a1db6a02cf23592d72d085109c42585f362fbd45
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define CTX_LRI_HEADER_0                0x01
160 #define CTX_CONTEXT_CONTROL             0x02
161 #define CTX_RING_HEAD                   0x04
162 #define CTX_RING_TAIL                   0x06
163 #define CTX_RING_BUFFER_START           0x08
164 #define CTX_RING_BUFFER_CONTROL         0x0a
165 #define CTX_BB_HEAD_U                   0x0c
166 #define CTX_BB_HEAD_L                   0x0e
167 #define CTX_BB_STATE                    0x10
168 #define CTX_SECOND_BB_HEAD_U            0x12
169 #define CTX_SECOND_BB_HEAD_L            0x14
170 #define CTX_SECOND_BB_STATE             0x16
171 #define CTX_BB_PER_CTX_PTR              0x18
172 #define CTX_RCS_INDIRECT_CTX            0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
174 #define CTX_LRI_HEADER_1                0x21
175 #define CTX_CTX_TIMESTAMP               0x22
176 #define CTX_PDP3_UDW                    0x24
177 #define CTX_PDP3_LDW                    0x26
178 #define CTX_PDP2_UDW                    0x28
179 #define CTX_PDP2_LDW                    0x2a
180 #define CTX_PDP1_UDW                    0x2c
181 #define CTX_PDP1_LDW                    0x2e
182 #define CTX_PDP0_UDW                    0x30
183 #define CTX_PDP0_LDW                    0x32
184 #define CTX_LRI_HEADER_2                0x41
185 #define CTX_R_PWR_CLK_STATE             0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196         (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
200         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211         ADVANCED_CONTEXT = 0,
212         LEGACY_32B_CONTEXT,
213         ADVANCED_AD_CONTEXT,
214         LEGACY_64B_CONTEXT
215 };
216 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
218                 LEGACY_64B_CONTEXT :\
219                 LEGACY_32B_CONTEXT)
220 enum {
221         FAULT_AND_HANG = 0,
222         FAULT_AND_HALT, /* Debug only */
223         FAULT_AND_STREAM,
224         FAULT_AND_CONTINUE /* Unsupported */
225 };
226 #define GEN8_CTX_ID_SHIFT 32
227 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
228 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
229
230 static int intel_lr_context_pin(struct intel_context *ctx,
231                                 struct intel_engine_cs *engine);
232 static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
233                                            struct drm_i915_gem_object *default_ctx_obj);
234
235
236 /**
237  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
238  * @dev: DRM device.
239  * @enable_execlists: value of i915.enable_execlists module parameter.
240  *
241  * Only certain platforms support Execlists (the prerequisites being
242  * support for Logical Ring Contexts and Aliasing PPGTT or better).
243  *
244  * Return: 1 if Execlists is supported and has to be enabled.
245  */
246 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
247 {
248         WARN_ON(i915.enable_ppgtt == -1);
249
250         /* On platforms with execlist available, vGPU will only
251          * support execlist mode, no ring buffer mode.
252          */
253         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
254                 return 1;
255
256         if (INTEL_INFO(dev)->gen >= 9)
257                 return 1;
258
259         if (enable_execlists == 0)
260                 return 0;
261
262         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
263             i915.use_mmio_flip >= 0)
264                 return 1;
265
266         return 0;
267 }
268
269 static void
270 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
271 {
272         struct drm_device *dev = engine->dev;
273
274         if (IS_GEN8(dev) || IS_GEN9(dev))
275                 engine->idle_lite_restore_wa = ~0;
276
277         engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
278                                         IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
279                                         (engine->id == VCS || engine->id == VCS2);
280
281         engine->ctx_desc_template = GEN8_CTX_VALID;
282         engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
283                                    GEN8_CTX_ADDRESSING_MODE_SHIFT;
284         if (IS_GEN8(dev))
285                 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
286         engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
287
288         /* TODO: WaDisableLiteRestore when we start using semaphore
289          * signalling between Command Streamers */
290         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
291
292         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
293         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
294         if (engine->disable_lite_restore_wa)
295                 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
296 }
297
298 /**
299  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
300  *                                        descriptor for a pinned context
301  *
302  * @ctx: Context to work on
303  * @ring: Engine the descriptor will be used with
304  *
305  * The context descriptor encodes various attributes of a context,
306  * including its GTT address and some flags. Because it's fairly
307  * expensive to calculate, we'll just do it once and cache the result,
308  * which remains valid until the context is unpinned.
309  *
310  * This is what a descriptor looks like, from LSB to MSB:
311  *    bits 0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
312  *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
313  *    bits 32-51:    ctx ID, a globally unique tag (the LRCA again!)
314  *    bits 52-63:    reserved, may encode the engine ID (for GuC)
315  */
316 static void
317 intel_lr_context_descriptor_update(struct intel_context *ctx,
318                                    struct intel_engine_cs *engine)
319 {
320         uint64_t lrca, desc;
321
322         lrca = ctx->engine[engine->id].lrc_vma->node.start +
323                LRC_PPHWSP_PN * PAGE_SIZE;
324
325         desc = engine->ctx_desc_template;                          /* bits  0-11 */
326         desc |= lrca;                                      /* bits 12-31 */
327         desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
328
329         ctx->engine[engine->id].lrc_desc = desc;
330 }
331
332 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
333                                      struct intel_engine_cs *engine)
334 {
335         return ctx->engine[engine->id].lrc_desc;
336 }
337
338 /**
339  * intel_execlists_ctx_id() - get the Execlists Context ID
340  * @ctx: Context to get the ID for
341  * @ring: Engine to get the ID for
342  *
343  * Do not confuse with ctx->id! Unfortunately we have a name overload
344  * here: the old context ID we pass to userspace as a handler so that
345  * they can refer to a context, and the new context ID we pass to the
346  * ELSP so that the GPU can inform us of the context status via
347  * interrupts.
348  *
349  * The context ID is a portion of the context descriptor, so we can
350  * just extract the required part from the cached descriptor.
351  *
352  * Return: 20-bits globally unique context ID.
353  */
354 u32 intel_execlists_ctx_id(struct intel_context *ctx,
355                            struct intel_engine_cs *engine)
356 {
357         return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
358 }
359
360 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
361                                  struct drm_i915_gem_request *rq1)
362 {
363
364         struct intel_engine_cs *engine = rq0->engine;
365         struct drm_device *dev = engine->dev;
366         struct drm_i915_private *dev_priv = dev->dev_private;
367         uint64_t desc[2];
368
369         if (rq1) {
370                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
371                 rq1->elsp_submitted++;
372         } else {
373                 desc[1] = 0;
374         }
375
376         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
377         rq0->elsp_submitted++;
378
379         /* You must always write both descriptors in the order below. */
380         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
381         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
382
383         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
384         /* The context is automatically loaded after the following */
385         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
386
387         /* ELSP is a wo register, use another nearby reg for posting */
388         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
389 }
390
391 static void
392 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
393 {
394         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
395         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
396         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
397         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
398 }
399
400 static void execlists_update_context(struct drm_i915_gem_request *rq)
401 {
402         struct intel_engine_cs *engine = rq->engine;
403         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
404         uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
405
406         reg_state[CTX_RING_TAIL+1] = rq->tail;
407
408         /* True 32b PPGTT with dynamic page allocation: update PDP
409          * registers and point the unallocated PDPs to scratch page.
410          * PML4 is allocated during ppgtt init, so this is not needed
411          * in 48-bit mode.
412          */
413         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
414                 execlists_update_context_pdps(ppgtt, reg_state);
415 }
416
417 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
418                                       struct drm_i915_gem_request *rq1)
419 {
420         struct drm_i915_private *dev_priv = rq0->i915;
421
422         execlists_update_context(rq0);
423
424         if (rq1)
425                 execlists_update_context(rq1);
426
427         spin_lock_irq(&dev_priv->uncore.lock);
428         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
429
430         execlists_elsp_write(rq0, rq1);
431
432         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
433         spin_unlock_irq(&dev_priv->uncore.lock);
434 }
435
436 static void execlists_context_unqueue(struct intel_engine_cs *engine)
437 {
438         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
439         struct drm_i915_gem_request *cursor, *tmp;
440
441         assert_spin_locked(&engine->execlist_lock);
442
443         /*
444          * If irqs are not active generate a warning as batches that finish
445          * without the irqs may get lost and a GPU Hang may occur.
446          */
447         WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
448
449         /* Try to read in pairs */
450         list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
451                                  execlist_link) {
452                 if (!req0) {
453                         req0 = cursor;
454                 } else if (req0->ctx == cursor->ctx) {
455                         /* Same ctx: ignore first request, as second request
456                          * will update tail past first request's workload */
457                         cursor->elsp_submitted = req0->elsp_submitted;
458                         list_move_tail(&req0->execlist_link,
459                                        &engine->execlist_retired_req_list);
460                         req0 = cursor;
461                 } else {
462                         req1 = cursor;
463                         WARN_ON(req1->elsp_submitted);
464                         break;
465                 }
466         }
467
468         if (unlikely(!req0))
469                 return;
470
471         if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
472                 /*
473                  * WaIdleLiteRestore: make sure we never cause a lite restore
474                  * with HEAD==TAIL.
475                  *
476                  * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
477                  * resubmit the request. See gen8_emit_request() for where we
478                  * prepare the padding after the end of the request.
