drm/imx: parallel-display: add bridge support
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34
35 /**
36  * DOC: RC6
37  *
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 static void bxt_init_clock_gating(struct drm_device *dev)
59 {
60         struct drm_i915_private *dev_priv = dev->dev_private;
61
62         /* See Bspec note for PSR2_CTL bit 31, Wa#828:bxt */
63         I915_WRITE(CHICKEN_PAR1_1,
64                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
65
66         /* WaDisableSDEUnitClockGating:bxt */
67         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
68                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
69
70         /*
71          * FIXME:
72          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
73          */
74         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
75                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
76
77         /*
78          * Wa: Backlight PWM may stop in the asserted state, causing backlight
79          * to stay fully on.
80          */
81         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
82                 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
83                            PWM1_GATING_DIS | PWM2_GATING_DIS);
84 }
85
86 static void i915_pineview_get_mem_freq(struct drm_device *dev)
87 {
88         struct drm_i915_private *dev_priv = dev->dev_private;
89         u32 tmp;
90
91         tmp = I915_READ(CLKCFG);
92
93         switch (tmp & CLKCFG_FSB_MASK) {
94         case CLKCFG_FSB_533:
95                 dev_priv->fsb_freq = 533; /* 133*4 */
96                 break;
97         case CLKCFG_FSB_800:
98                 dev_priv->fsb_freq = 800; /* 200*4 */
99                 break;
100         case CLKCFG_FSB_667:
101                 dev_priv->fsb_freq =  667; /* 167*4 */
102                 break;
103         case CLKCFG_FSB_400:
104                 dev_priv->fsb_freq = 400; /* 100*4 */
105                 break;
106         }
107
108         switch (tmp & CLKCFG_MEM_MASK) {
109         case CLKCFG_MEM_533:
110                 dev_priv->mem_freq = 533;
111                 break;
112         case CLKCFG_MEM_667:
113                 dev_priv->mem_freq = 667;
114                 break;
115         case CLKCFG_MEM_800:
116                 dev_priv->mem_freq = 800;
117                 break;
118         }
119
120         /* detect pineview DDR3 setting */
121         tmp = I915_READ(CSHRDDR3CTL);
122         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
123 }
124
125 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
126 {
127         struct drm_i915_private *dev_priv = dev->dev_private;
128         u16 ddrpll, csipll;
129
130         ddrpll = I915_READ16(DDRMPLL1);
131         csipll = I915_READ16(CSIPLL0);
132
133         switch (ddrpll & 0xff) {
134         case 0xc:
135                 dev_priv->mem_freq = 800;
136                 break;
137         case 0x10:
138                 dev_priv->mem_freq = 1066;
139                 break;
140         case 0x14:
141                 dev_priv->mem_freq = 1333;
142                 break;
143         case 0x18:
144                 dev_priv->mem_freq = 1600;
145                 break;
146         default:
147                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
148                                  ddrpll & 0xff);
149                 dev_priv->mem_freq = 0;
150                 break;
151         }
152
153         dev_priv->ips.r_t = dev_priv->mem_freq;
154
155         switch (csipll & 0x3ff) {
156         case 0x00c:
157                 dev_priv->fsb_freq = 3200;
158                 break;
159         case 0x00e:
160                 dev_priv->fsb_freq = 3733;
161                 break;
162         case 0x010:
163                 dev_priv->fsb_freq = 4266;
164                 break;
165         case 0x012:
166                 dev_priv->fsb_freq = 4800;
167                 break;
168         case 0x014:
169                 dev_priv->fsb_freq = 5333;
170                 break;
171         case 0x016:
172                 dev_priv->fsb_freq = 5866;
173                 break;
174         case 0x018:
175                 dev_priv->fsb_freq = 6400;
176                 break;
177         default:
178                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
179                                  csipll & 0x3ff);
180                 dev_priv->fsb_freq = 0;
181                 break;
182         }
183
184         if (dev_priv->fsb_freq == 3200) {
185                 dev_priv->ips.c_m = 0;
186         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
187                 dev_priv->ips.c_m = 1;
188         } else {
189                 dev_priv->ips.c_m = 2;
190         }
191 }
192
193 static const struct cxsr_latency cxsr_latency_table[] = {
194         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
195         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
196         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
197         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
198         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
199
200         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
201         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
202         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
203         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
204         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
205
206         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
207         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
208         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
209         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
210         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
211
212         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
213         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
214         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
215         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
216         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
217
218         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
219         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
220         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
221         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
222         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
223
224         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
225         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
226         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
227         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
228         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
229 };
230
231 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
232                                                          int is_ddr3,
233                                                          int fsb,
234                                                          int mem)
235 {
236         const struct cxsr_latency *latency;
237         int i;
238
239         if (fsb == 0 || mem == 0)
240                 return NULL;
241
242         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
243                 latency = &cxsr_latency_table[i];
244                 if (is_desktop == latency->is_desktop &&
245                     is_ddr3 == latency->is_ddr3 &&
246                     fsb == latency->fsb_freq && mem == latency->mem_freq)
247                         return latency;
248         }
249
250         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
251
252         return NULL;
253 }
254
255 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
256 {
257         u32 val;
258
259         mutex_lock(&dev_priv->rps.hw_lock);
260
261         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
262         if (enable)
263                 val &= ~FORCE_DDR_HIGH_FREQ;
264         else
265                 val |= FORCE_DDR_HIGH_FREQ;
266         val &= ~FORCE_DDR_LOW_FREQ;
267         val |= FORCE_DDR_FREQ_REQ_ACK;
268         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
269
270         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
271                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
272                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
273
274         mutex_unlock(&dev_priv->rps.hw_lock);
275 }
276
277 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
278 {
279         u32 val;
280
281         mutex_lock(&dev_priv->rps.hw_lock);
282
283         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
284         if (enable)
285                 val |= DSP_MAXFIFO_PM5_ENABLE;
286         else
287                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
288         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
289
290         mutex_unlock(&dev_priv->rps.hw_lock);
291 }
292
293 #define FW_WM(value, plane) \
294         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
295
296 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
297 {
298         struct drm_device *dev = dev_priv->dev;
299         u32 val;
300
301         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
302                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
303                 POSTING_READ(FW_BLC_SELF_VLV);
304                 dev_priv->wm.vlv.cxsr = enable;
305         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
306                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
307                 POSTING_READ(FW_BLC_SELF);
308         } else if (IS_PINEVIEW(dev)) {
309                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
310                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
311                 I915_WRITE(DSPFW3, val);
312                 POSTING_READ(DSPFW3);
313         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
314                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
315                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
316                 I915_WRITE(FW_BLC_SELF, val);
317                 POSTING_READ(FW_BLC_SELF);
318         } else if (IS_I915GM(dev)) {
319                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
320                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
321                 I915_WRITE(INSTPM, val);
322                 POSTING_READ(INSTPM);
323         } else {
324                 return;
325         }
326
327         DRM_DEBUG_KMS("memory self-refresh is %s\n",
328                       enable ? "enabled" : "disabled");
329 }
330
331
332 /*
333  * Latency for FIFO fetches is dependent on several factors:
334  *   - memory configuration (speed, channels)
335  *   - chipset
336  *   - current MCH state
337  * It can be fairly high in some situations, so here we assume a fairly
338  * pessimal value.  It's a tradeoff between extra memory fetches (if we
339  * set this value too high, the FIFO will fetch frequently to stay full)
340  * and power consumption (set it too low to save power and we might see
341  * FIFO underruns and display "flicker").
342  *
343  * A value of 5us seems to be a good balance; safe for very low end
344  * platforms but not overly aggressive on lower latency configs.
345  */
346 static const int pessimal_latency_ns = 5000;
347
348 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
349         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
350
351 static int vlv_get_fifo_size(struct drm_device *dev,
352                               enum pipe pipe, int plane)
353 {
354         struct drm_i915_private *dev_priv = dev->dev_private;
355         int sprite0_start, sprite1_start, size;
356
357         switch (pipe) {
358                 uint32_t dsparb, dsparb2, dsparb3;
359         case PIPE_A:
360                 dsparb = I915_READ(DSPARB);
361                 dsparb2 = I915_READ(DSPARB2);
362                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
363                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
364                 break;
365         case PIPE_B:
366                 dsparb = I915_READ(DSPARB);
367                 dsparb2 = I915_READ(DSPARB2);
368                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
369                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
370                 break;
371         case PIPE_C:
372                 dsparb2 = I915_READ(DSPARB2);
373                 dsparb3 = I915_READ(DSPARB3);
374                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
375                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
376                 break;
377         default:
378                 return 0;
379         }
380
381         switch (plane) {
382         case 0:
383                 size = sprite0_start;
384                 break;
385         case 1:
386                 size = sprite1_start - sprite0_start;
387                 break;
388         case 2:
389                 size = 512 - 1 - sprite1_start;
390                 break;
391         default:
392                 return 0;
393         }
394
395         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
396                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
397                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
398                       size);
399
400         return size;
401 }
402
403 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
404 {
405         struct drm_i915_private *dev_priv = dev->dev_private;
406         uint32_t dsparb = I915_READ(DSPARB);
407         int size;
408
409         size = dsparb & 0x7f;
410         if (plane)
411                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
412
413         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
414                       plane ? "B" : "A", size);
415
416         return size;
417 }
418
419 static int i830_get_fifo_size(struct drm_device *dev, int plane)
420 {
421         struct drm_i915_private *dev_priv = dev->dev_private;
422         uint32_t dsparb = I915_READ(DSPARB);
423         int size;
424
425         size = dsparb & 0x1ff;
426         if (plane)
427                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
428         size >>= 1; /* Convert to cachelines */
429
430         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
431                       plane ? "B" : "A", size);
432
433         return size;
434 }
435
436 static int i845_get_fifo_size(struct drm_device *dev, int plane)
437 {
438         struct drm_i915_private *dev_priv = dev->dev_private;
439         uint32_t dsparb = I915_READ(DSPARB);
440         int size;
441
442         size = dsparb & 0x7f;
443         size >>= 2; /* Convert to cachelines */
444
445         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
446                       plane ? "B" : "A",
447                       size);
448
449         return size;
450 }
451
452 /* Pineview has different values for various configs */
453 static const struct intel_watermark_params pineview_display_wm = {
454         .fifo_size = PINEVIEW_DISPLAY_FIFO,
455         .max_wm = PINEVIEW_MAX_WM,
456         .default_wm = PINEVIEW_DFT_WM,
457         .guard_size = PINEVIEW_GUARD_WM,
458         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
459 };
460 static const struct intel_watermark_params pineview_display_hplloff_wm = {
461         .fifo_size = PINEVIEW_DISPLAY_FIFO,
462         .max_wm = PINEVIEW_MAX_WM,
463         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
464         .guard_size = PINEVIEW_GUARD_WM,
465         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
466 };
467 static const struct intel_watermark_params pineview_cursor_wm = {
468         .fifo_size = PINEVIEW_CURSOR_FIFO,
469         .max_wm = PINEVIEW_CURSOR_MAX_WM,
470         .default_wm = PINEVIEW_CURSOR_DFT_WM,
471         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
472         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
473 };
474 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
475         .fifo_size = PINEVIEW_CURSOR_FIFO,
476         .max_wm = PINEVIEW_CURSOR_MAX_WM,
477         .default_wm = PINEVIEW_CURSOR_DFT_WM,
478         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
479         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
480 };
481 static const struct intel_watermark_params g4x_wm_info = {
482         .fifo_size = G4X_FIFO_SIZE,
483         .max_wm = G4X_MAX_WM,
484         .default_wm = G4X_MAX_WM,
485         .guard_size = 2,
486         .cacheline_size = G4X_FIFO_LINE_SIZE,
487 };
488 static const struct intel_watermark_params g4x_cursor_wm_info = {
489         .fifo_size = I965_CURSOR_FIFO,
490         .max_wm = I965_CURSOR_MAX_WM,
491         .default_wm = I965_CURSOR_DFT_WM,
492         .guard_size = 2,
493         .cacheline_size = G4X_FIFO_LINE_SIZE,
494 };
495 static const struct intel_watermark_params i965_cursor_wm_info = {
496         .fifo_size = I965_CURSOR_FIFO,
497         .max_wm = I965_CURSOR_MAX_WM,
498         .default_wm = I965_CURSOR_DFT_WM,
499         .guard_size = 2,
500         .cacheline_size = I915_FIFO_LINE_SIZE,
501 };
502 static const struct intel_watermark_params i945_wm_info = {
503         .fifo_size = I945_FIFO_SIZE,
504         .max_wm = I915_MAX_WM,
505         .default_wm = 1,
506         .guard_size = 2,
507         .cacheline_size = I915_FIFO_LINE_SIZE,
508 };
509 static const struct intel_watermark_params i915_wm_info = {
510         .fifo_size = I915_FIFO_SIZE,
511         .max_wm = I915_MAX_WM,
512         .default_wm = 1,
513         .guard_size = 2,
514         .cacheline_size = I915_FIFO_LINE_SIZE,
515 };
516 static const struct intel_watermark_params i830_a_wm_info = {
517         .fifo_size = I855GM_FIFO_SIZE,
518         .max_wm = I915_MAX_WM,
519         .default_wm = 1,
520         .guard_size = 2,
521         .cacheline_size = I830_FIFO_LINE_SIZE,
522 };
523 static const struct intel_watermark_params i830_bc_wm_info = {
524         .fifo_size = I855GM_FIFO_SIZE,
525         .max_wm = I915_MAX_WM/2,
526         .default_wm = 1,
527         .guard_size = 2,
528         .cacheline_size = I830_FIFO_LINE_SIZE,
529 };
530 static const struct intel_watermark_params i845_wm_info = {
531         .fifo_size = I830_FIFO_SIZE,
532         .max_wm = I915_MAX_WM,
533         .default_wm = 1,
534         .guard_size = 2,
535         .cacheline_size = I830_FIFO_LINE_SIZE,
536 };
537
538 /**
539  * intel_calculate_wm - calculate watermark level
540  * @clock_in_khz: pixel clock
541  * @wm: chip FIFO params
542  * @cpp: bytes per pixel
543  * @latency_ns: memory latency for the platform
544  *
545  * Calculate the watermark level (the level at which the display plane will
546  * start fetching from memory again).  Each chip has a different display
547  * FIFO size and allocation, so the caller needs to figure that out and pass
548  * in the correct intel_watermark_params structure.
549  *
550  * As the pixel clock runs, the FIFO will be drained at a rate that depends
551  * on the pixel size.  When it reaches the watermark level, it'll start
552  * fetching FIFO line sized based chunks from memory until the FIFO fills
553  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
554  * will occur, and a display engine hang could result.
555  */
556 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
557                                         const struct intel_watermark_params *wm,
558                                         int fifo_size, int cpp,
559                                         unsigned long latency_ns)
560 {
561         long entries_required, wm_size;
562
563         /*
564          * Note: we need to make sure we don't overflow for various clock &
565          * latency values.
566          * clocks go from a few thousand to several hundred thousand.
567          * latency is usually a few thousand
568          */
569         entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
570                 1000;
571         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
572
573         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
574
575         wm_size = fifo_size - (entries_required + wm->guard_size);
576
577         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
578
579         /* Don't promote wm_size to unsigned... */
580         if (wm_size > (long)wm->max_wm)
581                 wm_size = wm->max_wm;
582         if (wm_size <= 0)
583                 wm_size = wm->default_wm;
584
585         /*
586          * Bspec seems to indicate that the value shouldn't be lower than
587          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
588          * Lets go for 8 which is the burst size since certain platforms
589          * already use a hardcoded 8 (which is what the spec says should be
590          * done).
591          */
592         if (wm_size <= 8)
593                 wm_size = 8;
594
595         return wm_size;
596 }
597
598 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
599 {
600         struct drm_crtc *crtc, *enabled = NULL;
601
602         for_each_crtc(dev, crtc) {
603                 if (intel_crtc_active(crtc)) {
604                         if (enabled)
605                                 return NULL;
606                         enabled = crtc;
607                 }
608         }
609
610         return enabled;
611 }
612
613 static void pineview_update_wm(struct drm_crtc *unused_crtc)
614 {
615         struct drm_device *dev = unused_crtc->dev;
616         struct drm_i915_private *dev_priv = dev->dev_private;
617         struct drm_crtc *crtc;
618         const struct cxsr_latency *latency;
619         u32 reg;
620         unsigned long wm;
621
622         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
623                                          dev_priv->fsb_freq, dev_priv->mem_freq);
624         if (!latency) {
625                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
626                 intel_set_memory_cxsr(dev_priv, false);
627                 return;
628         }
629
630         crtc = single_enabled_crtc(dev);
631         if (crtc) {
632                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
633                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
634                 int clock = adjusted_mode->crtc_clock;
635
636                 /* Display SR */
637                 wm = intel_calculate_wm(clock, &pineview_display_wm,
638                                         pineview_display_wm.fifo_size,
639                                         cpp, latency->display_sr);
640                 reg = I915_READ(DSPFW1);
641                 reg &= ~DSPFW_SR_MASK;
642                 reg |= FW_WM(wm, SR);
643                 I915_WRITE(DSPFW1, reg);
644                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
645
646                 /* cursor SR */
647                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
648                                         pineview_display_wm.fifo_size,
649                                         cpp, latency->cursor_sr);
650                 reg = I915_READ(DSPFW3);
651                 reg &= ~DSPFW_CURSOR_SR_MASK;
652                 reg |= FW_WM(wm, CURSOR_SR);
653                 I915_WRITE(DSPFW3, reg);
654
655                 /* Display HPLL off SR */
656                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
657                                         pineview_display_hplloff_wm.fifo_size,
658                                         cpp, latency->display_hpll_disable);
659                 reg = I915_READ(DSPFW3);
660                 reg &= ~DSPFW_HPLL_SR_MASK;
661                 reg |= FW_WM(wm, HPLL_SR);
662                 I915_WRITE(DSPFW3, reg);
663
664                 /* cursor HPLL off SR */
665                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
666                                         pineview_display_hplloff_wm.fifo_size,
667                                         cpp, latency->cursor_hpll_disable);
668                 reg = I915_READ(DSPFW3);
669                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
670                 reg |= FW_WM(wm, HPLL_CURSOR);
671                 I915_WRITE(DSPFW3, reg);
672                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
673
674                 intel_set_memory_cxsr(dev_priv, true);
675         } else {
676                 intel_set_memory_cxsr(dev_priv, false);
677         }
678 }
679
680 static bool g4x_compute_wm0(struct drm_device *dev,
681                             int plane,
682                             const struct intel_watermark_params *display,
683                             int display_latency_ns,
684                             const struct intel_watermark_params *cursor,
685                             int cursor_latency_ns,
686                             int *plane_wm,
687                             int *cursor_wm)
688 {
689         struct drm_crtc *crtc;
690         const struct drm_display_mode *adjusted_mode;
691         int htotal, hdisplay, clock, cpp;
692         int line_time_us, line_count;
693         int entries, tlb_miss;
694
695         crtc = intel_get_crtc_for_plane(dev, plane);
696         if (!intel_crtc_active(crtc)) {
697                 *cursor_wm = cursor->guard_size;
698                 *plane_wm = display->guard_size;
699                 return false;
700         }
701
702         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
703         clock = adjusted_mode->crtc_clock;
704         htotal = adjusted_mode->crtc_htotal;
705         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
706         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
707
708         /* Use the small buffer method to calculate plane watermark */
709         entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
710         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
711         if (tlb_miss > 0)
712                 entries += tlb_miss;
713         entries = DIV_ROUND_UP(entries, display->cacheline_size);
714         *plane_wm = entries + display->guard_size;
715         if (*plane_wm > (int)display->max_wm)
716                 *plane_wm = display->max_wm;
717
718         /* Use the large buffer method to calculate cursor watermark */
719         line_time_us = max(htotal * 1000 / clock, 1);
720         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
721         entries = line_count * crtc->cursor->state->crtc_w * cpp;
722         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
723         if (tlb_miss > 0)
724                 entries += tlb_miss;
725         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
726         *cursor_wm = entries + cursor->guard_size;
727         if (*cursor_wm > (int)cursor->max_wm)
728                 *cursor_wm = (int)cursor->max_wm;
729
730         return true;
731 }
732
733 /*
734  * Check the wm result.
