Merge tag 'trace-3.16-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 struct dp_link_dpll {
42         int link_bw;
43         struct dpll dpll;
44 };
45
46 static const struct dp_link_dpll gen4_dpll[] = {
47         { DP_LINK_BW_1_62,
48                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49         { DP_LINK_BW_2_7,
50                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52
53 static const struct dp_link_dpll pch_dpll[] = {
54         { DP_LINK_BW_1_62,
55                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56         { DP_LINK_BW_2_7,
57                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59
60 static const struct dp_link_dpll vlv_dpll[] = {
61         { DP_LINK_BW_1_62,
62                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63         { DP_LINK_BW_2_7,
64                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66
67 /*
68  * CHV supports eDP 1.4 that have  more link rates.
69  * Below only provides the fixed rate but exclude variable rate.
70  */
71 static const struct dp_link_dpll chv_dpll[] = {
72         /*
73          * CHV requires to program fractional division for m2.
74          * m2 is stored in fixed point format using formula below
75          * (m2_int << 22) | m2_fraction
76          */
77         { DP_LINK_BW_1_62,      /* m2_int = 32, m2_fraction = 1677722 */
78                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
79         { DP_LINK_BW_2_7,       /* m2_int = 27, m2_fraction = 0 */
80                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
81         { DP_LINK_BW_5_4,       /* m2_int = 27, m2_fraction = 0 */
82                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
83 };
84
85 /**
86  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
87  * @intel_dp: DP struct
88  *
89  * If a CPU or PCH DP output is attached to an eDP panel, this function
90  * will return true, and false otherwise.
91  */
92 static bool is_edp(struct intel_dp *intel_dp)
93 {
94         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
95
96         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
97 }
98
99 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
100 {
101         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
102
103         return intel_dig_port->base.base.dev;
104 }
105
106 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
107 {
108         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
109 }
110
111 static void intel_dp_link_down(struct intel_dp *intel_dp);
112 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
113 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
114
115 static int
116 intel_dp_max_link_bw(struct intel_dp *intel_dp)
117 {
118         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
119         struct drm_device *dev = intel_dp->attached_connector->base.dev;
120
121         switch (max_link_bw) {
122         case DP_LINK_BW_1_62:
123         case DP_LINK_BW_2_7:
124                 break;
125         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
126                 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
127                      INTEL_INFO(dev)->gen >= 8) &&
128                     intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
129                         max_link_bw = DP_LINK_BW_5_4;
130                 else
131                         max_link_bw = DP_LINK_BW_2_7;
132                 break;
133         default:
134                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
135                      max_link_bw);
136                 max_link_bw = DP_LINK_BW_1_62;
137                 break;
138         }
139         return max_link_bw;
140 }
141
142 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
143 {
144         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
145         struct drm_device *dev = intel_dig_port->base.base.dev;
146         u8 source_max, sink_max;
147
148         source_max = 4;
149         if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
150             (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
151                 source_max = 2;
152
153         sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
154
155         return min(source_max, sink_max);
156 }
157
158 /*
159  * The units on the numbers in the next two are... bizarre.  Examples will
160  * make it clearer; this one parallels an example in the eDP spec.
161  *
162  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
163  *
164  *     270000 * 1 * 8 / 10 == 216000
165  *
166  * The actual data capacity of that configuration is 2.16Gbit/s, so the
167  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
168  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
169  * 119000.  At 18bpp that's 2142000 kilobits per second.
170  *
171  * Thus the strange-looking division by 10 in intel_dp_link_required, to
172  * get the result in decakilobits instead of kilobits.
173  */
174
175 static int
176 intel_dp_link_required(int pixel_clock, int bpp)
177 {
178         return (pixel_clock * bpp + 9) / 10;
179 }
180
181 static int
182 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
183 {
184         return (max_link_clock * max_lanes * 8) / 10;
185 }
186
187 static enum drm_mode_status
188 intel_dp_mode_valid(struct drm_connector *connector,
189                     struct drm_display_mode *mode)
190 {
191         struct intel_dp *intel_dp = intel_attached_dp(connector);
192         struct intel_connector *intel_connector = to_intel_connector(connector);
193         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
194         int target_clock = mode->clock;
195         int max_rate, mode_rate, max_lanes, max_link_clock;
196
197         if (is_edp(intel_dp) && fixed_mode) {
198                 if (mode->hdisplay > fixed_mode->hdisplay)
199                         return MODE_PANEL;
200
201                 if (mode->vdisplay > fixed_mode->vdisplay)
202                         return MODE_PANEL;
203
204                 target_clock = fixed_mode->clock;
205         }
206
207         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
208         max_lanes = intel_dp_max_lane_count(intel_dp);
209
210         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
211         mode_rate = intel_dp_link_required(target_clock, 18);
212
213         if (mode_rate > max_rate)
214                 return MODE_CLOCK_HIGH;
215
216         if (mode->clock < 10000)
217                 return MODE_CLOCK_LOW;
218
219         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
220                 return MODE_H_ILLEGAL;
221
222         return MODE_OK;
223 }
224
225 static uint32_t
226 pack_aux(uint8_t *src, int src_bytes)
227 {
228         int     i;
229         uint32_t v = 0;
230
231         if (src_bytes > 4)
232                 src_bytes = 4;
233         for (i = 0; i < src_bytes; i++)
234                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
235         return v;
236 }
237
238 static void
239 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
240 {
241         int i;
242         if (dst_bytes > 4)
243                 dst_bytes = 4;
244         for (i = 0; i < dst_bytes; i++)
245                 dst[i] = src >> ((3-i) * 8);
246 }
247
248 /* hrawclock is 1/4 the FSB frequency */
249 static int
250 intel_hrawclk(struct drm_device *dev)
251 {
252         struct drm_i915_private *dev_priv = dev->dev_private;
253         uint32_t clkcfg;
254
255         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
256         if (IS_VALLEYVIEW(dev))
257                 return 200;
258
259         clkcfg = I915_READ(CLKCFG);
260         switch (clkcfg & CLKCFG_FSB_MASK) {
261         case CLKCFG_FSB_400:
262                 return 100;
263         case CLKCFG_FSB_533:
264                 return 133;
265         case CLKCFG_FSB_667:
266                 return 166;
267         case CLKCFG_FSB_800:
268                 return 200;
269         case CLKCFG_FSB_1067:
270                 return 266;
271         case CLKCFG_FSB_1333:
272                 return 333;
273         /* these two are just a guess; one of them might be right */
274         case CLKCFG_FSB_1600:
275         case CLKCFG_FSB_1600_ALT:
276                 return 400;
277         default:
278                 return 133;
279         }
280 }
281
282 static void
283 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
284                                     struct intel_dp *intel_dp,
285                                     struct edp_power_seq *out);
286 static void
287 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
288                                               struct intel_dp *intel_dp,
289                                               struct edp_power_seq *out);
290
291 static enum pipe
292 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
293 {
294         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
295         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
296         struct drm_device *dev = intel_dig_port->base.base.dev;
297         struct drm_i915_private *dev_priv = dev->dev_private;
298         enum port port = intel_dig_port->port;
299         enum pipe pipe;
300
301         /* modeset should have pipe */
302         if (crtc)
303                 return to_intel_crtc(crtc)->pipe;
304
305         /* init time, try to find a pipe with this port selected */
306         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
307                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
308                         PANEL_PORT_SELECT_MASK;
309                 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
310                         return pipe;
311                 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
312                         return pipe;
313         }
314
315         /* shrug */
316         return PIPE_A;
317 }
318
319 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
320 {
321         struct drm_device *dev = intel_dp_to_dev(intel_dp);
322
323         if (HAS_PCH_SPLIT(dev))
324                 return PCH_PP_CONTROL;
325         else
326                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
327 }
328
329 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
330 {
331         struct drm_device *dev = intel_dp_to_dev(intel_dp);
332
333         if (HAS_PCH_SPLIT(dev))
334                 return PCH_PP_STATUS;
335         else
336                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
337 }
338
339 static bool edp_have_panel_power(struct intel_dp *intel_dp)
340 {
341         struct drm_device *dev = intel_dp_to_dev(intel_dp);
342         struct drm_i915_private *dev_priv = dev->dev_private;
343
344         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
345 }
346
347 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
348 {
349         struct drm_device *dev = intel_dp_to_dev(intel_dp);
350         struct drm_i915_private *dev_priv = dev->dev_private;
351         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
352         struct intel_encoder *intel_encoder = &intel_dig_port->base;
353         enum intel_display_power_domain power_domain;
354
355         power_domain = intel_display_port_power_domain(intel_encoder);
356         return intel_display_power_enabled(dev_priv, power_domain) &&
357                (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
358 }
359
360 static void
361 intel_dp_check_edp(struct intel_dp *intel_dp)
362 {
363         struct drm_device *dev = intel_dp_to_dev(intel_dp);
364         struct drm_i915_private *dev_priv = dev->dev_private;
365
366         if (!is_edp(intel_dp))
367                 return;
368
369         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
370                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
371                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
372                               I915_READ(_pp_stat_reg(intel_dp)),
373                               I915_READ(_pp_ctrl_reg(intel_dp)));
374         }
375 }
376
377 static uint32_t
378 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
379 {
380         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
381         struct drm_device *dev = intel_dig_port->base.base.dev;
382         struct drm_i915_private *dev_priv = dev->dev_private;
383         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
384         uint32_t status;
385         bool done;
386
387 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
388         if (has_aux_irq)
389                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
390                                           msecs_to_jiffies_timeout(10));
391         else
392                 done = wait_for_atomic(C, 10) == 0;
393         if (!done)
394                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
395                           has_aux_irq);
396 #undef C
397
398         return status;
399 }
400
401 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
402 {
403         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
404         struct drm_device *dev = intel_dig_port->base.base.dev;
405
406         /*
407          * The clock divider is based off the hrawclk, and would like to run at
408          * 2MHz.  So, take the hrawclk value and divide by 2 and use that
409          */
410         return index ? 0 : intel_hrawclk(dev) / 2;
411 }
412
413 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
414 {
415         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
416         struct drm_device *dev = intel_dig_port->base.base.dev;
417
418         if (index)
419                 return 0;
420
421         if (intel_dig_port->port == PORT_A) {
422                 if (IS_GEN6(dev) || IS_GEN7(dev))
423                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
424                 else
425                         return 225; /* eDP input clock at 450Mhz */
426         } else {
427                 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
428         }
429 }
430
431 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
432 {
433         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
434         struct drm_device *dev = intel_dig_port->base.base.dev;
435         struct drm_i915_private *dev_priv = dev->dev_private;
436
437         if (intel_dig_port->port == PORT_A) {
438                 if (index)
439                         return 0;
440                 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
441         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
442                 /* Workaround for non-ULT HSW */
443                 switch (index) {
444                 case 0: return 63;
445                 case 1: return 72;
446                 default: return 0;
447                 }
448         } else  {
449                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
450         }
451 }
452
453 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
454 {
455         return index ? 0 : 100;
456 }
457
458 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
459                                       bool has_aux_irq,
460                                       int send_bytes,
461                                       uint32_t aux_clock_divider)
462 {
463         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
464         struct drm_device *dev = intel_dig_port->base.base.dev;
465         uint32_t precharge, timeout;
466
467         if (IS_GEN6(dev))
468                 precharge = 3;
469         else
470                 precharge = 5;
471
472         if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
473                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
474         else
475                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
476
477         return DP_AUX_CH_CTL_SEND_BUSY |
478                DP_AUX_CH_CTL_DONE |
479                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
480                DP_AUX_CH_CTL_TIME_OUT_ERROR |
481                timeout |
482                DP_AUX_CH_CTL_RECEIVE_ERROR |
483                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
484                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
485                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
486 }
487
488 static int
489 intel_dp_aux_ch(struct intel_dp *intel_dp,
490                 uint8_t *send, int send_bytes,
491                 uint8_t *recv, int recv_size)
492 {
493         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
494         struct drm_device *dev = intel_dig_port->base.base.dev;
495         struct drm_i915_private *dev_priv = dev->dev_private;
496         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
497         uint32_t ch_data = ch_ctl + 4;
498         uint32_t aux_clock_divider;
499         int i, ret, recv_bytes;
500         uint32_t status;
501         int try, clock = 0;
502         bool has_aux_irq = HAS_AUX_IRQ(dev);
503         bool vdd;
504
505         vdd = _edp_panel_vdd_on(intel_dp);
506
507         /* dp aux is extremely sensitive to irq latency, hence request the
508          * lowest possible wakeup latency and so prevent the cpu from going into
509          * deep sleep states.
510          */
511         pm_qos_update_request(&dev_priv->pm_qos, 0);
512
513         intel_dp_check_edp(intel_dp);
514
515         intel_aux_display_runtime_get(dev_priv);
516
517         /* Try to wait for any previous AUX channel activity */
518         for (try = 0; try < 3; try++) {
519                 status = I915_READ_NOTRACE(ch_ctl);
520                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
521                         break;
522                 msleep(1);
523         }
524
525         if (try == 3) {
526                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
527                      I915_READ(ch_ctl));
528                 ret = -EBUSY;
529                 goto out;
530         }
531
532         /* Only 5 data registers! */
533         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
534                 ret = -E2BIG;
535                 goto out;
536         }
537
538         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
539                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
540                                                           has_aux_irq,
541                                                           send_bytes,
542                                                           aux_clock_divider);
543
544                 /* Must try at least 3 times according to DP spec */
545                 for (try = 0; try < 5; try++) {
546                         /* Load the send data into the aux channel data registers */
547                         for (i = 0; i < send_bytes; i += 4)
548                                 I915_WRITE(ch_data + i,
549                                            pack_aux(send + i, send_bytes - i));
550
551                         /* Send the command and wait for it to complete */
552                         I915_WRITE(ch_ctl, send_ctl);
553
554                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
555
556                         /* Clear done status and any errors */
557                         I915_WRITE(ch_ctl,
558                                    status |
559                                    DP_AUX_CH_CTL_DONE |
560                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
561                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
562
563                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
564                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
565                                 continue;
566                         if (status & DP_AUX_CH_CTL_DONE)
567                                 break;
568                 }
569                 if (status & DP_AUX_CH_CTL_DONE)
570                         break;
571         }
572
573         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
574                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
575                 ret = -EBUSY;
576                 goto out;
577         }
578
579         /* Check for timeout or receive error.
580          * Timeouts occur when the sink is not connected
581          */
582         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
583                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
584                 ret = -EIO;
585                 goto out;
586         }
587
588         /* Timeouts occur when the device isn't connected, so they're
589          * "normal" -- don't fill the kernel log with these */
590         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
591                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
592                 ret = -ETIMEDOUT;
593                 goto out;
594         }
595
596         /* Unload any bytes sent back from the other side */
597         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
598                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
599         if (recv_bytes > recv_size)
600                 recv_bytes = recv_size;
601
602         for (i = 0; i < recv_bytes; i += 4)
603                 unpack_aux(I915_READ(ch_data + i),
604                            recv + i, recv_bytes - i);
605
606         ret = recv_bytes;
607 out:
608         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
609         intel_aux_display_runtime_put(dev_priv);
610
611         if (vdd)
612                 edp_panel_vdd_off(intel_dp, false);
613
614         return ret;
615 }
616
617 #define BARE_ADDRESS_SIZE       3
618 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
619 static ssize_t
620 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
621 {
622         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
623         uint8_t txbuf[20], rxbuf[20];
624         size_t txsize, rxsize;
625         int ret;
626
627         txbuf[0] = msg->request << 4;
628         txbuf[1] = msg->address >> 8;
629         txbuf[2] = msg->address & 0xff;
630         txbuf[3] = msg->size - 1;
631
632         switch (msg->request & ~DP_AUX_I2C_MOT) {
633         case DP_AUX_NATIVE_WRITE:
634         case DP_AUX_I2C_WRITE:
635                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
636                 rxsize = 1;
637
638                 if (WARN_ON(txsize > 20))
639                         return -E2BIG;
640
641                 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
642
643                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
644                 if (ret > 0) {
645                         msg->reply = rxbuf[0] >> 4;
646
647                         /* Return payload size. */
648                         ret = msg->size;
649                 }
650                 break;
651
652         case DP_AUX_NATIVE_READ:
653         case DP_AUX_I2C_READ:
654                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
655                 rxsize = msg->size + 1;
656
657                 if (WARN_ON(rxsize > 20))
658                         return -E2BIG;
659
660                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
661                 if (ret > 0) {
662                         msg->reply = rxbuf[0] >> 4;
663                         /*
664                          * Assume happy day, and copy the data. The caller is
665                          * expected to check msg->reply before touching it.