479                  */
480                 struct intel_ringbuffer *ringbuf;
481
482                 ringbuf = req0->ctx->engine[engine->id].ringbuf;
483                 req0->tail += 8;
484                 req0->tail &= ringbuf->size - 1;
485         }
486
487         execlists_submit_requests(req0, req1);
488 }
489
490 static unsigned int
491 execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
492 {
493         struct drm_i915_gem_request *head_req;
494
495         assert_spin_locked(&engine->execlist_lock);
496
497         head_req = list_first_entry_or_null(&engine->execlist_queue,
498                                             struct drm_i915_gem_request,
499                                             execlist_link);
500
501         if (!head_req)
502                 return 0;
503
504         if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
505                 return 0;
506
507         WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
508
509         if (--head_req->elsp_submitted > 0)
510                 return 0;
511
512         list_move_tail(&head_req->execlist_link,
513                        &engine->execlist_retired_req_list);
514
515         return 1;
516 }
517
518 static u32
519 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
520                    u32 *context_id)
521 {
522         struct drm_i915_private *dev_priv = engine->dev->dev_private;
523         u32 status;
524
525         read_pointer %= GEN8_CSB_ENTRIES;
526
527         status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
528
529         if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
530                 return 0;
531
532         *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
533                                                               read_pointer));
534
535         return status;
536 }
537
538 /**
539  * intel_lrc_irq_handler() - handle Context Switch interrupts
540  * @engine: Engine Command Streamer to handle.
541  *
542  * Check the unread Context Status Buffers and manage the submission of new
543  * contexts to the ELSP accordingly.
544  */
545 static void intel_lrc_irq_handler(unsigned long data)
546 {
547         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
548         struct drm_i915_private *dev_priv = engine->dev->dev_private;
549         u32 status_pointer;
550         unsigned int read_pointer, write_pointer;
551         u32 csb[GEN8_CSB_ENTRIES][2];
552         unsigned int csb_read = 0, i;
553         unsigned int submit_contexts = 0;
554
555         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
556
557         status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
558
559         read_pointer = engine->next_context_status_buffer;
560         write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
561         if (read_pointer > write_pointer)
562                 write_pointer += GEN8_CSB_ENTRIES;
563
564         while (read_pointer < write_pointer) {
565                 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
566                         break;
567                 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
568                                                       &csb[csb_read][1]);
569                 csb_read++;
570         }
571
572         engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
573
574         /* Update the read pointer to the old write pointer. Manual ringbuffer
575          * management ftw </sarcasm> */
576         I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
577                       _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
578                                     engine->next_context_status_buffer << 8));
579
580         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
581
582         spin_lock(&engine->execlist_lock);
583
584         for (i = 0; i < csb_read; i++) {
585                 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
586                         if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
587                                 if (execlists_check_remove_request(engine, csb[i][1]))
588                                         WARN(1, "Lite Restored request removed from queue\n");
589                         } else
590                                 WARN(1, "Preemption without Lite Restore\n");
591                 }
592
593                 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
594                     GEN8_CTX_STATUS_ELEMENT_SWITCH))
595                         submit_contexts +=
596                                 execlists_check_remove_request(engine, csb[i][1]);
597         }
598
599         if (submit_contexts) {
600                 if (!engine->disable_lite_restore_wa ||
601                     (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
602                         execlists_context_unqueue(engine);
603         }
604
605         spin_unlock(&engine->execlist_lock);
606
607         if (unlikely(submit_contexts > 2))
608                 DRM_ERROR("More than two context complete events?\n");
609 }
610
611 static void execlists_context_queue(struct drm_i915_gem_request *request)
612 {
613         struct intel_engine_cs *engine = request->engine;
614         struct drm_i915_gem_request *cursor;
615         int num_elements = 0;
616
617         if (request->ctx != request->i915->kernel_context)
618                 intel_lr_context_pin(request->ctx, engine);
619
620         i915_gem_request_reference(request);
621
622         spin_lock_bh(&engine->execlist_lock);
623
624         list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
625                 if (++num_elements > 2)
626                         break;
627
628         if (num_elements > 2) {
629                 struct drm_i915_gem_request *tail_req;
630
631                 tail_req = list_last_entry(&engine->execlist_queue,
632                                            struct drm_i915_gem_request,
633                                            execlist_link);
634
635                 if (request->ctx == tail_req->ctx) {
636                         WARN(tail_req->elsp_submitted != 0,
637                                 "More than 2 already-submitted reqs queued\n");
638                         list_move_tail(&tail_req->execlist_link,
639                                        &engine->execlist_retired_req_list);
640                 }
641         }
642
643         list_add_tail(&request->execlist_link, &engine->execlist_queue);
644         if (num_elements == 0)
645                 execlists_context_unqueue(engine);
646
647         spin_unlock_bh(&engine->execlist_lock);
648 }
649
650 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
651 {
652         struct intel_engine_cs *engine = req->engine;
653         uint32_t flush_domains;
654         int ret;
655
656         flush_domains = 0;
657         if (engine->gpu_caches_dirty)
658                 flush_domains = I915_GEM_GPU_DOMAINS;
659
660         ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
661         if (ret)
662                 return ret;
663
664         engine->gpu_caches_dirty = false;
665         return 0;
666 }
667
668 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
669                                  struct list_head *vmas)
670 {
671         const unsigned other_rings = ~intel_engine_flag(req->engine);
672         struct i915_vma *vma;
673         uint32_t flush_domains = 0;
674         bool flush_chipset = false;
675         int ret;
676
677         list_for_each_entry(vma, vmas, exec_list) {
678                 struct drm_i915_gem_object *obj = vma->obj;
679
680                 if (obj->active & other_rings) {
681                         ret = i915_gem_object_sync(obj, req->engine, &req);
682                         if (ret)
683                                 return ret;
684                 }
685
686                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
687                         flush_chipset |= i915_gem_clflush_object(obj, false);
688
689                 flush_domains |= obj->base.write_domain;
690         }
691
692         if (flush_domains & I915_GEM_DOMAIN_GTT)
693                 wmb();
694
695         /* Unconditionally invalidate gpu caches and ensure that we do flush
696          * any residual writes from the previous batch.
697          */
698         return logical_ring_invalidate_all_caches(req);
699 }
700
701 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
702 {
703         int ret = 0;
704
705         request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
706
707         if (i915.enable_guc_submission) {
708                 /*
709                  * Check that the GuC has space for the request before
710                  * going any further, as the i915_add_request() call
711                  * later on mustn't fail ...
712                  */
713                 struct intel_guc *guc = &request->i915->guc;
714
715                 ret = i915_guc_wq_check_space(guc->execbuf_client);
716                 if (ret)
717                         return ret;
718         }
719
720         if (request->ctx != request->i915->kernel_context)
721                 ret = intel_lr_context_pin(request->ctx, request->engine);
722
723         return ret;
724 }
725
726 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
727                                        int bytes)
728 {
729         struct intel_ringbuffer *ringbuf = req->ringbuf;
730         struct intel_engine_cs *engine = req->engine;
731         struct drm_i915_gem_request *target;
732         unsigned space;
733         int ret;
734
735         if (intel_ring_space(ringbuf) >= bytes)
736                 return 0;
737
738         /* The whole point of reserving space is to not wait! */
739         WARN_ON(ringbuf->reserved_in_use);
740
741         list_for_each_entry(target, &engine->request_list, list) {
742                 /*
743                  * The request queue is per-engine, so can contain requests
744                  * from multiple ringbuffers. Here, we must ignore any that
745                  * aren't from the ringbuffer we're considering.
746                  */
747                 if (target->ringbuf != ringbuf)
748                         continue;
749
750                 /* Would completion of this request free enough space? */
751                 space = __intel_ring_space(target->postfix, ringbuf->tail,
752                                            ringbuf->size);
753                 if (space >= bytes)
754                         break;
755         }
756
757         if (WARN_ON(&target->list == &engine->request_list))
758                 return -ENOSPC;
759
760         ret = i915_wait_request(target);
761         if (ret)
762                 return ret;
763
764         ringbuf->space = space;
765         return 0;
766 }
767
768 /*
769  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
770  * @request: Request to advance the logical ringbuffer of.
771  *
772  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
773  * really happens during submission is that the context and current tail will be placed
774  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
775  * point, the tail *inside* the context is updated and the ELSP written to.
776  */
777 static int
778 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
779 {
780         struct intel_ringbuffer *ringbuf = request->ringbuf;
781         struct drm_i915_private *dev_priv = request->i915;
782         struct intel_engine_cs *engine = request->engine;
783
784         intel_logical_ring_advance(ringbuf);
785         request->tail = ringbuf->tail;
786
787         /*
788          * Here we add two extra NOOPs as padding to avoid
789          * lite restore of a context with HEAD==TAIL.
790          *
791          * Caller must reserve WA_TAIL_DWORDS for us!