735  *
736  * If any calculated watermark values is larger than the maximum value that
737  * can be programmed into the associated watermark register, that watermark
738  * must be disabled.
739  */
740 static bool g4x_check_srwm(struct drm_device *dev,
741                            int display_wm, int cursor_wm,
742                            const struct intel_watermark_params *display,
743                            const struct intel_watermark_params *cursor)
744 {
745         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
746                       display_wm, cursor_wm);
747
748         if (display_wm > display->max_wm) {
749                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
750                               display_wm, display->max_wm);
751                 return false;
752         }
753
754         if (cursor_wm > cursor->max_wm) {
755                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
756                               cursor_wm, cursor->max_wm);
757                 return false;
758         }
759
760         if (!(display_wm || cursor_wm)) {
761                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
762                 return false;
763         }
764
765         return true;
766 }
767
768 static bool g4x_compute_srwm(struct drm_device *dev,
769                              int plane,
770                              int latency_ns,
771                              const struct intel_watermark_params *display,
772                              const struct intel_watermark_params *cursor,
773                              int *display_wm, int *cursor_wm)
774 {
775         struct drm_crtc *crtc;
776         const struct drm_display_mode *adjusted_mode;
777         int hdisplay, htotal, cpp, clock;
778         unsigned long line_time_us;
779         int line_count, line_size;
780         int small, large;
781         int entries;
782
783         if (!latency_ns) {
784                 *display_wm = *cursor_wm = 0;
785                 return false;
786         }
787
788         crtc = intel_get_crtc_for_plane(dev, plane);
789         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
790         clock = adjusted_mode->crtc_clock;
791         htotal = adjusted_mode->crtc_htotal;
792         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
793         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
794
795         line_time_us = max(htotal * 1000 / clock, 1);
796         line_count = (latency_ns / line_time_us + 1000) / 1000;
797         line_size = hdisplay * cpp;
798
799         /* Use the minimum of the small and large buffer method for primary */
800         small = ((clock * cpp / 1000) * latency_ns) / 1000;
801         large = line_count * line_size;
802
803         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
804         *display_wm = entries + display->guard_size;
805
806         /* calculate the self-refresh watermark for display cursor */
807         entries = line_count * cpp * crtc->cursor->state->crtc_w;
808         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
809         *cursor_wm = entries + cursor->guard_size;
810
811         return g4x_check_srwm(dev,
812                               *display_wm, *cursor_wm,
813                               display, cursor);
814 }
815
816 #define FW_WM_VLV(value, plane) \
817         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
818
819 static void vlv_write_wm_values(struct intel_crtc *crtc,
820                                 const struct vlv_wm_values *wm)
821 {
822         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
823         enum pipe pipe = crtc->pipe;
824
825         I915_WRITE(VLV_DDL(pipe),
826                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
827                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
828                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
829                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
830
831         I915_WRITE(DSPFW1,
832                    FW_WM(wm->sr.plane, SR) |
833                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
834                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
835                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
836         I915_WRITE(DSPFW2,
837                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
838                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
839                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
840         I915_WRITE(DSPFW3,
841                    FW_WM(wm->sr.cursor, CURSOR_SR));
842
843         if (IS_CHERRYVIEW(dev_priv)) {
844                 I915_WRITE(DSPFW7_CHV,
845                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
846                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
847                 I915_WRITE(DSPFW8_CHV,
848                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
849                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
850                 I915_WRITE(DSPFW9_CHV,
851                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
852                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
853                 I915_WRITE(DSPHOWM,
854                            FW_WM(wm->sr.plane >> 9, SR_HI) |
855                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
856                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
857                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
858                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
859                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
860                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
861                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
862                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
863                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
864         } else {
865                 I915_WRITE(DSPFW7,
866                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
867                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
868                 I915_WRITE(DSPHOWM,
869                            FW_WM(wm->sr.plane >> 9, SR_HI) |
870                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
871                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
872                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
873                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
874                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
875                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
876         }
877
878         /* zero (unused) WM1 watermarks */
879         I915_WRITE(DSPFW4, 0);
880         I915_WRITE(DSPFW5, 0);
881         I915_WRITE(DSPFW6, 0);
882         I915_WRITE(DSPHOWM1, 0);
883
884         POSTING_READ(DSPFW1);
885 }
886
887 #undef FW_WM_VLV
888
889 enum vlv_wm_level {
890         VLV_WM_LEVEL_PM2,
891         VLV_WM_LEVEL_PM5,
892         VLV_WM_LEVEL_DDR_DVFS,
893 };
894
895 /* latency must be in 0.1us units. */
896 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
897                                    unsigned int pipe_htotal,
898                                    unsigned int horiz_pixels,
899                                    unsigned int cpp,
900                                    unsigned int latency)
901 {
902         unsigned int ret;
903
904         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
905         ret = (ret + 1) * horiz_pixels * cpp;
906         ret = DIV_ROUND_UP(ret, 64);
907
908         return ret;
909 }
910
911 static void vlv_setup_wm_latency(struct drm_device *dev)
912 {
913         struct drm_i915_private *dev_priv = dev->dev_private;
914
915         /* all latencies in usec */
916         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
917
918         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
919
920         if (IS_CHERRYVIEW(dev_priv)) {
921                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
922                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
923
924                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
925         }
926 }
927
928 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
929                                      struct intel_crtc *crtc,
930                                      const struct intel_plane_state *state,
931                                      int level)
932 {
933         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
934         int clock, htotal, cpp, width, wm;
935
936         if (dev_priv->wm.pri_latency[level] == 0)
937                 return USHRT_MAX;
938
939         if (!state->visible)
940                 return 0;
941
942         cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
943         clock = crtc->config->base.adjusted_mode.crtc_clock;
944         htotal = crtc->config->base.adjusted_mode.crtc_htotal;
945         width = crtc->config->pipe_src_w;
946         if (WARN_ON(htotal == 0))
947                 htotal = 1;
948
949         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
950                 /*
951                  * FIXME the formula gives values that are
952                  * too big for the cursor FIFO, and hence we
953                  * would never be able to use cursors. For
954                  * now just hardcode the watermark.
955                  */
956                 wm = 63;
957         } else {
958                 wm = vlv_wm_method2(clock, htotal, width, cpp,
959                                     dev_priv->wm.pri_latency[level] * 10);
960         }
961
962         return min_t(int, wm, USHRT_MAX);
963 }
964
965 static void vlv_compute_fifo(struct intel_crtc *crtc)
966 {
967         struct drm_device *dev = crtc->base.dev;
968         struct vlv_wm_state *wm_state = &crtc->wm_state;
969         struct intel_plane *plane;
970         unsigned int total_rate = 0;
971         const int fifo_size = 512 - 1;
972         int fifo_extra, fifo_left = fifo_size;
973
974         for_each_intel_plane_on_crtc(dev, crtc, plane) {
975                 struct intel_plane_state *state =
976                         to_intel_plane_state(plane->base.state);
977
978                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
979                         continue;
980
981                 if (state->visible) {
982                         wm_state->num_active_planes++;
983                         total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
984                 }
985         }
986
987         for_each_intel_plane_on_crtc(dev, crtc, plane) {
988                 struct intel_plane_state *state =
989                         to_intel_plane_state(plane->base.state);
990                 unsigned int rate;
991
992                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
993                         plane->wm.fifo_size = 63;
994                         continue;
995                 }
996
997                 if (!state->visible) {
998                         plane->wm.fifo_size = 0;
999                         continue;
1000                 }
1001
1002                 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1003                 plane->wm.fifo_size = fifo_size * rate / total_rate;
1004                 fifo_left -= plane->wm.fifo_size;
1005         }
1006
1007         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1008
1009         /* spread the remainder evenly */
1010         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1011                 int plane_extra;
1012
1013                 if (fifo_left == 0)
1014                         break;
1015
1016                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1017                         continue;
1018
1019                 /* give it all to the first plane if none are active */
1020                 if (plane->wm.fifo_size == 0 &&
1021                     wm_state->num_active_planes)
1022                         continue;
1023
1024                 plane_extra = min(fifo_extra, fifo_left);
1025                 plane->wm.fifo_size += plane_extra;
1026                 fifo_left -= plane_extra;
1027         }
1028
1029         WARN_ON(fifo_left != 0);
1030 }
1031
1032 static void vlv_invert_wms(struct intel_crtc *crtc)
1033 {
1034         struct vlv_wm_state *wm_state = &crtc->wm_state;
1035         int level;
1036
1037         for (level = 0; level < wm_state->num_levels; level++) {
1038                 struct drm_device *dev = crtc->base.dev;
1039                 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1040                 struct intel_plane *plane;
1041
1042                 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1043                 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1044
1045                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1046                         switch (plane->base.type) {
1047                                 int sprite;
1048                         case DRM_PLANE_TYPE_CURSOR:
1049                                 wm_state->wm[level].cursor = plane->wm.fifo_size -
1050                                         wm_state->wm[level].cursor;
1051                                 break;
1052                         case DRM_PLANE_TYPE_PRIMARY:
1053                                 wm_state->wm[level].primary = plane->wm.fifo_size -
1054                                         wm_state->wm[level].primary;
1055                                 break;
1056                         case DRM_PLANE_TYPE_OVERLAY:
1057                                 sprite = plane->plane;
1058                                 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1059                                         wm_state->wm[level].sprite[sprite];
1060                                 break;
1061                         }
1062                 }
1063         }
1064 }
1065
1066 static void vlv_compute_wm(struct intel_crtc *crtc)
1067 {
1068         struct drm_device *dev = crtc->base.dev;
1069         struct vlv_wm_state *wm_state = &crtc->wm_state;
1070         struct intel_plane *plane;
1071         int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1072         int level;
1073
1074         memset(wm_state, 0, sizeof(*wm_state));
1075
1076         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1077         wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1078
1079         wm_state->num_active_planes = 0;
1080
1081         vlv_compute_fifo(crtc);
1082
1083         if (wm_state->num_active_planes != 1)
1084                 wm_state->cxsr = false;
1085
1086         if (wm_state->cxsr) {
1087                 for (level = 0; level < wm_state->num_levels; level++) {
1088                         wm_state->sr[level].plane = sr_fifo_size;
1089                         wm_state->sr[level].cursor = 63;
1090                 }
1091         }
1092
1093         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1094                 struct intel_plane_state *state =
1095                         to_intel_plane_state(plane->base.state);
1096
1097                 if (!state->visible)
1098                         continue;
1099
1100                 /* normal watermarks */
1101                 for (level = 0; level < wm_state->num_levels; level++) {
1102                         int wm = vlv_compute_wm_level(plane, crtc, state, level);
1103                         int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1104
1105                         /* hack */
1106                         if (WARN_ON(level == 0 && wm > max_wm))
1107                                 wm = max_wm;
1108
1109                         if (wm > plane->wm.fifo_size)
1110                                 break;
1111
1112                         switch (plane->base.type) {
1113                                 int sprite;
1114                         case DRM_PLANE_TYPE_CURSOR:
1115                                 wm_state->wm[level].cursor = wm;
1116                                 break;
1117                         case DRM_PLANE_TYPE_PRIMARY:
1118                                 wm_state->wm[level].primary = wm;
1119                                 break;
1120                         case DRM_PLANE_TYPE_OVERLAY:
1121                                 sprite = plane->plane;
1122                                 wm_state->wm[level].sprite[sprite] = wm;
1123                                 break;
1124                         }
1125                 }
1126
1127                 wm_state->num_levels = level;
1128
1129                 if (!wm_state->cxsr)
1130                         continue;
1131
1132                 /* maxfifo watermarks */
1133                 switch (plane->base.type) {
1134                         int sprite, level;
1135                 case DRM_PLANE_TYPE_CURSOR:
1136                         for (level = 0; level < wm_state->num_levels; level++)
1137                                 wm_state->sr[level].cursor =
1138                                         wm_state->wm[level].cursor;
1139                         break;
1140                 case DRM_PLANE_TYPE_PRIMARY:
1141                         for (level = 0; level < wm_state->num_levels; level++)
1142                                 wm_state->sr[level].plane =
1143                                         min(wm_state->sr[level].plane,
1144                                             wm_state->wm[level].primary);
1145                         break;
1146                 case DRM_PLANE_TYPE_OVERLAY:
1147                         sprite = plane->plane;
1148                         for (level = 0; level < wm_state->num_levels; level++)
1149                                 wm_state->sr[level].plane =
1150                                         min(wm_state->sr[level].plane,
1151                                             wm_state->wm[level].sprite[sprite]);
1152                         break;
1153                 }
1154         }
1155
1156         /* clear any (partially) filled invalid levels */
1157         for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1158                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1159                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1160         }
1161
1162         vlv_invert_wms(crtc);
1163 }
1164
1165 #define VLV_FIFO(plane, value) \
1166         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1167
1168 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1169 {
1170         struct drm_device *dev = crtc->base.dev;
1171         struct drm_i915_private *dev_priv = to_i915(dev);
1172         struct intel_plane *plane;
1173         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1174
1175         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1176                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1177                         WARN_ON(plane->wm.fifo_size != 63);
1178                         continue;
1179                 }
1180
1181                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1182                         sprite0_start = plane->wm.fifo_size;
1183                 else if (plane->plane == 0)
1184                         sprite1_start = sprite0_start + plane->wm.fifo_size;
1185                 else
1186                         fifo_size = sprite1_start + plane->wm.fifo_size;
1187         }
1188
1189         WARN_ON(fifo_size != 512 - 1);
1190
1191         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1192                       pipe_name(crtc->pipe), sprite0_start,
1193                       sprite1_start, fifo_size);
1194
1195         switch (crtc->pipe) {
1196                 uint32_t dsparb, dsparb2, dsparb3;
1197         case PIPE_A:
1198                 dsparb = I915_READ(DSPARB);
1199                 dsparb2 = I915_READ(DSPARB2);
1200
1201                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1202                             VLV_FIFO(SPRITEB, 0xff));
1203                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1204                            VLV_FIFO(SPRITEB, sprite1_start));
1205
1206                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1207                              VLV_FIFO(SPRITEB_HI, 0x1));
1208                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1209                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1210
1211                 I915_WRITE(DSPARB, dsparb);
1212                 I915_WRITE(DSPARB2, dsparb2);
1213                 break;
1214         case PIPE_B:
1215                 dsparb = I915_READ(DSPARB);
1216                 dsparb2 = I915_READ(DSPARB2);
1217
1218                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1219                             VLV_FIFO(SPRITED, 0xff));
1220                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1221                            VLV_FIFO(SPRITED, sprite1_start));
1222
1223                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1224                              VLV_FIFO(SPRITED_HI, 0xff));
1225                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1226                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1227
1228                 I915_WRITE(DSPARB, dsparb);
1229                 I915_WRITE(DSPARB2, dsparb2);
1230                 break;
1231         case PIPE_C:
1232                 dsparb3 = I915_READ(DSPARB3);
1233                 dsparb2 = I915_READ(DSPARB2);
1234
1235                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1236                              VLV_FIFO(SPRITEF, 0xff));
1237                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1238                             VLV_FIFO(SPRITEF, sprite1_start));
1239
1240                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1241                              VLV_FIFO(SPRITEF_HI, 0xff));
1242                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1243                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1244
1245                 I915_WRITE(DSPARB3, dsparb3);
1246                 I915_WRITE(DSPARB2, dsparb2);
1247                 break;
1248         default:
1249                 break;
1250         }
1251 }
1252
1253 #undef VLV_FIFO
1254
1255 static void vlv_merge_wm(struct drm_device *dev,
1256                          struct vlv_wm_values *wm)
1257 {
1258         struct intel_crtc *crtc;
1259         int num_active_crtcs = 0;
1260
1261         wm->level = to_i915(dev)->wm.max_level;
1262         wm->cxsr = true;
1263
1264         for_each_intel_crtc(dev, crtc) {
1265                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1266
1267                 if (!crtc->active)
1268                         continue;
1269
1270                 if (!wm_state->cxsr)
1271                         wm->cxsr = false;
1272
1273                 num_active_crtcs++;
1274                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1275         }
1276
1277         if (num_active_crtcs != 1)
1278                 wm->cxsr = false;
1279
1280         if (num_active_crtcs > 1)
1281                 wm->level = VLV_WM_LEVEL_PM2;
1282
1283         for_each_intel_crtc(dev, crtc) {
1284                 struct vlv_wm_state *wm_state = &crtc->wm_state;
1285                 enum pipe pipe = crtc->pipe;
1286
1287                 if (!crtc->active)
1288                         continue;
1289
1290                 wm->pipe[pipe] = wm_state->wm[wm->level];
1291                 if (wm->cxsr)
1292                         wm->sr = wm_state->sr[wm->level];
1293
1294                 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1295                 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1296                 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1297                 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1298         }
1299 }
1300
1301 static void vlv_update_wm(struct drm_crtc *crtc)
1302 {
1303         struct drm_device *dev = crtc->dev;
1304         struct drm_i915_private *dev_priv = dev->dev_private;
1305         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1306         enum pipe pipe = intel_crtc->pipe;
1307         struct vlv_wm_values wm = {};
1308
1309         vlv_compute_wm(intel_crtc);
1310         vlv_merge_wm(dev, &wm);
1311
1312         if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1313                 /* FIXME should be part of crtc atomic commit */
1314                 vlv_pipe_set_fifo_size(intel_crtc);
1315                 return;
1316         }
1317
1318         if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1319             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1320                 chv_set_memory_dvfs(dev_priv, false);
1321
1322         if (wm.level < VLV_WM_LEVEL_PM5 &&
1323             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1324                 chv_set_memory_pm5(dev_priv, false);
1325
1326         if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1327                 intel_set_memory_cxsr(dev_priv, false);
1328
1329         /* FIXME should be part of crtc atomic commit */
1330         vlv_pipe_set_fifo_size(intel_crtc);
1331
1332         vlv_write_wm_values(intel_crtc, &wm);
1333
