
4460
4461         /* Let userspace switch the overlay on again. In most cases userspace
4462          * has to recompute where to put it anyway.
4463          */
4464 }
4465
4466 /**
4467  * intel_post_enable_primary - Perform operations after enabling primary plane
4468  * @crtc: the CRTC whose primary plane was just enabled
4469  *
4470  * Performs potentially sleeping operations that must be done after the primary
4471  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4472  * called due to an explicit primary plane update, or due to an implicit
4473  * re-enable that is caused when a sprite plane is updated to no longer
4474  * completely hide the primary plane.
4475  */
4476 static void
4477 intel_post_enable_primary(struct drm_crtc *crtc)
4478 {
4479         struct drm_device *dev = crtc->dev;
4480         struct drm_i915_private *dev_priv = to_i915(dev);
4481         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4482         int pipe = intel_crtc->pipe;
4483
4484         /*
4485          * FIXME IPS should be fine as long as one plane is
4486          * enabled, but in practice it seems to have problems
4487          * when going from primary only to sprite only and vice
4488          * versa.
4489          */
4490         hsw_enable_ips(intel_crtc);
4491
4492         /*
4493          * Gen2 reports pipe underruns whenever all planes are disabled.
4494          * So don't enable underrun reporting before at least some planes
4495          * are enabled.
4496          * FIXME: Need to fix the logic to work when we turn off all planes
4497          * but leave the pipe running.
4498          */
4499         if (IS_GEN2(dev))
4500                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4501
4502         /* Underruns don't always raise interrupts, so check manually. */
4503         intel_check_cpu_fifo_underruns(dev_priv);
4504         intel_check_pch_fifo_underruns(dev_priv);
4505 }
4506
4507 /* FIXME move all this to pre_plane_update() with proper state tracking */
4508 static void
4509 intel_pre_disable_primary(struct drm_crtc *crtc)
4510 {
4511         struct drm_device *dev = crtc->dev;
4512         struct drm_i915_private *dev_priv = to_i915(dev);
4513         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4514         int pipe = intel_crtc->pipe;
4515
4516         /*
4517          * Gen2 reports pipe underruns whenever all planes are disabled.
4518          * So diasble underrun reporting before all the planes get disabled.
4519          * FIXME: Need to fix the logic to work when we turn off all planes
4520          * but leave the pipe running.
4521          */
4522         if (IS_GEN2(dev))
4523                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4524
4525         /*
4526          * FIXME IPS should be fine as long as one plane is
4527          * enabled, but in practice it seems to have problems
4528          * when going from primary only to sprite only and vice
4529          * versa.
4530          */
4531         hsw_disable_ips(intel_crtc);
4532 }
4533
4534 /* FIXME get rid of this and use pre_plane_update */
4535 static void
4536 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4537 {
4538         struct drm_device *dev = crtc->dev;
4539         struct drm_i915_private *dev_priv = to_i915(dev);
4540         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4541         int pipe = intel_crtc->pipe;
4542
4543         intel_pre_disable_primary(crtc);
4544
4545         /*
4546          * Vblank time updates from the shadow to live plane control register
4547          * are blocked if the memory self-refresh mode is active at that
4548          * moment. So to make sure the plane gets truly disabled, disable
4549          * first the self-refresh mode. The self-refresh enable bit in turn
4550          * will be checked/applied by the HW only at the next frame start
4551          * event which is after the vblank start event, so we need to have a
4552          * wait-for-vblank between disabling the plane and the pipe.
4553          */
4554         if (HAS_GMCH_DISPLAY(dev)) {
4555                 intel_set_memory_cxsr(dev_priv, false);
4556                 dev_priv->wm.vlv.cxsr = false;
4557                 intel_wait_for_vblank(dev, pipe);
4558         }
4559 }
4560
4561 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4562 {
4563         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4564         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4565         struct intel_crtc_state *pipe_config =
4566                 to_intel_crtc_state(crtc->base.state);
4567         struct drm_device *dev = crtc->base.dev;
4568         struct drm_plane *primary = crtc->base.primary;
4569         struct drm_plane_state *old_pri_state =
4570                 drm_atomic_get_existing_plane_state(old_state, primary);
4571
4572         intel_frontbuffer_flip(dev, pipe_config->fb_bits);
4573
4574         crtc->wm.cxsr_allowed = true;
4575
4576         if (pipe_config->update_wm_post && pipe_config->base.active)
4577                 intel_update_watermarks(&crtc->base);
4578
4579         if (old_pri_state) {
4580                 struct intel_plane_state *primary_state =
4581                         to_intel_plane_state(primary->state);
4582                 struct intel_plane_state *old_primary_state =
4583                         to_intel_plane_state(old_pri_state);
4584
4585                 intel_fbc_post_update(crtc);
4586
4587                 if (primary_state->visible &&
4588                     (needs_modeset(&pipe_config->base) ||
4589                      !old_primary_state->visible))
4590                         intel_post_enable_primary(&crtc->base);
4591         }
4592 }
4593
4594 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4595 {
4596         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4597         struct drm_device *dev = crtc->base.dev;
4598         struct drm_i915_private *dev_priv = to_i915(dev);
4599         struct intel_crtc_state *pipe_config =
4600                 to_intel_crtc_state(crtc->base.state);
4601         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4602         struct drm_plane *primary = crtc->base.primary;
4603         struct drm_plane_state *old_pri_state =
4604                 drm_atomic_get_existing_plane_state(old_state, primary);
4605         bool modeset = needs_modeset(&pipe_config->base);
4606
4607         if (old_pri_state) {
4608                 struct intel_plane_state *primary_state =
4609                         to_intel_plane_state(primary->state);
4610                 struct intel_plane_state *old_primary_state =
4611                         to_intel_plane_state(old_pri_state);
4612
4613                 intel_fbc_pre_update(crtc, pipe_config, primary_state);
4614
4615                 if (old_primary_state->visible &&
4616                     (modeset || !primary_state->visible))
4617                         intel_pre_disable_primary(&crtc->base);
4618         }
4619
4620         if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev)) {
4621                 crtc->wm.cxsr_allowed = false;
4622
4623                 /*
4624                  * Vblank time updates from the shadow to live plane control register
4625                  * are blocked if the memory self-refresh mode is active at that
4626                  * moment. So to make sure the plane gets truly disabled, disable
4627                  * first the self-refresh mode. The self-refresh enable bit in turn
4628                  * will be checked/applied by the HW only at the next frame start
4629                  * event which is after the vblank start event, so we need to have a
4630                  * wait-for-vblank between disabling the plane and the pipe.
4631                  */
4632                 if (old_crtc_state->base.active) {
4633                         intel_set_memory_cxsr(dev_priv, false);
4634                         dev_priv->wm.vlv.cxsr = false;
4635                         intel_wait_for_vblank(dev, crtc->pipe);
4636                 }
4637         }
4638
4639         /*
4640          * IVB workaround: must disable low power watermarks for at least
4641          * one frame before enabling scaling.  LP watermarks can be re-enabled
4642          * when scaling is disabled.
4643          *
4644          * WaCxSRDisabledForSpriteScaling:ivb
4645          */
4646         if (pipe_config->disable_lp_wm) {
4647                 ilk_disable_lp_wm(dev);
4648                 intel_wait_for_vblank(dev, crtc->pipe);
4649         }
4650
4651         /*
4652          * If we're doing a modeset, we're done.  No need to do any pre-vblank
4653          * watermark programming here.
4654          */
4655         if (needs_modeset(&pipe_config->base))
4656                 return;
4657
4658         /*
4659          * For platforms that support atomic watermarks, program the
4660          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
4661          * will be the intermediate values that are safe for both pre- and
4662          * post- vblank; when vblank happens, the 'active' values will be set
4663          * to the final 'target' values and we'll do this again to get the
4664          * optimal watermarks.  For gen9+ platforms, the values we program here
4665          * will be the final target values which will get automatically latched
4666          * at vblank time; no further programming will be necessary.
4667          *
4668          * If a platform hasn't been transitioned to atomic watermarks yet,
4669          * we'll continue to update watermarks the old way, if flags tell
4670          * us to.
4671          */
4672         if (dev_priv->display.initial_watermarks != NULL)
4673                 dev_priv->display.initial_watermarks(pipe_config);
4674         else if (pipe_config->update_wm_pre)
4675                 intel_update_watermarks(&crtc->base);
4676 }
4677
4678 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4679 {
4680         struct drm_device *dev = crtc->dev;
4681         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4682         struct drm_plane *p;
4683         int pipe = intel_crtc->pipe;
4684
4685         intel_crtc_dpms_overlay_disable(intel_crtc);
4686
4687         drm_for_each_plane_mask(p, dev, plane_mask)
4688                 to_intel_plane(p)->disable_plane(p, crtc);
4689
4690         /*
4691          * FIXME: Once we grow proper nuclear flip support out of this we need
4692          * to compute the mask of flip planes precisely. For the time being
4693          * consider this a flip to a NULL plane.
4694          */
4695         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4696 }
4697
4698 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4699 {
4700         struct drm_device *dev = crtc->dev;
4701         struct drm_i915_private *dev_priv = to_i915(dev);
4702         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4703         struct intel_encoder *encoder;
4704         int pipe = intel_crtc->pipe;
4705         struct intel_crtc_state *pipe_config =
4706                 to_intel_crtc_state(crtc->state);
4707
4708         if (WARN_ON(intel_crtc->active))
4709                 return;
4710
4711         /*
4712          * Sometimes spurious CPU pipe underruns happen during FDI
4713          * training, at least with VGA+HDMI cloning. Suppress them.
4714          *
4715          * On ILK we get an occasional spurious CPU pipe underruns
4716          * between eDP port A enable and vdd enable. Also PCH port
4717          * enable seems to result in the occasional CPU pipe underrun.
4718          *
4719          * Spurious PCH underruns also occur during PCH enabling.
4720          */
4721         if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
4722                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4723         if (intel_crtc->config->has_pch_encoder)
4724                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4725
4726         if (intel_crtc->config->has_pch_encoder)
4727                 intel_prepare_shared_dpll(intel_crtc);
4728
4729         if (intel_crtc_has_dp_encoder(intel_crtc->config))
4730                 intel_dp_set_m_n(intel_crtc, M1_N1);
4731
4732         intel_set_pipe_timings(intel_crtc);
4733         intel_set_pipe_src_size(intel_crtc);
4734
4735         if (intel_crtc->config->has_pch_encoder) {
4736                 intel_cpu_transcoder_set_m_n(intel_crtc,
4737                                      &intel_crtc->config->fdi_m_n, NULL);
4738         }
4739
4740         ironlake_set_pipeconf(crtc);
4741
4742         intel_crtc->active = true;
4743
4744         for_each_encoder_on_crtc(dev, crtc, encoder)
4745                 if (encoder->pre_enable)
4746                         encoder->pre_enable(encoder);
4747
4748         if (intel_crtc->config->has_pch_encoder) {
4749                 /* Note: FDI PLL enabling _must_ be done before we enable the
4750                  * cpu pipes, hence this is separate from all the other fdi/pch
4751                  * enabling. */
4752                 ironlake_fdi_pll_enable(intel_crtc);
4753         } else {
4754                 assert_fdi_tx_disabled(dev_priv, pipe);
4755                 assert_fdi_rx_disabled(dev_priv, pipe);
4756         }
4757
4758         ironlake_pfit_enable(intel_crtc);
4759
4760         /*
4761          * On ILK+ LUT must be loaded before the pipe is running but with
4762          * clocks enabled
4763          */
4764         intel_color_load_luts(&pipe_config->base);
4765
4766         if (dev_priv->display.initial_watermarks != NULL)
4767                 dev_priv->display.initial_watermarks(intel_crtc->config);
4768         intel_enable_pipe(intel_crtc);
4769
4770         if (intel_crtc->config->has_pch_encoder)
4771                 ironlake_pch_enable(crtc);
4772
4773         assert_vblank_disabled(crtc);
4774         drm_crtc_vblank_on(crtc);
4775
4776         for_each_encoder_on_crtc(dev, crtc, encoder)
4777                 encoder->enable(encoder);
4778
4779         if (HAS_PCH_CPT(dev))
4780                 cpt_verify_modeset(dev, intel_crtc->pipe);
4781
4782         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4783         if (intel_crtc->config->has_pch_encoder)
4784                 intel_wait_for_vblank(dev, pipe);
4785         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4786         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4787 }
4788
4789 /* IPS only exists on ULT machines and is tied to pipe A. */
4790 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4791 {
4792         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4793 }
4794
4795 static void haswell_crtc_enable(struct drm_crtc *crtc)
4796 {
4797         struct drm_device *dev = crtc->dev;
4798         struct drm_i915_private *dev_priv = to_i915(dev);
4799         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4800         struct intel_encoder *encoder;
4801         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4802         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4803         struct intel_crtc_state *pipe_config =
4804                 to_intel_crtc_state(crtc->state);
4805
4806         if (WARN_ON(intel_crtc->active))
4807                 return;
4808
4809         if (intel_crtc->config->has_pch_encoder)
4810                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4811                                                       false);
4812
4813         for_each_encoder_on_crtc(dev, crtc, encoder)
4814                 if (encoder->pre_pll_enable)
4815                         encoder->pre_pll_enable(encoder);
4816
4817         if (intel_crtc->config->shared_dpll)
4818                 intel_enable_shared_dpll(intel_crtc);
4819
4820         if (intel_crtc_has_dp_encoder(intel_crtc->config))
4821                 intel_dp_set_m_n(intel_crtc, M1_N1);
4822
4823         if (!transcoder_is_dsi(cpu_transcoder))
4824                 intel_set_pipe_timings(intel_crtc);
4825
4826         intel_set_pipe_src_size(intel_crtc);
4827
4828         if (cpu_transcoder != TRANSCODER_EDP &&
4829             !transcoder_is_dsi(cpu_transcoder)) {
4830                 I915_WRITE(PIPE_MULT(cpu_transcoder),
4831                            intel_crtc->config->pixel_multiplier - 1);
4832         }
4833
4834         if (intel_crtc->config->has_pch_encoder) {
4835                 intel_cpu_transcoder_set_m_n(intel_crtc,
4836                                      &intel_crtc->config->fdi_m_n, NULL);
4837         }
4838
4839         if (!transcoder_is_dsi(cpu_transcoder))
4840                 haswell_set_pipeconf(crtc);
4841
4842         haswell_set_pipemisc(crtc);
4843
4844         intel_color_set_csc(&pipe_config->base);
4845
4846         intel_crtc->active = true;
4847
4848         if (intel_crtc->config->has_pch_encoder)
4849                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4850         else
4851                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4852
4853         for_each_encoder_on_crtc(dev, crtc, encoder) {
4854                 if (encoder->pre_enable)
4855                         encoder->pre_enable(encoder);
4856         }
4857
4858         if (intel_crtc->config->has_pch_encoder)
4859                 dev_priv->display.fdi_link_train(crtc);
4860
4861         if (!transcoder_is_dsi(cpu_transcoder))
4862                 intel_ddi_enable_pipe_clock(intel_crtc);
4863
4864         if (INTEL_INFO(dev)->gen >= 9)
4865                 skylake_pfit_enable(intel_crtc);
4866         else
4867                 ironlake_pfit_enable(intel_crtc);
4868
4869         /*
4870          * On ILK+ LUT must be loaded before the pipe is running but with
4871          * clocks enabled
4872          */
4873         intel_color_load_luts(&pipe_config->base);
4874
4875         intel_ddi_set_pipe_settings(crtc);
4876         if (!transcoder_is_dsi(cpu_transcoder))
4877                 intel_ddi_enable_transcoder_func(crtc);
4878
4879         if (dev_priv->display.initial_watermarks != NULL)
4880                 dev_priv->display.initial_watermarks(pipe_config);
4881         else
4882                 intel_update_watermarks(crtc);
4883
4884         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
4885         if (!transcoder_is_dsi(cpu_transcoder))
4886                 intel_enable_pipe(intel_crtc);
4887
4888         if (intel_crtc->config->has_pch_encoder)
4889                 lpt_pch_enable(crtc);
4890
4891         if (intel_crtc->config->dp_encoder_is_mst)
4892                 intel_ddi_set_vc_payload_alloc(crtc, true);
4893
4894         assert_vblank_disabled(crtc);
4895         drm_crtc_vblank_on(crtc);
4896
4897         for_each_encoder_on_crtc(dev, crtc, encoder) {
4898                 encoder->enable(encoder);
4899                 intel_opregion_notify_encoder(encoder, true);
4900         }
4901
4902         if (intel_crtc->config->has_pch_encoder) {
4903                 intel_wait_for_vblank(dev, pipe);
4904                 intel_wait_for_vblank(dev, pipe);
4905                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4906                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4907                                                       true);
4908         }
4909
4910         /* If we change the relative order between pipe/planes enabling, we need
4911          * to change the workaround. */
4912         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4913         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4914                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4915                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4916         }
4917 }
4918
4919 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4920 {
4921         struct drm_device *dev = crtc->base.dev;
4922         struct drm_i915_private *dev_priv = to_i915(dev);
4923         int pipe = crtc->pipe;
4924
4925         /* To avoid upsetting the power well on haswell only disable the pfit if
4926          * it's in use. The hw state code will make sure we get this right. */
4927         if (force || crtc->config->pch_pfit.enabled) {
4928                 I915_WRITE(PF_CTL(pipe), 0);
4929                 I915_WRITE(PF_WIN_POS(pipe), 0);
4930                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4931         }
4932 }
4933
4934 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4935 {
4936         struct drm_device *dev = crtc->dev;
4937         struct drm_i915_private *dev_priv = to_i915(dev);
4938         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4939         struct intel_encoder *encoder;
4940         int pipe = intel_crtc->pipe;
4941
4942         /*
4943          * Sometimes spurious CPU pipe underruns happen when the
4944          * pipe is already disabled, but FDI RX/TX is still enabled.
4945          * Happens at least with VGA+HDMI cloning. Suppress them.
4946          */
4947         if (intel_crtc->config->has_pch_encoder) {
4948                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4949                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4950         }
4951
4952         for_each_encoder_on_crtc(dev, crtc, encoder)
4953                 encoder->disable(encoder);
4954
4955         drm_crtc_vblank_off(crtc);
4956         assert_vblank_disabled(crtc);
4957
4958         intel_disable_pipe(intel_crtc);
4959
4960         ironlake_pfit_disable(intel_crtc, false);
4961
4962         if (intel_crtc->config->has_pch_encoder)
4963                 ironlake_fdi_disable(crtc);
4964
4965         for_each_encoder_on_crtc(dev, crtc, encoder)
4966                 if (encoder->post_disable)
4967                         encoder->post_disable(encoder);
4968
4969         if (intel_crtc->config->has_pch_encoder) {
4970                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4971
4972                 if (HAS_PCH_CPT(dev)) {
4973                         i915_reg_t reg;
4974                         u32 temp;
4975
4976                         /* disable TRANS_DP_CTL */
4977                         reg = TRANS_DP_CTL(pipe);
4978                         temp = I915_READ(reg);
4979                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4980                                   TRANS_DP_PORT_SEL_MASK);
4981                         temp |= TRANS_DP_PORT_SEL_NONE;
4982                         I915_WRITE(reg, temp);
4983
4984                         /* disable DPLL_SEL */
4985                         temp = I915_READ(PCH_DPLL_SEL);
4986                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4987                         I915_WRITE(PCH_DPLL_SEL, temp);
4988                 }
4989
4990                 ironlake_fdi_pll_disable(intel_crtc);
4991         }
4992
4993         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4994         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4995 }
4996
4997 static void haswell_crtc_disable(struct drm_crtc *crtc)
4998 {
4999         struct drm_device *dev = crtc->dev;
5000         struct drm_i915_private *dev_priv = to_i915(dev);
5001         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5002         struct intel_encoder *encoder;
5003         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5004
5005         if (intel_crtc->config->has_pch_encoder)
5006                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5007                                                       false);
5008
5009         for_each_encoder_on_crtc(dev, crtc, encoder) {
5010                 intel_opregion_notify_encoder(encoder, false);
5011                 encoder->disable(encoder);
5012         }
5013
5014         drm_crtc_vblank_off(crtc);
5015         assert_vblank_disabled(crtc);
5016
5017         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5018         if (!transcoder_is_dsi(cpu_transcoder))
5019                 intel_disable_pipe(intel_crtc);
5020
5021         if (intel_crtc->config->dp_encoder_is_mst)
5022                 intel_ddi_set_vc_payload_alloc(crtc, false);
5023
5024         if (!transcoder_is_dsi(cpu_transcoder))
5025                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5026
5027         if (INTEL_INFO(dev)->gen >= 9)
5028                 skylake_scaler_disable(intel_crtc);
5029         else
5030                 ironlake_pfit_disable(intel_crtc, false);
5031
5032         if (!transcoder_is_dsi(cpu_transcoder))
5033                 intel_ddi_disable_pipe_clock(intel_crtc);
5034
5035         for_each_encoder_on_crtc(dev, crtc, encoder)
5036                 if (encoder->post_disable)
5037                         encoder->post_disable(encoder);
5038
5039         if (intel_crtc->config->has_pch_encoder) {
5040                 lpt_disable_pch_transcoder(dev_priv);
5041                 lpt_disable_iclkip(dev_priv);
5042                 intel_ddi_fdi_disable(crtc);
5043
5044                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5045                                                       true);
5046         }
5047 }
5048
5049 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5050 {
5051         struct drm_device *dev = crtc->base.dev;
5052         struct drm_i915_private *dev_priv = to_i915(dev);
5053         struct intel_crtc_state *pipe_config = crtc->config;
5054
5055         if (!pipe_config->gmch_pfit.control)
5056                 return;
5057
5058         /*
5059          * The panel fitter should only be adjusted whilst the pipe is disabled,
5060          * according to register description and PRM.
5061          */
5062         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5063         assert_pipe_disabled(dev_priv, crtc->pipe);
5064
5065         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5066         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5067
5068         /* Border color in case we don't scale up to the full screen. Black by
5069          * default, change to something else for debugging. */
5070         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5071 }
5072
5073 static enum intel_display_power_domain port_to_power_domain(enum port port)
5074 {
5075         switch (port) {
5076         case PORT_A:
5077                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5078         case PORT_B:
5079                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5080         case PORT_C:
5081                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5082         case PORT_D:
5083                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5084         case PORT_E:
5085                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5086         default:
5087                 MISSING_CASE(port);
5088                 return POWER_DOMAIN_PORT_OTHER;
5089         }
5090 }
5091
5092 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5093 {
5094         switch (port) {
5095         case PORT_A:
5096                 return POWER_DOMAIN_AUX_A;
5097         case PORT_B:
5098                 return POWER_DOMAIN_AUX_B;
5099         case PORT_C:
5100                 return POWER_DOMAIN_AUX_C;
5101         case PORT_D:
5102                 return POWER_DOMAIN_AUX_D;
5103         case PORT_E:
5104                 /* FIXME: Check VBT for actual wiring of PORT E */
5105                 return POWER_DOMAIN_AUX_D;
5106         default:
5107                 MISSING_CASE(port);
5108                 return POWER_DOMAIN_AUX_A;
5109         }
5110 }
5111
5112 enum intel_display_power_domain
5113 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5114 {
5115         struct drm_device *dev = intel_encoder->base.dev;
5116         struct intel_digital_port *intel_dig_port;
5117
5118         switch (intel_encoder->type) {
5119         case INTEL_OUTPUT_UNKNOWN:
5120                 /* Only DDI platforms should ever use this output type */
5121                 WARN_ON_ONCE(!HAS_DDI(dev));
5122         case INTEL_OUTPUT_DP:
5123         case INTEL_OUTPUT_HDMI:
5124         case INTEL_OUTPUT_EDP:
5125                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5126                 return port_to_power_domain(intel_dig_port->port);
5127         case INTEL_OUTPUT_DP_MST:
5128                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5129                 return port_to_power_domain(intel_dig_port->port);
5130         case INTEL_OUTPUT_ANALOG:
5131                 return POWER_DOMAIN_PORT_CRT;
5132         case INTEL_OUTPUT_DSI:
5133                 return POWER_DOMAIN_PORT_DSI;
5134         default:
5135                 return POWER_DOMAIN_PORT_OTHER;
5136         }
5137 }
5138
5139 enum intel_display_power_domain
5140 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5141 {
5142         struct drm_device *dev = intel_encoder->base.dev;
5143         struct intel_digital_port *intel_dig_port;
5144
5145         switch (intel_encoder->type) {
5146         case INTEL_OUTPUT_UNKNOWN:
5147         case INTEL_OUTPUT_HDMI:
5148                 /*
5149                  * Only DDI platforms should ever use these output types.
5150                  * We can get here after the HDMI detect code has already set
5151                  * the type of the shared encoder. Since we can't be sure
5152                  * what's the status of the given connectors, play safe and
5153                  * run the DP detection too.
5154                  */
5155                 WARN_ON_ONCE(!HAS_DDI(dev));
5156         case INTEL_OUTPUT_DP:
5157         case INTEL_OUTPUT_EDP:
5158                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5159                 return port_to_aux_power_domain(intel_dig_port->port);
5160         case INTEL_OUTPUT_DP_MST:
5161                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5162                 return port_to_aux_power_domain(intel_dig_port->port);
5163         default:
5164                 MISSING_CASE(intel_encoder->type);
5165                 return POWER_DOMAIN_AUX_A;
5166         }
5167 }
5168
5169 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5170                                             struct intel_crtc_state *crtc_state)
5171 {
5172         struct drm_device *dev = crtc->dev;
5173         struct drm_encoder *encoder;
5174         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5175         enum pipe pipe = intel_crtc->pipe;
5176         unsigned long mask;
5177         enum transcoder transcoder = crtc_state->cpu_transcoder;
5178
5179         if (!crtc_state->base.active)
5180                 return 0;
5181
5182         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5183         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5184         if (crtc_state->pch_pfit.enabled ||
5185             crtc_state->pch_pfit.force_thru)
5186                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5187
5188         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5189                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5190
5191                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5192         }
5193
5194         if (crtc_state->shared_dpll)
5195                 mask |= BIT(POWER_DOMAIN_PLLS);
5196
5197         return mask;
5198 }
5199
5200 static unsigned long
5201 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5202                                struct intel_crtc_state *crtc_state)
5203 {
5204         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5205         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5206         enum intel_display_power_domain domain;
5207         unsigned long domains, new_domains, old_domains;
5208
5209         old_domains = intel_crtc->enabled_power_domains;
5210         intel_crtc->enabled_power_domains = new_domains =
5211                 get_crtc_power_domains(crtc, crtc_state);
5212
5213         domains = new_domains & ~old_domains;
5214
5215         for_each_power_domain(domain, domains)
5216                 intel_display_power_get(dev_priv, domain);
5217
5218         return old_domains & ~new_domains;
5219 }
5220
5221 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5222                                       unsigned long domains)
5223 {
5224         enum intel_display_power_domain domain;
5225
5226         for_each_power_domain(domain, domains)
5227                 intel_display_power_put(dev_priv, domain);
5228 }
5229
5230 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5231 {
5232         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5233
5234         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5235             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5236                 return max_cdclk_freq;
5237         else if (IS_CHERRYVIEW(dev_priv))
5238                 return max_cdclk_freq*95/100;
5239         else if (INTEL_INFO(dev_priv)->gen < 4)
5240                 return 2*max_cdclk_freq*90/100;
5241         else
5242                 return max_cdclk_freq*90/100;
5243 }
5244
5245 static int skl_calc_cdclk(int max_pixclk, int vco);
5246
5247 static void intel_update_max_cdclk(struct drm_device *dev)
5248 {
5249         struct drm_i915_private *dev_priv = to_i915(dev);
5250
5251         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5252                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5253                 int max_cdclk, vco;
5254
5255                 vco = dev_priv->skl_preferred_vco_freq;
5256                 WARN_ON(vco != 8100000 && vco != 8640000);
5257
5258                 /*
5259                  * Use the lower (vco 8640) cdclk values as a
5260                  * first guess. skl_calc_cdclk() will correct it
5261                  * if the preferred vco is 8100 instead.
5262                  */
5263                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5264                         max_cdclk = 617143;
5265                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5266                         max_cdclk = 540000;
5267                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5268                         max_cdclk = 432000;
5269                 else
5270                         max_cdclk = 308571;
5271
5272                 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5273         } else if (IS_BROXTON(dev)) {
5274                 dev_priv->max_cdclk_freq = 624000;
5275         } else if (IS_BROADWELL(dev))  {
5276                 /*
5277                  * FIXME with extra cooling we can allow
5278                  * 540 MHz for ULX and 675 Mhz for ULT.
5279                  * How can we know if extra cooling is
5280                  * available? PCI ID, VTB, something else?
5281                  */
5282                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5283                         dev_priv->max_cdclk_freq = 450000;
5284                 else if (IS_BDW_ULX(dev))
5285                         dev_priv->max_cdclk_freq = 450000;
5286                 else if (IS_BDW_ULT(dev))
5287                         dev_priv->max_cdclk_freq = 540000;
5288                 else
5289                         dev_priv->max_cdclk_freq = 675000;
5290         } else if (IS_CHERRYVIEW(dev)) {
5291                 dev_priv->max_cdclk_freq = 320000;
5292         } else if (IS_VALLEYVIEW(dev)) {
5293                 dev_priv->max_cdclk_freq = 400000;
5294         } else {
5295                 /* otherwise assume cdclk is fixed */
5296                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5297         }
5298
5299         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5300
5301         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5302                          dev_priv->max_cdclk_freq);
5303
5304         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5305                          dev_priv->max_dotclk_freq);
5306 }
5307
5308 static void intel_update_cdclk(struct drm_device *dev)
5309 {
5310         struct drm_i915_private *dev_priv = to_i915(dev);
5311
5312         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5313
5314         if (INTEL_GEN(dev_priv) >= 9)
5315                 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5316                                  dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5317                                  dev_priv->cdclk_pll.ref);
5318         else
5319                 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5320                                  dev_priv->cdclk_freq);
5321
5322         /*
5323          * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5324          * Programmng [sic] note: bit[9:2] should be programmed to the number
5325          * of cdclk that generates 4MHz reference clock freq which is used to
5326          * generate GMBus clock. This will vary with the cdclk freq.
5327          */
5328         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5329                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5330 }
5331
5332 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5333 static int skl_cdclk_decimal(int cdclk)
5334 {
5335         return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5336 }
5337
5338 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5339 {
5340         int ratio;
5341
5342         if (cdclk == dev_priv->cdclk_pll.ref)
5343                 return 0;
5344
5345         switch (cdclk) {
5346         default:
5347                 MISSING_CASE(cdclk);
5348         case 144000:
5349         case 288000:
5350         case 384000:
5351         case 576000:
5352                 ratio = 60;
5353                 break;
5354         case 624000:
5355                 ratio = 65;
5356                 break;
5357         }
5358
5359         return dev_priv->cdclk_pll.ref * ratio;
5360 }
5361
5362 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5363 {
5364         I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5365
5366         /* Timeout 200us */
5367         if (intel_wait_for_register(dev_priv,
5368                                     BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5369                                     1))
5370                 DRM_ERROR("timeout waiting for DE PLL unlock\n");
5371
5372         dev_priv->cdclk_pll.vco = 0;
5373 }
5374
5375 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5376 {
5377         int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5378         u32 val;
5379
5380         val = I915_READ(BXT_DE_PLL_CTL);
5381         val &= ~BXT_DE_PLL_RATIO_MASK;
5382         val |= BXT_DE_PLL_RATIO(ratio);
5383         I915_WRITE(BXT_DE_PLL_CTL, val);
5384
5385         I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5386
5387         /* Timeout 200us */
5388         if (intel_wait_for_register(dev_priv,
5389                                     BXT_DE_PLL_ENABLE,
5390                                     BXT_DE_PLL_LOCK,
5391                                     BXT_DE_PLL_LOCK,
5392                                     1))
5393                 DRM_ERROR("timeout waiting for DE PLL lock\n");
5394
5395         dev_priv->cdclk_pll.vco = vco;
5396 }
5397
5398 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5399 {
5400         u32 val, divider;
5401         int vco, ret;
5402
5403         vco = bxt_de_pll_vco(dev_priv, cdclk);
5404
5405         DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5406
5407         /* cdclk = vco / 2 / div{1,1.5,2,4} */
5408         switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5409         case 8:
5410                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5411                 break;
5412         case 4:
5413                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5414                 break;
5415         case 3:
5416                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5417                 break;
5418         case 2:
5419                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5420                 break;
5421         default:
5422                 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
5423                 WARN_ON(vco != 0);
5424
5425                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5426                 break;
5427         }
5428
5429         /* Inform power controller of upcoming frequency change */
5430         mutex_lock(&dev_priv->rps.hw_lock);
5431         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5432                                       0x80000000);
5433         mutex_unlock(&dev_priv->rps.hw_lock);
5434
5435         if (ret) {
5436                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5437                           ret, cdclk);
5438                 return;
5439         }
5440
5441         if (dev_priv->cdclk_pll.vco != 0 &&
5442             dev_priv->cdclk_pll.vco != vco)
5443                 bxt_de_pll_disable(dev_priv);
5444
5445         if (dev_priv->cdclk_pll.vco != vco)
5446                 bxt_de_pll_enable(dev_priv, vco);
5447
5448         val = divider | skl_cdclk_decimal(cdclk);
5449         /*
5450          * FIXME if only the cd2x divider needs changing, it could be done
5451          * without shutting off the pipe (if only one pipe is active).
5452          */
5453         val |= BXT_CDCLK_CD2X_PIPE_NONE;
5454         /*
5455          * Disable SSA Precharge when CD clock frequency < 500 MHz,
5456          * enable otherwise.
5457          */
5458         if (cdclk >= 500000)
5459                 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5460         I915_WRITE(CDCLK_CTL, val);
5461
5462         mutex_lock(&dev_priv->rps.hw_lock);
5463         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5464                                       DIV_ROUND_UP(cdclk, 25000));
5465         mutex_unlock(&dev_priv->rps.hw_lock);
5466
5467         if (ret) {
5468                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5469                           ret, cdclk);
5470                 return;
5471         }
5472
5473         intel_update_cdclk(&dev_priv->drm);
5474 }
5475
5476 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
5477 {
5478         u32 cdctl, expected;
5479
5480         intel_update_cdclk(&dev_priv->drm);
5481
5482         if (dev_priv->cdclk_pll.vco == 0 ||
5483             dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
5484                 goto sanitize;
5485
5486         /* DPLL okay; verify the cdclock
5487          *
5488          * Some BIOS versions leave an incorrect decimal frequency value and
5489          * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
5490          * so sanitize this register.
5491          */
5492         cdctl = I915_READ(CDCLK_CTL);
5493         /*
5494          * Let's ignore the pipe field, since BIOS could have configured the
5495          * dividers both synching to an active pipe, or asynchronously
5496          * (PIPE_NONE).
5497          */
5498         cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
5499
5500         expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
5501                    skl_cdclk_decimal(dev_priv->cdclk_freq);
5502         /*
5503          * Disable SSA Precharge when CD clock frequency < 500 MHz,
5504          * enable otherwise.
5505          */
5506         if (dev_priv->cdclk_freq >= 500000)
5507                 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5508
5509         if (cdctl == expected)
5510                 /* All well; nothing to sanitize */
5511                 return;
5512
5513 sanitize:
5514         DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
5515
5516         /* force cdclk programming */
5517         dev_priv->cdclk_freq = 0;
5518
5519         /* force full PLL disable + enable */
5520         dev_priv->cdclk_pll.vco = -1;
5521 }
5522
5523 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
5524 {
5525         bxt_sanitize_cdclk(dev_priv);
5526
5527         if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
5528                 return;
5529
5530         /*
5531          * FIXME:
5532          * - The initial CDCLK needs to be read from VBT.
5533          *   Need to make this change after VBT has changes for BXT.
5534          */
5535         bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
5536 }
5537
5538 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
5539 {
5540         bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
5541 }
5542
5543 static int skl_calc_cdclk(int max_pixclk, int vco)
5544 {
5545         if (vco == 8640000) {
5546                 if (max_pixclk > 540000)
5547                         return 617143;
5548                 else if (max_pixclk > 432000)
5549                         return 540000;
5550                 else if (max_pixclk > 308571)
5551                         return 432000;
5552                 else
5553                         return 308571;
5554         } else {
5555                 if (max_pixclk > 540000)
5556                         return 675000;
5557                 else if (max_pixclk > 450000)
5558                         return 540000;
5559                 else if (max_pixclk > 337500)
5560                         return 450000;
5561                 else
5562                         return 337500;
5563         }
5564 }
5565
5566 static void
5567 skl_dpll0_update(struct drm_i915_private *dev_priv)
5568 {
5569         u32 val;
5570
5571         dev_priv->cdclk_pll.ref = 24000;
5572         dev_priv->cdclk_pll.vco = 0;
5573
5574         val = I915_READ(LCPLL1_CTL);
5575         if ((val & LCPLL_PLL_ENABLE) == 0)
5576                 return;
5577
5578         if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
5579                 return;
5580
5581         val = I915_READ(DPLL_CTRL1);
5582
5583         if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
5584                             DPLL_CTRL1_SSC(SKL_DPLL0) |
5585                             DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
5586                     DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
5587                 return;
5588
5589         switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
5590         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
5591         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
5592         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
5593         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
5594                 dev_priv->cdclk_pll.vco = 8100000;
5595                 break;
5596         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
5597         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
5598                 dev_priv->cdclk_pll.vco = 8640000;
5599                 break;
5600         default:
5601                 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5602                 break;
5603         }
5604 }
5605
5606 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
5607 {
5608         bool changed = dev_priv->skl_preferred_vco_freq != vco;
5609
5610         dev_priv->skl_preferred_vco_freq = vco;
5611
5612         if (changed)
5613                 intel_update_max_cdclk(&dev_priv->drm);
5614 }
5615
5616 static void
5617 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
5618 {
5619         int min_cdclk = skl_calc_cdclk(0, vco);
5620         u32 val;
5621
5622         WARN_ON(vco != 8100000 && vco != 8640000);
5623
5624         /* select the minimum CDCLK before enabling DPLL 0 */
5625         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
5626         I915_WRITE(CDCLK_CTL, val);
5627         POSTING_READ(CDCLK_CTL);
5628
5629         /*
5630          * We always enable DPLL0 with the lowest link rate possible, but still
5631          * taking into account the VCO required to operate the eDP panel at the
5632          * desired frequency. The usual DP link rates operate with a VCO of
5633          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5634          * The modeset code is responsible for the selection of the exact link
5635          * rate later on, with the constraint of choosing a frequency that
5636          * works with vco.
5637          */
5638         val = I915_READ(DPLL_CTRL1);
5639
5640         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5641                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5642         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5643         if (vco == 8640000)
5644                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5645                                             SKL_DPLL0);
5646         else
5647                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5648                                             SKL_DPLL0);
5649
5650         I915_WRITE(DPLL_CTRL1, val);
5651         POSTING_READ(DPLL_CTRL1);
5652
5653         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5654
5655         if (intel_wait_for_register(dev_priv,
5656                                     LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
5657                                     5))
5658                 DRM_ERROR("DPLL0 not locked\n");
5659
5660         dev_priv->cdclk_pll.vco = vco;
5661
5662         /* We'll want to keep using the current vco from now on. */
5663         skl_set_preferred_cdclk_vco(dev_priv, vco);
5664 }
5665
5666 static void
5667 skl_dpll0_disable(struct drm_i915_private *dev_priv)
5668 {
5669         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5670         if (intel_wait_for_register(dev_priv,
5671                                    LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
5672                                    1))
5673                 DRM_ERROR("Couldn't disable DPLL0\n");
5674
5675         dev_priv->cdclk_pll.vco = 0;
5676 }
5677
5678 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5679 {
5680         int ret;
5681         u32 val;
5682
5683         /* inform PCU we want to change CDCLK */
5684         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5685         mutex_lock(&dev_priv->rps.hw_lock);
5686         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5687         mutex_unlock(&dev_priv->rps.hw_lock);
5688
5689         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5690 }
5691
5692 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5693 {
5694         return _wait_for(skl_cdclk_pcu_ready(dev_priv), 3000, 10) == 0;
5695 }
5696
5697 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
5698 {
5699         struct drm_device *dev = &dev_priv->drm;
5700         u32 freq_select, pcu_ack;
5701
5702         WARN_ON((cdclk == 24000) != (vco == 0));
5703
5704         DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5705
5706         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5707                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5708                 return;
5709         }
5710
5711         /* set CDCLK_CTL */
5712         switch (cdclk) {
5713         case 450000:
5714         case 432000:
5715                 freq_select = CDCLK_FREQ_450_432;
5716                 pcu_ack = 1;
5717                 break;
5718         case 540000:
5719                 freq_select = CDCLK_FREQ_540;
5720                 pcu_ack = 2;
5721                 break;
5722         case 308571:
5723         case 337500:
5724         default:
5725                 freq_select = CDCLK_FREQ_337_308;
5726                 pcu_ack = 0;
5727                 break;
5728         case 617143:
5729         case 675000:
5730                 freq_select = CDCLK_FREQ_675_617;
5731                 pcu_ack = 3;
5732                 break;
5733         }
5734
5735         if (dev_priv->cdclk_pll.vco != 0 &&
5736             dev_priv->cdclk_pll.vco != vco)
5737                 skl_dpll0_disable(dev_priv);
5738
5739         if (dev_priv->cdclk_pll.vco != vco)
5740                 skl_dpll0_enable(dev_priv, vco);
5741
5742         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
5743         POSTING_READ(CDCLK_CTL);
5744
5745         /* inform PCU of the change */
5746         mutex_lock(&dev_priv->rps.hw_lock);
5747         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5748         mutex_unlock(&dev_priv->rps.hw_lock);
5749
5750         intel_update_cdclk(dev);
5751 }
5752
5753 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
5754
5755 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5756 {
5757         skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
5758 }
5759
5760 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5761 {
5762         int cdclk, vco;
5763
5764         skl_sanitize_cdclk(dev_priv);
5765
5766         if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
5767                 /*
5768                  * Use the current vco as our initial
5769                  * guess as to what the preferred vco is.
5770                  */
5771                 if (dev_priv->skl_preferred_vco_freq == 0)
5772                         skl_set_preferred_cdclk_vco(dev_priv,
5773                                                     dev_priv->cdclk_pll.vco);
5774                 return;
5775         }
5776
5777         vco = dev_priv->skl_preferred_vco_freq;
5778         if (vco == 0)
5779                 vco = 8100000;
5780         cdclk = skl_calc_cdclk(0, vco);
5781
5782         skl_set_cdclk(dev_priv, cdclk, vco);
5783 }
5784
5785 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5786 {
5787         uint32_t cdctl, expected;
5788
5789         /*
5790          * check if the pre-os intialized the display
5791          * There is SWF18 scratchpad register defined which is set by the
5792          * pre-os which can be used by the OS drivers to check the status
5793          */
5794         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5795                 goto sanitize;
5796
5797         intel_update_cdclk(&dev_priv->drm);
5798         /* Is PLL enabled and locked ? */
5799         if (dev_priv->cdclk_pll.vco == 0 ||
5800             dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
5801                 goto sanitize;
5802
5803         /* DPLL okay; verify the cdclock
5804          *
5805          * Noticed in some instances that the freq selection is correct but
5806          * decimal part is programmed wrong from BIOS where pre-os does not
5807          * enable display. Verify the same as well.
5808          */
5809         cdctl = I915_READ(CDCLK_CTL);
5810         expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
5811                 skl_cdclk_decimal(dev_priv->cdclk_freq);
5812         if (cdctl == expected)
5813                 /* All well; nothing to sanitize */
5814                 return;
5815
5816 sanitize:
5817         DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
5818
5819         /* force cdclk programming */
5820         dev_priv->cdclk_freq = 0;
5821         /* force full PLL disable + enable */
5822         dev_priv->cdclk_pll.vco = -1;
5823 }
5824
5825 /* Adjust CDclk dividers to allow high res or save power if possible */
5826 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5827 {
5828         struct drm_i915_private *dev_priv = to_i915(dev);
5829         u32 val, cmd;
5830
5831         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5832                                         != dev_priv->cdclk_freq);
5833
5834         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5835                 cmd = 2;
5836         else if (cdclk == 266667)
5837                 cmd = 1;
5838         else
5839                 cmd = 0;
5840
5841         mutex_lock(&dev_priv->rps.hw_lock);
5842         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5843         val &= ~DSPFREQGUAR_MASK;
5844         val |= (cmd << DSPFREQGUAR_SHIFT);
5845         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5846         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5847                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5848                      50)) {
5849                 DRM_ERROR("timed out waiting for CDclk change\n");
5850         }
5851         mutex_unlock(&dev_priv->rps.hw_lock);
5852
5853         mutex_lock(&dev_priv->sb_lock);
5854
5855         if (cdclk == 400000) {
5856                 u32 divider;
5857
5858                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5859
5860                 /* adjust cdclk divider */
5861                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5862                 val &= ~CCK_FREQUENCY_VALUES;
5863                 val |= divider;
5864                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5865
5866                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5867                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5868                              50))
5869                         DRM_ERROR("timed out waiting for CDclk change\n");
5870         }
5871
5872         /* adjust self-refresh exit latency value */
5873         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5874         val &= ~0x7f;
5875
5876         /*
5877          * For high bandwidth configs, we set a higher latency in the bunit
5878          * so that the core display fetch happens in time to avoid underruns.
5879          */
5880         if (cdclk == 400000)
5881                 val |= 4500 / 250; /* 4.5 usec */
5882         else
5883                 val |= 3000 / 250; /* 3.0 usec */
5884         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5885
5886         mutex_unlock(&dev_priv->sb_lock);
5887
5888         intel_update_cdclk(dev);
5889 }
5890
5891 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5892 {
5893         struct drm_i915_private *dev_priv = to_i915(dev);
5894         u32 val, cmd;
5895
5896         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5897                                                 != dev_priv->cdclk_freq);
5898
5899         switch (cdclk) {
5900         case 333333:
5901         case 320000:
5902         case 266667:
5903         case 200000:
5904                 break;
5905         default:
5906                 MISSING_CASE(cdclk);
5907                 return;
5908         }
5909
5910         /*
5911          * Specs are full of misinformation, but testing on actual
5912          * hardware has shown that we just need to write the desired
5913          * CCK divider into the Punit register.