792          */
793         intel_logical_ring_emit(ringbuf, MI_NOOP);
794         intel_logical_ring_emit(ringbuf, MI_NOOP);
795         intel_logical_ring_advance(ringbuf);
796
797         if (intel_engine_stopped(engine))
798                 return 0;
799
800         if (engine->last_context != request->ctx) {
801                 if (engine->last_context)
802                         intel_lr_context_unpin(engine->last_context, engine);
803                 if (request->ctx != request->i915->kernel_context) {
804                         intel_lr_context_pin(request->ctx, engine);
805                         engine->last_context = request->ctx;
806                 } else {
807                         engine->last_context = NULL;
808                 }
809         }
810
811         if (dev_priv->guc.execbuf_client)
812                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
813         else
814                 execlists_context_queue(request);
815
816         return 0;
817 }
818
819 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
820 {
821         uint32_t __iomem *virt;
822         int rem = ringbuf->size - ringbuf->tail;
823
824         virt = ringbuf->virtual_start + ringbuf->tail;
825         rem /= 4;
826         while (rem--)
827                 iowrite32(MI_NOOP, virt++);
828
829         ringbuf->tail = 0;
830         intel_ring_update_space(ringbuf);
831 }
832
833 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
834 {
835         struct intel_ringbuffer *ringbuf = req->ringbuf;
836         int remain_usable = ringbuf->effective_size - ringbuf->tail;
837         int remain_actual = ringbuf->size - ringbuf->tail;
838         int ret, total_bytes, wait_bytes = 0;
839         bool need_wrap = false;
840
841         if (ringbuf->reserved_in_use)
842                 total_bytes = bytes;
843         else
844                 total_bytes = bytes + ringbuf->reserved_size;
845
846         if (unlikely(bytes > remain_usable)) {
847                 /*
848                  * Not enough space for the basic request. So need to flush
849                  * out the remainder and then wait for base + reserved.
850                  */
851                 wait_bytes = remain_actual + total_bytes;
852                 need_wrap = true;
853         } else {
854                 if (unlikely(total_bytes > remain_usable)) {
855                         /*
856                          * The base request will fit but the reserved space
857                          * falls off the end. So only need to to wait for the
858                          * reserved size after flushing out the remainder.
859                          */
860                         wait_bytes = remain_actual + ringbuf->reserved_size;
861                         need_wrap = true;
862                 } else if (total_bytes > ringbuf->space) {
863                         /* No wrapping required, just waiting. */
864                         wait_bytes = total_bytes;
865                 }
866         }
867
868         if (wait_bytes) {
869                 ret = logical_ring_wait_for_space(req, wait_bytes);
870                 if (unlikely(ret))
871                         return ret;
872
873                 if (need_wrap)
874                         __wrap_ring_buffer(ringbuf);
875         }
876
877         return 0;
878 }
879
880 /**
881  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
882  *
883  * @req: The request to start some new work for
884  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
885  *
886  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
887  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
888  * and also preallocates a request (every workload submission is still mediated through
889  * requests, same as it did with legacy ringbuffer submission).
890  *
891  * Return: non-zero if the ringbuffer is not ready to be written to.
892  */
893 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
894 {
895         struct drm_i915_private *dev_priv;
896         int ret;
897
898         WARN_ON(req == NULL);
899         dev_priv = req->i915;
900
901         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
902                                    dev_priv->mm.interruptible);
903         if (ret)
904                 return ret;
905
906         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
907         if (ret)
908                 return ret;
909
910         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
911         return 0;
912 }
913
914 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
915 {
916         /*
917          * The first call merely notes the reserve request and is common for
918          * all back ends. The subsequent localised _begin() call actually
919          * ensures that the reservation is available. Without the begin, if
920          * the request creator immediately submitted the request without
921          * adding any commands to it then there might not actually be
922          * sufficient room for the submission commands.
923          */
924         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
925
926         return intel_logical_ring_begin(request, 0);
927 }
928
929 /**
930  * execlists_submission() - submit a batchbuffer for execution, Execlists style
931  * @dev: DRM device.
932  * @file: DRM file.
933  * @ring: Engine Command Streamer to submit to.
934  * @ctx: Context to employ for this submission.
935  * @args: execbuffer call arguments.
936  * @vmas: list of vmas.
937  * @batch_obj: the batchbuffer to submit.
938  * @exec_start: batchbuffer start virtual address pointer.
939  * @dispatch_flags: translated execbuffer call flags.
940  *
941  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
942  * away the submission details of the execbuffer ioctl call.
943  *
944  * Return: non-zero if the submission fails.
945  */
946 int intel_execlists_submission(struct i915_execbuffer_params *params,
947                                struct drm_i915_gem_execbuffer2 *args,
948                                struct list_head *vmas)
949 {
950         struct drm_device       *dev = params->dev;
951         struct intel_engine_cs *engine = params->engine;
952         struct drm_i915_private *dev_priv = dev->dev_private;
953         struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
954         u64 exec_start;
955         int instp_mode;
956         u32 instp_mask;
957         int ret;
958
959         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
960         instp_mask = I915_EXEC_CONSTANTS_MASK;
961         switch (instp_mode) {
962         case I915_EXEC_CONSTANTS_REL_GENERAL:
963         case I915_EXEC_CONSTANTS_ABSOLUTE:
964         case I915_EXEC_CONSTANTS_REL_SURFACE:
965                 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
966                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
967                         return -EINVAL;
968                 }
969
970                 if (instp_mode != dev_priv->relative_constants_mode) {
971                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
972                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
973                                 return -EINVAL;
974                         }
975
976                         /* The HW changed the meaning on this bit on gen6 */
977                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
978                 }
979                 break;
980         default:
981                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
982                 return -EINVAL;
983         }
984
985         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
986                 DRM_DEBUG("sol reset is gen7 only\n");
987                 return -EINVAL;
988         }
989
990         ret = execlists_move_to_gpu(params->request, vmas);
991         if (ret)
992                 return ret;
993
994         if (engine == &dev_priv->engine[RCS] &&
995             instp_mode != dev_priv->relative_constants_mode) {
996                 ret = intel_logical_ring_begin(params->request, 4);
997                 if (ret)
998                         return ret;
999
1000                 intel_logical_ring_emit(ringbuf, MI_NOOP);
1001                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
1002                 intel_logical_ring_emit_reg(ringbuf, INSTPM);
1003                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
1004                 intel_logical_ring_advance(ringbuf);
1005
1006                 dev_priv->relative_constants_mode = instp_mode;
1007         }
1008
1009         exec_start = params->batch_obj_vm_offset +
1010                      args->batch_start_offset;
1011
1012         ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
1013         if (ret)
1014                 return ret;
1015
1016         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1017
1018         i915_gem_execbuffer_move_to_active(vmas, params->request);
1019         i915_gem_execbuffer_retire_commands(params);
1020
1021         return 0;
1022 }
1023
1024 void intel_execlists_retire_requests(struct intel_engine_cs *engine)
1025 {
1026         struct drm_i915_gem_request *req, *tmp;
1027         struct list_head retired_list;
1028
1029         WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1030         if (list_empty(&engine->execlist_retired_req_list))
1031                 return;
1032
1033         INIT_LIST_HEAD(&retired_list);
1034         spin_lock_bh(&engine->execlist_lock);
1035         list_replace_init(&engine->execlist_retired_req_list, &retired_list);
1036         spin_unlock_bh(&engine->execlist_lock);
1037
1038         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1039                 struct intel_context *ctx = req->ctx;
1040                 struct drm_i915_gem_object *ctx_obj =
1041                                 ctx->engine[engine->id].state;
1042
1043                 if (ctx_obj && (ctx != req->i915->kernel_context))
1044                         intel_lr_context_unpin(ctx, engine);
1045
1046                 list_del(&req->execlist_link);
1047                 i915_gem_request_unreference(req);
1048         }
1049 }
1050
1051 void intel_logical_ring_stop(struct intel_engine_cs *engine)
1052 {
1053         struct drm_i915_private *dev_priv = engine->dev->dev_private;
1054         int ret;
1055
1056         if (!intel_engine_initialized(engine))
1057                 return;
1058
1059         ret = intel_engine_idle(engine);
1060         if (ret && !i915_reset_in_progress(&to_i915(engine->dev)->gpu_error))
1061                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1062                           engine->name, ret);
1063
1064         /* TODO: Is this correct with Execlists enabled? */
1065         I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
1066         if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
1067                 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
1068                 return;
1069         }
1070         I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
1071 }
1072
1073 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1074 {
1075         struct intel_engine_cs *engine = req->engine;
1076         int ret;
1077
1078         if (!engine->gpu_caches_dirty)
1079                 return 0;
1080
1081         ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1082         if (ret)
1083                 return ret;
1084
1085         engine->gpu_caches_dirty = false;
1086         return 0;
1087 }
1088
1089 static int intel_lr_context_do_pin(struct intel_context *ctx,
1090                                    struct intel_engine_cs *engine)
1091 {
1092         struct drm_device *dev = engine->dev;
1093         struct drm_i915_private *dev_priv = dev->dev_private;
1094         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1095         struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
1096         struct page *lrc_state_page;
1097         uint32_t *lrc_reg_state;
1098         int ret;
1099
1100         WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1101