1334         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1335                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1336                       pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1337                       wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1338                       wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1339
1340         if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1341                 intel_set_memory_cxsr(dev_priv, true);
1342
1343         if (wm.level >= VLV_WM_LEVEL_PM5 &&
1344             dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1345                 chv_set_memory_pm5(dev_priv, true);
1346
1347         if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1348             dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1349                 chv_set_memory_dvfs(dev_priv, true);
1350
1351         dev_priv->wm.vlv = wm;
1352 }
1353
1354 #define single_plane_enabled(mask) is_power_of_2(mask)
1355
1356 static void g4x_update_wm(struct drm_crtc *crtc)
1357 {
1358         struct drm_device *dev = crtc->dev;
1359         static const int sr_latency_ns = 12000;
1360         struct drm_i915_private *dev_priv = dev->dev_private;
1361         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1362         int plane_sr, cursor_sr;
1363         unsigned int enabled = 0;
1364         bool cxsr_enabled;
1365
1366         if (g4x_compute_wm0(dev, PIPE_A,
1367                             &g4x_wm_info, pessimal_latency_ns,
1368                             &g4x_cursor_wm_info, pessimal_latency_ns,
1369                             &planea_wm, &cursora_wm))
1370                 enabled |= 1 << PIPE_A;
1371
1372         if (g4x_compute_wm0(dev, PIPE_B,
1373                             &g4x_wm_info, pessimal_latency_ns,
1374                             &g4x_cursor_wm_info, pessimal_latency_ns,
1375                             &planeb_wm, &cursorb_wm))
1376                 enabled |= 1 << PIPE_B;
1377
1378         if (single_plane_enabled(enabled) &&
1379             g4x_compute_srwm(dev, ffs(enabled) - 1,
1380                              sr_latency_ns,
1381                              &g4x_wm_info,
1382                              &g4x_cursor_wm_info,
1383                              &plane_sr, &cursor_sr)) {
1384                 cxsr_enabled = true;
1385         } else {
1386                 cxsr_enabled = false;
1387                 intel_set_memory_cxsr(dev_priv, false);
1388                 plane_sr = cursor_sr = 0;
1389         }
1390
1391         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1392                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1393                       planea_wm, cursora_wm,
1394                       planeb_wm, cursorb_wm,
1395                       plane_sr, cursor_sr);
1396
1397         I915_WRITE(DSPFW1,
1398                    FW_WM(plane_sr, SR) |
1399                    FW_WM(cursorb_wm, CURSORB) |
1400                    FW_WM(planeb_wm, PLANEB) |
1401                    FW_WM(planea_wm, PLANEA));
1402         I915_WRITE(DSPFW2,
1403                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1404                    FW_WM(cursora_wm, CURSORA));
1405         /* HPLL off in SR has some issues on G4x... disable it */
1406         I915_WRITE(DSPFW3,
1407                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1408                    FW_WM(cursor_sr, CURSOR_SR));
1409
1410         if (cxsr_enabled)
1411                 intel_set_memory_cxsr(dev_priv, true);
1412 }
1413
1414 static void i965_update_wm(struct drm_crtc *unused_crtc)
1415 {
1416         struct drm_device *dev = unused_crtc->dev;
1417         struct drm_i915_private *dev_priv = dev->dev_private;
1418         struct drm_crtc *crtc;
1419         int srwm = 1;
1420         int cursor_sr = 16;
1421         bool cxsr_enabled;
1422
1423         /* Calc sr entries for one plane configs */
1424         crtc = single_enabled_crtc(dev);
1425         if (crtc) {
1426                 /* self-refresh has much higher latency */
1427                 static const int sr_latency_ns = 12000;
1428                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1429                 int clock = adjusted_mode->crtc_clock;
1430                 int htotal = adjusted_mode->crtc_htotal;
1431                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1432                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1433                 unsigned long line_time_us;
1434                 int entries;
1435
1436                 line_time_us = max(htotal * 1000 / clock, 1);
1437
1438                 /* Use ns/us then divide to preserve precision */
1439                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1440                         cpp * hdisplay;
1441                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1442                 srwm = I965_FIFO_SIZE - entries;
1443                 if (srwm < 0)
1444                         srwm = 1;
1445                 srwm &= 0x1ff;
1446                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1447                               entries, srwm);
1448
1449                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1450                         cpp * crtc->cursor->state->crtc_w;
1451                 entries = DIV_ROUND_UP(entries,
1452                                           i965_cursor_wm_info.cacheline_size);
1453                 cursor_sr = i965_cursor_wm_info.fifo_size -
1454                         (entries + i965_cursor_wm_info.guard_size);
1455
1456                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1457                         cursor_sr = i965_cursor_wm_info.max_wm;
1458
1459                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1460                               "cursor %d\n", srwm, cursor_sr);
1461
1462                 cxsr_enabled = true;
1463         } else {
1464                 cxsr_enabled = false;
1465                 /* Turn off self refresh if both pipes are enabled */
1466                 intel_set_memory_cxsr(dev_priv, false);
1467         }
1468
1469         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1470                       srwm);
1471
1472         /* 965 has limitations... */
1473         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1474                    FW_WM(8, CURSORB) |
1475                    FW_WM(8, PLANEB) |
1476                    FW_WM(8, PLANEA));
1477         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1478                    FW_WM(8, PLANEC_OLD));
1479         /* update cursor SR watermark */
1480         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1481
1482         if (cxsr_enabled)
1483                 intel_set_memory_cxsr(dev_priv, true);
1484 }
1485
1486 #undef FW_WM
1487
1488 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1489 {
1490         struct drm_device *dev = unused_crtc->dev;
1491         struct drm_i915_private *dev_priv = dev->dev_private;
1492         const struct intel_watermark_params *wm_info;
1493         uint32_t fwater_lo;
1494         uint32_t fwater_hi;
1495         int cwm, srwm = 1;
1496         int fifo_size;
1497         int planea_wm, planeb_wm;
1498         struct drm_crtc *crtc, *enabled = NULL;
1499
1500         if (IS_I945GM(dev))
1501                 wm_info = &i945_wm_info;
1502         else if (!IS_GEN2(dev))
1503                 wm_info = &i915_wm_info;
1504         else
1505                 wm_info = &i830_a_wm_info;
1506
1507         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1508         crtc = intel_get_crtc_for_plane(dev, 0);
1509         if (intel_crtc_active(crtc)) {
1510                 const struct drm_display_mode *adjusted_mode;
1511                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1512                 if (IS_GEN2(dev))
1513                         cpp = 4;
1514
1515                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1516                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1517                                                wm_info, fifo_size, cpp,
1518                                                pessimal_latency_ns);
1519                 enabled = crtc;
1520         } else {
1521                 planea_wm = fifo_size - wm_info->guard_size;
1522                 if (planea_wm > (long)wm_info->max_wm)
1523                         planea_wm = wm_info->max_wm;
1524         }
1525
1526         if (IS_GEN2(dev))
1527                 wm_info = &i830_bc_wm_info;
1528
1529         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1530         crtc = intel_get_crtc_for_plane(dev, 1);
1531         if (intel_crtc_active(crtc)) {
1532                 const struct drm_display_mode *adjusted_mode;
1533                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1534                 if (IS_GEN2(dev))
1535                         cpp = 4;
1536
1537                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1538                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1539                                                wm_info, fifo_size, cpp,
1540                                                pessimal_latency_ns);
1541                 if (enabled == NULL)
1542                         enabled = crtc;
1543                 else
1544                         enabled = NULL;
1545         } else {
1546                 planeb_wm = fifo_size - wm_info->guard_size;
1547                 if (planeb_wm > (long)wm_info->max_wm)
1548                         planeb_wm = wm_info->max_wm;
1549         }
1550
1551         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1552
1553         if (IS_I915GM(dev) && enabled) {
1554                 struct drm_i915_gem_object *obj;
1555
1556                 obj = intel_fb_obj(enabled->primary->state->fb);
1557
1558                 /* self-refresh seems busted with untiled */
1559                 if (obj->tiling_mode == I915_TILING_NONE)
1560                         enabled = NULL;
1561         }
1562
1563         /*
1564          * Overlay gets an aggressive default since video jitter is bad.
1565          */
1566         cwm = 2;
1567
1568         /* Play safe and disable self-refresh before adjusting watermarks. */
1569         intel_set_memory_cxsr(dev_priv, false);
1570
1571         /* Calc sr entries for one plane configs */
1572         if (HAS_FW_BLC(dev) && enabled) {
1573                 /* self-refresh has much higher latency */
1574                 static const int sr_latency_ns = 6000;
1575                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1576                 int clock = adjusted_mode->crtc_clock;
1577                 int htotal = adjusted_mode->crtc_htotal;
1578                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1579                 int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1580                 unsigned long line_time_us;
1581                 int entries;
1582
1583                 line_time_us = max(htotal * 1000 / clock, 1);
1584
1585                 /* Use ns/us then divide to preserve precision */
1586                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1587                         cpp * hdisplay;
1588                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1589                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1590                 srwm = wm_info->fifo_size - entries;
1591                 if (srwm < 0)
1592                         srwm = 1;
1593
1594                 if (IS_I945G(dev) || IS_I945GM(dev))
1595                         I915_WRITE(FW_BLC_SELF,
1596                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1597                 else if (IS_I915GM(dev))
1598                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1599         }
1600
1601         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1602                       planea_wm, planeb_wm, cwm, srwm);
1603
1604         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1605         fwater_hi = (cwm & 0x1f);
1606
1607         /* Set request length to 8 cachelines per fetch */
1608         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1609         fwater_hi = fwater_hi | (1 << 8);
1610
1611         I915_WRITE(FW_BLC, fwater_lo);
1612         I915_WRITE(FW_BLC2, fwater_hi);
1613
1614         if (enabled)
1615                 intel_set_memory_cxsr(dev_priv, true);
1616 }
1617
1618 static void i845_update_wm(struct drm_crtc *unused_crtc)
1619 {
1620         struct drm_device *dev = unused_crtc->dev;
1621         struct drm_i915_private *dev_priv = dev->dev_private;
1622         struct drm_crtc *crtc;
1623         const struct drm_display_mode *adjusted_mode;
1624         uint32_t fwater_lo;
1625         int planea_wm;
1626
1627         crtc = single_enabled_crtc(dev);
1628         if (crtc == NULL)
1629                 return;
1630
1631         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1632         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1633                                        &i845_wm_info,
1634                                        dev_priv->display.get_fifo_size(dev, 0),
1635                                        4, pessimal_latency_ns);
1636         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1637         fwater_lo |= (3<<8) | planea_wm;
1638
1639         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1640
1641         I915_WRITE(FW_BLC, fwater_lo);
1642 }
1643
1644 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1645 {
1646         uint32_t pixel_rate;
1647
1648         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1649
1650         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1651          * adjust the pixel_rate here. */
1652
1653         if (pipe_config->pch_pfit.enabled) {
1654                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1655                 uint32_t pfit_size = pipe_config->pch_pfit.size;
1656
1657                 pipe_w = pipe_config->pipe_src_w;
1658                 pipe_h = pipe_config->pipe_src_h;
1659
1660                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1661                 pfit_h = pfit_size & 0xFFFF;
1662                 if (pipe_w < pfit_w)
1663                         pipe_w = pfit_w;
1664                 if (pipe_h < pfit_h)
1665                         pipe_h = pfit_h;
1666
1667                 if (WARN_ON(!pfit_w || !pfit_h))
1668                         return pixel_rate;
1669
1670                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1671                                      pfit_w * pfit_h);
1672         }
1673
1674         return pixel_rate;
1675 }
1676
1677 /* latency must be in 0.1us units. */
1678 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1679 {
1680         uint64_t ret;
1681
1682         if (WARN(latency == 0, "Latency value missing\n"))
1683                 return UINT_MAX;
1684
1685         ret = (uint64_t) pixel_rate * cpp * latency;
1686         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1687
1688         return ret;
1689 }
1690
1691 /* latency must be in 0.1us units. */
1692 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1693                                uint32_t horiz_pixels, uint8_t cpp,
1694                                uint32_t latency)
1695 {
1696         uint32_t ret;
1697
1698         if (WARN(latency == 0, "Latency value missing\n"))
1699                 return UINT_MAX;
1700         if (WARN_ON(!pipe_htotal))
1701                 return UINT_MAX;
1702
1703         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1704         ret = (ret + 1) * horiz_pixels * cpp;
1705         ret = DIV_ROUND_UP(ret, 64) + 2;
1706         return ret;
1707 }
1708
1709 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1710                            uint8_t cpp)
1711 {
1712         /*
1713          * Neither of these should be possible since this function shouldn't be
1714          * called if the CRTC is off or the plane is invisible.  But let's be
1715          * extra paranoid to avoid a potential divide-by-zero if we screw up
1716          * elsewhere in the driver.
1717          */
1718         if (WARN_ON(!cpp))
1719                 return 0;
1720         if (WARN_ON(!horiz_pixels))
1721                 return 0;
1722
1723         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1724 }
1725
1726 struct ilk_wm_maximums {
1727         uint16_t pri;
1728         uint16_t spr;
1729         uint16_t cur;
1730         uint16_t fbc;
1731 };
1732
1733 /*
1734  * For both WM_PIPE and WM_LP.
1735  * mem_value must be in 0.1us units.
1736  */
1737 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1738                                    const struct intel_plane_state *pstate,
1739                                    uint32_t mem_value,
1740                                    bool is_lp)
1741 {
1742         int cpp = pstate->base.fb ?
1743                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1744         uint32_t method1, method2;
1745
1746         if (!cstate->base.active || !pstate->visible)
1747                 return 0;
1748
1749         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1750
1751         if (!is_lp)
1752                 return method1;
1753
1754         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1755                                  cstate->base.adjusted_mode.crtc_htotal,
1756                                  drm_rect_width(&pstate->dst),
1757                                  cpp, mem_value);
1758
1759         return min(method1, method2);
1760 }
1761
1762 /*
1763  * For both WM_PIPE and WM_LP.
1764  * mem_value must be in 0.1us units.
1765  */
1766 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1767                                    const struct intel_plane_state *pstate,
1768                                    uint32_t mem_value)
1769 {
1770         int cpp = pstate->base.fb ?
1771                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1772         uint32_t method1, method2;
1773
1774         if (!cstate->base.active || !pstate->visible)
1775                 return 0;
1776
1777         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1778         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1779                                  cstate->base.adjusted_mode.crtc_htotal,
1780                                  drm_rect_width(&pstate->dst),
1781                                  cpp, mem_value);
1782         return min(method1, method2);
1783 }
1784
1785 /*
1786  * For both WM_PIPE and WM_LP.
1787  * mem_value must be in 0.1us units.
1788  */
1789 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1790                                    const struct intel_plane_state *pstate,
1791                                    uint32_t mem_value)
1792 {
1793         /*
1794          * We treat the cursor plane as always-on for the purposes of watermark
1795          * calculation.  Until we have two-stage watermark programming merged,
1796          * this is necessary to avoid flickering.
1797          */
1798         int cpp = 4;
1799         int width = pstate->visible ? pstate->base.crtc_w : 64;
1800
1801         if (!cstate->base.active)
1802                 return 0;
1803
1804         return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1805                               cstate->base.adjusted_mode.crtc_htotal,
1806                               width, cpp, mem_value);
1807 }
1808
1809 /* Only for WM_LP. */
1810 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1811                                    const struct intel_plane_state *pstate,
1812                                    uint32_t pri_val)
1813 {
1814         int cpp = pstate->base.fb ?
1815                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1816
1817         if (!cstate->base.active || !pstate->visible)
1818                 return 0;
1819
1820         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1821 }
1822
1823 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1824 {
1825         if (INTEL_INFO(dev)->gen >= 8)
1826                 return 3072;
1827         else if (INTEL_INFO(dev)->gen >= 7)
1828                 return 768;
1829         else
1830                 return 512;
1831 }
1832
1833 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1834                                          int level, bool is_sprite)
1835 {
1836         if (INTEL_INFO(dev)->gen >= 8)
1837                 /* BDW primary/sprite plane watermarks */
1838                 return level == 0 ? 255 : 2047;
1839         else if (INTEL_INFO(dev)->gen >= 7)
1840                 /* IVB/HSW primary/sprite plane watermarks */
1841                 return level == 0 ? 127 : 1023;
1842         else if (!is_sprite)
1843                 /* ILK/SNB primary plane watermarks */
1844                 return level == 0 ? 127 : 511;
1845         else
1846                 /* ILK/SNB sprite plane watermarks */
1847                 return level == 0 ? 63 : 255;
1848 }
1849
1850 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1851                                           int level)
1852 {
1853         if (INTEL_INFO(dev)->gen >= 7)
1854                 return level == 0 ? 63 : 255;
1855         else
1856                 return level == 0 ? 31 : 63;
1857 }
1858
1859 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1860 {
1861         if (INTEL_INFO(dev)->gen >= 8)
1862                 return 31;
1863         else
1864                 return 15;
1865 }
1866
1867 /* Calculate the maximum primary/sprite plane watermark */
1868 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1869                                      int level,
1870                                      const struct intel_wm_config *config,
1871                                      enum intel_ddb_partitioning ddb_partitioning,
1872                                      bool is_sprite)
1873 {
1874         unsigned int fifo_size = ilk_display_fifo_size(dev);
1875
1876         /* if sprites aren't enabled, sprites get nothing */
1877         if (is_sprite && !config->sprites_enabled)
1878                 return 0;
1879
1880         /* HSW allows LP1+ watermarks even with multiple pipes */
1881         if (level == 0 || config->num_pipes_active > 1) {
1882                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1883
1884                 /*
1885                  * For some reason the non self refresh
1886                  * FIFO size is only half of the self
1887                  * refresh FIFO size on ILK/SNB.
1888                  */
1889                 if (INTEL_INFO(dev)->gen <= 6)
1890                         fifo_size /= 2;
1891         }
1892
1893         if (config->sprites_enabled) {
1894                 /* level 0 is always calculated with 1:1 split */
1895                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1896                         if (is_sprite)
1897                                 fifo_size *= 5;
1898                         fifo_size /= 6;
1899                 } else {
1900                         fifo_size /= 2;
1901                 }
1902         }
1903
1904         /* clamp to max that the registers can hold */
1905         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1906 }
1907
1908 /* Calculate the maximum cursor plane watermark */
1909 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1910                                       int level,
1911                                       const struct intel_wm_config *config)
1912 {
1913         /* HSW LP1+ watermarks w/ multiple pipes */
1914         if (level > 0 && config->num_pipes_active > 1)
1915                 return 64;
1916
1917         /* otherwise just report max that registers can hold */
1918         return ilk_cursor_wm_reg_max(dev, level);
1919 }
1920
1921 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1922                                     int level,
1923                                     const struct intel_wm_config *config,
1924                                     enum intel_ddb_partitioning ddb_partitioning,
1925                                     struct ilk_wm_maximums *max)
1926 {
1927         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1928         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1929         max->cur = ilk_cursor_wm_max(dev, level, config);
1930         max->fbc = ilk_fbc_wm_reg_max(dev);
1931 }
1932
1933 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1934                                         int level,
1935                                         struct ilk_wm_maximums *max)
1936 {
1937         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1938         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1939         max->cur = ilk_cursor_wm_reg_max(dev, level);
1940         max->fbc = ilk_fbc_wm_reg_max(dev);
1941 }
1942
1943 static bool ilk_validate_wm_level(int level,
1944                                   const struct ilk_wm_maximums *max,
1945                                   struct intel_wm_level *result)
1946 {
1947         bool ret;
1948
1949         /* already determined to be invalid? */
1950         if (!result->enable)
1951                 return false;
1952
1953         result->enable = result->pri_val <= max->pri &&
1954                          result->spr_val <= max->spr &&
1955                          result->cur_val <= max->cur;
1956
1957         ret = result->enable;
1958
1959         /*
1960          * HACK until we can pre-compute everything,
1961          * and thus fail gracefully if LP0 watermarks
1962          * are exceeded...