5914          */
5915         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5916
5917         mutex_lock(&dev_priv->rps.hw_lock);
5918         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5919         val &= ~DSPFREQGUAR_MASK_CHV;
5920         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5921         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5922         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5923                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5924                      50)) {
5925                 DRM_ERROR("timed out waiting for CDclk change\n");
5926         }
5927         mutex_unlock(&dev_priv->rps.hw_lock);
5928
5929         intel_update_cdclk(dev);
5930 }
5931
5932 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5933                                  int max_pixclk)
5934 {
5935         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5936         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5937
5938         /*
5939          * Really only a few cases to deal with, as only 4 CDclks are supported:
5940          *   200MHz
5941          *   267MHz
5942          *   320/333MHz (depends on HPLL freq)
5943          *   400MHz (VLV only)
5944          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5945          * of the lower bin and adjust if needed.
5946          *
5947          * We seem to get an unstable or solid color picture at 200MHz.
5948          * Not sure what's wrong. For now use 200MHz only when all pipes
5949          * are off.
5950          */
5951         if (!IS_CHERRYVIEW(dev_priv) &&
5952             max_pixclk > freq_320*limit/100)
5953                 return 400000;
5954         else if (max_pixclk > 266667*limit/100)
5955                 return freq_320;
5956         else if (max_pixclk > 0)
5957                 return 266667;
5958         else
5959                 return 200000;
5960 }
5961
5962 static int bxt_calc_cdclk(int max_pixclk)
5963 {
5964         if (max_pixclk > 576000)
5965                 return 624000;
5966         else if (max_pixclk > 384000)
5967                 return 576000;
5968         else if (max_pixclk > 288000)
5969                 return 384000;
5970         else if (max_pixclk > 144000)
5971                 return 288000;
5972         else
5973                 return 144000;
5974 }
5975
5976 /* Compute the max pixel clock for new configuration. */
5977 static int intel_mode_max_pixclk(struct drm_device *dev,
5978                                  struct drm_atomic_state *state)
5979 {
5980         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5981         struct drm_i915_private *dev_priv = to_i915(dev);
5982         struct drm_crtc *crtc;
5983         struct drm_crtc_state *crtc_state;
5984         unsigned max_pixclk = 0, i;
5985         enum pipe pipe;
5986
5987         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
5988                sizeof(intel_state->min_pixclk));
5989
5990         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5991                 int pixclk = 0;
5992
5993                 if (crtc_state->enable)
5994                         pixclk = crtc_state->adjusted_mode.crtc_clock;
5995
5996                 intel_state->min_pixclk[i] = pixclk;
5997         }
5998
5999         for_each_pipe(dev_priv, pipe)
6000                 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6001
6002         return max_pixclk;
6003 }
6004
6005 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6006 {
6007         struct drm_device *dev = state->dev;
6008         struct drm_i915_private *dev_priv = to_i915(dev);
6009         int max_pixclk = intel_mode_max_pixclk(dev, state);
6010         struct intel_atomic_state *intel_state =
6011                 to_intel_atomic_state(state);
6012
6013         intel_state->cdclk = intel_state->dev_cdclk =
6014                 valleyview_calc_cdclk(dev_priv, max_pixclk);
6015
6016         if (!intel_state->active_crtcs)
6017                 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6018
6019         return 0;
6020 }
6021
6022 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6023 {
6024         int max_pixclk = ilk_max_pixel_rate(state);
6025         struct intel_atomic_state *intel_state =
6026                 to_intel_atomic_state(state);
6027
6028         intel_state->cdclk = intel_state->dev_cdclk =
6029                 bxt_calc_cdclk(max_pixclk);
6030
6031         if (!intel_state->active_crtcs)
6032                 intel_state->dev_cdclk = bxt_calc_cdclk(0);
6033
6034         return 0;
6035 }
6036
6037 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6038 {
6039         unsigned int credits, default_credits;
6040
6041         if (IS_CHERRYVIEW(dev_priv))
6042                 default_credits = PFI_CREDIT(12);
6043         else
6044                 default_credits = PFI_CREDIT(8);
6045
6046         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6047                 /* CHV suggested value is 31 or 63 */
6048                 if (IS_CHERRYVIEW(dev_priv))
6049                         credits = PFI_CREDIT_63;
6050                 else
6051                         credits = PFI_CREDIT(15);
6052         } else {
6053                 credits = default_credits;
6054         }
6055
6056         /*
6057          * WA - write default credits before re-programming
6058          * FIXME: should we also set the resend bit here?
6059          */
6060         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6061                    default_credits);
6062
6063         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6064                    credits | PFI_CREDIT_RESEND);
6065
6066         /*
6067          * FIXME is this guaranteed to clear
6068          * immediately or should we poll for it?
6069          */
6070         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6071 }
6072
6073 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6074 {
6075         struct drm_device *dev = old_state->dev;
6076         struct drm_i915_private *dev_priv = to_i915(dev);
6077         struct intel_atomic_state *old_intel_state =
6078                 to_intel_atomic_state(old_state);
6079         unsigned req_cdclk = old_intel_state->dev_cdclk;
6080
6081         /*
6082          * FIXME: We can end up here with all power domains off, yet
6083          * with a CDCLK frequency other than the minimum. To account
6084          * for this take the PIPE-A power domain, which covers the HW
6085          * blocks needed for the following programming. This can be
6086          * removed once it's guaranteed that we get here either with
6087          * the minimum CDCLK set, or the required power domains
6088          * enabled.
6089          */
6090         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6091
6092         if (IS_CHERRYVIEW(dev))
6093                 cherryview_set_cdclk(dev, req_cdclk);
6094         else
6095                 valleyview_set_cdclk(dev, req_cdclk);
6096
6097         vlv_program_pfi_credits(dev_priv);
6098
6099         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6100 }
6101
6102 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6103 {
6104         struct drm_device *dev = crtc->dev;
6105         struct drm_i915_private *dev_priv = to_i915(dev);
6106         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6107         struct intel_encoder *encoder;
6108         struct intel_crtc_state *pipe_config =
6109                 to_intel_crtc_state(crtc->state);
6110         int pipe = intel_crtc->pipe;
6111
6112         if (WARN_ON(intel_crtc->active))
6113                 return;
6114
6115         if (intel_crtc_has_dp_encoder(intel_crtc->config))
6116                 intel_dp_set_m_n(intel_crtc, M1_N1);
6117
6118         intel_set_pipe_timings(intel_crtc);
6119         intel_set_pipe_src_size(intel_crtc);
6120
6121         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6122                 struct drm_i915_private *dev_priv = to_i915(dev);
6123
6124                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6125                 I915_WRITE(CHV_CANVAS(pipe), 0);
6126         }
6127
6128         i9xx_set_pipeconf(intel_crtc);
6129
6130         intel_crtc->active = true;
6131
6132         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6133
6134         for_each_encoder_on_crtc(dev, crtc, encoder)
6135                 if (encoder->pre_pll_enable)
6136                         encoder->pre_pll_enable(encoder);
6137
6138         if (IS_CHERRYVIEW(dev)) {
6139                 chv_prepare_pll(intel_crtc, intel_crtc->config);
6140                 chv_enable_pll(intel_crtc, intel_crtc->config);
6141         } else {
6142                 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6143                 vlv_enable_pll(intel_crtc, intel_crtc->config);
6144         }
6145
6146         for_each_encoder_on_crtc(dev, crtc, encoder)
6147                 if (encoder->pre_enable)
6148                         encoder->pre_enable(encoder);
6149
6150         i9xx_pfit_enable(intel_crtc);
6151
6152         intel_color_load_luts(&pipe_config->base);
6153
6154         intel_update_watermarks(crtc);
6155         intel_enable_pipe(intel_crtc);
6156
6157         assert_vblank_disabled(crtc);
6158         drm_crtc_vblank_on(crtc);
6159
6160         for_each_encoder_on_crtc(dev, crtc, encoder)
6161                 encoder->enable(encoder);
6162 }
6163
6164 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6165 {
6166         struct drm_device *dev = crtc->base.dev;
6167         struct drm_i915_private *dev_priv = to_i915(dev);
6168
6169         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6170         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6171 }
6172
6173 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6174 {
6175         struct drm_device *dev = crtc->dev;
6176         struct drm_i915_private *dev_priv = to_i915(dev);
6177         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6178         struct intel_encoder *encoder;
6179         struct intel_crtc_state *pipe_config =
6180                 to_intel_crtc_state(crtc->state);
6181         enum pipe pipe = intel_crtc->pipe;
6182
6183         if (WARN_ON(intel_crtc->active))
6184                 return;
6185
6186         i9xx_set_pll_dividers(intel_crtc);
6187
6188         if (intel_crtc_has_dp_encoder(intel_crtc->config))
6189                 intel_dp_set_m_n(intel_crtc, M1_N1);
6190
6191         intel_set_pipe_timings(intel_crtc);
6192         intel_set_pipe_src_size(intel_crtc);
6193
6194         i9xx_set_pipeconf(intel_crtc);
6195
6196         intel_crtc->active = true;
6197
6198         if (!IS_GEN2(dev))
6199                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6200
6201         for_each_encoder_on_crtc(dev, crtc, encoder)
6202                 if (encoder->pre_enable)
6203                         encoder->pre_enable(encoder);
6204
6205         i9xx_enable_pll(intel_crtc);
6206
6207         i9xx_pfit_enable(intel_crtc);
6208
6209         intel_color_load_luts(&pipe_config->base);
6210
6211         intel_update_watermarks(crtc);
6212         intel_enable_pipe(intel_crtc);
6213
6214         assert_vblank_disabled(crtc);
6215         drm_crtc_vblank_on(crtc);
6216
6217         for_each_encoder_on_crtc(dev, crtc, encoder)
6218                 encoder->enable(encoder);
6219 }
6220
6221 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6222 {
6223         struct drm_device *dev = crtc->base.dev;
6224         struct drm_i915_private *dev_priv = to_i915(dev);
6225
6226         if (!crtc->config->gmch_pfit.control)
6227                 return;
6228
6229         assert_pipe_disabled(dev_priv, crtc->pipe);
6230
6231         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6232                          I915_READ(PFIT_CONTROL));
6233         I915_WRITE(PFIT_CONTROL, 0);
6234 }
6235
6236 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6237 {
6238         struct drm_device *dev = crtc->dev;
6239         struct drm_i915_private *dev_priv = to_i915(dev);
6240         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6241         struct intel_encoder *encoder;
6242         int pipe = intel_crtc->pipe;
6243
6244         /*
6245          * On gen2 planes are double buffered but the pipe isn't, so we must
6246          * wait for planes to fully turn off before disabling the pipe.
6247          */
6248         if (IS_GEN2(dev))
6249                 intel_wait_for_vblank(dev, pipe);
6250
6251         for_each_encoder_on_crtc(dev, crtc, encoder)
6252                 encoder->disable(encoder);
6253
6254         drm_crtc_vblank_off(crtc);
6255         assert_vblank_disabled(crtc);
6256
6257         intel_disable_pipe(intel_crtc);
6258
6259         i9xx_pfit_disable(intel_crtc);
6260
6261         for_each_encoder_on_crtc(dev, crtc, encoder)
6262                 if (encoder->post_disable)
6263                         encoder->post_disable(encoder);
6264
6265         if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
6266                 if (IS_CHERRYVIEW(dev))
6267                         chv_disable_pll(dev_priv, pipe);
6268                 else if (IS_VALLEYVIEW(dev))
6269                         vlv_disable_pll(dev_priv, pipe);
6270                 else
6271                         i9xx_disable_pll(intel_crtc);
6272         }
6273
6274         for_each_encoder_on_crtc(dev, crtc, encoder)
6275                 if (encoder->post_pll_disable)
6276                         encoder->post_pll_disable(encoder);
6277
6278         if (!IS_GEN2(dev))
6279                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6280 }
6281
6282 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6283 {
6284         struct intel_encoder *encoder;
6285         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6286         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6287         enum intel_display_power_domain domain;
6288         unsigned long domains;
6289
6290         if (!intel_crtc->active)
6291                 return;
6292
6293         if (to_intel_plane_state(crtc->primary->state)->visible) {
6294                 WARN_ON(intel_crtc->flip_work);
6295
6296                 intel_pre_disable_primary_noatomic(crtc);
6297
6298                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6299                 to_intel_plane_state(crtc->primary->state)->visible = false;
6300         }
6301
6302         dev_priv->display.crtc_disable(crtc);
6303
6304         DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6305                       crtc->base.id, crtc->name);
6306
6307         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6308         crtc->state->active = false;
6309         intel_crtc->active = false;
6310         crtc->enabled = false;
6311         crtc->state->connector_mask = 0;
6312         crtc->state->encoder_mask = 0;
6313
6314         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6315                 encoder->base.crtc = NULL;
6316
6317         intel_fbc_disable(intel_crtc);
6318         intel_update_watermarks(crtc);
6319         intel_disable_shared_dpll(intel_crtc);
6320
6321         domains = intel_crtc->enabled_power_domains;
6322         for_each_power_domain(domain, domains)
6323                 intel_display_power_put(dev_priv, domain);
6324         intel_crtc->enabled_power_domains = 0;
6325
6326         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6327         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6328 }
6329
6330 /*
6331  * turn all crtc's off, but do not adjust state
6332  * This has to be paired with a call to intel_modeset_setup_hw_state.
6333  */
6334 int intel_display_suspend(struct drm_device *dev)
6335 {
6336         struct drm_i915_private *dev_priv = to_i915(dev);
6337         struct drm_atomic_state *state;
6338         int ret;
6339
6340         state = drm_atomic_helper_suspend(dev);
6341         ret = PTR_ERR_OR_ZERO(state);
6342         if (ret)
6343                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6344         else
6345                 dev_priv->modeset_restore_state = state;
6346         return ret;
6347 }
6348
6349 void intel_encoder_destroy(struct drm_encoder *encoder)
6350 {
6351         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6352
6353         drm_encoder_cleanup(encoder);
6354         kfree(intel_encoder);
6355 }
6356
6357 /* Cross check the actual hw state with our own modeset state tracking (and it's
6358  * internal consistency). */
6359 static void intel_connector_verify_state(struct intel_connector *connector)
6360 {
6361         struct drm_crtc *crtc = connector->base.state->crtc;
6362
6363         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6364                       connector->base.base.id,
6365                       connector->base.name);
6366
6367         if (connector->get_hw_state(connector)) {
6368                 struct intel_encoder *encoder = connector->encoder;
6369                 struct drm_connector_state *conn_state = connector->base.state;
6370
6371                 I915_STATE_WARN(!crtc,
6372                          "connector enabled without attached crtc\n");
6373
6374                 if (!crtc)
6375                         return;
6376
6377                 I915_STATE_WARN(!crtc->state->active,
6378                       "connector is active, but attached crtc isn't\n");
6379
6380                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6381                         return;
6382
6383                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6384                         "atomic encoder doesn't match attached encoder\n");
6385
6386                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6387                         "attached encoder crtc differs from connector crtc\n");
6388         } else {
6389                 I915_STATE_WARN(crtc && crtc->state->active,
6390                         "attached crtc is active, but connector isn't\n");
6391                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6392                         "best encoder set without crtc!\n");
6393         }
6394 }
6395
6396 int intel_connector_init(struct intel_connector *connector)
6397 {
6398         drm_atomic_helper_connector_reset(&connector->base);
6399
6400         if (!connector->base.state)
6401                 return -ENOMEM;
6402
6403         return 0;
6404 }
6405
6406 struct intel_connector *intel_connector_alloc(void)
6407 {
6408         struct intel_connector *connector;
6409
6410         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6411         if (!connector)
6412                 return NULL;
6413
6414         if (intel_connector_init(connector) < 0) {
6415                 kfree(connector);
6416                 return NULL;
6417         }
6418
6419         return connector;
6420 }
6421
6422 /* Simple connector->get_hw_state implementation for encoders that support only
6423  * one connector and no cloning and hence the encoder state determines the state
6424  * of the connector. */
6425 bool intel_connector_get_hw_state(struct intel_connector *connector)
6426 {
6427         enum pipe pipe = 0;
6428         struct intel_encoder *encoder = connector->encoder;
6429
6430         return encoder->get_hw_state(encoder, &pipe);
6431 }
6432
6433 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6434 {
6435         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6436                 return crtc_state->fdi_lanes;
6437
6438         return 0;
6439 }
6440
6441 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6442                                      struct intel_crtc_state *pipe_config)
6443 {
6444         struct drm_atomic_state *state = pipe_config->base.state;
6445         struct intel_crtc *other_crtc;
6446         struct intel_crtc_state *other_crtc_state;
6447
6448         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6449                       pipe_name(pipe), pipe_config->fdi_lanes);
6450         if (pipe_config->fdi_lanes > 4) {
6451                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6452                               pipe_name(pipe), pipe_config->fdi_lanes);
6453                 return -EINVAL;
6454         }
6455
6456         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6457                 if (pipe_config->fdi_lanes > 2) {
6458                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6459                                       pipe_config->fdi_lanes);
6460                         return -EINVAL;
6461                 } else {
6462                         return 0;
6463                 }
6464         }
6465
6466         if (INTEL_INFO(dev)->num_pipes == 2)
6467                 return 0;
6468
6469         /* Ivybridge 3 pipe is really complicated */
6470         switch (pipe) {
6471         case PIPE_A:
6472                 return 0;
6473         case PIPE_B:
6474                 if (pipe_config->fdi_lanes <= 2)
6475                         return 0;
6476
6477                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6478                 other_crtc_state =
6479                         intel_atomic_get_crtc_state(state, other_crtc);
6480                 if (IS_ERR(other_crtc_state))
6481                         return PTR_ERR(other_crtc_state);
6482
6483                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6484                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6485                                       pipe_name(pipe), pipe_config->fdi_lanes);
6486                         return -EINVAL;
6487                 }
6488                 return 0;
6489         case PIPE_C:
6490                 if (pipe_config->fdi_lanes > 2) {
6491                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6492                                       pipe_name(pipe), pipe_config->fdi_lanes);
6493                         return -EINVAL;
6494                 }
6495
6496                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6497                 other_crtc_state =
6498                         intel_atomic_get_crtc_state(state, other_crtc);
6499                 if (IS_ERR(other_crtc_state))
6500                         return PTR_ERR(other_crtc_state);
6501
6502                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6503                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6504                         return -EINVAL;
6505                 }
6506                 return 0;
6507         default:
6508                 BUG();
6509         }
6510 }
6511
6512 #define RETRY 1
6513 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6514                                        struct intel_crtc_state *pipe_config)
6515 {
6516         struct drm_device *dev = intel_crtc->base.dev;
6517         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6518         int lane, link_bw, fdi_dotclock, ret;
6519         bool needs_recompute = false;
6520
6521 retry:
6522         /* FDI is a binary signal running at ~2.7GHz, encoding
6523          * each output octet as 10 bits. The actual frequency
6524          * is stored as a divider into a 100MHz clock, and the
6525          * mode pixel clock is stored in units of 1KHz.
6526          * Hence the bw of each lane in terms of the mode signal
6527          * is:
6528          */
6529         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6530
6531         fdi_dotclock = adjusted_mode->crtc_clock;
6532
6533         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6534                                            pipe_config->pipe_bpp);
6535
6536         pipe_config->fdi_lanes = lane;
6537
6538         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6539                                link_bw, &pipe_config->fdi_m_n);
6540
6541         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6542         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6543                 pipe_config->pipe_bpp -= 2*3;
6544                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6545                               pipe_config->pipe_bpp);
6546                 needs_recompute = true;
6547                 pipe_config->bw_constrained = true;
6548
6549                 goto retry;
6550         }
6551
6552         if (needs_recompute)
6553                 return RETRY;
6554
6555         return ret;
6556 }
6557
6558 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6559                                      struct intel_crtc_state *pipe_config)
6560 {
6561         if (pipe_config->pipe_bpp > 24)
6562                 return false;
6563
6564         /* HSW can handle pixel rate up to cdclk? */
6565         if (IS_HASWELL(dev_priv))
6566                 return true;
6567
6568         /*
6569          * We compare against max which means we must take
6570          * the increased cdclk requirement into account when
6571          * calculating the new cdclk.
6572          *
6573          * Should measure whether using a lower cdclk w/o IPS
6574          */
6575         return ilk_pipe_pixel_rate(pipe_config) <=
6576                 dev_priv->max_cdclk_freq * 95 / 100;
6577 }
6578
6579 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6580                                    struct intel_crtc_state *pipe_config)
6581 {
6582         struct drm_device *dev = crtc->base.dev;
6583         struct drm_i915_private *dev_priv = to_i915(dev);
6584
6585         pipe_config->ips_enabled = i915.enable_ips &&
6586                 hsw_crtc_supports_ips(crtc) &&
6587                 pipe_config_supports_ips(dev_priv, pipe_config);
6588 }
6589
6590 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6591 {
6592         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6593
6594         /* GDG double wide on either pipe, otherwise pipe A only */
6595         return INTEL_INFO(dev_priv)->gen < 4 &&
6596                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6597 }
6598
6599 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6600                                      struct intel_crtc_state *pipe_config)
6601 {
6602         struct drm_device *dev = crtc->base.dev;
6603         struct drm_i915_private *dev_priv = to_i915(dev);
6604         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6605         int clock_limit = dev_priv->max_dotclk_freq;
6606
6607         if (INTEL_INFO(dev)->gen < 4) {
6608                 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6609
6610                 /*
6611                  * Enable double wide mode when the dot clock
6612                  * is > 90% of the (display) core speed.
6613                  */
6614                 if (intel_crtc_supports_double_wide(crtc) &&
6615                     adjusted_mode->crtc_clock > clock_limit) {
6616                         clock_limit = dev_priv->max_dotclk_freq;
6617                         pipe_config->double_wide = true;
6618                 }
6619         }
6620
6621         if (adjusted_mode->crtc_clock > clock_limit) {
6622                 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6623                               adjusted_mode->crtc_clock, clock_limit,
6624                               yesno(pipe_config->double_wide));
6625                 return -EINVAL;
6626         }
6627
6628         /*
6629          * Pipe horizontal size must be even in:
6630          * - DVO ganged mode
6631          * - LVDS dual channel mode
6632          * - Double wide pipe
6633          */
6634         if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6635              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6636                 pipe_config->pipe_src_w &= ~1;
6637
6638         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6639          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6640          */
6641         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6642                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6643                 return -EINVAL;
6644
6645         if (HAS_IPS(dev))
6646                 hsw_compute_ips_config(crtc, pipe_config);
6647
6648         if (pipe_config->has_pch_encoder)
6649                 return ironlake_fdi_compute_config(crtc, pipe_config);
6650
6651         return 0;
6652 }
6653
6654 static int skylake_get_display_clock_speed(struct drm_device *dev)
6655 {
6656         struct drm_i915_private *dev_priv = to_i915(dev);
6657         uint32_t cdctl;
6658
6659         skl_dpll0_update(dev_priv);
6660
6661         if (dev_priv->cdclk_pll.vco == 0)
6662                 return dev_priv->cdclk_pll.ref;
6663
6664         cdctl = I915_READ(CDCLK_CTL);
6665
6666         if (dev_priv->cdclk_pll.vco == 8640000) {
6667                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6668                 case CDCLK_FREQ_450_432:
6669                         return 432000;
6670                 case CDCLK_FREQ_337_308:
6671                         return 308571;
6672                 case CDCLK_FREQ_540:
6673                         return 540000;
6674                 case CDCLK_FREQ_675_617:
6675                         return 617143;
6676                 default:
6677                         MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
6678                 }
6679         } else {
6680                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6681                 case CDCLK_FREQ_450_432:
6682                         return 450000;
6683                 case CDCLK_FREQ_337_308:
6684                         return 337500;
6685                 case CDCLK_FREQ_540:
6686                         return 540000;
6687                 case CDCLK_FREQ_675_617:
6688                         return 675000;
6689                 default:
6690                         MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
6691                 }
6692         }
6693
6694         return dev_priv->cdclk_pll.ref;
6695 }
6696
6697 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
6698 {
6699         u32 val;
6700
6701         dev_priv->cdclk_pll.ref = 19200;
6702         dev_priv->cdclk_pll.vco = 0;
6703
6704         val = I915_READ(BXT_DE_PLL_ENABLE);
6705         if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
6706                 return;
6707
6708         if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
6709                 return;
6710
6711         val = I915_READ(BXT_DE_PLL_CTL);
6712         dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
6713                 dev_priv->cdclk_pll.ref;
6714 }
6715
6716 static int broxton_get_display_clock_speed(struct drm_device *dev)
6717 {
6718         struct drm_i915_private *dev_priv = to_i915(dev);
6719         u32 divider;
6720         int div, vco;
6721
6722         bxt_de_pll_update(dev_priv);
6723
6724         vco = dev_priv->cdclk_pll.vco;
6725         if (vco == 0)
6726                 return dev_priv->cdclk_pll.ref;
6727
6728         divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
6729
6730         switch (divider) {
6731         case BXT_CDCLK_CD2X_DIV_SEL_1:
6732                 div = 2;
6733                 break;
6734         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6735                 div = 3;
6736                 break;
6737         case BXT_CDCLK_CD2X_DIV_SEL_2:
6738                 div = 4;
6739                 break;
6740         case BXT_CDCLK_CD2X_DIV_SEL_4:
6741                 div = 8;
6742                 break;
6743         default:
6744                 MISSING_CASE(divider);
6745                 return dev_priv->cdclk_pll.ref;
6746         }
6747
6748         return DIV_ROUND_CLOSEST(vco, div);
6749 }
6750
6751 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6752 {
6753         struct drm_i915_private *dev_priv = to_i915(dev);
6754         uint32_t lcpll = I915_READ(LCPLL_CTL);
6755         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6756
6757         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6758                 return 800000;
6759         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6760                 return 450000;
6761         else if (freq == LCPLL_CLK_FREQ_450)
6762                 return 450000;
6763         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6764                 return 540000;
6765         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6766                 return 337500;
6767         else
6768                 return 675000;
6769 }
6770
6771 static int haswell_get_display_clock_speed(struct drm_device *dev)
6772 {
6773         struct drm_i915_private *dev_priv = to_i915(dev);
6774         uint32_t lcpll = I915_READ(LCPLL_CTL);
6775         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6776
6777         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6778                 return 800000;
6779         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6780                 return 450000;
6781         else if (freq == LCPLL_CLK_FREQ_450)
6782                 return 450000;
6783         else if (IS_HSW_ULT(dev))
6784                 return 337500;
6785         else
6786                 return 540000;
6787 }
6788
6789 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6790 {
6791         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6792                                       CCK_DISPLAY_CLOCK_CONTROL);
6793 }
6794
6795 static int ilk_get_display_clock_speed(struct drm_device *dev)
6796 {
6797         return 450000;
6798 }
6799
6800 static int i945_get_display_clock_speed(struct drm_device *dev)
6801 {
6802         return 400000;
6803 }
6804
6805 static int i915_get_display_clock_speed(struct drm_device *dev)
6806 {
6807         return 333333;
6808 }
6809
6810 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6811 {
6812         return 200000;
6813 }
6814
6815 static int pnv_get_display_clock_speed(struct drm_device *dev)
6816 {
6817         u16 gcfgc = 0;
6818
6819         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6820
6821         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6822         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6823                 return 266667;
6824         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6825                 return 333333;
6826         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6827                 return 444444;
6828         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6829                 return 200000;
6830         default:
6831                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6832         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6833                 return 133333;
6834         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6835                 return 166667;
6836         }
6837 }
6838
6839 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6840 {
6841         u16 gcfgc = 0;
6842
6843         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6844
6845         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6846                 return 133333;
6847         else {
6848                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6849                 case GC_DISPLAY_CLOCK_333_MHZ:
6850                         return 333333;
6851                 default:
6852                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6853                         return 190000;
6854                 }
6855         }
6856 }
6857
6858 static int i865_get_display_clock_speed(struct drm_device *dev)
6859 {
6860         return 266667;
6861 }
6862
6863 static int i85x_get_display_clock_speed(struct drm_device *dev)
6864 {
6865         u16 hpllcc = 0;
6866
6867         /*
6868          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6869          * encoding is different :(
6870          * FIXME is this the right way to detect 852GM/852GMV?
6871          */
6872         if (dev->pdev->revision == 0x1)
6873                 return 133333;
6874
6875         pci_bus_read_config_word(dev->pdev->bus,
6876                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6877
6878         /* Assume that the hardware is in the high speed state.  This
6879          * should be the default.
6880          */
6881         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6882         case GC_CLOCK_133_200:
6883         case GC_CLOCK_133_200_2:
6884         case GC_CLOCK_100_200:
6885                 return 200000;
6886         case GC_CLOCK_166_250:
6887                 return 250000;
6888         case GC_CLOCK_100_133:
6889                 return 133333;
6890         case GC_CLOCK_133_266:
6891         case GC_CLOCK_133_266_2:
6892         case GC_CLOCK_166_266:
6893                 return 266667;
6894         }
6895
6896         /* Shouldn't happen */
6897         return 0;
6898 }
6899
6900 static int i830_get_display_clock_speed(struct drm_device *dev)
6901 {
6902         return 133333;
6903 }
6904
6905 static unsigned int intel_hpll_vco(struct drm_device *dev)
6906 {
6907         struct drm_i915_private *dev_priv = to_i915(dev);
6908         static const unsigned int blb_vco[8] = {
6909                 [0] = 3200000,
6910                 [1] = 4000000,
6911                 [2] = 5333333,
6912                 [3] = 4800000,
6913                 [4] = 6400000,
6914         };
6915         static const unsigned int pnv_vco[8] = {
6916                 [0] = 3200000,
6917                 [1] = 4000000,
6918                 [2] = 5333333,
6919                 [3] = 4800000,
6920                 [4] = 2666667,
6921         };
6922         static const unsigned int cl_vco[8] = {
6923                 [0] = 3200000,
6924                 [1] = 4000000,
6925                 [2] = 5333333,
6926                 [3] = 6400000,
6927                 [4] = 3333333,
6928                 [5] = 3566667,
6929                 [6] = 4266667,
6930         };
6931         static const unsigned int elk_vco[8] = {
6932                 [0] = 3200000,
6933                 [1] = 4000000,
6934                 [2] = 5333333,
6935                 [3] = 4800000,
6936         };
6937         static const unsigned int ctg_vco[8] = {
6938                 [0] = 3200000,
6939                 [1] = 4000000,
6940                 [2] = 5333333,
6941                 [3] = 6400000,
6942                 [4] = 2666667,
6943                 [5] = 4266667,
6944         };
6945         const unsigned int *vco_table;
6946         unsigned int vco;
6947         uint8_t tmp = 0;
6948
6949         /* FIXME other chipsets? */
6950         if (IS_GM45(dev))
6951                 vco_table = ctg_vco;
6952         else if (IS_G4X(dev))
6953                 vco_table = elk_vco;
6954         else if (IS_CRESTLINE(dev))
6955                 vco_table = cl_vco;
6956         else if (IS_PINEVIEW(dev))
6957                 vco_table = pnv_vco;
6958         else if (IS_G33(dev))
6959                 vco_table = blb_vco;
6960         else
6961                 return 0;
6962
6963         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6964
6965         vco = vco_table[tmp & 0x7];
6966         if (vco == 0)
6967                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6968         else
6969                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6970
6971         return vco;
6972 }
6973
6974 static int gm45_get_display_clock_speed(struct drm_device *dev)
6975 {
6976         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6977         uint16_t tmp = 0;
6978
6979         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6980
6981         cdclk_sel = (tmp >> 12) & 0x1;
6982
6983         switch (vco) {
6984         case 2666667:
6985         case 4000000:
6986         case 5333333:
6987                 return cdclk_sel ? 333333 : 222222;
6988         case 3200000:
6989                 return cdclk_sel ? 320000 : 228571;
6990         default:
6991                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6992                 return 222222;
6993         }
6994 }
6995
6996 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6997 {
6998         static const uint8_t div_3200[] = { 16, 10,  8 };
6999         static const uint8_t div_4000[] = { 20, 12, 10 };
7000         static const uint8_t div_5333[] = { 24, 16, 14 };
7001         const uint8_t *div_table;
7002         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7003         uint16_t tmp = 0;
7004
7005         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7006
7007         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7008
7009         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7010                 goto fail;
7011
7012         switch (vco) {
7013         case 3200000:
7014                 div_table = div_3200;
7015                 break;
7016         case 4000000:
7017                 div_table = div_4000;
7018                 break;
7019         case 5333333:
7020                 div_table = div_5333;
7021                 break;
7022         default:
7023                 goto fail;
7024         }
7025
7026         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7027
7028 fail:
7029         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7030         return 200000;
7031 }
7032
7033 static int g33_get_display_clock_speed(struct drm_device *dev)
7034 {
7035         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7036         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7037         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7038         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7039         const uint8_t *div_table;
7040         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7041         uint16_t tmp = 0;
7042
7043         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7044
7045         cdclk_sel = (tmp >> 4) & 0x7;
7046
7047         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7048                 goto fail;
7049
7050         switch (vco) {
7051         case 3200000:
7052                 div_table = div_3200;
7053                 break;
7054         case 4000000:
7055                 div_table = div_4000;
7056                 break;
7057         case 4800000:
7058                 div_table = div_4800;
7059                 break;
7060         case 5333333:
7061                 div_table = div_5333;
7062                 break;
7063         default:
7064                 goto fail;
7065         }
7066
7067         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7068
7069 fail:
7070         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7071         return 190476;
7072 }
7073
7074 static void
7075 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7076 {
7077         while (*num > DATA_LINK_M_N_MASK ||
7078                *den > DATA_LINK_M_N_MASK) {
7079                 *num >>= 1;
7080                 *den >>= 1;
7081         }
7082 }
7083
7084 static void compute_m_n(unsigned int m, unsigned int n,
7085                         uint32_t *ret_m, uint32_t *ret_n)
7086 {
7087         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7088         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7089         intel_reduce_m_n_ratio(ret_m, ret_n);
7090 }
7091
7092 void
7093 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7094                        int pixel_clock, int link_clock,
7095                        struct intel_link_m_n *m_n)
7096 {
7097         m_n->tu = 64;
7098
7099         compute_m_n(bits_per_pixel * pixel_clock,
7100                     link_clock * nlanes * 8,
7101                     &m_n->gmch_m, &m_n->gmch_n);
7102
7103         compute_m_n(pixel_clock, link_clock,
7104                     &m_n->link_m, &m_n->link_n);
7105 }
7106
7107 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7108 {
7109         if (i915.panel_use_ssc >= 0)
7110                 return i915.panel_use_ssc != 0;
7111         return dev_priv->vbt.lvds_use_ssc
7112                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7113 }
7114
7115 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7116 {
7117         return (1 << dpll->n) << 16 | dpll->m2;
7118 }
7119
7120 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7121 {
7122         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7123 }
7124
7125 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7126                                      struct intel_crtc_state *crtc_state,
7127                                      struct dpll *reduced_clock)
7128 {
7129         struct drm_device *dev = crtc->base.dev;
7130         u32 fp, fp2 = 0;
7131
7132         if (IS_PINEVIEW(dev)) {
7133                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7134                 if (reduced_clock)
7135                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7136         } else {
7137                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7138                 if (reduced_clock)
7139                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7140         }
7141
7142         crtc_state->dpll_hw_state.fp0 = fp;
7143
7144         crtc->lowfreq_avail = false;
7145         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7146             reduced_clock) {
7147                 crtc_state->dpll_hw_state.fp1 = fp2;
7148                 crtc->lowfreq_avail = true;
7149         } else {
7150                 crtc_state->dpll_hw_state.fp1 = fp;
7151         }
7152 }
7153
7154 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7155                 pipe)
7156 {
7157         u32 reg_val;
7158
7159         /*
7160          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7161          * and set it to a reasonable value instead.
7162          */
7163         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7164         reg_val &= 0xffffff00;
7165         reg_val |= 0x00000030;
7166         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7167
7168         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7169         reg_val &= 0x8cffffff;
7170         reg_val = 0x8c000000;
7171         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7172
7173         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7174         reg_val &= 0xffffff00;
7175         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7176
7177         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7178         reg_val &= 0x00ffffff;
7179         reg_val |= 0xb0000000;
7180         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7181 }
7182
7183 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7184                                          struct intel_link_m_n *m_n)
7185 {
7186         struct drm_device *dev = crtc->base.dev;
7187         struct drm_i915_private *dev_priv = to_i915(dev);
7188         int pipe = crtc->pipe;
7189
7190         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7191         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7192         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7193         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7194 }
7195
7196 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7197                                          struct intel_link_m_n *m_n,
7198                                          struct intel_link_m_n *m2_n2)
7199 {
7200         struct drm_device *dev = crtc->base.dev;
7201         struct drm_i915_private *dev_priv = to_i915(dev);
7202         int pipe = crtc->pipe;
7203         enum transcoder transcoder = crtc->config->cpu_transcoder;
7204
7205         if (INTEL_INFO(dev)->gen >= 5) {
7206                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7207                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7208                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7209                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7210                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7211                  * for gen < 8) and if DRRS is supported (to make sure the
7212                  * registers are not unnecessarily accessed).
7213                  */
7214                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7215                         crtc->config->has_drrs) {
7216                         I915_WRITE(PIPE_DATA_M2(transcoder),
7217                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7218                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7219                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7220                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7221                 }
7222         } else {
7223                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7224                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7225                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7226                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7227         }
7228 }
7229
7230 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7231 {
7232         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7233
7234         if (m_n == M1_N1) {
7235                 dp_m_n = &crtc->config->dp_m_n;
7236                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7237         } else if (m_n == M2_N2) {
7238
7239                 /*
7240                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7241                  * needs to be programmed into M1_N1.
7242                  */
7243                 dp_m_n = &crtc->config->dp_m2_n2;
7244         } else {
7245                 DRM_ERROR("Unsupported divider value\n");
7246                 return;
7247         }
7248
7249         if (crtc->config->has_pch_encoder)
7250                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7251         else
7252                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7253 }
7254
7255 static void vlv_compute_dpll(struct intel_crtc *crtc,
7256                              struct intel_crtc_state *pipe_config)
7257 {
7258         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7259                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7260         if (crtc->pipe != PIPE_A)
7261                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7262
7263         /* DPLL not used with DSI, but still need the rest set up */
7264         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7265                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7266                         DPLL_EXT_BUFFER_ENABLE_VLV;
7267
7268         pipe_config->dpll_hw_state.dpll_md =
7269                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7270 }
7271
7272 static void chv_compute_dpll(struct intel_crtc *crtc,
7273                              struct intel_crtc_state *pipe_config)
7274 {
7275         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7276                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7277         if (crtc->pipe != PIPE_A)
7278                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7279
7280         /* DPLL not used with DSI, but still need the rest set up */
7281         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7282                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7283
7284         pipe_config->dpll_hw_state.dpll_md =
7285                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7286 }
7287
7288 static void vlv_prepare_pll(struct intel_crtc *crtc,
7289                             const struct intel_crtc_state *pipe_config)
7290 {
7291         struct drm_device *dev = crtc->base.dev;
7292         struct drm_i915_private *dev_priv = to_i915(dev);
7293         enum pipe pipe = crtc->pipe;
7294         u32 mdiv;
7295         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7296         u32 coreclk, reg_val;
7297
7298         /* Enable Refclk */
7299         I915_WRITE(DPLL(pipe),
7300                    pipe_config->dpll_hw_state.dpll &
7301                    ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7302
7303         /* No need to actually set up the DPLL with DSI */
7304         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7305                 return;
7306
7307         mutex_lock(&dev_priv->sb_lock);
7308
7309         bestn = pipe_config->dpll.n;
7310         bestm1 = pipe_config->dpll.m1;
7311         bestm2 = pipe_config->dpll.m2;
7312         bestp1 = pipe_config->dpll.p1;
7313         bestp2 = pipe_config->dpll.p2;
7314
7315         /* See eDP HDMI DPIO driver vbios notes doc */
7316
7317         /* PLL B needs special handling */
7318         if (pipe == PIPE_B)
7319                 vlv_pllb_recal_opamp(dev_priv, pipe);
7320
7321         /* Set up Tx target for periodic Rcomp update */
7322         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7323
7324         /* Disable target IRef on PLL */
7325         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7326         reg_val &= 0x00ffffff;
7327         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7328
7329         /* Disable fast lock */
7330         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7331
7332         /* Set idtafcrecal before PLL is enabled */
7333         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7334         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7335         mdiv |= ((bestn << DPIO_N_SHIFT));
7336         mdiv |= (1 << DPIO_K_SHIFT);
7337
7338         /*
7339          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7340          * but we don't support that).
7341          * Note: don't use the DAC post divider as it seems unstable.
7342          */
7343         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7344         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7345
7346         mdiv |= DPIO_ENABLE_CALIBRATION;
7347         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7348
7349         /* Set HBR and RBR LPF coefficients */
7350         if (pipe_config->port_clock == 162000 ||
7351             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7352             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
7353                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7354                                  0x009f0003);
7355         else
7356                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7357                                  0x00d0000f);
7358
7359         if (intel_crtc_has_dp_encoder(pipe_config)) {
7360                 /* Use SSC source */
7361                 if (pipe == PIPE_A)
7362                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7363                                          0x0df40000);
7364                 else
7365                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7366                                          0x0df70000);
7367         } else { /* HDMI or VGA */
7368                 /* Use bend source */
7369                 if (pipe == PIPE_A)
7370                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7371                                          0x0df70000);
7372                 else
7373                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7374                                          0x0df40000);
7375         }
7376
7377         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7378         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7379         if (intel_crtc_has_dp_encoder(crtc->config))
7380                 coreclk |= 0x01000000;
7381         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7382
7383         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7384         mutex_unlock(&dev_priv->sb_lock);
7385 }
7386
7387 static void chv_prepare_pll(struct intel_crtc *crtc,
7388                             const struct intel_crtc_state *pipe_config)
7389 {
7390         struct drm_device *dev = crtc->base.dev;
7391         struct drm_i915_private *dev_priv = to_i915(dev);
7392         enum pipe pipe = crtc->pipe;
7393         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7394         u32 loopfilter, tribuf_calcntr;
7395         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7396         u32 dpio_val;
7397         int vco;
7398
7399         /* Enable Refclk and SSC */
7400         I915_WRITE(DPLL(pipe),
7401                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7402
7403         /* No need to actually set up the DPLL with DSI */
7404         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7405                 return;
7406
7407         bestn = pipe_config->dpll.n;
7408         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7409         bestm1 = pipe_config->dpll.m1;
7410         bestm2 = pipe_config->dpll.m2 >> 22;
7411         bestp1 = pipe_config->dpll.p1;
7412         bestp2 = pipe_config->dpll.p2;
7413         vco = pipe_config->dpll.vco;
7414         dpio_val = 0;
7415         loopfilter = 0;
7416
7417         mutex_lock(&dev_priv->sb_lock);
7418
7419         /* p1 and p2 divider */
7420         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7421                         5 << DPIO_CHV_S1_DIV_SHIFT |
7422                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7423                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7424                         1 << DPIO_CHV_K_DIV_SHIFT);
7425
7426         /* Feedback post-divider - m2 */
7427         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7428
7429         /* Feedback refclk divider - n and m1 */
7430         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7431                         DPIO_CHV_M1_DIV_BY_2 |
7432                         1 << DPIO_CHV_N_DIV_SHIFT);
7433
7434         /* M2 fraction division */
7435         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7436
7437         /* M2 fraction division enable */
7438         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7439         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7440         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7441         if (bestm2_frac)
7442                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7443         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7444
7445         /* Program digital lock detect threshold */
7446         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7447         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7448                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7449         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7450         if (!bestm2_frac)
7451                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7452         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7453
7454         /* Loop filter */
7455         if (vco == 5400000) {
7456                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7457                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7458                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7459                 tribuf_calcntr = 0x9;
7460         } else if (vco <= 6200000) {
7461                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7462                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7463                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7464                 tribuf_calcntr = 0x9;
7465         } else if (vco <= 6480000) {
7466                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7467                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7468                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7469                 tribuf_calcntr = 0x8;
7470         } else {
7471                 /* Not supported. Apply the same limits as in the max case */
7472                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7473                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7474                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7475                 tribuf_calcntr = 0;
7476         }
7477         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7478
7479         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7480         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7481         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7482         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7483
7484         /* AFC Recal */
7485         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7486                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7487                         DPIO_AFC_RECAL);
7488
7489         mutex_unlock(&dev_priv->sb_lock);
7490 }
7491
7492 /**
7493  * vlv_force_pll_on - forcibly enable just the PLL
7494  * @dev_priv: i915 private structure
7495  * @pipe: pipe PLL to enable
7496  * @dpll: PLL configuration
7497  *
7498  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7499  * in cases where we need the PLL enabled even when @pipe is not going to
7500  * be enabled.
7501  */
7502 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7503                      const struct dpll *dpll)
7504 {
7505         struct intel_crtc *crtc =
7506                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7507         struct intel_crtc_state *pipe_config;
7508
7509         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7510         if (!pipe_config)
7511                 return -ENOMEM;
7512
7513         pipe_config->base.crtc = &crtc->base;
7514         pipe_config->pixel_multiplier = 1;
7515         pipe_config->dpll = *dpll;
7516
7517         if (IS_CHERRYVIEW(dev)) {
7518                 chv_compute_dpll(crtc, pipe_config);
7519                 chv_prepare_pll(crtc, pipe_config);
7520                 chv_enable_pll(crtc, pipe_config);
7521         } else {
7522                 vlv_compute_dpll(crtc, pipe_config);
7523                 vlv_prepare_pll(crtc, pipe_config);
7524                 vlv_enable_pll(crtc, pipe_config);
7525         }
7526
7527         kfree(pipe_config);
7528
7529         return 0;
7530 }
7531
7532 /**
7533  * vlv_force_pll_off - forcibly disable just the PLL
7534  * @dev_priv: i915 private structure
7535  * @pipe: pipe PLL to disable
7536  *
7537  * Disable the PLL for @pipe. To be used in cases where we need
7538  * the PLL enabled even when @pipe is not going to be enabled.