1102         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1103                         PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1104         if (ret)
1105                 return ret;
1106
1107         lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
1108         if (WARN_ON(!lrc_state_page)) {
1109                 ret = -ENODEV;
1110                 goto unpin_ctx_obj;
1111         }
1112
1113         ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
1114         if (ret)
1115                 goto unpin_ctx_obj;
1116
1117         ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1118         intel_lr_context_descriptor_update(ctx, engine);
1119         lrc_reg_state = kmap(lrc_state_page);
1120         lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
1121         ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
1122         ctx_obj->dirty = true;
1123
1124         /* Invalidate GuC TLB. */
1125         if (i915.enable_guc_submission)
1126                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1127
1128         return ret;
1129
1130 unpin_ctx_obj:
1131         i915_gem_object_ggtt_unpin(ctx_obj);
1132
1133         return ret;
1134 }
1135
1136 static int intel_lr_context_pin(struct intel_context *ctx,
1137                                 struct intel_engine_cs *engine)
1138 {
1139         int ret = 0;
1140
1141         if (ctx->engine[engine->id].pin_count++ == 0) {
1142                 ret = intel_lr_context_do_pin(ctx, engine);
1143                 if (ret)
1144                         goto reset_pin_count;
1145
1146                 i915_gem_context_reference(ctx);
1147         }
1148         return ret;
1149
1150 reset_pin_count:
1151         ctx->engine[engine->id].pin_count = 0;
1152         return ret;
1153 }
1154
1155 void intel_lr_context_unpin(struct intel_context *ctx,
1156                             struct intel_engine_cs *engine)
1157 {
1158         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1159
1160         WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1161         if (--ctx->engine[engine->id].pin_count == 0) {
1162                 kunmap(kmap_to_page(ctx->engine[engine->id].lrc_reg_state));
1163                 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1164                 i915_gem_object_ggtt_unpin(ctx_obj);
1165                 ctx->engine[engine->id].lrc_vma = NULL;
1166                 ctx->engine[engine->id].lrc_desc = 0;
1167                 ctx->engine[engine->id].lrc_reg_state = NULL;
1168
1169                 i915_gem_context_unreference(ctx);
1170         }
1171 }
1172
1173 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1174 {
1175         int ret, i;
1176         struct intel_engine_cs *engine = req->engine;
1177         struct intel_ringbuffer *ringbuf = req->ringbuf;
1178         struct drm_device *dev = engine->dev;
1179         struct drm_i915_private *dev_priv = dev->dev_private;
1180         struct i915_workarounds *w = &dev_priv->workarounds;
1181
1182         if (w->count == 0)
1183                 return 0;
1184
1185         engine->gpu_caches_dirty = true;
1186         ret = logical_ring_flush_all_caches(req);
1187         if (ret)
1188                 return ret;
1189
1190         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1191         if (ret)
1192                 return ret;
1193
1194         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1195         for (i = 0; i < w->count; i++) {
1196                 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1197                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1198         }
1199         intel_logical_ring_emit(ringbuf, MI_NOOP);
1200
1201         intel_logical_ring_advance(ringbuf);
1202
1203         engine->gpu_caches_dirty = true;
1204         ret = logical_ring_flush_all_caches(req);
1205         if (ret)
1206                 return ret;
1207
1208         return 0;
1209 }
1210
1211 #define wa_ctx_emit(batch, index, cmd)                                  \
1212         do {                                                            \
1213                 int __index = (index)++;                                \
1214                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1215                         return -ENOSPC;                                 \
1216                 }                                                       \
1217                 batch[__index] = (cmd);                                 \
1218         } while (0)
1219
1220 #define wa_ctx_emit_reg(batch, index, reg) \
1221         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1222
1223 /*
1224  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1225  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1226  * but there is a slight complication as this is applied in WA batch where the
1227  * values are only initialized once so we cannot take register value at the
1228  * beginning and reuse it further; hence we save its value to memory, upload a
1229  * constant value with bit21 set and then we restore it back with the saved value.
1230  * To simplify the WA, a constant value is formed by using the default value
1231  * of this register. This shouldn't be a problem because we are only modifying
1232  * it for a short period and this batch in non-premptible. We can ofcourse
1233  * use additional instructions that read the actual value of the register
1234  * at that time and set our bit of interest but it makes the WA complicated.
1235  *
1236  * This WA is also required for Gen9 so extracting as a function avoids
1237  * code duplication.
1238  */
1239 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1240                                                 uint32_t *const batch,
1241                                                 uint32_t index)
1242 {
1243         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1244
1245         /*
1246          * WaDisableLSQCROPERFforOCL:skl
1247          * This WA is implemented in skl_init_clock_gating() but since
1248          * this batch updates GEN8_L3SQCREG4 with default value we need to
1249          * set this bit here to retain the WA during flush.
1250          */
1251         if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1252                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1253
1254         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1255                                    MI_SRM_LRM_GLOBAL_GTT));
1256         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1257         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1258         wa_ctx_emit(batch, index, 0);
1259
1260         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1261         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1262         wa_ctx_emit(batch, index, l3sqc4_flush);
1263
1264         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1265         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1266                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1267         wa_ctx_emit(batch, index, 0);
1268         wa_ctx_emit(batch, index, 0);
1269         wa_ctx_emit(batch, index, 0);
1270         wa_ctx_emit(batch, index, 0);
1271
1272         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1273                                    MI_SRM_LRM_GLOBAL_GTT));
1274         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1275         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1276         wa_ctx_emit(batch, index, 0);
1277
1278         return index;
1279 }
1280
1281 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1282                                     uint32_t offset,
1283                                     uint32_t start_alignment)
1284 {
1285         return wa_ctx->offset = ALIGN(offset, start_alignment);
1286 }
1287
1288 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1289                              uint32_t offset,
1290                              uint32_t size_alignment)
1291 {
1292         wa_ctx->size = offset - wa_ctx->offset;
1293
1294         WARN(wa_ctx->size % size_alignment,
1295              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1296              wa_ctx->size, size_alignment);
1297         return 0;
1298 }
1299
1300 /**
1301  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1302  *
1303  * @ring: only applicable for RCS
1304  * @wa_ctx: structure representing wa_ctx
1305  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1306  *    with the offset value received as input.
1307  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1308  * @batch: page in which WA are loaded
1309  * @offset: This field specifies the start of the batch, it should be
1310  *  cache-aligned otherwise it is adjusted accordingly.
1311  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1312  *  initialized at the beginning and shared across all contexts but this field
1313  *  helps us to have multiple batches at different offsets and select them based
1314  *  on a criteria. At the moment this batch always start at the beginning of the page
1315  *  and at this point we don't have multiple wa_ctx batch buffers.
1316  *
1317  *  The number of WA applied are not known at the beginning; we use this field
1318  *  to return the no of DWORDS written.
1319  *
1320  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1321  *  so it adds NOOPs as padding to make it cacheline aligned.
1322  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1323  *  makes a complete batch buffer.
1324  *
1325  * Return: non-zero if we exceed the PAGE_SIZE limit.
1326  */
1327
1328 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1329                                     struct i915_wa_ctx_bb *wa_ctx,
1330                                     uint32_t *const batch,
1331                                     uint32_t *offset)
1332 {
1333         uint32_t scratch_addr;
1334         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1335
1336         /* WaDisableCtxRestoreArbitration:bdw,chv */
1337         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1338
1339         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1340         if (IS_BROADWELL(engine->dev)) {
1341                 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1342                 if (rc < 0)
1343                         return rc;
1344                 index = rc;
1345         }
1346
1347         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1348         /* Actual scratch location is at 128 bytes offset */
1349         scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1350
1351         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1352         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1353                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1354                                    PIPE_CONTROL_CS_STALL |
1355                                    PIPE_CONTROL_QW_WRITE));
1356         wa_ctx_emit(batch, index, scratch_addr);
1357         wa_ctx_emit(batch, index, 0);
1358         wa_ctx_emit(batch, index, 0);
1359         wa_ctx_emit(batch, index, 0);
1360
1361         /* Pad to end of cacheline */
1362         while (index % CACHELINE_DWORDS)
1363                 wa_ctx_emit(batch, index, MI_NOOP);
1364
1365         /*
1366          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1367          * execution depends on the length specified in terms of cache lines
1368          * in the register CTX_RCS_INDIRECT_CTX
1369          */
1370
1371         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1372 }
1373
1374 /**
1375  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1376  *
1377  * @ring: only applicable for RCS
1378  * @wa_ctx: structure representing wa_ctx
1379  *  offset: specifies start of the batch, should be cache-aligned.
1380  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1381  * @batch: page in which WA are loaded
1382  * @offset: This field specifies the start of this batch.
1383  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1384  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1385  *
1386  *   The number of DWORDS written are returned using this field.