666                          *
667                          * Return payload size.
668                          */
669                         ret--;
670                         memcpy(msg->buffer, rxbuf + 1, ret);
671                 }
672                 break;
673
674         default:
675                 ret = -EINVAL;
676                 break;
677         }
678
679         return ret;
680 }
681
682 static void
683 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
684 {
685         struct drm_device *dev = intel_dp_to_dev(intel_dp);
686         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
687         enum port port = intel_dig_port->port;
688         const char *name = NULL;
689         int ret;
690
691         switch (port) {
692         case PORT_A:
693                 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
694                 name = "DPDDC-A";
695                 break;
696         case PORT_B:
697                 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
698                 name = "DPDDC-B";
699                 break;
700         case PORT_C:
701                 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
702                 name = "DPDDC-C";
703                 break;
704         case PORT_D:
705                 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
706                 name = "DPDDC-D";
707                 break;
708         default:
709                 BUG();
710         }
711
712         if (!HAS_DDI(dev))
713                 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
714
715         intel_dp->aux.name = name;
716         intel_dp->aux.dev = dev->dev;
717         intel_dp->aux.transfer = intel_dp_aux_transfer;
718
719         DRM_DEBUG_KMS("registering %s bus for %s\n", name,
720                       connector->base.kdev->kobj.name);
721
722         ret = drm_dp_aux_register(&intel_dp->aux);
723         if (ret < 0) {
724                 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
725                           name, ret);
726                 return;
727         }
728
729         ret = sysfs_create_link(&connector->base.kdev->kobj,
730                                 &intel_dp->aux.ddc.dev.kobj,
731                                 intel_dp->aux.ddc.dev.kobj.name);
732         if (ret < 0) {
733                 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
734                 drm_dp_aux_unregister(&intel_dp->aux);
735         }
736 }
737
738 static void
739 intel_dp_connector_unregister(struct intel_connector *intel_connector)
740 {
741         struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
742
743         sysfs_remove_link(&intel_connector->base.kdev->kobj,
744                           intel_dp->aux.ddc.dev.kobj.name);
745         intel_connector_unregister(intel_connector);
746 }
747
748 static void
749 intel_dp_set_clock(struct intel_encoder *encoder,
750                    struct intel_crtc_config *pipe_config, int link_bw)
751 {
752         struct drm_device *dev = encoder->base.dev;
753         const struct dp_link_dpll *divisor = NULL;
754         int i, count = 0;
755
756         if (IS_G4X(dev)) {
757                 divisor = gen4_dpll;
758                 count = ARRAY_SIZE(gen4_dpll);
759         } else if (IS_HASWELL(dev)) {
760                 /* Haswell has special-purpose DP DDI clocks. */
761         } else if (HAS_PCH_SPLIT(dev)) {
762                 divisor = pch_dpll;
763                 count = ARRAY_SIZE(pch_dpll);
764         } else if (IS_CHERRYVIEW(dev)) {
765                 divisor = chv_dpll;
766                 count = ARRAY_SIZE(chv_dpll);
767         } else if (IS_VALLEYVIEW(dev)) {
768                 divisor = vlv_dpll;
769                 count = ARRAY_SIZE(vlv_dpll);
770         }
771
772         if (divisor && count) {
773                 for (i = 0; i < count; i++) {
774                         if (link_bw == divisor[i].link_bw) {
775                                 pipe_config->dpll = divisor[i].dpll;
776                                 pipe_config->clock_set = true;
777                                 break;
778                         }
779                 }
780         }
781 }
782
783 static void
784 intel_dp_set_m2_n2(struct intel_crtc *crtc, struct intel_link_m_n *m_n)
785 {
786         struct drm_device *dev = crtc->base.dev;
787         struct drm_i915_private *dev_priv = dev->dev_private;
788         enum transcoder transcoder = crtc->config.cpu_transcoder;
789
790         I915_WRITE(PIPE_DATA_M2(transcoder),
791                 TU_SIZE(m_n->tu) | m_n->gmch_m);
792         I915_WRITE(PIPE_DATA_N2(transcoder), m_n->gmch_n);
793         I915_WRITE(PIPE_LINK_M2(transcoder), m_n->link_m);
794         I915_WRITE(PIPE_LINK_N2(transcoder), m_n->link_n);
795 }
796
797 bool
798 intel_dp_compute_config(struct intel_encoder *encoder,
799                         struct intel_crtc_config *pipe_config)
800 {
801         struct drm_device *dev = encoder->base.dev;
802         struct drm_i915_private *dev_priv = dev->dev_private;
803         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
804         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
805         enum port port = dp_to_dig_port(intel_dp)->port;
806         struct intel_crtc *intel_crtc = encoder->new_crtc;
807         struct intel_connector *intel_connector = intel_dp->attached_connector;
808         int lane_count, clock;
809         int min_lane_count = 1;
810         int max_lane_count = intel_dp_max_lane_count(intel_dp);
811         /* Conveniently, the link BW constants become indices with a shift...*/
812         int min_clock = 0;
813         int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
814         int bpp, mode_rate;
815         static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
816         int link_avail, link_clock;
817
818         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
819                 pipe_config->has_pch_encoder = true;
820
821         pipe_config->has_dp_encoder = true;
822         pipe_config->has_audio = intel_dp->has_audio;
823
824         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
825                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
826                                        adjusted_mode);
827                 if (!HAS_PCH_SPLIT(dev))
828                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
829                                                  intel_connector->panel.fitting_mode);
830                 else
831                         intel_pch_panel_fitting(intel_crtc, pipe_config,
832                                                 intel_connector->panel.fitting_mode);
833         }
834
835         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
836                 return false;
837
838         DRM_DEBUG_KMS("DP link computation with max lane count %i "
839                       "max bw %02x pixel clock %iKHz\n",
840                       max_lane_count, bws[max_clock],
841                       adjusted_mode->crtc_clock);
842
843         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
844          * bpc in between. */
845         bpp = pipe_config->pipe_bpp;
846         if (is_edp(intel_dp)) {
847                 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
848                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
849                                       dev_priv->vbt.edp_bpp);
850                         bpp = dev_priv->vbt.edp_bpp;
851                 }
852
853                 if (IS_BROADWELL(dev)) {
854                         /* Yes, it's an ugly hack. */
855                         min_lane_count = max_lane_count;
856                         DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
857                                       min_lane_count);
858                 } else if (dev_priv->vbt.edp_lanes) {
859                         min_lane_count = min(dev_priv->vbt.edp_lanes,
860                                              max_lane_count);
861                         DRM_DEBUG_KMS("using min %u lanes per VBT\n",
862                                       min_lane_count);
863                 }
864
865                 if (dev_priv->vbt.edp_rate) {
866                         min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
867                         DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
868                                       bws[min_clock]);
869                 }
870         }
871
872         for (; bpp >= 6*3; bpp -= 2*3) {
873                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
874                                                    bpp);
875
876                 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
877                         for (clock = min_clock; clock <= max_clock; clock++) {
878                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
879                                 link_avail = intel_dp_max_data_rate(link_clock,
880                                                                     lane_count);
881
882                                 if (mode_rate <= link_avail) {
883                                         goto found;
884                                 }
885                         }
886                 }
887         }
888
889         return false;
890
891 found:
892         if (intel_dp->color_range_auto) {
893                 /*
894                  * See:
895                  * CEA-861-E - 5.1 Default Encoding Parameters
896                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
897                  */
898                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
899                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
900                 else
901                         intel_dp->color_range = 0;
902         }
903
904         if (intel_dp->color_range)
905                 pipe_config->limited_color_range = true;
906
907         intel_dp->link_bw = bws[clock];
908         intel_dp->lane_count = lane_count;
909         pipe_config->pipe_bpp = bpp;
910         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
911
912         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
913                       intel_dp->link_bw, intel_dp->lane_count,
914                       pipe_config->port_clock, bpp);
915         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
916                       mode_rate, link_avail);
917
918         intel_link_compute_m_n(bpp, lane_count,
919                                adjusted_mode->crtc_clock,
920                                pipe_config->port_clock,
921                                &pipe_config->dp_m_n);
922
923         if (intel_connector->panel.downclock_mode != NULL &&
924                 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
925                         intel_link_compute_m_n(bpp, lane_count,
926                                 intel_connector->panel.downclock_mode->clock,
927                                 pipe_config->port_clock,
928                                 &pipe_config->dp_m2_n2);
929         }
930
931         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
932
933         return true;
934 }
935
936 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
937 {
938         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
939         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
940         struct drm_device *dev = crtc->base.dev;
941         struct drm_i915_private *dev_priv = dev->dev_private;
942         u32 dpa_ctl;
943
944         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
945         dpa_ctl = I915_READ(DP_A);
946         dpa_ctl &= ~DP_PLL_FREQ_MASK;
947
948         if (crtc->config.port_clock == 162000) {
949                 /* For a long time we've carried around a ILK-DevA w/a for the
950                  * 160MHz clock. If we're really unlucky, it's still required.
951                  */
952                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
953                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
954                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
955         } else {
956                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
957                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
958         }
959
960         I915_WRITE(DP_A, dpa_ctl);
961
962         POSTING_READ(DP_A);
963         udelay(500);
964 }
965
966 static void intel_dp_prepare(struct intel_encoder *encoder)
967 {
968         struct drm_device *dev = encoder->base.dev;
969         struct drm_i915_private *dev_priv = dev->dev_private;
970         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
971         enum port port = dp_to_dig_port(intel_dp)->port;
972         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
973         struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
974
975         /*
976          * There are four kinds of DP registers:
977          *
978          *      IBX PCH
979          *      SNB CPU
980          *      IVB CPU
981          *      CPT PCH
982          *
983          * IBX PCH and CPU are the same for almost everything,
984          * except that the CPU DP PLL is configured in this
985          * register
986          *
987          * CPT PCH is quite different, having many bits moved
988          * to the TRANS_DP_CTL register instead. That
989          * configuration happens (oddly) in ironlake_pch_enable
990          */
991
992         /* Preserve the BIOS-computed detected bit. This is
993          * supposed to be read-only.
994          */
995         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
996
997         /* Handle DP bits in common between all three register formats */
998         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
999         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1000
1001         if (crtc->config.has_audio) {
1002                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1003                                  pipe_name(crtc->pipe));
1004                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1005                 intel_write_eld(&encoder->base, adjusted_mode);
1006         }
1007
1008         /* Split out the IBX/CPU vs CPT settings */
1009
1010         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1011                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1012                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1013                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1014                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1015                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1016
1017                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1018                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1019
1020                 intel_dp->DP |= crtc->pipe << 29;
1021         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1022                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1023                         intel_dp->DP |= intel_dp->color_range;
1024
1025                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1026                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1027                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1028                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1029                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1030
1031                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1032                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1033
1034                 if (!IS_CHERRYVIEW(dev)) {
1035                         if (crtc->pipe == 1)
1036                                 intel_dp->DP |= DP_PIPEB_SELECT;
1037                 } else {
1038                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1039                 }
1040         } else {
1041                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1042         }
1043 }
1044
1045 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1046 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1047
1048 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1049 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1050
1051 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1052 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1053
1054 static void wait_panel_status(struct intel_dp *intel_dp,
1055                                        u32 mask,
1056                                        u32 value)
1057 {
1058         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1059         struct drm_i915_private *dev_priv = dev->dev_private;
1060         u32 pp_stat_reg, pp_ctrl_reg;
1061
1062         pp_stat_reg = _pp_stat_reg(intel_dp);
1063         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1064
1065         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1066                         mask, value,
1067                         I915_READ(pp_stat_reg),
1068                         I915_READ(pp_ctrl_reg));
1069
1070         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1071                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1072                                 I915_READ(pp_stat_reg),
1073                                 I915_READ(pp_ctrl_reg));
1074         }
1075
1076         DRM_DEBUG_KMS("Wait complete\n");
1077 }
1078
1079 static void wait_panel_on(struct intel_dp *intel_dp)
1080 {
1081         DRM_DEBUG_KMS("Wait for panel power on\n");
1082         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1083 }
1084
1085 static void wait_panel_off(struct intel_dp *intel_dp)
1086 {
1087         DRM_DEBUG_KMS("Wait for panel power off time\n");
1088         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1089 }
1090
1091 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1092 {
1093         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1094
1095         /* When we disable the VDD override bit last we have to do the manual
1096          * wait. */
1097         wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1098                                        intel_dp->panel_power_cycle_delay);
1099
1100         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1101 }
1102
1103 static void wait_backlight_on(struct intel_dp *intel_dp)
1104 {
1105         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1106                                        intel_dp->backlight_on_delay);
1107 }
1108
1109 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1110 {
1111         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1112                                        intel_dp->backlight_off_delay);
1113 }
1114
1115 /* Read the current pp_control value, unlocking the register if it
1116  * is locked
1117  */
1118
1119 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1120 {
1121         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1122         struct drm_i915_private *dev_priv = dev->dev_private;