7539  */
7540 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7541 {
7542         if (IS_CHERRYVIEW(dev))
7543                 chv_disable_pll(to_i915(dev), pipe);
7544         else
7545                 vlv_disable_pll(to_i915(dev), pipe);
7546 }
7547
7548 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7549                               struct intel_crtc_state *crtc_state,
7550                               struct dpll *reduced_clock)
7551 {
7552         struct drm_device *dev = crtc->base.dev;
7553         struct drm_i915_private *dev_priv = to_i915(dev);
7554         u32 dpll;
7555         struct dpll *clock = &crtc_state->dpll;
7556
7557         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7558
7559         dpll = DPLL_VGA_MODE_DIS;
7560
7561         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
7562                 dpll |= DPLLB_MODE_LVDS;
7563         else
7564                 dpll |= DPLLB_MODE_DAC_SERIAL;
7565
7566         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7567                 dpll |= (crtc_state->pixel_multiplier - 1)
7568                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7569         }
7570
7571         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7572             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
7573                 dpll |= DPLL_SDVO_HIGH_SPEED;
7574
7575         if (intel_crtc_has_dp_encoder(crtc_state))
7576                 dpll |= DPLL_SDVO_HIGH_SPEED;
7577
7578         /* compute bitmask from p1 value */
7579         if (IS_PINEVIEW(dev))
7580                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7581         else {
7582                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7583                 if (IS_G4X(dev) && reduced_clock)
7584                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7585         }
7586         switch (clock->p2) {
7587         case 5:
7588                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7589                 break;
7590         case 7:
7591                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7592                 break;
7593         case 10:
7594                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7595                 break;
7596         case 14:
7597                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7598                 break;
7599         }
7600         if (INTEL_INFO(dev)->gen >= 4)
7601                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7602
7603         if (crtc_state->sdvo_tv_clock)
7604                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7605         else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7606                  intel_panel_use_ssc(dev_priv))
7607                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7608         else
7609                 dpll |= PLL_REF_INPUT_DREFCLK;
7610
7611         dpll |= DPLL_VCO_ENABLE;
7612         crtc_state->dpll_hw_state.dpll = dpll;
7613
7614         if (INTEL_INFO(dev)->gen >= 4) {
7615                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7616                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7617                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7618         }
7619 }
7620
7621 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7622                               struct intel_crtc_state *crtc_state,
7623                               struct dpll *reduced_clock)
7624 {
7625         struct drm_device *dev = crtc->base.dev;
7626         struct drm_i915_private *dev_priv = to_i915(dev);
7627         u32 dpll;
7628         struct dpll *clock = &crtc_state->dpll;
7629
7630         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7631
7632         dpll = DPLL_VGA_MODE_DIS;
7633
7634         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7635                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7636         } else {
7637                 if (clock->p1 == 2)
7638                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7639                 else
7640                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7641                 if (clock->p2 == 4)
7642                         dpll |= PLL_P2_DIVIDE_BY_4;
7643         }
7644
7645         if (!IS_I830(dev) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
7646                 dpll |= DPLL_DVO_2X_MODE;
7647
7648         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7649             intel_panel_use_ssc(dev_priv))
7650                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7651         else
7652                 dpll |= PLL_REF_INPUT_DREFCLK;
7653
7654         dpll |= DPLL_VCO_ENABLE;
7655         crtc_state->dpll_hw_state.dpll = dpll;
7656 }
7657
7658 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7659 {
7660         struct drm_device *dev = intel_crtc->base.dev;
7661         struct drm_i915_private *dev_priv = to_i915(dev);
7662         enum pipe pipe = intel_crtc->pipe;
7663         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7664         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7665         uint32_t crtc_vtotal, crtc_vblank_end;
7666         int vsyncshift = 0;
7667
7668         /* We need to be careful not to changed the adjusted mode, for otherwise
7669          * the hw state checker will get angry at the mismatch. */
7670         crtc_vtotal = adjusted_mode->crtc_vtotal;
7671         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7672
7673         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7674                 /* the chip adds 2 halflines automatically */
7675                 crtc_vtotal -= 1;
7676                 crtc_vblank_end -= 1;
7677
7678                 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7679                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7680                 else
7681                         vsyncshift = adjusted_mode->crtc_hsync_start -
7682                                 adjusted_mode->crtc_htotal / 2;
7683                 if (vsyncshift < 0)
7684                         vsyncshift += adjusted_mode->crtc_htotal;
7685         }
7686
7687         if (INTEL_INFO(dev)->gen > 3)
7688                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7689
7690         I915_WRITE(HTOTAL(cpu_transcoder),
7691                    (adjusted_mode->crtc_hdisplay - 1) |
7692                    ((adjusted_mode->crtc_htotal - 1) << 16));
7693         I915_WRITE(HBLANK(cpu_transcoder),
7694                    (adjusted_mode->crtc_hblank_start - 1) |
7695                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7696         I915_WRITE(HSYNC(cpu_transcoder),
7697                    (adjusted_mode->crtc_hsync_start - 1) |
7698                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7699
7700         I915_WRITE(VTOTAL(cpu_transcoder),
7701                    (adjusted_mode->crtc_vdisplay - 1) |
7702                    ((crtc_vtotal - 1) << 16));
7703         I915_WRITE(VBLANK(cpu_transcoder),
7704                    (adjusted_mode->crtc_vblank_start - 1) |
7705                    ((crtc_vblank_end - 1) << 16));
7706         I915_WRITE(VSYNC(cpu_transcoder),
7707                    (adjusted_mode->crtc_vsync_start - 1) |
7708                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7709
7710         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7711          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7712          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7713          * bits. */
7714         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7715             (pipe == PIPE_B || pipe == PIPE_C))
7716                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7717
7718 }
7719
7720 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7721 {
7722         struct drm_device *dev = intel_crtc->base.dev;
7723         struct drm_i915_private *dev_priv = to_i915(dev);
7724         enum pipe pipe = intel_crtc->pipe;
7725
7726         /* pipesrc controls the size that is scaled from, which should
7727          * always be the user's requested size.
7728          */
7729         I915_WRITE(PIPESRC(pipe),
7730                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7731                    (intel_crtc->config->pipe_src_h - 1));
7732 }
7733
7734 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7735                                    struct intel_crtc_state *pipe_config)
7736 {
7737         struct drm_device *dev = crtc->base.dev;
7738         struct drm_i915_private *dev_priv = to_i915(dev);
7739         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7740         uint32_t tmp;
7741
7742         tmp = I915_READ(HTOTAL(cpu_transcoder));
7743         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7744         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7745         tmp = I915_READ(HBLANK(cpu_transcoder));
7746         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7747         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7748         tmp = I915_READ(HSYNC(cpu_transcoder));
7749         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7750         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7751
7752         tmp = I915_READ(VTOTAL(cpu_transcoder));
7753         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7754         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7755         tmp = I915_READ(VBLANK(cpu_transcoder));
7756         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7757         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7758         tmp = I915_READ(VSYNC(cpu_transcoder));
7759         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7760         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7761
7762         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7763                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7764                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7765                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7766         }
7767 }
7768
7769 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7770                                     struct intel_crtc_state *pipe_config)
7771 {
7772         struct drm_device *dev = crtc->base.dev;
7773         struct drm_i915_private *dev_priv = to_i915(dev);
7774         u32 tmp;
7775
7776         tmp = I915_READ(PIPESRC(crtc->pipe));
7777         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7778         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7779
7780         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7781         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7782 }
7783
7784 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7785                                  struct intel_crtc_state *pipe_config)
7786 {
7787         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7788         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7789         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7790         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7791
7792         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7793         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7794         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7795         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7796
7797         mode->flags = pipe_config->base.adjusted_mode.flags;
7798         mode->type = DRM_MODE_TYPE_DRIVER;
7799
7800         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7801         mode->flags |= pipe_config->base.adjusted_mode.flags;
7802
7803         mode->hsync = drm_mode_hsync(mode);
7804         mode->vrefresh = drm_mode_vrefresh(mode);
7805         drm_mode_set_name(mode);
7806 }
7807
7808 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7809 {
7810         struct drm_device *dev = intel_crtc->base.dev;
7811         struct drm_i915_private *dev_priv = to_i915(dev);
7812         uint32_t pipeconf;
7813
7814         pipeconf = 0;
7815
7816         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7817             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7818                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7819
7820         if (intel_crtc->config->double_wide)
7821                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7822
7823         /* only g4x and later have fancy bpc/dither controls */
7824         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7825                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7826                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7827                         pipeconf |= PIPECONF_DITHER_EN |
7828                                     PIPECONF_DITHER_TYPE_SP;
7829
7830                 switch (intel_crtc->config->pipe_bpp) {
7831                 case 18:
7832                         pipeconf |= PIPECONF_6BPC;
7833                         break;
7834                 case 24:
7835                         pipeconf |= PIPECONF_8BPC;
7836                         break;
7837                 case 30:
7838                         pipeconf |= PIPECONF_10BPC;
7839                         break;
7840                 default:
7841                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7842                         BUG();
7843                 }
7844         }
7845
7846         if (HAS_PIPE_CXSR(dev)) {
7847                 if (intel_crtc->lowfreq_avail) {
7848                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7849                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7850                 } else {
7851                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7852                 }
7853         }
7854
7855         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7856                 if (INTEL_INFO(dev)->gen < 4 ||
7857                     intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7858                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7859                 else
7860                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7861         } else
7862                 pipeconf |= PIPECONF_PROGRESSIVE;
7863
7864         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7865              intel_crtc->config->limited_color_range)
7866                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7867
7868         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7869         POSTING_READ(PIPECONF(intel_crtc->pipe));
7870 }
7871
7872 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7873                                    struct intel_crtc_state *crtc_state)
7874 {
7875         struct drm_device *dev = crtc->base.dev;
7876         struct drm_i915_private *dev_priv = to_i915(dev);
7877         const struct intel_limit *limit;
7878         int refclk = 48000;
7879
7880         memset(&crtc_state->dpll_hw_state, 0,
7881                sizeof(crtc_state->dpll_hw_state));
7882
7883         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7884                 if (intel_panel_use_ssc(dev_priv)) {
7885                         refclk = dev_priv->vbt.lvds_ssc_freq;
7886                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7887                 }
7888
7889                 limit = &intel_limits_i8xx_lvds;
7890         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
7891                 limit = &intel_limits_i8xx_dvo;
7892         } else {
7893                 limit = &intel_limits_i8xx_dac;
7894         }
7895
7896         if (!crtc_state->clock_set &&
7897             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7898                                  refclk, NULL, &crtc_state->dpll)) {
7899                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7900                 return -EINVAL;
7901         }
7902
7903         i8xx_compute_dpll(crtc, crtc_state, NULL);
7904
7905         return 0;
7906 }
7907
7908 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7909                                   struct intel_crtc_state *crtc_state)
7910 {
7911         struct drm_device *dev = crtc->base.dev;
7912         struct drm_i915_private *dev_priv = to_i915(dev);
7913         const struct intel_limit *limit;
7914         int refclk = 96000;
7915
7916         memset(&crtc_state->dpll_hw_state, 0,
7917                sizeof(crtc_state->dpll_hw_state));
7918
7919         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7920                 if (intel_panel_use_ssc(dev_priv)) {
7921                         refclk = dev_priv->vbt.lvds_ssc_freq;
7922                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7923                 }
7924
7925                 if (intel_is_dual_link_lvds(dev))
7926                         limit = &intel_limits_g4x_dual_channel_lvds;
7927                 else
7928                         limit = &intel_limits_g4x_single_channel_lvds;
7929         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7930                    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7931                 limit = &intel_limits_g4x_hdmi;
7932         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7933                 limit = &intel_limits_g4x_sdvo;
7934         } else {
7935                 /* The option is for other outputs */
7936                 limit = &intel_limits_i9xx_sdvo;
7937         }
7938
7939         if (!crtc_state->clock_set &&
7940             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7941                                 refclk, NULL, &crtc_state->dpll)) {
7942                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7943                 return -EINVAL;
7944         }
7945
7946         i9xx_compute_dpll(crtc, crtc_state, NULL);
7947
7948         return 0;
7949 }
7950
7951 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7952                                   struct intel_crtc_state *crtc_state)
7953 {
7954         struct drm_device *dev = crtc->base.dev;
7955         struct drm_i915_private *dev_priv = to_i915(dev);
7956         const struct intel_limit *limit;
7957         int refclk = 96000;
7958
7959         memset(&crtc_state->dpll_hw_state, 0,
7960                sizeof(crtc_state->dpll_hw_state));
7961
7962         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7963                 if (intel_panel_use_ssc(dev_priv)) {
7964                         refclk = dev_priv->vbt.lvds_ssc_freq;
7965                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7966                 }
7967
7968                 limit = &intel_limits_pineview_lvds;
7969         } else {
7970                 limit = &intel_limits_pineview_sdvo;
7971         }
7972
7973         if (!crtc_state->clock_set &&
7974             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7975                                 refclk, NULL, &crtc_state->dpll)) {
7976                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7977                 return -EINVAL;
7978         }
7979
7980         i9xx_compute_dpll(crtc, crtc_state, NULL);
7981
7982         return 0;
7983 }
7984
7985 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7986                                    struct intel_crtc_state *crtc_state)
7987 {
7988         struct drm_device *dev = crtc->base.dev;
7989         struct drm_i915_private *dev_priv = to_i915(dev);
7990         const struct intel_limit *limit;
7991         int refclk = 96000;
7992
7993         memset(&crtc_state->dpll_hw_state, 0,
7994                sizeof(crtc_state->dpll_hw_state));
7995
7996         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7997                 if (intel_panel_use_ssc(dev_priv)) {
7998                         refclk = dev_priv->vbt.lvds_ssc_freq;
7999                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8000                 }
8001
8002                 limit = &intel_limits_i9xx_lvds;
8003         } else {
8004                 limit = &intel_limits_i9xx_sdvo;
8005         }
8006
8007         if (!crtc_state->clock_set &&
8008             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8009                                  refclk, NULL, &crtc_state->dpll)) {
8010                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8011                 return -EINVAL;
8012         }
8013
8014         i9xx_compute_dpll(crtc, crtc_state, NULL);
8015
8016         return 0;
8017 }
8018
8019 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8020                                   struct intel_crtc_state *crtc_state)
8021 {
8022         int refclk = 100000;
8023         const struct intel_limit *limit = &intel_limits_chv;
8024
8025         memset(&crtc_state->dpll_hw_state, 0,
8026                sizeof(crtc_state->dpll_hw_state));
8027
8028         if (!crtc_state->clock_set &&
8029             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8030                                 refclk, NULL, &crtc_state->dpll)) {
8031                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8032                 return -EINVAL;
8033         }
8034
8035         chv_compute_dpll(crtc, crtc_state);
8036
8037         return 0;
8038 }
8039
8040 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8041                                   struct intel_crtc_state *crtc_state)
8042 {
8043         int refclk = 100000;
8044         const struct intel_limit *limit = &intel_limits_vlv;
8045
8046         memset(&crtc_state->dpll_hw_state, 0,
8047                sizeof(crtc_state->dpll_hw_state));
8048
8049         if (!crtc_state->clock_set &&
8050             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8051                                 refclk, NULL, &crtc_state->dpll)) {
8052                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8053                 return -EINVAL;
8054         }
8055
8056         vlv_compute_dpll(crtc, crtc_state);
8057
8058         return 0;
8059 }
8060
8061 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8062                                  struct intel_crtc_state *pipe_config)
8063 {
8064         struct drm_device *dev = crtc->base.dev;
8065         struct drm_i915_private *dev_priv = to_i915(dev);
8066         uint32_t tmp;
8067
8068         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8069                 return;
8070
8071         tmp = I915_READ(PFIT_CONTROL);
8072         if (!(tmp & PFIT_ENABLE))
8073                 return;
8074
8075         /* Check whether the pfit is attached to our pipe. */
8076         if (INTEL_INFO(dev)->gen < 4) {
8077                 if (crtc->pipe != PIPE_B)
8078                         return;
8079         } else {
8080                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8081                         return;
8082         }
8083
8084         pipe_config->gmch_pfit.control = tmp;
8085         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8086 }
8087
8088 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8089                                struct intel_crtc_state *pipe_config)
8090 {
8091         struct drm_device *dev = crtc->base.dev;
8092         struct drm_i915_private *dev_priv = to_i915(dev);
8093         int pipe = pipe_config->cpu_transcoder;
8094         struct dpll clock;
8095         u32 mdiv;
8096         int refclk = 100000;
8097
8098         /* In case of DSI, DPLL will not be used */
8099         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8100                 return;
8101
8102         mutex_lock(&dev_priv->sb_lock);
8103         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8104         mutex_unlock(&dev_priv->sb_lock);
8105
8106         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8107         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8108         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8109         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8110         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8111
8112         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8113 }
8114
8115 static void
8116 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8117                               struct intel_initial_plane_config *plane_config)
8118 {
8119         struct drm_device *dev = crtc->base.dev;
8120         struct drm_i915_private *dev_priv = to_i915(dev);
8121         u32 val, base, offset;
8122         int pipe = crtc->pipe, plane = crtc->plane;
8123         int fourcc, pixel_format;
8124         unsigned int aligned_height;
8125         struct drm_framebuffer *fb;
8126         struct intel_framebuffer *intel_fb;
8127
8128         val = I915_READ(DSPCNTR(plane));
8129         if (!(val & DISPLAY_PLANE_ENABLE))
8130                 return;
8131
8132         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8133         if (!intel_fb) {
8134                 DRM_DEBUG_KMS("failed to alloc fb\n");
8135                 return;
8136         }
8137
8138         fb = &intel_fb->base;
8139
8140         if (INTEL_INFO(dev)->gen >= 4) {
8141                 if (val & DISPPLANE_TILED) {
8142                         plane_config->tiling = I915_TILING_X;
8143                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8144                 }
8145         }
8146
8147         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8148         fourcc = i9xx_format_to_fourcc(pixel_format);
8149         fb->pixel_format = fourcc;
8150         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8151
8152         if (INTEL_INFO(dev)->gen >= 4) {
8153                 if (plane_config->tiling)
8154                         offset = I915_READ(DSPTILEOFF(plane));
8155                 else
8156                         offset = I915_READ(DSPLINOFF(plane));
8157                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8158         } else {
8159                 base = I915_READ(DSPADDR(plane));
8160         }
8161         plane_config->base = base;
8162
8163         val = I915_READ(PIPESRC(pipe));
8164         fb->width = ((val >> 16) & 0xfff) + 1;
8165         fb->height = ((val >> 0) & 0xfff) + 1;
8166
8167         val = I915_READ(DSPSTRIDE(pipe));
8168         fb->pitches[0] = val & 0xffffffc0;
8169
8170         aligned_height = intel_fb_align_height(dev, fb->height,
8171                                                fb->pixel_format,
8172                                                fb->modifier[0]);
8173
8174         plane_config->size = fb->pitches[0] * aligned_height;
8175
8176         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8177                       pipe_name(pipe), plane, fb->width, fb->height,
8178                       fb->bits_per_pixel, base, fb->pitches[0],
8179                       plane_config->size);
8180
8181         plane_config->fb = intel_fb;
8182 }
8183
8184 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8185                                struct intel_crtc_state *pipe_config)
8186 {
8187         struct drm_device *dev = crtc->base.dev;
8188         struct drm_i915_private *dev_priv = to_i915(dev);
8189         int pipe = pipe_config->cpu_transcoder;
8190         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8191         struct dpll clock;
8192         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8193         int refclk = 100000;
8194
8195         /* In case of DSI, DPLL will not be used */
8196         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8197                 return;
8198
8199         mutex_lock(&dev_priv->sb_lock);
8200         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8201         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8202         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8203         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8204         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8205         mutex_unlock(&dev_priv->sb_lock);
8206
8207         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8208         clock.m2 = (pll_dw0 & 0xff) << 22;
8209         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8210                 clock.m2 |= pll_dw2 & 0x3fffff;
8211         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8212         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8213         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8214
8215         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8216 }
8217
8218 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8219                                  struct intel_crtc_state *pipe_config)
8220 {
8221         struct drm_device *dev = crtc->base.dev;
8222         struct drm_i915_private *dev_priv = to_i915(dev);
8223         enum intel_display_power_domain power_domain;
8224         uint32_t tmp;
8225         bool ret;
8226
8227         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8228         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8229                 return false;
8230
8231         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8232         pipe_config->shared_dpll = NULL;
8233
8234         ret = false;
8235
8236         tmp = I915_READ(PIPECONF(crtc->pipe));
8237         if (!(tmp & PIPECONF_ENABLE))
8238                 goto out;
8239
8240         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8241                 switch (tmp & PIPECONF_BPC_MASK) {
8242                 case PIPECONF_6BPC:
8243                         pipe_config->pipe_bpp = 18;
8244                         break;
8245                 case PIPECONF_8BPC:
8246                         pipe_config->pipe_bpp = 24;
8247                         break;
8248                 case PIPECONF_10BPC:
8249                         pipe_config->pipe_bpp = 30;
8250                         break;
8251                 default:
8252                         break;
8253                 }
8254         }
8255
8256         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8257             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8258                 pipe_config->limited_color_range = true;
8259
8260         if (INTEL_INFO(dev)->gen < 4)
8261                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8262
8263         intel_get_pipe_timings(crtc, pipe_config);
8264         intel_get_pipe_src_size(crtc, pipe_config);
8265
8266         i9xx_get_pfit_config(crtc, pipe_config);
8267
8268         if (INTEL_INFO(dev)->gen >= 4) {
8269                 /* No way to read it out on pipes B and C */
8270                 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8271                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
8272                 else
8273                         tmp = I915_READ(DPLL_MD(crtc->pipe));
8274                 pipe_config->pixel_multiplier =
8275                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8276                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8277                 pipe_config->dpll_hw_state.dpll_md = tmp;
8278         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8279                 tmp = I915_READ(DPLL(crtc->pipe));
8280                 pipe_config->pixel_multiplier =
8281                         ((tmp & SDVO_MULTIPLIER_MASK)
8282                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8283         } else {
8284                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8285                  * port and will be fixed up in the encoder->get_config
8286                  * function. */
8287                 pipe_config->pixel_multiplier = 1;
8288         }
8289         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8290         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8291                 /*
8292                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8293                  * on 830. Filter it out here so that we don't
8294                  * report errors due to that.
8295                  */
8296                 if (IS_I830(dev))
8297                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8298
8299                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8300                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8301         } else {
8302                 /* Mask out read-only status bits. */
8303                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8304                                                      DPLL_PORTC_READY_MASK |
8305                                                      DPLL_PORTB_READY_MASK);
8306         }
8307
8308         if (IS_CHERRYVIEW(dev))
8309                 chv_crtc_clock_get(crtc, pipe_config);
8310         else if (IS_VALLEYVIEW(dev))
8311                 vlv_crtc_clock_get(crtc, pipe_config);
8312         else
8313                 i9xx_crtc_clock_get(crtc, pipe_config);
8314
8315         /*
8316          * Normally the dotclock is filled in by the encoder .get_config()
8317          * but in case the pipe is enabled w/o any ports we need a sane
8318          * default.
8319          */
8320         pipe_config->base.adjusted_mode.crtc_clock =
8321                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8322
8323         ret = true;
8324
8325 out:
8326         intel_display_power_put(dev_priv, power_domain);
8327
8328         return ret;
8329 }
8330
8331 static void ironlake_init_pch_refclk(struct drm_device *dev)
8332 {
8333         struct drm_i915_private *dev_priv = to_i915(dev);
8334         struct intel_encoder *encoder;
8335         int i;
8336         u32 val, final;
8337         bool has_lvds = false;
8338         bool has_cpu_edp = false;
8339         bool has_panel = false;
8340         bool has_ck505 = false;
8341         bool can_ssc = false;
8342         bool using_ssc_source = false;
8343
8344         /* We need to take the global config into account */
8345         for_each_intel_encoder(dev, encoder) {
8346                 switch (encoder->type) {
8347                 case INTEL_OUTPUT_LVDS:
8348                         has_panel = true;
8349                         has_lvds = true;
8350                         break;
8351                 case INTEL_OUTPUT_EDP:
8352                         has_panel = true;
8353                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8354                                 has_cpu_edp = true;
8355                         break;
8356                 default:
8357                         break;
8358                 }
8359         }
8360
8361         if (HAS_PCH_IBX(dev)) {
8362                 has_ck505 = dev_priv->vbt.display_clock_mode;
8363                 can_ssc = has_ck505;
8364         } else {
8365                 has_ck505 = false;
8366                 can_ssc = true;
8367         }
8368
8369         /* Check if any DPLLs are using the SSC source */
8370         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8371                 u32 temp = I915_READ(PCH_DPLL(i));
8372
8373                 if (!(temp & DPLL_VCO_ENABLE))
8374                         continue;
8375
8376                 if ((temp & PLL_REF_INPUT_MASK) ==
8377                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8378                         using_ssc_source = true;
8379                         break;
8380                 }
8381         }
8382
8383         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8384                       has_panel, has_lvds, has_ck505, using_ssc_source);
8385
8386         /* Ironlake: try to setup display ref clock before DPLL
8387          * enabling. This is only under driver's control after
8388          * PCH B stepping, previous chipset stepping should be
8389          * ignoring this setting.
8390          */
8391         val = I915_READ(PCH_DREF_CONTROL);
8392
8393         /* As we must carefully and slowly disable/enable each source in turn,
8394          * compute the final state we want first and check if we need to
8395          * make any changes at all.
8396          */
8397         final = val;
8398         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8399         if (has_ck505)
8400                 final |= DREF_NONSPREAD_CK505_ENABLE;
8401         else
8402                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8403
8404         final &= ~DREF_SSC_SOURCE_MASK;
8405         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8406         final &= ~DREF_SSC1_ENABLE;
8407
8408         if (has_panel) {
8409                 final |= DREF_SSC_SOURCE_ENABLE;
8410
8411                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8412                         final |= DREF_SSC1_ENABLE;
8413
8414                 if (has_cpu_edp) {
8415                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8416                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8417                         else
8418                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8419                 } else
8420                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8421         } else if (using_ssc_source) {
8422                 final |= DREF_SSC_SOURCE_ENABLE;
8423                 final |= DREF_SSC1_ENABLE;
8424         }
8425
8426         if (final == val)
8427                 return;
8428
8429         /* Always enable nonspread source */
8430         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8431
8432         if (has_ck505)
8433                 val |= DREF_NONSPREAD_CK505_ENABLE;
8434         else
8435                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8436
8437         if (has_panel) {
8438                 val &= ~DREF_SSC_SOURCE_MASK;
8439                 val |= DREF_SSC_SOURCE_ENABLE;
8440
8441                 /* SSC must be turned on before enabling the CPU output  */
8442                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8443                         DRM_DEBUG_KMS("Using SSC on panel\n");
8444                         val |= DREF_SSC1_ENABLE;
8445                 } else
8446                         val &= ~DREF_SSC1_ENABLE;
8447
8448                 /* Get SSC going before enabling the outputs */
8449                 I915_WRITE(PCH_DREF_CONTROL, val);
8450                 POSTING_READ(PCH_DREF_CONTROL);
8451                 udelay(200);
8452
8453                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8454
8455                 /* Enable CPU source on CPU attached eDP */
8456                 if (has_cpu_edp) {
8457                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8458                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8459                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8460                         } else
8461                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8462                 } else
8463                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8464
8465                 I915_WRITE(PCH_DREF_CONTROL, val);
8466                 POSTING_READ(PCH_DREF_CONTROL);
8467                 udelay(200);
8468         } else {
8469                 DRM_DEBUG_KMS("Disabling CPU source output\n");
8470
8471                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8472
8473                 /* Turn off CPU output */
8474                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8475
8476                 I915_WRITE(PCH_DREF_CONTROL, val);
8477                 POSTING_READ(PCH_DREF_CONTROL);
8478                 udelay(200);
8479
8480                 if (!using_ssc_source) {
8481                         DRM_DEBUG_KMS("Disabling SSC source\n");
8482
8483                         /* Turn off the SSC source */
8484                         val &= ~DREF_SSC_SOURCE_MASK;
8485                         val |= DREF_SSC_SOURCE_DISABLE;
8486
8487                         /* Turn off SSC1 */
8488                         val &= ~DREF_SSC1_ENABLE;
8489
8490                         I915_WRITE(PCH_DREF_CONTROL, val);
8491                         POSTING_READ(PCH_DREF_CONTROL);
8492                         udelay(200);
8493                 }
8494         }
8495
8496         BUG_ON(val != final);
8497 }
8498
8499 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8500 {
8501         uint32_t tmp;
8502
8503         tmp = I915_READ(SOUTH_CHICKEN2);
8504         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8505         I915_WRITE(SOUTH_CHICKEN2, tmp);
8506
8507         if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
8508                         FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8509                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8510
8511         tmp = I915_READ(SOUTH_CHICKEN2);
8512         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8513         I915_WRITE(SOUTH_CHICKEN2, tmp);
8514
8515         if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
8516                          FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8517                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8518 }
8519
8520 /* WaMPhyProgramming:hsw */
8521 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8522 {
8523         uint32_t tmp;
8524
8525         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8526         tmp &= ~(0xFF << 24);
8527         tmp |= (0x12 << 24);
8528         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8529
8530         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8531         tmp |= (1 << 11);
8532         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8533
8534         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8535         tmp |= (1 << 11);
8536         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8537
8538         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8539         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8540         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8541
8542         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8543         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8544         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8545
8546         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8547         tmp &= ~(7 << 13);
8548         tmp |= (5 << 13);
8549         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8550
8551         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8552         tmp &= ~(7 << 13);
8553         tmp |= (5 << 13);
8554         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8555
8556         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8557         tmp &= ~0xFF;
8558         tmp |= 0x1C;
8559         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8560
8561         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8562         tmp &= ~0xFF;
8563         tmp |= 0x1C;
8564         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8565
8566         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8567         tmp &= ~(0xFF << 16);
8568         tmp |= (0x1C << 16);
8569         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8570
8571         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8572         tmp &= ~(0xFF << 16);
8573         tmp |= (0x1C << 16);
8574         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8575
8576         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8577         tmp |= (1 << 27);
8578         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8579
8580         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8581         tmp |= (1 << 27);
8582         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8583
8584         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8585         tmp &= ~(0xF << 28);
8586         tmp |= (4 << 28);
8587         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8588
8589         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8590         tmp &= ~(0xF << 28);
8591         tmp |= (4 << 28);
8592         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8593 }
8594
8595 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8596  * Programming" based on the parameters passed:
8597  * - Sequence to enable CLKOUT_DP
8598  * - Sequence to enable CLKOUT_DP without spread
8599  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8600  */
8601 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8602                                  bool with_fdi)
8603 {
8604         struct drm_i915_private *dev_priv = to_i915(dev);
8605         uint32_t reg, tmp;
8606
8607         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8608                 with_spread = true;
8609         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8610                 with_fdi = false;
8611
8612         mutex_lock(&dev_priv->sb_lock);
8613
8614         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8615         tmp &= ~SBI_SSCCTL_DISABLE;
8616         tmp |= SBI_SSCCTL_PATHALT;
8617         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8618
8619         udelay(24);
8620
8621         if (with_spread) {
8622                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8623                 tmp &= ~SBI_SSCCTL_PATHALT;
8624                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8625
8626                 if (with_fdi) {
8627                         lpt_reset_fdi_mphy(dev_priv);
8628                         lpt_program_fdi_mphy(dev_priv);
8629                 }
8630         }
8631
8632         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8633         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8634         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8635         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8636
8637         mutex_unlock(&dev_priv->sb_lock);
8638 }
8639
8640 /* Sequence to disable CLKOUT_DP */
8641 static void lpt_disable_clkout_dp(struct drm_device *dev)
8642 {
8643         struct drm_i915_private *dev_priv = to_i915(dev);
8644         uint32_t reg, tmp;
8645
8646         mutex_lock(&dev_priv->sb_lock);
8647
8648         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8649         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8650         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8651         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8652
8653         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8654         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8655                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8656                         tmp |= SBI_SSCCTL_PATHALT;
8657                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8658                         udelay(32);
8659                 }
8660                 tmp |= SBI_SSCCTL_DISABLE;
8661                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8662         }
8663
8664         mutex_unlock(&dev_priv->sb_lock);
8665 }
8666
8667 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8668
8669 static const uint16_t sscdivintphase[] = {
8670         [BEND_IDX( 50)] = 0x3B23,
8671         [BEND_IDX( 45)] = 0x3B23,
8672         [BEND_IDX( 40)] = 0x3C23,
8673         [BEND_IDX( 35)] = 0x3C23,
8674         [BEND_IDX( 30)] = 0x3D23,
8675         [BEND_IDX( 25)] = 0x3D23,
8676         [BEND_IDX( 20)] = 0x3E23,
8677         [BEND_IDX( 15)] = 0x3E23,
8678         [BEND_IDX( 10)] = 0x3F23,
8679         [BEND_IDX(  5)] = 0x3F23,
8680         [BEND_IDX(  0)] = 0x0025,
8681         [BEND_IDX( -5)] = 0x0025,
8682         [BEND_IDX(-10)] = 0x0125,
8683         [BEND_IDX(-15)] = 0x0125,
8684         [BEND_IDX(-20)] = 0x0225,
8685         [BEND_IDX(-25)] = 0x0225,
8686         [BEND_IDX(-30)] = 0x0325,
8687         [BEND_IDX(-35)] = 0x0325,
8688         [BEND_IDX(-40)] = 0x0425,
8689         [BEND_IDX(-45)] = 0x0425,
8690         [BEND_IDX(-50)] = 0x0525,
8691 };
8692
8693 /*
8694  * Bend CLKOUT_DP
8695  * steps -50 to 50 inclusive, in steps of 5
8696  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8697  * change in clock period = -(steps / 10) * 5.787 ps
8698  */
8699 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8700 {
8701         uint32_t tmp;
8702         int idx = BEND_IDX(steps);
8703
8704         if (WARN_ON(steps % 5 != 0))
8705                 return;
8706
8707         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8708                 return;
8709
8710         mutex_lock(&dev_priv->sb_lock);
8711
8712         if (steps % 10 != 0)
8713                 tmp = 0xAAAAAAAB;
8714         else
8715                 tmp = 0x00000000;
8716         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8717
8718         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8719         tmp &= 0xffff0000;
8720         tmp |= sscdivintphase[idx];
8721         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8722
8723         mutex_unlock(&dev_priv->sb_lock);
8724 }
8725
8726 #undef BEND_IDX
8727
8728 static void lpt_init_pch_refclk(struct drm_device *dev)
8729 {
8730         struct intel_encoder *encoder;
8731         bool has_vga = false;
8732
8733         for_each_intel_encoder(dev, encoder) {
8734                 switch (encoder->type) {
8735                 case INTEL_OUTPUT_ANALOG:
8736                         has_vga = true;
8737                         break;
8738                 default:
8739                         break;
8740                 }
8741         }
8742
8743         if (has_vga) {
8744                 lpt_bend_clkout_dp(to_i915(dev), 0);
8745                 lpt_enable_clkout_dp(dev, true, true);
8746         } else {
8747                 lpt_disable_clkout_dp(dev);
8748         }
8749 }
8750
8751 /*
8752  * Initialize reference clocks when the driver loads
8753  */
8754 void intel_init_pch_refclk(struct drm_device *dev)
8755 {
8756         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8757                 ironlake_init_pch_refclk(dev);
8758         else if (HAS_PCH_LPT(dev))
8759                 lpt_init_pch_refclk(dev);
8760 }
8761
8762 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8763 {
8764         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8765         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8766         int pipe = intel_crtc->pipe;
8767         uint32_t val;
8768
8769         val = 0;
8770
8771         switch (intel_crtc->config->pipe_bpp) {
8772         case 18:
8773                 val |= PIPECONF_6BPC;
8774                 break;
8775         case 24:
8776                 val |= PIPECONF_8BPC;
8777                 break;
8778         case 30:
8779                 val |= PIPECONF_10BPC;
8780                 break;
8781         case 36:
8782                 val |= PIPECONF_12BPC;
8783                 break;
8784         default:
8785                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8786                 BUG();
8787         }
8788
8789         if (intel_crtc->config->dither)
8790                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8791
8792         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8793                 val |= PIPECONF_INTERLACED_ILK;
8794         else
8795                 val |= PIPECONF_PROGRESSIVE;
8796
8797         if (intel_crtc->config->limited_color_range)
8798                 val |= PIPECONF_COLOR_RANGE_SELECT;
8799
8800         I915_WRITE(PIPECONF(pipe), val);
8801         POSTING_READ(PIPECONF(pipe));
8802 }
8803
8804 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8805 {
8806         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8807         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8808         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8809         u32 val = 0;
8810
8811         if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8812                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8813
8814         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8815                 val |= PIPECONF_INTERLACED_ILK;
8816         else
8817                 val |= PIPECONF_PROGRESSIVE;
8818
8819         I915_WRITE(PIPECONF(cpu_transcoder), val);
8820         POSTING_READ(PIPECONF(cpu_transcoder));
8821 }
8822
8823 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8824 {
8825         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8826         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8827
8828         if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8829                 u32 val = 0;
8830
8831                 switch (intel_crtc->config->pipe_bpp) {
8832                 case 18:
8833                         val |= PIPEMISC_DITHER_6_BPC;
8834                         break;
8835                 case 24:
8836                         val |= PIPEMISC_DITHER_8_BPC;
8837                         break;
8838                 case 30:
8839                         val |= PIPEMISC_DITHER_10_BPC;
8840                         break;
8841                 case 36:
8842                         val |= PIPEMISC_DITHER_12_BPC;
8843                         break;
8844                 default:
8845                         /* Case prevented by pipe_config_set_bpp. */
8846                         BUG();
8847                 }
8848
8849                 if (intel_crtc->config->dither)
8850                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8851
8852                 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8853         }
8854 }
8855
8856 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8857 {
8858         /*
8859          * Account for spread spectrum to avoid
8860          * oversubscribing the link. Max center spread
8861          * is 2.5%; use 5% for safety's sake.
8862          */
8863         u32 bps = target_clock * bpp * 21 / 20;
8864         return DIV_ROUND_UP(bps, link_bw * 8);
8865 }
8866
8867 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8868 {
8869         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8870 }
8871
8872 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8873                                   struct intel_crtc_state *crtc_state,
8874                                   struct dpll *reduced_clock)
8875 {
8876         struct drm_crtc *crtc = &intel_crtc->base;
8877         struct drm_device *dev = crtc->dev;
8878         struct drm_i915_private *dev_priv = to_i915(dev);
8879         u32 dpll, fp, fp2;
8880         int factor;
8881
8882         /* Enable autotuning of the PLL clock (if permissible) */
8883         factor = 21;
8884         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8885                 if ((intel_panel_use_ssc(dev_priv) &&
8886                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8887                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8888                         factor = 25;
8889         } else if (crtc_state->sdvo_tv_clock)
8890                 factor = 20;
8891
8892         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8893
8894         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8895                 fp |= FP_CB_TUNE;
8896
8897         if (reduced_clock) {
8898                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8899
8900                 if (reduced_clock->m < factor * reduced_clock->n)
8901                         fp2 |= FP_CB_TUNE;
8902         } else {
8903                 fp2 = fp;
8904         }
8905
8906         dpll = 0;
8907
8908         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8909                 dpll |= DPLLB_MODE_LVDS;
8910         else
8911                 dpll |= DPLLB_MODE_DAC_SERIAL;
8912
8913         dpll |= (crtc_state->pixel_multiplier - 1)
8914                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8915
8916         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8917             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8918                 dpll |= DPLL_SDVO_HIGH_SPEED;
8919
8920         if (intel_crtc_has_dp_encoder(crtc_state))
8921                 dpll |= DPLL_SDVO_HIGH_SPEED;
8922
8923         /* compute bitmask from p1 value */
8924         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8925         /* also FPA1 */
8926         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8927
8928         switch (crtc_state->dpll.p2) {
8929         case 5:
8930                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8931                 break;
8932         case 7:
8933                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8934                 break;
8935         case 10:
8936                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8937                 break;
8938         case 14:
8939                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8940                 break;
8941         }
8942
8943         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8944             intel_panel_use_ssc(dev_priv))
8945                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8946         else
8947                 dpll |= PLL_REF_INPUT_DREFCLK;
8948
8949         dpll |= DPLL_VCO_ENABLE;
8950
8951         crtc_state->dpll_hw_state.dpll = dpll;
8952         crtc_state->dpll_hw_state.fp0 = fp;
8953         crtc_state->dpll_hw_state.fp1 = fp2;
8954 }
8955
8956 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8957                                        struct intel_crtc_state *crtc_state)
8958 {
8959         struct drm_device *dev = crtc->base.dev;
8960         struct drm_i915_private *dev_priv = to_i915(dev);
8961         struct dpll reduced_clock;
8962         bool has_reduced_clock = false;
8963         struct intel_shared_dpll *pll;
8964         const struct intel_limit *limit;
8965         int refclk = 120000;
8966
8967         memset(&crtc_state->dpll_hw_state, 0,
8968                sizeof(crtc_state->dpll_hw_state));
8969
8970         crtc->lowfreq_avail = false;
8971
8972         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8973         if (!crtc_state->has_pch_encoder)
8974                 return 0;
8975
8976         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8977                 if (intel_panel_use_ssc(dev_priv)) {
8978                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8979                                       dev_priv->vbt.lvds_ssc_freq);
8980                         refclk = dev_priv->vbt.lvds_ssc_freq;
8981                 }
8982
8983                 if (intel_is_dual_link_lvds(dev)) {
8984                         if (refclk == 100000)
8985                                 limit = &intel_limits_ironlake_dual_lvds_100m;
8986                         else
8987                                 limit = &intel_limits_ironlake_dual_lvds;
8988                 } else {
8989                         if (refclk == 100000)
8990                                 limit = &intel_limits_ironlake_single_lvds_100m;
8991                         else
8992                                 limit = &intel_limits_ironlake_single_lvds;
8993                 }
8994         } else {
8995                 limit = &intel_limits_ironlake_dac;
8996         }
8997
8998         if (!crtc_state->clock_set &&
8999             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9000                                 refclk, NULL, &crtc_state->dpll)) {
9001                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9002                 return -EINVAL;
9003         }
9004
9005         ironlake_compute_dpll(crtc, crtc_state,
9006                               has_reduced_clock ? &reduced_clock : NULL);
9007
9008         pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9009         if (pll == NULL) {
9010                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9011                                  pipe_name(crtc->pipe));
9012                 return -EINVAL;
9013         }
9014
9015         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9016             has_reduced_clock)
9017                 crtc->lowfreq_avail = true;
9018
9019         return 0;
9020 }
9021
9022 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9023                                          struct intel_link_m_n *m_n)
9024 {
9025         struct drm_device *dev = crtc->base.dev;
9026         struct drm_i915_private *dev_priv = to_i915(dev);
9027         enum pipe pipe = crtc->pipe;
9028
9029         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9030         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9031         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9032                 & ~TU_SIZE_MASK;
9033         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9034         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9035                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9036 }
9037
9038 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9039                                          enum transcoder transcoder,
9040                                          struct intel_link_m_n *m_n,
9041                                          struct intel_link_m_n *m2_n2)
9042 {
9043         struct drm_device *dev = crtc->base.dev;
9044         struct drm_i915_private *dev_priv = to_i915(dev);
9045         enum pipe pipe = crtc->pipe;
9046
9047         if (INTEL_INFO(dev)->gen >= 5) {
9048                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9049                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9050                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9051                         & ~TU_SIZE_MASK;
9052                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9053                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9054                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9055                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9056                  * gen < 8) and if DRRS is supported (to make sure the
9057                  * registers are not unnecessarily read).