1963          */
1964         if (level == 0 && !result->enable) {
1965                 if (result->pri_val > max->pri)
1966                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1967                                       level, result->pri_val, max->pri);
1968                 if (result->spr_val > max->spr)
1969                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1970                                       level, result->spr_val, max->spr);
1971                 if (result->cur_val > max->cur)
1972                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1973                                       level, result->cur_val, max->cur);
1974
1975                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1976                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1977                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1978                 result->enable = true;
1979         }
1980
1981         return ret;
1982 }
1983
1984 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1985                                  const struct intel_crtc *intel_crtc,
1986                                  int level,
1987                                  struct intel_crtc_state *cstate,
1988                                  struct intel_plane_state *pristate,
1989                                  struct intel_plane_state *sprstate,
1990                                  struct intel_plane_state *curstate,
1991                                  struct intel_wm_level *result)
1992 {
1993         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1994         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1995         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1996
1997         /* WM1+ latency values stored in 0.5us units */
1998         if (level > 0) {
1999                 pri_latency *= 5;
2000                 spr_latency *= 5;
2001                 cur_latency *= 5;
2002         }
2003
2004         if (pristate) {
2005                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2006                                                      pri_latency, level);
2007                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2008         }
2009
2010         if (sprstate)
2011                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2012
2013         if (curstate)
2014                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2015
2016         result->enable = true;
2017 }
2018
2019 static uint32_t
2020 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2021 {
2022         const struct intel_atomic_state *intel_state =
2023                 to_intel_atomic_state(cstate->base.state);
2024         const struct drm_display_mode *adjusted_mode =
2025                 &cstate->base.adjusted_mode;
2026         u32 linetime, ips_linetime;
2027
2028         if (!cstate->base.active)
2029                 return 0;
2030         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2031                 return 0;
2032         if (WARN_ON(intel_state->cdclk == 0))
2033                 return 0;
2034
2035         /* The WM are computed with base on how long it takes to fill a single
2036          * row at the given clock rate, multiplied by 8.
2037          * */
2038         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2039                                      adjusted_mode->crtc_clock);
2040         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2041                                          intel_state->cdclk);
2042
2043         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2044                PIPE_WM_LINETIME_TIME(linetime);
2045 }
2046
2047 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2048 {
2049         struct drm_i915_private *dev_priv = dev->dev_private;
2050
2051         if (IS_GEN9(dev)) {
2052                 uint32_t val;
2053                 int ret, i;
2054                 int level, max_level = ilk_wm_max_level(dev);
2055
2056                 /* read the first set of memory latencies[0:3] */
2057                 val = 0; /* data0 to be programmed to 0 for first set */
2058                 mutex_lock(&dev_priv->rps.hw_lock);
2059                 ret = sandybridge_pcode_read(dev_priv,
2060                                              GEN9_PCODE_READ_MEM_LATENCY,
2061                                              &val);
2062                 mutex_unlock(&dev_priv->rps.hw_lock);
2063
2064                 if (ret) {
2065                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2066                         return;
2067                 }
2068
2069                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2070                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2071                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2072                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2073                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2074                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2075                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2076
2077                 /* read the second set of memory latencies[4:7] */
2078                 val = 1; /* data0 to be programmed to 1 for second set */
2079                 mutex_lock(&dev_priv->rps.hw_lock);
2080                 ret = sandybridge_pcode_read(dev_priv,
2081                                              GEN9_PCODE_READ_MEM_LATENCY,
2082                                              &val);
2083                 mutex_unlock(&dev_priv->rps.hw_lock);
2084                 if (ret) {
2085                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2086                         return;
2087                 }
2088
2089                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2090                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2091                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2092                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2093                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2094                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2095                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2096
2097                 /*
2098                  * WaWmMemoryReadLatency:skl
2099                  *
2100                  * punit doesn't take into account the read latency so we need
2101                  * to add 2us to the various latency levels we retrieve from
2102                  * the punit.
2103                  *   - W0 is a bit special in that it's the only level that
2104                  *   can't be disabled if we want to have display working, so
2105                  *   we always add 2us there.
2106                  *   - For levels >=1, punit returns 0us latency when they are
2107                  *   disabled, so we respect that and don't add 2us then
2108                  *
2109                  * Additionally, if a level n (n > 1) has a 0us latency, all
2110                  * levels m (m >= n) need to be disabled. We make sure to
2111                  * sanitize the values out of the punit to satisfy this
2112                  * requirement.
2113                  */
2114                 wm[0] += 2;
2115                 for (level = 1; level <= max_level; level++)
2116                         if (wm[level] != 0)
2117                                 wm[level] += 2;
2118                         else {
2119                                 for (i = level + 1; i <= max_level; i++)
2120                                         wm[i] = 0;
2121
2122                                 break;
2123                         }
2124         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2125                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2126
2127                 wm[0] = (sskpd >> 56) & 0xFF;
2128                 if (wm[0] == 0)
2129                         wm[0] = sskpd & 0xF;
2130                 wm[1] = (sskpd >> 4) & 0xFF;
2131                 wm[2] = (sskpd >> 12) & 0xFF;
2132                 wm[3] = (sskpd >> 20) & 0x1FF;
2133                 wm[4] = (sskpd >> 32) & 0x1FF;
2134         } else if (INTEL_INFO(dev)->gen >= 6) {
2135                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2136
2137                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2138                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2139                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2140                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2141         } else if (INTEL_INFO(dev)->gen >= 5) {
2142                 uint32_t mltr = I915_READ(MLTR_ILK);
2143
2144                 /* ILK primary LP0 latency is 700 ns */
2145                 wm[0] = 7;
2146                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2147                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2148         }
2149 }
2150
2151 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2152 {
2153         /* ILK sprite LP0 latency is 1300 ns */
2154         if (IS_GEN5(dev))
2155                 wm[0] = 13;
2156 }
2157
2158 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2159 {
2160         /* ILK cursor LP0 latency is 1300 ns */
2161         if (IS_GEN5(dev))
2162                 wm[0] = 13;
2163
2164         /* WaDoubleCursorLP3Latency:ivb */
2165         if (IS_IVYBRIDGE(dev))
2166                 wm[3] *= 2;
2167 }
2168
2169 int ilk_wm_max_level(const struct drm_device *dev)
2170 {
2171         /* how many WM levels are we expecting */
2172         if (INTEL_INFO(dev)->gen >= 9)
2173                 return 7;
2174         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2175                 return 4;
2176         else if (INTEL_INFO(dev)->gen >= 6)
2177                 return 3;
2178         else
2179                 return 2;
2180 }
2181
2182 static void intel_print_wm_latency(struct drm_device *dev,
2183                                    const char *name,
2184                                    const uint16_t wm[8])
2185 {
2186         int level, max_level = ilk_wm_max_level(dev);
2187
2188         for (level = 0; level <= max_level; level++) {
2189                 unsigned int latency = wm[level];
2190
2191                 if (latency == 0) {
2192                         DRM_ERROR("%s WM%d latency not provided\n",
2193                                   name, level);
2194                         continue;
2195                 }
2196
2197                 /*
2198                  * - latencies are in us on gen9.
2199                  * - before then, WM1+ latency values are in 0.5us units
2200                  */
2201                 if (IS_GEN9(dev))
2202                         latency *= 10;
2203                 else if (level > 0)
2204                         latency *= 5;
2205
2206                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2207                               name, level, wm[level],
2208                               latency / 10, latency % 10);
2209         }
2210 }
2211
2212 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2213                                     uint16_t wm[5], uint16_t min)
2214 {
2215         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2216
2217         if (wm[0] >= min)
2218                 return false;
2219
2220         wm[0] = max(wm[0], min);
2221         for (level = 1; level <= max_level; level++)
2222                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2223
2224         return true;
2225 }
2226
2227 static void snb_wm_latency_quirk(struct drm_device *dev)
2228 {
2229         struct drm_i915_private *dev_priv = dev->dev_private;
2230         bool changed;
2231
2232         /*
2233          * The BIOS provided WM memory latency values are often
2234          * inadequate for high resolution displays. Adjust them.
2235          */
2236         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2237                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2238                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2239
2240         if (!changed)
2241                 return;
2242
2243         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2244         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2245         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2246         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2247 }
2248
2249 static void ilk_setup_wm_latency(struct drm_device *dev)
2250 {
2251         struct drm_i915_private *dev_priv = dev->dev_private;
2252
2253         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2254
2255         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2256                sizeof(dev_priv->wm.pri_latency));
2257         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2258                sizeof(dev_priv->wm.pri_latency));
2259
2260         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2261         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2262
2263         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2264         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2265         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2266
2267         if (IS_GEN6(dev))
2268                 snb_wm_latency_quirk(dev);
2269 }
2270
2271 static void skl_setup_wm_latency(struct drm_device *dev)
2272 {
2273         struct drm_i915_private *dev_priv = dev->dev_private;
2274
2275         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2276         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2277 }
2278
2279 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2280                                  struct intel_pipe_wm *pipe_wm)
2281 {
2282         /* LP0 watermark maximums depend on this pipe alone */
2283         const struct intel_wm_config config = {
2284                 .num_pipes_active = 1,
2285                 .sprites_enabled = pipe_wm->sprites_enabled,
2286                 .sprites_scaled = pipe_wm->sprites_scaled,
2287         };
2288         struct ilk_wm_maximums max;
2289
2290         /* LP0 watermarks always use 1/2 DDB partitioning */
2291         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2292
2293         /* At least LP0 must be valid */
2294         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2295                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2296                 return false;
2297         }
2298
2299         return true;
2300 }
2301
2302 /* Compute new watermarks for the pipe */
2303 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2304 {
2305         struct drm_atomic_state *state = cstate->base.state;
2306         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2307         struct intel_pipe_wm *pipe_wm;
2308         struct drm_device *dev = state->dev;
2309         const struct drm_i915_private *dev_priv = dev->dev_private;
2310         struct intel_plane *intel_plane;
2311         struct intel_plane_state *pristate = NULL;
2312         struct intel_plane_state *sprstate = NULL;
2313         struct intel_plane_state *curstate = NULL;
2314         int level, max_level = ilk_wm_max_level(dev), usable_level;
2315         struct ilk_wm_maximums max;
2316
2317         pipe_wm = &cstate->wm.ilk.optimal;
2318
2319         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2320                 struct intel_plane_state *ps;
2321
2322                 ps = intel_atomic_get_existing_plane_state(state,
2323                                                            intel_plane);
2324                 if (!ps)
2325                         continue;
2326
2327                 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2328                         pristate = ps;
2329                 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2330                         sprstate = ps;
2331                 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2332                         curstate = ps;
2333         }
2334
2335         pipe_wm->pipe_enabled = cstate->base.active;
2336         if (sprstate) {
2337                 pipe_wm->sprites_enabled = sprstate->visible;
2338                 pipe_wm->sprites_scaled = sprstate->visible &&
2339                         (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2340                          drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2341         }
2342
2343         usable_level = max_level;
2344
2345         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2346         if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2347                 usable_level = 1;
2348
2349         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2350         if (pipe_wm->sprites_scaled)
2351                 usable_level = 0;
2352
2353         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2354                              pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2355
2356         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2357         pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2358
2359         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2360                 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2361
2362         if (!ilk_validate_pipe_wm(dev, pipe_wm))
2363                 return -EINVAL;
2364
2365         ilk_compute_wm_reg_maximums(dev, 1, &max);
2366
2367         for (level = 1; level <= max_level; level++) {
2368                 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2369
2370                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2371                                      pristate, sprstate, curstate, wm);
2372
2373                 /*
2374                  * Disable any watermark level that exceeds the
2375                  * register maximums since such watermarks are
2376                  * always invalid.
2377                  */
2378                 if (level > usable_level)
2379                         continue;
2380
2381                 if (ilk_validate_wm_level(level, &max, wm))
2382                         pipe_wm->wm[level] = *wm;
2383                 else
2384                         usable_level = level;
2385         }
2386
2387         return 0;
2388 }
2389
2390 /*
2391  * Build a set of 'intermediate' watermark values that satisfy both the old
2392  * state and the new state.  These can be programmed to the hardware
2393  * immediately.
2394  */
2395 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2396                                        struct intel_crtc *intel_crtc,
2397                                        struct intel_crtc_state *newstate)
2398 {
2399         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2400         struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2401         int level, max_level = ilk_wm_max_level(dev);
2402
2403         /*
2404          * Start with the final, target watermarks, then combine with the
2405          * currently active watermarks to get values that are safe both before
2406          * and after the vblank.
2407          */
2408         *a = newstate->wm.ilk.optimal;
2409         a->pipe_enabled |= b->pipe_enabled;
2410         a->sprites_enabled |= b->sprites_enabled;
2411         a->sprites_scaled |= b->sprites_scaled;
2412
2413         for (level = 0; level <= max_level; level++) {
2414                 struct intel_wm_level *a_wm = &a->wm[level];
2415                 const struct intel_wm_level *b_wm = &b->wm[level];
2416
2417                 a_wm->enable &= b_wm->enable;
2418                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2419                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2420                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2421                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2422         }
2423
2424         /*
2425          * We need to make sure that these merged watermark values are
2426          * actually a valid configuration themselves.  If they're not,
2427          * there's no safe way to transition from the old state to
2428          * the new state, so we need to fail the atomic transaction.
2429          */
2430         if (!ilk_validate_pipe_wm(dev, a))
2431                 return -EINVAL;
2432
2433         /*
2434          * If our intermediate WM are identical to the final WM, then we can
2435          * omit the post-vblank programming; only update if it's different.
2436          */
2437         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2438                 newstate->wm.need_postvbl_update = false;
2439
2440         return 0;
2441 }
2442
2443 /*
2444  * Merge the watermarks from all active pipes for a specific level.
2445  */
2446 static void ilk_merge_wm_level(struct drm_device *dev,
2447                                int level,
2448                                struct intel_wm_level *ret_wm)
2449 {
2450         const struct intel_crtc *intel_crtc;
2451
2452         ret_wm->enable = true;
2453
2454         for_each_intel_crtc(dev, intel_crtc) {
2455                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2456                 const struct intel_wm_level *wm = &active->wm[level];
2457
2458                 if (!active->pipe_enabled)
2459                         continue;
2460
2461                 /*
2462                  * The watermark values may have been used in the past,
2463                  * so we must maintain them in the registers for some
2464                  * time even if the level is now disabled.
2465                  */
2466                 if (!wm->enable)
2467                         ret_wm->enable = false;
2468
2469                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2470                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2471                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2472                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2473         }
2474 }
2475
2476 /*
2477  * Merge all low power watermarks for all active pipes.
2478  */
2479 static void ilk_wm_merge(struct drm_device *dev,
2480                          const struct intel_wm_config *config,
2481                          const struct ilk_wm_maximums *max,
2482                          struct intel_pipe_wm *merged)
2483 {
2484         struct drm_i915_private *dev_priv = dev->dev_private;
2485         int level, max_level = ilk_wm_max_level(dev);
2486         int last_enabled_level = max_level;
2487
2488         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2489         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2490             config->num_pipes_active > 1)
2491                 last_enabled_level = 0;
2492
2493         /* ILK: FBC WM must be disabled always */
2494         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2495
2496         /* merge each WM1+ level */
2497         for (level = 1; level <= max_level; level++) {
2498                 struct intel_wm_level *wm = &merged->wm[level];
2499
2500                 ilk_merge_wm_level(dev, level, wm);
2501
2502                 if (level > last_enabled_level)
2503                         wm->enable = false;
2504                 else if (!ilk_validate_wm_level(level, max, wm))
2505                         /* make sure all following levels get disabled */
2506                         last_enabled_level = level - 1;
2507
2508                 /*
2509                  * The spec says it is preferred to disable
2510                  * FBC WMs instead of disabling a WM level.
2511                  */
2512                 if (wm->fbc_val > max->fbc) {
2513                         if (wm->enable)
2514                                 merged->fbc_wm_enabled = false;
2515                         wm->fbc_val = 0;
2516                 }
2517         }
2518
2519         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2520         /*
2521          * FIXME this is racy. FBC might get enabled later.
2522          * What we should check here is whether FBC can be
2523          * enabled sometime later.
2524          */
2525         if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2526             intel_fbc_is_active(dev_priv)) {
2527                 for (level = 2; level <= max_level; level++) {
2528                         struct intel_wm_level *wm = &merged->wm[level];
2529
2530                         wm->enable = false;
2531                 }
2532         }
2533 }
2534
2535 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2536 {
2537         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2538         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2539 }
2540
2541 /* The value we need to program into the WM_LPx latency field */
2542 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2543 {
2544         struct drm_i915_private *dev_priv = dev->dev_private;
2545
2546         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2547                 return 2 * level;
2548         else
2549                 return dev_priv->wm.pri_latency[level];
2550 }
2551
2552 static void ilk_compute_wm_results(struct drm_device *dev,
2553                                    const struct intel_pipe_wm *merged,
2554                                    enum intel_ddb_partitioning partitioning,
2555                                    struct ilk_wm_values *results)
2556 {
2557         struct intel_crtc *intel_crtc;
2558         int level, wm_lp;
2559
2560         results->enable_fbc_wm = merged->fbc_wm_enabled;
2561         results->partitioning = partitioning;
2562
2563         /* LP1+ register values */
2564         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2565                 const struct intel_wm_level *r;
2566
2567                 level = ilk_wm_lp_to_level(wm_lp, merged);
2568
2569                 r = &merged->wm[level];
2570
2571                 /*
2572                  * Maintain the watermark values even if the level is
2573                  * disabled. Doing otherwise could cause underruns.
2574                  */
2575                 results->wm_lp[wm_lp - 1] =
2576                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2577                         (r->pri_val << WM1_LP_SR_SHIFT) |
2578                         r->cur_val;
2579
2580                 if (r->enable)
2581                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2582
2583                 if (INTEL_INFO(dev)->gen >= 8)
2584                         results->wm_lp[wm_lp - 1] |=
2585                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2586                 else
2587                         results->wm_lp[wm_lp - 1] |=
2588                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2589
2590                 /*
2591                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2592                  * level is disabled. Doing otherwise could cause underruns.