1387  *
1388  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1389  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1390  */
1391 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1392                                struct i915_wa_ctx_bb *wa_ctx,
1393                                uint32_t *const batch,
1394                                uint32_t *offset)
1395 {
1396         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1397
1398         /* WaDisableCtxRestoreArbitration:bdw,chv */
1399         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1400
1401         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1402
1403         return wa_ctx_end(wa_ctx, *offset = index, 1);
1404 }
1405
1406 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1407                                     struct i915_wa_ctx_bb *wa_ctx,
1408                                     uint32_t *const batch,
1409                                     uint32_t *offset)
1410 {
1411         int ret;
1412         struct drm_device *dev = engine->dev;
1413         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1414
1415         /* WaDisableCtxRestoreArbitration:skl,bxt */
1416         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1417             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1418                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1419
1420         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1421         ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1422         if (ret < 0)
1423                 return ret;
1424         index = ret;
1425
1426         /* Pad to end of cacheline */
1427         while (index % CACHELINE_DWORDS)
1428                 wa_ctx_emit(batch, index, MI_NOOP);
1429
1430         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1431 }
1432
1433 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1434                                struct i915_wa_ctx_bb *wa_ctx,
1435                                uint32_t *const batch,
1436                                uint32_t *offset)
1437 {
1438         struct drm_device *dev = engine->dev;
1439         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1440
1441         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1442         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1443             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1444                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1445                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1446                 wa_ctx_emit(batch, index,
1447                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1448                 wa_ctx_emit(batch, index, MI_NOOP);
1449         }
1450
1451         /* WaDisableCtxRestoreArbitration:skl,bxt */
1452         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1453             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1454                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1455
1456         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1457
1458         return wa_ctx_end(wa_ctx, *offset = index, 1);
1459 }
1460
1461 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1462 {
1463         int ret;
1464
1465         engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
1466                                                    PAGE_ALIGN(size));
1467         if (!engine->wa_ctx.obj) {
1468                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1469                 return -ENOMEM;
1470         }
1471
1472         ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1473         if (ret) {
1474                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1475                                  ret);
1476                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1477                 return ret;
1478         }
1479
1480         return 0;
1481 }
1482
1483 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1484 {
1485         if (engine->wa_ctx.obj) {
1486                 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1487                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1488                 engine->wa_ctx.obj = NULL;
1489         }
1490 }
1491
1492 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1493 {
1494         int ret;
1495         uint32_t *batch;
1496         uint32_t offset;
1497         struct page *page;
1498         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1499
1500         WARN_ON(engine->id != RCS);
1501
1502         /* update this when WA for higher Gen are added */
1503         if (INTEL_INFO(engine->dev)->gen > 9) {
1504                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1505                           INTEL_INFO(engine->dev)->gen);
1506                 return 0;
1507         }
1508
1509         /* some WA perform writes to scratch page, ensure it is valid */
1510         if (engine->scratch.obj == NULL) {
1511                 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1512                 return -EINVAL;
1513         }
1514
1515         ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1516         if (ret) {
1517                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1518                 return ret;
1519         }
1520
1521         page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1522         batch = kmap_atomic(page);
1523         offset = 0;
1524
1525         if (INTEL_INFO(engine->dev)->gen == 8) {
1526                 ret = gen8_init_indirectctx_bb(engine,
1527                                                &wa_ctx->indirect_ctx,
1528                                                batch,
1529                                                &offset);
1530                 if (ret)
1531                         goto out;
1532
1533                 ret = gen8_init_perctx_bb(engine,
1534                                           &wa_ctx->per_ctx,
1535                                           batch,
1536                                           &offset);
1537                 if (ret)
1538                         goto out;
1539         } else if (INTEL_INFO(engine->dev)->gen == 9) {
1540                 ret = gen9_init_indirectctx_bb(engine,
1541                                                &wa_ctx->indirect_ctx,
1542                                                batch,
1543                                                &offset);
1544                 if (ret)
1545                         goto out;
1546
1547                 ret = gen9_init_perctx_bb(engine,
1548                                           &wa_ctx->per_ctx,
1549                                           batch,
1550                                           &offset);
1551                 if (ret)
1552                         goto out;
1553         }
1554
1555 out:
1556         kunmap_atomic(batch);
1557         if (ret)
1558                 lrc_destroy_wa_ctx_obj(engine);
1559
1560         return ret;
1561 }
1562
1563 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1564 {
1565         struct drm_device *dev = engine->dev;
1566         struct drm_i915_private *dev_priv = dev->dev_private;
1567         unsigned int next_context_status_buffer_hw;
1568
1569         lrc_setup_hardware_status_page(engine,
1570                                        dev_priv->kernel_context->engine[engine->id].state);
1571
1572         I915_WRITE_IMR(engine,
1573                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1574         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1575
1576         I915_WRITE(RING_MODE_GEN7(engine),
1577                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1578                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1579         POSTING_READ(RING_MODE_GEN7(engine));
1580
1581         /*
1582          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1583          * zero, we need to read the write pointer from hardware and use its
1584          * value because "this register is power context save restored".
1585          * Effectively, these states have been observed:
1586          *
1587          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1588          * BDW  | CSB regs not reset       | CSB regs reset       |
1589          * CHT  | CSB regs not reset       | CSB regs not reset   |
1590          * SKL  |         ?                |         ?            |
1591          * BXT  |         ?                |         ?            |
1592          */
1593         next_context_status_buffer_hw =
1594                 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1595
1596         /*
1597          * When the CSB registers are reset (also after power-up / gpu reset),
1598          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1599          * this special case, so the first element read is CSB[0].
1600          */
1601         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1602                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1603
1604         engine->next_context_status_buffer = next_context_status_buffer_hw;
1605         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1606
1607         intel_engine_init_hangcheck(engine);
1608
1609         return 0;
1610 }
1611
1612 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1613 {
1614         struct drm_device *dev = engine->dev;
1615         struct drm_i915_private *dev_priv = dev->dev_private;
1616         int ret;
1617
1618         ret = gen8_init_common_ring(engine);
1619         if (ret)
1620                 return ret;
1621
1622         /* We need to disable the AsyncFlip performance optimisations in order
1623          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1624          * programmed to '1' on all products.
1625          *
1626          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1627          */
1628         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1629
1630         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1631
1632         return init_workarounds_ring(engine);
1633 }
1634
1635 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1636 {
1637         int ret;
1638
1639         ret = gen8_init_common_ring(engine);
1640         if (ret)
1641                 return ret;
1642
1643         return init_workarounds_ring(engine);
1644 }
1645
1646 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1647 {
1648         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1649         struct intel_engine_cs *engine = req->engine;
1650         struct intel_ringbuffer *ringbuf = req->ringbuf;
1651         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1652         int i, ret;
1653
1654         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1655         if (ret)
1656                 return ret;
1657
1658         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1659         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1660                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1661
1662                 intel_logical_ring_emit_reg(ringbuf,
1663                                             GEN8_RING_PDP_UDW(engine, i));
1664                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1665                 intel_logical_ring_emit_reg(ringbuf,
1666                                             GEN8_RING_PDP_LDW(engine, i));
1667                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1668         }
1669
1670         intel_logical_ring_emit(ringbuf, MI_NOOP);
1671         intel_logical_ring_advance(ringbuf);
1672
1673         return 0;
1674 }
1675
1676 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1677                               u64 offset, unsigned dispatch_flags)
1678 {
1679         struct intel_ringbuffer *ringbuf = req->ringbuf;
1680         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1681         int ret;
1682
1683         /* Don't rely in hw updating PDPs, specially in lite-restore.
1684          * Ideally, we should set Force PD Restore in ctx descriptor,
1685          * but we can't. Force Restore would be a second option, but
1686          * it is unsafe in case of lite-restore (because the ctx is
1687          * not idle). PML4 is allocated during ppgtt init so this is
1688          * not needed in 48-bit.*/
1689         if (req->ctx->ppgtt &&
1690             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1691                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1692                     !intel_vgpu_active(req->i915->dev)) {
1693                         ret = intel_logical_ring_emit_pdps(req);
1694                         if (ret)
1695                                 return ret;
1696                 }
1697
1698                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1699         }
1700
1701         ret = intel_logical_ring_begin(req, 4);
1702         if (ret)
1703                 return ret;
1704
1705         /* FIXME(BDW): Address space and security selectors. */
1706         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1707                                 (ppgtt<<8) |
1708                                 (dispatch_flags & I915_DISPATCH_RS ?
1709                                  MI_BATCH_RESOURCE_STREAMER : 0));
1710         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1711         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1712         intel_logical_ring_emit(ringbuf, MI_NOOP);
1713         intel_logical_ring_advance(ringbuf);
1714
1715         return 0;
1716 }
1717
1718 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1719 {
1720         struct drm_device *dev = engine->dev;
1721         struct drm_i915_private *dev_priv = dev->dev_private;
1722         unsigned long flags;
1723
1724         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1725                 return false;
1726
1727         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1728         if (engine->irq_refcount++ == 0) {
1729                 I915_WRITE_IMR(engine,
1730                                ~(engine->irq_enable_mask | engine->irq_keep_mask));
1731                 POSTING_READ(RING_IMR(engine->mmio_base));
1732         }
1733         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1734
1735         return true;
1736 }
1737
1738 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1739 {
1740         struct drm_device *dev = engine->dev;
1741         struct drm_i915_private *dev_priv = dev->dev_private;
1742         unsigned long flags;
1743
1744         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1745         if (--engine->irq_refcount == 0) {
1746                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1747                 POSTING_READ(RING_IMR(engine->mmio_base));
1748         }
1749         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1750 }
1751
1752 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1753                            u32 invalidate_domains,
1754                            u32 unused)
1755 {
1756         struct intel_ringbuffer *ringbuf = request->ringbuf;
1757         struct intel_engine_cs *engine = ringbuf->engine;
1758         struct drm_device *dev = engine->dev;
1759         struct drm_i915_private *dev_priv = dev->dev_private;
1760         uint32_t cmd;
1761         int ret;
1762
1763         ret = intel_logical_ring_begin(request, 4);
1764         if (ret)
1765                 return ret;
1766
1767         cmd = MI_FLUSH_DW + 1;
1768
1769         /* We always require a command barrier so that subsequent
1770          * commands, such as breadcrumb interrupts, are strictly ordered
1771          * wrt the contents of the write cache being flushed to memory
1772          * (and thus being coherent from the CPU).