9058                  */
9059                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9060                         crtc->config->has_drrs) {
9061                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9062                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9063                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9064                                         & ~TU_SIZE_MASK;
9065                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9066                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9067                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9068                 }
9069         } else {
9070                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9071                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9072                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9073                         & ~TU_SIZE_MASK;
9074                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9075                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9076                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9077         }
9078 }
9079
9080 void intel_dp_get_m_n(struct intel_crtc *crtc,
9081                       struct intel_crtc_state *pipe_config)
9082 {
9083         if (pipe_config->has_pch_encoder)
9084                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9085         else
9086                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9087                                              &pipe_config->dp_m_n,
9088                                              &pipe_config->dp_m2_n2);
9089 }
9090
9091 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9092                                         struct intel_crtc_state *pipe_config)
9093 {
9094         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9095                                      &pipe_config->fdi_m_n, NULL);
9096 }
9097
9098 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9099                                     struct intel_crtc_state *pipe_config)
9100 {
9101         struct drm_device *dev = crtc->base.dev;
9102         struct drm_i915_private *dev_priv = to_i915(dev);
9103         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9104         uint32_t ps_ctrl = 0;
9105         int id = -1;
9106         int i;
9107
9108         /* find scaler attached to this pipe */
9109         for (i = 0; i < crtc->num_scalers; i++) {
9110                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9111                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9112                         id = i;
9113                         pipe_config->pch_pfit.enabled = true;
9114                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9115                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9116                         break;
9117                 }
9118         }
9119
9120         scaler_state->scaler_id = id;
9121         if (id >= 0) {
9122                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9123         } else {
9124                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9125         }
9126 }
9127
9128 static void
9129 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9130                                  struct intel_initial_plane_config *plane_config)
9131 {
9132         struct drm_device *dev = crtc->base.dev;
9133         struct drm_i915_private *dev_priv = to_i915(dev);
9134         u32 val, base, offset, stride_mult, tiling;
9135         int pipe = crtc->pipe;
9136         int fourcc, pixel_format;
9137         unsigned int aligned_height;
9138         struct drm_framebuffer *fb;
9139         struct intel_framebuffer *intel_fb;
9140
9141         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9142         if (!intel_fb) {
9143                 DRM_DEBUG_KMS("failed to alloc fb\n");
9144                 return;
9145         }
9146
9147         fb = &intel_fb->base;
9148
9149         val = I915_READ(PLANE_CTL(pipe, 0));
9150         if (!(val & PLANE_CTL_ENABLE))
9151                 goto error;
9152
9153         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9154         fourcc = skl_format_to_fourcc(pixel_format,
9155                                       val & PLANE_CTL_ORDER_RGBX,
9156                                       val & PLANE_CTL_ALPHA_MASK);
9157         fb->pixel_format = fourcc;
9158         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9159
9160         tiling = val & PLANE_CTL_TILED_MASK;
9161         switch (tiling) {
9162         case PLANE_CTL_TILED_LINEAR:
9163                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9164                 break;
9165         case PLANE_CTL_TILED_X:
9166                 plane_config->tiling = I915_TILING_X;
9167                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9168                 break;
9169         case PLANE_CTL_TILED_Y:
9170                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9171                 break;
9172         case PLANE_CTL_TILED_YF:
9173                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9174                 break;
9175         default:
9176                 MISSING_CASE(tiling);
9177                 goto error;
9178         }
9179
9180         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9181         plane_config->base = base;
9182
9183         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9184
9185         val = I915_READ(PLANE_SIZE(pipe, 0));
9186         fb->height = ((val >> 16) & 0xfff) + 1;
9187         fb->width = ((val >> 0) & 0x1fff) + 1;
9188
9189         val = I915_READ(PLANE_STRIDE(pipe, 0));
9190         stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9191                                                 fb->pixel_format);
9192         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9193
9194         aligned_height = intel_fb_align_height(dev, fb->height,
9195                                                fb->pixel_format,
9196                                                fb->modifier[0]);
9197
9198         plane_config->size = fb->pitches[0] * aligned_height;
9199
9200         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9201                       pipe_name(pipe), fb->width, fb->height,
9202                       fb->bits_per_pixel, base, fb->pitches[0],
9203                       plane_config->size);
9204
9205         plane_config->fb = intel_fb;
9206         return;
9207
9208 error:
9209         kfree(fb);
9210 }
9211
9212 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9213                                      struct intel_crtc_state *pipe_config)
9214 {
9215         struct drm_device *dev = crtc->base.dev;
9216         struct drm_i915_private *dev_priv = to_i915(dev);
9217         uint32_t tmp;
9218
9219         tmp = I915_READ(PF_CTL(crtc->pipe));
9220
9221         if (tmp & PF_ENABLE) {
9222                 pipe_config->pch_pfit.enabled = true;
9223                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9224                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9225
9226                 /* We currently do not free assignements of panel fitters on
9227                  * ivb/hsw (since we don't use the higher upscaling modes which
9228                  * differentiates them) so just WARN about this case for now. */
9229                 if (IS_GEN7(dev)) {
9230                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9231                                 PF_PIPE_SEL_IVB(crtc->pipe));
9232                 }
9233         }
9234 }
9235
9236 static void
9237 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9238                                   struct intel_initial_plane_config *plane_config)
9239 {
9240         struct drm_device *dev = crtc->base.dev;
9241         struct drm_i915_private *dev_priv = to_i915(dev);
9242         u32 val, base, offset;
9243         int pipe = crtc->pipe;
9244         int fourcc, pixel_format;
9245         unsigned int aligned_height;
9246         struct drm_framebuffer *fb;
9247         struct intel_framebuffer *intel_fb;
9248
9249         val = I915_READ(DSPCNTR(pipe));
9250         if (!(val & DISPLAY_PLANE_ENABLE))
9251                 return;
9252
9253         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9254         if (!intel_fb) {
9255                 DRM_DEBUG_KMS("failed to alloc fb\n");
9256                 return;
9257         }
9258
9259         fb = &intel_fb->base;
9260
9261         if (INTEL_INFO(dev)->gen >= 4) {
9262                 if (val & DISPPLANE_TILED) {
9263                         plane_config->tiling = I915_TILING_X;
9264                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9265                 }
9266         }
9267
9268         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9269         fourcc = i9xx_format_to_fourcc(pixel_format);
9270         fb->pixel_format = fourcc;
9271         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9272
9273         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9274         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9275                 offset = I915_READ(DSPOFFSET(pipe));
9276         } else {
9277                 if (plane_config->tiling)
9278                         offset = I915_READ(DSPTILEOFF(pipe));
9279                 else
9280                         offset = I915_READ(DSPLINOFF(pipe));
9281         }
9282         plane_config->base = base;
9283
9284         val = I915_READ(PIPESRC(pipe));
9285         fb->width = ((val >> 16) & 0xfff) + 1;
9286         fb->height = ((val >> 0) & 0xfff) + 1;
9287
9288         val = I915_READ(DSPSTRIDE(pipe));
9289         fb->pitches[0] = val & 0xffffffc0;
9290
9291         aligned_height = intel_fb_align_height(dev, fb->height,
9292                                                fb->pixel_format,
9293                                                fb->modifier[0]);
9294
9295         plane_config->size = fb->pitches[0] * aligned_height;
9296
9297         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9298                       pipe_name(pipe), fb->width, fb->height,
9299                       fb->bits_per_pixel, base, fb->pitches[0],
9300                       plane_config->size);
9301
9302         plane_config->fb = intel_fb;
9303 }
9304
9305 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9306                                      struct intel_crtc_state *pipe_config)
9307 {
9308         struct drm_device *dev = crtc->base.dev;
9309         struct drm_i915_private *dev_priv = to_i915(dev);
9310         enum intel_display_power_domain power_domain;
9311         uint32_t tmp;
9312         bool ret;
9313
9314         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9315         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9316                 return false;
9317
9318         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9319         pipe_config->shared_dpll = NULL;
9320
9321         ret = false;
9322         tmp = I915_READ(PIPECONF(crtc->pipe));
9323         if (!(tmp & PIPECONF_ENABLE))
9324                 goto out;
9325
9326         switch (tmp & PIPECONF_BPC_MASK) {
9327         case PIPECONF_6BPC:
9328                 pipe_config->pipe_bpp = 18;
9329                 break;
9330         case PIPECONF_8BPC:
9331                 pipe_config->pipe_bpp = 24;
9332                 break;
9333         case PIPECONF_10BPC:
9334                 pipe_config->pipe_bpp = 30;
9335                 break;
9336         case PIPECONF_12BPC:
9337                 pipe_config->pipe_bpp = 36;
9338                 break;
9339         default:
9340                 break;
9341         }
9342
9343         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9344                 pipe_config->limited_color_range = true;
9345
9346         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9347                 struct intel_shared_dpll *pll;
9348                 enum intel_dpll_id pll_id;
9349
9350                 pipe_config->has_pch_encoder = true;
9351
9352                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9353                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9354                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9355
9356                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9357
9358                 if (HAS_PCH_IBX(dev_priv)) {
9359                         /*
9360                          * The pipe->pch transcoder and pch transcoder->pll
9361                          * mapping is fixed.
9362                          */
9363                         pll_id = (enum intel_dpll_id) crtc->pipe;
9364                 } else {
9365                         tmp = I915_READ(PCH_DPLL_SEL);
9366                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9367                                 pll_id = DPLL_ID_PCH_PLL_B;
9368                         else
9369                                 pll_id= DPLL_ID_PCH_PLL_A;
9370                 }
9371
9372                 pipe_config->shared_dpll =
9373                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
9374                 pll = pipe_config->shared_dpll;
9375
9376                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9377                                                  &pipe_config->dpll_hw_state));
9378
9379                 tmp = pipe_config->dpll_hw_state.dpll;
9380                 pipe_config->pixel_multiplier =
9381                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9382                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9383
9384                 ironlake_pch_clock_get(crtc, pipe_config);
9385         } else {
9386                 pipe_config->pixel_multiplier = 1;
9387         }
9388
9389         intel_get_pipe_timings(crtc, pipe_config);
9390         intel_get_pipe_src_size(crtc, pipe_config);
9391
9392         ironlake_get_pfit_config(crtc, pipe_config);
9393
9394         ret = true;
9395
9396 out:
9397         intel_display_power_put(dev_priv, power_domain);
9398
9399         return ret;
9400 }
9401
9402 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9403 {
9404         struct drm_device *dev = &dev_priv->drm;
9405         struct intel_crtc *crtc;
9406
9407         for_each_intel_crtc(dev, crtc)
9408                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9409                      pipe_name(crtc->pipe));
9410
9411         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9412         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9413         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9414         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9415         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9416         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9417              "CPU PWM1 enabled\n");
9418         if (IS_HASWELL(dev))
9419                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9420                      "CPU PWM2 enabled\n");
9421         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9422              "PCH PWM1 enabled\n");
9423         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9424              "Utility pin enabled\n");
9425         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9426
9427         /*
9428          * In theory we can still leave IRQs enabled, as long as only the HPD
9429          * interrupts remain enabled. We used to check for that, but since it's
9430          * gen-specific and since we only disable LCPLL after we fully disable
9431          * the interrupts, the check below should be enough.
9432          */
9433         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9434 }
9435
9436 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9437 {
9438         struct drm_device *dev = &dev_priv->drm;
9439
9440         if (IS_HASWELL(dev))
9441                 return I915_READ(D_COMP_HSW);
9442         else
9443                 return I915_READ(D_COMP_BDW);
9444 }
9445
9446 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9447 {
9448         struct drm_device *dev = &dev_priv->drm;
9449
9450         if (IS_HASWELL(dev)) {
9451                 mutex_lock(&dev_priv->rps.hw_lock);
9452                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9453                                             val))
9454                         DRM_ERROR("Failed to write to D_COMP\n");
9455                 mutex_unlock(&dev_priv->rps.hw_lock);
9456         } else {
9457                 I915_WRITE(D_COMP_BDW, val);
9458                 POSTING_READ(D_COMP_BDW);
9459         }
9460 }
9461
9462 /*
9463  * This function implements pieces of two sequences from BSpec:
9464  * - Sequence for display software to disable LCPLL
9465  * - Sequence for display software to allow package C8+
9466  * The steps implemented here are just the steps that actually touch the LCPLL
9467  * register. Callers should take care of disabling all the display engine
9468  * functions, doing the mode unset, fixing interrupts, etc.
9469  */
9470 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9471                               bool switch_to_fclk, bool allow_power_down)
9472 {
9473         uint32_t val;
9474
9475         assert_can_disable_lcpll(dev_priv);
9476
9477         val = I915_READ(LCPLL_CTL);
9478
9479         if (switch_to_fclk) {
9480                 val |= LCPLL_CD_SOURCE_FCLK;
9481                 I915_WRITE(LCPLL_CTL, val);
9482
9483                 if (wait_for_us(I915_READ(LCPLL_CTL) &
9484                                 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9485                         DRM_ERROR("Switching to FCLK failed\n");
9486
9487                 val = I915_READ(LCPLL_CTL);
9488         }
9489
9490         val |= LCPLL_PLL_DISABLE;
9491         I915_WRITE(LCPLL_CTL, val);
9492         POSTING_READ(LCPLL_CTL);
9493
9494         if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
9495                 DRM_ERROR("LCPLL still locked\n");
9496
9497         val = hsw_read_dcomp(dev_priv);
9498         val |= D_COMP_COMP_DISABLE;
9499         hsw_write_dcomp(dev_priv, val);
9500         ndelay(100);
9501
9502         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9503                      1))
9504                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9505
9506         if (allow_power_down) {
9507                 val = I915_READ(LCPLL_CTL);
9508                 val |= LCPLL_POWER_DOWN_ALLOW;
9509                 I915_WRITE(LCPLL_CTL, val);
9510                 POSTING_READ(LCPLL_CTL);
9511         }
9512 }
9513
9514 /*
9515  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9516  * source.
9517  */
9518 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9519 {
9520         uint32_t val;
9521
9522         val = I915_READ(LCPLL_CTL);
9523
9524         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9525                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9526                 return;
9527
9528         /*
9529          * Make sure we're not on PC8 state before disabling PC8, otherwise
9530          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9531          */
9532         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9533
9534         if (val & LCPLL_POWER_DOWN_ALLOW) {
9535                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9536                 I915_WRITE(LCPLL_CTL, val);
9537                 POSTING_READ(LCPLL_CTL);
9538         }
9539
9540         val = hsw_read_dcomp(dev_priv);
9541         val |= D_COMP_COMP_FORCE;
9542         val &= ~D_COMP_COMP_DISABLE;
9543         hsw_write_dcomp(dev_priv, val);
9544
9545         val = I915_READ(LCPLL_CTL);
9546         val &= ~LCPLL_PLL_DISABLE;
9547         I915_WRITE(LCPLL_CTL, val);
9548
9549         if (intel_wait_for_register(dev_priv,
9550                                     LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
9551                                     5))
9552                 DRM_ERROR("LCPLL not locked yet\n");
9553
9554         if (val & LCPLL_CD_SOURCE_FCLK) {
9555                 val = I915_READ(LCPLL_CTL);
9556                 val &= ~LCPLL_CD_SOURCE_FCLK;
9557                 I915_WRITE(LCPLL_CTL, val);
9558
9559                 if (wait_for_us((I915_READ(LCPLL_CTL) &
9560                                  LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9561                         DRM_ERROR("Switching back to LCPLL failed\n");
9562         }
9563
9564         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9565         intel_update_cdclk(&dev_priv->drm);
9566 }
9567
9568 /*
9569  * Package states C8 and deeper are really deep PC states that can only be
9570  * reached when all the devices on the system allow it, so even if the graphics
9571  * device allows PC8+, it doesn't mean the system will actually get to these
9572  * states. Our driver only allows PC8+ when going into runtime PM.
9573  *
9574  * The requirements for PC8+ are that all the outputs are disabled, the power
9575  * well is disabled and most interrupts are disabled, and these are also
9576  * requirements for runtime PM. When these conditions are met, we manually do
9577  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9578  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9579  * hang the machine.
9580  *
9581  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9582  * the state of some registers, so when we come back from PC8+ we need to
9583  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9584  * need to take care of the registers kept by RC6. Notice that this happens even
9585  * if we don't put the device in PCI D3 state (which is what currently happens
9586  * because of the runtime PM support).
9587  *
9588  * For more, read "Display Sequences for Package C8" on the hardware
9589  * documentation.
9590  */
9591 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9592 {
9593         struct drm_device *dev = &dev_priv->drm;
9594         uint32_t val;
9595
9596         DRM_DEBUG_KMS("Enabling package C8+\n");
9597
9598         if (HAS_PCH_LPT_LP(dev)) {
9599                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9600                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9601                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9602         }
9603
9604         lpt_disable_clkout_dp(dev);
9605         hsw_disable_lcpll(dev_priv, true, true);
9606 }
9607
9608 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9609 {
9610         struct drm_device *dev = &dev_priv->drm;
9611         uint32_t val;
9612
9613         DRM_DEBUG_KMS("Disabling package C8+\n");
9614
9615         hsw_restore_lcpll(dev_priv);
9616         lpt_init_pch_refclk(dev);
9617
9618         if (HAS_PCH_LPT_LP(dev)) {
9619                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9620                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9621                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9622         }
9623 }
9624
9625 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9626 {
9627         struct drm_device *dev = old_state->dev;
9628         struct intel_atomic_state *old_intel_state =
9629                 to_intel_atomic_state(old_state);
9630         unsigned int req_cdclk = old_intel_state->dev_cdclk;
9631
9632         bxt_set_cdclk(to_i915(dev), req_cdclk);
9633 }
9634
9635 /* compute the max rate for new configuration */
9636 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9637 {
9638         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9639         struct drm_i915_private *dev_priv = to_i915(state->dev);
9640         struct drm_crtc *crtc;
9641         struct drm_crtc_state *cstate;
9642         struct intel_crtc_state *crtc_state;
9643         unsigned max_pixel_rate = 0, i;
9644         enum pipe pipe;
9645
9646         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9647                sizeof(intel_state->min_pixclk));
9648
9649         for_each_crtc_in_state(state, crtc, cstate, i) {
9650                 int pixel_rate;
9651
9652                 crtc_state = to_intel_crtc_state(cstate);
9653                 if (!crtc_state->base.enable) {
9654                         intel_state->min_pixclk[i] = 0;
9655                         continue;
9656                 }
9657
9658                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9659
9660                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9661                 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9662                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9663
9664                 intel_state->min_pixclk[i] = pixel_rate;
9665         }
9666
9667         for_each_pipe(dev_priv, pipe)
9668                 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9669
9670         return max_pixel_rate;
9671 }
9672
9673 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9674 {
9675         struct drm_i915_private *dev_priv = to_i915(dev);
9676         uint32_t val, data;
9677         int ret;
9678
9679         if (WARN((I915_READ(LCPLL_CTL) &
9680                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9681                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9682                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9683                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9684                  "trying to change cdclk frequency with cdclk not enabled\n"))
9685                 return;
9686
9687         mutex_lock(&dev_priv->rps.hw_lock);
9688         ret = sandybridge_pcode_write(dev_priv,
9689                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9690         mutex_unlock(&dev_priv->rps.hw_lock);
9691         if (ret) {
9692                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9693                 return;
9694         }
9695
9696         val = I915_READ(LCPLL_CTL);
9697         val |= LCPLL_CD_SOURCE_FCLK;
9698         I915_WRITE(LCPLL_CTL, val);
9699
9700         if (wait_for_us(I915_READ(LCPLL_CTL) &
9701                         LCPLL_CD_SOURCE_FCLK_DONE, 1))
9702                 DRM_ERROR("Switching to FCLK failed\n");
9703
9704         val = I915_READ(LCPLL_CTL);
9705         val &= ~LCPLL_CLK_FREQ_MASK;
9706
9707         switch (cdclk) {
9708         case 450000:
9709                 val |= LCPLL_CLK_FREQ_450;
9710                 data = 0;
9711                 break;
9712         case 540000:
9713                 val |= LCPLL_CLK_FREQ_54O_BDW;
9714                 data = 1;
9715                 break;
9716         case 337500:
9717                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9718                 data = 2;
9719                 break;
9720         case 675000:
9721                 val |= LCPLL_CLK_FREQ_675_BDW;
9722                 data = 3;
9723                 break;
9724         default:
9725                 WARN(1, "invalid cdclk frequency\n");
9726                 return;
9727         }
9728
9729         I915_WRITE(LCPLL_CTL, val);
9730
9731         val = I915_READ(LCPLL_CTL);
9732         val &= ~LCPLL_CD_SOURCE_FCLK;
9733         I915_WRITE(LCPLL_CTL, val);
9734
9735         if (wait_for_us((I915_READ(LCPLL_CTL) &
9736                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9737                 DRM_ERROR("Switching back to LCPLL failed\n");
9738
9739         mutex_lock(&dev_priv->rps.hw_lock);
9740         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9741         mutex_unlock(&dev_priv->rps.hw_lock);
9742
9743         I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9744
9745         intel_update_cdclk(dev);
9746
9747         WARN(cdclk != dev_priv->cdclk_freq,
9748              "cdclk requested %d kHz but got %d kHz\n",
9749              cdclk, dev_priv->cdclk_freq);
9750 }
9751
9752 static int broadwell_calc_cdclk(int max_pixclk)
9753 {
9754         if (max_pixclk > 540000)
9755                 return 675000;
9756         else if (max_pixclk > 450000)
9757                 return 540000;
9758         else if (max_pixclk > 337500)
9759                 return 450000;
9760         else
9761                 return 337500;
9762 }
9763
9764 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9765 {
9766         struct drm_i915_private *dev_priv = to_i915(state->dev);
9767         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9768         int max_pixclk = ilk_max_pixel_rate(state);
9769         int cdclk;
9770
9771         /*
9772          * FIXME should also account for plane ratio
9773          * once 64bpp pixel formats are supported.
9774          */
9775         cdclk = broadwell_calc_cdclk(max_pixclk);
9776
9777         if (cdclk > dev_priv->max_cdclk_freq) {
9778                 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9779                               cdclk, dev_priv->max_cdclk_freq);
9780                 return -EINVAL;
9781         }
9782
9783         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9784         if (!intel_state->active_crtcs)
9785                 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
9786
9787         return 0;
9788 }
9789
9790 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9791 {
9792         struct drm_device *dev = old_state->dev;
9793         struct intel_atomic_state *old_intel_state =
9794                 to_intel_atomic_state(old_state);
9795         unsigned req_cdclk = old_intel_state->dev_cdclk;
9796
9797         broadwell_set_cdclk(dev, req_cdclk);
9798 }
9799
9800 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
9801 {
9802         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9803         struct drm_i915_private *dev_priv = to_i915(state->dev);
9804         const int max_pixclk = ilk_max_pixel_rate(state);
9805         int vco = intel_state->cdclk_pll_vco;
9806         int cdclk;
9807
9808         /*
9809          * FIXME should also account for plane ratio
9810          * once 64bpp pixel formats are supported.
9811          */
9812         cdclk = skl_calc_cdclk(max_pixclk, vco);
9813
9814         /*
9815          * FIXME move the cdclk caclulation to
9816          * compute_config() so we can fail gracegully.
9817          */
9818         if (cdclk > dev_priv->max_cdclk_freq) {
9819                 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9820                           cdclk, dev_priv->max_cdclk_freq);
9821                 cdclk = dev_priv->max_cdclk_freq;
9822         }
9823
9824         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9825         if (!intel_state->active_crtcs)
9826                 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
9827
9828         return 0;
9829 }
9830
9831 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9832 {
9833         struct drm_i915_private *dev_priv = to_i915(old_state->dev);
9834         struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
9835         unsigned int req_cdclk = intel_state->dev_cdclk;
9836         unsigned int req_vco = intel_state->cdclk_pll_vco;
9837
9838         skl_set_cdclk(dev_priv, req_cdclk, req_vco);
9839 }
9840
9841 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9842                                       struct intel_crtc_state *crtc_state)
9843 {
9844         if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
9845                 if (!intel_ddi_pll_select(crtc, crtc_state))
9846                         return -EINVAL;
9847         }
9848
9849         crtc->lowfreq_avail = false;
9850
9851         return 0;
9852 }
9853
9854 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9855                                 enum port port,
9856                                 struct intel_crtc_state *pipe_config)
9857 {
9858         enum intel_dpll_id id;
9859
9860         switch (port) {
9861         case PORT_A:
9862                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9863                 id = DPLL_ID_SKL_DPLL0;
9864                 break;
9865         case PORT_B:
9866                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9867                 id = DPLL_ID_SKL_DPLL1;
9868                 break;
9869         case PORT_C:
9870                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9871                 id = DPLL_ID_SKL_DPLL2;
9872                 break;
9873         default:
9874                 DRM_ERROR("Incorrect port type\n");
9875                 return;
9876         }
9877
9878         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9879 }
9880
9881 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9882                                 enum port port,
9883                                 struct intel_crtc_state *pipe_config)
9884 {
9885         enum intel_dpll_id id;
9886         u32 temp;
9887
9888         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9889         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9890
9891         switch (pipe_config->ddi_pll_sel) {
9892         case SKL_DPLL0:
9893                 id = DPLL_ID_SKL_DPLL0;
9894                 break;
9895         case SKL_DPLL1:
9896                 id = DPLL_ID_SKL_DPLL1;
9897                 break;
9898         case SKL_DPLL2:
9899                 id = DPLL_ID_SKL_DPLL2;
9900                 break;
9901         case SKL_DPLL3:
9902                 id = DPLL_ID_SKL_DPLL3;
9903                 break;
9904         default:
9905                 MISSING_CASE(pipe_config->ddi_pll_sel);
9906                 return;
9907         }
9908
9909         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9910 }
9911
9912 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9913                                 enum port port,
9914                                 struct intel_crtc_state *pipe_config)
9915 {
9916         enum intel_dpll_id id;
9917
9918         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9919
9920         switch (pipe_config->ddi_pll_sel) {
9921         case PORT_CLK_SEL_WRPLL1:
9922                 id = DPLL_ID_WRPLL1;
9923                 break;
9924         case PORT_CLK_SEL_WRPLL2:
9925                 id = DPLL_ID_WRPLL2;
9926                 break;
9927         case PORT_CLK_SEL_SPLL:
9928                 id = DPLL_ID_SPLL;
9929                 break;
9930         case PORT_CLK_SEL_LCPLL_810:
9931                 id = DPLL_ID_LCPLL_810;
9932                 break;
9933         case PORT_CLK_SEL_LCPLL_1350:
9934                 id = DPLL_ID_LCPLL_1350;
9935                 break;
9936         case PORT_CLK_SEL_LCPLL_2700:
9937                 id = DPLL_ID_LCPLL_2700;
9938                 break;
9939         default:
9940                 MISSING_CASE(pipe_config->ddi_pll_sel);
9941                 /* fall through */
9942         case PORT_CLK_SEL_NONE:
9943                 return;
9944         }
9945
9946         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9947 }
9948
9949 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9950                                      struct intel_crtc_state *pipe_config,
9951                                      unsigned long *power_domain_mask)
9952 {
9953         struct drm_device *dev = crtc->base.dev;
9954         struct drm_i915_private *dev_priv = to_i915(dev);
9955         enum intel_display_power_domain power_domain;
9956         u32 tmp;
9957
9958         /*
9959          * The pipe->transcoder mapping is fixed with the exception of the eDP
9960          * transcoder handled below.
9961          */
9962         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9963
9964         /*
9965          * XXX: Do intel_display_power_get_if_enabled before reading this (for
9966          * consistency and less surprising code; it's in always on power).
9967          */
9968         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9969         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9970                 enum pipe trans_edp_pipe;
9971                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9972                 default:
9973                         WARN(1, "unknown pipe linked to edp transcoder\n");
9974                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9975                 case TRANS_DDI_EDP_INPUT_A_ON:
9976                         trans_edp_pipe = PIPE_A;
9977                         break;
9978                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9979                         trans_edp_pipe = PIPE_B;
9980                         break;
9981                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9982                         trans_edp_pipe = PIPE_C;
9983                         break;
9984                 }
9985
9986                 if (trans_edp_pipe == crtc->pipe)
9987                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9988         }
9989
9990         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9991         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9992                 return false;
9993         *power_domain_mask |= BIT(power_domain);
9994
9995         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9996
9997         return tmp & PIPECONF_ENABLE;
9998 }
9999
10000 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10001                                          struct intel_crtc_state *pipe_config,
10002                                          unsigned long *power_domain_mask)
10003 {
10004         struct drm_device *dev = crtc->base.dev;
10005         struct drm_i915_private *dev_priv = to_i915(dev);
10006         enum intel_display_power_domain power_domain;
10007         enum port port;
10008         enum transcoder cpu_transcoder;
10009         u32 tmp;
10010
10011         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10012                 if (port == PORT_A)
10013                         cpu_transcoder = TRANSCODER_DSI_A;
10014                 else
10015                         cpu_transcoder = TRANSCODER_DSI_C;
10016
10017                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10018                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10019                         continue;
10020                 *power_domain_mask |= BIT(power_domain);
10021
10022                 /*
10023                  * The PLL needs to be enabled with a valid divider
10024                  * configuration, otherwise accessing DSI registers will hang
10025                  * the machine. See BSpec North Display Engine
10026                  * registers/MIPI[BXT]. We can break out here early, since we
10027                  * need the same DSI PLL to be enabled for both DSI ports.
10028                  */
10029                 if (!intel_dsi_pll_is_enabled(dev_priv))
10030                         break;
10031
10032                 /* XXX: this works for video mode only */
10033                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10034                 if (!(tmp & DPI_ENABLE))
10035                         continue;
10036
10037                 tmp = I915_READ(MIPI_CTRL(port));
10038                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10039                         continue;
10040
10041                 pipe_config->cpu_transcoder = cpu_transcoder;
10042                 break;
10043         }
10044
10045         return transcoder_is_dsi(pipe_config->cpu_transcoder);
10046 }
10047
10048 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10049                                        struct intel_crtc_state *pipe_config)
10050 {
10051         struct drm_device *dev = crtc->base.dev;
10052         struct drm_i915_private *dev_priv = to_i915(dev);
10053         struct intel_shared_dpll *pll;
10054         enum port port;
10055         uint32_t tmp;
10056
10057         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10058
10059         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10060
10061         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
10062                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
10063         else if (IS_BROXTON(dev))
10064                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10065         else
10066                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
10067
10068         pll = pipe_config->shared_dpll;
10069         if (pll) {
10070                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10071                                                  &pipe_config->dpll_hw_state));
10072         }
10073
10074         /*
10075          * Haswell has only FDI/PCH transcoder A. It is which is connected to
10076          * DDI E. So just check whether this pipe is wired to DDI E and whether
10077          * the PCH transcoder is on.
10078          */
10079         if (INTEL_INFO(dev)->gen < 9 &&
10080             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10081                 pipe_config->has_pch_encoder = true;
10082
10083                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10084                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10085                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
10086
10087                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10088         }
10089 }
10090
10091 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10092                                     struct intel_crtc_state *pipe_config)
10093 {
10094         struct drm_device *dev = crtc->base.dev;
10095         struct drm_i915_private *dev_priv = to_i915(dev);
10096         enum intel_display_power_domain power_domain;
10097         unsigned long power_domain_mask;
10098         bool active;
10099
10100         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10101         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10102                 return false;
10103         power_domain_mask = BIT(power_domain);
10104
10105         pipe_config->shared_dpll = NULL;
10106
10107         active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10108
10109         if (IS_BROXTON(dev_priv) &&
10110             bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10111                 WARN_ON(active);
10112                 active = true;
10113         }
10114
10115         if (!active)
10116                 goto out;
10117
10118         if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10119                 haswell_get_ddi_port_state(crtc, pipe_config);
10120                 intel_get_pipe_timings(crtc, pipe_config);
10121         }
10122
10123         intel_get_pipe_src_size(crtc, pipe_config);
10124
10125         pipe_config->gamma_mode =
10126                 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10127
10128         if (INTEL_INFO(dev)->gen >= 9) {
10129                 skl_init_scalers(dev, crtc, pipe_config);
10130         }
10131
10132         if (INTEL_INFO(dev)->gen >= 9) {
10133                 pipe_config->scaler_state.scaler_id = -1;
10134                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10135         }
10136
10137         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10138         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10139                 power_domain_mask |= BIT(power_domain);
10140                 if (INTEL_INFO(dev)->gen >= 9)
10141                         skylake_get_pfit_config(crtc, pipe_config);
10142                 else
10143                         ironlake_get_pfit_config(crtc, pipe_config);
10144         }
10145
10146         if (IS_HASWELL(dev))
10147                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10148                         (I915_READ(IPS_CTL) & IPS_ENABLE);
10149
10150         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10151             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10152                 pipe_config->pixel_multiplier =
10153                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10154         } else {
10155                 pipe_config->pixel_multiplier = 1;
10156         }
10157
10158 out:
10159         for_each_power_domain(power_domain, power_domain_mask)
10160                 intel_display_power_put(dev_priv, power_domain);
10161
10162         return active;
10163 }
10164
10165 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10166                                const struct intel_plane_state *plane_state)
10167 {
10168         struct drm_device *dev = crtc->dev;
10169         struct drm_i915_private *dev_priv = to_i915(dev);
10170         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10171         uint32_t cntl = 0, size = 0;
10172
10173         if (plane_state && plane_state->visible) {
10174                 unsigned int width = plane_state->base.crtc_w;
10175                 unsigned int height = plane_state->base.crtc_h;
10176                 unsigned int stride = roundup_pow_of_two(width) * 4;
10177
10178                 switch (stride) {
10179                 default:
10180                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10181                                   width, stride);
10182                         stride = 256;
10183                         /* fallthrough */
10184                 case 256:
10185                 case 512:
10186                 case 1024:
10187                 case 2048:
10188                         break;
10189                 }
10190
10191                 cntl |= CURSOR_ENABLE |
10192                         CURSOR_GAMMA_ENABLE |
10193                         CURSOR_FORMAT_ARGB |
10194                         CURSOR_STRIDE(stride);
10195
10196                 size = (height << 12) | width;
10197         }
10198
10199         if (intel_crtc->cursor_cntl != 0 &&
10200             (intel_crtc->cursor_base != base ||
10201              intel_crtc->cursor_size != size ||
10202              intel_crtc->cursor_cntl != cntl)) {
10203                 /* On these chipsets we can only modify the base/size/stride
10204                  * whilst the cursor is disabled.
10205                  */
10206                 I915_WRITE(CURCNTR(PIPE_A), 0);
10207                 POSTING_READ(CURCNTR(PIPE_A));
10208                 intel_crtc->cursor_cntl = 0;
10209         }
10210
10211         if (intel_crtc->cursor_base != base) {
10212                 I915_WRITE(CURBASE(PIPE_A), base);
10213                 intel_crtc->cursor_base = base;
10214         }
10215
10216         if (intel_crtc->cursor_size != size) {
10217                 I915_WRITE(CURSIZE, size);
10218                 intel_crtc->cursor_size = size;
10219         }
10220
10221         if (intel_crtc->cursor_cntl != cntl) {
10222                 I915_WRITE(CURCNTR(PIPE_A), cntl);
10223                 POSTING_READ(CURCNTR(PIPE_A));
10224                 intel_crtc->cursor_cntl = cntl;
10225         }
10226 }
10227
10228 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10229                                const struct intel_plane_state *plane_state)
10230 {
10231         struct drm_device *dev = crtc->dev;
10232         struct drm_i915_private *dev_priv = to_i915(dev);
10233         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10234         int pipe = intel_crtc->pipe;
10235         uint32_t cntl = 0;
10236
10237         if (plane_state && plane_state->visible) {
10238                 cntl = MCURSOR_GAMMA_ENABLE;
10239                 switch (plane_state->base.crtc_w) {
10240                         case 64:
10241                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10242                                 break;
10243                         case 128:
10244                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10245                                 break;
10246                         case 256:
10247                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10248                                 break;
10249                         default:
10250                                 MISSING_CASE(plane_state->base.crtc_w);
10251                                 return;
10252                 }
10253                 cntl |= pipe << 28; /* Connect to correct pipe */
10254
10255                 if (HAS_DDI(dev))
10256                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10257
10258                 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10259                         cntl |= CURSOR_ROTATE_180;
10260         }
10261
10262         if (intel_crtc->cursor_cntl != cntl) {
10263                 I915_WRITE(CURCNTR(pipe), cntl);
10264                 POSTING_READ(CURCNTR(pipe));
10265                 intel_crtc->cursor_cntl = cntl;
10266         }
10267
10268         /* and commit changes on next vblank */
10269         I915_WRITE(CURBASE(pipe), base);
10270         POSTING_READ(CURBASE(pipe));
10271
10272         intel_crtc->cursor_base = base;
10273 }
10274
10275 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10276 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10277                                      const struct intel_plane_state *plane_state)
10278 {
10279         struct drm_device *dev = crtc->dev;
10280         struct drm_i915_private *dev_priv = to_i915(dev);
10281         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10282         int pipe = intel_crtc->pipe;
10283         u32 base = intel_crtc->cursor_addr;
10284         u32 pos = 0;
10285
10286         if (plane_state) {
10287                 int x = plane_state->base.crtc_x;
10288                 int y = plane_state->base.crtc_y;
10289
10290                 if (x < 0) {
10291                         pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10292                         x = -x;
10293                 }
10294                 pos |= x << CURSOR_X_SHIFT;
10295
10296                 if (y < 0) {
10297                         pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10298                         y = -y;
10299                 }
10300                 pos |= y << CURSOR_Y_SHIFT;
10301
10302                 /* ILK+ do this automagically */
10303                 if (HAS_GMCH_DISPLAY(dev) &&
10304                     plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10305                         base += (plane_state->base.crtc_h *
10306                                  plane_state->base.crtc_w - 1) * 4;
10307                 }
10308         }
10309
10310         I915_WRITE(CURPOS(pipe), pos);
10311
10312         if (IS_845G(dev) || IS_I865G(dev))
10313                 i845_update_cursor(crtc, base, plane_state);
10314         else
10315                 i9xx_update_cursor(crtc, base, plane_state);
10316 }
10317
10318 static bool cursor_size_ok(struct drm_device *dev,
10319                            uint32_t width, uint32_t height)
10320 {
10321         if (width == 0 || height == 0)
10322                 return false;
10323
10324         /*
10325          * 845g/865g are special in that they are only limited by
10326          * the width of their cursors, the height is arbitrary up to
10327          * the precision of the register. Everything else requires
10328          * square cursors, limited to a few power-of-two sizes.
10329          */
10330         if (IS_845G(dev) || IS_I865G(dev)) {
10331                 if ((width & 63) != 0)
10332                         return false;
10333
10334                 if (width > (IS_845G(dev) ? 64 : 512))
10335                         return false;
10336
10337                 if (height > 1023)
10338                         return false;
10339         } else {
10340                 switch (width | height) {
10341                 case 256:
10342                 case 128:
10343                         if (IS_GEN2(dev))
10344                                 return false;
10345                 case 64:
10346                         break;
10347                 default:
10348                         return false;
10349                 }
10350         }
10351
10352         return true;
10353 }
10354
10355 /* VESA 640x480x72Hz mode to set on the pipe */
10356 static struct drm_display_mode load_detect_mode = {
10357         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10358                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10359 };
10360
10361 struct drm_framebuffer *
10362 __intel_framebuffer_create(struct drm_device *dev,
10363                            struct drm_mode_fb_cmd2 *mode_cmd,
10364                            struct drm_i915_gem_object *obj)
10365 {
10366         struct intel_framebuffer *intel_fb;
10367         int ret;
10368
10369         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10370         if (!intel_fb)
10371                 return ERR_PTR(-ENOMEM);
10372
10373         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10374         if (ret)
10375                 goto err;
10376
10377         return &intel_fb->base;
10378
10379 err:
10380         kfree(intel_fb);
10381         return ERR_PTR(ret);
10382 }
10383
10384 static struct drm_framebuffer *
10385 intel_framebuffer_create(struct drm_device *dev,
10386                          struct drm_mode_fb_cmd2 *mode_cmd,
10387                          struct drm_i915_gem_object *obj)
10388 {
10389         struct drm_framebuffer *fb;
10390         int ret;
10391
10392         ret = i915_mutex_lock_interruptible(dev);
10393         if (ret)
10394                 return ERR_PTR(ret);
10395         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10396         mutex_unlock(&dev->struct_mutex);
10397
10398         return fb;
10399 }
10400
10401 static u32
10402 intel_framebuffer_pitch_for_width(int width, int bpp)
10403 {
10404         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10405         return ALIGN(pitch, 64);
10406 }
10407
10408 static u32
10409 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10410 {
10411         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10412         return PAGE_ALIGN(pitch * mode->vdisplay);
10413 }
10414
10415 static struct drm_framebuffer *
10416 intel_framebuffer_create_for_mode(struct drm_device *dev,
10417                                   struct drm_display_mode *mode,
10418                                   int depth, int bpp)
10419 {
10420         struct drm_framebuffer *fb;
10421         struct drm_i915_gem_object *obj;
10422         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10423
10424         obj = i915_gem_object_create(dev,
10425                                     intel_framebuffer_size_for_mode(mode, bpp));
10426         if (IS_ERR(obj))
10427                 return ERR_CAST(obj);
10428
10429         mode_cmd.width = mode->hdisplay;
10430         mode_cmd.height = mode->vdisplay;
10431         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10432                                                                 bpp);
10433         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10434
10435         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10436         if (IS_ERR(fb))
10437                 drm_gem_object_unreference_unlocked(&obj->base);
10438
10439         return fb;
10440 }
10441
10442 static struct drm_framebuffer *
10443 mode_fits_in_fbdev(struct drm_device *dev,
10444                    struct drm_display_mode *mode)
10445 {
10446 #ifdef CONFIG_DRM_FBDEV_EMULATION
10447         struct drm_i915_private *dev_priv = to_i915(dev);
10448         struct drm_i915_gem_object *obj;
10449         struct drm_framebuffer *fb;
10450
10451         if (!dev_priv->fbdev)
10452                 return NULL;
10453
10454         if (!dev_priv->fbdev->fb)
10455                 return NULL;
10456
10457         obj = dev_priv->fbdev->fb->obj;
10458         BUG_ON(!obj);
10459
10460         fb = &dev_priv->fbdev->fb->base;
10461         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10462                                                                fb->bits_per_pixel))
10463                 return NULL;
10464
10465         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10466                 return NULL;
10467
10468         drm_framebuffer_reference(fb);
10469         return fb;
10470 #else
10471         return NULL;
10472 #endif
10473 }
10474
10475 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10476                                            struct drm_crtc *crtc,
10477                                            struct drm_display_mode *mode,
10478                                            struct drm_framebuffer *fb,
10479                                            int x, int y)
10480 {
10481         struct drm_plane_state *plane_state;
10482         int hdisplay, vdisplay;
10483         int ret;
10484
10485         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10486         if (IS_ERR(plane_state))
10487                 return PTR_ERR(plane_state);
10488
10489         if (mode)
10490                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10491         else
10492                 hdisplay = vdisplay = 0;
10493
10494         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10495         if (ret)
10496                 return ret;
10497         drm_atomic_set_fb_for_plane(plane_state, fb);
10498         plane_state->crtc_x = 0;
10499         plane_state->crtc_y = 0;
10500         plane_state->crtc_w = hdisplay;
10501         plane_state->crtc_h = vdisplay;
10502         plane_state->src_x = x << 16;
10503         plane_state->src_y = y << 16;
10504         plane_state->src_w = hdisplay << 16;
10505         plane_state->src_h = vdisplay << 16;
10506
10507         return 0;
10508 }
10509
10510 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10511                                 struct drm_display_mode *mode,
10512                                 struct intel_load_detect_pipe *old,
10513                                 struct drm_modeset_acquire_ctx *ctx)
10514 {
10515         struct intel_crtc *intel_crtc;
10516         struct intel_encoder *intel_encoder =
10517                 intel_attached_encoder(connector);
10518         struct drm_crtc *possible_crtc;
10519         struct drm_encoder *encoder = &intel_encoder->base;
10520         struct drm_crtc *crtc = NULL;
10521         struct drm_device *dev = encoder->dev;
10522         struct drm_framebuffer *fb;
10523         struct drm_mode_config *config = &dev->mode_config;
10524         struct drm_atomic_state *state = NULL, *restore_state = NULL;
10525         struct drm_connector_state *connector_state;
10526         struct intel_crtc_state *crtc_state;
10527         int ret, i = -1;
10528
10529         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10530                       connector->base.id, connector->name,
10531                       encoder->base.id, encoder->name);
10532
10533         old->restore_state = NULL;
10534
10535 retry:
10536         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10537         if (ret)
10538                 goto fail;
10539
10540         /*
10541          * Algorithm gets a little messy:
10542          *
10543          *   - if the connector already has an assigned crtc, use it (but make
10544          *     sure it's on first)
10545          *
10546          *   - try to find the first unused crtc that can drive this connector,
10547          *     and use that if we find one
10548          */
10549
10550         /* See if we already have a CRTC for this connector */
10551         if (connector->state->crtc) {
10552                 crtc = connector->state->crtc;
10553
10554                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10555                 if (ret)
10556                         goto fail;
10557
10558                 /* Make sure the crtc and connector are running */
10559                 goto found;
10560         }
10561
10562         /* Find an unused one (if possible) */
10563         for_each_crtc(dev, possible_crtc) {
10564                 i++;
10565                 if (!(encoder->possible_crtcs & (1 << i)))
10566                         continue;
10567
10568                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10569                 if (ret)
10570                         goto fail;
10571
10572                 if (possible_crtc->state->enable) {
10573                         drm_modeset_unlock(&possible_crtc->mutex);
10574                         continue;
10575                 }
10576
10577                 crtc = possible_crtc;
10578                 break;
10579         }
10580
10581         /*
10582          * If we didn't find an unused CRTC, don't use any.
10583          */
10584         if (!crtc) {
10585                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10586                 goto fail;
10587         }
10588
10589 found:
10590         intel_crtc = to_intel_crtc(crtc);
10591
10592         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10593         if (ret)
10594                 goto fail;
10595
10596         state = drm_atomic_state_alloc(dev);
10597         restore_state = drm_atomic_state_alloc(dev);
10598         if (!state || !restore_state) {
10599                 ret = -ENOMEM;
10600                 goto fail;
10601         }
10602
10603         state->acquire_ctx = ctx;
10604         restore_state->acquire_ctx = ctx;
10605
10606         connector_state = drm_atomic_get_connector_state(state, connector);
10607         if (IS_ERR(connector_state)) {
10608                 ret = PTR_ERR(connector_state);
10609                 goto fail;
10610         }
10611
10612         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10613         if (ret)
10614                 goto fail;
10615
10616         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10617         if (IS_ERR(crtc_state)) {
10618                 ret = PTR_ERR(crtc_state);
10619                 goto fail;
10620         }
10621
10622         crtc_state->base.active = crtc_state->base.enable = true;
10623
10624         if (!mode)
10625                 mode = &load_detect_mode;
10626
10627         /* We need a framebuffer large enough to accommodate all accesses
10628          * that the plane may generate whilst we perform load detection.
10629          * We can not rely on the fbcon either being present (we get called
10630          * during its initialisation to detect all boot displays, or it may
10631          * not even exist) or that it is large enough to satisfy the
10632          * requested mode.