2593                  */
2594                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2595                         WARN_ON(wm_lp != 1);
2596                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2597                 } else
2598                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2599         }
2600
2601         /* LP0 register values */
2602         for_each_intel_crtc(dev, intel_crtc) {
2603                 enum pipe pipe = intel_crtc->pipe;
2604                 const struct intel_wm_level *r =
2605                         &intel_crtc->wm.active.ilk.wm[0];
2606
2607                 if (WARN_ON(!r->enable))
2608                         continue;
2609
2610                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2611
2612                 results->wm_pipe[pipe] =
2613                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2614                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2615                         r->cur_val;
2616         }
2617 }
2618
2619 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2620  * case both are at the same level. Prefer r1 in case they're the same. */
2621 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2622                                                   struct intel_pipe_wm *r1,
2623                                                   struct intel_pipe_wm *r2)
2624 {
2625         int level, max_level = ilk_wm_max_level(dev);
2626         int level1 = 0, level2 = 0;
2627
2628         for (level = 1; level <= max_level; level++) {
2629                 if (r1->wm[level].enable)
2630                         level1 = level;
2631                 if (r2->wm[level].enable)
2632                         level2 = level;
2633         }
2634
2635         if (level1 == level2) {
2636                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2637                         return r2;
2638                 else
2639                         return r1;
2640         } else if (level1 > level2) {
2641                 return r1;
2642         } else {
2643                 return r2;
2644         }
2645 }
2646
2647 /* dirty bits used to track which watermarks need changes */
2648 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2649 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2650 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2651 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2652 #define WM_DIRTY_FBC (1 << 24)
2653 #define WM_DIRTY_DDB (1 << 25)
2654
2655 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2656                                          const struct ilk_wm_values *old,
2657                                          const struct ilk_wm_values *new)
2658 {
2659         unsigned int dirty = 0;
2660         enum pipe pipe;
2661         int wm_lp;
2662
2663         for_each_pipe(dev_priv, pipe) {
2664                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2665                         dirty |= WM_DIRTY_LINETIME(pipe);
2666                         /* Must disable LP1+ watermarks too */
2667                         dirty |= WM_DIRTY_LP_ALL;
2668                 }
2669
2670                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2671                         dirty |= WM_DIRTY_PIPE(pipe);
2672                         /* Must disable LP1+ watermarks too */
2673                         dirty |= WM_DIRTY_LP_ALL;
2674                 }
2675         }
2676
2677         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2678                 dirty |= WM_DIRTY_FBC;
2679                 /* Must disable LP1+ watermarks too */
2680                 dirty |= WM_DIRTY_LP_ALL;
2681         }
2682
2683         if (old->partitioning != new->partitioning) {
2684                 dirty |= WM_DIRTY_DDB;
2685                 /* Must disable LP1+ watermarks too */
2686                 dirty |= WM_DIRTY_LP_ALL;
2687         }
2688
2689         /* LP1+ watermarks already deemed dirty, no need to continue */
2690         if (dirty & WM_DIRTY_LP_ALL)
2691                 return dirty;
2692
2693         /* Find the lowest numbered LP1+ watermark in need of an update... */
2694         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2695                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2696                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2697                         break;
2698         }
2699
2700         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2701         for (; wm_lp <= 3; wm_lp++)
2702                 dirty |= WM_DIRTY_LP(wm_lp);
2703
2704         return dirty;
2705 }
2706
2707 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2708                                unsigned int dirty)
2709 {
2710         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2711         bool changed = false;
2712
2713         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2714                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2715                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2716                 changed = true;
2717         }
2718         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2719                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2720                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2721                 changed = true;
2722         }
2723         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2724                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2725                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2726                 changed = true;
2727         }
2728
2729         /*
2730          * Don't touch WM1S_LP_EN here.
2731          * Doing so could cause underruns.
2732          */
2733
2734         return changed;
2735 }
2736
2737 /*
2738  * The spec says we shouldn't write when we don't need, because every write
2739  * causes WMs to be re-evaluated, expending some power.
2740  */
2741 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2742                                 struct ilk_wm_values *results)
2743 {
2744         struct drm_device *dev = dev_priv->dev;
2745         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2746         unsigned int dirty;
2747         uint32_t val;
2748
2749         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2750         if (!dirty)
2751                 return;
2752
2753         _ilk_disable_lp_wm(dev_priv, dirty);
2754
2755         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2756                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2757         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2758                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2759         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2760                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2761
2762         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2763                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2764         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2765                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2766         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2767                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2768
2769         if (dirty & WM_DIRTY_DDB) {
2770                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2771                         val = I915_READ(WM_MISC);
2772                         if (results->partitioning == INTEL_DDB_PART_1_2)
2773                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2774                         else
2775                                 val |= WM_MISC_DATA_PARTITION_5_6;
2776                         I915_WRITE(WM_MISC, val);
2777                 } else {
2778                         val = I915_READ(DISP_ARB_CTL2);
2779                         if (results->partitioning == INTEL_DDB_PART_1_2)
2780                                 val &= ~DISP_DATA_PARTITION_5_6;
2781                         else
2782                                 val |= DISP_DATA_PARTITION_5_6;
2783                         I915_WRITE(DISP_ARB_CTL2, val);
2784                 }
2785         }
2786
2787         if (dirty & WM_DIRTY_FBC) {
2788                 val = I915_READ(DISP_ARB_CTL);
2789                 if (results->enable_fbc_wm)
2790                         val &= ~DISP_FBC_WM_DIS;
2791                 else
2792                         val |= DISP_FBC_WM_DIS;
2793                 I915_WRITE(DISP_ARB_CTL, val);
2794         }
2795
2796         if (dirty & WM_DIRTY_LP(1) &&
2797             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2798                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2799
2800         if (INTEL_INFO(dev)->gen >= 7) {
2801                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2802                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2803                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2804                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2805         }
2806
2807         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2808                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2809         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2810                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2811         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2812                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2813
2814         dev_priv->wm.hw = *results;
2815 }
2816
2817 bool ilk_disable_lp_wm(struct drm_device *dev)
2818 {
2819         struct drm_i915_private *dev_priv = dev->dev_private;
2820
2821         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2822 }
2823
2824 /*
2825  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2826  * different active planes.
2827  */
2828
2829 #define SKL_DDB_SIZE            896     /* in blocks */
2830 #define BXT_DDB_SIZE            512
2831
2832 /*
2833  * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2834  * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2835  * other universal planes are in indices 1..n.  Note that this may leave unused
2836  * indices between the top "sprite" plane and the cursor.
2837  */
2838 static int
2839 skl_wm_plane_id(const struct intel_plane *plane)
2840 {
2841         switch (plane->base.type) {
2842         case DRM_PLANE_TYPE_PRIMARY:
2843                 return 0;
2844         case DRM_PLANE_TYPE_CURSOR:
2845                 return PLANE_CURSOR;
2846         case DRM_PLANE_TYPE_OVERLAY:
2847                 return plane->plane + 1;
2848         default:
2849                 MISSING_CASE(plane->base.type);
2850                 return plane->plane;
2851         }
2852 }
2853
2854 static void
2855 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2856                                    const struct intel_crtc_state *cstate,
2857                                    struct skl_ddb_entry *alloc, /* out */
2858                                    int *num_active /* out */)
2859 {
2860         struct drm_atomic_state *state = cstate->base.state;
2861         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
2862         struct drm_i915_private *dev_priv = to_i915(dev);
2863         struct drm_crtc *for_crtc = cstate->base.crtc;
2864         unsigned int pipe_size, ddb_size;
2865         int nth_active_pipe;
2866         int pipe = to_intel_crtc(for_crtc)->pipe;
2867
2868         if (WARN_ON(!state) || !cstate->base.active) {
2869                 alloc->start = 0;
2870                 alloc->end = 0;
2871                 *num_active = hweight32(dev_priv->active_crtcs);
2872                 return;
2873         }
2874
2875         if (intel_state->active_pipe_changes)
2876                 *num_active = hweight32(intel_state->active_crtcs);
2877         else
2878                 *num_active = hweight32(dev_priv->active_crtcs);
2879
2880         if (IS_BROXTON(dev))
2881                 ddb_size = BXT_DDB_SIZE;
2882         else
2883                 ddb_size = SKL_DDB_SIZE;
2884
2885         ddb_size -= 4; /* 4 blocks for bypass path allocation */
2886
2887         /*
2888          * If the state doesn't change the active CRTC's, then there's
2889          * no need to recalculate; the existing pipe allocation limits
2890          * should remain unchanged.  Note that we're safe from racing
2891          * commits since any racing commit that changes the active CRTC
2892          * list would need to grab _all_ crtc locks, including the one
2893          * we currently hold.
2894          */
2895         if (!intel_state->active_pipe_changes) {
2896                 *alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
2897                 return;
2898         }
2899
2900         nth_active_pipe = hweight32(intel_state->active_crtcs &
2901                                     (drm_crtc_mask(for_crtc) - 1));
2902         pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
2903         alloc->start = nth_active_pipe * ddb_size / *num_active;
2904         alloc->end = alloc->start + pipe_size;
2905 }
2906
2907 static unsigned int skl_cursor_allocation(int num_active)
2908 {
2909         if (num_active == 1)
2910                 return 32;
2911
2912         return 8;
2913 }
2914
2915 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2916 {
2917         entry->start = reg & 0x3ff;
2918         entry->end = (reg >> 16) & 0x3ff;
2919         if (entry->end)
2920                 entry->end += 1;
2921 }
2922
2923 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2924                           struct skl_ddb_allocation *ddb /* out */)
2925 {
2926         enum pipe pipe;
2927         int plane;
2928         u32 val;
2929
2930         memset(ddb, 0, sizeof(*ddb));
2931
2932         for_each_pipe(dev_priv, pipe) {
2933                 enum intel_display_power_domain power_domain;
2934
2935                 power_domain = POWER_DOMAIN_PIPE(pipe);
2936                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2937                         continue;
2938
2939                 for_each_plane(dev_priv, pipe, plane) {
2940                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2941                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2942                                                    val);
2943                 }
2944
2945                 val = I915_READ(CUR_BUF_CFG(pipe));
2946                 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2947                                            val);
2948
2949                 intel_display_power_put(dev_priv, power_domain);
2950         }
2951 }
2952
2953 /*
2954  * Determines the downscale amount of a plane for the purposes of watermark calculations.
2955  * The bspec defines downscale amount as:
2956  *
2957  * """
2958  * Horizontal down scale amount = maximum[1, Horizontal source size /
2959  *                                           Horizontal destination size]
2960  * Vertical down scale amount = maximum[1, Vertical source size /
2961  *                                         Vertical destination size]
2962  * Total down scale amount = Horizontal down scale amount *
2963  *                           Vertical down scale amount
2964  * """
2965  *
2966  * Return value is provided in 16.16 fixed point form to retain fractional part.
2967  * Caller should take care of dividing & rounding off the value.
2968  */
2969 static uint32_t
2970 skl_plane_downscale_amount(const struct intel_plane_state *pstate)
2971 {
2972         uint32_t downscale_h, downscale_w;
2973         uint32_t src_w, src_h, dst_w, dst_h;
2974
2975         if (WARN_ON(!pstate->visible))
2976                 return DRM_PLANE_HELPER_NO_SCALING;
2977
2978         /* n.b., src is 16.16 fixed point, dst is whole integer */
2979         src_w = drm_rect_width(&pstate->src);
2980         src_h = drm_rect_height(&pstate->src);
2981         dst_w = drm_rect_width(&pstate->dst);
2982         dst_h = drm_rect_height(&pstate->dst);
2983         if (intel_rotation_90_or_270(pstate->base.rotation))
2984                 swap(dst_w, dst_h);
2985
2986         downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
2987         downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
2988
2989         /* Provide result in 16.16 fixed point */
2990         return (uint64_t)downscale_w * downscale_h >> 16;
2991 }
2992
2993 static unsigned int
2994 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
2995                              const struct drm_plane_state *pstate,
2996                              int y)
2997 {
2998         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
2999         struct drm_framebuffer *fb = pstate->fb;
3000         uint32_t down_scale_amount, data_rate;
3001         uint32_t width = 0, height = 0;
3002         unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;
3003
3004         if (!intel_pstate->visible)
3005                 return 0;
3006         if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
3007                 return 0;
3008         if (y && format != DRM_FORMAT_NV12)
3009                 return 0;
3010
3011         width = drm_rect_width(&intel_pstate->src) >> 16;
3012         height = drm_rect_height(&intel_pstate->src) >> 16;
3013
3014         if (intel_rotation_90_or_270(pstate->rotation))
3015                 swap(width, height);
3016
3017         /* for planar format */
3018         if (format == DRM_FORMAT_NV12) {
3019                 if (y)  /* y-plane data rate */
3020                         data_rate = width * height *
3021                                 drm_format_plane_cpp(format, 0);
3022                 else    /* uv-plane data rate */
3023                         data_rate = (width / 2) * (height / 2) *
3024                                 drm_format_plane_cpp(format, 1);
3025         } else {
3026                 /* for packed formats */
3027                 data_rate = width * height * drm_format_plane_cpp(format, 0);
3028         }
3029
3030         down_scale_amount = skl_plane_downscale_amount(intel_pstate);
3031
3032         return (uint64_t)data_rate * down_scale_amount >> 16;
3033 }
3034
3035 /*
3036  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3037  * a 8192x4096@32bpp framebuffer:
3038  *   3 * 4096 * 8192  * 4 < 2^32
3039  */
3040 static unsigned int
3041 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3042 {
3043         struct drm_crtc_state *cstate = &intel_cstate->base;
3044         struct drm_atomic_state *state = cstate->state;
3045         struct drm_crtc *crtc = cstate->crtc;
3046         struct drm_device *dev = crtc->dev;
3047         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3048         const struct drm_plane *plane;
3049         const struct intel_plane *intel_plane;
3050         struct drm_plane_state *pstate;
3051         unsigned int rate, total_data_rate = 0;
3052         int id;
3053         int i;
3054
3055         if (WARN_ON(!state))
3056                 return 0;
3057
3058         /* Calculate and cache data rate for each plane */
3059         for_each_plane_in_state(state, plane, pstate, i) {
3060                 id = skl_wm_plane_id(to_intel_plane(plane));
3061                 intel_plane = to_intel_plane(plane);
3062
3063                 if (intel_plane->pipe != intel_crtc->pipe)
3064                         continue;
3065
3066                 /* packed/uv */
3067                 rate = skl_plane_relative_data_rate(intel_cstate,
3068                                                     pstate, 0);
3069                 intel_cstate->wm.skl.plane_data_rate[id] = rate;
3070
3071                 /* y-plane */
3072                 rate = skl_plane_relative_data_rate(intel_cstate,
3073                                                     pstate, 1);
3074                 intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3075         }
3076
3077         /* Calculate CRTC's total data rate from cached values */
3078         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3079                 int id = skl_wm_plane_id(intel_plane);
3080
3081                 /* packed/uv */
3082                 total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
3083                 total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3084         }
3085
3086         WARN_ON(cstate->plane_mask && total_data_rate == 0);
3087
3088         return total_data_rate;
3089 }
3090
3091 static uint16_t
3092 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3093                   const int y)
3094 {
3095         struct drm_framebuffer *fb = pstate->fb;
3096         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3097         uint32_t src_w, src_h;
3098         uint32_t min_scanlines = 8;
3099         uint8_t plane_bpp;
3100
3101         if (WARN_ON(!fb))
3102                 return 0;
3103
3104         /* For packed formats, no y-plane, return 0 */
3105         if (y && fb->pixel_format != DRM_FORMAT_NV12)
3106                 return 0;
3107
3108         /* For Non Y-tile return 8-blocks */
3109         if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
3110             fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
3111                 return 8;
3112
3113         src_w = drm_rect_width(&intel_pstate->src) >> 16;
3114         src_h = drm_rect_height(&intel_pstate->src) >> 16;
3115
3116         if (intel_rotation_90_or_270(pstate->rotation))
3117                 swap(src_w, src_h);
3118
3119         /* Halve UV plane width and height for NV12 */
3120         if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
3121                 src_w /= 2;
3122                 src_h /= 2;
3123         }
3124
3125         if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
3126                 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
3127         else
3128                 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);
3129
3130         if (intel_rotation_90_or_270(pstate->rotation)) {
3131                 switch (plane_bpp) {
3132                 case 1:
3133                         min_scanlines = 32;
3134                         break;
3135                 case 2:
3136                         min_scanlines = 16;
3137                         break;
3138                 case 4:
3139                         min_scanlines = 8;
3140                         break;
3141                 case 8:
3142                         min_scanlines = 4;
3143                         break;
3144                 default:
3145                         WARN(1, "Unsupported pixel depth %u for rotation",
3146                              plane_bpp);
3147                         min_scanlines = 32;
3148                 }
3149         }
3150
3151         return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3152 }
3153
3154 static int
3155 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3156                       struct skl_ddb_allocation *ddb /* out */)
3157 {
3158         struct drm_atomic_state *state = cstate->base.state;
3159         struct drm_crtc *crtc = cstate->base.crtc;
3160         struct drm_device *dev = crtc->dev;
3161         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3162         struct intel_plane *intel_plane;
3163         struct drm_plane *plane;
3164         struct drm_plane_state *pstate;
3165         enum pipe pipe = intel_crtc->pipe;
3166         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3167         uint16_t alloc_size, start, cursor_blocks;
3168         uint16_t *minimum = cstate->wm.skl.minimum_blocks;
3169         uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3170         unsigned int total_data_rate;
3171         int num_active;
3172         int id, i;
3173
3174         if (WARN_ON(!state))
3175                 return 0;
3176
3177         if (!cstate->base.active) {
3178                 ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
3179                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3180                 memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3181                 return 0;
3182         }
3183
3184         skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3185         alloc_size = skl_ddb_entry_size(alloc);
3186         if (alloc_size == 0) {
3187                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3188                 return 0;
3189         }
3190
3191         cursor_blocks = skl_cursor_allocation(num_active);
3192         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
3193         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3194
3195         alloc_size -= cursor_blocks;
3196
3197         /* 1. Allocate the mininum required blocks for each active plane */
3198         for_each_plane_in_state(state, plane, pstate, i) {
3199                 intel_plane = to_intel_plane(plane);
3200                 id = skl_wm_plane_id(intel_plane);
3201
3202                 if (intel_plane->pipe != pipe)
3203                         continue;
3204
3205                 if (!to_intel_plane_state(pstate)->visible) {
3206                         minimum[id] = 0;
3207                         y_minimum[id] = 0;
3208                         continue;
3209                 }
3210                 if (plane->type == DRM_PLANE_TYPE_CURSOR) {
3211                         minimum[id] = 0;
3212                         y_minimum[id] = 0;
3213                         continue;
3214                 }
3215
3216                 minimum[id] = skl_ddb_min_alloc(pstate, 0);
3217                 y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3218         }
3219
3220         for (i = 0; i < PLANE_CURSOR; i++) {
3221                 alloc_size -= minimum[i];
3222                 alloc_size -= y_minimum[i];
3223         }
3224
3225         /*
3226          * 2. Distribute the remaining space in proportion to the amount of
3227          * data each plane needs to fetch from memory.
3228          *
3229          * FIXME: we may not allocate every single block here.
3230          */
3231         total_data_rate = skl_get_total_relative_data_rate(cstate);
3232         if (total_data_rate == 0)
3233                 return 0;
3234
3235         start = alloc->start;
3236         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3237                 unsigned int data_rate, y_data_rate;
3238                 uint16_t plane_blocks, y_plane_blocks = 0;
3239                 int id = skl_wm_plane_id(intel_plane);
3240
3241                 data_rate = cstate->wm.skl.plane_data_rate[id];
3242
3243                 /*
3244                  * allocation for (packed formats) or (uv-plane part of planar format):
3245                  * promote the expression to 64 bits to avoid overflowing, the
3246                  * result is < available as data_rate / total_data_rate < 1
3247                  */
3248                 plane_blocks = minimum[id];
3249                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3250                                         total_data_rate);
3251
3252                 /* Leave disabled planes at (0,0) */
3253                 if (data_rate) {
3254                         ddb->plane[pipe][id].start = start;
3255                         ddb->plane[pipe][id].end = start + plane_blocks;
3256                 }
3257
3258                 start += plane_blocks;
3259
3260                 /*
3261                  * allocation for y_plane part of planar format:
3262                  */
3263                 y_data_rate = cstate->wm.skl.plane_y_data_rate[id];
3264
3265                 y_plane_blocks = y_minimum[id];
3266                 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3267                                         total_data_rate);
3268
3269                 if (y_data_rate) {
3270                         ddb->y_plane[pipe][id].start = start;
3271                         ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3272                 }
3273
3274                 start += y_plane_blocks;
3275         }
3276
3277         return 0;
3278 }
3279
3280 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3281 {
3282         /* TODO: Take into account the scalers once we support them */
3283         return config->base.adjusted_mode.crtc_clock;
3284 }
3285
3286 /*
3287  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3288  * for the read latency) and cpp should always be <= 8, so that
3289  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3290  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3291 */
3292 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3293 {
3294         uint32_t wm_intermediate_val, ret;
3295
3296         if (latency == 0)
3297                 return UINT_MAX;
3298
3299         wm_intermediate_val = latency * pixel_rate * cpp / 512;
3300         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3301
3302         return ret;
3303 }
3304
3305 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3306                                uint32_t horiz_pixels, uint8_t cpp,
3307                                uint64_t tiling, uint32_t latency)
3308 {
3309         uint32_t ret;
3310         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3311         uint32_t wm_intermediate_val;
3312
3313         if (latency == 0)
3314                 return UINT_MAX;
3315
3316         plane_bytes_per_line = horiz_pixels * cpp;
3317
3318         if (tiling == I915_FORMAT_MOD_Y_TILED ||
3319             tiling == I915_FORMAT_MOD_Yf_TILED) {
3320                 plane_bytes_per_line *= 4;
3321                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3322                 plane_blocks_per_line /= 4;
3323         } else {
3324                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3325         }
3326
3327         wm_intermediate_val = latency * pixel_rate;
3328         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3329                                 plane_blocks_per_line;
3330
3331         return ret;
3332 }
3333
3334 static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
3335                                               struct intel_plane_state *pstate)
3336 {
3337         uint64_t adjusted_pixel_rate;
3338         uint64_t downscale_amount;
3339         uint64_t pixel_rate;
3340
3341         /* Shouldn't reach here on disabled planes... */
3342         if (WARN_ON(!pstate->visible))
3343                 return 0;
3344
3345         /*
3346          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3347          * with additional adjustments for plane-specific scaling.