1123         u32 control;
1124
1125         control = I915_READ(_pp_ctrl_reg(intel_dp));
1126         control &= ~PANEL_UNLOCK_MASK;
1127         control |= PANEL_UNLOCK_REGS;
1128         return control;
1129 }
1130
1131 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1132 {
1133         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1134         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1135         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1136         struct drm_i915_private *dev_priv = dev->dev_private;
1137         enum intel_display_power_domain power_domain;
1138         u32 pp;
1139         u32 pp_stat_reg, pp_ctrl_reg;
1140         bool need_to_disable = !intel_dp->want_panel_vdd;
1141
1142         if (!is_edp(intel_dp))
1143                 return false;
1144
1145         intel_dp->want_panel_vdd = true;
1146
1147         if (edp_have_panel_vdd(intel_dp))
1148                 return need_to_disable;
1149
1150         power_domain = intel_display_port_power_domain(intel_encoder);
1151         intel_display_power_get(dev_priv, power_domain);
1152
1153         DRM_DEBUG_KMS("Turning eDP VDD on\n");
1154
1155         if (!edp_have_panel_power(intel_dp))
1156                 wait_panel_power_cycle(intel_dp);
1157
1158         pp = ironlake_get_pp_control(intel_dp);
1159         pp |= EDP_FORCE_VDD;
1160
1161         pp_stat_reg = _pp_stat_reg(intel_dp);
1162         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1163
1164         I915_WRITE(pp_ctrl_reg, pp);
1165         POSTING_READ(pp_ctrl_reg);
1166         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1167                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1168         /*
1169          * If the panel wasn't on, delay before accessing aux channel
1170          */
1171         if (!edp_have_panel_power(intel_dp)) {
1172                 DRM_DEBUG_KMS("eDP was not running\n");
1173                 msleep(intel_dp->panel_power_up_delay);
1174         }
1175
1176         return need_to_disable;
1177 }
1178
1179 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1180 {
1181         if (is_edp(intel_dp)) {
1182                 bool vdd = _edp_panel_vdd_on(intel_dp);
1183
1184                 WARN(!vdd, "eDP VDD already requested on\n");
1185         }
1186 }
1187
1188 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1189 {
1190         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1191         struct drm_i915_private *dev_priv = dev->dev_private;
1192         u32 pp;
1193         u32 pp_stat_reg, pp_ctrl_reg;
1194
1195         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1196
1197         if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1198                 struct intel_digital_port *intel_dig_port =
1199                                                 dp_to_dig_port(intel_dp);
1200                 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1201                 enum intel_display_power_domain power_domain;
1202
1203                 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1204
1205                 pp = ironlake_get_pp_control(intel_dp);
1206                 pp &= ~EDP_FORCE_VDD;
1207
1208                 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1209                 pp_stat_reg = _pp_stat_reg(intel_dp);
1210
1211                 I915_WRITE(pp_ctrl_reg, pp);
1212                 POSTING_READ(pp_ctrl_reg);
1213
1214                 /* Make sure sequencer is idle before allowing subsequent activity */
1215                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1216                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1217
1218                 if ((pp & POWER_TARGET_ON) == 0)
1219                         intel_dp->last_power_cycle = jiffies;
1220
1221                 power_domain = intel_display_port_power_domain(intel_encoder);
1222                 intel_display_power_put(dev_priv, power_domain);
1223         }
1224 }
1225
1226 static void edp_panel_vdd_work(struct work_struct *__work)
1227 {
1228         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1229                                                  struct intel_dp, panel_vdd_work);
1230         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1231
1232         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
1233         edp_panel_vdd_off_sync(intel_dp);
1234         drm_modeset_unlock(&dev->mode_config.connection_mutex);
1235 }
1236
1237 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1238 {
1239         if (!is_edp(intel_dp))
1240                 return;
1241
1242         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1243
1244         intel_dp->want_panel_vdd = false;
1245
1246         if (sync) {
1247                 edp_panel_vdd_off_sync(intel_dp);
1248         } else {
1249                 /*
1250                  * Queue the timer to fire a long
1251                  * time from now (relative to the power down delay)
1252                  * to keep the panel power up across a sequence of operations
1253                  */
1254                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1255                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1256         }
1257 }
1258
1259 void intel_edp_panel_on(struct intel_dp *intel_dp)
1260 {
1261         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1262         struct drm_i915_private *dev_priv = dev->dev_private;
1263         u32 pp;
1264         u32 pp_ctrl_reg;
1265
1266         if (!is_edp(intel_dp))
1267                 return;
1268
1269         DRM_DEBUG_KMS("Turn eDP power on\n");
1270
1271         if (edp_have_panel_power(intel_dp)) {
1272                 DRM_DEBUG_KMS("eDP power already on\n");
1273                 return;
1274         }
1275
1276         wait_panel_power_cycle(intel_dp);
1277
1278         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1279         pp = ironlake_get_pp_control(intel_dp);
1280         if (IS_GEN5(dev)) {
1281                 /* ILK workaround: disable reset around power sequence */
1282                 pp &= ~PANEL_POWER_RESET;
1283                 I915_WRITE(pp_ctrl_reg, pp);
1284                 POSTING_READ(pp_ctrl_reg);
1285         }
1286
1287         pp |= POWER_TARGET_ON;
1288         if (!IS_GEN5(dev))
1289                 pp |= PANEL_POWER_RESET;
1290
1291         I915_WRITE(pp_ctrl_reg, pp);
1292         POSTING_READ(pp_ctrl_reg);
1293
1294         wait_panel_on(intel_dp);
1295         intel_dp->last_power_on = jiffies;
1296
1297         if (IS_GEN5(dev)) {
1298                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1299                 I915_WRITE(pp_ctrl_reg, pp);
1300                 POSTING_READ(pp_ctrl_reg);
1301         }
1302 }
1303
1304 void intel_edp_panel_off(struct intel_dp *intel_dp)
1305 {
1306         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1307         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1308         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1309         struct drm_i915_private *dev_priv = dev->dev_private;
1310         enum intel_display_power_domain power_domain;
1311         u32 pp;
1312         u32 pp_ctrl_reg;
1313
1314         if (!is_edp(intel_dp))
1315                 return;
1316
1317         DRM_DEBUG_KMS("Turn eDP power off\n");
1318
1319         edp_wait_backlight_off(intel_dp);
1320
1321         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1322
1323         pp = ironlake_get_pp_control(intel_dp);
1324         /* We need to switch off panel power _and_ force vdd, for otherwise some
1325          * panels get very unhappy and cease to work. */
1326         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1327                 EDP_BLC_ENABLE);
1328
1329         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1330
1331         intel_dp->want_panel_vdd = false;
1332
1333         I915_WRITE(pp_ctrl_reg, pp);
1334         POSTING_READ(pp_ctrl_reg);
1335
1336         intel_dp->last_power_cycle = jiffies;
1337         wait_panel_off(intel_dp);
1338
1339         /* We got a reference when we enabled the VDD. */
1340         power_domain = intel_display_port_power_domain(intel_encoder);
1341         intel_display_power_put(dev_priv, power_domain);
1342 }
1343
1344 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1345 {
1346         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1347         struct drm_device *dev = intel_dig_port->base.base.dev;
1348         struct drm_i915_private *dev_priv = dev->dev_private;
1349         u32 pp;
1350         u32 pp_ctrl_reg;
1351
1352         if (!is_edp(intel_dp))
1353                 return;
1354
1355         DRM_DEBUG_KMS("\n");
1356         /*
1357          * If we enable the backlight right away following a panel power
1358          * on, we may see slight flicker as the panel syncs with the eDP
1359          * link.  So delay a bit to make sure the image is solid before
1360          * allowing it to appear.
1361          */
1362         wait_backlight_on(intel_dp);
1363         pp = ironlake_get_pp_control(intel_dp);
1364         pp |= EDP_BLC_ENABLE;
1365
1366         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1367
1368         I915_WRITE(pp_ctrl_reg, pp);
1369         POSTING_READ(pp_ctrl_reg);
1370
1371         intel_panel_enable_backlight(intel_dp->attached_connector);
1372 }
1373
1374 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1375 {
1376         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1377         struct drm_i915_private *dev_priv = dev->dev_private;
1378         u32 pp;
1379         u32 pp_ctrl_reg;
1380
1381         if (!is_edp(intel_dp))
1382                 return;
1383
1384         intel_panel_disable_backlight(intel_dp->attached_connector);
1385
1386         DRM_DEBUG_KMS("\n");
1387         pp = ironlake_get_pp_control(intel_dp);
1388         pp &= ~EDP_BLC_ENABLE;
1389
1390         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1391
1392         I915_WRITE(pp_ctrl_reg, pp);
1393         POSTING_READ(pp_ctrl_reg);
1394         intel_dp->last_backlight_off = jiffies;
1395 }
1396
1397 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1398 {
1399         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1400         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1401         struct drm_device *dev = crtc->dev;
1402         struct drm_i915_private *dev_priv = dev->dev_private;
1403         u32 dpa_ctl;
1404
1405         assert_pipe_disabled(dev_priv,
1406                              to_intel_crtc(crtc)->pipe);
1407
1408         DRM_DEBUG_KMS("\n");
1409         dpa_ctl = I915_READ(DP_A);
1410         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1411         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1412
1413         /* We don't adjust intel_dp->DP while tearing down the link, to
1414          * facilitate link retraining (e.g. after hotplug). Hence clear all
1415          * enable bits here to ensure that we don't enable too much. */
1416         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1417         intel_dp->DP |= DP_PLL_ENABLE;
1418         I915_WRITE(DP_A, intel_dp->DP);
1419         POSTING_READ(DP_A);
1420         udelay(200);
1421 }
1422
1423 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1424 {
1425         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1426         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1427         struct drm_device *dev = crtc->dev;
1428         struct drm_i915_private *dev_priv = dev->dev_private;
1429         u32 dpa_ctl;
1430
1431         assert_pipe_disabled(dev_priv,
1432                              to_intel_crtc(crtc)->pipe);
1433
1434         dpa_ctl = I915_READ(DP_A);
1435         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1436              "dp pll off, should be on\n");
1437         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1438
1439         /* We can't rely on the value tracked for the DP register in
1440          * intel_dp->DP because link_down must not change that (otherwise link
1441          * re-training will fail. */
1442         dpa_ctl &= ~DP_PLL_ENABLE;
1443         I915_WRITE(DP_A, dpa_ctl);
1444         POSTING_READ(DP_A);
1445         udelay(200);
1446 }
1447
1448 /* If the sink supports it, try to set the power state appropriately */
1449 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1450 {
1451         int ret, i;
1452
1453         /* Should have a valid DPCD by this point */
1454         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1455                 return;
1456
1457         if (mode != DRM_MODE_DPMS_ON) {
1458                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1459                                          DP_SET_POWER_D3);
1460                 if (ret != 1)
1461                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1462         } else {
1463                 /*
1464                  * When turning on, we need to retry for 1ms to give the sink
1465                  * time to wake up.
1466                  */
1467                 for (i = 0; i < 3; i++) {
1468                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1469                                                  DP_SET_POWER_D0);
1470                         if (ret == 1)
1471                                 break;
1472                         msleep(1);
1473                 }
1474         }
1475 }
1476
1477 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1478                                   enum pipe *pipe)
1479 {
1480         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1481         enum port port = dp_to_dig_port(intel_dp)->port;
1482         struct drm_device *dev = encoder->base.dev;
1483         struct drm_i915_private *dev_priv = dev->dev_private;
1484         enum intel_display_power_domain power_domain;
1485         u32 tmp;
1486
1487         power_domain = intel_display_port_power_domain(encoder);
1488         if (!intel_display_power_enabled(dev_priv, power_domain))
1489                 return false;
1490
1491         tmp = I915_READ(intel_dp->output_reg);
1492
1493         if (!(tmp & DP_PORT_EN))
1494                 return false;
1495
1496         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1497                 *pipe = PORT_TO_PIPE_CPT(tmp);
1498         } else if (IS_CHERRYVIEW(dev)) {
1499                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1500         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1501                 *pipe = PORT_TO_PIPE(tmp);
1502         } else {
1503                 u32 trans_sel;
1504                 u32 trans_dp;
1505                 int i;
1506
1507                 switch (intel_dp->output_reg) {
1508                 case PCH_DP_B:
1509                         trans_sel = TRANS_DP_PORT_SEL_B;
1510                         break;
1511                 case PCH_DP_C:
1512                         trans_sel = TRANS_DP_PORT_SEL_C;
1513                         break;
1514                 case PCH_DP_D:
1515                         trans_sel = TRANS_DP_PORT_SEL_D;
1516                         break;
1517                 default:
1518                         return true;
1519                 }
1520
1521                 for_each_pipe(i) {
1522                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1523                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1524                                 *pipe = i;
1525                                 return true;
1526                         }
1527                 }
1528
1529                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1530                               intel_dp->output_reg);
1531         }
1532
1533         return true;
1534 }
1535
1536 static void intel_dp_get_config(struct intel_encoder *encoder,
1537                                 struct intel_crtc_config *pipe_config)
1538 {
1539         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1540         u32 tmp, flags = 0;
1541         struct drm_device *dev = encoder->base.dev;
1542         struct drm_i915_private *dev_priv = dev->dev_private;
1543         enum port port = dp_to_dig_port(intel_dp)->port;
1544         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1545         int dotclock;
1546
1547         tmp = I915_READ(intel_dp->output_reg);
1548         if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1549                 pipe_config->has_audio = true;
1550
1551         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1552                 if (tmp & DP_SYNC_HS_HIGH)
1553                         flags |= DRM_MODE_FLAG_PHSYNC;
1554                 else
1555                         flags |= DRM_MODE_FLAG_NHSYNC;
1556
1557                 if (tmp & DP_SYNC_VS_HIGH)
1558                         flags |= DRM_MODE_FLAG_PVSYNC;
1559                 else
1560                         flags |= DRM_MODE_FLAG_NVSYNC;
1561         } else {
1562                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1563                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1564                         flags |= DRM_MODE_FLAG_PHSYNC;
1565                 else
1566                         flags |= DRM_MODE_FLAG_NHSYNC;
1567
1568                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1569                         flags |= DRM_MODE_FLAG_PVSYNC;
1570                 else
1571                         flags |= DRM_MODE_FLAG_NVSYNC;
1572         }
1573
1574         pipe_config->adjusted_mode.flags |= flags;
1575
1576         pipe_config->has_dp_encoder = true;
1577
1578         intel_dp_get_m_n(crtc, pipe_config);
1579
1580         if (port == PORT_A) {
1581                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1582                         pipe_config->port_clock = 162000;
1583                 else
1584                         pipe_config->port_clock = 270000;
1585         }
1586
1587         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1588                                             &pipe_config->dp_m_n);
1589
1590         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1591                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1592
1593         pipe_config->adjusted_mode.crtc_clock = dotclock;
1594
1595         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1596             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1597                 /*
1598                  * This is a big fat ugly hack.
1599                  *
1600                  * Some machines in UEFI boot mode provide us a VBT that has 18
1601                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1602                  * unknown we fail to light up. Yet the same BIOS boots up with
1603                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1604                  * max, not what it tells us to use.
1605                  *
1606                  * Note: This will still be broken if the eDP panel is not lit
1607                  * up by the BIOS, and thus we can't get the mode at module
1608                  * load.