10633          */
10634         fb = mode_fits_in_fbdev(dev, mode);
10635         if (fb == NULL) {
10636                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10637                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10638         } else
10639                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10640         if (IS_ERR(fb)) {
10641                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10642                 goto fail;
10643         }
10644
10645         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10646         if (ret)
10647                 goto fail;
10648
10649         drm_framebuffer_unreference(fb);
10650
10651         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10652         if (ret)
10653                 goto fail;
10654
10655         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10656         if (!ret)
10657                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10658         if (!ret)
10659                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10660         if (ret) {
10661                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10662                 goto fail;
10663         }
10664
10665         ret = drm_atomic_commit(state);
10666         if (ret) {
10667                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10668                 goto fail;
10669         }
10670
10671         old->restore_state = restore_state;
10672
10673         /* let the connector get through one full cycle before testing */
10674         intel_wait_for_vblank(dev, intel_crtc->pipe);
10675         return true;
10676
10677 fail:
10678         drm_atomic_state_free(state);
10679         drm_atomic_state_free(restore_state);
10680         restore_state = state = NULL;
10681
10682         if (ret == -EDEADLK) {
10683                 drm_modeset_backoff(ctx);
10684                 goto retry;
10685         }
10686
10687         return false;
10688 }
10689
10690 void intel_release_load_detect_pipe(struct drm_connector *connector,
10691                                     struct intel_load_detect_pipe *old,
10692                                     struct drm_modeset_acquire_ctx *ctx)
10693 {
10694         struct intel_encoder *intel_encoder =
10695                 intel_attached_encoder(connector);
10696         struct drm_encoder *encoder = &intel_encoder->base;
10697         struct drm_atomic_state *state = old->restore_state;
10698         int ret;
10699
10700         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10701                       connector->base.id, connector->name,
10702                       encoder->base.id, encoder->name);
10703
10704         if (!state)
10705                 return;
10706
10707         ret = drm_atomic_commit(state);
10708         if (ret) {
10709                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10710                 drm_atomic_state_free(state);
10711         }
10712 }
10713
10714 static int i9xx_pll_refclk(struct drm_device *dev,
10715                            const struct intel_crtc_state *pipe_config)
10716 {
10717         struct drm_i915_private *dev_priv = to_i915(dev);
10718         u32 dpll = pipe_config->dpll_hw_state.dpll;
10719
10720         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10721                 return dev_priv->vbt.lvds_ssc_freq;
10722         else if (HAS_PCH_SPLIT(dev))
10723                 return 120000;
10724         else if (!IS_GEN2(dev))
10725                 return 96000;
10726         else
10727                 return 48000;
10728 }
10729
10730 /* Returns the clock of the currently programmed mode of the given pipe. */
10731 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10732                                 struct intel_crtc_state *pipe_config)
10733 {
10734         struct drm_device *dev = crtc->base.dev;
10735         struct drm_i915_private *dev_priv = to_i915(dev);
10736         int pipe = pipe_config->cpu_transcoder;
10737         u32 dpll = pipe_config->dpll_hw_state.dpll;
10738         u32 fp;
10739         struct dpll clock;
10740         int port_clock;
10741         int refclk = i9xx_pll_refclk(dev, pipe_config);
10742
10743         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10744                 fp = pipe_config->dpll_hw_state.fp0;
10745         else
10746                 fp = pipe_config->dpll_hw_state.fp1;
10747
10748         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10749         if (IS_PINEVIEW(dev)) {
10750                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10751                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10752         } else {
10753                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10754                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10755         }
10756
10757         if (!IS_GEN2(dev)) {
10758                 if (IS_PINEVIEW(dev))
10759                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10760                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10761                 else
10762                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10763                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10764
10765                 switch (dpll & DPLL_MODE_MASK) {
10766                 case DPLLB_MODE_DAC_SERIAL:
10767                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10768                                 5 : 10;
10769                         break;
10770                 case DPLLB_MODE_LVDS:
10771                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10772                                 7 : 14;
10773                         break;
10774                 default:
10775                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10776                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10777                         return;
10778                 }
10779
10780                 if (IS_PINEVIEW(dev))
10781                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10782                 else
10783                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10784         } else {
10785                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10786                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10787
10788                 if (is_lvds) {
10789                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10790                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10791
10792                         if (lvds & LVDS_CLKB_POWER_UP)
10793                                 clock.p2 = 7;
10794                         else
10795                                 clock.p2 = 14;
10796                 } else {
10797                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10798                                 clock.p1 = 2;
10799                         else {
10800                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10801                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10802                         }
10803                         if (dpll & PLL_P2_DIVIDE_BY_4)
10804                                 clock.p2 = 4;
10805                         else
10806                                 clock.p2 = 2;
10807                 }
10808
10809                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10810         }
10811
10812         /*
10813          * This value includes pixel_multiplier. We will use
10814          * port_clock to compute adjusted_mode.crtc_clock in the
10815          * encoder's get_config() function.
10816          */
10817         pipe_config->port_clock = port_clock;
10818 }
10819
10820 int intel_dotclock_calculate(int link_freq,
10821                              const struct intel_link_m_n *m_n)
10822 {
10823         /*
10824          * The calculation for the data clock is:
10825          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10826          * But we want to avoid losing precison if possible, so:
10827          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10828          *
10829          * and the link clock is simpler:
10830          * link_clock = (m * link_clock) / n
10831          */
10832
10833         if (!m_n->link_n)
10834                 return 0;
10835
10836         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10837 }
10838
10839 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10840                                    struct intel_crtc_state *pipe_config)
10841 {
10842         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10843
10844         /* read out port_clock from the DPLL */
10845         i9xx_crtc_clock_get(crtc, pipe_config);
10846
10847         /*
10848          * In case there is an active pipe without active ports,
10849          * we may need some idea for the dotclock anyway.
10850          * Calculate one based on the FDI configuration.
10851          */
10852         pipe_config->base.adjusted_mode.crtc_clock =
10853                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10854                                          &pipe_config->fdi_m_n);
10855 }
10856
10857 /** Returns the currently programmed mode of the given pipe. */
10858 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10859                                              struct drm_crtc *crtc)
10860 {
10861         struct drm_i915_private *dev_priv = to_i915(dev);
10862         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10863         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10864         struct drm_display_mode *mode;
10865         struct intel_crtc_state *pipe_config;
10866         int htot = I915_READ(HTOTAL(cpu_transcoder));
10867         int hsync = I915_READ(HSYNC(cpu_transcoder));
10868         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10869         int vsync = I915_READ(VSYNC(cpu_transcoder));
10870         enum pipe pipe = intel_crtc->pipe;
10871
10872         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10873         if (!mode)
10874                 return NULL;
10875
10876         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10877         if (!pipe_config) {
10878                 kfree(mode);
10879                 return NULL;
10880         }
10881
10882         /*
10883          * Construct a pipe_config sufficient for getting the clock info
10884          * back out of crtc_clock_get.
10885          *
10886          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10887          * to use a real value here instead.
10888          */
10889         pipe_config->cpu_transcoder = (enum transcoder) pipe;
10890         pipe_config->pixel_multiplier = 1;
10891         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10892         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10893         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10894         i9xx_crtc_clock_get(intel_crtc, pipe_config);
10895
10896         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10897         mode->hdisplay = (htot & 0xffff) + 1;
10898         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10899         mode->hsync_start = (hsync & 0xffff) + 1;
10900         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10901         mode->vdisplay = (vtot & 0xffff) + 1;
10902         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10903         mode->vsync_start = (vsync & 0xffff) + 1;
10904         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10905
10906         drm_mode_set_name(mode);
10907
10908         kfree(pipe_config);
10909
10910         return mode;
10911 }
10912
10913 static void intel_crtc_destroy(struct drm_crtc *crtc)
10914 {
10915         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10916         struct drm_device *dev = crtc->dev;
10917         struct intel_flip_work *work;
10918
10919         spin_lock_irq(&dev->event_lock);
10920         work = intel_crtc->flip_work;
10921         intel_crtc->flip_work = NULL;
10922         spin_unlock_irq(&dev->event_lock);
10923
10924         if (work) {
10925                 cancel_work_sync(&work->mmio_work);
10926                 cancel_work_sync(&work->unpin_work);
10927                 kfree(work);
10928         }
10929
10930         drm_crtc_cleanup(crtc);
10931
10932         kfree(intel_crtc);
10933 }
10934
10935 static void intel_unpin_work_fn(struct work_struct *__work)
10936 {
10937         struct intel_flip_work *work =
10938                 container_of(__work, struct intel_flip_work, unpin_work);
10939         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10940         struct drm_device *dev = crtc->base.dev;
10941         struct drm_plane *primary = crtc->base.primary;
10942
10943         if (is_mmio_work(work))
10944                 flush_work(&work->mmio_work);
10945
10946         mutex_lock(&dev->struct_mutex);
10947         intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
10948         drm_gem_object_unreference(&work->pending_flip_obj->base);
10949
10950         if (work->flip_queued_req)
10951                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10952         mutex_unlock(&dev->struct_mutex);
10953
10954         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10955         intel_fbc_post_update(crtc);
10956         drm_framebuffer_unreference(work->old_fb);
10957
10958         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10959         atomic_dec(&crtc->unpin_work_count);
10960
10961         kfree(work);
10962 }
10963
10964 /* Is 'a' after or equal to 'b'? */
10965 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10966 {
10967         return !((a - b) & 0x80000000);
10968 }
10969
10970 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
10971                                    struct intel_flip_work *work)
10972 {
10973         struct drm_device *dev = crtc->base.dev;
10974         struct drm_i915_private *dev_priv = to_i915(dev);
10975         unsigned reset_counter;
10976
10977         reset_counter = i915_reset_counter(&dev_priv->gpu_error);
10978         if (crtc->reset_counter != reset_counter)
10979                 return true;
10980
10981         /*
10982          * The relevant registers doen't exist on pre-ctg.
10983          * As the flip done interrupt doesn't trigger for mmio
10984          * flips on gmch platforms, a flip count check isn't
10985          * really needed there. But since ctg has the registers,
10986          * include it in the check anyway.
10987          */
10988         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10989                 return true;
10990
10991         /*
10992          * BDW signals flip done immediately if the plane
10993          * is disabled, even if the plane enable is already
10994          * armed to occur at the next vblank :(
10995          */
10996
10997         /*
10998          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10999          * used the same base address. In that case the mmio flip might
11000          * have completed, but the CS hasn't even executed the flip yet.
11001          *
11002          * A flip count check isn't enough as the CS might have updated
11003          * the base address just after start of vblank, but before we
11004          * managed to process the interrupt. This means we'd complete the
11005          * CS flip too soon.
11006          *
11007          * Combining both checks should get us a good enough result. It may
11008          * still happen that the CS flip has been executed, but has not
11009          * yet actually completed. But in case the base address is the same
11010          * anyway, we don't really care.
11011          */
11012         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11013                 crtc->flip_work->gtt_offset &&
11014                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11015                                     crtc->flip_work->flip_count);
11016 }
11017
11018 static bool
11019 __pageflip_finished_mmio(struct intel_crtc *crtc,
11020                                struct intel_flip_work *work)
11021 {
11022         /*
11023          * MMIO work completes when vblank is different from
11024          * flip_queued_vblank.
11025          *
11026          * Reset counter value doesn't matter, this is handled by
11027          * i915_wait_request finishing early, so no need to handle
11028          * reset here.
11029          */
11030         return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11031 }
11032
11033
11034 static bool pageflip_finished(struct intel_crtc *crtc,
11035                               struct intel_flip_work *work)
11036 {
11037         if (!atomic_read(&work->pending))
11038                 return false;
11039
11040         smp_rmb();
11041
11042         if (is_mmio_work(work))
11043                 return __pageflip_finished_mmio(crtc, work);
11044         else
11045                 return __pageflip_finished_cs(crtc, work);
11046 }
11047
11048 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11049 {
11050         struct drm_device *dev = &dev_priv->drm;
11051         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11052         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11053         struct intel_flip_work *work;
11054         unsigned long flags;
11055
11056         /* Ignore early vblank irqs */
11057         if (!crtc)
11058                 return;
11059
11060         /*
11061          * This is called both by irq handlers and the reset code (to complete
11062          * lost pageflips) so needs the full irqsave spinlocks.
11063          */
11064         spin_lock_irqsave(&dev->event_lock, flags);
11065         work = intel_crtc->flip_work;
11066
11067         if (work != NULL &&
11068             !is_mmio_work(work) &&
11069             pageflip_finished(intel_crtc, work))
11070                 page_flip_completed(intel_crtc);
11071
11072         spin_unlock_irqrestore(&dev->event_lock, flags);
11073 }
11074
11075 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11076 {
11077         struct drm_device *dev = &dev_priv->drm;
11078         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11079         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11080         struct intel_flip_work *work;
11081         unsigned long flags;
11082
11083         /* Ignore early vblank irqs */
11084         if (!crtc)
11085                 return;
11086
11087         /*
11088          * This is called both by irq handlers and the reset code (to complete
11089          * lost pageflips) so needs the full irqsave spinlocks.
11090          */
11091         spin_lock_irqsave(&dev->event_lock, flags);
11092         work = intel_crtc->flip_work;
11093
11094         if (work != NULL &&
11095             is_mmio_work(work) &&
11096             pageflip_finished(intel_crtc, work))
11097                 page_flip_completed(intel_crtc);
11098
11099         spin_unlock_irqrestore(&dev->event_lock, flags);
11100 }
11101
11102 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11103                                                struct intel_flip_work *work)
11104 {
11105         work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11106
11107         /* Ensure that the work item is consistent when activating it ... */
11108         smp_mb__before_atomic();
11109         atomic_set(&work->pending, 1);
11110 }
11111
11112 static int intel_gen2_queue_flip(struct drm_device *dev,
11113                                  struct drm_crtc *crtc,
11114                                  struct drm_framebuffer *fb,
11115                                  struct drm_i915_gem_object *obj,
11116                                  struct drm_i915_gem_request *req,
11117                                  uint32_t flags)
11118 {
11119         struct intel_engine_cs *engine = req->engine;
11120         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11121         u32 flip_mask;
11122         int ret;
11123
11124         ret = intel_ring_begin(req, 6);
11125         if (ret)
11126                 return ret;
11127
11128         /* Can't queue multiple flips, so wait for the previous
11129          * one to finish before executing the next.
11130          */
11131         if (intel_crtc->plane)
11132                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11133         else
11134                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11135         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11136         intel_ring_emit(engine, MI_NOOP);
11137         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11138                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11139         intel_ring_emit(engine, fb->pitches[0]);
11140         intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11141         intel_ring_emit(engine, 0); /* aux display base address, unused */
11142
11143         return 0;
11144 }
11145
11146 static int intel_gen3_queue_flip(struct drm_device *dev,
11147                                  struct drm_crtc *crtc,
11148                                  struct drm_framebuffer *fb,
11149                                  struct drm_i915_gem_object *obj,
11150                                  struct drm_i915_gem_request *req,
11151                                  uint32_t flags)
11152 {
11153         struct intel_engine_cs *engine = req->engine;
11154         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11155         u32 flip_mask;
11156         int ret;
11157
11158         ret = intel_ring_begin(req, 6);
11159         if (ret)
11160                 return ret;
11161
11162         if (intel_crtc->plane)
11163                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11164         else
11165                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11166         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11167         intel_ring_emit(engine, MI_NOOP);
11168         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 |
11169                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11170         intel_ring_emit(engine, fb->pitches[0]);
11171         intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11172         intel_ring_emit(engine, MI_NOOP);
11173
11174         return 0;
11175 }
11176
11177 static int intel_gen4_queue_flip(struct drm_device *dev,
11178                                  struct drm_crtc *crtc,
11179                                  struct drm_framebuffer *fb,
11180                                  struct drm_i915_gem_object *obj,
11181                                  struct drm_i915_gem_request *req,
11182                                  uint32_t flags)
11183 {
11184         struct intel_engine_cs *engine = req->engine;
11185         struct drm_i915_private *dev_priv = to_i915(dev);
11186         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11187         uint32_t pf, pipesrc;
11188         int ret;
11189
11190         ret = intel_ring_begin(req, 4);
11191         if (ret)
11192                 return ret;
11193
11194         /* i965+ uses the linear or tiled offsets from the
11195          * Display Registers (which do not change across a page-flip)
11196          * so we need only reprogram the base address.
11197          */
11198         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11199                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11200         intel_ring_emit(engine, fb->pitches[0]);
11201         intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset |
11202                         obj->tiling_mode);
11203
11204         /* XXX Enabling the panel-fitter across page-flip is so far
11205          * untested on non-native modes, so ignore it for now.
11206          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11207          */
11208         pf = 0;
11209         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11210         intel_ring_emit(engine, pf | pipesrc);
11211
11212         return 0;
11213 }
11214
11215 static int intel_gen6_queue_flip(struct drm_device *dev,
11216                                  struct drm_crtc *crtc,
11217                                  struct drm_framebuffer *fb,
11218                                  struct drm_i915_gem_object *obj,
11219                                  struct drm_i915_gem_request *req,
11220                                  uint32_t flags)
11221 {
11222         struct intel_engine_cs *engine = req->engine;
11223         struct drm_i915_private *dev_priv = to_i915(dev);
11224         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11225         uint32_t pf, pipesrc;
11226         int ret;
11227
11228         ret = intel_ring_begin(req, 4);
11229         if (ret)
11230                 return ret;
11231
11232         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11233                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11234         intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode);
11235         intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11236
11237         /* Contrary to the suggestions in the documentation,
11238          * "Enable Panel Fitter" does not seem to be required when page
11239          * flipping with a non-native mode, and worse causes a normal
11240          * modeset to fail.
11241          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11242          */
11243         pf = 0;
11244         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11245         intel_ring_emit(engine, pf | pipesrc);
11246
11247         return 0;
11248 }
11249
11250 static int intel_gen7_queue_flip(struct drm_device *dev,
11251                                  struct drm_crtc *crtc,
11252                                  struct drm_framebuffer *fb,
11253                                  struct drm_i915_gem_object *obj,
11254                                  struct drm_i915_gem_request *req,
11255                                  uint32_t flags)
11256 {
11257         struct intel_engine_cs *engine = req->engine;
11258         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11259         uint32_t plane_bit = 0;
11260         int len, ret;
11261
11262         switch (intel_crtc->plane) {
11263         case PLANE_A:
11264                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11265                 break;
11266         case PLANE_B:
11267                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11268                 break;
11269         case PLANE_C:
11270                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11271                 break;
11272         default:
11273                 WARN_ONCE(1, "unknown plane in flip command\n");
11274                 return -ENODEV;
11275         }
11276
11277         len = 4;
11278         if (engine->id == RCS) {
11279                 len += 6;
11280                 /*
11281                  * On Gen 8, SRM is now taking an extra dword to accommodate
11282                  * 48bits addresses, and we need a NOOP for the batch size to
11283                  * stay even.
11284                  */
11285                 if (IS_GEN8(dev))
11286                         len += 2;
11287         }
11288
11289         /*
11290          * BSpec MI_DISPLAY_FLIP for IVB:
11291          * "The full packet must be contained within the same cache line."
11292          *
11293          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11294          * cacheline, if we ever start emitting more commands before
11295          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11296          * then do the cacheline alignment, and finally emit the
11297          * MI_DISPLAY_FLIP.
11298          */
11299         ret = intel_ring_cacheline_align(req);
11300         if (ret)
11301                 return ret;
11302
11303         ret = intel_ring_begin(req, len);
11304         if (ret)
11305                 return ret;
11306
11307         /* Unmask the flip-done completion message. Note that the bspec says that
11308          * we should do this for both the BCS and RCS, and that we must not unmask
11309          * more than one flip event at any time (or ensure that one flip message
11310          * can be sent by waiting for flip-done prior to queueing new flips).
11311          * Experimentation says that BCS works despite DERRMR masking all
11312          * flip-done completion events and that unmasking all planes at once
11313          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11314          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11315          */
11316         if (engine->id == RCS) {
11317                 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
11318                 intel_ring_emit_reg(engine, DERRMR);
11319                 intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11320                                           DERRMR_PIPEB_PRI_FLIP_DONE |
11321                                           DERRMR_PIPEC_PRI_FLIP_DONE));
11322                 if (IS_GEN8(dev))
11323                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 |
11324                                               MI_SRM_LRM_GLOBAL_GTT);
11325                 else
11326                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM |
11327                                               MI_SRM_LRM_GLOBAL_GTT);
11328                 intel_ring_emit_reg(engine, DERRMR);
11329                 intel_ring_emit(engine, engine->scratch.gtt_offset + 256);
11330                 if (IS_GEN8(dev)) {
11331                         intel_ring_emit(engine, 0);
11332                         intel_ring_emit(engine, MI_NOOP);
11333                 }
11334         }
11335
11336         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit);
11337         intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode));
11338         intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11339         intel_ring_emit(engine, (MI_NOOP));
11340
11341         return 0;
11342 }
11343
11344 static bool use_mmio_flip(struct intel_engine_cs *engine,
11345                           struct drm_i915_gem_object *obj)
11346 {
11347         struct reservation_object *resv;
11348
11349         /*
11350          * This is not being used for older platforms, because
11351          * non-availability of flip done interrupt forces us to use
11352          * CS flips. Older platforms derive flip done using some clever
11353          * tricks involving the flip_pending status bits and vblank irqs.
11354          * So using MMIO flips there would disrupt this mechanism.
11355          */
11356
11357         if (engine == NULL)
11358                 return true;
11359
11360         if (INTEL_GEN(engine->i915) < 5)
11361                 return false;
11362
11363         if (i915.use_mmio_flip < 0)
11364                 return false;
11365         else if (i915.use_mmio_flip > 0)
11366                 return true;
11367         else if (i915.enable_execlists)
11368                 return true;
11369
11370         resv = i915_gem_object_get_dmabuf_resv(obj);
11371         if (resv && !reservation_object_test_signaled_rcu(resv, false))
11372                 return true;
11373
11374         return engine != i915_gem_request_get_engine(obj->last_write_req);
11375 }
11376
11377 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11378                              unsigned int rotation,
11379                              struct intel_flip_work *work)
11380 {
11381         struct drm_device *dev = intel_crtc->base.dev;
11382         struct drm_i915_private *dev_priv = to_i915(dev);
11383         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11384         const enum pipe pipe = intel_crtc->pipe;
11385         u32 ctl, stride, tile_height;
11386
11387         ctl = I915_READ(PLANE_CTL(pipe, 0));
11388         ctl &= ~PLANE_CTL_TILED_MASK;
11389         switch (fb->modifier[0]) {
11390         case DRM_FORMAT_MOD_NONE:
11391                 break;
11392         case I915_FORMAT_MOD_X_TILED:
11393                 ctl |= PLANE_CTL_TILED_X;
11394                 break;
11395         case I915_FORMAT_MOD_Y_TILED:
11396                 ctl |= PLANE_CTL_TILED_Y;
11397                 break;
11398         case I915_FORMAT_MOD_Yf_TILED:
11399                 ctl |= PLANE_CTL_TILED_YF;
11400                 break;
11401         default:
11402                 MISSING_CASE(fb->modifier[0]);
11403         }
11404
11405         /*
11406          * The stride is either expressed as a multiple of 64 bytes chunks for
11407          * linear buffers or in number of tiles for tiled buffers.
11408          */
11409         if (intel_rotation_90_or_270(rotation)) {
11410                 /* stride = Surface height in tiles */
11411                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11412                 stride = DIV_ROUND_UP(fb->height, tile_height);
11413         } else {
11414                 stride = fb->pitches[0] /
11415                         intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11416                                                   fb->pixel_format);
11417         }
11418
11419         /*
11420          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11421          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11422          */
11423         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11424         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11425
11426         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11427         POSTING_READ(PLANE_SURF(pipe, 0));
11428 }
11429
11430 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11431                              struct intel_flip_work *work)
11432 {
11433         struct drm_device *dev = intel_crtc->base.dev;
11434         struct drm_i915_private *dev_priv = to_i915(dev);
11435         struct intel_framebuffer *intel_fb =
11436                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11437         struct drm_i915_gem_object *obj = intel_fb->obj;
11438         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11439         u32 dspcntr;
11440
11441         dspcntr = I915_READ(reg);
11442
11443         if (obj->tiling_mode != I915_TILING_NONE)
11444                 dspcntr |= DISPPLANE_TILED;
11445         else
11446                 dspcntr &= ~DISPPLANE_TILED;
11447
11448         I915_WRITE(reg, dspcntr);
11449
11450         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11451         POSTING_READ(DSPSURF(intel_crtc->plane));
11452 }
11453
11454 static void intel_mmio_flip_work_func(struct work_struct *w)
11455 {
11456         struct intel_flip_work *work =
11457                 container_of(w, struct intel_flip_work, mmio_work);
11458         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11459         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11460         struct intel_framebuffer *intel_fb =
11461                 to_intel_framebuffer(crtc->base.primary->fb);
11462         struct drm_i915_gem_object *obj = intel_fb->obj;
11463         struct reservation_object *resv;
11464
11465         if (work->flip_queued_req)
11466                 WARN_ON(__i915_wait_request(work->flip_queued_req,
11467                                             false, NULL,
11468                                             &dev_priv->rps.mmioflips));
11469
11470         /* For framebuffer backed by dmabuf, wait for fence */
11471         resv = i915_gem_object_get_dmabuf_resv(obj);
11472         if (resv)
11473                 WARN_ON(reservation_object_wait_timeout_rcu(resv, false, false,
11474                                                             MAX_SCHEDULE_TIMEOUT) < 0);
11475
11476         intel_pipe_update_start(crtc);
11477
11478         if (INTEL_GEN(dev_priv) >= 9)
11479                 skl_do_mmio_flip(crtc, work->rotation, work);
11480         else
11481                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11482                 ilk_do_mmio_flip(crtc, work);
11483
11484         intel_pipe_update_end(crtc, work);
11485 }
11486
11487 static int intel_default_queue_flip(struct drm_device *dev,
11488                                     struct drm_crtc *crtc,
11489                                     struct drm_framebuffer *fb,
11490                                     struct drm_i915_gem_object *obj,
11491                                     struct drm_i915_gem_request *req,
11492                                     uint32_t flags)
11493 {
11494         return -ENODEV;
11495 }
11496
11497 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
11498                                       struct intel_crtc *intel_crtc,
11499                                       struct intel_flip_work *work)
11500 {
11501         u32 addr, vblank;
11502
11503         if (!atomic_read(&work->pending))
11504                 return false;
11505
11506         smp_rmb();
11507
11508         vblank = intel_crtc_get_vblank_counter(intel_crtc);
11509         if (work->flip_ready_vblank == 0) {
11510                 if (work->flip_queued_req &&
11511                     !i915_gem_request_completed(work->flip_queued_req))
11512                         return false;
11513
11514                 work->flip_ready_vblank = vblank;
11515         }
11516
11517         if (vblank - work->flip_ready_vblank < 3)
11518                 return false;
11519
11520         /* Potential stall - if we see that the flip has happened,
11521          * assume a missed interrupt. */
11522         if (INTEL_GEN(dev_priv) >= 4)
11523                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11524         else
11525                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11526
11527         /* There is a potential issue here with a false positive after a flip
11528          * to the same address. We could address this by checking for a
11529          * non-incrementing frame counter.
11530          */
11531         return addr == work->gtt_offset;
11532 }
11533
11534 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
11535 {
11536         struct drm_device *dev = &dev_priv->drm;
11537         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11538         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11539         struct intel_flip_work *work;
11540
11541         WARN_ON(!in_interrupt());
11542
11543         if (crtc == NULL)
11544                 return;
11545
11546         spin_lock(&dev->event_lock);
11547         work = intel_crtc->flip_work;
11548
11549         if (work != NULL && !is_mmio_work(work) &&
11550             __pageflip_stall_check_cs(dev_priv, intel_crtc, work)) {
11551                 WARN_ONCE(1,
11552                           "Kicking stuck page flip: queued at %d, now %d\n",
11553                         work->flip_queued_vblank, intel_crtc_get_vblank_counter(intel_crtc));
11554                 page_flip_completed(intel_crtc);
11555                 work = NULL;
11556         }
11557
11558         if (work != NULL && !is_mmio_work(work) &&
11559             intel_crtc_get_vblank_counter(intel_crtc) - work->flip_queued_vblank > 1)
11560                 intel_queue_rps_boost_for_request(work->flip_queued_req);
11561         spin_unlock(&dev->event_lock);
11562 }
11563
11564 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11565                                 struct drm_framebuffer *fb,
11566                                 struct drm_pending_vblank_event *event,
11567                                 uint32_t page_flip_flags)
11568 {
11569         struct drm_device *dev = crtc->dev;
11570         struct drm_i915_private *dev_priv = to_i915(dev);
11571         struct drm_framebuffer *old_fb = crtc->primary->fb;
11572         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11573         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11574         struct drm_plane *primary = crtc->primary;
11575         enum pipe pipe = intel_crtc->pipe;
11576         struct intel_flip_work *work;
11577         struct intel_engine_cs *engine;
11578         bool mmio_flip;
11579         struct drm_i915_gem_request *request = NULL;
11580         int ret;
11581
11582         /*
11583          * drm_mode_page_flip_ioctl() should already catch this, but double
11584          * check to be safe.  In the future we may enable pageflipping from
11585          * a disabled primary plane.
11586          */
11587         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11588                 return -EBUSY;
11589
11590         /* Can't change pixel format via MI display flips. */
11591         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11592                 return -EINVAL;
11593
11594         /*
11595          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11596          * Note that pitch changes could also affect these register.
11597          */
11598         if (INTEL_INFO(dev)->gen > 3 &&
11599             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11600              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11601                 return -EINVAL;
11602
11603         if (i915_terminally_wedged(&dev_priv->gpu_error))
11604                 goto out_hang;
11605
11606         work = kzalloc(sizeof(*work), GFP_KERNEL);
11607         if (work == NULL)
11608                 return -ENOMEM;
11609
11610         work->event = event;
11611         work->crtc = crtc;
11612         work->old_fb = old_fb;
11613         INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
11614
11615         ret = drm_crtc_vblank_get(crtc);
11616         if (ret)
11617                 goto free_work;
11618
11619         /* We borrow the event spin lock for protecting flip_work */
11620         spin_lock_irq(&dev->event_lock);
11621         if (intel_crtc->flip_work) {
11622                 /* Before declaring the flip queue wedged, check if
11623                  * the hardware completed the operation behind our backs.
11624                  */
11625                 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
11626                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11627                         page_flip_completed(intel_crtc);
11628                 } else {
11629                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11630                         spin_unlock_irq(&dev->event_lock);
11631
11632                         drm_crtc_vblank_put(crtc);
11633                         kfree(work);
11634                         return -EBUSY;
11635                 }
11636         }
11637         intel_crtc->flip_work = work;
11638         spin_unlock_irq(&dev->event_lock);
11639
11640         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11641                 flush_workqueue(dev_priv->wq);
11642
11643         /* Reference the objects for the scheduled work. */
11644         drm_framebuffer_reference(work->old_fb);
11645         drm_gem_object_reference(&obj->base);
11646
11647         crtc->primary->fb = fb;
11648         update_state_fb(crtc->primary);
11649
11650         intel_fbc_pre_update(intel_crtc, intel_crtc->config,
11651                              to_intel_plane_state(primary->state));
11652
11653         work->pending_flip_obj = obj;
11654
11655         ret = i915_mutex_lock_interruptible(dev);
11656         if (ret)
11657                 goto cleanup;
11658
11659         intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11660         if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) {
11661                 ret = -EIO;
11662                 goto cleanup;
11663         }
11664
11665         atomic_inc(&intel_crtc->unpin_work_count);
11666
11667         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11668                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11669
11670         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11671                 engine = &dev_priv->engine[BCS];
11672                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11673                         /* vlv: DISPLAY_FLIP fails to change tiling */
11674                         engine = NULL;
11675         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11676                 engine = &dev_priv->engine[BCS];
11677         } else if (INTEL_INFO(dev)->gen >= 7) {
11678                 engine = i915_gem_request_get_engine(obj->last_write_req);
11679                 if (engine == NULL || engine->id != RCS)
11680                         engine = &dev_priv->engine[BCS];
11681         } else {
11682                 engine = &dev_priv->engine[RCS];
11683         }
11684
11685         mmio_flip = use_mmio_flip(engine, obj);
11686
11687         /* When using CS flips, we want to emit semaphores between rings.
11688          * However, when using mmio flips we will create a task to do the
11689          * synchronisation, so all we want here is to pin the framebuffer
11690          * into the display plane and skip any waits.
11691          */
11692         if (!mmio_flip) {
11693                 ret = i915_gem_object_sync(obj, engine, &request);
11694                 if (!ret && !request) {
11695                         request = i915_gem_request_alloc(engine, NULL);
11696                         ret = PTR_ERR_OR_ZERO(request);
11697                 }
11698
11699                 if (ret)
11700                         goto cleanup_pending;
11701         }
11702
11703         ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
11704         if (ret)
11705                 goto cleanup_pending;
11706
11707         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11708                                                   obj, 0);
11709         work->gtt_offset += intel_crtc->dspaddr_offset;
11710         work->rotation = crtc->primary->state->rotation;
11711
11712         if (mmio_flip) {
11713                 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
11714
11715                 i915_gem_request_assign(&work->flip_queued_req,
11716                                         obj->last_write_req);
11717
11718                 schedule_work(&work->mmio_work);
11719         } else {
11720                 i915_gem_request_assign(&work->flip_queued_req, request);
11721                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11722                                                    page_flip_flags);
11723                 if (ret)
11724                         goto cleanup_unpin;
11725
11726                 intel_mark_page_flip_active(intel_crtc, work);
11727
11728                 i915_add_request_no_flush(request);
11729         }
11730
11731         i915_gem_track_fb(intel_fb_obj(old_fb), obj,
11732                           to_intel_plane(primary)->frontbuffer_bit);
11733         mutex_unlock(&dev->struct_mutex);
11734
11735         intel_frontbuffer_flip_prepare(dev,
11736                                        to_intel_plane(primary)->frontbuffer_bit);
11737
11738         trace_i915_flip_request(intel_crtc->plane, obj);
11739
11740         return 0;
11741
11742 cleanup_unpin:
11743         intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
11744 cleanup_pending:
11745         if (!IS_ERR_OR_NULL(request))
11746                 i915_add_request_no_flush(request);
11747         atomic_dec(&intel_crtc->unpin_work_count);
11748         mutex_unlock(&dev->struct_mutex);
11749 cleanup:
11750         crtc->primary->fb = old_fb;
11751         update_state_fb(crtc->primary);
11752
11753         drm_gem_object_unreference_unlocked(&obj->base);
11754         drm_framebuffer_unreference(work->old_fb);
11755
11756         spin_lock_irq(&dev->event_lock);
11757         intel_crtc->flip_work = NULL;
11758         spin_unlock_irq(&dev->event_lock);
11759
11760         drm_crtc_vblank_put(crtc);
11761 free_work:
11762         kfree(work);
11763
11764         if (ret == -EIO) {
11765                 struct drm_atomic_state *state;
11766                 struct drm_plane_state *plane_state;
11767
11768 out_hang:
11769                 state = drm_atomic_state_alloc(dev);
11770                 if (!state)
11771                         return -ENOMEM;
11772                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11773
11774 retry:
11775                 plane_state = drm_atomic_get_plane_state(state, primary);
11776                 ret = PTR_ERR_OR_ZERO(plane_state);
11777                 if (!ret) {
11778                         drm_atomic_set_fb_for_plane(plane_state, fb);
11779
11780                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11781                         if (!ret)
11782                                 ret = drm_atomic_commit(state);
11783                 }
11784
11785                 if (ret == -EDEADLK) {
11786                         drm_modeset_backoff(state->acquire_ctx);
11787                         drm_atomic_state_clear(state);
11788                         goto retry;
11789                 }
11790
11791                 if (ret)
11792                         drm_atomic_state_free(state);
11793
11794                 if (ret == 0 && event) {
11795                         spin_lock_irq(&dev->event_lock);
11796                         drm_crtc_send_vblank_event(crtc, event);
11797                         spin_unlock_irq(&dev->event_lock);
11798                 }
11799         }
11800         return ret;
11801 }
11802
11803
11804 /**
11805  * intel_wm_need_update - Check whether watermarks need updating
11806  * @plane: drm plane
11807  * @state: new plane state
11808  *
11809  * Check current plane state versus the new one to determine whether
11810  * watermarks need to be recalculated.
11811  *
11812  * Returns true or false.
11813  */
11814 static bool intel_wm_need_update(struct drm_plane *plane,
11815                                  struct drm_plane_state *state)
11816 {
11817         struct intel_plane_state *new = to_intel_plane_state(state);
11818         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11819
11820         /* Update watermarks on tiling or size changes. */
11821         if (new->visible != cur->visible)
11822                 return true;
11823
11824         if (!cur->base.fb || !new->base.fb)
11825                 return false;
11826
11827         if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11828             cur->base.rotation != new->base.rotation ||
11829             drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11830             drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11831             drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11832             drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11833                 return true;
11834
11835         return false;
11836 }
11837
11838 static bool needs_scaling(struct intel_plane_state *state)
11839 {
11840         int src_w = drm_rect_width(&state->src) >> 16;
11841         int src_h = drm_rect_height(&state->src) >> 16;
11842         int dst_w = drm_rect_width(&state->dst);
11843         int dst_h = drm_rect_height(&state->dst);
11844
11845         return (src_w != dst_w || src_h != dst_h);
11846 }
11847
11848 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11849                                     struct drm_plane_state *plane_state)
11850 {
11851         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11852         struct drm_crtc *crtc = crtc_state->crtc;
11853         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11854         struct drm_plane *plane = plane_state->plane;
11855         struct drm_device *dev = crtc->dev;
11856         struct drm_i915_private *dev_priv = to_i915(dev);
11857         struct intel_plane_state *old_plane_state =
11858                 to_intel_plane_state(plane->state);
11859         bool mode_changed = needs_modeset(crtc_state);
11860         bool was_crtc_enabled = crtc->state->active;
11861         bool is_crtc_enabled = crtc_state->active;
11862         bool turn_off, turn_on, visible, was_visible;
11863         struct drm_framebuffer *fb = plane_state->fb;
11864         int ret;
11865
11866         if (INTEL_GEN(dev) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
11867                 ret = skl_update_scaler_plane(
11868                         to_intel_crtc_state(crtc_state),
11869                         to_intel_plane_state(plane_state));
11870                 if (ret)
11871                         return ret;
11872         }
11873
11874         was_visible = old_plane_state->visible;
11875         visible = to_intel_plane_state(plane_state)->visible;
11876
11877         if (!was_crtc_enabled && WARN_ON(was_visible))
11878                 was_visible = false;
11879
11880         /*
11881          * Visibility is calculated as if the crtc was on, but
11882          * after scaler setup everything depends on it being off
11883          * when the crtc isn't active.
11884          *
11885          * FIXME this is wrong for watermarks. Watermarks should also
11886          * be computed as if the pipe would be active. Perhaps move
11887          * per-plane wm computation to the .check_plane() hook, and
11888          * only combine the results from all planes in the current place?
11889          */
11890         if (!is_crtc_enabled)
11891                 to_intel_plane_state(plane_state)->visible = visible = false;
11892
11893         if (!was_visible && !visible)
11894                 return 0;
11895
11896         if (fb != old_plane_state->base.fb)
11897                 pipe_config->fb_changed = true;
11898
11899         turn_off = was_visible && (!visible || mode_changed);
11900         turn_on = visible && (!was_visible || mode_changed);
11901
11902         DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
11903                          intel_crtc->base.base.id,
11904                          intel_crtc->base.name,
11905                          plane->base.id, plane->name,
11906                          fb ? fb->base.id : -1);
11907
11908         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
11909                          plane->base.id, plane->name,
11910                          was_visible, visible,
11911                          turn_off, turn_on, mode_changed);
11912
11913         if (turn_on) {
11914                 pipe_config->update_wm_pre = true;
11915
11916                 /* must disable cxsr around plane enable/disable */
11917                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11918                         pipe_config->disable_cxsr = true;
11919         } else if (turn_off) {
11920                 pipe_config->update_wm_post = true;
11921
11922                 /* must disable cxsr around plane enable/disable */
11923                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11924                         pipe_config->disable_cxsr = true;
11925         } else if (intel_wm_need_update(plane, plane_state)) {
11926                 /* FIXME bollocks */
11927                 pipe_config->update_wm_pre = true;
11928                 pipe_config->update_wm_post = true;
11929         }
11930
11931         /* Pre-gen9 platforms need two-step watermark updates */
11932         if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
11933             INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
11934                 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
11935
11936         if (visible || was_visible)
11937                 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
11938
11939         /*
11940          * WaCxSRDisabledForSpriteScaling:ivb
11941          *
11942          * cstate->update_wm was already set above, so this flag will
11943          * take effect when we commit and program watermarks.
11944          */
11945         if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
11946             needs_scaling(to_intel_plane_state(plane_state)) &&
11947             !needs_scaling(old_plane_state))
11948                 pipe_config->disable_lp_wm = true;
11949
11950         return 0;
11951 }
11952
11953 static bool encoders_cloneable(const struct intel_encoder *a,
11954                                const struct intel_encoder *b)
11955 {
11956         /* masks could be asymmetric, so check both ways */
11957         return a == b || (a->cloneable & (1 << b->type) &&
11958                           b->cloneable & (1 << a->type));
11959 }
11960
11961 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11962                                          struct intel_crtc *crtc,
11963                                          struct intel_encoder *encoder)
11964 {
11965         struct intel_encoder *source_encoder;
11966         struct drm_connector *connector;
11967         struct drm_connector_state *connector_state;
11968         int i;
11969
11970         for_each_connector_in_state(state, connector, connector_state, i) {
11971                 if (connector_state->crtc != &crtc->base)
11972                         continue;
11973
11974                 source_encoder =
11975                         to_intel_encoder(connector_state->best_encoder);
11976                 if (!encoders_cloneable(encoder, source_encoder))
11977                         return false;
11978         }
11979
11980         return true;
11981 }
11982
11983 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11984                                    struct drm_crtc_state *crtc_state)
11985 {
11986         struct drm_device *dev = crtc->dev;
11987         struct drm_i915_private *dev_priv = to_i915(dev);
11988         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11989         struct intel_crtc_state *pipe_config =
11990                 to_intel_crtc_state(crtc_state);
11991         struct drm_atomic_state *state = crtc_state->state;
11992         int ret;
11993         bool mode_changed = needs_modeset(crtc_state);
11994
11995         if (mode_changed && !crtc_state->active)
11996                 pipe_config->update_wm_post = true;
11997
11998         if (mode_changed && crtc_state->enable &&
11999             dev_priv->display.crtc_compute_clock &&
12000             !WARN_ON(pipe_config->shared_dpll)) {
12001                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12002                                                            pipe_config);
12003                 if (ret)
12004                         return ret;
12005         }
12006
12007         if (crtc_state->color_mgmt_changed) {
12008                 ret = intel_color_check(crtc, crtc_state);
12009                 if (ret)
12010                         return ret;
12011
12012                 /*
12013                  * Changing color management on Intel hardware is
12014                  * handled as part of planes update.
12015                  */
12016                 crtc_state->planes_changed = true;
12017         }
12018
12019         ret = 0;
12020         if (dev_priv->display.compute_pipe_wm) {
12021                 ret = dev_priv->display.compute_pipe_wm(pipe_config);
12022                 if (ret) {
12023                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12024                         return ret;
12025                 }
12026         }
12027
12028         if (dev_priv->display.compute_intermediate_wm &&
12029             !to_intel_atomic_state(state)->skip_intermediate_wm) {
12030                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12031                         return 0;
12032
12033                 /*
12034                  * Calculate 'intermediate' watermarks that satisfy both the
12035                  * old state and the new state.  We can program these
12036                  * immediately.