3348          */
3349         adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
3350         downscale_amount = skl_plane_downscale_amount(pstate);
3351
3352         pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
3353         WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
3354
3355         return pixel_rate;
3356 }
3357
3358 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3359                                 struct intel_crtc_state *cstate,
3360                                 struct intel_plane_state *intel_pstate,
3361                                 uint16_t ddb_allocation,
3362                                 int level,
3363                                 uint16_t *out_blocks, /* out */
3364                                 uint8_t *out_lines, /* out */
3365                                 bool *enabled /* out */)
3366 {
3367         struct drm_plane_state *pstate = &intel_pstate->base;
3368         struct drm_framebuffer *fb = pstate->fb;
3369         uint32_t latency = dev_priv->wm.skl_latency[level];
3370         uint32_t method1, method2;
3371         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3372         uint32_t res_blocks, res_lines;
3373         uint32_t selected_result;
3374         uint8_t cpp;
3375         uint32_t width = 0, height = 0;
3376         uint32_t plane_pixel_rate;
3377
3378         if (latency == 0 || !cstate->base.active || !intel_pstate->visible) {
3379                 *enabled = false;
3380                 return 0;
3381         }
3382
3383         width = drm_rect_width(&intel_pstate->src) >> 16;
3384         height = drm_rect_height(&intel_pstate->src) >> 16;
3385
3386         if (intel_rotation_90_or_270(pstate->rotation))
3387                 swap(width, height);
3388
3389         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3390         plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
3391
3392         method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
3393         method2 = skl_wm_method2(plane_pixel_rate,
3394                                  cstate->base.adjusted_mode.crtc_htotal,
3395                                  width,
3396                                  cpp,
3397                                  fb->modifier[0],
3398                                  latency);
3399
3400         plane_bytes_per_line = width * cpp;
3401         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3402
3403         if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3404             fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3405                 uint32_t min_scanlines = 4;
3406                 uint32_t y_tile_minimum;
3407                 if (intel_rotation_90_or_270(pstate->rotation)) {
3408                         int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3409                                 drm_format_plane_cpp(fb->pixel_format, 1) :
3410                                 drm_format_plane_cpp(fb->pixel_format, 0);
3411
3412                         switch (cpp) {
3413                         case 1:
3414                                 min_scanlines = 16;
3415                                 break;
3416                         case 2:
3417                                 min_scanlines = 8;
3418                                 break;
3419                         case 8:
3420                                 WARN(1, "Unsupported pixel depth for rotation");
3421                         }
3422                 }
3423                 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3424                 selected_result = max(method2, y_tile_minimum);
3425         } else {
3426                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3427                         selected_result = min(method1, method2);
3428                 else
3429                         selected_result = method1;
3430         }
3431
3432         res_blocks = selected_result + 1;
3433         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3434
3435         if (level >= 1 && level <= 7) {
3436                 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3437                     fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3438                         res_lines += 4;
3439                 else
3440                         res_blocks++;
3441         }
3442
3443         if (res_blocks >= ddb_allocation || res_lines > 31) {
3444                 *enabled = false;
3445
3446                 /*
3447                  * If there are no valid level 0 watermarks, then we can't
3448                  * support this display configuration.
3449                  */
3450                 if (level) {
3451                         return 0;
3452                 } else {
3453                         DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3454                         DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
3455                                       to_intel_crtc(cstate->base.crtc)->pipe,
3456                                       skl_wm_plane_id(to_intel_plane(pstate->plane)),
3457                                       res_blocks, ddb_allocation, res_lines);
3458
3459                         return -EINVAL;
3460                 }
3461         }
3462
3463         *out_blocks = res_blocks;
3464         *out_lines = res_lines;
3465         *enabled = true;
3466
3467         return 0;
3468 }
3469
3470 static int
3471 skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3472                      struct skl_ddb_allocation *ddb,
3473                      struct intel_crtc_state *cstate,
3474                      int level,
3475                      struct skl_wm_level *result)
3476 {
3477         struct drm_device *dev = dev_priv->dev;
3478         struct drm_atomic_state *state = cstate->base.state;
3479         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3480         struct drm_plane *plane;
3481         struct intel_plane *intel_plane;
3482         struct intel_plane_state *intel_pstate;
3483         uint16_t ddb_blocks;
3484         enum pipe pipe = intel_crtc->pipe;
3485         int ret;
3486
3487         /*
3488          * We'll only calculate watermarks for planes that are actually
3489          * enabled, so make sure all other planes are set as disabled.
3490          */
3491         memset(result, 0, sizeof(*result));
3492
3493         for_each_intel_plane_mask(dev, intel_plane, cstate->base.plane_mask) {
3494                 int i = skl_wm_plane_id(intel_plane);
3495
3496                 plane = &intel_plane->base;
3497                 intel_pstate = NULL;
3498                 if (state)
3499                         intel_pstate =
3500                                 intel_atomic_get_existing_plane_state(state,
3501                                                                       intel_plane);
3502
3503                 /*
3504                  * Note: If we start supporting multiple pending atomic commits
3505                  * against the same planes/CRTC's in the future, plane->state
3506                  * will no longer be the correct pre-state to use for the
3507                  * calculations here and we'll need to change where we get the
3508                  * 'unchanged' plane data from.
3509                  *
3510                  * For now this is fine because we only allow one queued commit
3511                  * against a CRTC.  Even if the plane isn't modified by this
3512                  * transaction and we don't have a plane lock, we still have
3513                  * the CRTC's lock, so we know that no other transactions are
3514                  * racing with us to update it.
3515                  */
3516                 if (!intel_pstate)
3517                         intel_pstate = to_intel_plane_state(plane->state);
3518
3519                 WARN_ON(!intel_pstate->base.fb);
3520
3521                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3522
3523                 ret = skl_compute_plane_wm(dev_priv,
3524                                            cstate,
3525                                            intel_pstate,
3526                                            ddb_blocks,
3527                                            level,
3528                                            &result->plane_res_b[i],
3529                                            &result->plane_res_l[i],
3530                                            &result->plane_en[i]);
3531                 if (ret)
3532                         return ret;
3533         }
3534
3535         return 0;
3536 }
3537
3538 static uint32_t
3539 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3540 {
3541         if (!cstate->base.active)
3542                 return 0;
3543
3544         if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3545                 return 0;
3546
3547         return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3548                             skl_pipe_pixel_rate(cstate));
3549 }
3550
3551 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3552                                       struct skl_wm_level *trans_wm /* out */)
3553 {
3554         struct drm_crtc *crtc = cstate->base.crtc;
3555         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3556         struct intel_plane *intel_plane;
3557
3558         if (!cstate->base.active)
3559                 return;
3560
3561         /* Until we know more, just disable transition WMs */
3562         for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3563                 int i = skl_wm_plane_id(intel_plane);
3564
3565                 trans_wm->plane_en[i] = false;
3566         }
3567 }
3568
3569 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
3570                              struct skl_ddb_allocation *ddb,
3571                              struct skl_pipe_wm *pipe_wm)
3572 {
3573         struct drm_device *dev = cstate->base.crtc->dev;
3574         const struct drm_i915_private *dev_priv = dev->dev_private;
3575         int level, max_level = ilk_wm_max_level(dev);
3576         int ret;
3577
3578         for (level = 0; level <= max_level; level++) {
3579                 ret = skl_compute_wm_level(dev_priv, ddb, cstate,
3580                                            level, &pipe_wm->wm[level]);
3581                 if (ret)
3582                         return ret;
3583         }
3584         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3585
3586         skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3587
3588         return 0;
3589 }
3590
3591 static void skl_compute_wm_results(struct drm_device *dev,
3592                                    struct skl_pipe_wm *p_wm,
3593                                    struct skl_wm_values *r,
3594                                    struct intel_crtc *intel_crtc)
3595 {
3596         int level, max_level = ilk_wm_max_level(dev);
3597         enum pipe pipe = intel_crtc->pipe;
3598         uint32_t temp;
3599         int i;
3600
3601         for (level = 0; level <= max_level; level++) {
3602                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3603                         temp = 0;
3604
3605                         temp |= p_wm->wm[level].plane_res_l[i] <<
3606                                         PLANE_WM_LINES_SHIFT;
3607                         temp |= p_wm->wm[level].plane_res_b[i];
3608                         if (p_wm->wm[level].plane_en[i])
3609                                 temp |= PLANE_WM_EN;
3610
3611                         r->plane[pipe][i][level] = temp;
3612                 }
3613
3614                 temp = 0;
3615
3616                 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3617                 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3618
3619                 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3620                         temp |= PLANE_WM_EN;
3621
3622                 r->plane[pipe][PLANE_CURSOR][level] = temp;
3623
3624         }
3625
3626         /* transition WMs */
3627         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3628                 temp = 0;
3629                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3630                 temp |= p_wm->trans_wm.plane_res_b[i];
3631                 if (p_wm->trans_wm.plane_en[i])
3632                         temp |= PLANE_WM_EN;
3633
3634                 r->plane_trans[pipe][i] = temp;
3635         }
3636
3637         temp = 0;
3638         temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3639         temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3640         if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3641                 temp |= PLANE_WM_EN;
3642
3643         r->plane_trans[pipe][PLANE_CURSOR] = temp;
3644
3645         r->wm_linetime[pipe] = p_wm->linetime;
3646 }
3647
3648 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3649                                 i915_reg_t reg,
3650                                 const struct skl_ddb_entry *entry)
3651 {
3652         if (entry->end)
3653                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3654         else
3655                 I915_WRITE(reg, 0);
3656 }
3657
3658 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3659                                 const struct skl_wm_values *new)
3660 {
3661         struct drm_device *dev = dev_priv->dev;
3662         struct intel_crtc *crtc;
3663
3664         for_each_intel_crtc(dev, crtc) {
3665                 int i, level, max_level = ilk_wm_max_level(dev);
3666                 enum pipe pipe = crtc->pipe;
3667
3668                 if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3669                         continue;
3670                 if (!crtc->active)
3671                         continue;
3672
3673                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3674
3675                 for (level = 0; level <= max_level; level++) {
3676                         for (i = 0; i < intel_num_planes(crtc); i++)
3677                                 I915_WRITE(PLANE_WM(pipe, i, level),
3678                                            new->plane[pipe][i][level]);
3679                         I915_WRITE(CUR_WM(pipe, level),
3680                                    new->plane[pipe][PLANE_CURSOR][level]);
3681                 }
3682                 for (i = 0; i < intel_num_planes(crtc); i++)
3683                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
3684                                    new->plane_trans[pipe][i]);
3685                 I915_WRITE(CUR_WM_TRANS(pipe),
3686                            new->plane_trans[pipe][PLANE_CURSOR]);
3687
3688                 for (i = 0; i < intel_num_planes(crtc); i++) {
3689                         skl_ddb_entry_write(dev_priv,
3690                                             PLANE_BUF_CFG(pipe, i),
3691                                             &new->ddb.plane[pipe][i]);
3692                         skl_ddb_entry_write(dev_priv,
3693                                             PLANE_NV12_BUF_CFG(pipe, i),
3694                                             &new->ddb.y_plane[pipe][i]);
3695                 }
3696
3697                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3698                                     &new->ddb.plane[pipe][PLANE_CURSOR]);
3699         }
3700 }
3701
3702 /*
3703  * When setting up a new DDB allocation arrangement, we need to correctly
3704  * sequence the times at which the new allocations for the pipes are taken into
3705  * account or we'll have pipes fetching from space previously allocated to
3706  * another pipe.
3707  *
3708  * Roughly the sequence looks like:
3709  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3710  *     overlapping with a previous light-up pipe (another way to put it is:
3711  *     pipes with their new allocation strickly included into their old ones).
3712  *  2. re-allocate the other pipes that get their allocation reduced
3713  *  3. allocate the pipes having their allocation increased
3714  *
3715  * Steps 1. and 2. are here to take care of the following case:
3716  * - Initially DDB looks like this:
3717  *     |   B    |   C    |
3718  * - enable pipe A.
3719  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3720  *   allocation
3721  *     |  A  |  B  |  C  |
3722  *
3723  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3724  */
3725
3726 static void
3727 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3728 {
3729         int plane;
3730
3731         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3732
3733         for_each_plane(dev_priv, pipe, plane) {
3734                 I915_WRITE(PLANE_SURF(pipe, plane),
3735                            I915_READ(PLANE_SURF(pipe, plane)));
3736         }
3737         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3738 }
3739
3740 static bool
3741 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3742                             const struct skl_ddb_allocation *new,
3743                             enum pipe pipe)
3744 {
3745         uint16_t old_size, new_size;
3746
3747         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3748         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3749
3750         return old_size != new_size &&
3751                new->pipe[pipe].start >= old->pipe[pipe].start &&
3752                new->pipe[pipe].end <= old->pipe[pipe].end;
3753 }
3754
3755 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3756                                 struct skl_wm_values *new_values)
3757 {
3758         struct drm_device *dev = dev_priv->dev;
3759         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3760         bool reallocated[I915_MAX_PIPES] = {};
3761         struct intel_crtc *crtc;
3762         enum pipe pipe;
3763
3764         new_ddb = &new_values->ddb;
3765         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3766
3767         /*
3768          * First pass: flush the pipes with the new allocation contained into
3769          * the old space.
3770          *
3771          * We'll wait for the vblank on those pipes to ensure we can safely
3772          * re-allocate the freed space without this pipe fetching from it.
3773          */
3774         for_each_intel_crtc(dev, crtc) {
3775                 if (!crtc->active)
3776                         continue;
3777
3778                 pipe = crtc->pipe;
3779
3780                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3781                         continue;
3782
3783                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3784                 intel_wait_for_vblank(dev, pipe);
3785
3786                 reallocated[pipe] = true;
3787         }
3788
3789
3790         /*
3791          * Second pass: flush the pipes that are having their allocation
3792          * reduced, but overlapping with a previous allocation.
3793          *
3794          * Here as well we need to wait for the vblank to make sure the freed
3795          * space is not used anymore.
3796          */
3797         for_each_intel_crtc(dev, crtc) {
3798                 if (!crtc->active)
3799                         continue;
3800
3801                 pipe = crtc->pipe;
3802
3803                 if (reallocated[pipe])
3804                         continue;
3805
3806                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3807                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3808                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3809                         intel_wait_for_vblank(dev, pipe);
3810                         reallocated[pipe] = true;
3811                 }
3812         }
3813
3814         /*
3815          * Third pass: flush the pipes that got more space allocated.
3816          *
3817          * We don't need to actively wait for the update here, next vblank
3818          * will just get more DDB space with the correct WM values.
3819          */
3820         for_each_intel_crtc(dev, crtc) {
3821                 if (!crtc->active)
3822                         continue;
3823
3824                 pipe = crtc->pipe;
3825
3826                 /*
3827                  * At this point, only the pipes more space than before are
3828                  * left to re-allocate.
3829                  */
3830                 if (reallocated[pipe])
3831                         continue;
3832
3833                 skl_wm_flush_pipe(dev_priv, pipe, 3);
3834         }
3835 }
3836
3837 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3838                               struct skl_ddb_allocation *ddb, /* out */
3839                               struct skl_pipe_wm *pipe_wm, /* out */
3840                               bool *changed /* out */)
3841 {
3842         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
3843         struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3844         int ret;
3845
3846         ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
3847         if (ret)
3848                 return ret;
3849
3850         if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3851                 *changed = false;
3852         else
3853                 *changed = true;
3854
3855         return 0;
3856 }
3857
3858 static int
3859 skl_compute_ddb(struct drm_atomic_state *state)
3860 {
3861         struct drm_device *dev = state->dev;
3862         struct drm_i915_private *dev_priv = to_i915(dev);
3863         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3864         struct intel_crtc *intel_crtc;
3865         struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3866         unsigned realloc_pipes = dev_priv->active_crtcs;
3867         int ret;
3868
3869         /*
3870          * If this is our first atomic update following hardware readout,
3871          * we can't trust the DDB that the BIOS programmed for us.  Let's
3872          * pretend that all pipes switched active status so that we'll
3873          * ensure a full DDB recompute.
3874          */
3875         if (dev_priv->wm.distrust_bios_wm)
3876                 intel_state->active_pipe_changes = ~0;
3877
3878         /*
3879          * If the modeset changes which CRTC's are active, we need to
3880          * recompute the DDB allocation for *all* active pipes, even
3881          * those that weren't otherwise being modified in any way by this
3882          * atomic commit.  Due to the shrinking of the per-pipe allocations
3883          * when new active CRTC's are added, it's possible for a pipe that
3884          * we were already using and aren't changing at all here to suddenly
3885          * become invalid if its DDB needs exceeds its new allocation.
3886          *
3887          * Note that if we wind up doing a full DDB recompute, we can't let
3888          * any other display updates race with this transaction, so we need
3889          * to grab the lock on *all* CRTC's.
3890          */
3891         if (intel_state->active_pipe_changes) {
3892                 realloc_pipes = ~0;
3893                 intel_state->wm_results.dirty_pipes = ~0;
3894         }
3895
3896         for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
3897                 struct intel_crtc_state *cstate;
3898
3899                 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
3900                 if (IS_ERR(cstate))
3901                         return PTR_ERR(cstate);
3902
3903                 ret = skl_allocate_pipe_ddb(cstate, ddb);
3904                 if (ret)
3905                         return ret;
3906         }
3907
3908         return 0;
3909 }
3910
3911 static int
3912 skl_compute_wm(struct drm_atomic_state *state)
3913 {
3914         struct drm_crtc *crtc;
3915         struct drm_crtc_state *cstate;
3916         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3917         struct skl_wm_values *results = &intel_state->wm_results;
3918         struct skl_pipe_wm *pipe_wm;
3919         bool changed = false;
3920         int ret, i;
3921
3922         /*
3923          * If this transaction isn't actually touching any CRTC's, don't
3924          * bother with watermark calculation.  Note that if we pass this
3925          * test, we're guaranteed to hold at least one CRTC state mutex,
3926          * which means we can safely use values like dev_priv->active_crtcs
3927          * since any racing commits that want to update them would need to
3928          * hold _all_ CRTC state mutexes.