1609                  */
1610                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1611                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1612                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1613         }
1614 }
1615
1616 static bool is_edp_psr(struct drm_device *dev)
1617 {
1618         struct drm_i915_private *dev_priv = dev->dev_private;
1619
1620         return dev_priv->psr.sink_support;
1621 }
1622
1623 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1624 {
1625         struct drm_i915_private *dev_priv = dev->dev_private;
1626
1627         if (!HAS_PSR(dev))
1628                 return false;
1629
1630         return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1631 }
1632
1633 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1634                                     struct edp_vsc_psr *vsc_psr)
1635 {
1636         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1637         struct drm_device *dev = dig_port->base.base.dev;
1638         struct drm_i915_private *dev_priv = dev->dev_private;
1639         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1640         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1641         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1642         uint32_t *data = (uint32_t *) vsc_psr;
1643         unsigned int i;
1644
1645         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1646            the video DIP being updated before program video DIP data buffer
1647            registers for DIP being updated. */
1648         I915_WRITE(ctl_reg, 0);
1649         POSTING_READ(ctl_reg);
1650
1651         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1652                 if (i < sizeof(struct edp_vsc_psr))
1653                         I915_WRITE(data_reg + i, *data++);
1654                 else
1655                         I915_WRITE(data_reg + i, 0);
1656         }
1657
1658         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1659         POSTING_READ(ctl_reg);
1660 }
1661
1662 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1663 {
1664         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1665         struct drm_i915_private *dev_priv = dev->dev_private;
1666         struct edp_vsc_psr psr_vsc;
1667
1668         if (intel_dp->psr_setup_done)
1669                 return;
1670
1671         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1672         memset(&psr_vsc, 0, sizeof(psr_vsc));
1673         psr_vsc.sdp_header.HB0 = 0;
1674         psr_vsc.sdp_header.HB1 = 0x7;
1675         psr_vsc.sdp_header.HB2 = 0x2;
1676         psr_vsc.sdp_header.HB3 = 0x8;
1677         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1678
1679         /* Avoid continuous PSR exit by masking memup and hpd */
1680         I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1681                    EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1682
1683         intel_dp->psr_setup_done = true;
1684 }
1685
1686 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1687 {
1688         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1689         struct drm_i915_private *dev_priv = dev->dev_private;
1690         uint32_t aux_clock_divider;
1691         int precharge = 0x3;
1692         int msg_size = 5;       /* Header(4) + Message(1) */
1693
1694         aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1695
1696         /* Enable PSR in sink */
1697         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1698                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1699                                    DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1700         else
1701                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1702                                    DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1703
1704         /* Setup AUX registers */
1705         I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1706         I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1707         I915_WRITE(EDP_PSR_AUX_CTL(dev),
1708                    DP_AUX_CH_CTL_TIME_OUT_400us |
1709                    (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1710                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1711                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1712 }
1713
1714 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1715 {
1716         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1717         struct drm_i915_private *dev_priv = dev->dev_private;
1718         uint32_t max_sleep_time = 0x1f;
1719         uint32_t idle_frames = 1;
1720         uint32_t val = 0x0;
1721         const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1722
1723         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1724                 val |= EDP_PSR_LINK_STANDBY;
1725                 val |= EDP_PSR_TP2_TP3_TIME_0us;
1726                 val |= EDP_PSR_TP1_TIME_0us;
1727                 val |= EDP_PSR_SKIP_AUX_EXIT;
1728         } else
1729                 val |= EDP_PSR_LINK_DISABLE;
1730
1731         I915_WRITE(EDP_PSR_CTL(dev), val |
1732                    (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1733                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1734                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1735                    EDP_PSR_ENABLE);
1736 }
1737
1738 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1739 {
1740         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1741         struct drm_device *dev = dig_port->base.base.dev;
1742         struct drm_i915_private *dev_priv = dev->dev_private;
1743         struct drm_crtc *crtc = dig_port->base.base.crtc;
1744         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1745         struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1746         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1747
1748         dev_priv->psr.source_ok = false;
1749
1750         if (!HAS_PSR(dev)) {
1751                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1752                 return false;
1753         }
1754
1755         if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1756             (dig_port->port != PORT_A)) {
1757                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1758                 return false;
1759         }
1760
1761         if (!i915.enable_psr) {
1762                 DRM_DEBUG_KMS("PSR disable by flag\n");
1763                 return false;
1764         }
1765
1766         crtc = dig_port->base.base.crtc;
1767         if (crtc == NULL) {
1768                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1769                 return false;
1770         }
1771
1772         intel_crtc = to_intel_crtc(crtc);
1773         if (!intel_crtc_active(crtc)) {
1774                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1775                 return false;
1776         }
1777
1778         obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1779         if (obj->tiling_mode != I915_TILING_X ||
1780             obj->fence_reg == I915_FENCE_REG_NONE) {
1781                 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1782                 return false;
1783         }
1784
1785         if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1786                 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1787                 return false;
1788         }
1789
1790         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1791             S3D_ENABLE) {
1792                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1793                 return false;
1794         }
1795
1796         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1797                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1798                 return false;
1799         }
1800
1801         dev_priv->psr.source_ok = true;
1802         return true;
1803 }
1804
1805 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1806 {
1807         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1808
1809         if (!intel_edp_psr_match_conditions(intel_dp) ||
1810             intel_edp_is_psr_enabled(dev))
1811                 return;
1812
1813         /* Setup PSR once */
1814         intel_edp_psr_setup(intel_dp);
1815
1816         /* Enable PSR on the panel */
1817         intel_edp_psr_enable_sink(intel_dp);
1818
1819         /* Enable PSR on the host */
1820         intel_edp_psr_enable_source(intel_dp);
1821 }
1822
1823 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1824 {
1825         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1826
1827         if (intel_edp_psr_match_conditions(intel_dp) &&
1828             !intel_edp_is_psr_enabled(dev))
1829                 intel_edp_psr_do_enable(intel_dp);
1830 }
1831
1832 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1833 {
1834         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1835         struct drm_i915_private *dev_priv = dev->dev_private;
1836
1837         if (!intel_edp_is_psr_enabled(dev))
1838                 return;
1839
1840         I915_WRITE(EDP_PSR_CTL(dev),
1841                    I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1842
1843         /* Wait till PSR is idle */
1844         if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1845                        EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1846                 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1847 }
1848
1849 void intel_edp_psr_update(struct drm_device *dev)
1850 {
1851         struct intel_encoder *encoder;
1852         struct intel_dp *intel_dp = NULL;
1853
1854         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1855                 if (encoder->type == INTEL_OUTPUT_EDP) {
1856                         intel_dp = enc_to_intel_dp(&encoder->base);
1857
1858                         if (!is_edp_psr(dev))
1859                                 return;
1860
1861                         if (!intel_edp_psr_match_conditions(intel_dp))
1862                                 intel_edp_psr_disable(intel_dp);
1863                         else
1864                                 if (!intel_edp_is_psr_enabled(dev))
1865                                         intel_edp_psr_do_enable(intel_dp);
1866                 }
1867 }
1868
1869 static void intel_disable_dp(struct intel_encoder *encoder)
1870 {
1871         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1872         enum port port = dp_to_dig_port(intel_dp)->port;
1873         struct drm_device *dev = encoder->base.dev;
1874
1875         /* Make sure the panel is off before trying to change the mode. But also
1876          * ensure that we have vdd while we switch off the panel. */
1877         intel_edp_panel_vdd_on(intel_dp);
1878         intel_edp_backlight_off(intel_dp);
1879         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1880         intel_edp_panel_off(intel_dp);
1881
1882         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1883         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1884                 intel_dp_link_down(intel_dp);
1885 }
1886
1887 static void g4x_post_disable_dp(struct intel_encoder *encoder)
1888 {
1889         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1890         enum port port = dp_to_dig_port(intel_dp)->port;
1891
1892         if (port != PORT_A)
1893                 return;
1894
1895         intel_dp_link_down(intel_dp);
1896         ironlake_edp_pll_off(intel_dp);
1897 }
1898
1899 static void vlv_post_disable_dp(struct intel_encoder *encoder)
1900 {
1901         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1902
1903         intel_dp_link_down(intel_dp);
1904 }
1905
1906 static void chv_post_disable_dp(struct intel_encoder *encoder)
1907 {
1908         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1909         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1910         struct drm_device *dev = encoder->base.dev;
1911         struct drm_i915_private *dev_priv = dev->dev_private;
1912         struct intel_crtc *intel_crtc =
1913                 to_intel_crtc(encoder->base.crtc);
1914         enum dpio_channel ch = vlv_dport_to_channel(dport);
1915         enum pipe pipe = intel_crtc->pipe;
1916         u32 val;
1917
1918         intel_dp_link_down(intel_dp);
1919
1920         mutex_lock(&dev_priv->dpio_lock);
1921
1922         /* Propagate soft reset to data lane reset */
1923         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
1924         val |= CHV_PCS_REQ_SOFTRESET_EN;
1925         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
1926
1927         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
1928         val |= CHV_PCS_REQ_SOFTRESET_EN;
1929         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
1930
1931         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
1932         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1933         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
1934
1935         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
1936         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1937         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
1938
1939         mutex_unlock(&dev_priv->dpio_lock);
1940 }
1941
1942 static void intel_enable_dp(struct intel_encoder *encoder)
1943 {
1944         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1945         struct drm_device *dev = encoder->base.dev;
1946         struct drm_i915_private *dev_priv = dev->dev_private;
1947         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1948
1949         if (WARN_ON(dp_reg & DP_PORT_EN))
1950                 return;
1951
1952         intel_edp_panel_vdd_on(intel_dp);
1953         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1954         intel_dp_start_link_train(intel_dp);
1955         intel_edp_panel_on(intel_dp);
1956         edp_panel_vdd_off(intel_dp, true);
1957         intel_dp_complete_link_train(intel_dp);
1958         intel_dp_stop_link_train(intel_dp);
1959 }
1960
1961 static void g4x_enable_dp(struct intel_encoder *encoder)
1962 {
1963         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1964
1965         intel_enable_dp(encoder);
1966         intel_edp_backlight_on(intel_dp);
1967 }
1968
1969 static void vlv_enable_dp(struct intel_encoder *encoder)
1970 {
1971         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1972
1973         intel_edp_backlight_on(intel_dp);
1974 }
1975
1976 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1977 {
1978         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1979         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1980
1981         intel_dp_prepare(encoder);
1982
1983         /* Only ilk+ has port A */
1984         if (dport->port == PORT_A) {
1985                 ironlake_set_pll_cpu_edp(intel_dp);
1986                 ironlake_edp_pll_on(intel_dp);
1987         }
1988 }
1989
1990 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1991 {
1992         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1993         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1994         struct drm_device *dev = encoder->base.dev;
1995         struct drm_i915_private *dev_priv = dev->dev_private;
1996         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1997         enum dpio_channel port = vlv_dport_to_channel(dport);
1998         int pipe = intel_crtc->pipe;
1999         struct edp_power_seq power_seq;
2000         u32 val;
2001
2002         mutex_lock(&dev_priv->dpio_lock);
2003
2004         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2005         val = 0;
2006         if (pipe)
2007                 val |= (1<<21);
2008         else
2009                 val &= ~(1<<21);
2010         val |= 0x001000c4;
2011         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2012         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2013         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2014
2015         mutex_unlock(&dev_priv->dpio_lock);
2016
2017         if (is_edp(intel_dp)) {
2018                 /* init power sequencer on this pipe and port */
2019                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2020                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2021                                                               &power_seq);
2022         }
2023
2024         intel_enable_dp(encoder);
2025
2026         vlv_wait_port_ready(dev_priv, dport);
2027 }
2028
2029 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2030 {
2031         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2032         struct drm_device *dev = encoder->base.dev;
2033         struct drm_i915_private *dev_priv = dev->dev_private;
2034         struct intel_crtc *intel_crtc =
2035                 to_intel_crtc(encoder->base.crtc);
2036         enum dpio_channel port = vlv_dport_to_channel(dport);
2037         int pipe = intel_crtc->pipe;
2038
2039         intel_dp_prepare(encoder);
2040
2041         /* Program Tx lane resets to default */
2042         mutex_lock(&dev_priv->dpio_lock);
2043         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2044                          DPIO_PCS_TX_LANE2_RESET |
2045                          DPIO_PCS_TX_LANE1_RESET);
2046         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2047                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2048                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2049                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2050                                  DPIO_PCS_CLK_SOFT_RESET);
2051
2052         /* Fix up inter-pair skew failure */
2053         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2054         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2055         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2056         mutex_unlock(&dev_priv->dpio_lock);
2057 }
2058
2059 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2060 {
2061         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2062         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2063         struct drm_device *dev = encoder->base.dev;
2064         struct drm_i915_private *dev_priv = dev->dev_private;
2065         struct edp_power_seq power_seq;
2066         struct intel_crtc *intel_crtc =
2067                 to_intel_crtc(encoder->base.crtc);
2068         enum dpio_channel ch = vlv_dport_to_channel(dport);
2069         int pipe = intel_crtc->pipe;
2070         int data, i;
2071         u32 val;
2072
2073         mutex_lock(&dev_priv->dpio_lock);
2074
2075         /* Deassert soft data lane reset*/
2076         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2077         val |= CHV_PCS_REQ_SOFTRESET_EN;
2078         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2079
2080         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2081         val |= CHV_PCS_REQ_SOFTRESET_EN;
2082         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2083
2084         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2085         val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2086         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2087
2088         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2089         val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2090         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2091
2092         /* Program Tx lane latency optimal setting*/
2093         for (i = 0; i < 4; i++) {
2094                 /* Set the latency optimal bit */
2095                 data = (i == 1) ? 0x0 : 0x6;
2096                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2097                                 data << DPIO_FRC_LATENCY_SHFIT);
2098
2099                 /* Set the upar bit */
2100                 data = (i == 1) ? 0x0 : 0x1;
2101                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2102                                 data << DPIO_UPAR_SHIFT);
2103         }
2104
2105         /* Data lane stagger programming */
2106         /* FIXME: Fix up value only after power analysis */
2107
2108         mutex_unlock(&dev_priv->dpio_lock);
2109
2110         if (is_edp(intel_dp)) {
2111                 /* init power sequencer on this pipe and port */
2112                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2113                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2114                                                               &power_seq);
2115         }
2116
2117         intel_enable_dp(encoder);
2118
2119         vlv_wait_port_ready(dev_priv, dport);
2120 }
2121
2122 /*
2123  * Native read with retry for link status and receiver capability reads for
2124  * cases where the sink may still be asleep.
2125  *
2126  * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2127  * supposed to retry 3 times per the spec.