12037                  */
12038                 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12039                                                                 intel_crtc,
12040                                                                 pipe_config);
12041                 if (ret) {
12042                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12043                         return ret;
12044                 }
12045         } else if (dev_priv->display.compute_intermediate_wm) {
12046                 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12047                         pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12048         }
12049
12050         if (INTEL_INFO(dev)->gen >= 9) {
12051                 if (mode_changed)
12052                         ret = skl_update_scaler_crtc(pipe_config);
12053
12054                 if (!ret)
12055                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
12056                                                          pipe_config);
12057         }
12058
12059         return ret;
12060 }
12061
12062 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12063         .mode_set_base_atomic = intel_pipe_set_base_atomic,
12064         .atomic_begin = intel_begin_crtc_commit,
12065         .atomic_flush = intel_finish_crtc_commit,
12066         .atomic_check = intel_crtc_atomic_check,
12067 };
12068
12069 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12070 {
12071         struct intel_connector *connector;
12072
12073         for_each_intel_connector(dev, connector) {
12074                 if (connector->base.state->crtc)
12075                         drm_connector_unreference(&connector->base);
12076
12077                 if (connector->base.encoder) {
12078                         connector->base.state->best_encoder =
12079                                 connector->base.encoder;
12080                         connector->base.state->crtc =
12081                                 connector->base.encoder->crtc;
12082
12083                         drm_connector_reference(&connector->base);
12084                 } else {
12085                         connector->base.state->best_encoder = NULL;
12086                         connector->base.state->crtc = NULL;
12087                 }
12088         }
12089 }
12090
12091 static void
12092 connected_sink_compute_bpp(struct intel_connector *connector,
12093                            struct intel_crtc_state *pipe_config)
12094 {
12095         int bpp = pipe_config->pipe_bpp;
12096
12097         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12098                 connector->base.base.id,
12099                 connector->base.name);
12100
12101         /* Don't use an invalid EDID bpc value */
12102         if (connector->base.display_info.bpc &&
12103             connector->base.display_info.bpc * 3 < bpp) {
12104                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12105                               bpp, connector->base.display_info.bpc*3);
12106                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12107         }
12108
12109         /* Clamp bpp to 8 on screens without EDID 1.4 */
12110         if (connector->base.display_info.bpc == 0 && bpp > 24) {
12111                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12112                               bpp);
12113                 pipe_config->pipe_bpp = 24;
12114         }
12115 }
12116
12117 static int
12118 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12119                           struct intel_crtc_state *pipe_config)
12120 {
12121         struct drm_device *dev = crtc->base.dev;
12122         struct drm_atomic_state *state;
12123         struct drm_connector *connector;
12124         struct drm_connector_state *connector_state;
12125         int bpp, i;
12126
12127         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12128                 bpp = 10*3;
12129         else if (INTEL_INFO(dev)->gen >= 5)
12130                 bpp = 12*3;
12131         else
12132                 bpp = 8*3;
12133
12134
12135         pipe_config->pipe_bpp = bpp;
12136
12137         state = pipe_config->base.state;
12138
12139         /* Clamp display bpp to EDID value */
12140         for_each_connector_in_state(state, connector, connector_state, i) {
12141                 if (connector_state->crtc != &crtc->base)
12142                         continue;
12143
12144                 connected_sink_compute_bpp(to_intel_connector(connector),
12145                                            pipe_config);
12146         }
12147
12148         return bpp;
12149 }
12150
12151 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12152 {
12153         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12154                         "type: 0x%x flags: 0x%x\n",
12155                 mode->crtc_clock,
12156                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12157                 mode->crtc_hsync_end, mode->crtc_htotal,
12158                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12159                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12160 }
12161
12162 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12163                                    struct intel_crtc_state *pipe_config,
12164                                    const char *context)
12165 {
12166         struct drm_device *dev = crtc->base.dev;
12167         struct drm_plane *plane;
12168         struct intel_plane *intel_plane;
12169         struct intel_plane_state *state;
12170         struct drm_framebuffer *fb;
12171
12172         DRM_DEBUG_KMS("[CRTC:%d:%s]%s config %p for pipe %c\n",
12173                       crtc->base.base.id, crtc->base.name,
12174                       context, pipe_config, pipe_name(crtc->pipe));
12175
12176         DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12177         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12178                       pipe_config->pipe_bpp, pipe_config->dither);
12179         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12180                       pipe_config->has_pch_encoder,
12181                       pipe_config->fdi_lanes,
12182                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12183                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12184                       pipe_config->fdi_m_n.tu);
12185         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12186                       intel_crtc_has_dp_encoder(pipe_config),
12187                       pipe_config->lane_count,
12188                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12189                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12190                       pipe_config->dp_m_n.tu);
12191
12192         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12193                       intel_crtc_has_dp_encoder(pipe_config),
12194                       pipe_config->lane_count,
12195                       pipe_config->dp_m2_n2.gmch_m,
12196                       pipe_config->dp_m2_n2.gmch_n,
12197                       pipe_config->dp_m2_n2.link_m,
12198                       pipe_config->dp_m2_n2.link_n,
12199                       pipe_config->dp_m2_n2.tu);
12200
12201         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12202                       pipe_config->has_audio,
12203                       pipe_config->has_infoframe);
12204
12205         DRM_DEBUG_KMS("requested mode:\n");
12206         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12207         DRM_DEBUG_KMS("adjusted mode:\n");
12208         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12209         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12210         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12211         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12212                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12213         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12214                       crtc->num_scalers,
12215                       pipe_config->scaler_state.scaler_users,
12216                       pipe_config->scaler_state.scaler_id);
12217         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12218                       pipe_config->gmch_pfit.control,
12219                       pipe_config->gmch_pfit.pgm_ratios,
12220                       pipe_config->gmch_pfit.lvds_border_bits);
12221         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12222                       pipe_config->pch_pfit.pos,
12223                       pipe_config->pch_pfit.size,
12224                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12225         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12226         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12227
12228         if (IS_BROXTON(dev)) {
12229                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12230                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12231                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12232                               pipe_config->ddi_pll_sel,
12233                               pipe_config->dpll_hw_state.ebb0,
12234                               pipe_config->dpll_hw_state.ebb4,
12235                               pipe_config->dpll_hw_state.pll0,
12236                               pipe_config->dpll_hw_state.pll1,
12237                               pipe_config->dpll_hw_state.pll2,
12238                               pipe_config->dpll_hw_state.pll3,
12239                               pipe_config->dpll_hw_state.pll6,
12240                               pipe_config->dpll_hw_state.pll8,
12241                               pipe_config->dpll_hw_state.pll9,
12242                               pipe_config->dpll_hw_state.pll10,
12243                               pipe_config->dpll_hw_state.pcsdw12);
12244         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12245                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12246                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12247                               pipe_config->ddi_pll_sel,
12248                               pipe_config->dpll_hw_state.ctrl1,
12249                               pipe_config->dpll_hw_state.cfgcr1,
12250                               pipe_config->dpll_hw_state.cfgcr2);
12251         } else if (HAS_DDI(dev)) {
12252                 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12253                               pipe_config->ddi_pll_sel,
12254                               pipe_config->dpll_hw_state.wrpll,
12255                               pipe_config->dpll_hw_state.spll);
12256         } else {
12257                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12258                               "fp0: 0x%x, fp1: 0x%x\n",
12259                               pipe_config->dpll_hw_state.dpll,
12260                               pipe_config->dpll_hw_state.dpll_md,
12261                               pipe_config->dpll_hw_state.fp0,
12262                               pipe_config->dpll_hw_state.fp1);
12263         }
12264
12265         DRM_DEBUG_KMS("planes on this crtc\n");
12266         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12267                 intel_plane = to_intel_plane(plane);
12268                 if (intel_plane->pipe != crtc->pipe)
12269                         continue;
12270
12271                 state = to_intel_plane_state(plane->state);
12272                 fb = state->base.fb;
12273                 if (!fb) {
12274                         DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12275                                       plane->base.id, plane->name, state->scaler_id);
12276                         continue;
12277                 }
12278
12279                 DRM_DEBUG_KMS("[PLANE:%d:%s] enabled",
12280                               plane->base.id, plane->name);
12281                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = %s",
12282                               fb->base.id, fb->width, fb->height,
12283                               drm_get_format_name(fb->pixel_format));
12284                 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12285                               state->scaler_id,
12286                               state->src.x1 >> 16, state->src.y1 >> 16,
12287                               drm_rect_width(&state->src) >> 16,
12288                               drm_rect_height(&state->src) >> 16,
12289                               state->dst.x1, state->dst.y1,
12290                               drm_rect_width(&state->dst),
12291                               drm_rect_height(&state->dst));
12292         }
12293 }
12294
12295 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12296 {
12297         struct drm_device *dev = state->dev;
12298         struct drm_connector *connector;
12299         unsigned int used_ports = 0;
12300
12301         /*
12302          * Walk the connector list instead of the encoder
12303          * list to detect the problem on ddi platforms
12304          * where there's just one encoder per digital port.
12305          */
12306         drm_for_each_connector(connector, dev) {
12307                 struct drm_connector_state *connector_state;
12308                 struct intel_encoder *encoder;
12309
12310                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12311                 if (!connector_state)
12312                         connector_state = connector->state;
12313
12314                 if (!connector_state->best_encoder)
12315                         continue;
12316
12317                 encoder = to_intel_encoder(connector_state->best_encoder);
12318
12319                 WARN_ON(!connector_state->crtc);
12320
12321                 switch (encoder->type) {
12322                         unsigned int port_mask;
12323                 case INTEL_OUTPUT_UNKNOWN:
12324                         if (WARN_ON(!HAS_DDI(dev)))
12325                                 break;
12326                 case INTEL_OUTPUT_DP:
12327                 case INTEL_OUTPUT_HDMI:
12328                 case INTEL_OUTPUT_EDP:
12329                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12330
12331                         /* the same port mustn't appear more than once */
12332                         if (used_ports & port_mask)
12333                                 return false;
12334
12335                         used_ports |= port_mask;
12336                 default:
12337                         break;
12338                 }
12339         }
12340
12341         return true;
12342 }
12343
12344 static void
12345 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12346 {
12347         struct drm_crtc_state tmp_state;
12348         struct intel_crtc_scaler_state scaler_state;
12349         struct intel_dpll_hw_state dpll_hw_state;
12350         struct intel_shared_dpll *shared_dpll;
12351         uint32_t ddi_pll_sel;
12352         bool force_thru;
12353
12354         /* FIXME: before the switch to atomic started, a new pipe_config was
12355          * kzalloc'd. Code that depends on any field being zero should be
12356          * fixed, so that the crtc_state can be safely duplicated. For now,
12357          * only fields that are know to not cause problems are preserved. */
12358
12359         tmp_state = crtc_state->base;
12360         scaler_state = crtc_state->scaler_state;
12361         shared_dpll = crtc_state->shared_dpll;
12362         dpll_hw_state = crtc_state->dpll_hw_state;
12363         ddi_pll_sel = crtc_state->ddi_pll_sel;
12364         force_thru = crtc_state->pch_pfit.force_thru;
12365
12366         memset(crtc_state, 0, sizeof *crtc_state);
12367
12368         crtc_state->base = tmp_state;
12369         crtc_state->scaler_state = scaler_state;
12370         crtc_state->shared_dpll = shared_dpll;
12371         crtc_state->dpll_hw_state = dpll_hw_state;
12372         crtc_state->ddi_pll_sel = ddi_pll_sel;
12373         crtc_state->pch_pfit.force_thru = force_thru;
12374 }
12375
12376 static int
12377 intel_modeset_pipe_config(struct drm_crtc *crtc,
12378                           struct intel_crtc_state *pipe_config)
12379 {
12380         struct drm_atomic_state *state = pipe_config->base.state;
12381         struct intel_encoder *encoder;
12382         struct drm_connector *connector;
12383         struct drm_connector_state *connector_state;
12384         int base_bpp, ret = -EINVAL;
12385         int i;
12386         bool retry = true;
12387
12388         clear_intel_crtc_state(pipe_config);
12389
12390         pipe_config->cpu_transcoder =
12391                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12392
12393         /*
12394          * Sanitize sync polarity flags based on requested ones. If neither
12395          * positive or negative polarity is requested, treat this as meaning
12396          * negative polarity.
12397          */
12398         if (!(pipe_config->base.adjusted_mode.flags &
12399               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12400                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12401
12402         if (!(pipe_config->base.adjusted_mode.flags &
12403               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12404                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12405
12406         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12407                                              pipe_config);
12408         if (base_bpp < 0)
12409                 goto fail;
12410
12411         /*
12412          * Determine the real pipe dimensions. Note that stereo modes can
12413          * increase the actual pipe size due to the frame doubling and
12414          * insertion of additional space for blanks between the frame. This
12415          * is stored in the crtc timings. We use the requested mode to do this
12416          * computation to clearly distinguish it from the adjusted mode, which
12417          * can be changed by the connectors in the below retry loop.
12418          */
12419         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12420                                &pipe_config->pipe_src_w,
12421                                &pipe_config->pipe_src_h);
12422
12423         for_each_connector_in_state(state, connector, connector_state, i) {
12424                 if (connector_state->crtc != crtc)
12425                         continue;
12426
12427                 encoder = to_intel_encoder(connector_state->best_encoder);
12428
12429                 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
12430                         DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12431                         goto fail;
12432                 }
12433
12434                 /*
12435                  * Determine output_types before calling the .compute_config()
12436                  * hooks so that the hooks can use this information safely.
12437                  */
12438                 pipe_config->output_types |= 1 << encoder->type;
12439         }
12440
12441 encoder_retry:
12442         /* Ensure the port clock defaults are reset when retrying. */
12443         pipe_config->port_clock = 0;
12444         pipe_config->pixel_multiplier = 1;
12445
12446         /* Fill in default crtc timings, allow encoders to overwrite them. */
12447         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12448                               CRTC_STEREO_DOUBLE);
12449
12450         /* Pass our mode to the connectors and the CRTC to give them a chance to
12451          * adjust it according to limitations or connector properties, and also
12452          * a chance to reject the mode entirely.
12453          */
12454         for_each_connector_in_state(state, connector, connector_state, i) {
12455                 if (connector_state->crtc != crtc)
12456                         continue;
12457
12458                 encoder = to_intel_encoder(connector_state->best_encoder);
12459
12460                 if (!(encoder->compute_config(encoder, pipe_config))) {
12461                         DRM_DEBUG_KMS("Encoder config failure\n");
12462                         goto fail;
12463                 }
12464         }
12465
12466         /* Set default port clock if not overwritten by the encoder. Needs to be
12467          * done afterwards in case the encoder adjusts the mode. */
12468         if (!pipe_config->port_clock)
12469                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12470                         * pipe_config->pixel_multiplier;
12471
12472         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12473         if (ret < 0) {
12474                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12475                 goto fail;
12476         }
12477
12478         if (ret == RETRY) {
12479                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12480                         ret = -EINVAL;
12481                         goto fail;
12482                 }
12483
12484                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12485                 retry = false;
12486                 goto encoder_retry;
12487         }
12488
12489         /* Dithering seems to not pass-through bits correctly when it should, so
12490          * only enable it on 6bpc panels. */
12491         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12492         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12493                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12494
12495 fail:
12496         return ret;
12497 }
12498
12499 static void
12500 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12501 {
12502         struct drm_crtc *crtc;
12503         struct drm_crtc_state *crtc_state;
12504         int i;
12505
12506         /* Double check state. */
12507         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12508                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12509
12510                 /* Update hwmode for vblank functions */
12511                 if (crtc->state->active)
12512                         crtc->hwmode = crtc->state->adjusted_mode;
12513                 else
12514                         crtc->hwmode.crtc_clock = 0;
12515
12516                 /*
12517                  * Update legacy state to satisfy fbc code. This can
12518                  * be removed when fbc uses the atomic state.
12519                  */
12520                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12521                         struct drm_plane_state *plane_state = crtc->primary->state;
12522
12523                         crtc->primary->fb = plane_state->fb;
12524                         crtc->x = plane_state->src_x >> 16;
12525                         crtc->y = plane_state->src_y >> 16;
12526                 }
12527         }
12528 }
12529
12530 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12531 {
12532         int diff;
12533
12534         if (clock1 == clock2)
12535                 return true;
12536
12537         if (!clock1 || !clock2)
12538                 return false;
12539
12540         diff = abs(clock1 - clock2);
12541
12542         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12543                 return true;
12544
12545         return false;
12546 }
12547
12548 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12549         list_for_each_entry((intel_crtc), \
12550                             &(dev)->mode_config.crtc_list, \
12551                             base.head) \
12552                 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12553
12554 static bool
12555 intel_compare_m_n(unsigned int m, unsigned int n,
12556                   unsigned int m2, unsigned int n2,
12557                   bool exact)
12558 {
12559         if (m == m2 && n == n2)
12560                 return true;
12561
12562         if (exact || !m || !n || !m2 || !n2)
12563                 return false;
12564
12565         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12566
12567         if (n > n2) {
12568                 while (n > n2) {
12569                         m2 <<= 1;
12570                         n2 <<= 1;
12571                 }
12572         } else if (n < n2) {
12573                 while (n < n2) {
12574                         m <<= 1;
12575                         n <<= 1;
12576                 }
12577         }
12578
12579         if (n != n2)
12580                 return false;
12581
12582         return intel_fuzzy_clock_check(m, m2);
12583 }
12584
12585 static bool
12586 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12587                        struct intel_link_m_n *m2_n2,
12588                        bool adjust)
12589 {
12590         if (m_n->tu == m2_n2->tu &&
12591             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12592                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12593             intel_compare_m_n(m_n->link_m, m_n->link_n,
12594                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12595                 if (adjust)
12596                         *m2_n2 = *m_n;
12597
12598                 return true;
12599         }
12600
12601         return false;
12602 }
12603
12604 static bool
12605 intel_pipe_config_compare(struct drm_device *dev,
12606                           struct intel_crtc_state *current_config,
12607                           struct intel_crtc_state *pipe_config,
12608                           bool adjust)
12609 {
12610         bool ret = true;
12611
12612 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12613         do { \
12614                 if (!adjust) \
12615                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12616                 else \
12617                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12618         } while (0)
12619
12620 #define PIPE_CONF_CHECK_X(name) \
12621         if (current_config->name != pipe_config->name) { \
12622                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12623                           "(expected 0x%08x, found 0x%08x)\n", \
12624                           current_config->name, \
12625                           pipe_config->name); \
12626                 ret = false; \
12627         }
12628
12629 #define PIPE_CONF_CHECK_I(name) \
12630         if (current_config->name != pipe_config->name) { \
12631                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12632                           "(expected %i, found %i)\n", \
12633                           current_config->name, \
12634                           pipe_config->name); \
12635                 ret = false; \
12636         }
12637
12638 #define PIPE_CONF_CHECK_P(name) \
12639         if (current_config->name != pipe_config->name) { \
12640                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12641                           "(expected %p, found %p)\n", \
12642                           current_config->name, \
12643                           pipe_config->name); \
12644                 ret = false; \
12645         }
12646
12647 #define PIPE_CONF_CHECK_M_N(name) \
12648         if (!intel_compare_link_m_n(&current_config->name, \
12649                                     &pipe_config->name,\
12650                                     adjust)) { \
12651                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12652                           "(expected tu %i gmch %i/%i link %i/%i, " \
12653                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12654                           current_config->name.tu, \
12655                           current_config->name.gmch_m, \
12656                           current_config->name.gmch_n, \
12657                           current_config->name.link_m, \
12658                           current_config->name.link_n, \
12659                           pipe_config->name.tu, \
12660                           pipe_config->name.gmch_m, \
12661                           pipe_config->name.gmch_n, \
12662                           pipe_config->name.link_m, \
12663                           pipe_config->name.link_n); \
12664                 ret = false; \
12665         }
12666
12667 /* This is required for BDW+ where there is only one set of registers for
12668  * switching between high and low RR.
12669  * This macro can be used whenever a comparison has to be made between one
12670  * hw state and multiple sw state variables.
12671  */
12672 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12673         if (!intel_compare_link_m_n(&current_config->name, \
12674                                     &pipe_config->name, adjust) && \
12675             !intel_compare_link_m_n(&current_config->alt_name, \
12676                                     &pipe_config->name, adjust)) { \
12677                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12678                           "(expected tu %i gmch %i/%i link %i/%i, " \
12679                           "or tu %i gmch %i/%i link %i/%i, " \
12680                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12681                           current_config->name.tu, \
12682                           current_config->name.gmch_m, \
12683                           current_config->name.gmch_n, \
12684                           current_config->name.link_m, \
12685                           current_config->name.link_n, \
12686                           current_config->alt_name.tu, \
12687                           current_config->alt_name.gmch_m, \
12688                           current_config->alt_name.gmch_n, \
12689                           current_config->alt_name.link_m, \
12690                           current_config->alt_name.link_n, \
12691                           pipe_config->name.tu, \
12692                           pipe_config->name.gmch_m, \
12693                           pipe_config->name.gmch_n, \
12694                           pipe_config->name.link_m, \
12695                           pipe_config->name.link_n); \
12696                 ret = false; \
12697         }
12698
12699 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12700         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12701                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12702                           "(expected %i, found %i)\n", \
12703                           current_config->name & (mask), \
12704                           pipe_config->name & (mask)); \
12705                 ret = false; \
12706         }
12707
12708 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12709         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12710                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12711                           "(expected %i, found %i)\n", \
12712                           current_config->name, \
12713                           pipe_config->name); \
12714                 ret = false; \
12715         }
12716
12717 #define PIPE_CONF_QUIRK(quirk)  \
12718         ((current_config->quirks | pipe_config->quirks) & (quirk))
12719
12720         PIPE_CONF_CHECK_I(cpu_transcoder);
12721
12722         PIPE_CONF_CHECK_I(has_pch_encoder);
12723         PIPE_CONF_CHECK_I(fdi_lanes);
12724         PIPE_CONF_CHECK_M_N(fdi_m_n);
12725
12726         PIPE_CONF_CHECK_I(lane_count);
12727         PIPE_CONF_CHECK_X(lane_lat_optim_mask);
12728
12729         if (INTEL_INFO(dev)->gen < 8) {
12730                 PIPE_CONF_CHECK_M_N(dp_m_n);
12731
12732                 if (current_config->has_drrs)
12733                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12734         } else
12735                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12736
12737         PIPE_CONF_CHECK_X(output_types);
12738
12739         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12740         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12741         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12742         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12743         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12744         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12745
12746         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12747         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12748         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12749         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12750         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12751         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12752
12753         PIPE_CONF_CHECK_I(pixel_multiplier);
12754         PIPE_CONF_CHECK_I(has_hdmi_sink);
12755         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12756             IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12757                 PIPE_CONF_CHECK_I(limited_color_range);
12758         PIPE_CONF_CHECK_I(has_infoframe);
12759
12760         PIPE_CONF_CHECK_I(has_audio);
12761
12762         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12763                               DRM_MODE_FLAG_INTERLACE);
12764
12765         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12766                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12767                                       DRM_MODE_FLAG_PHSYNC);
12768                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12769                                       DRM_MODE_FLAG_NHSYNC);
12770                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12771                                       DRM_MODE_FLAG_PVSYNC);
12772                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12773                                       DRM_MODE_FLAG_NVSYNC);
12774         }
12775
12776         PIPE_CONF_CHECK_X(gmch_pfit.control);
12777         /* pfit ratios are autocomputed by the hw on gen4+ */
12778         if (INTEL_INFO(dev)->gen < 4)
12779                 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
12780         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12781
12782         if (!adjust) {
12783                 PIPE_CONF_CHECK_I(pipe_src_w);
12784                 PIPE_CONF_CHECK_I(pipe_src_h);
12785
12786                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12787                 if (current_config->pch_pfit.enabled) {
12788                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12789                         PIPE_CONF_CHECK_X(pch_pfit.size);
12790                 }
12791
12792                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12793         }
12794
12795         /* BDW+ don't expose a synchronous way to read the state */
12796         if (IS_HASWELL(dev))
12797                 PIPE_CONF_CHECK_I(ips_enabled);
12798
12799         PIPE_CONF_CHECK_I(double_wide);
12800
12801         PIPE_CONF_CHECK_X(ddi_pll_sel);
12802
12803         PIPE_CONF_CHECK_P(shared_dpll);
12804         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12805         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12806         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12807         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12808         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12809         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12810         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12811         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12812         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12813
12814         PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12815         PIPE_CONF_CHECK_X(dsi_pll.div);
12816
12817         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12818                 PIPE_CONF_CHECK_I(pipe_bpp);
12819
12820         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12821         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12822
12823 #undef PIPE_CONF_CHECK_X
12824 #undef PIPE_CONF_CHECK_I
12825 #undef PIPE_CONF_CHECK_P
12826 #undef PIPE_CONF_CHECK_FLAGS
12827 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12828 #undef PIPE_CONF_QUIRK
12829 #undef INTEL_ERR_OR_DBG_KMS
12830
12831         return ret;
12832 }
12833
12834 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12835                                            const struct intel_crtc_state *pipe_config)
12836 {
12837         if (pipe_config->has_pch_encoder) {
12838                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12839                                                             &pipe_config->fdi_m_n);
12840                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12841
12842                 /*
12843                  * FDI already provided one idea for the dotclock.
12844                  * Yell if the encoder disagrees.
12845                  */
12846                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12847                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12848                      fdi_dotclock, dotclock);
12849         }
12850 }
12851
12852 static void verify_wm_state(struct drm_crtc *crtc,
12853                             struct drm_crtc_state *new_state)
12854 {
12855         struct drm_device *dev = crtc->dev;
12856         struct drm_i915_private *dev_priv = to_i915(dev);
12857         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12858         struct skl_ddb_entry *hw_entry, *sw_entry;
12859         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12860         const enum pipe pipe = intel_crtc->pipe;
12861         int plane;
12862
12863         if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
12864                 return;
12865
12866         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12867         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12868
12869         /* planes */
12870         for_each_plane(dev_priv, pipe, plane) {
12871                 hw_entry = &hw_ddb.plane[pipe][plane];
12872                 sw_entry = &sw_ddb->plane[pipe][plane];
12873
12874                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12875                         continue;
12876
12877                 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12878                           "(expected (%u,%u), found (%u,%u))\n",
12879                           pipe_name(pipe), plane + 1,
12880                           sw_entry->start, sw_entry->end,
12881                           hw_entry->start, hw_entry->end);
12882         }
12883
12884         /* cursor */
12885         hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12886         sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12887
12888         if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
12889                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12890                           "(expected (%u,%u), found (%u,%u))\n",
12891                           pipe_name(pipe),
12892                           sw_entry->start, sw_entry->end,
12893                           hw_entry->start, hw_entry->end);
12894         }
12895 }
12896
12897 static void
12898 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
12899 {
12900         struct drm_connector *connector;
12901
12902         drm_for_each_connector(connector, dev) {
12903                 struct drm_encoder *encoder = connector->encoder;
12904                 struct drm_connector_state *state = connector->state;
12905
12906                 if (state->crtc != crtc)
12907                         continue;
12908
12909                 intel_connector_verify_state(to_intel_connector(connector));
12910
12911                 I915_STATE_WARN(state->best_encoder != encoder,
12912                      "connector's atomic encoder doesn't match legacy encoder\n");
12913         }
12914 }
12915
12916 static void
12917 verify_encoder_state(struct drm_device *dev)
12918 {
12919         struct intel_encoder *encoder;
12920         struct intel_connector *connector;
12921
12922         for_each_intel_encoder(dev, encoder) {
12923                 bool enabled = false;
12924                 enum pipe pipe;
12925
12926                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12927                               encoder->base.base.id,
12928                               encoder->base.name);
12929
12930                 for_each_intel_connector(dev, connector) {
12931                         if (connector->base.state->best_encoder != &encoder->base)
12932                                 continue;
12933                         enabled = true;
12934
12935                         I915_STATE_WARN(connector->base.state->crtc !=
12936                                         encoder->base.crtc,
12937                              "connector's crtc doesn't match encoder crtc\n");
12938                 }
12939
12940                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12941                      "encoder's enabled state mismatch "
12942                      "(expected %i, found %i)\n",
12943                      !!encoder->base.crtc, enabled);
12944
12945                 if (!encoder->base.crtc) {
12946                         bool active;
12947
12948                         active = encoder->get_hw_state(encoder, &pipe);
12949                         I915_STATE_WARN(active,
12950                              "encoder detached but still enabled on pipe %c.\n",
12951                              pipe_name(pipe));
12952                 }
12953         }
12954 }
12955
12956 static void
12957 verify_crtc_state(struct drm_crtc *crtc,
12958                   struct drm_crtc_state *old_crtc_state,
12959                   struct drm_crtc_state *new_crtc_state)
12960 {
12961         struct drm_device *dev = crtc->dev;
12962         struct drm_i915_private *dev_priv = to_i915(dev);
12963         struct intel_encoder *encoder;
12964         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12965         struct intel_crtc_state *pipe_config, *sw_config;
12966         struct drm_atomic_state *old_state;
12967         bool active;
12968
12969         old_state = old_crtc_state->state;
12970         __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
12971         pipe_config = to_intel_crtc_state(old_crtc_state);
12972         memset(pipe_config, 0, sizeof(*pipe_config));
12973         pipe_config->base.crtc = crtc;
12974         pipe_config->base.state = old_state;
12975
12976         DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
12977
12978         active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12979
12980         /* hw state is inconsistent with the pipe quirk */
12981         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12982             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12983                 active = new_crtc_state->active;
12984
12985         I915_STATE_WARN(new_crtc_state->active != active,
12986              "crtc active state doesn't match with hw state "
12987              "(expected %i, found %i)\n", new_crtc_state->active, active);
12988
12989         I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12990              "transitional active state does not match atomic hw state "
12991              "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
12992
12993         for_each_encoder_on_crtc(dev, crtc, encoder) {
12994                 enum pipe pipe;
12995
12996                 active = encoder->get_hw_state(encoder, &pipe);
12997                 I915_STATE_WARN(active != new_crtc_state->active,
12998                         "[ENCODER:%i] active %i with crtc active %i\n",
12999                         encoder->base.base.id, active, new_crtc_state->active);
13000
13001                 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13002                                 "Encoder connected to wrong pipe %c\n",
13003                                 pipe_name(pipe));
13004
13005                 if (active) {
13006                         pipe_config->output_types |= 1 << encoder->type;
13007                         encoder->get_config(encoder, pipe_config);
13008                 }
13009         }
13010
13011         if (!new_crtc_state->active)
13012                 return;
13013
13014         intel_pipe_config_sanity_check(dev_priv, pipe_config);
13015
13016         sw_config = to_intel_crtc_state(crtc->state);
13017         if (!intel_pipe_config_compare(dev, sw_config,
13018                                        pipe_config, false)) {
13019                 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13020                 intel_dump_pipe_config(intel_crtc, pipe_config,
13021                                        "[hw state]");
13022                 intel_dump_pipe_config(intel_crtc, sw_config,
13023                                        "[sw state]");
13024         }
13025 }
13026
13027 static void
13028 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13029                          struct intel_shared_dpll *pll,
13030                          struct drm_crtc *crtc,
13031                          struct drm_crtc_state *new_state)
13032 {
13033         struct intel_dpll_hw_state dpll_hw_state;
13034         unsigned crtc_mask;
13035         bool active;
13036
13037         memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13038
13039         DRM_DEBUG_KMS("%s\n", pll->name);
13040
13041         active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13042
13043         if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13044                 I915_STATE_WARN(!pll->on && pll->active_mask,
13045                      "pll in active use but not on in sw tracking\n");
13046                 I915_STATE_WARN(pll->on && !pll->active_mask,
13047                      "pll is on but not used by any active crtc\n");
13048                 I915_STATE_WARN(pll->on != active,
13049                      "pll on state mismatch (expected %i, found %i)\n",
13050                      pll->on, active);
13051         }
13052
13053         if (!crtc) {
13054                 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13055                                 "more active pll users than references: %x vs %x\n",
13056                                 pll->active_mask, pll->config.crtc_mask);
13057
13058                 return;
13059         }
13060
13061         crtc_mask = 1 << drm_crtc_index(crtc);
13062
13063         if (new_state->active)
13064                 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13065                                 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13066                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13067         else
13068                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13069                                 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13070                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13071
13072         I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13073                         "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13074                         crtc_mask, pll->config.crtc_mask);
13075
13076         I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13077                                           &dpll_hw_state,
13078                                           sizeof(dpll_hw_state)),
13079                         "pll hw state mismatch\n");
13080 }
13081
13082 static void
13083 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13084                          struct drm_crtc_state *old_crtc_state,
13085                          struct drm_crtc_state *new_crtc_state)
13086 {
13087         struct drm_i915_private *dev_priv = to_i915(dev);
13088         struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13089         struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13090
13091         if (new_state->shared_dpll)
13092                 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13093
13094         if (old_state->shared_dpll &&
13095             old_state->shared_dpll != new_state->shared_dpll) {
13096                 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13097                 struct intel_shared_dpll *pll = old_state->shared_dpll;
13098
13099                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13100                                 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13101                                 pipe_name(drm_crtc_index(crtc)));
13102                 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13103                                 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13104                                 pipe_name(drm_crtc_index(crtc)));
13105         }
13106 }
13107
13108 static void
13109 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13110                          struct drm_crtc_state *old_state,
13111                          struct drm_crtc_state *new_state)
13112 {
13113         if (!needs_modeset(new_state) &&
13114             !to_intel_crtc_state(new_state)->update_pipe)
13115                 return;
13116
13117         verify_wm_state(crtc, new_state);
13118         verify_connector_state(crtc->dev, crtc);
13119         verify_crtc_state(crtc, old_state, new_state);
13120         verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13121 }
13122
13123 static void
13124 verify_disabled_dpll_state(struct drm_device *dev)
13125 {
13126         struct drm_i915_private *dev_priv = to_i915(dev);
13127         int i;
13128
13129         for (i = 0; i < dev_priv->num_shared_dpll; i++)
13130                 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13131 }
13132
13133 static void
13134 intel_modeset_verify_disabled(struct drm_device *dev)
13135 {
13136         verify_encoder_state(dev);
13137         verify_connector_state(dev, NULL);
13138         verify_disabled_dpll_state(dev);
13139 }
13140
13141 static void update_scanline_offset(struct intel_crtc *crtc)
13142 {
13143         struct drm_device *dev = crtc->base.dev;
13144
13145         /*
13146          * The scanline counter increments at the leading edge of hsync.
13147          *
13148          * On most platforms it starts counting from vtotal-1 on the
13149          * first active line. That means the scanline counter value is
13150          * always one less than what we would expect. Ie. just after
13151          * start of vblank, which also occurs at start of hsync (on the
13152          * last active line), the scanline counter will read vblank_start-1.
13153          *
13154          * On gen2 the scanline counter starts counting from 1 instead
13155          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13156          * to keep the value positive), instead of adding one.
13157          *
13158          * On HSW+ the behaviour of the scanline counter depends on the output
13159          * type. For DP ports it behaves like most other platforms, but on HDMI
13160          * there's an extra 1 line difference. So we need to add two instead of
13161          * one to the value.
13162          */
13163         if (IS_GEN2(dev)) {
13164                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13165                 int vtotal;
13166
13167                 vtotal = adjusted_mode->crtc_vtotal;
13168                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13169                         vtotal /= 2;
13170
13171                 crtc->scanline_offset = vtotal - 1;
13172         } else if (HAS_DDI(dev) &&
13173                    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13174                 crtc->scanline_offset = 2;
13175         } else
13176                 crtc->scanline_offset = 1;
13177 }
13178
13179 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13180 {
13181         struct drm_device *dev = state->dev;
13182         struct drm_i915_private *dev_priv = to_i915(dev);
13183         struct intel_shared_dpll_config *shared_dpll = NULL;
13184         struct drm_crtc *crtc;
13185         struct drm_crtc_state *crtc_state;
13186         int i;
13187
13188         if (!dev_priv->display.crtc_compute_clock)
13189                 return;
13190
13191         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13192                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13193                 struct intel_shared_dpll *old_dpll =
13194                         to_intel_crtc_state(crtc->state)->shared_dpll;
13195
13196                 if (!needs_modeset(crtc_state))
13197                         continue;
13198
13199                 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13200
13201                 if (!old_dpll)
13202                         continue;
13203
13204                 if (!shared_dpll)
13205                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13206
13207                 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13208         }
13209 }
13210
13211 /*
13212  * This implements the workaround described in the "notes" section of the mode
13213  * set sequence documentation. When going from no pipes or single pipe to
13214  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13215  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13216  */
13217 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13218 {
13219         struct drm_crtc_state *crtc_state;
13220         struct intel_crtc *intel_crtc;
13221         struct drm_crtc *crtc;
13222         struct intel_crtc_state *first_crtc_state = NULL;
13223         struct intel_crtc_state *other_crtc_state = NULL;
13224         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13225         int i;
13226
13227         /* look at all crtc's that are going to be enabled in during modeset */
13228         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13229                 intel_crtc = to_intel_crtc(crtc);
13230
13231                 if (!crtc_state->active || !needs_modeset(crtc_state))
13232                         continue;
13233
13234                 if (first_crtc_state) {
13235                         other_crtc_state = to_intel_crtc_state(crtc_state);
13236                         break;
13237                 } else {
13238                         first_crtc_state = to_intel_crtc_state(crtc_state);
13239                         first_pipe = intel_crtc->pipe;
13240                 }
13241         }
13242
13243         /* No workaround needed? */
13244         if (!first_crtc_state)
13245                 return 0;
13246
13247         /* w/a possibly needed, check how many crtc's are already enabled. */
13248         for_each_intel_crtc(state->dev, intel_crtc) {
13249                 struct intel_crtc_state *pipe_config;
13250
13251                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13252                 if (IS_ERR(pipe_config))
13253                         return PTR_ERR(pipe_config);
13254
13255                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13256
13257                 if (!pipe_config->base.active ||
13258                     needs_modeset(&pipe_config->base))
13259                         continue;
13260
13261                 /* 2 or more enabled crtcs means no need for w/a */
13262                 if (enabled_pipe != INVALID_PIPE)
13263                         return 0;
13264
13265                 enabled_pipe = intel_crtc->pipe;
13266         }
13267
13268         if (enabled_pipe != INVALID_PIPE)
13269                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13270         else if (other_crtc_state)
13271                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13272
13273         return 0;
13274 }
13275
13276 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13277 {
13278         struct drm_crtc *crtc;
13279         struct drm_crtc_state *crtc_state;
13280         int ret = 0;
13281
13282         /* add all active pipes to the state */
13283         for_each_crtc(state->dev, crtc) {
13284                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13285                 if (IS_ERR(crtc_state))
13286                         return PTR_ERR(crtc_state);
13287
13288                 if (!crtc_state->active || needs_modeset(crtc_state))
13289                         continue;
13290
13291                 crtc_state->mode_changed = true;
13292
13293                 ret = drm_atomic_add_affected_connectors(state, crtc);
13294                 if (ret)
13295                         break;
13296
13297                 ret = drm_atomic_add_affected_planes(state, crtc);
13298                 if (ret)
13299                         break;
13300         }
13301
13302         return ret;
13303 }
13304
13305 static int intel_modeset_checks(struct drm_atomic_state *state)
13306 {
13307         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13308         struct drm_i915_private *dev_priv = to_i915(state->dev);
13309         struct drm_crtc *crtc;
13310         struct drm_crtc_state *crtc_state;
13311         int ret = 0, i;
13312
13313         if (!check_digital_port_conflicts(state)) {
13314                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13315                 return -EINVAL;
13316         }
13317
13318         intel_state->modeset = true;
13319         intel_state->active_crtcs = dev_priv->active_crtcs;
13320
13321         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13322                 if (crtc_state->active)
13323                         intel_state->active_crtcs |= 1 << i;
13324                 else
13325                         intel_state->active_crtcs &= ~(1 << i);
13326
13327                 if (crtc_state->active != crtc->state->active)
13328                         intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13329         }
13330
13331         /*
13332          * See if the config requires any additional preparation, e.g.
13333          * to adjust global state with pipes off.  We need to do this
13334          * here so we can get the modeset_pipe updated config for the new
13335          * mode set on this crtc.  For other crtcs we need to use the
13336          * adjusted_mode bits in the crtc directly.
13337          */
13338         if (dev_priv->display.modeset_calc_cdclk) {
13339                 if (!intel_state->cdclk_pll_vco)
13340                         intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
13341                 if (!intel_state->cdclk_pll_vco)
13342                         intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
13343
13344                 ret = dev_priv->display.modeset_calc_cdclk(state);
13345                 if (ret < 0)
13346                         return ret;
13347
13348                 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13349                     intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
13350                         ret = intel_modeset_all_pipes(state);
13351
13352                 if (ret < 0)
13353                         return ret;
13354
13355                 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13356                               intel_state->cdclk, intel_state->dev_cdclk);
13357         } else
13358                 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13359
13360         intel_modeset_clear_plls(state);
13361
13362         if (IS_HASWELL(dev_priv))
13363                 return haswell_mode_set_planes_workaround(state);
13364
13365         return 0;
13366 }
13367
13368 /*
13369  * Handle calculation of various watermark data at the end of the atomic check
13370  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13371  * handlers to ensure that all derived state has been updated.
13372  */
13373 static int calc_watermark_data(struct drm_atomic_state *state)
13374 {
13375         struct drm_device *dev = state->dev;
13376         struct drm_i915_private *dev_priv = to_i915(dev);
13377
13378         /* Is there platform-specific watermark information to calculate? */
13379         if (dev_priv->display.compute_global_watermarks)
13380                 return dev_priv->display.compute_global_watermarks(state);
13381
13382         return 0;
13383 }
13384
13385 /**
13386  * intel_atomic_check - validate state object
13387  * @dev: drm device
13388  * @state: state to validate
13389  */
13390 static int intel_atomic_check(struct drm_device *dev,
13391                               struct drm_atomic_state *state)
13392 {
13393         struct drm_i915_private *dev_priv = to_i915(dev);
13394         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13395         struct drm_crtc *crtc;
13396         struct drm_crtc_state *crtc_state;
13397         int ret, i;
13398         bool any_ms = false;
13399
13400         ret = drm_atomic_helper_check_modeset(dev, state);
13401         if (ret)
13402                 return ret;
13403
13404         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13405                 struct intel_crtc_state *pipe_config =
13406                         to_intel_crtc_state(crtc_state);
13407
13408                 /* Catch I915_MODE_FLAG_INHERITED */
13409                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13410                         crtc_state->mode_changed = true;
13411
13412                 if (!needs_modeset(crtc_state))
13413                         continue;
13414
13415                 if (!crtc_state->enable) {
13416                         any_ms = true;
13417                         continue;
13418                 }
13419
13420                 /* FIXME: For only active_changed we shouldn't need to do any
13421                  * state recomputation at all. */
13422
13423                 ret = drm_atomic_add_affected_connectors(state, crtc);
13424                 if (ret)
13425                         return ret;
13426
13427                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13428                 if (ret) {
13429                         intel_dump_pipe_config(to_intel_crtc(crtc),
13430                                                pipe_config, "[failed]");
13431                         return ret;
13432                 }
13433
13434                 if (i915.fastboot &&
13435                     intel_pipe_config_compare(dev,
13436                                         to_intel_crtc_state(crtc->state),
13437                                         pipe_config, true)) {
13438                         crtc_state->mode_changed = false;
13439                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13440                 }
13441
13442                 if (needs_modeset(crtc_state))
13443                         any_ms = true;
13444
13445                 ret = drm_atomic_add_affected_planes(state, crtc);
13446                 if (ret)
13447                         return ret;
13448
13449                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13450                                        needs_modeset(crtc_state) ?
13451                                        "[modeset]" : "[fastset]");
13452         }
13453
13454         if (any_ms) {
13455                 ret = intel_modeset_checks(state);
13456
13457                 if (ret)
13458                         return ret;
13459         } else
13460                 intel_state->cdclk = dev_priv->cdclk_freq;
13461
13462         ret = drm_atomic_helper_check_planes(dev, state);
13463         if (ret)
13464                 return ret;
13465
13466         intel_fbc_choose_crtc(dev_priv, state);
13467         return calc_watermark_data(state);
13468 }
13469
13470 static int intel_atomic_prepare_commit(struct drm_device *dev,
13471                                        struct drm_atomic_state *state,
13472                                        bool nonblock)
13473 {
13474         struct drm_i915_private *dev_priv = to_i915(dev);
13475         struct drm_plane_state *plane_state;
13476         struct drm_crtc_state *crtc_state;
13477         struct drm_plane *plane;
13478         struct drm_crtc *crtc;
13479         int i, ret;
13480
13481         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13482                 if (state->legacy_cursor_update)
13483                         continue;
13484
13485                 ret = intel_crtc_wait_for_pending_flips(crtc);
13486                 if (ret)
13487                         return ret;
13488
13489                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13490                         flush_workqueue(dev_priv->wq);
13491         }
13492
13493         ret = mutex_lock_interruptible(&dev->struct_mutex);
13494         if (ret)
13495                 return ret;
13496
13497         ret = drm_atomic_helper_prepare_planes(dev, state);
13498         mutex_unlock(&dev->struct_mutex);
13499
13500         if (!ret && !nonblock) {
13501                 for_each_plane_in_state(state, plane, plane_state, i) {
13502                         struct intel_plane_state *intel_plane_state =
13503                                 to_intel_plane_state(plane_state);
13504
13505                         if (!intel_plane_state->wait_req)
13506                                 continue;
13507
13508                         ret = __i915_wait_request(intel_plane_state->wait_req,
13509                                                   true, NULL, NULL);
13510                         if (ret) {
13511                                 /* Any hang should be swallowed by the wait */
13512                                 WARN_ON(ret == -EIO);
13513                                 mutex_lock(&dev->struct_mutex);
13514                                 drm_atomic_helper_cleanup_planes(dev, state);
13515                                 mutex_unlock(&dev->struct_mutex);
13516                                 break;
13517                         }
13518                 }
13519         }
13520
13521         return ret;
13522 }
13523
13524 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
13525 {
13526         struct drm_device *dev = crtc->base.dev;
13527
13528         if (!dev->max_vblank_count)
13529                 return drm_accurate_vblank_count(&crtc->base);
13530
13531         return dev->driver->get_vblank_counter(dev, crtc->pipe);
13532 }
13533
13534 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13535                                           struct drm_i915_private *dev_priv,
13536                                           unsigned crtc_mask)
13537 {
13538         unsigned last_vblank_count[I915_MAX_PIPES];
13539         enum pipe pipe;
13540         int ret;
13541
13542         if (!crtc_mask)
13543                 return;
13544
13545         for_each_pipe(dev_priv, pipe) {
13546                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13547
13548                 if (!((1 << pipe) & crtc_mask))
13549                         continue;
13550
13551                 ret = drm_crtc_vblank_get(crtc);
13552                 if (WARN_ON(ret != 0)) {
13553                         crtc_mask &= ~(1 << pipe);
13554                         continue;
13555                 }
13556
13557                 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13558         }
13559
13560         for_each_pipe(dev_priv, pipe) {
13561                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13562                 long lret;
13563
13564                 if (!((1 << pipe) & crtc_mask))
13565                         continue;
13566
13567                 lret = wait_event_timeout(dev->vblank[pipe].queue,
13568                                 last_vblank_count[pipe] !=
13569                                         drm_crtc_vblank_count(crtc),
13570                                 msecs_to_jiffies(50));
13571
13572                 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
13573
13574                 drm_crtc_vblank_put(crtc);
13575         }
13576 }
13577
13578 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13579 {
13580         /* fb updated, need to unpin old fb */
13581         if (crtc_state->fb_changed)
13582                 return true;
13583
13584         /* wm changes, need vblank before final wm's */
13585         if (crtc_state->update_wm_post)
13586                 return true;
13587
13588         /*
13589          * cxsr is re-enabled after vblank.
13590          * This is already handled by crtc_state->update_wm_post,
13591          * but added for clarity.