3929          */
3930         for_each_crtc_in_state(state, crtc, cstate, i)
3931                 changed = true;
3932         if (!changed)
3933                 return 0;
3934
3935         /* Clear all dirty flags */
3936         results->dirty_pipes = 0;
3937
3938         ret = skl_compute_ddb(state);
3939         if (ret)
3940                 return ret;
3941
3942         /*
3943          * Calculate WM's for all pipes that are part of this transaction.
3944          * Note that the DDB allocation above may have added more CRTC's that
3945          * weren't otherwise being modified (and set bits in dirty_pipes) if
3946          * pipe allocations had to change.
3947          *
3948          * FIXME:  Now that we're doing this in the atomic check phase, we
3949          * should allow skl_update_pipe_wm() to return failure in cases where
3950          * no suitable watermark values can be found.
3951          */
3952         for_each_crtc_in_state(state, crtc, cstate, i) {
3953                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3954                 struct intel_crtc_state *intel_cstate =
3955                         to_intel_crtc_state(cstate);
3956
3957                 pipe_wm = &intel_cstate->wm.skl.optimal;
3958                 ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
3959                                          &changed);
3960                 if (ret)
3961                         return ret;
3962
3963                 if (changed)
3964                         results->dirty_pipes |= drm_crtc_mask(crtc);
3965
3966                 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
3967                         /* This pipe's WM's did not change */
3968                         continue;
3969
3970                 intel_cstate->update_wm_pre = true;
3971                 skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
3972         }
3973
3974         return 0;
3975 }
3976
3977 static void skl_update_wm(struct drm_crtc *crtc)
3978 {
3979         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3980         struct drm_device *dev = crtc->dev;
3981         struct drm_i915_private *dev_priv = dev->dev_private;
3982         struct skl_wm_values *results = &dev_priv->wm.skl_results;
3983         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3984         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
3985
3986         if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
3987                 return;
3988
3989         intel_crtc->wm.active.skl = *pipe_wm;
3990
3991         mutex_lock(&dev_priv->wm.wm_mutex);
3992
3993         skl_write_wm_values(dev_priv, results);
3994         skl_flush_wm_values(dev_priv, results);
3995
3996         /* store the new configuration */
3997         dev_priv->wm.skl_hw = *results;
3998
3999         mutex_unlock(&dev_priv->wm.wm_mutex);
4000 }
4001
4002 static void ilk_compute_wm_config(struct drm_device *dev,
4003                                   struct intel_wm_config *config)
4004 {
4005         struct intel_crtc *crtc;
4006
4007         /* Compute the currently _active_ config */
4008         for_each_intel_crtc(dev, crtc) {
4009                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4010
4011                 if (!wm->pipe_enabled)
4012                         continue;
4013
4014                 config->sprites_enabled |= wm->sprites_enabled;
4015                 config->sprites_scaled |= wm->sprites_scaled;
4016                 config->num_pipes_active++;
4017         }
4018 }
4019
4020 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4021 {
4022         struct drm_device *dev = dev_priv->dev;
4023         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4024         struct ilk_wm_maximums max;
4025         struct intel_wm_config config = {};
4026         struct ilk_wm_values results = {};
4027         enum intel_ddb_partitioning partitioning;
4028
4029         ilk_compute_wm_config(dev, &config);
4030
4031         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4032         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4033
4034         /* 5/6 split only in single pipe config on IVB+ */
4035         if (INTEL_INFO(dev)->gen >= 7 &&
4036             config.num_pipes_active == 1 && config.sprites_enabled) {
4037                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4038                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4039
4040                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4041         } else {
4042                 best_lp_wm = &lp_wm_1_2;
4043         }
4044
4045         partitioning = (best_lp_wm == &lp_wm_1_2) ?
4046                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4047
4048         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4049
4050         ilk_write_wm_values(dev_priv, &results);
4051 }
4052
4053 static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4054 {
4055         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4056         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4057
4058         mutex_lock(&dev_priv->wm.wm_mutex);
4059         intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4060         ilk_program_watermarks(dev_priv);
4061         mutex_unlock(&dev_priv->wm.wm_mutex);
4062 }
4063
4064 static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
4065 {
4066         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4067         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4068
4069         mutex_lock(&dev_priv->wm.wm_mutex);
4070         if (cstate->wm.need_postvbl_update) {
4071                 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4072                 ilk_program_watermarks(dev_priv);
4073         }
4074         mutex_unlock(&dev_priv->wm.wm_mutex);
4075 }
4076
4077 static void skl_pipe_wm_active_state(uint32_t val,
4078                                      struct skl_pipe_wm *active,
4079                                      bool is_transwm,
4080                                      bool is_cursor,
4081                                      int i,
4082                                      int level)
4083 {
4084         bool is_enabled = (val & PLANE_WM_EN) != 0;
4085
4086         if (!is_transwm) {
4087                 if (!is_cursor) {
4088                         active->wm[level].plane_en[i] = is_enabled;
4089                         active->wm[level].plane_res_b[i] =
4090                                         val & PLANE_WM_BLOCKS_MASK;
4091                         active->wm[level].plane_res_l[i] =
4092                                         (val >> PLANE_WM_LINES_SHIFT) &
4093                                                 PLANE_WM_LINES_MASK;
4094                 } else {
4095                         active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
4096                         active->wm[level].plane_res_b[PLANE_CURSOR] =
4097                                         val & PLANE_WM_BLOCKS_MASK;
4098                         active->wm[level].plane_res_l[PLANE_CURSOR] =
4099                                         (val >> PLANE_WM_LINES_SHIFT) &
4100                                                 PLANE_WM_LINES_MASK;
4101                 }
4102         } else {
4103                 if (!is_cursor) {
4104                         active->trans_wm.plane_en[i] = is_enabled;
4105                         active->trans_wm.plane_res_b[i] =
4106                                         val & PLANE_WM_BLOCKS_MASK;
4107                         active->trans_wm.plane_res_l[i] =
4108                                         (val >> PLANE_WM_LINES_SHIFT) &
4109                                                 PLANE_WM_LINES_MASK;
4110                 } else {
4111                         active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
4112                         active->trans_wm.plane_res_b[PLANE_CURSOR] =
4113                                         val & PLANE_WM_BLOCKS_MASK;
4114                         active->trans_wm.plane_res_l[PLANE_CURSOR] =
4115                                         (val >> PLANE_WM_LINES_SHIFT) &
4116                                                 PLANE_WM_LINES_MASK;
4117                 }
4118         }
4119 }
4120
4121 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4122 {
4123         struct drm_device *dev = crtc->dev;
4124         struct drm_i915_private *dev_priv = dev->dev_private;
4125         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4126         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4127         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4128         struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4129         enum pipe pipe = intel_crtc->pipe;
4130         int level, i, max_level;
4131         uint32_t temp;
4132
4133         max_level = ilk_wm_max_level(dev);
4134
4135         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4136
4137         for (level = 0; level <= max_level; level++) {
4138                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
4139                         hw->plane[pipe][i][level] =
4140                                         I915_READ(PLANE_WM(pipe, i, level));
4141                 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4142         }
4143
4144         for (i = 0; i < intel_num_planes(intel_crtc); i++)
4145                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4146         hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4147
4148         if (!intel_crtc->active)
4149                 return;
4150
4151         hw->dirty_pipes |= drm_crtc_mask(crtc);
4152
4153         active->linetime = hw->wm_linetime[pipe];
4154
4155         for (level = 0; level <= max_level; level++) {
4156                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4157                         temp = hw->plane[pipe][i][level];
4158                         skl_pipe_wm_active_state(temp, active, false,
4159                                                 false, i, level);
4160                 }
4161                 temp = hw->plane[pipe][PLANE_CURSOR][level];
4162                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
4163         }
4164
4165         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4166                 temp = hw->plane_trans[pipe][i];
4167                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
4168         }
4169
4170         temp = hw->plane_trans[pipe][PLANE_CURSOR];
4171         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4172
4173         intel_crtc->wm.active.skl = *active;
4174 }
4175
4176 void skl_wm_get_hw_state(struct drm_device *dev)
4177 {
4178         struct drm_i915_private *dev_priv = dev->dev_private;
4179         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4180         struct drm_crtc *crtc;
4181
4182         skl_ddb_get_hw_state(dev_priv, ddb);
4183         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
4184                 skl_pipe_wm_get_hw_state(crtc);
4185
4186         if (dev_priv->active_crtcs) {
4187                 /* Fully recompute DDB on first atomic commit */
4188                 dev_priv->wm.distrust_bios_wm = true;
4189         } else {
4190                 /* Easy/common case; just sanitize DDB now if everything off */
4191                 memset(ddb, 0, sizeof(*ddb));
4192         }
4193 }
4194
4195 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4196 {
4197         struct drm_device *dev = crtc->dev;
4198         struct drm_i915_private *dev_priv = dev->dev_private;
4199         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4200         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4201         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4202         struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4203         enum pipe pipe = intel_crtc->pipe;
4204         static const i915_reg_t wm0_pipe_reg[] = {
4205                 [PIPE_A] = WM0_PIPEA_ILK,
4206                 [PIPE_B] = WM0_PIPEB_ILK,
4207                 [PIPE_C] = WM0_PIPEC_IVB,
4208         };
4209
4210         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4211         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4212                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4213
4214         memset(active, 0, sizeof(*active));
4215
4216         active->pipe_enabled = intel_crtc->active;
4217
4218         if (active->pipe_enabled) {
4219                 u32 tmp = hw->wm_pipe[pipe];
4220
4221                 /*
4222                  * For active pipes LP0 watermark is marked as
4223                  * enabled, and LP1+ watermaks as disabled since
4224                  * we can't really reverse compute them in case
4225                  * multiple pipes are active.
4226                  */
4227                 active->wm[0].enable = true;
4228                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4229                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4230                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4231                 active->linetime = hw->wm_linetime[pipe];
4232         } else {
4233                 int level, max_level = ilk_wm_max_level(dev);
4234
4235                 /*
4236                  * For inactive pipes, all watermark levels
4237                  * should be marked as enabled but zeroed,
4238                  * which is what we'd compute them to.
4239                  */
4240                 for (level = 0; level <= max_level; level++)
4241                         active->wm[level].enable = true;
4242         }
4243
4244         intel_crtc->wm.active.ilk = *active;
4245 }
4246
4247 #define _FW_WM(value, plane) \
4248         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4249 #define _FW_WM_VLV(value, plane) \
4250         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4251
4252 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4253                                struct vlv_wm_values *wm)
4254 {
4255         enum pipe pipe;
4256         uint32_t tmp;
4257
4258         for_each_pipe(dev_priv, pipe) {
4259                 tmp = I915_READ(VLV_DDL(pipe));
4260
4261                 wm->ddl[pipe].primary =
4262                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4263                 wm->ddl[pipe].cursor =
4264                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4265                 wm->ddl[pipe].sprite[0] =
4266                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4267                 wm->ddl[pipe].sprite[1] =
4268                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4269         }
4270
4271         tmp = I915_READ(DSPFW1);
4272         wm->sr.plane = _FW_WM(tmp, SR);
4273         wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4274         wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4275         wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4276
4277         tmp = I915_READ(DSPFW2);
4278         wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4279         wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4280         wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4281
4282         tmp = I915_READ(DSPFW3);
4283         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4284
4285         if (IS_CHERRYVIEW(dev_priv)) {
4286                 tmp = I915_READ(DSPFW7_CHV);
4287                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4288                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4289
4290                 tmp = I915_READ(DSPFW8_CHV);
4291                 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4292                 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4293
4294                 tmp = I915_READ(DSPFW9_CHV);
4295                 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4296                 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4297
4298                 tmp = I915_READ(DSPHOWM);
4299                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4300                 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4301                 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4302                 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4303                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4304                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4305                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4306                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4307                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4308                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4309         } else {
4310                 tmp = I915_READ(DSPFW7);
4311                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4312                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4313
4314                 tmp = I915_READ(DSPHOWM);
4315                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4316                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4317                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4318                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4319                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4320                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4321                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4322         }
4323 }
4324
4325 #undef _FW_WM
4326 #undef _FW_WM_VLV
4327
4328 void vlv_wm_get_hw_state(struct drm_device *dev)
4329 {
4330         struct drm_i915_private *dev_priv = to_i915(dev);
4331         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4332         struct intel_plane *plane;
4333         enum pipe pipe;
4334         u32 val;
4335
4336         vlv_read_wm_values(dev_priv, wm);
4337
4338         for_each_intel_plane(dev, plane) {
4339                 switch (plane->base.type) {
4340                         int sprite;
4341                 case DRM_PLANE_TYPE_CURSOR:
4342                         plane->wm.fifo_size = 63;
4343                         break;
4344                 case DRM_PLANE_TYPE_PRIMARY:
4345                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4346                         break;
4347                 case DRM_PLANE_TYPE_OVERLAY:
4348                         sprite = plane->plane;
4349                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4350                         break;
4351                 }
4352         }
4353
4354         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4355         wm->level = VLV_WM_LEVEL_PM2;
4356
4357         if (IS_CHERRYVIEW(dev_priv)) {
4358                 mutex_lock(&dev_priv->rps.hw_lock);
4359
4360                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4361                 if (val & DSP_MAXFIFO_PM5_ENABLE)
4362                         wm->level = VLV_WM_LEVEL_PM5;
4363
4364                 /*
4365                  * If DDR DVFS is disabled in the BIOS, Punit
4366                  * will never ack the request. So if that happens
4367                  * assume we don't have to enable/disable DDR DVFS
4368                  * dynamically. To test that just set the REQ_ACK
4369                  * bit to poke the Punit, but don't change the
4370                  * HIGH/LOW bits so that we don't actually change
4371                  * the current state.
4372                  */
4373                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4374                 val |= FORCE_DDR_FREQ_REQ_ACK;
4375                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4376
4377                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4378                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4379                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4380                                       "assuming DDR DVFS is disabled\n");
4381                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4382                 } else {
4383                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4384                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4385                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4386                 }
4387
4388                 mutex_unlock(&dev_priv->rps.hw_lock);
4389         }
4390
4391         for_each_pipe(dev_priv, pipe)
4392                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4393                               pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4394                               wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4395
4396         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4397                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4398 }
4399
4400 void ilk_wm_get_hw_state(struct drm_device *dev)
4401 {
4402         struct drm_i915_private *dev_priv = dev->dev_private;
4403         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4404         struct drm_crtc *crtc;
4405
4406         for_each_crtc(dev, crtc)
4407                 ilk_pipe_wm_get_hw_state(crtc);
4408
4409         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4410         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4411         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4412
4413         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4414         if (INTEL_INFO(dev)->gen >= 7) {
4415                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4416                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4417         }
4418
4419         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4420                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4421                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4422         else if (IS_IVYBRIDGE(dev))
4423                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4424                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4425
4426         hw->enable_fbc_wm =
4427                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4428 }
4429
4430 /**
4431  * intel_update_watermarks - update FIFO watermark values based on current modes
4432  *
4433  * Calculate watermark values for the various WM regs based on current mode
4434  * and plane configuration.
4435  *
4436  * There are several cases to deal with here:
4437  *   - normal (i.e. non-self-refresh)
4438  *   - self-refresh (SR) mode
4439  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4440  *   - lines are small relative to FIFO size (buffer can hold more than 2
4441  *     lines), so need to account for TLB latency
4442  *
4443  *   The normal calculation is:
4444  *     watermark = dotclock * bytes per pixel * latency
4445  *   where latency is platform & configuration dependent (we assume pessimal
4446  *   values here).
4447  *
4448  *   The SR calculation is:
4449  *     watermark = (trunc(latency/line time)+1) * surface width *
4450  *       bytes per pixel
4451  *   where
4452  *     line time = htotal / dotclock
4453  *     surface width = hdisplay for normal plane and 64 for cursor
4454  *   and latency is assumed to be high, as above.
4455  *
4456  * The final value programmed to the register should always be rounded up,
4457  * and include an extra 2 entries to account for clock crossings.
4458  *
4459  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4460  * to set the non-SR watermarks to 8.
4461  */
4462 void intel_update_watermarks(struct drm_crtc *crtc)
4463 {
4464         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4465
4466         if (dev_priv->display.update_wm)
4467                 dev_priv->display.update_wm(crtc);
4468 }
4469
4470 /*
4471  * Lock protecting IPS related data structures
4472  */
4473 DEFINE_SPINLOCK(mchdev_lock);
4474
4475 /* Global for IPS driver to get at the current i915 device. Protected by
4476  * mchdev_lock. */
4477 static struct drm_i915_private *i915_mch_dev;
4478
4479 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4480 {
4481         u16 rgvswctl;
4482
4483         assert_spin_locked(&mchdev_lock);
4484
4485         rgvswctl = I915_READ16(MEMSWCTL);
4486         if (rgvswctl & MEMCTL_CMD_STS) {
4487                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4488                 return false; /* still busy with another command */
4489         }
4490
4491         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4492                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4493         I915_WRITE16(MEMSWCTL, rgvswctl);
4494         POSTING_READ16(MEMSWCTL);
4495
4496         rgvswctl |= MEMCTL_CMD_STS;
4497         I915_WRITE16(MEMSWCTL, rgvswctl);
4498
4499         return true;
4500 }
4501
4502 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4503 {
4504         u32 rgvmodectl;
4505         u8 fmax, fmin, fstart, vstart;
4506
4507         spin_lock_irq(&mchdev_lock);
4508
4509         rgvmodectl = I915_READ(MEMMODECTL);
4510
4511         /* Enable temp reporting */
4512         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4513         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4514
4515         /* 100ms RC evaluation intervals */
4516         I915_WRITE(RCUPEI, 100000);
4517         I915_WRITE(RCDNEI, 100000);
4518
4519         /* Set max/min thresholds to 90ms and 80ms respectively */
4520         I915_WRITE(RCBMAXAVG, 90000);
4521         I915_WRITE(RCBMINAVG, 80000);
4522
4523         I915_WRITE(MEMIHYST, 1);
4524
4525         /* Set up min, max, and cur for interrupt handling */
4526         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4527         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4528         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4529                 MEMMODE_FSTART_SHIFT;
4530
4531         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4532                 PXVFREQ_PX_SHIFT;
4533
4534         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4535         dev_priv->ips.fstart = fstart;
4536
4537         dev_priv->ips.max_delay = fstart;
4538         dev_priv->ips.min_delay = fmin;
4539         dev_priv->ips.cur_delay = fstart;
4540
4541         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4542                          fmax, fmin, fstart);
4543
4544         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4545
4546         /*
4547          * Interrupts will be enabled in ironlake_irq_postinstall
4548          */
4549
4550         I915_WRITE(VIDSTART, vstart);
4551         POSTING_READ(VIDSTART);
4552
4553         rgvmodectl |= MEMMODE_SWMODE_EN;
4554         I915_WRITE(MEMMODECTL, rgvmodectl);
4555
4556         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4557                 DRM_ERROR("stuck trying to change perf mode\n");
4558         mdelay(1);
4559
4560         ironlake_set_drps(dev_priv, fstart);
4561
4562         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4563                 I915_READ(DDREC) + I915_READ(CSIEC);
4564         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4565         dev_priv->ips.last_count2 = I915_READ(GFXEC);
4566         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4567
4568         spin_unlock_irq(&mchdev_lock);
4569 }
4570
4571 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4572 {
4573         u16 rgvswctl;
4574
4575         spin_lock_irq(&mchdev_lock);
4576
4577         rgvswctl = I915_READ16(MEMSWCTL);
4578
4579         /* Ack interrupts, disable EFC interrupt */
4580         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4581         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4582         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4583         I915_WRITE(DEIIR, DE_PCU_EVENT);
4584         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4585
4586         /* Go back to the starting frequency */
4587         ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4588         mdelay(1);
4589         rgvswctl |= MEMCTL_CMD_STS;
4590         I915_WRITE(MEMSWCTL, rgvswctl);
4591         mdelay(1);
4592
4593         spin_unlock_irq(&mchdev_lock);
4594 }
4595
4596 /* There's a funny hw issue where the hw returns all 0 when reading from
4597  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4598  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4599  * all limits and the gpu stuck at whatever frequency it is at atm).