2128  */
2129 static ssize_t
2130 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2131                         void *buffer, size_t size)
2132 {
2133         ssize_t ret;
2134         int i;
2135
2136         for (i = 0; i < 3; i++) {
2137                 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2138                 if (ret == size)
2139                         return ret;
2140                 msleep(1);
2141         }
2142
2143         return ret;
2144 }
2145
2146 /*
2147  * Fetch AUX CH registers 0x202 - 0x207 which contain
2148  * link status information
2149  */
2150 static bool
2151 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2152 {
2153         return intel_dp_dpcd_read_wake(&intel_dp->aux,
2154                                        DP_LANE0_1_STATUS,
2155                                        link_status,
2156                                        DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2157 }
2158
2159 /*
2160  * These are source-specific values; current Intel hardware supports
2161  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
2162  */
2163
2164 static uint8_t
2165 intel_dp_voltage_max(struct intel_dp *intel_dp)
2166 {
2167         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2168         enum port port = dp_to_dig_port(intel_dp)->port;
2169
2170         if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
2171                 return DP_TRAIN_VOLTAGE_SWING_1200;
2172         else if (IS_GEN7(dev) && port == PORT_A)
2173                 return DP_TRAIN_VOLTAGE_SWING_800;
2174         else if (HAS_PCH_CPT(dev) && port != PORT_A)
2175                 return DP_TRAIN_VOLTAGE_SWING_1200;
2176         else
2177                 return DP_TRAIN_VOLTAGE_SWING_800;
2178 }
2179
2180 static uint8_t
2181 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2182 {
2183         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2184         enum port port = dp_to_dig_port(intel_dp)->port;
2185
2186         if (IS_BROADWELL(dev)) {
2187                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2188                 case DP_TRAIN_VOLTAGE_SWING_400:
2189                 case DP_TRAIN_VOLTAGE_SWING_600:
2190                         return DP_TRAIN_PRE_EMPHASIS_6;
2191                 case DP_TRAIN_VOLTAGE_SWING_800:
2192                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2193                 case DP_TRAIN_VOLTAGE_SWING_1200:
2194                 default:
2195                         return DP_TRAIN_PRE_EMPHASIS_0;
2196                 }
2197         } else if (IS_HASWELL(dev)) {
2198                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2199                 case DP_TRAIN_VOLTAGE_SWING_400:
2200                         return DP_TRAIN_PRE_EMPHASIS_9_5;
2201                 case DP_TRAIN_VOLTAGE_SWING_600:
2202                         return DP_TRAIN_PRE_EMPHASIS_6;
2203                 case DP_TRAIN_VOLTAGE_SWING_800:
2204                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2205                 case DP_TRAIN_VOLTAGE_SWING_1200:
2206                 default:
2207                         return DP_TRAIN_PRE_EMPHASIS_0;
2208                 }
2209         } else if (IS_VALLEYVIEW(dev)) {
2210                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2211                 case DP_TRAIN_VOLTAGE_SWING_400:
2212                         return DP_TRAIN_PRE_EMPHASIS_9_5;
2213                 case DP_TRAIN_VOLTAGE_SWING_600:
2214                         return DP_TRAIN_PRE_EMPHASIS_6;
2215                 case DP_TRAIN_VOLTAGE_SWING_800:
2216                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2217                 case DP_TRAIN_VOLTAGE_SWING_1200:
2218                 default:
2219                         return DP_TRAIN_PRE_EMPHASIS_0;
2220                 }
2221         } else if (IS_GEN7(dev) && port == PORT_A) {
2222                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2223                 case DP_TRAIN_VOLTAGE_SWING_400:
2224                         return DP_TRAIN_PRE_EMPHASIS_6;
2225                 case DP_TRAIN_VOLTAGE_SWING_600:
2226                 case DP_TRAIN_VOLTAGE_SWING_800:
2227                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2228                 default:
2229                         return DP_TRAIN_PRE_EMPHASIS_0;
2230                 }
2231         } else {
2232                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2233                 case DP_TRAIN_VOLTAGE_SWING_400:
2234                         return DP_TRAIN_PRE_EMPHASIS_6;
2235                 case DP_TRAIN_VOLTAGE_SWING_600:
2236                         return DP_TRAIN_PRE_EMPHASIS_6;
2237                 case DP_TRAIN_VOLTAGE_SWING_800:
2238                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2239                 case DP_TRAIN_VOLTAGE_SWING_1200:
2240                 default:
2241                         return DP_TRAIN_PRE_EMPHASIS_0;
2242                 }
2243         }
2244 }
2245
2246 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2247 {
2248         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2249         struct drm_i915_private *dev_priv = dev->dev_private;
2250         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2251         struct intel_crtc *intel_crtc =
2252                 to_intel_crtc(dport->base.base.crtc);
2253         unsigned long demph_reg_value, preemph_reg_value,
2254                 uniqtranscale_reg_value;
2255         uint8_t train_set = intel_dp->train_set[0];
2256         enum dpio_channel port = vlv_dport_to_channel(dport);
2257         int pipe = intel_crtc->pipe;
2258
2259         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2260         case DP_TRAIN_PRE_EMPHASIS_0:
2261                 preemph_reg_value = 0x0004000;
2262                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2263                 case DP_TRAIN_VOLTAGE_SWING_400:
2264                         demph_reg_value = 0x2B405555;
2265                         uniqtranscale_reg_value = 0x552AB83A;
2266                         break;
2267                 case DP_TRAIN_VOLTAGE_SWING_600:
2268                         demph_reg_value = 0x2B404040;
2269                         uniqtranscale_reg_value = 0x5548B83A;
2270                         break;
2271                 case DP_TRAIN_VOLTAGE_SWING_800:
2272                         demph_reg_value = 0x2B245555;
2273                         uniqtranscale_reg_value = 0x5560B83A;
2274                         break;
2275                 case DP_TRAIN_VOLTAGE_SWING_1200:
2276                         demph_reg_value = 0x2B405555;
2277                         uniqtranscale_reg_value = 0x5598DA3A;
2278                         break;
2279                 default:
2280                         return 0;
2281                 }
2282                 break;
2283         case DP_TRAIN_PRE_EMPHASIS_3_5:
2284                 preemph_reg_value = 0x0002000;
2285                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2286                 case DP_TRAIN_VOLTAGE_SWING_400:
2287                         demph_reg_value = 0x2B404040;
2288                         uniqtranscale_reg_value = 0x5552B83A;
2289                         break;
2290                 case DP_TRAIN_VOLTAGE_SWING_600:
2291                         demph_reg_value = 0x2B404848;
2292                         uniqtranscale_reg_value = 0x5580B83A;
2293                         break;
2294                 case DP_TRAIN_VOLTAGE_SWING_800:
2295                         demph_reg_value = 0x2B404040;
2296                         uniqtranscale_reg_value = 0x55ADDA3A;
2297                         break;
2298                 default:
2299                         return 0;
2300                 }
2301                 break;
2302         case DP_TRAIN_PRE_EMPHASIS_6:
2303                 preemph_reg_value = 0x0000000;
2304                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2305                 case DP_TRAIN_VOLTAGE_SWING_400:
2306                         demph_reg_value = 0x2B305555;
2307                         uniqtranscale_reg_value = 0x5570B83A;
2308                         break;
2309                 case DP_TRAIN_VOLTAGE_SWING_600:
2310                         demph_reg_value = 0x2B2B4040;
2311                         uniqtranscale_reg_value = 0x55ADDA3A;
2312                         break;
2313                 default:
2314                         return 0;
2315                 }
2316                 break;
2317         case DP_TRAIN_PRE_EMPHASIS_9_5:
2318                 preemph_reg_value = 0x0006000;
2319                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2320                 case DP_TRAIN_VOLTAGE_SWING_400:
2321                         demph_reg_value = 0x1B405555;
2322                         uniqtranscale_reg_value = 0x55ADDA3A;
2323                         break;
2324                 default:
2325                         return 0;
2326                 }
2327                 break;
2328         default:
2329                 return 0;
2330         }
2331
2332         mutex_lock(&dev_priv->dpio_lock);
2333         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2334         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2335         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2336                          uniqtranscale_reg_value);
2337         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2338         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2339         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2340         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2341         mutex_unlock(&dev_priv->dpio_lock);
2342
2343         return 0;
2344 }
2345
2346 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2347 {
2348         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2349         struct drm_i915_private *dev_priv = dev->dev_private;
2350         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2351         struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2352         u32 deemph_reg_value, margin_reg_value, val;
2353         uint8_t train_set = intel_dp->train_set[0];
2354         enum dpio_channel ch = vlv_dport_to_channel(dport);
2355         enum pipe pipe = intel_crtc->pipe;
2356         int i;
2357
2358         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2359         case DP_TRAIN_PRE_EMPHASIS_0:
2360                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2361                 case DP_TRAIN_VOLTAGE_SWING_400:
2362                         deemph_reg_value = 128;
2363                         margin_reg_value = 52;
2364                         break;
2365                 case DP_TRAIN_VOLTAGE_SWING_600:
2366                         deemph_reg_value = 128;
2367                         margin_reg_value = 77;
2368                         break;
2369                 case DP_TRAIN_VOLTAGE_SWING_800:
2370                         deemph_reg_value = 128;
2371                         margin_reg_value = 102;
2372                         break;
2373                 case DP_TRAIN_VOLTAGE_SWING_1200:
2374                         deemph_reg_value = 128;
2375                         margin_reg_value = 154;
2376                         /* FIXME extra to set for 1200 */
2377                         break;
2378                 default:
2379                         return 0;
2380                 }
2381                 break;
2382         case DP_TRAIN_PRE_EMPHASIS_3_5:
2383                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2384                 case DP_TRAIN_VOLTAGE_SWING_400:
2385                         deemph_reg_value = 85;
2386                         margin_reg_value = 78;
2387                         break;
2388                 case DP_TRAIN_VOLTAGE_SWING_600:
2389                         deemph_reg_value = 85;
2390                         margin_reg_value = 116;
2391                         break;
2392                 case DP_TRAIN_VOLTAGE_SWING_800:
2393                         deemph_reg_value = 85;
2394                         margin_reg_value = 154;
2395                         break;
2396                 default:
2397                         return 0;
2398                 }
2399                 break;
2400         case DP_TRAIN_PRE_EMPHASIS_6:
2401                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2402                 case DP_TRAIN_VOLTAGE_SWING_400:
2403                         deemph_reg_value = 64;
2404                         margin_reg_value = 104;
2405                         break;
2406                 case DP_TRAIN_VOLTAGE_SWING_600:
2407                         deemph_reg_value = 64;
2408                         margin_reg_value = 154;
2409                         break;
2410                 default:
2411                         return 0;
2412                 }
2413                 break;
2414         case DP_TRAIN_PRE_EMPHASIS_9_5:
2415                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2416                 case DP_TRAIN_VOLTAGE_SWING_400:
2417                         deemph_reg_value = 43;
2418                         margin_reg_value = 154;
2419                         break;
2420                 default:
2421                         return 0;
2422                 }
2423                 break;
2424         default:
2425                 return 0;
2426         }
2427
2428         mutex_lock(&dev_priv->dpio_lock);
2429
2430         /* Clear calc init */
2431         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2432         val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2433         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2434
2435         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2436         val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2437         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2438
2439         /* Program swing deemph */
2440         for (i = 0; i < 4; i++) {
2441                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2442                 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2443                 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2444                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2445         }
2446
2447         /* Program swing margin */
2448         for (i = 0; i < 4; i++) {
2449                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2450                 val &= ~DPIO_SWING_MARGIN_MASK;
2451                 val |= margin_reg_value << DPIO_SWING_MARGIN_SHIFT;
2452                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2453         }
2454
2455         /* Disable unique transition scale */
2456         for (i = 0; i < 4; i++) {
2457                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2458                 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2459                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2460         }
2461
2462         if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2463                         == DP_TRAIN_PRE_EMPHASIS_0) &&
2464                 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2465                         == DP_TRAIN_VOLTAGE_SWING_1200)) {
2466
2467                 /*
2468                  * The document said it needs to set bit 27 for ch0 and bit 26
2469                  * for ch1. Might be a typo in the doc.
2470                  * For now, for this unique transition scale selection, set bit
2471                  * 27 for ch0 and ch1.
2472                  */
2473                 for (i = 0; i < 4; i++) {
2474                         val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2475                         val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2476                         vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2477                 }
2478
2479                 for (i = 0; i < 4; i++) {
2480                         val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2481                         val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2482                         val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2483                         vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2484                 }
2485         }
2486
2487         /* Start swing calculation */
2488         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2489         val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2490         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2491
2492         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2493         val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2494         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2495
2496         /* LRC Bypass */
2497         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2498         val |= DPIO_LRC_BYPASS;
2499         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2500
2501         mutex_unlock(&dev_priv->dpio_lock);
2502
2503         return 0;
2504 }
2505
2506 static void
2507 intel_get_adjust_train(struct intel_dp *intel_dp,
2508                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
2509 {
2510         uint8_t v = 0;
2511         uint8_t p = 0;
2512         int lane;
2513         uint8_t voltage_max;
2514         uint8_t preemph_max;
2515
2516         for (lane = 0; lane < intel_dp->lane_count; lane++) {
2517                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2518                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2519
2520                 if (this_v > v)
2521                         v = this_v;
2522                 if (this_p > p)
2523                         p = this_p;
2524         }
2525
2526         voltage_max = intel_dp_voltage_max(intel_dp);
2527         if (v >= voltage_max)
2528                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2529
2530         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2531         if (p >= preemph_max)
2532                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2533
2534         for (lane = 0; lane < 4; lane++)
2535                 intel_dp->train_set[lane] = v | p;
2536 }
2537
2538 static uint32_t
2539 intel_gen4_signal_levels(uint8_t train_set)
2540 {
2541         uint32_t        signal_levels = 0;
2542
2543         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2544         case DP_TRAIN_VOLTAGE_SWING_400:
2545         default:
2546                 signal_levels |= DP_VOLTAGE_0_4;
2547                 break;
2548         case DP_TRAIN_VOLTAGE_SWING_600:
2549                 signal_levels |= DP_VOLTAGE_0_6;
2550                 break;
2551         case DP_TRAIN_VOLTAGE_SWING_800:
2552                 signal_levels |= DP_VOLTAGE_0_8;
2553                 break;
2554         case DP_TRAIN_VOLTAGE_SWING_1200:
2555                 signal_levels |= DP_VOLTAGE_1_2;
2556                 break;
2557         }
2558         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2559         case DP_TRAIN_PRE_EMPHASIS_0:
2560         default:
2561                 signal_levels |= DP_PRE_EMPHASIS_0;
2562                 break;
2563         case DP_TRAIN_PRE_EMPHASIS_3_5:
2564                 signal_levels |= DP_PRE_EMPHASIS_3_5;
2565                 break;
2566         case DP_TRAIN_PRE_EMPHASIS_6:
2567                 signal_levels |= DP_PRE_EMPHASIS_6;
2568                 break;
2569         case DP_TRAIN_PRE_EMPHASIS_9_5:
2570                 signal_levels |= DP_PRE_EMPHASIS_9_5;
2571                 break;
2572         }
2573         return signal_levels;
2574 }
2575
2576 /* Gen6's DP voltage swing and pre-emphasis control */
2577 static uint32_t
2578 intel_gen6_edp_signal_levels(uint8_t train_set)
2579 {
2580         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2581                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2582         switch (signal_levels) {
2583         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2584         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2585                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2586         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2587                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2588         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2589         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2590                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2591         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2592         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2593                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2594         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2595         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2596                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2597         default:
2598                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2599                               "0x%x\n", signal_levels);
2600                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2601         }
2602 }
2603
2604 /* Gen7's DP voltage swing and pre-emphasis control */
2605 static uint32_t
2606 intel_gen7_edp_signal_levels(uint8_t train_set)
2607 {
2608         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2609                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2610         switch (signal_levels) {
2611         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2612                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2613         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2614                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2615         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2616                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2617
2618         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2619                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2620         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2621                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2622
2623         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2624                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2625         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2626                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2627
2628         default:
2629                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2630                               "0x%x\n", signal_levels);
2631                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2632         }
2633 }
2634
2635 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2636 static uint32_t
2637 intel_hsw_signal_levels(uint8_t train_set)
2638 {
2639         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2640                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2641         switch (signal_levels) {
2642         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2643                 return DDI_BUF_EMP_400MV_0DB_HSW;
2644         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2645                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2646         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2647                 return DDI_BUF_EMP_400MV_6DB_HSW;
2648         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2649                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2650
2651         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2652                 return DDI_BUF_EMP_600MV_0DB_HSW;
2653         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2654                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2655         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2656                 return DDI_BUF_EMP_600MV_6DB_HSW;
2657
2658         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2659                 return DDI_BUF_EMP_800MV_0DB_HSW;
2660         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2661                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2662         default:
2663                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2664                               "0x%x\n", signal_levels);
2665                 return DDI_BUF_EMP_400MV_0DB_HSW;
2666         }
2667 }
2668
2669 static uint32_t
2670 intel_bdw_signal_levels(uint8_t train_set)
2671 {
2672         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2673                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2674         switch (signal_levels) {
2675         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2676                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2677         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2678                 return DDI_BUF_EMP_400MV_3_5DB_BDW;     /* Sel1 */
2679         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2680                 return DDI_BUF_EMP_400MV_6DB_BDW;       /* Sel2 */
2681
2682         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2683                 return DDI_BUF_EMP_600MV_0DB_BDW;       /* Sel3 */
2684         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2685                 return DDI_BUF_EMP_600MV_3_5DB_BDW;     /* Sel4 */
2686         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2687                 return DDI_BUF_EMP_600MV_6DB_BDW;       /* Sel5 */
2688
2689         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2690                 return DDI_BUF_EMP_800MV_0DB_BDW;       /* Sel6 */
2691         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2692                 return DDI_BUF_EMP_800MV_3_5DB_BDW;     /* Sel7 */
2693
2694         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2695                 return DDI_BUF_EMP_1200MV_0DB_BDW;      /* Sel8 */
2696
2697         default:
2698                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2699                               "0x%x\n", signal_levels);
2700                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2701         }
2702 }
2703
2704 /* Properly updates "DP" with the correct signal levels. */
2705 static void
2706 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2707 {
2708         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2709         enum port port = intel_dig_port->port;
2710         struct drm_device *dev = intel_dig_port->base.base.dev;
2711         uint32_t signal_levels, mask;
2712         uint8_t train_set = intel_dp->train_set[0];
2713
2714         if (IS_BROADWELL(dev)) {
2715                 signal_levels = intel_bdw_signal_levels(train_set);
2716                 mask = DDI_BUF_EMP_MASK;
2717         } else if (IS_HASWELL(dev)) {
2718                 signal_levels = intel_hsw_signal_levels(train_set);
2719                 mask = DDI_BUF_EMP_MASK;
2720         } else if (IS_CHERRYVIEW(dev)) {
2721                 signal_levels = intel_chv_signal_levels(intel_dp);
2722                 mask = 0;
2723         } else if (IS_VALLEYVIEW(dev)) {
2724                 signal_levels = intel_vlv_signal_levels(intel_dp);
2725                 mask = 0;
2726         } else if (IS_GEN7(dev) && port == PORT_A) {
2727                 signal_levels = intel_gen7_edp_signal_levels(train_set);
2728                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2729         } else if (IS_GEN6(dev) && port == PORT_A) {
2730                 signal_levels = intel_gen6_edp_signal_levels(train_set);
2731                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2732         } else {
2733                 signal_levels = intel_gen4_signal_levels(train_set);
2734                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2735         }
2736
2737         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2738
2739         *DP = (*DP & ~mask) | signal_levels;
2740 }
2741
2742 static bool
2743 intel_dp_set_link_train(struct intel_dp *intel_dp,
2744                         uint32_t *DP,
2745                         uint8_t dp_train_pat)
2746 {
2747         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2748         struct drm_device *dev = intel_dig_port->base.base.dev;
2749         struct drm_i915_private *dev_priv = dev->dev_private;
2750         enum port port = intel_dig_port->port;
2751         uint8_t buf[sizeof(intel_dp->train_set) + 1];
2752         int ret, len;
2753
2754         if (HAS_DDI(dev)) {
2755                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2756
2757                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2758                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2759                 else
2760                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2761
2762                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2763                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2764                 case DP_TRAINING_PATTERN_DISABLE:
2765                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2766
2767                         break;
2768                 case DP_TRAINING_PATTERN_1:
2769                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2770                         break;
2771                 case DP_TRAINING_PATTERN_2:
2772                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2773                         break;
2774                 case DP_TRAINING_PATTERN_3:
2775                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2776                         break;
2777                 }
2778                 I915_WRITE(DP_TP_CTL(port), temp);
2779
2780         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2781                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2782
2783                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2784                 case DP_TRAINING_PATTERN_DISABLE:
2785                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2786                         break;
2787                 case DP_TRAINING_PATTERN_1:
2788                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2789                         break;
2790                 case DP_TRAINING_PATTERN_2:
2791                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2792                         break;
2793                 case DP_TRAINING_PATTERN_3:
2794                         DRM_ERROR("DP training pattern 3 not supported\n");
2795                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2796                         break;
2797                 }
2798
2799         } else {
2800                 *DP &= ~DP_LINK_TRAIN_MASK;
2801
2802                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2803                 case DP_TRAINING_PATTERN_DISABLE:
2804                         *DP |= DP_LINK_TRAIN_OFF;
2805                         break;
2806                 case DP_TRAINING_PATTERN_1:
2807                         *DP |= DP_LINK_TRAIN_PAT_1;
2808                         break;
2809                 case DP_TRAINING_PATTERN_2:
2810                         *DP |= DP_LINK_TRAIN_PAT_2;
2811                         break;
2812                 case DP_TRAINING_PATTERN_3:
2813                         DRM_ERROR("DP training pattern 3 not supported\n");
2814                         *DP |= DP_LINK_TRAIN_PAT_2;
2815                         break;
2816                 }
2817         }
2818
2819         I915_WRITE(intel_dp->output_reg, *DP);
2820         POSTING_READ(intel_dp->output_reg);
2821
2822         buf[0] = dp_train_pat;
2823         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2824             DP_TRAINING_PATTERN_DISABLE) {
2825                 /* don't write DP_TRAINING_LANEx_SET on disable */
2826                 len = 1;
2827         } else {
2828                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2829                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2830                 len = intel_dp->lane_count + 1;
2831         }
2832
2833         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
2834                                 buf, len);
2835
2836         return ret == len;
2837 }
2838
2839 static bool
2840 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2841                         uint8_t dp_train_pat)
2842 {
2843         memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2844         intel_dp_set_signal_levels(intel_dp, DP);
2845         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2846 }
2847
2848 static bool
2849 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2850                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
2851 {
2852         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2853         struct drm_device *dev = intel_dig_port->base.base.dev;
2854         struct drm_i915_private *dev_priv = dev->dev_private;
2855         int ret;
2856
2857         intel_get_adjust_train(intel_dp, link_status);
2858         intel_dp_set_signal_levels(intel_dp, DP);
2859
2860         I915_WRITE(intel_dp->output_reg, *DP);
2861         POSTING_READ(intel_dp->output_reg);
2862
2863         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
2864                                 intel_dp->train_set, intel_dp->lane_count);
2865
2866         return ret == intel_dp->lane_count;
2867 }
2868
2869 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2870 {
2871         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2872         struct drm_device *dev = intel_dig_port->base.base.dev;
2873         struct drm_i915_private *dev_priv = dev->dev_private;
2874         enum port port = intel_dig_port->port;
2875         uint32_t val;
2876
2877         if (!HAS_DDI(dev))
2878                 return;
2879
2880         val = I915_READ(DP_TP_CTL(port));
2881         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2882         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2883         I915_WRITE(DP_TP_CTL(port), val);
2884
2885         /*
2886          * On PORT_A we can have only eDP in SST mode. There the only reason
2887          * we need to set idle transmission mode is to work around a HW issue
2888          * where we enable the pipe while not in idle link-training mode.