1773          */
1774         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1775
1776         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1777                 cmd |= MI_INVALIDATE_TLB;
1778                 if (engine == &dev_priv->engine[VCS])
1779                         cmd |= MI_INVALIDATE_BSD;
1780         }
1781
1782         intel_logical_ring_emit(ringbuf, cmd);
1783         intel_logical_ring_emit(ringbuf,
1784                                 I915_GEM_HWS_SCRATCH_ADDR |
1785                                 MI_FLUSH_DW_USE_GTT);
1786         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1787         intel_logical_ring_emit(ringbuf, 0); /* value */
1788         intel_logical_ring_advance(ringbuf);
1789
1790         return 0;
1791 }
1792
1793 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1794                                   u32 invalidate_domains,
1795                                   u32 flush_domains)
1796 {
1797         struct intel_ringbuffer *ringbuf = request->ringbuf;
1798         struct intel_engine_cs *engine = ringbuf->engine;
1799         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1800         bool vf_flush_wa = false;
1801         u32 flags = 0;
1802         int ret;
1803
1804         flags |= PIPE_CONTROL_CS_STALL;
1805
1806         if (flush_domains) {
1807                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1808                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1809                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1810                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1811         }
1812
1813         if (invalidate_domains) {
1814                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1815                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1816                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1817                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1818                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1819                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1820                 flags |= PIPE_CONTROL_QW_WRITE;
1821                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1822
1823                 /*
1824                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1825                  * pipe control.
1826                  */
1827                 if (IS_GEN9(engine->dev))
1828                         vf_flush_wa = true;
1829         }
1830
1831         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1832         if (ret)
1833                 return ret;
1834
1835         if (vf_flush_wa) {
1836                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1837                 intel_logical_ring_emit(ringbuf, 0);
1838                 intel_logical_ring_emit(ringbuf, 0);
1839                 intel_logical_ring_emit(ringbuf, 0);
1840                 intel_logical_ring_emit(ringbuf, 0);
1841                 intel_logical_ring_emit(ringbuf, 0);
1842         }
1843
1844         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1845         intel_logical_ring_emit(ringbuf, flags);
1846         intel_logical_ring_emit(ringbuf, scratch_addr);
1847         intel_logical_ring_emit(ringbuf, 0);
1848         intel_logical_ring_emit(ringbuf, 0);
1849         intel_logical_ring_emit(ringbuf, 0);
1850         intel_logical_ring_advance(ringbuf);
1851
1852         return 0;
1853 }
1854
1855 static u32 gen8_get_seqno(struct intel_engine_cs *engine, bool lazy_coherency)
1856 {
1857         return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1858 }
1859
1860 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1861 {
1862         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1863 }
1864
1865 static u32 bxt_a_get_seqno(struct intel_engine_cs *engine,
1866                            bool lazy_coherency)
1867 {
1868
1869         /*
1870          * On BXT A steppings there is a HW coherency issue whereby the
1871          * MI_STORE_DATA_IMM storing the completed request's seqno
1872          * occasionally doesn't invalidate the CPU cache. Work around this by
1873          * clflushing the corresponding cacheline whenever the caller wants
1874          * the coherency to be guaranteed. Note that this cacheline is known
1875          * to be clean at this point, since we only write it in
1876          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1877          * this clflush in practice becomes an invalidate operation.
1878          */
1879
1880         if (!lazy_coherency)
1881                 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1882
1883         return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1884 }
1885
1886 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1887 {
1888         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1889
1890         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1891         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1892 }
1893
1894 /*
1895  * Reserve space for 2 NOOPs at the end of each request to be
1896  * used as a workaround for not being allowed to do lite
1897  * restore with HEAD==TAIL (WaIdleLiteRestore).
1898  */
1899 #define WA_TAIL_DWORDS 2
1900
1901 static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1902 {
1903         return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1904 }
1905
1906 static int gen8_emit_request(struct drm_i915_gem_request *request)
1907 {
1908         struct intel_ringbuffer *ringbuf = request->ringbuf;
1909         int ret;
1910
1911         ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1912         if (ret)
1913                 return ret;
1914
1915         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1916         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1917
1918         intel_logical_ring_emit(ringbuf,
1919                                 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1920         intel_logical_ring_emit(ringbuf,
1921                                 hws_seqno_address(request->engine) |
1922                                 MI_FLUSH_DW_USE_GTT);
1923         intel_logical_ring_emit(ringbuf, 0);
1924         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1925         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1926         intel_logical_ring_emit(ringbuf, MI_NOOP);
1927         return intel_logical_ring_advance_and_submit(request);
1928 }
1929
1930 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1931 {
1932         struct intel_ringbuffer *ringbuf = request->ringbuf;
1933         int ret;
1934
1935         ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1936         if (ret)
1937                 return ret;
1938
1939         /* w/a for post sync ops following a GPGPU operation we
1940          * need a prior CS_STALL, which is emitted by the flush
1941          * following the batch.
1942          */
1943         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(5));
1944         intel_logical_ring_emit(ringbuf,
1945                                 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1946                                  PIPE_CONTROL_CS_STALL |
1947                                  PIPE_CONTROL_QW_WRITE));
1948         intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1949         intel_logical_ring_emit(ringbuf, 0);
1950         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1951         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1952         return intel_logical_ring_advance_and_submit(request);
1953 }
1954
1955 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1956 {
1957         struct render_state so;
1958         int ret;
1959
1960         ret = i915_gem_render_state_prepare(req->engine, &so);
1961         if (ret)
1962                 return ret;
1963
1964         if (so.rodata == NULL)
1965                 return 0;
1966
1967         ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1968                                        I915_DISPATCH_SECURE);
1969         if (ret)
1970                 goto out;
1971
1972         ret = req->engine->emit_bb_start(req,
1973                                        (so.ggtt_offset + so.aux_batch_offset),
1974                                        I915_DISPATCH_SECURE);
1975         if (ret)
1976                 goto out;
1977
1978         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1979
1980 out:
1981         i915_gem_render_state_fini(&so);
1982         return ret;
1983 }
1984
1985 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1986 {
1987         int ret;
1988
1989         ret = intel_logical_ring_workarounds_emit(req);
1990         if (ret)
1991                 return ret;
1992
1993         ret = intel_rcs_context_init_mocs(req);
1994         /*
1995          * Failing to program the MOCS is non-fatal.The system will not
1996          * run at peak performance. So generate an error and carry on.
1997          */
1998         if (ret)
1999                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2000
2001         return intel_lr_context_render_state_init(req);
2002 }
2003
2004 /**
2005  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2006  *
2007  * @ring: Engine Command Streamer.
2008  *
2009  */
2010 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2011 {
2012         struct drm_i915_private *dev_priv;
2013
2014         if (!intel_engine_initialized(engine))
2015                 return;
2016
2017         /*
2018          * Tasklet cannot be active at this point due intel_mark_active/idle
2019          * so this is just for documentation.