13592          */
13593         if (crtc_state->disable_cxsr)
13594                 return true;
13595
13596         return false;
13597 }
13598
13599 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
13600 {
13601         struct drm_device *dev = state->dev;
13602         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13603         struct drm_i915_private *dev_priv = to_i915(dev);
13604         struct drm_crtc_state *old_crtc_state;
13605         struct drm_crtc *crtc;
13606         struct intel_crtc_state *intel_cstate;
13607         struct drm_plane *plane;
13608         struct drm_plane_state *plane_state;
13609         bool hw_check = intel_state->modeset;
13610         unsigned long put_domains[I915_MAX_PIPES] = {};
13611         unsigned crtc_vblank_mask = 0;
13612         int i, ret;
13613
13614         for_each_plane_in_state(state, plane, plane_state, i) {
13615                 struct intel_plane_state *intel_plane_state =
13616                         to_intel_plane_state(plane_state);
13617
13618                 if (!intel_plane_state->wait_req)
13619                         continue;
13620
13621                 ret = __i915_wait_request(intel_plane_state->wait_req,
13622                                           true, NULL, NULL);
13623                 /* EIO should be eaten, and we can't get interrupted in the
13624                  * worker, and blocking commits have waited already. */
13625                 WARN_ON(ret);
13626         }
13627
13628         drm_atomic_helper_wait_for_dependencies(state);
13629
13630         if (intel_state->modeset) {
13631                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13632                        sizeof(intel_state->min_pixclk));
13633                 dev_priv->active_crtcs = intel_state->active_crtcs;
13634                 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13635
13636                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13637         }
13638
13639         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13640                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13641
13642                 if (needs_modeset(crtc->state) ||
13643                     to_intel_crtc_state(crtc->state)->update_pipe) {
13644                         hw_check = true;
13645
13646                         put_domains[to_intel_crtc(crtc)->pipe] =
13647                                 modeset_get_crtc_power_domains(crtc,
13648                                         to_intel_crtc_state(crtc->state));
13649                 }
13650
13651                 if (!needs_modeset(crtc->state))
13652                         continue;
13653
13654                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13655
13656                 if (old_crtc_state->active) {
13657                         intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13658                         dev_priv->display.crtc_disable(crtc);
13659                         intel_crtc->active = false;
13660                         intel_fbc_disable(intel_crtc);
13661                         intel_disable_shared_dpll(intel_crtc);
13662
13663                         /*
13664                          * Underruns don't always raise
13665                          * interrupts, so check manually.
13666                          */
13667                         intel_check_cpu_fifo_underruns(dev_priv);
13668                         intel_check_pch_fifo_underruns(dev_priv);
13669
13670                         if (!crtc->state->active)
13671                                 intel_update_watermarks(crtc);
13672                 }
13673         }
13674
13675         /* Only after disabling all output pipelines that will be changed can we
13676          * update the the output configuration. */
13677         intel_modeset_update_crtc_state(state);
13678
13679         if (intel_state->modeset) {
13680                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13681
13682                 if (dev_priv->display.modeset_commit_cdclk &&
13683                     (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13684                      intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
13685                         dev_priv->display.modeset_commit_cdclk(state);
13686
13687                 intel_modeset_verify_disabled(dev);
13688         }
13689
13690         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13691         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13692                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13693                 bool modeset = needs_modeset(crtc->state);
13694                 struct intel_crtc_state *pipe_config =
13695                         to_intel_crtc_state(crtc->state);
13696
13697                 if (modeset && crtc->state->active) {
13698                         update_scanline_offset(to_intel_crtc(crtc));
13699                         dev_priv->display.crtc_enable(crtc);
13700                 }
13701
13702                 /* Complete events for now disable pipes here. */
13703                 if (modeset && !crtc->state->active && crtc->state->event) {
13704                         spin_lock_irq(&dev->event_lock);
13705                         drm_crtc_send_vblank_event(crtc, crtc->state->event);
13706                         spin_unlock_irq(&dev->event_lock);
13707
13708                         crtc->state->event = NULL;
13709                 }
13710
13711                 if (!modeset)
13712                         intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13713
13714                 if (crtc->state->active &&
13715                     drm_atomic_get_existing_plane_state(state, crtc->primary))
13716                         intel_fbc_enable(intel_crtc, pipe_config, to_intel_plane_state(crtc->primary->state));
13717
13718                 if (crtc->state->active)
13719                         drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
13720
13721                 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13722                         crtc_vblank_mask |= 1 << i;
13723         }
13724
13725         /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
13726          * already, but still need the state for the delayed optimization. To
13727          * fix this:
13728          * - wrap the optimization/post_plane_update stuff into a per-crtc work.
13729          * - schedule that vblank worker _before_ calling hw_done
13730          * - at the start of commit_tail, cancel it _synchrously
13731          * - switch over to the vblank wait helper in the core after that since
13732          *   we don't need out special handling any more.
13733          */
13734         if (!state->legacy_cursor_update)
13735                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13736
13737         /*
13738          * Now that the vblank has passed, we can go ahead and program the
13739          * optimal watermarks on platforms that need two-step watermark
13740          * programming.
13741          *
13742          * TODO: Move this (and other cleanup) to an async worker eventually.
13743          */
13744         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13745                 intel_cstate = to_intel_crtc_state(crtc->state);
13746
13747                 if (dev_priv->display.optimize_watermarks)
13748                         dev_priv->display.optimize_watermarks(intel_cstate);
13749         }
13750
13751         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13752                 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13753
13754                 if (put_domains[i])
13755                         modeset_put_power_domains(dev_priv, put_domains[i]);
13756
13757                 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
13758         }
13759
13760         drm_atomic_helper_commit_hw_done(state);
13761
13762         if (intel_state->modeset)
13763                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13764
13765         mutex_lock(&dev->struct_mutex);
13766         drm_atomic_helper_cleanup_planes(dev, state);
13767         mutex_unlock(&dev->struct_mutex);
13768
13769         drm_atomic_helper_commit_cleanup_done(state);
13770
13771         drm_atomic_state_free(state);
13772
13773         /* As one of the primary mmio accessors, KMS has a high likelihood
13774          * of triggering bugs in unclaimed access. After we finish
13775          * modesetting, see if an error has been flagged, and if so
13776          * enable debugging for the next modeset - and hope we catch
13777          * the culprit.
13778          *
13779          * XXX note that we assume display power is on at this point.
13780          * This might hold true now but we need to add pm helper to check
13781          * unclaimed only when the hardware is on, as atomic commits
13782          * can happen also when the device is completely off.
13783          */
13784         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13785 }
13786
13787 static void intel_atomic_commit_work(struct work_struct *work)
13788 {
13789         struct drm_atomic_state *state = container_of(work,
13790                                                       struct drm_atomic_state,
13791                                                       commit_work);
13792         intel_atomic_commit_tail(state);
13793 }
13794
13795 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
13796 {
13797         struct drm_plane_state *old_plane_state;
13798         struct drm_plane *plane;
13799         struct drm_i915_gem_object *obj, *old_obj;
13800         struct intel_plane *intel_plane;
13801         int i;
13802
13803         mutex_lock(&state->dev->struct_mutex);
13804         for_each_plane_in_state(state, plane, old_plane_state, i) {
13805                 obj = intel_fb_obj(plane->state->fb);
13806                 old_obj = intel_fb_obj(old_plane_state->fb);
13807                 intel_plane = to_intel_plane(plane);
13808
13809                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13810         }
13811         mutex_unlock(&state->dev->struct_mutex);
13812 }
13813
13814 /**
13815  * intel_atomic_commit - commit validated state object
13816  * @dev: DRM device
13817  * @state: the top-level driver state object
13818  * @nonblock: nonblocking commit
13819  *
13820  * This function commits a top-level state object that has been validated
13821  * with drm_atomic_helper_check().
13822  *
13823  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13824  * nonblocking commits are only safe for pure plane updates. Everything else
13825  * should work though.
13826  *
13827  * RETURNS
13828  * Zero for success or -errno.
13829  */
13830 static int intel_atomic_commit(struct drm_device *dev,
13831                                struct drm_atomic_state *state,
13832                                bool nonblock)
13833 {
13834         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13835         struct drm_i915_private *dev_priv = to_i915(dev);
13836         int ret = 0;
13837
13838         if (intel_state->modeset && nonblock) {
13839                 DRM_DEBUG_KMS("nonblocking commit for modeset not yet implemented.\n");
13840                 return -EINVAL;
13841         }
13842
13843         ret = drm_atomic_helper_setup_commit(state, nonblock);
13844         if (ret)
13845                 return ret;
13846
13847         INIT_WORK(&state->commit_work, intel_atomic_commit_work);
13848
13849         ret = intel_atomic_prepare_commit(dev, state, nonblock);
13850         if (ret) {
13851                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13852                 return ret;
13853         }
13854
13855         drm_atomic_helper_swap_state(state, true);
13856         dev_priv->wm.distrust_bios_wm = false;
13857         dev_priv->wm.skl_results = intel_state->wm_results;
13858         intel_shared_dpll_commit(state);
13859         intel_atomic_track_fbs(state);
13860
13861         if (nonblock)
13862                 queue_work(system_unbound_wq, &state->commit_work);
13863         else
13864                 intel_atomic_commit_tail(state);
13865
13866         return 0;
13867 }
13868
13869 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13870 {
13871         struct drm_device *dev = crtc->dev;
13872         struct drm_atomic_state *state;
13873         struct drm_crtc_state *crtc_state;
13874         int ret;
13875
13876         state = drm_atomic_state_alloc(dev);
13877         if (!state) {
13878                 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
13879                               crtc->base.id, crtc->name);
13880                 return;
13881         }
13882
13883         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13884
13885 retry:
13886         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13887         ret = PTR_ERR_OR_ZERO(crtc_state);
13888         if (!ret) {
13889                 if (!crtc_state->active)
13890                         goto out;
13891
13892                 crtc_state->mode_changed = true;
13893                 ret = drm_atomic_commit(state);
13894         }
13895
13896         if (ret == -EDEADLK) {
13897                 drm_atomic_state_clear(state);
13898                 drm_modeset_backoff(state->acquire_ctx);
13899                 goto retry;
13900         }
13901
13902         if (ret)
13903 out:
13904                 drm_atomic_state_free(state);
13905 }
13906
13907 #undef for_each_intel_crtc_masked
13908
13909 /*
13910  * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
13911  *        drm_atomic_helper_legacy_gamma_set() directly.
13912  */
13913 static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
13914                                          u16 *red, u16 *green, u16 *blue,
13915                                          uint32_t size)
13916 {
13917         struct drm_device *dev = crtc->dev;
13918         struct drm_mode_config *config = &dev->mode_config;
13919         struct drm_crtc_state *state;
13920         int ret;
13921
13922         ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
13923         if (ret)
13924                 return ret;
13925
13926         /*
13927          * Make sure we update the legacy properties so this works when
13928          * atomic is not enabled.
13929          */
13930
13931         state = crtc->state;
13932
13933         drm_object_property_set_value(&crtc->base,
13934                                       config->degamma_lut_property,
13935                                       (state->degamma_lut) ?
13936                                       state->degamma_lut->base.id : 0);
13937
13938         drm_object_property_set_value(&crtc->base,
13939                                       config->ctm_property,
13940                                       (state->ctm) ?
13941                                       state->ctm->base.id : 0);
13942
13943         drm_object_property_set_value(&crtc->base,
13944                                       config->gamma_lut_property,
13945                                       (state->gamma_lut) ?
13946                                       state->gamma_lut->base.id : 0);
13947
13948         return 0;
13949 }
13950
13951 static const struct drm_crtc_funcs intel_crtc_funcs = {
13952         .gamma_set = intel_atomic_legacy_gamma_set,
13953         .set_config = drm_atomic_helper_set_config,
13954         .set_property = drm_atomic_helper_crtc_set_property,
13955         .destroy = intel_crtc_destroy,
13956         .page_flip = intel_crtc_page_flip,
13957         .atomic_duplicate_state = intel_crtc_duplicate_state,
13958         .atomic_destroy_state = intel_crtc_destroy_state,
13959 };
13960
13961 /**
13962  * intel_prepare_plane_fb - Prepare fb for usage on plane
13963  * @plane: drm plane to prepare for
13964  * @fb: framebuffer to prepare for presentation
13965  *
13966  * Prepares a framebuffer for usage on a display plane.  Generally this
13967  * involves pinning the underlying object and updating the frontbuffer tracking
13968  * bits.  Some older platforms need special physical address handling for
13969  * cursor planes.
13970  *
13971  * Must be called with struct_mutex held.
13972  *
13973  * Returns 0 on success, negative error code on failure.
13974  */
13975 int
13976 intel_prepare_plane_fb(struct drm_plane *plane,
13977                        const struct drm_plane_state *new_state)
13978 {
13979         struct drm_device *dev = plane->dev;
13980         struct drm_framebuffer *fb = new_state->fb;
13981         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13982         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13983         struct reservation_object *resv;
13984         int ret = 0;
13985
13986         if (!obj && !old_obj)
13987                 return 0;
13988
13989         if (old_obj) {
13990                 struct drm_crtc_state *crtc_state =
13991                         drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13992
13993                 /* Big Hammer, we also need to ensure that any pending
13994                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13995                  * current scanout is retired before unpinning the old
13996                  * framebuffer. Note that we rely on userspace rendering
13997                  * into the buffer attached to the pipe they are waiting
13998                  * on. If not, userspace generates a GPU hang with IPEHR
13999                  * point to the MI_WAIT_FOR_EVENT.
14000                  *
14001                  * This should only fail upon a hung GPU, in which case we
14002                  * can safely continue.
14003                  */
14004                 if (needs_modeset(crtc_state))
14005                         ret = i915_gem_object_wait_rendering(old_obj, true);
14006                 if (ret) {
14007                         /* GPU hangs should have been swallowed by the wait */
14008                         WARN_ON(ret == -EIO);
14009                         return ret;
14010                 }
14011         }
14012
14013         if (!obj)
14014                 return 0;
14015
14016         /* For framebuffer backed by dmabuf, wait for fence */
14017         resv = i915_gem_object_get_dmabuf_resv(obj);
14018         if (resv) {
14019                 long lret;
14020
14021                 lret = reservation_object_wait_timeout_rcu(resv, false, true,
14022                                                            MAX_SCHEDULE_TIMEOUT);
14023                 if (lret == -ERESTARTSYS)
14024                         return lret;
14025
14026                 WARN(lret < 0, "waiting returns %li\n", lret);
14027         }
14028
14029         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14030             INTEL_INFO(dev)->cursor_needs_physical) {
14031                 int align = IS_I830(dev) ? 16 * 1024 : 256;
14032                 ret = i915_gem_object_attach_phys(obj, align);
14033                 if (ret)
14034                         DRM_DEBUG_KMS("failed to attach phys object\n");
14035         } else {
14036                 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14037         }
14038
14039         if (ret == 0) {
14040                 struct intel_plane_state *plane_state =
14041                         to_intel_plane_state(new_state);
14042
14043                 i915_gem_request_assign(&plane_state->wait_req,
14044                                         obj->last_write_req);
14045         }
14046
14047         return ret;
14048 }
14049
14050 /**
14051  * intel_cleanup_plane_fb - Cleans up an fb after plane use
14052  * @plane: drm plane to clean up for
14053  * @fb: old framebuffer that was on plane
14054  *
14055  * Cleans up a framebuffer that has just been removed from a plane.
14056  *
14057  * Must be called with struct_mutex held.
14058  */
14059 void
14060 intel_cleanup_plane_fb(struct drm_plane *plane,
14061                        const struct drm_plane_state *old_state)
14062 {
14063         struct drm_device *dev = plane->dev;
14064         struct intel_plane_state *old_intel_state;
14065         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
14066         struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
14067
14068         old_intel_state = to_intel_plane_state(old_state);
14069
14070         if (!obj && !old_obj)
14071                 return;
14072
14073         if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
14074             !INTEL_INFO(dev)->cursor_needs_physical))
14075                 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
14076
14077         i915_gem_request_assign(&old_intel_state->wait_req, NULL);
14078 }
14079
14080 int
14081 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14082 {
14083         int max_scale;
14084         int crtc_clock, cdclk;
14085
14086         if (!intel_crtc || !crtc_state->base.enable)
14087                 return DRM_PLANE_HELPER_NO_SCALING;
14088
14089         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14090         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14091
14092         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14093                 return DRM_PLANE_HELPER_NO_SCALING;
14094
14095         /*
14096          * skl max scale is lower of:
14097          *    close to 3 but not 3, -1 is for that purpose
14098          *            or
14099          *    cdclk/crtc_clock
14100          */
14101         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14102
14103         return max_scale;
14104 }
14105
14106 static int
14107 intel_check_primary_plane(struct drm_plane *plane,
14108                           struct intel_crtc_state *crtc_state,
14109                           struct intel_plane_state *state)
14110 {
14111         struct drm_crtc *crtc = state->base.crtc;
14112         struct drm_framebuffer *fb = state->base.fb;
14113         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14114         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14115         bool can_position = false;
14116
14117         if (INTEL_INFO(plane->dev)->gen >= 9) {
14118                 /* use scaler when colorkey is not required */
14119                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14120                         min_scale = 1;
14121                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14122                 }
14123                 can_position = true;
14124         }
14125
14126         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14127                                              &state->dst, &state->clip,
14128                                              state->base.rotation,
14129                                              min_scale, max_scale,
14130                                              can_position, true,
14131                                              &state->visible);
14132 }
14133
14134 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14135                                     struct drm_crtc_state *old_crtc_state)
14136 {
14137         struct drm_device *dev = crtc->dev;
14138         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14139         struct intel_crtc_state *old_intel_state =
14140                 to_intel_crtc_state(old_crtc_state);
14141         bool modeset = needs_modeset(crtc->state);
14142
14143         /* Perform vblank evasion around commit operation */
14144         intel_pipe_update_start(intel_crtc);
14145
14146         if (modeset)
14147                 return;
14148
14149         if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14150                 intel_color_set_csc(crtc->state);
14151                 intel_color_load_luts(crtc->state);
14152         }
14153
14154         if (to_intel_crtc_state(crtc->state)->update_pipe)
14155                 intel_update_pipe_config(intel_crtc, old_intel_state);
14156         else if (INTEL_INFO(dev)->gen >= 9)
14157                 skl_detach_scalers(intel_crtc);
14158 }
14159
14160 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14161                                      struct drm_crtc_state *old_crtc_state)
14162 {
14163         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14164
14165         intel_pipe_update_end(intel_crtc, NULL);
14166 }
14167
14168 /**
14169  * intel_plane_destroy - destroy a plane
14170  * @plane: plane to destroy
14171  *
14172  * Common destruction function for all types of planes (primary, cursor,
14173  * sprite).
14174  */
14175 void intel_plane_destroy(struct drm_plane *plane)
14176 {
14177         if (!plane)
14178                 return;
14179
14180         drm_plane_cleanup(plane);
14181         kfree(to_intel_plane(plane));
14182 }
14183
14184 const struct drm_plane_funcs intel_plane_funcs = {
14185         .update_plane = drm_atomic_helper_update_plane,
14186         .disable_plane = drm_atomic_helper_disable_plane,
14187         .destroy = intel_plane_destroy,
14188         .set_property = drm_atomic_helper_plane_set_property,
14189         .atomic_get_property = intel_plane_atomic_get_property,
14190         .atomic_set_property = intel_plane_atomic_set_property,
14191         .atomic_duplicate_state = intel_plane_duplicate_state,
14192         .atomic_destroy_state = intel_plane_destroy_state,
14193
14194 };
14195
14196 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14197                                                     int pipe)
14198 {
14199         struct intel_plane *primary = NULL;
14200         struct intel_plane_state *state = NULL;
14201         const uint32_t *intel_primary_formats;
14202         unsigned int num_formats;
14203         int ret;
14204
14205         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14206         if (!primary)
14207                 goto fail;
14208
14209         state = intel_create_plane_state(&primary->base);
14210         if (!state)
14211                 goto fail;
14212         primary->base.state = &state->base;
14213
14214         primary->can_scale = false;
14215         primary->max_downscale = 1;
14216         if (INTEL_INFO(dev)->gen >= 9) {
14217                 primary->can_scale = true;
14218                 state->scaler_id = -1;
14219         }
14220         primary->pipe = pipe;
14221         primary->plane = pipe;
14222         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14223         primary->check_plane = intel_check_primary_plane;
14224         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14225                 primary->plane = !pipe;
14226
14227         if (INTEL_INFO(dev)->gen >= 9) {
14228                 intel_primary_formats = skl_primary_formats;
14229                 num_formats = ARRAY_SIZE(skl_primary_formats);
14230
14231                 primary->update_plane = skylake_update_primary_plane;
14232                 primary->disable_plane = skylake_disable_primary_plane;
14233         } else if (HAS_PCH_SPLIT(dev)) {
14234                 intel_primary_formats = i965_primary_formats;
14235                 num_formats = ARRAY_SIZE(i965_primary_formats);
14236
14237                 primary->update_plane = ironlake_update_primary_plane;
14238                 primary->disable_plane = i9xx_disable_primary_plane;
14239         } else if (INTEL_INFO(dev)->gen >= 4) {
14240                 intel_primary_formats = i965_primary_formats;
14241                 num_formats = ARRAY_SIZE(i965_primary_formats);
14242
14243                 primary->update_plane = i9xx_update_primary_plane;
14244                 primary->disable_plane = i9xx_disable_primary_plane;
14245         } else {
14246                 intel_primary_formats = i8xx_primary_formats;
14247                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14248
14249                 primary->update_plane = i9xx_update_primary_plane;
14250                 primary->disable_plane = i9xx_disable_primary_plane;
14251         }
14252
14253         if (INTEL_INFO(dev)->gen >= 9)
14254                 ret = drm_universal_plane_init(dev, &primary->base, 0,
14255                                                &intel_plane_funcs,
14256                                                intel_primary_formats, num_formats,
14257                                                DRM_PLANE_TYPE_PRIMARY,
14258                                                "plane 1%c", pipe_name(pipe));
14259         else if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
14260                 ret = drm_universal_plane_init(dev, &primary->base, 0,
14261                                                &intel_plane_funcs,
14262                                                intel_primary_formats, num_formats,
14263                                                DRM_PLANE_TYPE_PRIMARY,
14264                                                "primary %c", pipe_name(pipe));
14265         else
14266                 ret = drm_universal_plane_init(dev, &primary->base, 0,
14267                                                &intel_plane_funcs,
14268                                                intel_primary_formats, num_formats,
14269                                                DRM_PLANE_TYPE_PRIMARY,
14270                                                "plane %c", plane_name(primary->plane));
14271         if (ret)
14272                 goto fail;
14273
14274         if (INTEL_INFO(dev)->gen >= 4)
14275                 intel_create_rotation_property(dev, primary);
14276
14277         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14278
14279         return &primary->base;
14280
14281 fail:
14282         kfree(state);
14283         kfree(primary);
14284
14285         return NULL;
14286 }
14287
14288 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14289 {
14290         if (!dev->mode_config.rotation_property) {
14291                 unsigned long flags = BIT(DRM_ROTATE_0) |
14292                         BIT(DRM_ROTATE_180);
14293
14294                 if (INTEL_INFO(dev)->gen >= 9)
14295                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14296
14297                 dev->mode_config.rotation_property =
14298                         drm_mode_create_rotation_property(dev, flags);
14299         }
14300         if (dev->mode_config.rotation_property)
14301                 drm_object_attach_property(&plane->base.base,
14302                                 dev->mode_config.rotation_property,
14303                                 plane->base.state->rotation);
14304 }
14305
14306 static int
14307 intel_check_cursor_plane(struct drm_plane *plane,
14308                          struct intel_crtc_state *crtc_state,
14309                          struct intel_plane_state *state)
14310 {
14311         struct drm_crtc *crtc = crtc_state->base.crtc;
14312         struct drm_framebuffer *fb = state->base.fb;
14313         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14314         enum pipe pipe = to_intel_plane(plane)->pipe;
14315         unsigned stride;
14316         int ret;
14317
14318         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14319                                             &state->dst, &state->clip,
14320                                             state->base.rotation,
14321                                             DRM_PLANE_HELPER_NO_SCALING,
14322                                             DRM_PLANE_HELPER_NO_SCALING,
14323                                             true, true, &state->visible);
14324         if (ret)
14325                 return ret;
14326
14327         /* if we want to turn off the cursor ignore width and height */
14328         if (!obj)
14329                 return 0;
14330
14331         /* Check for which cursor types we support */
14332         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14333                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14334                           state->base.crtc_w, state->base.crtc_h);
14335                 return -EINVAL;
14336         }
14337
14338         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14339         if (obj->base.size < stride * state->base.crtc_h) {
14340                 DRM_DEBUG_KMS("buffer is too small\n");
14341                 return -ENOMEM;
14342         }
14343
14344         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14345                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14346                 return -EINVAL;
14347         }
14348
14349         /*
14350          * There's something wrong with the cursor on CHV pipe C.
14351          * If it straddles the left edge of the screen then
14352          * moving it away from the edge or disabling it often
14353          * results in a pipe underrun, and often that can lead to
14354          * dead pipe (constant underrun reported, and it scans
14355          * out just a solid color). To recover from that, the
14356          * display power well must be turned off and on again.
14357          * Refuse the put the cursor into that compromised position.
14358          */
14359         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14360             state->visible && state->base.crtc_x < 0) {
14361                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14362                 return -EINVAL;
14363         }
14364
14365         return 0;
14366 }
14367
14368 static void
14369 intel_disable_cursor_plane(struct drm_plane *plane,
14370                            struct drm_crtc *crtc)
14371 {
14372         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14373
14374         intel_crtc->cursor_addr = 0;
14375         intel_crtc_update_cursor(crtc, NULL);
14376 }
14377
14378 static void
14379 intel_update_cursor_plane(struct drm_plane *plane,
14380                           const struct intel_crtc_state *crtc_state,
14381                           const struct intel_plane_state *state)
14382 {
14383         struct drm_crtc *crtc = crtc_state->base.crtc;
14384         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14385         struct drm_device *dev = plane->dev;
14386         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14387         uint32_t addr;
14388
14389         if (!obj)
14390                 addr = 0;
14391         else if (!INTEL_INFO(dev)->cursor_needs_physical)
14392                 addr = i915_gem_obj_ggtt_offset(obj);
14393         else
14394                 addr = obj->phys_handle->busaddr;
14395
14396         intel_crtc->cursor_addr = addr;
14397         intel_crtc_update_cursor(crtc, state);
14398 }
14399
14400 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14401                                                    int pipe)
14402 {
14403         struct intel_plane *cursor = NULL;
14404         struct intel_plane_state *state = NULL;
14405         int ret;
14406
14407         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14408         if (!cursor)
14409                 goto fail;
14410
14411         state = intel_create_plane_state(&cursor->base);
14412         if (!state)
14413                 goto fail;
14414         cursor->base.state = &state->base;
14415
14416         cursor->can_scale = false;
14417         cursor->max_downscale = 1;
14418         cursor->pipe = pipe;
14419         cursor->plane = pipe;
14420         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14421         cursor->check_plane = intel_check_cursor_plane;
14422         cursor->update_plane = intel_update_cursor_plane;
14423         cursor->disable_plane = intel_disable_cursor_plane;
14424
14425         ret = drm_universal_plane_init(dev, &cursor->base, 0,
14426                                        &intel_plane_funcs,
14427                                        intel_cursor_formats,
14428                                        ARRAY_SIZE(intel_cursor_formats),
14429                                        DRM_PLANE_TYPE_CURSOR,
14430                                        "cursor %c", pipe_name(pipe));
14431         if (ret)
14432                 goto fail;
14433
14434         if (INTEL_INFO(dev)->gen >= 4) {
14435                 if (!dev->mode_config.rotation_property)
14436                         dev->mode_config.rotation_property =
14437                                 drm_mode_create_rotation_property(dev,
14438                                                         BIT(DRM_ROTATE_0) |
14439                                                         BIT(DRM_ROTATE_180));
14440                 if (dev->mode_config.rotation_property)
14441                         drm_object_attach_property(&cursor->base.base,
14442                                 dev->mode_config.rotation_property,
14443                                 state->base.rotation);
14444         }
14445
14446         if (INTEL_INFO(dev)->gen >=9)
14447                 state->scaler_id = -1;
14448
14449         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14450
14451         return &cursor->base;
14452
14453 fail:
14454         kfree(state);
14455         kfree(cursor);
14456
14457         return NULL;
14458 }
14459
14460 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14461         struct intel_crtc_state *crtc_state)
14462 {
14463         int i;
14464         struct intel_scaler *intel_scaler;
14465         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14466
14467         for (i = 0; i < intel_crtc->num_scalers; i++) {
14468                 intel_scaler = &scaler_state->scalers[i];
14469                 intel_scaler->in_use = 0;
14470                 intel_scaler->mode = PS_SCALER_MODE_DYN;
14471         }
14472
14473         scaler_state->scaler_id = -1;
14474 }
14475
14476 static void intel_crtc_init(struct drm_device *dev, int pipe)
14477 {
14478         struct drm_i915_private *dev_priv = to_i915(dev);
14479         struct intel_crtc *intel_crtc;
14480         struct intel_crtc_state *crtc_state = NULL;
14481         struct drm_plane *primary = NULL;
14482         struct drm_plane *cursor = NULL;
14483         int ret;
14484
14485         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14486         if (intel_crtc == NULL)
14487                 return;
14488
14489         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14490         if (!crtc_state)
14491                 goto fail;
14492         intel_crtc->config = crtc_state;
14493         intel_crtc->base.state = &crtc_state->base;
14494         crtc_state->base.crtc = &intel_crtc->base;
14495
14496         /* initialize shared scalers */
14497         if (INTEL_INFO(dev)->gen >= 9) {
14498                 if (pipe == PIPE_C)
14499                         intel_crtc->num_scalers = 1;
14500                 else
14501                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
14502
14503                 skl_init_scalers(dev, intel_crtc, crtc_state);
14504         }
14505
14506         primary = intel_primary_plane_create(dev, pipe);
14507         if (!primary)
14508                 goto fail;
14509
14510         cursor = intel_cursor_plane_create(dev, pipe);
14511         if (!cursor)
14512                 goto fail;
14513
14514         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14515                                         cursor, &intel_crtc_funcs,
14516                                         "pipe %c", pipe_name(pipe));
14517         if (ret)
14518                 goto fail;
14519
14520         /*
14521          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14522          * is hooked to pipe B. Hence we want plane A feeding pipe B.
14523          */
14524         intel_crtc->pipe = pipe;
14525         intel_crtc->plane = pipe;
14526         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14527                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14528                 intel_crtc->plane = !pipe;
14529         }
14530
14531         intel_crtc->cursor_base = ~0;
14532         intel_crtc->cursor_cntl = ~0;
14533         intel_crtc->cursor_size = ~0;
14534
14535         intel_crtc->wm.cxsr_allowed = true;
14536
14537         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14538                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14539         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14540         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14541
14542         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14543
14544         intel_color_init(&intel_crtc->base);
14545
14546         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14547         return;
14548
14549 fail:
14550         intel_plane_destroy(primary);
14551         intel_plane_destroy(cursor);
14552         kfree(crtc_state);
14553         kfree(intel_crtc);
14554 }
14555
14556 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14557 {
14558         struct drm_encoder *encoder = connector->base.encoder;
14559         struct drm_device *dev = connector->base.dev;
14560
14561         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14562
14563         if (!encoder || WARN_ON(!encoder->crtc))
14564                 return INVALID_PIPE;
14565
14566         return to_intel_crtc(encoder->crtc)->pipe;
14567 }
14568
14569 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14570                                 struct drm_file *file)
14571 {
14572         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14573         struct drm_crtc *drmmode_crtc;
14574         struct intel_crtc *crtc;
14575
14576         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14577         if (!drmmode_crtc)
14578                 return -ENOENT;
14579
14580         crtc = to_intel_crtc(drmmode_crtc);
14581         pipe_from_crtc_id->pipe = crtc->pipe;
14582
14583         return 0;
14584 }
14585
14586 static int intel_encoder_clones(struct intel_encoder *encoder)
14587 {
14588         struct drm_device *dev = encoder->base.dev;
14589         struct intel_encoder *source_encoder;
14590         int index_mask = 0;
14591         int entry = 0;
14592
14593         for_each_intel_encoder(dev, source_encoder) {
14594                 if (encoders_cloneable(encoder, source_encoder))
14595                         index_mask |= (1 << entry);
14596
14597                 entry++;
14598         }
14599
14600         return index_mask;
14601 }
14602
14603 static bool has_edp_a(struct drm_device *dev)
14604 {
14605         struct drm_i915_private *dev_priv = to_i915(dev);
14606
14607         if (!IS_MOBILE(dev))
14608                 return false;
14609
14610         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14611                 return false;
14612
14613         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14614                 return false;
14615
14616         return true;
14617 }
14618
14619 static bool intel_crt_present(struct drm_device *dev)
14620 {
14621         struct drm_i915_private *dev_priv = to_i915(dev);
14622
14623         if (INTEL_INFO(dev)->gen >= 9)
14624                 return false;
14625
14626         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14627                 return false;
14628
14629         if (IS_CHERRYVIEW(dev))
14630                 return false;
14631
14632         if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14633                 return false;
14634
14635         /* DDI E can't be used if DDI A requires 4 lanes */
14636         if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14637                 return false;
14638
14639         if (!dev_priv->vbt.int_crt_support)
14640                 return false;
14641
14642         return true;
14643 }
14644
14645 static void intel_setup_outputs(struct drm_device *dev)
14646 {
14647         struct drm_i915_private *dev_priv = to_i915(dev);
14648         struct intel_encoder *encoder;
14649         bool dpd_is_edp = false;
14650
14651         /*
14652          * intel_edp_init_connector() depends on this completing first, to
14653          * prevent the registeration of both eDP and LVDS and the incorrect
14654          * sharing of the PPS.
14655          */
14656         intel_lvds_init(dev);
14657
14658         if (intel_crt_present(dev))
14659                 intel_crt_init(dev);
14660
14661         if (IS_BROXTON(dev)) {
14662                 /*
14663                  * FIXME: Broxton doesn't support port detection via the
14664                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14665                  * detect the ports.
14666                  */
14667                 intel_ddi_init(dev, PORT_A);
14668                 intel_ddi_init(dev, PORT_B);
14669                 intel_ddi_init(dev, PORT_C);
14670
14671                 intel_dsi_init(dev);
14672         } else if (HAS_DDI(dev)) {
14673                 int found;
14674
14675                 /*
14676                  * Haswell uses DDI functions to detect digital outputs.
14677                  * On SKL pre-D0 the strap isn't connected, so we assume
14678                  * it's there.
14679                  */
14680                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14681                 /* WaIgnoreDDIAStrap: skl */
14682                 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14683                         intel_ddi_init(dev, PORT_A);
14684
14685                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14686                  * register */
14687                 found = I915_READ(SFUSE_STRAP);
14688
14689                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14690                         intel_ddi_init(dev, PORT_B);
14691                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14692                         intel_ddi_init(dev, PORT_C);
14693                 if (found & SFUSE_STRAP_DDID_DETECTED)
14694                         intel_ddi_init(dev, PORT_D);
14695                 /*
14696                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14697                  */
14698                 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14699                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14700                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14701                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14702                         intel_ddi_init(dev, PORT_E);
14703
14704         } else if (HAS_PCH_SPLIT(dev)) {
14705                 int found;
14706                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14707
14708                 if (has_edp_a(dev))
14709                         intel_dp_init(dev, DP_A, PORT_A);
14710
14711                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14712                         /* PCH SDVOB multiplex with HDMIB */
14713                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14714                         if (!found)
14715                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14716                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14717                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14718                 }
14719
14720                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14721                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14722
14723                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14724                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14725
14726                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14727                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14728
14729                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14730                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14731         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14732                 bool has_edp, has_port;
14733
14734                 /*
14735                  * The DP_DETECTED bit is the latched state of the DDC
14736                  * SDA pin at boot. However since eDP doesn't require DDC
14737                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14738                  * eDP ports may have been muxed to an alternate function.
14739                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14740                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14741                  * detect eDP ports.
14742                  *
14743                  * Sadly the straps seem to be missing sometimes even for HDMI
14744                  * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14745                  * and VBT for the presence of the port. Additionally we can't
14746                  * trust the port type the VBT declares as we've seen at least
14747                  * HDMI ports that the VBT claim are DP or eDP.
14748                  */
14749                 has_edp = intel_dp_is_edp(dev, PORT_B);
14750                 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14751                 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
14752                         has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
14753                 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
14754                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14755
14756                 has_edp = intel_dp_is_edp(dev, PORT_C);
14757                 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14758                 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
14759                         has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
14760                 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
14761                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14762
14763                 if (IS_CHERRYVIEW(dev)) {
14764                         /*
14765                          * eDP not supported on port D,
14766                          * so no need to worry about it
14767                          */
14768                         has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14769                         if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
14770                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14771                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14772                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14773                 }
14774
14775                 intel_dsi_init(dev);
14776         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14777                 bool found = false;
14778
14779                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14780                         DRM_DEBUG_KMS("probing SDVOB\n");
14781                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14782                         if (!found && IS_G4X(dev)) {
14783                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14784                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14785                         }
14786
14787                         if (!found && IS_G4X(dev))
14788                                 intel_dp_init(dev, DP_B, PORT_B);
14789                 }
14790
14791                 /* Before G4X SDVOC doesn't have its own detect register */
14792
14793                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14794                         DRM_DEBUG_KMS("probing SDVOC\n");
14795                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14796                 }
14797
14798                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14799
14800                         if (IS_G4X(dev)) {
14801                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14802                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14803                         }
14804                         if (IS_G4X(dev))
14805                                 intel_dp_init(dev, DP_C, PORT_C);
14806                 }
14807
14808                 if (IS_G4X(dev) &&
14809                     (I915_READ(DP_D) & DP_DETECTED))
14810                         intel_dp_init(dev, DP_D, PORT_D);
14811         } else if (IS_GEN2(dev))
14812                 intel_dvo_init(dev);
14813
14814         if (SUPPORTS_TV(dev))
14815                 intel_tv_init(dev);
14816
14817         intel_psr_init(dev);
14818
14819         for_each_intel_encoder(dev, encoder) {
14820                 encoder->base.possible_crtcs = encoder->crtc_mask;
14821                 encoder->base.possible_clones =
14822                         intel_encoder_clones(encoder);
14823         }
14824
14825         intel_init_pch_refclk(dev);
14826
14827         drm_helper_move_panel_connectors_to_head(dev);
14828 }
14829
14830 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14831 {
14832         struct drm_device *dev = fb->dev;
14833         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14834
14835         drm_framebuffer_cleanup(fb);
14836         mutex_lock(&dev->struct_mutex);
14837         WARN_ON(!intel_fb->obj->framebuffer_references--);
14838         drm_gem_object_unreference(&intel_fb->obj->base);
14839         mutex_unlock(&dev->struct_mutex);
14840         kfree(intel_fb);
14841 }
14842
14843 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14844                                                 struct drm_file *file,
14845                                                 unsigned int *handle)
14846 {
14847         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14848         struct drm_i915_gem_object *obj = intel_fb->obj;
14849
14850         if (obj->userptr.mm) {
14851                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14852                 return -EINVAL;
14853         }
14854
14855         return drm_gem_handle_create(file, &obj->base, handle);
14856 }
14857
14858 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14859                                         struct drm_file *file,
14860                                         unsigned flags, unsigned color,
14861                                         struct drm_clip_rect *clips,
14862                                         unsigned num_clips)
14863 {
14864         struct drm_device *dev = fb->dev;
14865         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14866         struct drm_i915_gem_object *obj = intel_fb->obj;
14867
14868         mutex_lock(&dev->struct_mutex);
14869         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14870         mutex_unlock(&dev->struct_mutex);
14871
14872         return 0;
14873 }
14874
14875 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14876         .destroy = intel_user_framebuffer_destroy,
14877         .create_handle = intel_user_framebuffer_create_handle,
14878         .dirty = intel_user_framebuffer_dirty,
14879 };
14880
14881 static
14882 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14883                          uint32_t pixel_format)
14884 {
14885         u32 gen = INTEL_INFO(dev)->gen;
14886
14887         if (gen >= 9) {
14888                 int cpp = drm_format_plane_cpp(pixel_format, 0);
14889
14890                 /* "The stride in bytes must not exceed the of the size of 8K
14891                  *  pixels and 32K bytes."