2889          * In this case there is requirement to wait for a minimum number of
2890          * idle patterns to be sent.
2891          */
2892         if (port == PORT_A)
2893                 return;
2894
2895         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2896                      1))
2897                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2898 }
2899
2900 /* Enable corresponding port and start training pattern 1 */
2901 void
2902 intel_dp_start_link_train(struct intel_dp *intel_dp)
2903 {
2904         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2905         struct drm_device *dev = encoder->dev;
2906         int i;
2907         uint8_t voltage;
2908         int voltage_tries, loop_tries;
2909         uint32_t DP = intel_dp->DP;
2910         uint8_t link_config[2];
2911
2912         if (HAS_DDI(dev))
2913                 intel_ddi_prepare_link_retrain(encoder);
2914
2915         /* Write the link configuration data */
2916         link_config[0] = intel_dp->link_bw;
2917         link_config[1] = intel_dp->lane_count;
2918         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2919                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2920         drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
2921
2922         link_config[0] = 0;
2923         link_config[1] = DP_SET_ANSI_8B10B;
2924         drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
2925
2926         DP |= DP_PORT_EN;
2927
2928         /* clock recovery */
2929         if (!intel_dp_reset_link_train(intel_dp, &DP,
2930                                        DP_TRAINING_PATTERN_1 |
2931                                        DP_LINK_SCRAMBLING_DISABLE)) {
2932                 DRM_ERROR("failed to enable link training\n");
2933                 return;
2934         }
2935
2936         voltage = 0xff;
2937         voltage_tries = 0;
2938         loop_tries = 0;
2939         for (;;) {
2940                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2941
2942                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2943                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2944                         DRM_ERROR("failed to get link status\n");
2945                         break;
2946                 }
2947
2948                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2949                         DRM_DEBUG_KMS("clock recovery OK\n");
2950                         break;
2951                 }
2952
2953                 /* Check to see if we've tried the max voltage */
2954                 for (i = 0; i < intel_dp->lane_count; i++)
2955                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2956                                 break;
2957                 if (i == intel_dp->lane_count) {
2958                         ++loop_tries;
2959                         if (loop_tries == 5) {
2960                                 DRM_ERROR("too many full retries, give up\n");
2961                                 break;
2962                         }
2963                         intel_dp_reset_link_train(intel_dp, &DP,
2964                                                   DP_TRAINING_PATTERN_1 |
2965                                                   DP_LINK_SCRAMBLING_DISABLE);
2966                         voltage_tries = 0;
2967                         continue;
2968                 }
2969
2970                 /* Check to see if we've tried the same voltage 5 times */
2971                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2972                         ++voltage_tries;
2973                         if (voltage_tries == 5) {
2974                                 DRM_ERROR("too many voltage retries, give up\n");
2975                                 break;
2976                         }
2977                 } else
2978                         voltage_tries = 0;
2979                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2980
2981                 /* Update training set as requested by target */
2982                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2983                         DRM_ERROR("failed to update link training\n");
2984                         break;
2985                 }
2986         }
2987
2988         intel_dp->DP = DP;
2989 }
2990
2991 void
2992 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2993 {
2994         bool channel_eq = false;
2995         int tries, cr_tries;
2996         uint32_t DP = intel_dp->DP;
2997         uint32_t training_pattern = DP_TRAINING_PATTERN_2;
2998
2999         /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3000         if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3001                 training_pattern = DP_TRAINING_PATTERN_3;
3002
3003         /* channel equalization */
3004         if (!intel_dp_set_link_train(intel_dp, &DP,
3005                                      training_pattern |
3006                                      DP_LINK_SCRAMBLING_DISABLE)) {
3007                 DRM_ERROR("failed to start channel equalization\n");
3008                 return;
3009         }
3010
3011         tries = 0;
3012         cr_tries = 0;
3013         channel_eq = false;
3014         for (;;) {
3015                 uint8_t link_status[DP_LINK_STATUS_SIZE];
3016
3017                 if (cr_tries > 5) {
3018                         DRM_ERROR("failed to train DP, aborting\n");
3019                         break;
3020                 }
3021
3022                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3023                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3024                         DRM_ERROR("failed to get link status\n");
3025                         break;
3026                 }
3027
3028                 /* Make sure clock is still ok */
3029                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3030                         intel_dp_start_link_train(intel_dp);
3031                         intel_dp_set_link_train(intel_dp, &DP,
3032                                                 training_pattern |
3033                                                 DP_LINK_SCRAMBLING_DISABLE);
3034                         cr_tries++;
3035                         continue;
3036                 }
3037
3038                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3039                         channel_eq = true;
3040                         break;
3041                 }
3042
3043                 /* Try 5 times, then try clock recovery if that fails */
3044                 if (tries > 5) {
3045                         intel_dp_link_down(intel_dp);
3046                         intel_dp_start_link_train(intel_dp);
3047                         intel_dp_set_link_train(intel_dp, &DP,
3048                                                 training_pattern |
3049                                                 DP_LINK_SCRAMBLING_DISABLE);
3050                         tries = 0;
3051                         cr_tries++;
3052                         continue;
3053                 }
3054
3055                 /* Update training set as requested by target */
3056                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3057                         DRM_ERROR("failed to update link training\n");
3058                         break;
3059                 }
3060                 ++tries;
3061         }
3062
3063         intel_dp_set_idle_link_train(intel_dp);
3064
3065         intel_dp->DP = DP;
3066
3067         if (channel_eq)
3068                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3069
3070 }
3071
3072 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3073 {
3074         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3075                                 DP_TRAINING_PATTERN_DISABLE);
3076 }
3077
3078 static void
3079 intel_dp_link_down(struct intel_dp *intel_dp)
3080 {
3081         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3082         enum port port = intel_dig_port->port;
3083         struct drm_device *dev = intel_dig_port->base.base.dev;
3084         struct drm_i915_private *dev_priv = dev->dev_private;
3085         struct intel_crtc *intel_crtc =
3086                 to_intel_crtc(intel_dig_port->base.base.crtc);
3087         uint32_t DP = intel_dp->DP;
3088
3089         if (WARN_ON(HAS_DDI(dev)))
3090                 return;
3091
3092         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3093                 return;
3094
3095         DRM_DEBUG_KMS("\n");
3096
3097         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3098                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3099                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3100         } else {
3101                 DP &= ~DP_LINK_TRAIN_MASK;
3102                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3103         }
3104         POSTING_READ(intel_dp->output_reg);
3105
3106         if (HAS_PCH_IBX(dev) &&
3107             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3108                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3109
3110                 /* Hardware workaround: leaving our transcoder select
3111                  * set to transcoder B while it's off will prevent the
3112                  * corresponding HDMI output on transcoder A.
3113                  *
3114                  * Combine this with another hardware workaround:
3115                  * transcoder select bit can only be cleared while the
3116                  * port is enabled.
3117                  */
3118                 DP &= ~DP_PIPEB_SELECT;
3119                 I915_WRITE(intel_dp->output_reg, DP);
3120
3121                 /* Changes to enable or select take place the vblank
3122                  * after being written.
3123                  */
3124                 if (WARN_ON(crtc == NULL)) {
3125                         /* We should never try to disable a port without a crtc
3126                          * attached. For paranoia keep the code around for a
3127                          * bit. */
3128                         POSTING_READ(intel_dp->output_reg);
3129                         msleep(50);
3130                 } else
3131                         intel_wait_for_vblank(dev, intel_crtc->pipe);
3132         }
3133
3134         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3135         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3136         POSTING_READ(intel_dp->output_reg);
3137         msleep(intel_dp->panel_power_down_delay);
3138 }
3139
3140 static bool
3141 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3142 {
3143         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3144         struct drm_device *dev = dig_port->base.base.dev;
3145         struct drm_i915_private *dev_priv = dev->dev_private;
3146
3147         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
3148
3149         if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3150                                     sizeof(intel_dp->dpcd)) < 0)
3151                 return false; /* aux transfer failed */
3152
3153         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
3154                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
3155         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
3156
3157         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3158                 return false; /* DPCD not present */
3159
3160         /* Check if the panel supports PSR */
3161         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3162         if (is_edp(intel_dp)) {
3163                 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3164                                         intel_dp->psr_dpcd,
3165                                         sizeof(intel_dp->psr_dpcd));
3166                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3167                         dev_priv->psr.sink_support = true;
3168                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3169                 }
3170         }
3171
3172         /* Training Pattern 3 support */
3173         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3174             intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3175                 intel_dp->use_tps3 = true;
3176                 DRM_DEBUG_KMS("Displayport TPS3 supported");
3177         } else
3178                 intel_dp->use_tps3 = false;
3179
3180         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3181               DP_DWN_STRM_PORT_PRESENT))
3182                 return true; /* native DP sink */
3183
3184         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3185                 return true; /* no per-port downstream info */
3186
3187         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3188                                     intel_dp->downstream_ports,
3189                                     DP_MAX_DOWNSTREAM_PORTS) < 0)
3190                 return false; /* downstream port status fetch failed */
3191
3192         return true;
3193 }
3194
3195 static void
3196 intel_dp_probe_oui(struct intel_dp *intel_dp)
3197 {
3198         u8 buf[3];
3199
3200         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3201                 return;
3202
3203         intel_edp_panel_vdd_on(intel_dp);
3204
3205         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3206                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3207                               buf[0], buf[1], buf[2]);
3208
3209         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3210                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3211                               buf[0], buf[1], buf[2]);
3212
3213         edp_panel_vdd_off(intel_dp, false);
3214 }
3215
3216 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3217 {
3218         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3219         struct drm_device *dev = intel_dig_port->base.base.dev;
3220         struct intel_crtc *intel_crtc =
3221                 to_intel_crtc(intel_dig_port->base.base.crtc);
3222         u8 buf[1];
3223
3224         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3225                 return -EAGAIN;
3226
3227         if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3228                 return -ENOTTY;
3229
3230         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3231                                DP_TEST_SINK_START) < 0)
3232                 return -EAGAIN;
3233
3234         /* Wait 2 vblanks to be sure we will have the correct CRC value */
3235         intel_wait_for_vblank(dev, intel_crtc->pipe);
3236         intel_wait_for_vblank(dev, intel_crtc->pipe);
3237
3238         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3239                 return -EAGAIN;
3240
3241         drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3242         return 0;
3243 }
3244
3245 static bool
3246 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3247 {
3248         return intel_dp_dpcd_read_wake(&intel_dp->aux,
3249                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
3250                                        sink_irq_vector, 1) == 1;
3251 }
3252
3253 static void
3254 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3255 {
3256         /* NAK by default */
3257         drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3258 }
3259
3260 /*
3261  * According to DP spec
3262  * 5.1.2:
3263  *  1. Read DPCD
3264  *  2. Configure link according to Receiver Capabilities
3265  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3266  *  4. Check link status on receipt of hot-plug interrupt
3267  */
3268
3269 void
3270 intel_dp_check_link_status(struct intel_dp *intel_dp)
3271 {
3272         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3273         u8 sink_irq_vector;
3274         u8 link_status[DP_LINK_STATUS_SIZE];
3275
3276         /* FIXME: This access isn't protected by any locks. */
3277         if (!intel_encoder->connectors_active)
3278                 return;
3279
3280         if (WARN_ON(!intel_encoder->base.crtc))
3281                 return;
3282
3283         /* Try to read receiver status if the link appears to be up */
3284         if (!intel_dp_get_link_status(intel_dp, link_status)) {
3285                 return;
3286         }
3287
3288         /* Now read the DPCD to see if it's actually running */
3289         if (!intel_dp_get_dpcd(intel_dp)) {
3290                 return;
3291         }
3292
3293         /* Try to read the source of the interrupt */
3294         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3295             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3296                 /* Clear interrupt source */
3297                 drm_dp_dpcd_writeb(&intel_dp->aux,
3298                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
3299                                    sink_irq_vector);
3300
3301                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3302                         intel_dp_handle_test_request(intel_dp);
3303                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3304                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3305         }
3306
3307         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3308                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3309                               intel_encoder->base.name);
3310                 intel_dp_start_link_train(intel_dp);
3311                 intel_dp_complete_link_train(intel_dp);
3312                 intel_dp_stop_link_train(intel_dp);
3313         }
3314 }
3315
3316 /* XXX this is probably wrong for multiple downstream ports */
3317 static enum drm_connector_status
3318 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3319 {
3320         uint8_t *dpcd = intel_dp->dpcd;
3321         uint8_t type;
3322
3323         if (!intel_dp_get_dpcd(intel_dp))
3324                 return connector_status_disconnected;
3325
3326         /* if there's no downstream port, we're done */
3327         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3328                 return connector_status_connected;
3329
3330         /* If we're HPD-aware, SINK_COUNT changes dynamically */
3331         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3332             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3333                 uint8_t reg;
3334
3335                 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3336                                             &reg, 1) < 0)
3337                         return connector_status_unknown;
3338
3339                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3340                                               : connector_status_disconnected;
3341         }
3342
3343         /* If no HPD, poke DDC gently */
3344         if (drm_probe_ddc(&intel_dp->aux.ddc))
3345                 return connector_status_connected;
3346
3347         /* Well we tried, say unknown for unreliable port types */
3348         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3349                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3350                 if (type == DP_DS_PORT_TYPE_VGA ||
3351                     type == DP_DS_PORT_TYPE_NON_EDID)
3352                         return connector_status_unknown;
3353         } else {
3354                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3355                         DP_DWN_STRM_PORT_TYPE_MASK;
3356                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3357                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
3358                         return connector_status_unknown;
3359         }
3360
3361         /* Anything else is out of spec, warn and ignore */
3362         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3363         return connector_status_disconnected;
3364 }
3365
3366 static enum drm_connector_status
3367 ironlake_dp_detect(struct intel_dp *intel_dp)
3368 {
3369         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3370         struct drm_i915_private *dev_priv = dev->dev_private;
3371         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3372         enum drm_connector_status status;
3373
3374         /* Can't disconnect eDP, but you can close the lid... */
3375         if (is_edp(intel_dp)) {
3376                 status = intel_panel_detect(dev);
3377                 if (status == connector_status_unknown)
3378                         status = connector_status_connected;
3379                 return status;
3380         }
3381
3382         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3383                 return connector_status_disconnected;
3384
3385         return intel_dp_detect_dpcd(intel_dp);
3386 }
3387
3388 static enum drm_connector_status
3389 g4x_dp_detect(struct intel_dp *intel_dp)
3390 {
3391         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3392         struct drm_i915_private *dev_priv = dev->dev_private;
3393         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3394         uint32_t bit;
3395
3396         /* Can't disconnect eDP, but you can close the lid... */
3397         if (is_edp(intel_dp)) {
3398                 enum drm_connector_status status;
3399
3400                 status = intel_panel_detect(dev);
3401                 if (status == connector_status_unknown)
3402                         status = connector_status_connected;
3403                 return status;
3404         }
3405