2020          */
2021         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
2022                 tasklet_kill(&engine->irq_tasklet);
2023
2024         dev_priv = engine->dev->dev_private;
2025
2026         if (engine->buffer) {
2027                 intel_logical_ring_stop(engine);
2028                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2029         }
2030
2031         if (engine->cleanup)
2032                 engine->cleanup(engine);
2033
2034         i915_cmd_parser_fini_ring(engine);
2035         i915_gem_batch_pool_fini(&engine->batch_pool);
2036
2037         if (engine->status_page.obj) {
2038                 kunmap(sg_page(engine->status_page.obj->pages->sgl));
2039                 engine->status_page.obj = NULL;
2040         }
2041
2042         engine->idle_lite_restore_wa = 0;
2043         engine->disable_lite_restore_wa = false;
2044         engine->ctx_desc_template = 0;
2045
2046         lrc_destroy_wa_ctx_obj(engine);
2047         engine->dev = NULL;
2048 }
2049
2050 static void
2051 logical_ring_default_vfuncs(struct drm_device *dev,
2052                             struct intel_engine_cs *engine)
2053 {
2054         /* Default vfuncs which can be overriden by each engine. */
2055         engine->init_hw = gen8_init_common_ring;
2056         engine->emit_request = gen8_emit_request;
2057         engine->emit_flush = gen8_emit_flush;
2058         engine->irq_get = gen8_logical_ring_get_irq;
2059         engine->irq_put = gen8_logical_ring_put_irq;
2060         engine->emit_bb_start = gen8_emit_bb_start;
2061         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2062                 engine->get_seqno = bxt_a_get_seqno;
2063                 engine->set_seqno = bxt_a_set_seqno;
2064         } else {
2065                 engine->get_seqno = gen8_get_seqno;
2066                 engine->set_seqno = gen8_set_seqno;
2067         }
2068 }
2069
2070 static inline void
2071 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
2072 {
2073         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2074         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2075 }
2076
2077 static int
2078 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
2079 {
2080         struct intel_context *dctx = to_i915(dev)->kernel_context;
2081         int ret;
2082
2083         /* Intentionally left blank. */
2084         engine->buffer = NULL;
2085
2086         engine->dev = dev;
2087         INIT_LIST_HEAD(&engine->active_list);
2088         INIT_LIST_HEAD(&engine->request_list);
2089         i915_gem_batch_pool_init(dev, &engine->batch_pool);
2090         init_waitqueue_head(&engine->irq_queue);
2091
2092         INIT_LIST_HEAD(&engine->buffers);
2093         INIT_LIST_HEAD(&engine->execlist_queue);
2094         INIT_LIST_HEAD(&engine->execlist_retired_req_list);
2095         spin_lock_init(&engine->execlist_lock);
2096
2097         tasklet_init(&engine->irq_tasklet,
2098                      intel_lrc_irq_handler, (unsigned long)engine);
2099
2100         logical_ring_init_platform_invariants(engine);
2101
2102         ret = i915_cmd_parser_init_ring(engine);
2103         if (ret)
2104                 goto error;
2105
2106         ret = intel_lr_context_deferred_alloc(dctx, engine);
2107         if (ret)
2108                 goto error;
2109
2110         /* As this is the default context, always pin it */
2111         ret = intel_lr_context_do_pin(dctx, engine);
2112         if (ret) {
2113                 DRM_ERROR(
2114                         "Failed to pin and map ringbuffer %s: %d\n",
2115                         engine->name, ret);
2116                 goto error;
2117         }
2118
2119         return 0;
2120
2121 error:
2122         intel_logical_ring_cleanup(engine);
2123         return ret;
2124 }
2125
2126 static int logical_render_ring_init(struct drm_device *dev)
2127 {
2128         struct drm_i915_private *dev_priv = dev->dev_private;
2129         struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2130         int ret;
2131
2132         engine->name = "render ring";
2133         engine->id = RCS;
2134         engine->exec_id = I915_EXEC_RENDER;
2135         engine->guc_id = GUC_RENDER_ENGINE;
2136         engine->mmio_base = RENDER_RING_BASE;
2137
2138         logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2139         if (HAS_L3_DPF(dev))
2140                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2141
2142         logical_ring_default_vfuncs(dev, engine);
2143
2144         /* Override some for render ring. */
2145         if (INTEL_INFO(dev)->gen >= 9)
2146                 engine->init_hw = gen9_init_render_ring;
2147         else
2148                 engine->init_hw = gen8_init_render_ring;
2149         engine->init_context = gen8_init_rcs_context;
2150         engine->cleanup = intel_fini_pipe_control;
2151         engine->emit_flush = gen8_emit_flush_render;
2152         engine->emit_request = gen8_emit_request_render;
2153
2154         engine->dev = dev;
2155
2156         ret = intel_init_pipe_control(engine);
2157         if (ret)
2158                 return ret;
2159
2160         ret = intel_init_workaround_bb(engine);
2161         if (ret) {
2162                 /*
2163                  * We continue even if we fail to initialize WA batch
2164                  * because we only expect rare glitches but nothing
2165                  * critical to prevent us from using GPU
2166                  */
2167                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2168                           ret);
2169         }
2170
2171         ret = logical_ring_init(dev, engine);
2172         if (ret) {
2173                 lrc_destroy_wa_ctx_obj(engine);
2174         }
2175
2176         return ret;
2177 }
2178
2179 static int logical_bsd_ring_init(struct drm_device *dev)
2180 {
2181         struct drm_i915_private *dev_priv = dev->dev_private;
2182         struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2183
2184         engine->name = "bsd ring";
2185         engine->id = VCS;
2186         engine->exec_id = I915_EXEC_BSD;
2187         engine->guc_id = GUC_VIDEO_ENGINE;
2188         engine->mmio_base = GEN6_BSD_RING_BASE;
2189
2190         logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2191         logical_ring_default_vfuncs(dev, engine);
2192
2193         return logical_ring_init(dev, engine);
2194 }
2195
2196 static int logical_bsd2_ring_init(struct drm_device *dev)
2197 {
2198         struct drm_i915_private *dev_priv = dev->dev_private;
2199         struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2200
2201         engine->name = "bsd2 ring";
2202         engine->id = VCS2;
2203         engine->exec_id = I915_EXEC_BSD;
2204         engine->guc_id = GUC_VIDEO_ENGINE2;
2205         engine->mmio_base = GEN8_BSD2_RING_BASE;
2206
2207         logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2208         logical_ring_default_vfuncs(dev, engine);
2209
2210         return logical_ring_init(dev, engine);
2211 }
2212
2213 static int logical_blt_ring_init(struct drm_device *dev)
2214 {
2215         struct drm_i915_private *dev_priv = dev->dev_private;
2216         struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2217
2218         engine->name = "blitter ring";
2219         engine->id = BCS;
2220         engine->exec_id = I915_EXEC_BLT;
2221         engine->guc_id = GUC_BLITTER_ENGINE;
2222         engine->mmio_base = BLT_RING_BASE;
2223
2224         logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2225         logical_ring_default_vfuncs(dev, engine);
2226
2227         return logical_ring_init(dev, engine);
2228 }
2229
2230 static int logical_vebox_ring_init(struct drm_device *dev)
2231 {
2232         struct drm_i915_private *dev_priv = dev->dev_private;
2233         struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2234
2235         engine->name = "video enhancement ring";
2236         engine->id = VECS;
2237         engine->exec_id = I915_EXEC_VEBOX;
2238         engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2239         engine->mmio_base = VEBOX_RING_BASE;
2240
2241         logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2242         logical_ring_default_vfuncs(dev, engine);
2243
2244         return logical_ring_init(dev, engine);
2245 }
2246
2247 /**
2248  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2249  * @dev: DRM device.
2250  *
2251  * This function inits the engines for an Execlists submission style (the equivalent in the
2252  * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2253  * those engines that are present in the hardware.
2254  *
2255  * Return: non-zero if the initialization failed.
2256  */
2257 int intel_logical_rings_init(struct drm_device *dev)
2258 {
2259         struct drm_i915_private *dev_priv = dev->dev_private;
2260         int ret;
2261
2262         ret = logical_render_ring_init(dev);
2263         if (ret)
2264                 return ret;
2265
2266         if (HAS_BSD(dev)) {
2267                 ret = logical_bsd_ring_init(dev);
2268                 if (ret)
2269                         goto cleanup_render_ring;
2270         }
2271
2272         if (HAS_BLT(dev)) {
2273                 ret = logical_blt_ring_init(dev);
2274                 if (ret)
2275                         goto cleanup_bsd_ring;
2276         }
2277
2278         if (HAS_VEBOX(dev)) {
2279                 ret = logical_vebox_ring_init(dev);
2280                 if (ret)
2281                         goto cleanup_blt_ring;
2282         }
2283
2284         if (HAS_BSD2(dev)) {
2285                 ret = logical_bsd2_ring_init(dev);
2286                 if (ret)
2287                         goto cleanup_vebox_ring;
2288         }
2289
2290         return 0;
2291
2292 cleanup_vebox_ring:
2293         intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2294 cleanup_blt_ring:
2295         intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2296 cleanup_bsd_ring:
2297         intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2298 cleanup_render_ring:
2299         intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2300
2301         return ret;
2302 }
2303
2304 static u32
2305 make_rpcs(struct drm_device *dev)
2306 {
2307         u32 rpcs = 0;
2308
2309         /*
2310          * No explicit RPCS request is needed to ensure full
2311          * slice/subslice/EU enablement prior to Gen9.
2312         */
2313         if (INTEL_INFO(dev)->gen < 9)
2314                 return 0;
2315
2316         /*
2317          * Starting in Gen9, render power gating can leave
2318          * slice/subslice/EU in a partially enabled state. We
2319          * must make an explicit request through RPCS for full
2320          * enablement.
2321         */
2322         if (INTEL_INFO(dev)->has_slice_pg) {
2323                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2324                 rpcs |= INTEL_INFO(dev)->slice_total <<
2325                         GEN8_RPCS_S_CNT_SHIFT;
2326                 rpcs |= GEN8_RPCS_ENABLE;
2327         }
2328
2329         if (INTEL_INFO(dev)->has_subslice_pg) {
2330                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2331                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2332                         GEN8_RPCS_SS_CNT_SHIFT;
2333                 rpcs |= GEN8_RPCS_ENABLE;
2334         }
2335
2336         if (INTEL_INFO(dev)->has_eu_pg) {
2337                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2338                         GEN8_RPCS_EU_MIN_SHIFT;
2339                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2340                         GEN8_RPCS_EU_MAX_SHIFT;
2341                 rpcs |= GEN8_RPCS_ENABLE;
2342         }
2343
2344         return rpcs;
2345 }
2346
2347 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2348 {
2349         u32 indirect_ctx_offset;
2350
2351         switch (INTEL_INFO(engine->dev)->gen) {
2352         default:
2353                 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2354                 /* fall through */
2355         case 9:
2356                 indirect_ctx_offset =
2357                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2358                 break;
2359         case 8:
2360                 indirect_ctx_offset =
2361                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2362                 break;
2363         }
2364
2365         return indirect_ctx_offset;
2366 }
2367
2368 static int
2369 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2370                     struct intel_engine_cs *engine,
2371                     struct intel_ringbuffer *ringbuf)
2372 {
2373         struct drm_device *dev = engine->dev;
2374         struct drm_i915_private *dev_priv = dev->dev_private;
2375         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2376         struct page *page;
2377         uint32_t *reg_state;
2378         int ret;
2379
2380         if (!ppgtt)
2381                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2382
2383         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2384         if (ret) {
2385                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2386                 return ret;
2387         }
2388
2389         ret = i915_gem_object_get_pages(ctx_obj);
2390         if (ret) {
2391                 DRM_DEBUG_DRIVER("Could not get object pages\n");
2392                 return ret;
2393         }
2394
2395         i915_gem_object_pin_pages(ctx_obj);
2396
2397         /* The second page of the context object contains some fields which must
2398          * be set up prior to the first execution. */
2399         page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2400         reg_state = kmap_atomic(page);
2401
2402         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2403          * commands followed by (reg, value) pairs. The values we are setting here are
2404          * only for the first context restore: on a subsequent save, the GPU will
2405          * recreate this batchbuffer with new values (including all the missing
2406          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2407         reg_state[CTX_LRI_HEADER_0] =
2408                 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2409         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2410                        RING_CONTEXT_CONTROL(engine),
2411                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2412                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2413                                           (HAS_RESOURCE_STREAMER(dev) ?