14892                  */
14893                 return min(8192 * cpp, 32768);
14894         } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14895                 return 32*1024;
14896         } else if (gen >= 4) {
14897                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14898                         return 16*1024;
14899                 else
14900                         return 32*1024;
14901         } else if (gen >= 3) {
14902                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14903                         return 8*1024;
14904                 else
14905                         return 16*1024;
14906         } else {
14907                 /* XXX DSPC is limited to 4k tiled */
14908                 return 8*1024;
14909         }
14910 }
14911
14912 static int intel_framebuffer_init(struct drm_device *dev,
14913                                   struct intel_framebuffer *intel_fb,
14914                                   struct drm_mode_fb_cmd2 *mode_cmd,
14915                                   struct drm_i915_gem_object *obj)
14916 {
14917         struct drm_i915_private *dev_priv = to_i915(dev);
14918         unsigned int aligned_height;
14919         int ret;
14920         u32 pitch_limit, stride_alignment;
14921
14922         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14923
14924         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14925                 /* Enforce that fb modifier and tiling mode match, but only for
14926                  * X-tiled. This is needed for FBC. */
14927                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14928                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14929                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14930                         return -EINVAL;
14931                 }
14932         } else {
14933                 if (obj->tiling_mode == I915_TILING_X)
14934                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14935                 else if (obj->tiling_mode == I915_TILING_Y) {
14936                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14937                         return -EINVAL;
14938                 }
14939         }
14940
14941         /* Passed in modifier sanity checking. */
14942         switch (mode_cmd->modifier[0]) {
14943         case I915_FORMAT_MOD_Y_TILED:
14944         case I915_FORMAT_MOD_Yf_TILED:
14945                 if (INTEL_INFO(dev)->gen < 9) {
14946                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14947                                   mode_cmd->modifier[0]);
14948                         return -EINVAL;
14949                 }
14950         case DRM_FORMAT_MOD_NONE:
14951         case I915_FORMAT_MOD_X_TILED:
14952                 break;
14953         default:
14954                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14955                           mode_cmd->modifier[0]);
14956                 return -EINVAL;
14957         }
14958
14959         stride_alignment = intel_fb_stride_alignment(dev_priv,
14960                                                      mode_cmd->modifier[0],
14961                                                      mode_cmd->pixel_format);
14962         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14963                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14964                           mode_cmd->pitches[0], stride_alignment);
14965                 return -EINVAL;
14966         }
14967
14968         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14969                                            mode_cmd->pixel_format);
14970         if (mode_cmd->pitches[0] > pitch_limit) {
14971                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14972                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14973                           "tiled" : "linear",
14974                           mode_cmd->pitches[0], pitch_limit);
14975                 return -EINVAL;
14976         }
14977
14978         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14979             mode_cmd->pitches[0] != obj->stride) {
14980                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14981                           mode_cmd->pitches[0], obj->stride);
14982                 return -EINVAL;
14983         }
14984
14985         /* Reject formats not supported by any plane early. */
14986         switch (mode_cmd->pixel_format) {
14987         case DRM_FORMAT_C8:
14988         case DRM_FORMAT_RGB565:
14989         case DRM_FORMAT_XRGB8888:
14990         case DRM_FORMAT_ARGB8888:
14991                 break;
14992         case DRM_FORMAT_XRGB1555:
14993                 if (INTEL_INFO(dev)->gen > 3) {
14994                         DRM_DEBUG("unsupported pixel format: %s\n",
14995                                   drm_get_format_name(mode_cmd->pixel_format));
14996                         return -EINVAL;
14997                 }
14998                 break;
14999         case DRM_FORMAT_ABGR8888:
15000                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
15001                     INTEL_INFO(dev)->gen < 9) {
15002                         DRM_DEBUG("unsupported pixel format: %s\n",
15003                                   drm_get_format_name(mode_cmd->pixel_format));
15004                         return -EINVAL;
15005                 }
15006                 break;
15007         case DRM_FORMAT_XBGR8888:
15008         case DRM_FORMAT_XRGB2101010:
15009         case DRM_FORMAT_XBGR2101010:
15010                 if (INTEL_INFO(dev)->gen < 4) {
15011                         DRM_DEBUG("unsupported pixel format: %s\n",
15012                                   drm_get_format_name(mode_cmd->pixel_format));
15013                         return -EINVAL;
15014                 }
15015                 break;
15016         case DRM_FORMAT_ABGR2101010:
15017                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
15018                         DRM_DEBUG("unsupported pixel format: %s\n",
15019                                   drm_get_format_name(mode_cmd->pixel_format));
15020                         return -EINVAL;
15021                 }
15022                 break;
15023         case DRM_FORMAT_YUYV:
15024         case DRM_FORMAT_UYVY:
15025         case DRM_FORMAT_YVYU:
15026         case DRM_FORMAT_VYUY:
15027                 if (INTEL_INFO(dev)->gen < 5) {
15028                         DRM_DEBUG("unsupported pixel format: %s\n",
15029                                   drm_get_format_name(mode_cmd->pixel_format));
15030                         return -EINVAL;
15031                 }
15032                 break;
15033         default:
15034                 DRM_DEBUG("unsupported pixel format: %s\n",
15035                           drm_get_format_name(mode_cmd->pixel_format));
15036                 return -EINVAL;
15037         }
15038
15039         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15040         if (mode_cmd->offsets[0] != 0)
15041                 return -EINVAL;
15042
15043         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
15044                                                mode_cmd->pixel_format,
15045                                                mode_cmd->modifier[0]);
15046         /* FIXME drm helper for size checks (especially planar formats)? */
15047         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
15048                 return -EINVAL;
15049
15050         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15051         intel_fb->obj = obj;
15052
15053         intel_fill_fb_info(dev_priv, &intel_fb->base);
15054
15055         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15056         if (ret) {
15057                 DRM_ERROR("framebuffer init failed %d\n", ret);
15058                 return ret;
15059         }
15060
15061         intel_fb->obj->framebuffer_references++;
15062
15063         return 0;
15064 }
15065
15066 static struct drm_framebuffer *
15067 intel_user_framebuffer_create(struct drm_device *dev,
15068                               struct drm_file *filp,
15069                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
15070 {
15071         struct drm_framebuffer *fb;
15072         struct drm_i915_gem_object *obj;
15073         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15074
15075         obj = to_intel_bo(drm_gem_object_lookup(filp, mode_cmd.handles[0]));
15076         if (&obj->base == NULL)
15077                 return ERR_PTR(-ENOENT);
15078
15079         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
15080         if (IS_ERR(fb))
15081                 drm_gem_object_unreference_unlocked(&obj->base);
15082
15083         return fb;
15084 }
15085
15086 #ifndef CONFIG_DRM_FBDEV_EMULATION
15087 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
15088 {
15089 }
15090 #endif
15091
15092 static const struct drm_mode_config_funcs intel_mode_funcs = {
15093         .fb_create = intel_user_framebuffer_create,
15094         .output_poll_changed = intel_fbdev_output_poll_changed,
15095         .atomic_check = intel_atomic_check,
15096         .atomic_commit = intel_atomic_commit,
15097         .atomic_state_alloc = intel_atomic_state_alloc,
15098         .atomic_state_clear = intel_atomic_state_clear,
15099 };
15100
15101 /**
15102  * intel_init_display_hooks - initialize the display modesetting hooks
15103  * @dev_priv: device private
15104  */
15105 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15106 {
15107         if (INTEL_INFO(dev_priv)->gen >= 9) {
15108                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15109                 dev_priv->display.get_initial_plane_config =
15110                         skylake_get_initial_plane_config;
15111                 dev_priv->display.crtc_compute_clock =
15112                         haswell_crtc_compute_clock;
15113                 dev_priv->display.crtc_enable = haswell_crtc_enable;
15114                 dev_priv->display.crtc_disable = haswell_crtc_disable;
15115         } else if (HAS_DDI(dev_priv)) {
15116                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15117                 dev_priv->display.get_initial_plane_config =
15118                         ironlake_get_initial_plane_config;
15119                 dev_priv->display.crtc_compute_clock =
15120                         haswell_crtc_compute_clock;
15121                 dev_priv->display.crtc_enable = haswell_crtc_enable;
15122                 dev_priv->display.crtc_disable = haswell_crtc_disable;
15123         } else if (HAS_PCH_SPLIT(dev_priv)) {
15124                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15125                 dev_priv->display.get_initial_plane_config =
15126                         ironlake_get_initial_plane_config;
15127                 dev_priv->display.crtc_compute_clock =
15128                         ironlake_crtc_compute_clock;
15129                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
15130                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
15131         } else if (IS_CHERRYVIEW(dev_priv)) {
15132                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15133                 dev_priv->display.get_initial_plane_config =
15134                         i9xx_get_initial_plane_config;
15135                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15136                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15137                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15138         } else if (IS_VALLEYVIEW(dev_priv)) {
15139                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15140                 dev_priv->display.get_initial_plane_config =
15141                         i9xx_get_initial_plane_config;
15142                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15143                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15144                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15145         } else if (IS_G4X(dev_priv)) {
15146                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15147                 dev_priv->display.get_initial_plane_config =
15148                         i9xx_get_initial_plane_config;
15149                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15150                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15151                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15152         } else if (IS_PINEVIEW(dev_priv)) {
15153                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15154                 dev_priv->display.get_initial_plane_config =
15155                         i9xx_get_initial_plane_config;
15156                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15157                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15158                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15159         } else if (!IS_GEN2(dev_priv)) {
15160                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15161                 dev_priv->display.get_initial_plane_config =
15162                         i9xx_get_initial_plane_config;
15163                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15164                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15165                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15166         } else {
15167                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15168                 dev_priv->display.get_initial_plane_config =
15169                         i9xx_get_initial_plane_config;
15170                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15171                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15172                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15173         }
15174
15175         /* Returns the core display clock speed */
15176         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15177                 dev_priv->display.get_display_clock_speed =
15178                         skylake_get_display_clock_speed;
15179         else if (IS_BROXTON(dev_priv))
15180                 dev_priv->display.get_display_clock_speed =
15181                         broxton_get_display_clock_speed;
15182         else if (IS_BROADWELL(dev_priv))
15183                 dev_priv->display.get_display_clock_speed =
15184                         broadwell_get_display_clock_speed;
15185         else if (IS_HASWELL(dev_priv))
15186                 dev_priv->display.get_display_clock_speed =
15187                         haswell_get_display_clock_speed;
15188         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15189                 dev_priv->display.get_display_clock_speed =
15190                         valleyview_get_display_clock_speed;
15191         else if (IS_GEN5(dev_priv))
15192                 dev_priv->display.get_display_clock_speed =
15193                         ilk_get_display_clock_speed;
15194         else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
15195                  IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
15196                 dev_priv->display.get_display_clock_speed =
15197                         i945_get_display_clock_speed;
15198         else if (IS_GM45(dev_priv))
15199                 dev_priv->display.get_display_clock_speed =
15200                         gm45_get_display_clock_speed;
15201         else if (IS_CRESTLINE(dev_priv))
15202                 dev_priv->display.get_display_clock_speed =
15203                         i965gm_get_display_clock_speed;
15204         else if (IS_PINEVIEW(dev_priv))
15205                 dev_priv->display.get_display_clock_speed =
15206                         pnv_get_display_clock_speed;
15207         else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
15208                 dev_priv->display.get_display_clock_speed =
15209                         g33_get_display_clock_speed;
15210         else if (IS_I915G(dev_priv))
15211                 dev_priv->display.get_display_clock_speed =
15212                         i915_get_display_clock_speed;
15213         else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
15214                 dev_priv->display.get_display_clock_speed =
15215                         i9xx_misc_get_display_clock_speed;
15216         else if (IS_I915GM(dev_priv))
15217                 dev_priv->display.get_display_clock_speed =
15218                         i915gm_get_display_clock_speed;
15219         else if (IS_I865G(dev_priv))
15220                 dev_priv->display.get_display_clock_speed =
15221                         i865_get_display_clock_speed;
15222         else if (IS_I85X(dev_priv))
15223                 dev_priv->display.get_display_clock_speed =
15224                         i85x_get_display_clock_speed;
15225         else { /* 830 */
15226                 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
15227                 dev_priv->display.get_display_clock_speed =
15228                         i830_get_display_clock_speed;
15229         }
15230
15231         if (IS_GEN5(dev_priv)) {
15232                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15233         } else if (IS_GEN6(dev_priv)) {
15234                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15235         } else if (IS_IVYBRIDGE(dev_priv)) {
15236                 /* FIXME: detect B0+ stepping and use auto training */
15237                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15238         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
15239                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15240         }
15241
15242         if (IS_BROADWELL(dev_priv)) {
15243                 dev_priv->display.modeset_commit_cdclk =
15244                         broadwell_modeset_commit_cdclk;
15245                 dev_priv->display.modeset_calc_cdclk =
15246                         broadwell_modeset_calc_cdclk;
15247         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15248                 dev_priv->display.modeset_commit_cdclk =
15249                         valleyview_modeset_commit_cdclk;
15250                 dev_priv->display.modeset_calc_cdclk =
15251                         valleyview_modeset_calc_cdclk;
15252         } else if (IS_BROXTON(dev_priv)) {
15253                 dev_priv->display.modeset_commit_cdclk =
15254                         bxt_modeset_commit_cdclk;
15255                 dev_priv->display.modeset_calc_cdclk =
15256                         bxt_modeset_calc_cdclk;
15257         } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
15258                 dev_priv->display.modeset_commit_cdclk =
15259                         skl_modeset_commit_cdclk;
15260                 dev_priv->display.modeset_calc_cdclk =
15261                         skl_modeset_calc_cdclk;
15262         }
15263
15264         switch (INTEL_INFO(dev_priv)->gen) {
15265         case 2:
15266                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15267                 break;
15268
15269         case 3:
15270                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15271                 break;
15272
15273         case 4:
15274         case 5:
15275                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15276                 break;
15277
15278         case 6:
15279                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15280                 break;
15281         case 7:
15282         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15283                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15284                 break;
15285         case 9:
15286                 /* Drop through - unsupported since execlist only. */
15287         default:
15288                 /* Default just returns -ENODEV to indicate unsupported */
15289                 dev_priv->display.queue_flip = intel_default_queue_flip;
15290         }
15291 }
15292
15293 /*
15294  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15295  * resume, or other times.  This quirk makes sure that's the case for
15296  * affected systems.
15297  */
15298 static void quirk_pipea_force(struct drm_device *dev)
15299 {
15300         struct drm_i915_private *dev_priv = to_i915(dev);
15301
15302         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15303         DRM_INFO("applying pipe a force quirk\n");
15304 }
15305
15306 static void quirk_pipeb_force(struct drm_device *dev)
15307 {
15308         struct drm_i915_private *dev_priv = to_i915(dev);
15309
15310         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15311         DRM_INFO("applying pipe b force quirk\n");
15312 }
15313
15314 /*
15315  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15316  */
15317 static void quirk_ssc_force_disable(struct drm_device *dev)
15318 {
15319         struct drm_i915_private *dev_priv = to_i915(dev);
15320         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15321         DRM_INFO("applying lvds SSC disable quirk\n");
15322 }
15323
15324 /*
15325  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15326  * brightness value
15327  */
15328 static void quirk_invert_brightness(struct drm_device *dev)
15329 {
15330         struct drm_i915_private *dev_priv = to_i915(dev);
15331         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15332         DRM_INFO("applying inverted panel brightness quirk\n");
15333 }
15334
15335 /* Some VBT's incorrectly indicate no backlight is present */
15336 static void quirk_backlight_present(struct drm_device *dev)
15337 {
15338         struct drm_i915_private *dev_priv = to_i915(dev);
15339         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15340         DRM_INFO("applying backlight present quirk\n");
15341 }
15342
15343 struct intel_quirk {
15344         int device;
15345         int subsystem_vendor;
15346         int subsystem_device;
15347         void (*hook)(struct drm_device *dev);
15348 };
15349
15350 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15351 struct intel_dmi_quirk {
15352         void (*hook)(struct drm_device *dev);
15353         const struct dmi_system_id (*dmi_id_list)[];
15354 };
15355
15356 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15357 {
15358         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15359         return 1;
15360 }
15361
15362 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15363         {
15364                 .dmi_id_list = &(const struct dmi_system_id[]) {
15365                         {
15366                                 .callback = intel_dmi_reverse_brightness,
15367                                 .ident = "NCR Corporation",
15368                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15369                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
15370                                 },
15371                         },
15372                         { }  /* terminating entry */
15373                 },
15374                 .hook = quirk_invert_brightness,
15375         },
15376 };
15377
15378 static struct intel_quirk intel_quirks[] = {
15379         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15380         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15381
15382         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15383         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15384
15385         /* 830 needs to leave pipe A & dpll A up */
15386         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15387
15388         /* 830 needs to leave pipe B & dpll B up */
15389         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15390
15391         /* Lenovo U160 cannot use SSC on LVDS */
15392         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15393
15394         /* Sony Vaio Y cannot use SSC on LVDS */
15395         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15396
15397         /* Acer Aspire 5734Z must invert backlight brightness */
15398         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15399
15400         /* Acer/eMachines G725 */
15401         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15402
15403         /* Acer/eMachines e725 */
15404         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15405
15406         /* Acer/Packard Bell NCL20 */
15407         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15408
15409         /* Acer Aspire 4736Z */
15410         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15411
15412         /* Acer Aspire 5336 */
15413         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15414
15415         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15416         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15417
15418         /* Acer C720 Chromebook (Core i3 4005U) */
15419         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15420
15421         /* Apple Macbook 2,1 (Core 2 T7400) */
15422         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15423
15424         /* Apple Macbook 4,1 */
15425         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15426
15427         /* Toshiba CB35 Chromebook (Celeron 2955U) */
15428         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15429
15430         /* HP Chromebook 14 (Celeron 2955U) */
15431         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15432
15433         /* Dell Chromebook 11 */
15434         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15435
15436         /* Dell Chromebook 11 (2015 version) */
15437         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15438 };
15439
15440 static void intel_init_quirks(struct drm_device *dev)
15441 {
15442         struct pci_dev *d = dev->pdev;
15443         int i;
15444
15445         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15446                 struct intel_quirk *q = &intel_quirks[i];
15447
15448                 if (d->device == q->device &&
15449                     (d->subsystem_vendor == q->subsystem_vendor ||
15450                      q->subsystem_vendor == PCI_ANY_ID) &&
15451                     (d->subsystem_device == q->subsystem_device ||
15452                      q->subsystem_device == PCI_ANY_ID))
15453                         q->hook(dev);
15454         }
15455         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15456                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15457                         intel_dmi_quirks[i].hook(dev);
15458         }
15459 }
15460
15461 /* Disable the VGA plane that we never use */
15462 static void i915_disable_vga(struct drm_device *dev)
15463 {
15464         struct drm_i915_private *dev_priv = to_i915(dev);
15465         u8 sr1;
15466         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15467
15468         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15469         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15470         outb(SR01, VGA_SR_INDEX);
15471         sr1 = inb(VGA_SR_DATA);
15472         outb(sr1 | 1<<5, VGA_SR_DATA);
15473         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15474         udelay(300);
15475
15476         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15477         POSTING_READ(vga_reg);
15478 }
15479
15480 void intel_modeset_init_hw(struct drm_device *dev)
15481 {
15482         struct drm_i915_private *dev_priv = to_i915(dev);
15483
15484         intel_update_cdclk(dev);
15485
15486         dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15487
15488         intel_init_clock_gating(dev);
15489         intel_enable_gt_powersave(dev_priv);
15490 }
15491
15492 /*
15493  * Calculate what we think the watermarks should be for the state we've read
15494  * out of the hardware and then immediately program those watermarks so that
15495  * we ensure the hardware settings match our internal state.
15496  *
15497  * We can calculate what we think WM's should be by creating a duplicate of the
15498  * current state (which was constructed during hardware readout) and running it
15499  * through the atomic check code to calculate new watermark values in the
15500  * state object.
15501  */
15502 static void sanitize_watermarks(struct drm_device *dev)
15503 {
15504         struct drm_i915_private *dev_priv = to_i915(dev);
15505         struct drm_atomic_state *state;
15506         struct drm_crtc *crtc;
15507         struct drm_crtc_state *cstate;
15508         struct drm_modeset_acquire_ctx ctx;
15509         int ret;
15510         int i;
15511
15512         /* Only supported on platforms that use atomic watermark design */
15513         if (!dev_priv->display.optimize_watermarks)
15514                 return;
15515
15516         /*
15517          * We need to hold connection_mutex before calling duplicate_state so
15518          * that the connector loop is protected.
15519          */
15520         drm_modeset_acquire_init(&ctx, 0);
15521 retry:
15522         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15523         if (ret == -EDEADLK) {
15524                 drm_modeset_backoff(&ctx);
15525                 goto retry;
15526         } else if (WARN_ON(ret)) {
15527                 goto fail;
15528         }
15529
15530         state = drm_atomic_helper_duplicate_state(dev, &ctx);
15531         if (WARN_ON(IS_ERR(state)))
15532                 goto fail;
15533
15534         /*
15535          * Hardware readout is the only time we don't want to calculate
15536          * intermediate watermarks (since we don't trust the current
15537          * watermarks).
15538          */
15539         to_intel_atomic_state(state)->skip_intermediate_wm = true;
15540
15541         ret = intel_atomic_check(dev, state);
15542         if (ret) {
15543                 /*
15544                  * If we fail here, it means that the hardware appears to be
15545                  * programmed in a way that shouldn't be possible, given our
15546                  * understanding of watermark requirements.  This might mean a
15547                  * mistake in the hardware readout code or a mistake in the
15548                  * watermark calculations for a given platform.  Raise a WARN
15549                  * so that this is noticeable.
15550                  *
15551                  * If this actually happens, we'll have to just leave the
15552                  * BIOS-programmed watermarks untouched and hope for the best.
15553                  */
15554                 WARN(true, "Could not determine valid watermarks for inherited state\n");
15555                 goto fail;
15556         }
15557
15558         /* Write calculated watermark values back */
15559         for_each_crtc_in_state(state, crtc, cstate, i) {
15560                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15561
15562                 cs->wm.need_postvbl_update = true;
15563                 dev_priv->display.optimize_watermarks(cs);
15564         }
15565
15566         drm_atomic_state_free(state);
15567 fail:
15568         drm_modeset_drop_locks(&ctx);
15569         drm_modeset_acquire_fini(&ctx);
15570 }
15571
15572 void intel_modeset_init(struct drm_device *dev)
15573 {
15574         struct drm_i915_private *dev_priv = to_i915(dev);
15575         struct i915_ggtt *ggtt = &dev_priv->ggtt;
15576         int sprite, ret;
15577         enum pipe pipe;
15578         struct intel_crtc *crtc;
15579
15580         drm_mode_config_init(dev);
15581
15582         dev->mode_config.min_width = 0;
15583         dev->mode_config.min_height = 0;
15584
15585         dev->mode_config.preferred_depth = 24;
15586         dev->mode_config.prefer_shadow = 1;
15587
15588         dev->mode_config.allow_fb_modifiers = true;
15589
15590         dev->mode_config.funcs = &intel_mode_funcs;
15591
15592         intel_init_quirks(dev);
15593
15594         intel_init_pm(dev);
15595
15596         if (INTEL_INFO(dev)->num_pipes == 0)
15597                 return;
15598
15599         /*
15600          * There may be no VBT; and if the BIOS enabled SSC we can
15601          * just keep using it to avoid unnecessary flicker.  Whereas if the
15602          * BIOS isn't using it, don't assume it will work even if the VBT
15603          * indicates as much.
15604          */
15605         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15606                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15607                                             DREF_SSC1_ENABLE);
15608
15609                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15610                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15611                                      bios_lvds_use_ssc ? "en" : "dis",
15612                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15613                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15614                 }
15615         }
15616
15617         if (IS_GEN2(dev)) {
15618                 dev->mode_config.max_width = 2048;
15619                 dev->mode_config.max_height = 2048;
15620         } else if (IS_GEN3(dev)) {
15621                 dev->mode_config.max_width = 4096;
15622                 dev->mode_config.max_height = 4096;
15623         } else {
15624                 dev->mode_config.max_width = 8192;
15625                 dev->mode_config.max_height = 8192;
15626         }
15627
15628         if (IS_845G(dev) || IS_I865G(dev)) {
15629                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15630                 dev->mode_config.cursor_height = 1023;
15631         } else if (IS_GEN2(dev)) {
15632                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15633                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15634         } else {
15635                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15636                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15637         }
15638
15639         dev->mode_config.fb_base = ggtt->mappable_base;
15640
15641         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15642                       INTEL_INFO(dev)->num_pipes,
15643                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15644
15645         for_each_pipe(dev_priv, pipe) {
15646                 intel_crtc_init(dev, pipe);
15647                 for_each_sprite(dev_priv, pipe, sprite) {
15648                         ret = intel_plane_init(dev, pipe, sprite);
15649                         if (ret)
15650                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15651                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
15652                 }
15653         }
15654
15655         intel_update_czclk(dev_priv);
15656         intel_update_cdclk(dev);
15657
15658         intel_shared_dpll_init(dev);
15659
15660         if (dev_priv->max_cdclk_freq == 0)
15661                 intel_update_max_cdclk(dev);
15662
15663         /* Just disable it once at startup */
15664         i915_disable_vga(dev);
15665         intel_setup_outputs(dev);
15666
15667         drm_modeset_lock_all(dev);
15668         intel_modeset_setup_hw_state(dev);
15669         drm_modeset_unlock_all(dev);
15670
15671         for_each_intel_crtc(dev, crtc) {
15672                 struct intel_initial_plane_config plane_config = {};
15673
15674                 if (!crtc->active)
15675                         continue;
15676
15677                 /*
15678                  * Note that reserving the BIOS fb up front prevents us
15679                  * from stuffing other stolen allocations like the ring
15680                  * on top.  This prevents some ugliness at boot time, and
15681                  * can even allow for smooth boot transitions if the BIOS
15682                  * fb is large enough for the active pipe configuration.
15683                  */
15684                 dev_priv->display.get_initial_plane_config(crtc,
15685                                                            &plane_config);
15686
15687                 /*
15688                  * If the fb is shared between multiple heads, we'll
15689                  * just get the first one.
15690                  */
15691                 intel_find_initial_plane_obj(crtc, &plane_config);
15692         }
15693
15694         /*
15695          * Make sure hardware watermarks really match the state we read out.
15696          * Note that we need to do this after reconstructing the BIOS fb's
15697          * since the watermark calculation done here will use pstate->fb.
15698          */
15699         sanitize_watermarks(dev);
15700 }
15701
15702 static void intel_enable_pipe_a(struct drm_device *dev)
15703 {
15704         struct intel_connector *connector;
15705         struct drm_connector *crt = NULL;
15706         struct intel_load_detect_pipe load_detect_temp;
15707         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15708
15709         /* We can't just switch on the pipe A, we need to set things up with a
15710          * proper mode and output configuration. As a gross hack, enable pipe A
15711          * by enabling the load detect pipe once. */
15712         for_each_intel_connector(dev, connector) {
15713                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15714                         crt = &connector->base;
15715                         break;
15716                 }
15717         }
15718
15719         if (!crt)
15720                 return;
15721
15722         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15723                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15724 }
15725
15726 static bool
15727 intel_check_plane_mapping(struct intel_crtc *crtc)
15728 {
15729         struct drm_device *dev = crtc->base.dev;
15730         struct drm_i915_private *dev_priv = to_i915(dev);
15731         u32 val;
15732
15733         if (INTEL_INFO(dev)->num_pipes == 1)
15734                 return true;
15735
15736         val = I915_READ(DSPCNTR(!crtc->plane));
15737
15738         if ((val & DISPLAY_PLANE_ENABLE) &&
15739             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15740                 return false;
15741
15742         return true;
15743 }
15744
15745 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15746 {
15747         struct drm_device *dev = crtc->base.dev;
15748         struct intel_encoder *encoder;
15749
15750         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15751                 return true;
15752
15753         return false;
15754 }
15755
15756 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15757 {
15758         struct drm_device *dev = encoder->base.dev;
15759         struct intel_connector *connector;
15760
15761         for_each_connector_on_encoder(dev, &encoder->base, connector)
15762                 return true;
15763
15764         return false;
15765 }
15766
15767 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15768 {
15769         struct drm_device *dev = crtc->base.dev;
15770         struct drm_i915_private *dev_priv = to_i915(dev);
15771         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15772
15773         /* Clear any frame start delays used for debugging left by the BIOS */
15774         if (!transcoder_is_dsi(cpu_transcoder)) {
15775                 i915_reg_t reg = PIPECONF(cpu_transcoder);
15776
15777                 I915_WRITE(reg,
15778                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15779         }
15780
15781         /* restore vblank interrupts to correct state */
15782         drm_crtc_vblank_reset(&crtc->base);
15783         if (crtc->active) {
15784                 struct intel_plane *plane;
15785
15786                 drm_crtc_vblank_on(&crtc->base);
15787
15788                 /* Disable everything but the primary plane */
15789                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15790                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15791                                 continue;
15792
15793                         plane->disable_plane(&plane->base, &crtc->base);
15794                 }
15795         }
15796
15797         /* We need to sanitize the plane -> pipe mapping first because this will
15798          * disable the crtc (and hence change the state) if it is wrong. Note
15799          * that gen4+ has a fixed plane -> pipe mapping.  */
15800         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15801                 bool plane;
15802
15803                 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
15804                               crtc->base.base.id, crtc->base.name);
15805
15806                 /* Pipe has the wrong plane attached and the plane is active.
15807                  * Temporarily change the plane mapping and disable everything
15808                  * ...  */
15809                 plane = crtc->plane;
15810                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15811                 crtc->plane = !plane;
15812                 intel_crtc_disable_noatomic(&crtc->base);
15813                 crtc->plane = plane;
15814         }
15815
15816         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15817             crtc->pipe == PIPE_A && !crtc->active) {
15818                 /* BIOS forgot to enable pipe A, this mostly happens after
15819                  * resume. Force-enable the pipe to fix this, the update_dpms
15820                  * call below we restore the pipe to the right state, but leave
15821                  * the required bits on. */
15822                 intel_enable_pipe_a(dev);
15823         }
15824
15825         /* Adjust the state of the output pipe according to whether we
15826          * have active connectors/encoders. */
15827         if (crtc->active && !intel_crtc_has_encoders(crtc))
15828                 intel_crtc_disable_noatomic(&crtc->base);
15829
15830         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15831                 /*
15832                  * We start out with underrun reporting disabled to avoid races.
15833                  * For correct bookkeeping mark this on active crtcs.
15834                  *
15835                  * Also on gmch platforms we dont have any hardware bits to
15836                  * disable the underrun reporting. Which means we need to start
15837                  * out with underrun reporting disabled also on inactive pipes,
15838                  * since otherwise we'll complain about the garbage we read when
15839                  * e.g. coming up after runtime pm.
15840                  *
15841                  * No protection against concurrent access is required - at
15842                  * worst a fifo underrun happens which also sets this to false.
15843                  */
15844                 crtc->cpu_fifo_underrun_disabled = true;
15845                 crtc->pch_fifo_underrun_disabled = true;
15846         }
15847 }
15848
15849 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15850 {
15851         struct intel_connector *connector;
15852         struct drm_device *dev = encoder->base.dev;
15853
15854         /* We need to check both for a crtc link (meaning that the
15855          * encoder is active and trying to read from a pipe) and the
15856          * pipe itself being active. */
15857         bool has_active_crtc = encoder->base.crtc &&
15858                 to_intel_crtc(encoder->base.crtc)->active;
15859
15860         if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15861                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15862                               encoder->base.base.id,
15863                               encoder->base.name);
15864
15865                 /* Connector is active, but has no active pipe. This is
15866                  * fallout from our resume register restoring. Disable
15867                  * the encoder manually again. */
15868                 if (encoder->base.crtc) {
15869                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15870                                       encoder->base.base.id,
15871                                       encoder->base.name);
15872                         encoder->disable(encoder);
15873                         if (encoder->post_disable)
15874                                 encoder->post_disable(encoder);
15875                 }
15876                 encoder->base.crtc = NULL;
15877
15878                 /* Inconsistent output/port/pipe state happens presumably due to
15879                  * a bug in one of the get_hw_state functions. Or someplace else
15880                  * in our code, like the register restore mess on resume. Clamp
15881                  * things to off as a safer default. */
15882                 for_each_intel_connector(dev, connector) {
15883                         if (connector->encoder != encoder)
15884                                 continue;
15885                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15886                         connector->base.encoder = NULL;
15887                 }
15888         }
15889         /* Enabled encoders without active connectors will be fixed in
15890          * the crtc fixup. */
15891 }
15892
15893 void i915_redisable_vga_power_on(struct drm_device *dev)
15894 {
15895         struct drm_i915_private *dev_priv = to_i915(dev);
15896         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15897
15898         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15899                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15900                 i915_disable_vga(dev);
15901         }
15902 }
15903
15904 void i915_redisable_vga(struct drm_device *dev)
15905 {
15906         struct drm_i915_private *dev_priv = to_i915(dev);
15907
15908         /* This function can be called both from intel_modeset_setup_hw_state or
15909          * at a very early point in our resume sequence, where the power well
15910          * structures are not yet restored. Since this function is at a very
15911          * paranoid "someone might have enabled VGA while we were not looking"
15912          * level, just check if the power well is enabled instead of trying to
15913          * follow the "don't touch the power well if we don't need it" policy
15914          * the rest of the driver uses. */
15915         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15916                 return;
15917
15918         i915_redisable_vga_power_on(dev);
15919
15920         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15921 }
15922
15923 static bool primary_get_hw_state(struct intel_plane *plane)
15924 {
15925         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15926
15927         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15928 }
15929
15930 /* FIXME read out full plane state for all planes */
15931 static void readout_plane_state(struct intel_crtc *crtc)
15932 {
15933         struct drm_plane *primary = crtc->base.primary;
15934         struct intel_plane_state *plane_state =
15935                 to_intel_plane_state(primary->state);
15936
15937         plane_state->visible = crtc->active &&
15938                 primary_get_hw_state(to_intel_plane(primary));
15939
15940         if (plane_state->visible)
15941                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15942 }
15943
15944 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15945 {
15946         struct drm_i915_private *dev_priv = to_i915(dev);
15947         enum pipe pipe;
15948         struct intel_crtc *crtc;
15949         struct intel_encoder *encoder;
15950         struct intel_connector *connector;
15951         int i;
15952
15953         dev_priv->active_crtcs = 0;
15954
15955         for_each_intel_crtc(dev, crtc) {
15956                 struct intel_crtc_state *crtc_state = crtc->config;
15957                 int pixclk = 0;
15958
15959                 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
15960                 memset(crtc_state, 0, sizeof(*crtc_state));
15961                 crtc_state->base.crtc = &crtc->base;
15962
15963                 crtc_state->base.active = crtc_state->base.enable =
15964                         dev_priv->display.get_pipe_config(crtc, crtc_state);
15965
15966                 crtc->base.enabled = crtc_state->base.enable;
15967                 crtc->active = crtc_state->base.active;
15968
15969                 if (crtc_state->base.active) {
15970                         dev_priv->active_crtcs |= 1 << crtc->pipe;
15971
15972                         if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
15973                                 pixclk = ilk_pipe_pixel_rate(crtc_state);
15974                         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15975                                 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15976                         else
15977                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15978
15979                         /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15980                         if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
15981                                 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15982                 }
15983
15984                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15985
15986                 readout_plane_state(crtc);
15987
15988                 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
15989                               crtc->base.base.id, crtc->base.name,
15990                               crtc->active ? "enabled" : "disabled");
15991         }
15992
15993         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15994                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15995
15996                 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15997                                                   &pll->config.hw_state);
15998                 pll->config.crtc_mask = 0;
15999                 for_each_intel_crtc(dev, crtc) {
16000                         if (crtc->active && crtc->config->shared_dpll == pll)
16001                                 pll->config.crtc_mask |= 1 << crtc->pipe;
16002                 }
16003                 pll->active_mask = pll->config.crtc_mask;
16004
16005                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16006                               pll->name, pll->config.crtc_mask, pll->on);
16007         }
16008
16009         for_each_intel_encoder(dev, encoder) {
16010                 pipe = 0;
16011
16012                 if (encoder->get_hw_state(encoder, &pipe)) {
16013                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16014                         encoder->base.crtc = &crtc->base;
16015                         crtc->config->output_types |= 1 << encoder->type;
16016                         encoder->get_config(encoder, crtc->config);
16017                 } else {
16018                         encoder->base.crtc = NULL;
16019                 }
16020
16021                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16022                               encoder->base.base.id,
16023                               encoder->base.name,
16024                               encoder->base.crtc ? "enabled" : "disabled",
16025                               pipe_name(pipe));
16026         }
16027
16028         for_each_intel_connector(dev, connector) {
16029                 if (connector->get_hw_state(connector)) {
16030                         connector->base.dpms = DRM_MODE_DPMS_ON;
16031
16032                         encoder = connector->encoder;
16033                         connector->base.encoder = &encoder->base;
16034
16035                         if (encoder->base.crtc &&
16036                             encoder->base.crtc->state->active) {
16037                                 /*
16038                                  * This has to be done during hardware readout
16039                                  * because anything calling .crtc_disable may
16040                                  * rely on the connector_mask being accurate.
16041                                  */
16042                                 encoder->base.crtc->state->connector_mask |=
16043                                         1 << drm_connector_index(&connector->base);
16044                                 encoder->base.crtc->state->encoder_mask |=
16045                                         1 << drm_encoder_index(&encoder->base);
16046                         }
16047
16048                 } else {
16049                         connector->base.dpms = DRM_MODE_DPMS_OFF;
16050                         connector->base.encoder = NULL;
16051                 }
16052                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16053                               connector->base.base.id,
16054                               connector->base.name,
16055                               connector->base.encoder ? "enabled" : "disabled");
16056         }
16057
16058         for_each_intel_crtc(dev, crtc) {
16059                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
16060
16061                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16062                 if (crtc->base.state->active) {
16063                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16064                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16065                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16066
16067                         /*
16068                          * The initial mode needs to be set in order to keep
16069                          * the atomic core happy. It wants a valid mode if the
16070                          * crtc's enabled, so we do the above call.
16071                          *
16072                          * At this point some state updated by the connectors
16073                          * in their ->detect() callback has not run yet, so
16074                          * no recalculation can be done yet.
16075                          *
16076                          * Even if we could do a recalculation and modeset
16077                          * right now it would cause a double modeset if
16078                          * fbdev or userspace chooses a different initial mode.
16079                          *
16080                          * If that happens, someone indicated they wanted a
16081                          * mode change, which means it's safe to do a full
16082                          * recalculation.
16083                          */
16084                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
16085
16086                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16087                         update_scanline_offset(crtc);
16088                 }
16089
16090                 intel_pipe_config_sanity_check(dev_priv, crtc->config);
16091         }
16092 }
16093
16094 /* Scan out the current hw modeset state,
16095  * and sanitizes it to the current state
16096  */
16097 static void
16098 intel_modeset_setup_hw_state(struct drm_device *dev)
16099 {
16100         struct drm_i915_private *dev_priv = to_i915(dev);
16101         enum pipe pipe;
16102         struct intel_crtc *crtc;
16103         struct intel_encoder *encoder;
16104         int i;
16105
16106         intel_modeset_readout_hw_state(dev);
16107
16108         /* HW state is read out, now we need to sanitize this mess. */
16109         for_each_intel_encoder(dev, encoder) {
16110                 intel_sanitize_encoder(encoder);
16111         }
16112
16113         for_each_pipe(dev_priv, pipe) {
16114                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16115                 intel_sanitize_crtc(crtc);
16116                 intel_dump_pipe_config(crtc, crtc->config,
16117                                        "[setup_hw_state]");
16118         }
16119
16120         intel_modeset_update_connector_atomic_state(dev);
16121
16122         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16123                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16124
16125                 if (!pll->on || pll->active_mask)
16126                         continue;
16127
16128                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16129
16130                 pll->funcs.disable(dev_priv, pll);
16131                 pll->on = false;
16132         }
16133
16134         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
16135                 vlv_wm_get_hw_state(dev);
16136         else if (IS_GEN9(dev))
16137                 skl_wm_get_hw_state(dev);
16138         else if (HAS_PCH_SPLIT(dev))
16139                 ilk_wm_get_hw_state(dev);
16140
16141         for_each_intel_crtc(dev, crtc) {
16142                 unsigned long put_domains;
16143
16144                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
16145                 if (WARN_ON(put_domains))
16146                         modeset_put_power_domains(dev_priv, put_domains);
16147         }
16148         intel_display_set_init_power(dev_priv, false);
16149
16150         intel_fbc_init_pipe_state(dev_priv);
16151 }
16152
16153 void intel_display_resume(struct drm_device *dev)
16154 {
16155         struct drm_i915_private *dev_priv = to_i915(dev);
16156         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
16157         struct drm_modeset_acquire_ctx ctx;
16158         int ret;
16159         bool setup = false;
16160
16161         dev_priv->modeset_restore_state = NULL;
16162
16163         /*
16164          * This is a cludge because with real atomic modeset mode_config.mutex
16165          * won't be taken. Unfortunately some probed state like
16166          * audio_codec_enable is still protected by mode_config.mutex, so lock
16167          * it here for now.
16168          */
16169         mutex_lock(&dev->mode_config.mutex);
16170         drm_modeset_acquire_init(&ctx, 0);
16171
16172 retry:
16173         ret = drm_modeset_lock_all_ctx(dev, &ctx);
16174
16175         if (ret == 0 && !setup) {
16176                 setup = true;
16177
16178                 intel_modeset_setup_hw_state(dev);
16179                 i915_redisable_vga(dev);
16180         }
16181
16182         if (ret == 0 && state) {
16183                 struct drm_crtc_state *crtc_state;
16184                 struct drm_crtc *crtc;
16185                 int i;
16186
16187                 state->acquire_ctx = &ctx;
16188
16189                 /* ignore any reset values/BIOS leftovers in the WM registers */
16190                 to_intel_atomic_state(state)->skip_intermediate_wm = true;
16191
16192                 for_each_crtc_in_state(state, crtc, crtc_state, i) {
16193                         /*
16194                          * Force recalculation even if we restore
16195                          * current state. With fast modeset this may not result
16196                          * in a modeset when the state is compatible.
16197                          */
16198                         crtc_state->mode_changed = true;
16199                 }
16200
16201                 ret = drm_atomic_commit(state);
16202         }
16203
16204         if (ret == -EDEADLK) {
16205                 drm_modeset_backoff(&ctx);
16206                 goto retry;
16207         }
16208
16209         drm_modeset_drop_locks(&ctx);
16210         drm_modeset_acquire_fini(&ctx);
16211         mutex_unlock(&dev->mode_config.mutex);
16212
16213         if (ret) {
16214                 DRM_ERROR("Restoring old state failed with %i\n", ret);
16215                 drm_atomic_state_free(state);
16216         }
16217 }
16218
16219 void intel_modeset_gem_init(struct drm_device *dev)
16220 {
16221         struct drm_i915_private *dev_priv = to_i915(dev);
16222         struct drm_crtc *c;
16223         struct drm_i915_gem_object *obj;
16224         int ret;
16225
16226         intel_init_gt_powersave(dev_priv);
16227
16228         intel_modeset_init_hw(dev);
16229
16230         intel_setup_overlay(dev_priv);
16231
16232         /*
16233          * Make sure any fbs we allocated at startup are properly
16234          * pinned & fenced.  When we do the allocation it's too early
16235          * for this.
16236          */
16237         for_each_crtc(dev, c) {
16238                 obj = intel_fb_obj(c->primary->fb);
16239                 if (obj == NULL)
16240                         continue;
16241
16242                 mutex_lock(&dev->struct_mutex);
16243                 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
16244                                                  c->primary->state->rotation);
16245                 mutex_unlock(&dev->struct_mutex);
16246                 if (ret) {
16247                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
16248                                   to_intel_crtc(c)->pipe);
16249                         drm_framebuffer_unreference(c->primary->fb);
16250                         c->primary->fb = NULL;
16251                         c->primary->crtc = c->primary->state->crtc = NULL;
16252                         update_state_fb(c->primary);
16253                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16254                 }
16255         }
16256 }
16257
16258 int intel_connector_register(struct drm_connector *connector)
16259 {
16260         struct intel_connector *intel_connector = to_intel_connector(connector);
16261         int ret;
16262
16263         ret = intel_backlight_device_register(intel_connector);
16264         if (ret)
16265                 goto err;
16266
16267         return 0;
16268
16269 err:
16270         return ret;
16271 }
16272
16273 void intel_connector_unregister(struct drm_connector *connector)
16274 {
16275         struct intel_connector *intel_connector = to_intel_connector(connector);
16276
16277         intel_backlight_device_unregister(intel_connector);
16278         intel_panel_destroy_backlight(connector);
16279 }
16280
16281 void intel_modeset_cleanup(struct drm_device *dev)
16282 {
16283         struct drm_i915_private *dev_priv = to_i915(dev);
16284
16285         intel_disable_gt_powersave(dev_priv);
16286
16287         /*
16288          * Interrupts and polling as the first thing to avoid creating havoc.
16289          * Too much stuff here (turning of connectors, ...) would
16290          * experience fancy races otherwise.
16291          */
16292         intel_irq_uninstall(dev_priv);
16293
16294         /*
16295          * Due to the hpd irq storm handling the hotplug work can re-arm the
16296          * poll handlers. Hence disable polling after hpd handling is shut down.
16297          */
16298         drm_kms_helper_poll_fini(dev);
16299
16300         intel_unregister_dsm_handler();
16301
16302         intel_fbc_global_disable(dev_priv);
16303
16304         /* flush any delayed tasks or pending work */
16305         flush_scheduled_work();
16306
16307         drm_mode_config_cleanup(dev);
16308
16309         intel_cleanup_overlay(dev_priv);
16310
16311         intel_cleanup_gt_powersave(dev_priv);
16312
16313         intel_teardown_gmbus(dev);
16314 }
16315
16316 void intel_connector_attach_encoder(struct intel_connector *connector,
16317                                     struct intel_encoder *encoder)
16318 {
16319         connector->encoder = encoder;
16320         drm_mode_connector_attach_encoder(&connector->base,
16321                                           &encoder->base);
16322 }
16323
16324 /*
16325  * set vga decode state - true == enable VGA decode
16326  */
16327 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16328 {
16329         struct drm_i915_private *dev_priv = to_i915(dev);
16330         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16331         u16 gmch_ctrl;
16332
16333         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16334                 DRM_ERROR("failed to read control word\n");
16335                 return -EIO;
16336         }
16337
16338         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16339                 return 0;
16340
16341         if (state)
16342                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16343         else
16344                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16345
16346         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16347                 DRM_ERROR("failed to write control word\n");
16348                 return -EIO;
16349         }
16350
16351         return 0;
16352 }
16353
16354 struct intel_display_error_state {
16355
16356         u32 power_well_driver;
16357
16358         int num_transcoders;
16359
16360         struct intel_cursor_error_state {
16361                 u32 control;
16362                 u32 position;
16363                 u32 base;
16364                 u32 size;
16365         } cursor[I915_MAX_PIPES];
16366
16367         struct intel_pipe_error_state {
16368                 bool power_domain_on;
16369                 u32 source;
16370                 u32 stat;
16371         } pipe[I915_MAX_PIPES];
16372
16373         struct intel_plane_error_state {
16374                 u32 control;
16375                 u32 stride;
16376                 u32 size;
16377                 u32 pos;
16378                 u32 addr;
16379                 u32 surface;
16380                 u32 tile_offset;
16381         } plane[I915_MAX_PIPES];
16382
16383         struct intel_transcoder_error_state {
16384                 bool power_domain_on;
16385                 enum transcoder cpu_transcoder;
16386
16387                 u32 conf;
16388
16389                 u32 htotal;
16390                 u32 hblank;
16391                 u32 hsync;
16392                 u32 vtotal;
16393                 u32 vblank;
16394                 u32 vsync;
16395         } transcoder[4];
16396 };
16397
16398 struct intel_display_error_state *
16399 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
16400 {
16401         struct intel_display_error_state *error;
16402         int transcoders[] = {
16403                 TRANSCODER_A,
16404                 TRANSCODER_B,
16405                 TRANSCODER_C,
16406                 TRANSCODER_EDP,
16407         };
16408         int i;
16409
16410         if (INTEL_INFO(dev_priv)->num_pipes == 0)
16411                 return NULL;
16412
16413         error = kzalloc(sizeof(*error), GFP_ATOMIC);
16414         if (error == NULL)
16415                 return NULL;
16416
16417         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
16418                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16419
16420         for_each_pipe(dev_priv, i) {
16421                 error->pipe[i].power_domain_on =
16422                         __intel_display_power_is_enabled(dev_priv,
16423                                                          POWER_DOMAIN_PIPE(i));
16424                 if (!error->pipe[i].power_domain_on)
16425                         continue;
16426
16427                 error->cursor[i].control = I915_READ(CURCNTR(i));
16428                 error->cursor[i].position = I915_READ(CURPOS(i));
16429                 error->cursor[i].base = I915_READ(CURBASE(i));
16430
16431                 error->plane[i].control = I915_READ(DSPCNTR(i));
16432                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16433                 if (INTEL_GEN(dev_priv) <= 3) {
16434                         error->plane[i].size = I915_READ(DSPSIZE(i));
16435                         error->plane[i].pos = I915_READ(DSPPOS(i));
16436                 }
16437                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
16438                         error->plane[i].addr = I915_READ(DSPADDR(i));
16439                 if (INTEL_GEN(dev_priv) >= 4) {
16440                         error->plane[i].surface = I915_READ(DSPSURF(i));
16441                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16442                 }
16443
16444                 error->pipe[i].source = I915_READ(PIPESRC(i));
16445
16446                 if (HAS_GMCH_DISPLAY(dev_priv))
16447                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
16448         }
16449
16450         /* Note: this does not include DSI transcoders. */
16451         error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
16452         if (HAS_DDI(dev_priv))
16453                 error->num_transcoders++; /* Account for eDP. */
16454
16455         for (i = 0; i < error->num_transcoders; i++) {
16456                 enum transcoder cpu_transcoder = transcoders[i];
16457
16458                 error->transcoder[i].power_domain_on =
16459                         __intel_display_power_is_enabled(dev_priv,
16460                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16461                 if (!error->transcoder[i].power_domain_on)
16462                         continue;
16463
16464                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16465
16466                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16467                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16468                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16469                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16470                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16471                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16472                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16473         }
16474
16475         return error;
16476 }
16477
16478 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16479
16480 void
16481 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16482                                 struct drm_device *dev,
16483                                 struct intel_display_error_state *error)
16484 {
16485         struct drm_i915_private *dev_priv = to_i915(dev);
16486         int i;
16487
16488         if (!error)
16489                 return;
16490
16491         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16492         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16493                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16494                            error->power_well_driver);
16495         for_each_pipe(dev_priv, i) {
16496                 err_printf(m, "Pipe [%d]:\n", i);
16497                 err_printf(m, "  Power: %s\n",
16498                            onoff(error->pipe[i].power_domain_on));
16499                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
16500                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
16501
16502                 err_printf(m, "Plane [%d]:\n", i);
16503                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
16504                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
16505                 if (INTEL_INFO(dev)->gen <= 3) {
16506                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
16507                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
16508                 }
16509                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16510                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
16511                 if (INTEL_INFO(dev)->gen >= 4) {
16512                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
16513                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
16514                 }
16515
16516                 err_printf(m, "Cursor [%d]:\n", i);
16517                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
16518                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
16519                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
16520         }
16521
16522         for (i = 0; i < error->num_transcoders; i++) {
16523                 err_printf(m, "CPU transcoder: %s\n",
16524                            transcoder_name(error->transcoder[i].cpu_transcoder));
16525                 err_printf(m, "  Power: %s\n",
16526                            onoff(error->transcoder[i].power_domain_on));
16527                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
16528                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
16529                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
16530                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
16531                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
16532                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
16533                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
16534         }
16535 }