3406         if (IS_VALLEYVIEW(dev)) {
3407                 switch (intel_dig_port->port) {
3408                 case PORT_B:
3409                         bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3410                         break;
3411                 case PORT_C:
3412                         bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3413                         break;
3414                 case PORT_D:
3415                         bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3416                         break;
3417                 default:
3418                         return connector_status_unknown;
3419                 }
3420         } else {
3421                 switch (intel_dig_port->port) {
3422                 case PORT_B:
3423                         bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3424                         break;
3425                 case PORT_C:
3426                         bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3427                         break;
3428                 case PORT_D:
3429                         bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3430                         break;
3431                 default:
3432                         return connector_status_unknown;
3433                 }
3434         }
3435
3436         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3437                 return connector_status_disconnected;
3438
3439         return intel_dp_detect_dpcd(intel_dp);
3440 }
3441
3442 static struct edid *
3443 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3444 {
3445         struct intel_connector *intel_connector = to_intel_connector(connector);
3446
3447         /* use cached edid if we have one */
3448         if (intel_connector->edid) {
3449                 /* invalid edid */
3450                 if (IS_ERR(intel_connector->edid))
3451                         return NULL;
3452
3453                 return drm_edid_duplicate(intel_connector->edid);
3454         }
3455
3456         return drm_get_edid(connector, adapter);
3457 }
3458
3459 static int
3460 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3461 {
3462         struct intel_connector *intel_connector = to_intel_connector(connector);
3463
3464         /* use cached edid if we have one */
3465         if (intel_connector->edid) {
3466                 /* invalid edid */
3467                 if (IS_ERR(intel_connector->edid))
3468                         return 0;
3469
3470                 return intel_connector_update_modes(connector,
3471                                                     intel_connector->edid);
3472         }
3473
3474         return intel_ddc_get_modes(connector, adapter);
3475 }
3476
3477 static enum drm_connector_status
3478 intel_dp_detect(struct drm_connector *connector, bool force)
3479 {
3480         struct intel_dp *intel_dp = intel_attached_dp(connector);
3481         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3482         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3483         struct drm_device *dev = connector->dev;
3484         struct drm_i915_private *dev_priv = dev->dev_private;
3485         enum drm_connector_status status;
3486         enum intel_display_power_domain power_domain;
3487         struct edid *edid = NULL;
3488
3489         intel_runtime_pm_get(dev_priv);
3490
3491         power_domain = intel_display_port_power_domain(intel_encoder);
3492         intel_display_power_get(dev_priv, power_domain);
3493
3494         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3495                       connector->base.id, connector->name);
3496
3497         intel_dp->has_audio = false;
3498
3499         if (HAS_PCH_SPLIT(dev))
3500                 status = ironlake_dp_detect(intel_dp);
3501         else
3502                 status = g4x_dp_detect(intel_dp);
3503
3504         if (status != connector_status_connected)
3505                 goto out;
3506
3507         intel_dp_probe_oui(intel_dp);
3508
3509         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3510                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3511         } else {
3512                 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3513                 if (edid) {
3514                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
3515                         kfree(edid);
3516                 }
3517         }
3518
3519         if (intel_encoder->type != INTEL_OUTPUT_EDP)
3520                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3521         status = connector_status_connected;
3522
3523 out:
3524         intel_display_power_put(dev_priv, power_domain);
3525
3526         intel_runtime_pm_put(dev_priv);
3527
3528         return status;
3529 }
3530
3531 static int intel_dp_get_modes(struct drm_connector *connector)
3532 {
3533         struct intel_dp *intel_dp = intel_attached_dp(connector);
3534         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3535         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3536         struct intel_connector *intel_connector = to_intel_connector(connector);
3537         struct drm_device *dev = connector->dev;
3538         struct drm_i915_private *dev_priv = dev->dev_private;
3539         enum intel_display_power_domain power_domain;
3540         int ret;
3541
3542         /* We should parse the EDID data and find out if it has an audio sink
3543          */
3544
3545         power_domain = intel_display_port_power_domain(intel_encoder);
3546         intel_display_power_get(dev_priv, power_domain);
3547
3548         ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3549         intel_display_power_put(dev_priv, power_domain);
3550         if (ret)
3551                 return ret;
3552
3553         /* if eDP has no EDID, fall back to fixed mode */
3554         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3555                 struct drm_display_mode *mode;
3556                 mode = drm_mode_duplicate(dev,
3557                                           intel_connector->panel.fixed_mode);
3558                 if (mode) {
3559                         drm_mode_probed_add(connector, mode);
3560                         return 1;
3561                 }
3562         }
3563         return 0;
3564 }
3565
3566 static bool
3567 intel_dp_detect_audio(struct drm_connector *connector)
3568 {
3569         struct intel_dp *intel_dp = intel_attached_dp(connector);
3570         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3571         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3572         struct drm_device *dev = connector->dev;
3573         struct drm_i915_private *dev_priv = dev->dev_private;
3574         enum intel_display_power_domain power_domain;
3575         struct edid *edid;
3576         bool has_audio = false;
3577
3578         power_domain = intel_display_port_power_domain(intel_encoder);
3579         intel_display_power_get(dev_priv, power_domain);
3580
3581         edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3582         if (edid) {
3583                 has_audio = drm_detect_monitor_audio(edid);
3584                 kfree(edid);
3585         }
3586
3587         intel_display_power_put(dev_priv, power_domain);
3588
3589         return has_audio;
3590 }
3591
3592 static int
3593 intel_dp_set_property(struct drm_connector *connector,
3594                       struct drm_property *property,
3595                       uint64_t val)
3596 {
3597         struct drm_i915_private *dev_priv = connector->dev->dev_private;
3598         struct intel_connector *intel_connector = to_intel_connector(connector);
3599         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3600         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3601         int ret;
3602
3603         ret = drm_object_property_set_value(&connector->base, property, val);
3604         if (ret)
3605                 return ret;
3606
3607         if (property == dev_priv->force_audio_property) {
3608                 int i = val;
3609                 bool has_audio;
3610
3611                 if (i == intel_dp->force_audio)
3612                         return 0;
3613
3614                 intel_dp->force_audio = i;
3615
3616                 if (i == HDMI_AUDIO_AUTO)
3617                         has_audio = intel_dp_detect_audio(connector);
3618                 else
3619                         has_audio = (i == HDMI_AUDIO_ON);
3620
3621                 if (has_audio == intel_dp->has_audio)
3622                         return 0;
3623
3624                 intel_dp->has_audio = has_audio;
3625                 goto done;
3626         }
3627
3628         if (property == dev_priv->broadcast_rgb_property) {
3629                 bool old_auto = intel_dp->color_range_auto;
3630                 uint32_t old_range = intel_dp->color_range;
3631
3632                 switch (val) {
3633                 case INTEL_BROADCAST_RGB_AUTO:
3634                         intel_dp->color_range_auto = true;
3635                         break;
3636                 case INTEL_BROADCAST_RGB_FULL:
3637                         intel_dp->color_range_auto = false;
3638                         intel_dp->color_range = 0;
3639                         break;
3640                 case INTEL_BROADCAST_RGB_LIMITED:
3641                         intel_dp->color_range_auto = false;
3642                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
3643                         break;
3644                 default:
3645                         return -EINVAL;
3646                 }
3647
3648                 if (old_auto == intel_dp->color_range_auto &&
3649                     old_range == intel_dp->color_range)
3650                         return 0;
3651
3652                 goto done;
3653         }
3654
3655         if (is_edp(intel_dp) &&
3656             property == connector->dev->mode_config.scaling_mode_property) {
3657                 if (val == DRM_MODE_SCALE_NONE) {
3658                         DRM_DEBUG_KMS("no scaling not supported\n");
3659                         return -EINVAL;
3660                 }
3661
3662                 if (intel_connector->panel.fitting_mode == val) {
3663                         /* the eDP scaling property is not changed */
3664                         return 0;
3665                 }
3666                 intel_connector->panel.fitting_mode = val;
3667
3668                 goto done;
3669         }
3670
3671         return -EINVAL;
3672
3673 done:
3674         if (intel_encoder->base.crtc)
3675                 intel_crtc_restore_mode(intel_encoder->base.crtc);
3676
3677         return 0;
3678 }
3679
3680 static void
3681 intel_dp_connector_destroy(struct drm_connector *connector)
3682 {
3683         struct intel_connector *intel_connector = to_intel_connector(connector);
3684
3685         if (!IS_ERR_OR_NULL(intel_connector->edid))
3686                 kfree(intel_connector->edid);
3687
3688         /* Can't call is_edp() since the encoder may have been destroyed
3689          * already. */
3690         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3691                 intel_panel_fini(&intel_connector->panel);
3692
3693         drm_connector_cleanup(connector);
3694         kfree(connector);
3695 }
3696
3697 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3698 {
3699         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3700         struct intel_dp *intel_dp = &intel_dig_port->dp;
3701         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3702
3703         drm_dp_aux_unregister(&intel_dp->aux);
3704         drm_encoder_cleanup(encoder);
3705         if (is_edp(intel_dp)) {
3706                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3707                 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
3708                 edp_panel_vdd_off_sync(intel_dp);
3709                 drm_modeset_unlock(&dev->mode_config.connection_mutex);
3710         }
3711         kfree(intel_dig_port);
3712 }
3713
3714 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3715         .dpms = intel_connector_dpms,
3716         .detect = intel_dp_detect,
3717         .fill_modes = drm_helper_probe_single_connector_modes,
3718         .set_property = intel_dp_set_property,
3719         .destroy = intel_dp_connector_destroy,
3720 };
3721
3722 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3723         .get_modes = intel_dp_get_modes,
3724         .mode_valid = intel_dp_mode_valid,
3725         .best_encoder = intel_best_encoder,
3726 };
3727
3728 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3729         .destroy = intel_dp_encoder_destroy,
3730 };
3731
3732 static void
3733 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3734 {
3735         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3736
3737         intel_dp_check_link_status(intel_dp);
3738 }
3739
3740 /* Return which DP Port should be selected for Transcoder DP control */
3741 int
3742 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3743 {
3744         struct drm_device *dev = crtc->dev;
3745         struct intel_encoder *intel_encoder;
3746         struct intel_dp *intel_dp;
3747
3748         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3749                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3750
3751                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3752                     intel_encoder->type == INTEL_OUTPUT_EDP)
3753                         return intel_dp->output_reg;
3754         }
3755
3756         return -1;
3757 }
3758
3759 /* check the VBT to see whether the eDP is on DP-D port */
3760 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3761 {
3762         struct drm_i915_private *dev_priv = dev->dev_private;
3763         union child_device_config *p_child;
3764         int i;
3765         static const short port_mapping[] = {
3766                 [PORT_B] = PORT_IDPB,
3767                 [PORT_C] = PORT_IDPC,
3768                 [PORT_D] = PORT_IDPD,
3769         };
3770
3771         if (port == PORT_A)
3772                 return true;
3773
3774         if (!dev_priv->vbt.child_dev_num)
3775                 return false;
3776
3777         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3778                 p_child = dev_priv->vbt.child_dev + i;
3779
3780                 if (p_child->common.dvo_port == port_mapping[port] &&
3781                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3782                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3783                         return true;
3784         }
3785         return false;
3786 }
3787
3788 static void
3789 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3790 {
3791         struct intel_connector *intel_connector = to_intel_connector(connector);
3792
3793         intel_attach_force_audio_property(connector);
3794         intel_attach_broadcast_rgb_property(connector);
3795         intel_dp->color_range_auto = true;
3796
3797         if (is_edp(intel_dp)) {
3798                 drm_mode_create_scaling_mode_property(connector->dev);
3799                 drm_object_attach_property(
3800                         &connector->base,
3801                         connector->dev->mode_config.scaling_mode_property,
3802                         DRM_MODE_SCALE_ASPECT);
3803                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3804         }
3805 }
3806
3807 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
3808 {
3809         intel_dp->last_power_cycle = jiffies;
3810         intel_dp->last_power_on = jiffies;
3811         intel_dp->last_backlight_off = jiffies;
3812 }
3813
3814 static void
3815 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3816                                     struct intel_dp *intel_dp,
3817                                     struct edp_power_seq *out)
3818 {
3819         struct drm_i915_private *dev_priv = dev->dev_private;
3820         struct edp_power_seq cur, vbt, spec, final;
3821         u32 pp_on, pp_off, pp_div, pp;
3822         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3823
3824         if (HAS_PCH_SPLIT(dev)) {
3825                 pp_ctrl_reg = PCH_PP_CONTROL;
3826                 pp_on_reg = PCH_PP_ON_DELAYS;
3827                 pp_off_reg = PCH_PP_OFF_DELAYS;
3828                 pp_div_reg = PCH_PP_DIVISOR;
3829         } else {
3830                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3831
3832                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3833                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3834                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3835                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3836         }
3837
3838         /* Workaround: Need to write PP_CONTROL with the unlock key as
3839          * the very first thing. */
3840         pp = ironlake_get_pp_control(intel_dp);
3841         I915_WRITE(pp_ctrl_reg, pp);
3842
3843         pp_on = I915_READ(pp_on_reg);
3844         pp_off = I915_READ(pp_off_reg);
3845         pp_div = I915_READ(pp_div_reg);
3846
3847         /* Pull timing values out of registers */
3848         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3849                 PANEL_POWER_UP_DELAY_SHIFT;
3850
3851         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3852                 PANEL_LIGHT_ON_DELAY_SHIFT;
3853
3854         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3855                 PANEL_LIGHT_OFF_DELAY_SHIFT;
3856
3857         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3858                 PANEL_POWER_DOWN_DELAY_SHIFT;
3859
3860         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3861                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3862
3863         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3864                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3865
3866         vbt = dev_priv->vbt.edp_pps;
3867
3868         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3869          * our hw here, which are all in 100usec. */
3870         spec.t1_t3 = 210 * 10;
3871         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3872         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3873         spec.t10 = 500 * 10;
3874         /* This one is special and actually in units of 100ms, but zero
3875          * based in the hw (so we need to add 100 ms). But the sw vbt
3876          * table multiplies it with 1000 to make it in units of 100usec,
3877          * too. */
3878         spec.t11_t12 = (510 + 100) * 10;
3879
3880         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3881                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3882
3883         /* Use the max of the register settings and vbt. If both are
3884          * unset, fall back to the spec limits. */
3885 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
3886                                        spec.field : \
3887                                        max(cur.field, vbt.field))
3888         assign_final(t1_t3);
3889         assign_final(t8);
3890         assign_final(t9);
3891         assign_final(t10);
3892         assign_final(t11_t12);
3893 #undef assign_final
3894
3895 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
3896         intel_dp->panel_power_up_delay = get_delay(t1_t3);
3897         intel_dp->backlight_on_delay = get_delay(t8);
3898         intel_dp->backlight_off_delay = get_delay(t9);
3899         intel_dp->panel_power_down_delay = get_delay(t10);
3900         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3901 #undef get_delay
3902
3903         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3904                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3905                       intel_dp->panel_power_cycle_delay);
3906
3907         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3908                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3909
3910         if (out)
3911                 *out = final;
3912 }
3913
3914 static void
3915 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3916                                               struct intel_dp *intel_dp,
3917                                               struct edp_power_seq *seq)
3918 {
3919         struct drm_i915_private *dev_priv = dev->dev_private;
3920         u32 pp_on, pp_off, pp_div, port_sel = 0;
3921         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3922         int pp_on_reg, pp_off_reg, pp_div_reg;
3923
3924         if (HAS_PCH_SPLIT(dev)) {
3925                 pp_on_reg = PCH_PP_ON_DELAYS;
3926                 pp_off_reg = PCH_PP_OFF_DELAYS;
3927                 pp_div_reg = PCH_PP_DIVISOR;
3928         } else {
3929                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3930
3931                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3932                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3933                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3934         }
3935
3936         /*
3937          * And finally store the new values in the power sequencer. The
3938          * backlight delays are set to 1 because we do manual waits on them. For
3939          * T8, even BSpec recommends doing it. For T9, if we don't do this,
3940          * we'll end up waiting for the backlight off delay twice: once when we
3941          * do the manual sleep, and once when we disable the panel and wait for
3942          * the PP_STATUS bit to become zero.