2414                                             CTX_CTRL_RS_CTX_ENABLE : 0)));
2415         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2416                        0);
2417         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2418                        0);
2419         /* Ring buffer start address is not known until the buffer is pinned.
2420          * It is written to the context image in execlists_update_context()
2421          */
2422         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2423                        RING_START(engine->mmio_base), 0);
2424         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2425                        RING_CTL(engine->mmio_base),
2426                        ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2427         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2428                        RING_BBADDR_UDW(engine->mmio_base), 0);
2429         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2430                        RING_BBADDR(engine->mmio_base), 0);
2431         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2432                        RING_BBSTATE(engine->mmio_base),
2433                        RING_BB_PPGTT);
2434         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2435                        RING_SBBADDR_UDW(engine->mmio_base), 0);
2436         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2437                        RING_SBBADDR(engine->mmio_base), 0);
2438         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2439                        RING_SBBSTATE(engine->mmio_base), 0);
2440         if (engine->id == RCS) {
2441                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2442                                RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2443                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2444                                RING_INDIRECT_CTX(engine->mmio_base), 0);
2445                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2446                                RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2447                 if (engine->wa_ctx.obj) {
2448                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2449                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2450
2451                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2452                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2453                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2454
2455                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2456                                 intel_lr_indirect_ctx_offset(engine) << 6;
2457
2458                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2459                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2460                                 0x01;
2461                 }
2462         }
2463         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2464         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2465                        RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2466         /* PDP values well be assigned later if needed */
2467         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2468                        0);
2469         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2470                        0);
2471         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2472                        0);
2473         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2474                        0);
2475         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2476                        0);
2477         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2478                        0);
2479         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2480                        0);
2481         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2482                        0);
2483
2484         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2485                 /* 64b PPGTT (48bit canonical)
2486                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2487                  * other PDP Descriptors are ignored.
2488                  */
2489                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2490         } else {
2491                 /* 32b PPGTT
2492                  * PDP*_DESCRIPTOR contains the base address of space supported.
2493                  * With dynamic page allocation, PDPs may not be allocated at
2494                  * this point. Point the unallocated PDPs to the scratch page
2495                  */
2496                 execlists_update_context_pdps(ppgtt, reg_state);
2497         }
2498
2499         if (engine->id == RCS) {
2500                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2501                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2502                                make_rpcs(dev));
2503         }
2504
2505         kunmap_atomic(reg_state);
2506         i915_gem_object_unpin_pages(ctx_obj);
2507
2508         return 0;
2509 }
2510
2511 /**
2512  * intel_lr_context_free() - free the LRC specific bits of a context
2513  * @ctx: the LR context to free.
2514  *
2515  * The real context freeing is done in i915_gem_context_free: this only
2516  * takes care of the bits that are LRC related: the per-engine backing
2517  * objects and the logical ringbuffer.
2518  */
2519 void intel_lr_context_free(struct intel_context *ctx)
2520 {
2521         int i;
2522
2523         for (i = I915_NUM_ENGINES; --i >= 0; ) {
2524                 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2525                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2526
2527                 if (!ctx_obj)
2528                         continue;
2529
2530                 if (ctx == ctx->i915->kernel_context) {
2531                         intel_unpin_ringbuffer_obj(ringbuf);
2532                         i915_gem_object_ggtt_unpin(ctx_obj);
2533                 }
2534
2535                 WARN_ON(ctx->engine[i].pin_count);
2536                 intel_ringbuffer_free(ringbuf);
2537                 drm_gem_object_unreference(&ctx_obj->base);
2538         }
2539 }
2540
2541 /**
2542  * intel_lr_context_size() - return the size of the context for an engine
2543  * @ring: which engine to find the context size for
2544  *
2545  * Each engine may require a different amount of space for a context image,
2546  * so when allocating (or copying) an image, this function can be used to
2547  * find the right size for the specific engine.
2548  *
2549  * Return: size (in bytes) of an engine-specific context image
2550  *
2551  * Note: this size includes the HWSP, which is part of the context image
2552  * in LRC mode, but does not include the "shared data page" used with
2553  * GuC submission. The caller should account for this if using the GuC.
2554  */
2555 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2556 {
2557         int ret = 0;
2558
2559         WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2560
2561         switch (engine->id) {
2562         case RCS:
2563                 if (INTEL_INFO(engine->dev)->gen >= 9)
2564                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2565                 else
2566                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2567                 break;
2568         case VCS:
2569         case BCS:
2570         case VECS:
2571         case VCS2:
2572                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2573                 break;
2574         }
2575
2576         return ret;
2577 }
2578
2579 static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
2580                                            struct drm_i915_gem_object *default_ctx_obj)
2581 {
2582         struct drm_i915_private *dev_priv = engine->dev->dev_private;
2583         struct page *page;
2584
2585         /* The HWSP is part of the default context object in LRC mode. */
2586         engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2587                         + LRC_PPHWSP_PN * PAGE_SIZE;
2588         page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2589         engine->status_page.page_addr = kmap(page);
2590         engine->status_page.obj = default_ctx_obj;
2591
2592         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
2593                         (u32)engine->status_page.gfx_addr);
2594         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
2595 }
2596
2597 /**
2598  * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2599  * @ctx: LR context to create.
2600  * @ring: engine to be used with the context.
2601  *
2602  * This function can be called more than once, with different engines, if we plan
2603  * to use the context with them. The context backing objects and the ringbuffers
2604  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2605  * the creation is a deferred call: it's better to make sure first that we need to use
2606  * a given ring with the context.
2607  *
2608  * Return: non-zero on error.
2609  */
2610
2611 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2612                                     struct intel_engine_cs *engine)
2613 {
2614         struct drm_device *dev = engine->dev;
2615         struct drm_i915_gem_object *ctx_obj;
2616         uint32_t context_size;
2617         struct intel_ringbuffer *ringbuf;
2618         int ret;
2619
2620         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2621         WARN_ON(ctx->engine[engine->id].state);
2622
2623         context_size = round_up(intel_lr_context_size(engine), 4096);
2624
2625         /* One extra page as the sharing data between driver and GuC */
2626         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2627
2628         ctx_obj = i915_gem_alloc_object(dev, context_size);
2629         if (!ctx_obj) {
2630                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2631                 return -ENOMEM;
2632         }
2633
2634         ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2635         if (IS_ERR(ringbuf)) {
2636                 ret = PTR_ERR(ringbuf);
2637                 goto error_deref_obj;
2638         }
2639
2640         ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2641         if (ret) {
2642                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2643                 goto error_ringbuf;
2644         }
2645
2646         ctx->engine[engine->id].ringbuf = ringbuf;
2647         ctx->engine[engine->id].state = ctx_obj;
2648
2649         if (ctx != ctx->i915->kernel_context && engine->init_context) {
2650                 struct drm_i915_gem_request *req;
2651
2652                 req = i915_gem_request_alloc(engine, ctx);
2653                 if (IS_ERR(req)) {
2654                         ret = PTR_ERR(req);
2655                         DRM_ERROR("ring create req: %d\n", ret);
2656                         goto error_ringbuf;
2657                 }
2658
2659                 ret = engine->init_context(req);
2660                 if (ret) {
2661                         DRM_ERROR("ring init context: %d\n",
2662                                 ret);
2663                         i915_gem_request_cancel(req);
2664                         goto error_ringbuf;
2665                 }
2666                 i915_add_request_no_flush(req);
2667         }
2668         return 0;
2669
2670 error_ringbuf:
2671         intel_ringbuffer_free(ringbuf);
2672 error_deref_obj:
2673         drm_gem_object_unreference(&ctx_obj->base);
2674         ctx->engine[engine->id].ringbuf = NULL;
2675         ctx->engine[engine->id].state = NULL;
2676         return ret;
2677 }
2678
2679 void intel_lr_context_reset(struct drm_device *dev,
2680                         struct intel_context *ctx)
2681 {
2682         struct drm_i915_private *dev_priv = dev->dev_private;
2683         struct intel_engine_cs *engine;
2684
2685         for_each_engine(engine, dev_priv) {
2686                 struct drm_i915_gem_object *ctx_obj =
2687                                 ctx->engine[engine->id].state;
2688                 struct intel_ringbuffer *ringbuf =
2689                                 ctx->engine[engine->id].ringbuf;
2690                 uint32_t *reg_state;
2691                 struct page *page;
2692
2693                 if (!ctx_obj)
2694                         continue;
2695
2696                 if (i915_gem_object_get_pages(ctx_obj)) {
2697                         WARN(1, "Failed get_pages for context obj\n");
2698                         continue;
2699                 }
2700                 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2701                 reg_state = kmap_atomic(page);
2702
2703                 reg_state[CTX_RING_HEAD+1] = 0;
2704                 reg_state[CTX_RING_TAIL+1] = 0;
2705
2706                 kunmap_atomic(reg_state);
2707
2708                 ringbuf->head = 0;
2709                 ringbuf->tail = 0;
2710         }
2711 }