3943          */
3944         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3945                 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
3946         pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3947                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3948         /* Compute the divisor for the pp clock, simply match the Bspec
3949          * formula. */
3950         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3951         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3952                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
3953
3954         /* Haswell doesn't have any port selection bits for the panel
3955          * power sequencer any more. */
3956         if (IS_VALLEYVIEW(dev)) {
3957                 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3958                         port_sel = PANEL_PORT_SELECT_DPB_VLV;
3959                 else
3960                         port_sel = PANEL_PORT_SELECT_DPC_VLV;
3961         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3962                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3963                         port_sel = PANEL_PORT_SELECT_DPA;
3964                 else
3965                         port_sel = PANEL_PORT_SELECT_DPD;
3966         }
3967
3968         pp_on |= port_sel;
3969
3970         I915_WRITE(pp_on_reg, pp_on);
3971         I915_WRITE(pp_off_reg, pp_off);
3972         I915_WRITE(pp_div_reg, pp_div);
3973
3974         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3975                       I915_READ(pp_on_reg),
3976                       I915_READ(pp_off_reg),
3977                       I915_READ(pp_div_reg));
3978 }
3979
3980 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
3981 {
3982         struct drm_i915_private *dev_priv = dev->dev_private;
3983         struct intel_encoder *encoder;
3984         struct intel_dp *intel_dp = NULL;
3985         struct intel_crtc_config *config = NULL;
3986         struct intel_crtc *intel_crtc = NULL;
3987         struct intel_connector *intel_connector = dev_priv->drrs.connector;
3988         u32 reg, val;
3989         enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
3990
3991         if (refresh_rate <= 0) {
3992                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
3993                 return;
3994         }
3995
3996         if (intel_connector == NULL) {
3997                 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
3998                 return;
3999         }
4000
4001         if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4002                 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4003                 return;
4004         }
4005
4006         encoder = intel_attached_encoder(&intel_connector->base);
4007         intel_dp = enc_to_intel_dp(&encoder->base);
4008         intel_crtc = encoder->new_crtc;
4009
4010         if (!intel_crtc) {
4011                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4012                 return;
4013         }
4014
4015         config = &intel_crtc->config;
4016
4017         if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4018                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4019                 return;
4020         }
4021
4022         if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4023                 index = DRRS_LOW_RR;
4024
4025         if (index == intel_dp->drrs_state.refresh_rate_type) {
4026                 DRM_DEBUG_KMS(
4027                         "DRRS requested for previously set RR...ignoring\n");
4028                 return;
4029         }
4030
4031         if (!intel_crtc->active) {
4032                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4033                 return;
4034         }
4035
4036         if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4037                 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4038                 val = I915_READ(reg);
4039                 if (index > DRRS_HIGH_RR) {
4040                         val |= PIPECONF_EDP_RR_MODE_SWITCH;
4041                         intel_dp_set_m2_n2(intel_crtc, &config->dp_m2_n2);
4042                 } else {
4043                         val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4044                 }
4045                 I915_WRITE(reg, val);
4046         }
4047
4048         /*
4049          * mutex taken to ensure that there is no race between differnt
4050          * drrs calls trying to update refresh rate. This scenario may occur
4051          * in future when idleness detection based DRRS in kernel and
4052          * possible calls from user space to set differnt RR are made.
4053          */
4054
4055         mutex_lock(&intel_dp->drrs_state.mutex);
4056
4057         intel_dp->drrs_state.refresh_rate_type = index;
4058
4059         mutex_unlock(&intel_dp->drrs_state.mutex);
4060
4061         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4062 }
4063
4064 static struct drm_display_mode *
4065 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4066                         struct intel_connector *intel_connector,
4067                         struct drm_display_mode *fixed_mode)
4068 {
4069         struct drm_connector *connector = &intel_connector->base;
4070         struct intel_dp *intel_dp = &intel_dig_port->dp;
4071         struct drm_device *dev = intel_dig_port->base.base.dev;
4072         struct drm_i915_private *dev_priv = dev->dev_private;
4073         struct drm_display_mode *downclock_mode = NULL;
4074
4075         if (INTEL_INFO(dev)->gen <= 6) {
4076                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4077                 return NULL;
4078         }
4079
4080         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4081                 DRM_INFO("VBT doesn't support DRRS\n");
4082                 return NULL;
4083         }
4084
4085         downclock_mode = intel_find_panel_downclock
4086                                         (dev, fixed_mode, connector);
4087
4088         if (!downclock_mode) {
4089                 DRM_INFO("DRRS not supported\n");
4090                 return NULL;
4091         }
4092
4093         dev_priv->drrs.connector = intel_connector;
4094
4095         mutex_init(&intel_dp->drrs_state.mutex);
4096
4097         intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4098
4099         intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4100         DRM_INFO("seamless DRRS supported for eDP panel.\n");
4101         return downclock_mode;
4102 }
4103
4104 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4105                                      struct intel_connector *intel_connector,
4106                                      struct edp_power_seq *power_seq)
4107 {
4108         struct drm_connector *connector = &intel_connector->base;
4109         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4110         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4111         struct drm_device *dev = intel_encoder->base.dev;
4112         struct drm_i915_private *dev_priv = dev->dev_private;
4113         struct drm_display_mode *fixed_mode = NULL;
4114         struct drm_display_mode *downclock_mode = NULL;
4115         bool has_dpcd;
4116         struct drm_display_mode *scan;
4117         struct edid *edid;
4118
4119         intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4120
4121         if (!is_edp(intel_dp))
4122                 return true;
4123
4124         /* The VDD bit needs a power domain reference, so if the bit is already
4125          * enabled when we boot, grab this reference. */
4126         if (edp_have_panel_vdd(intel_dp)) {
4127                 enum intel_display_power_domain power_domain;
4128                 power_domain = intel_display_port_power_domain(intel_encoder);
4129                 intel_display_power_get(dev_priv, power_domain);
4130         }
4131
4132         /* Cache DPCD and EDID for edp. */
4133         intel_edp_panel_vdd_on(intel_dp);
4134         has_dpcd = intel_dp_get_dpcd(intel_dp);
4135         edp_panel_vdd_off(intel_dp, false);
4136
4137         if (has_dpcd) {
4138                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4139                         dev_priv->no_aux_handshake =
4140                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4141                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4142         } else {
4143                 /* if this fails, presume the device is a ghost */
4144                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
4145                 return false;
4146         }
4147
4148         /* We now know it's not a ghost, init power sequence regs. */
4149         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4150
4151         mutex_lock(&dev->mode_config.mutex);
4152         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4153         if (edid) {
4154                 if (drm_add_edid_modes(connector, edid)) {
4155                         drm_mode_connector_update_edid_property(connector,
4156                                                                 edid);
4157                         drm_edid_to_eld(connector, edid);
4158                 } else {
4159                         kfree(edid);
4160                         edid = ERR_PTR(-EINVAL);
4161                 }
4162         } else {
4163                 edid = ERR_PTR(-ENOENT);
4164         }
4165         intel_connector->edid = edid;
4166
4167         /* prefer fixed mode from EDID if available */
4168         list_for_each_entry(scan, &connector->probed_modes, head) {
4169                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4170                         fixed_mode = drm_mode_duplicate(dev, scan);
4171                         downclock_mode = intel_dp_drrs_init(
4172                                                 intel_dig_port,
4173                                                 intel_connector, fixed_mode);
4174                         break;
4175                 }
4176         }
4177
4178         /* fallback to VBT if available for eDP */
4179         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4180                 fixed_mode = drm_mode_duplicate(dev,
4181                                         dev_priv->vbt.lfp_lvds_vbt_mode);
4182                 if (fixed_mode)
4183                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4184         }
4185         mutex_unlock(&dev->mode_config.mutex);
4186
4187         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4188         intel_panel_setup_backlight(connector);
4189
4190         return true;
4191 }
4192
4193 bool
4194 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4195                         struct intel_connector *intel_connector)
4196 {
4197         struct drm_connector *connector = &intel_connector->base;
4198         struct intel_dp *intel_dp = &intel_dig_port->dp;
4199         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4200         struct drm_device *dev = intel_encoder->base.dev;
4201         struct drm_i915_private *dev_priv = dev->dev_private;
4202         enum port port = intel_dig_port->port;
4203         struct edp_power_seq power_seq = { 0 };
4204         int type;
4205
4206         /* intel_dp vfuncs */
4207         if (IS_VALLEYVIEW(dev))
4208                 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4209         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4210                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4211         else if (HAS_PCH_SPLIT(dev))
4212                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4213         else
4214                 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4215
4216         intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4217
4218         /* Preserve the current hw state. */
4219         intel_dp->DP = I915_READ(intel_dp->output_reg);
4220         intel_dp->attached_connector = intel_connector;
4221
4222         if (intel_dp_is_edp(dev, port))
4223                 type = DRM_MODE_CONNECTOR_eDP;
4224         else
4225                 type = DRM_MODE_CONNECTOR_DisplayPort;
4226
4227         /*
4228          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4229          * for DP the encoder type can be set by the caller to
4230          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4231          */
4232         if (type == DRM_MODE_CONNECTOR_eDP)
4233                 intel_encoder->type = INTEL_OUTPUT_EDP;
4234
4235         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4236                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4237                         port_name(port));
4238
4239         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4240         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4241
4242         connector->interlace_allowed = true;
4243         connector->doublescan_allowed = 0;
4244
4245         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4246                           edp_panel_vdd_work);
4247
4248         intel_connector_attach_encoder(intel_connector, intel_encoder);
4249         drm_sysfs_connector_add(connector);
4250
4251         if (HAS_DDI(dev))
4252                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4253         else
4254                 intel_connector->get_hw_state = intel_connector_get_hw_state;
4255         intel_connector->unregister = intel_dp_connector_unregister;
4256
4257         /* Set up the hotplug pin. */
4258         switch (port) {
4259         case PORT_A:
4260                 intel_encoder->hpd_pin = HPD_PORT_A;
4261                 break;
4262         case PORT_B:
4263                 intel_encoder->hpd_pin = HPD_PORT_B;
4264                 break;
4265         case PORT_C:
4266                 intel_encoder->hpd_pin = HPD_PORT_C;
4267                 break;
4268         case PORT_D:
4269                 intel_encoder->hpd_pin = HPD_PORT_D;
4270                 break;
4271         default:
4272                 BUG();
4273         }
4274
4275         if (is_edp(intel_dp)) {
4276                 intel_dp_init_panel_power_timestamps(intel_dp);
4277                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4278         }
4279
4280         intel_dp_aux_init(intel_dp, intel_connector);
4281
4282         intel_dp->psr_setup_done = false;
4283
4284         if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4285                 drm_dp_aux_unregister(&intel_dp->aux);
4286                 if (is_edp(intel_dp)) {
4287                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4288                         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4289                         edp_panel_vdd_off_sync(intel_dp);
4290                         drm_modeset_unlock(&dev->mode_config.connection_mutex);
4291                 }
4292                 drm_sysfs_connector_remove(connector);
4293                 drm_connector_cleanup(connector);
4294                 return false;
4295         }
4296
4297         intel_dp_add_properties(intel_dp, connector);
4298
4299         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4300          * 0xd.  Failure to do so will result in spurious interrupts being
4301          * generated on the port when a cable is not attached.
4302          */
4303         if (IS_G4X(dev) && !IS_GM45(dev)) {
4304                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4305                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4306         }
4307
4308         return true;
4309 }
4310
4311 void
4312 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4313 {
4314         struct intel_digital_port *intel_dig_port;
4315         struct intel_encoder *intel_encoder;
4316         struct drm_encoder *encoder;
4317         struct intel_connector *intel_connector;
4318
4319         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4320         if (!intel_dig_port)
4321                 return;
4322
4323         intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4324         if (!intel_connector) {
4325                 kfree(intel_dig_port);
4326                 return;
4327         }
4328
4329         intel_encoder = &intel_dig_port->base;
4330         encoder = &intel_encoder->base;
4331
4332         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4333                          DRM_MODE_ENCODER_TMDS);
4334
4335         intel_encoder->compute_config = intel_dp_compute_config;
4336         intel_encoder->disable = intel_disable_dp;
4337         intel_encoder->get_hw_state = intel_dp_get_hw_state;
4338         intel_encoder->get_config = intel_dp_get_config;
4339         if (IS_CHERRYVIEW(dev)) {
4340                 intel_encoder->pre_enable = chv_pre_enable_dp;
4341                 intel_encoder->enable = vlv_enable_dp;
4342                 intel_encoder->post_disable = chv_post_disable_dp;
4343         } else if (IS_VALLEYVIEW(dev)) {
4344                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4345                 intel_encoder->pre_enable = vlv_pre_enable_dp;
4346                 intel_encoder->enable = vlv_enable_dp;
4347                 intel_encoder->post_disable = vlv_post_disable_dp;
4348         } else {
4349                 intel_encoder->pre_enable = g4x_pre_enable_dp;
4350                 intel_encoder->enable = g4x_enable_dp;
4351                 intel_encoder->post_disable = g4x_post_disable_dp;
4352         }
4353
4354         intel_dig_port->port = port;
4355         intel_dig_port->dp.output_reg = output_reg;
4356
4357         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4358         if (IS_CHERRYVIEW(dev)) {
4359                 if (port == PORT_D)
4360                         intel_encoder->crtc_mask = 1 << 2;
4361                 else
4362                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4363         } else {
4364                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4365         }
4366         intel_encoder->cloneable = 0;
4367         intel_encoder->hot_plug = intel_dp_hot_plug;
4368
4369         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4370                 drm_encoder_cleanup(encoder);
4371                 kfree(intel_dig_port);
4372                 kfree(intel_connector);
4373         }
4374 }