4600  */
4601 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4602 {
4603         u32 limits;
4604
4605         /* Only set the down limit when we've reached the lowest level to avoid
4606          * getting more interrupts, otherwise leave this clear. This prevents a
4607          * race in the hw when coming out of rc6: There's a tiny window where
4608          * the hw runs at the minimal clock before selecting the desired
4609          * frequency, if the down threshold expires in that window we will not
4610          * receive a down interrupt. */
4611         if (IS_GEN9(dev_priv)) {
4612                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4613                 if (val <= dev_priv->rps.min_freq_softlimit)
4614                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4615         } else {
4616                 limits = dev_priv->rps.max_freq_softlimit << 24;
4617                 if (val <= dev_priv->rps.min_freq_softlimit)
4618                         limits |= dev_priv->rps.min_freq_softlimit << 16;
4619         }
4620
4621         return limits;
4622 }
4623
4624 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4625 {
4626         int new_power;
4627         u32 threshold_up = 0, threshold_down = 0; /* in % */
4628         u32 ei_up = 0, ei_down = 0;
4629
4630         new_power = dev_priv->rps.power;
4631         switch (dev_priv->rps.power) {
4632         case LOW_POWER:
4633                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4634                         new_power = BETWEEN;
4635                 break;
4636
4637         case BETWEEN:
4638                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4639                         new_power = LOW_POWER;
4640                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4641                         new_power = HIGH_POWER;
4642                 break;
4643
4644         case HIGH_POWER:
4645                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4646                         new_power = BETWEEN;
4647                 break;
4648         }
4649         /* Max/min bins are special */
4650         if (val <= dev_priv->rps.min_freq_softlimit)
4651                 new_power = LOW_POWER;
4652         if (val >= dev_priv->rps.max_freq_softlimit)
4653                 new_power = HIGH_POWER;
4654         if (new_power == dev_priv->rps.power)
4655                 return;
4656
4657         /* Note the units here are not exactly 1us, but 1280ns. */
4658         switch (new_power) {
4659         case LOW_POWER:
4660                 /* Upclock if more than 95% busy over 16ms */
4661                 ei_up = 16000;
4662                 threshold_up = 95;
4663
4664                 /* Downclock if less than 85% busy over 32ms */
4665                 ei_down = 32000;
4666                 threshold_down = 85;
4667                 break;
4668
4669         case BETWEEN:
4670                 /* Upclock if more than 90% busy over 13ms */
4671                 ei_up = 13000;
4672                 threshold_up = 90;
4673
4674                 /* Downclock if less than 75% busy over 32ms */
4675                 ei_down = 32000;
4676                 threshold_down = 75;
4677                 break;
4678
4679         case HIGH_POWER:
4680                 /* Upclock if more than 85% busy over 10ms */
4681                 ei_up = 10000;
4682                 threshold_up = 85;
4683
4684                 /* Downclock if less than 60% busy over 32ms */
4685                 ei_down = 32000;
4686                 threshold_down = 60;
4687                 break;
4688         }
4689
4690         I915_WRITE(GEN6_RP_UP_EI,
4691                 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4692         I915_WRITE(GEN6_RP_UP_THRESHOLD,
4693                 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4694
4695         I915_WRITE(GEN6_RP_DOWN_EI,
4696                 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4697         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4698                 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4699
4700          I915_WRITE(GEN6_RP_CONTROL,
4701                     GEN6_RP_MEDIA_TURBO |
4702                     GEN6_RP_MEDIA_HW_NORMAL_MODE |
4703                     GEN6_RP_MEDIA_IS_GFX |
4704                     GEN6_RP_ENABLE |
4705                     GEN6_RP_UP_BUSY_AVG |
4706                     GEN6_RP_DOWN_IDLE_AVG);
4707
4708         dev_priv->rps.power = new_power;
4709         dev_priv->rps.up_threshold = threshold_up;
4710         dev_priv->rps.down_threshold = threshold_down;
4711         dev_priv->rps.last_adj = 0;
4712 }
4713
4714 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4715 {
4716         u32 mask = 0;
4717
4718         if (val > dev_priv->rps.min_freq_softlimit)
4719                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4720         if (val < dev_priv->rps.max_freq_softlimit)
4721                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4722
4723         mask &= dev_priv->pm_rps_events;
4724
4725         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4726 }
4727
4728 /* gen6_set_rps is called to update the frequency request, but should also be
4729  * called when the range (min_delay and max_delay) is modified so that we can
4730  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4731 static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4732 {
4733         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4734         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4735                 return;
4736
4737         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4738         WARN_ON(val > dev_priv->rps.max_freq);
4739         WARN_ON(val < dev_priv->rps.min_freq);
4740
4741         /* min/max delay may still have been modified so be sure to
4742          * write the limits value.
4743          */
4744         if (val != dev_priv->rps.cur_freq) {
4745                 gen6_set_rps_thresholds(dev_priv, val);
4746
4747                 if (IS_GEN9(dev_priv))
4748                         I915_WRITE(GEN6_RPNSWREQ,
4749                                    GEN9_FREQUENCY(val));
4750                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4751                         I915_WRITE(GEN6_RPNSWREQ,
4752                                    HSW_FREQUENCY(val));
4753                 else
4754                         I915_WRITE(GEN6_RPNSWREQ,
4755                                    GEN6_FREQUENCY(val) |
4756                                    GEN6_OFFSET(0) |
4757                                    GEN6_AGGRESSIVE_TURBO);
4758         }
4759
4760         /* Make sure we continue to get interrupts
4761          * until we hit the minimum or maximum frequencies.
4762          */
4763         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4764         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4765
4766         POSTING_READ(GEN6_RPNSWREQ);
4767
4768         dev_priv->rps.cur_freq = val;
4769         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4770 }
4771
4772 static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4773 {
4774         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4775         WARN_ON(val > dev_priv->rps.max_freq);
4776         WARN_ON(val < dev_priv->rps.min_freq);
4777
4778         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4779                       "Odd GPU freq value\n"))
4780                 val &= ~1;
4781
4782         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4783
4784         if (val != dev_priv->rps.cur_freq) {
4785                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4786                 if (!IS_CHERRYVIEW(dev_priv))
4787                         gen6_set_rps_thresholds(dev_priv, val);
4788         }
4789
4790         dev_priv->rps.cur_freq = val;
4791         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4792 }
4793
4794 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4795  *
4796  * * If Gfx is Idle, then
4797  * 1. Forcewake Media well.
4798  * 2. Request idle freq.
4799  * 3. Release Forcewake of Media well.
4800 */
4801 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4802 {
4803         u32 val = dev_priv->rps.idle_freq;
4804
4805         if (dev_priv->rps.cur_freq <= val)
4806                 return;
4807
4808         /* Wake up the media well, as that takes a lot less
4809          * power than the Render well. */
4810         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4811         valleyview_set_rps(dev_priv, val);
4812         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4813 }
4814
4815 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4816 {
4817         mutex_lock(&dev_priv->rps.hw_lock);
4818         if (dev_priv->rps.enabled) {
4819                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4820                         gen6_rps_reset_ei(dev_priv);
4821                 I915_WRITE(GEN6_PMINTRMSK,
4822                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4823         }
4824         mutex_unlock(&dev_priv->rps.hw_lock);
4825 }
4826
4827 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4828 {
4829         mutex_lock(&dev_priv->rps.hw_lock);
4830         if (dev_priv->rps.enabled) {
4831                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4832                         vlv_set_rps_idle(dev_priv);
4833                 else
4834                         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4835                 dev_priv->rps.last_adj = 0;
4836                 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4837         }
4838         mutex_unlock(&dev_priv->rps.hw_lock);
4839
4840         spin_lock(&dev_priv->rps.client_lock);
4841         while (!list_empty(&dev_priv->rps.clients))
4842                 list_del_init(dev_priv->rps.clients.next);
4843         spin_unlock(&dev_priv->rps.client_lock);
4844 }
4845
4846 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4847                     struct intel_rps_client *rps,
4848                     unsigned long submitted)
4849 {
4850         /* This is intentionally racy! We peek at the state here, then
4851          * validate inside the RPS worker.
4852          */
4853         if (!(dev_priv->mm.busy &&
4854               dev_priv->rps.enabled &&
4855               dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4856                 return;
4857
4858         /* Force a RPS boost (and don't count it against the client) if
4859          * the GPU is severely congested.
4860          */
4861         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4862                 rps = NULL;
4863
4864         spin_lock(&dev_priv->rps.client_lock);
4865         if (rps == NULL || list_empty(&rps->link)) {
4866                 spin_lock_irq(&dev_priv->irq_lock);
4867                 if (dev_priv->rps.interrupts_enabled) {
4868                         dev_priv->rps.client_boost = true;
4869                         queue_work(dev_priv->wq, &dev_priv->rps.work);
4870                 }
4871                 spin_unlock_irq(&dev_priv->irq_lock);
4872
4873                 if (rps != NULL) {
4874                         list_add(&rps->link, &dev_priv->rps.clients);
4875                         rps->boosts++;
4876                 } else
4877                         dev_priv->rps.boosts++;
4878         }
4879         spin_unlock(&dev_priv->rps.client_lock);
4880 }
4881
4882 void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
4883 {
4884         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4885                 valleyview_set_rps(dev_priv, val);
4886         else
4887                 gen6_set_rps(dev_priv, val);
4888 }
4889
4890 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
4891 {
4892         I915_WRITE(GEN6_RC_CONTROL, 0);
4893         I915_WRITE(GEN9_PG_ENABLE, 0);
4894 }
4895
4896 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
4897 {
4898         I915_WRITE(GEN6_RP_CONTROL, 0);
4899 }
4900
4901 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
4902 {
4903         I915_WRITE(GEN6_RC_CONTROL, 0);
4904         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4905         I915_WRITE(GEN6_RP_CONTROL, 0);
4906 }
4907
4908 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
4909 {
4910         I915_WRITE(GEN6_RC_CONTROL, 0);
4911 }
4912
4913 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
4914 {
4915         /* we're doing forcewake before Disabling RC6,
4916          * This what the BIOS expects when going into suspend */
4917         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4918
4919         I915_WRITE(GEN6_RC_CONTROL, 0);
4920
4921         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4922 }
4923
4924 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
4925 {
4926         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4927                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4928                         mode = GEN6_RC_CTL_RC6_ENABLE;
4929                 else
4930                         mode = 0;
4931         }
4932         if (HAS_RC6p(dev_priv))
4933                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4934                               onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
4935                               onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
4936                               onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4937
4938         else
4939                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4940                               onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
4941 }
4942
4943 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
4944 {
4945         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4946         bool enable_rc6 = true;
4947         unsigned long rc6_ctx_base;
4948
4949         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
4950                 DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
4951                 enable_rc6 = false;
4952         }
4953
4954         /*
4955          * The exact context size is not known for BXT, so assume a page size
4956          * for this check.
4957          */
4958         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4959         if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
4960               (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
4961                                         ggtt->stolen_reserved_size))) {
4962                 DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
4963                 enable_rc6 = false;
4964         }
4965
4966         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
4967               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
4968               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
4969               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
4970                 DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
4971                 enable_rc6 = false;
4972         }
4973
4974         if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
4975                                             GEN6_RC_CTL_HW_ENABLE)) &&
4976             ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
4977              !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
4978                 DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
4979                 enable_rc6 = false;
4980         }
4981
4982         return enable_rc6;
4983 }
4984
4985 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
4986 {
4987         /* No RC6 before Ironlake and code is gone for ilk. */
4988         if (INTEL_INFO(dev_priv)->gen < 6)
4989                 return 0;
4990
4991         if (!enable_rc6)
4992                 return 0;
4993
4994         if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
4995                 DRM_INFO("RC6 disabled by BIOS\n");
4996                 return 0;
4997         }
4998
4999         /* Respect the kernel parameter if it is set */
5000         if (enable_rc6 >= 0) {
5001                 int mask;
5002
5003                 if (HAS_RC6p(dev_priv))
5004                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
5005                                INTEL_RC6pp_ENABLE;
5006                 else
5007                         mask = INTEL_RC6_ENABLE;
5008
5009                 if ((enable_rc6 & mask) != enable_rc6)
5010                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
5011                                       enable_rc6 & mask, enable_rc6, mask);
5012
5013                 return enable_rc6 & mask;
5014         }
5015
5016         if (IS_IVYBRIDGE(dev_priv))
5017                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5018
5019         return INTEL_RC6_ENABLE;
5020 }
5021
5022 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5023 {
5024         uint32_t rp_state_cap;
5025         u32 ddcc_status = 0;
5026         int ret;
5027
5028         /* All of these values are in units of 50MHz */
5029         dev_priv->rps.cur_freq          = 0;
5030         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
5031         if (IS_BROXTON(dev_priv)) {
5032                 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5033                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
5034                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5035                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
5036         } else {
5037                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5038                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
5039                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5040                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
5041         }
5042
5043         /* hw_max = RP0 until we check for overclocking */
5044         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
5045
5046         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5047         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5048             IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5049                 ret = sandybridge_pcode_read(dev_priv,
5050                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
5051                                         &ddcc_status);
5052                 if (0 == ret)
5053                         dev_priv->rps.efficient_freq =
5054                                 clamp_t(u8,
5055                                         ((ddcc_status >> 8) & 0xff),
5056                                         dev_priv->rps.min_freq,
5057                                         dev_priv->rps.max_freq);
5058         }
5059
5060         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5061                 /* Store the frequency values in 16.66 MHZ units, which is
5062                    the natural hardware unit for SKL */
5063                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
5064                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
5065                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
5066                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
5067                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
5068         }
5069
5070         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5071
5072         /* Preserve min/max settings in case of re-init */
5073         if (dev_priv->rps.max_freq_softlimit == 0)
5074                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5075
5076         if (dev_priv->rps.min_freq_softlimit == 0) {
5077                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5078                         dev_priv->rps.min_freq_softlimit =
5079                                 max_t(int, dev_priv->rps.efficient_freq,
5080                                       intel_freq_opcode(dev_priv, 450));
5081                 else
5082                         dev_priv->rps.min_freq_softlimit =
5083                                 dev_priv->rps.min_freq;
5084         }
5085 }
5086
5087 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
5088 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5089 {
5090         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5091
5092         gen6_init_rps_frequencies(dev_priv);
5093
5094         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5095         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5096                 /*
5097                  * BIOS could leave the Hw Turbo enabled, so need to explicitly
5098                  * clear out the Control register just to avoid inconsitency
5099                  * with debugfs interface, which will show  Turbo as enabled
5100                  * only and that is not expected by the User after adding the
5101                  * WaGsvDisableTurbo. Apart from this there is no problem even
5102                  * if the Turbo is left enabled in the Control register, as the
5103                  * Up/Down interrupts would remain masked.
5104                  */
5105                 gen9_disable_rps(dev_priv);
5106                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5107                 return;
5108         }
5109
5110         /* Program defaults and thresholds for RPS*/
5111         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5112                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5113
5114         /* 1 second timeout*/
5115         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5116                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
5117
5118         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5119
5120         /* Leaning on the below call to gen6_set_rps to program/setup the
5121          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5122          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5123         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5124         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5125
5126         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5127 }
5128
5129 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5130 {
5131         struct intel_engine_cs *engine;
5132         uint32_t rc6_mask = 0;
5133
5134         /* 1a: Software RC state - RC0 */
5135         I915_WRITE(GEN6_RC_STATE, 0);
5136
5137         /* 1b: Get forcewake during program sequence. Although the driver
5138          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5139         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5140
5141         /* 2a: Disable RC states. */
5142         I915_WRITE(GEN6_RC_CONTROL, 0);
5143
5144         /* 2b: Program RC6 thresholds.*/
5145
5146         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5147         if (IS_SKYLAKE(dev_priv))
5148                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5149         else
5150                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5151         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5152         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5153         for_each_engine(engine, dev_priv)
5154                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5155
5156         if (HAS_GUC(dev_priv))
5157                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5158
5159         I915_WRITE(GEN6_RC_SLEEP, 0);
5160
5161         /* 2c: Program Coarse Power Gating Policies. */
5162         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5163         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5164
5165         /* 3a: Enable RC6 */
5166         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5167                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5168         DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5169         /* WaRsUseTimeoutMode */
5170         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
5171             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5172                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5173                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5174                            GEN7_RC_CTL_TO_MODE |
5175                            rc6_mask);
5176         } else {
5177                 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5178                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5179                            GEN6_RC_CTL_EI_MODE(1) |
5180                            rc6_mask);
5181         }
5182
5183         /*
5184          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5185          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5186          */
5187         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5188                 I915_WRITE(GEN9_PG_ENABLE, 0);
5189         else
5190                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5191                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5192
5193         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5194 }
5195
5196 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5197 {
5198         struct intel_engine_cs *engine;
5199         uint32_t rc6_mask = 0;
5200
5201         /* 1a: Software RC state - RC0 */
5202         I915_WRITE(GEN6_RC_STATE, 0);
5203
5204         /* 1c & 1d: Get forcewake during program sequence. Although the driver
5205          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5206         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5207
5208         /* 2a: Disable RC states. */
5209         I915_WRITE(GEN6_RC_CONTROL, 0);
5210
5211         /* Initialize rps frequencies */
5212         gen6_init_rps_frequencies(dev_priv);
5213
5214         /* 2b: Program RC6 thresholds.*/
5215         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5216         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5217         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5218         for_each_engine(engine, dev_priv)
5219                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5220         I915_WRITE(GEN6_RC_SLEEP, 0);
5221         if (IS_BROADWELL(dev_priv))
5222                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5223         else
5224                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5225
5226         /* 3: Enable RC6 */
5227         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5228                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5229         intel_print_rc6_info(dev_priv, rc6_mask);
5230         if (IS_BROADWELL(dev_priv))
5231                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5232                                 GEN7_RC_CTL_TO_MODE |
5233                                 rc6_mask);
5234         else
5235                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5236                                 GEN6_RC_CTL_EI_MODE(1) |
5237                                 rc6_mask);
5238
5239         /* 4 Program defaults and thresholds for RPS*/
5240         I915_WRITE(GEN6_RPNSWREQ,
5241                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5242         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5243                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5244         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5245         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5246
5247         /* Docs recommend 900MHz, and 300 MHz respectively */
5248         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5249                    dev_priv->rps.max_freq_softlimit << 24 |
5250                    dev_priv->rps.min_freq_softlimit << 16);
5251
5252         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5253         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5254         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5255         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5256
5257         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5258
5259         /* 5: Enable RPS */
5260         I915_WRITE(GEN6_RP_CONTROL,
5261                    GEN6_RP_MEDIA_TURBO |
5262                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5263                    GEN6_RP_MEDIA_IS_GFX |
5264                    GEN6_RP_ENABLE |
5265                    GEN6_RP_UP_BUSY_AVG |
5266                    GEN6_RP_DOWN_IDLE_AVG);
5267
5268         /* 6: Ring frequency + overclocking (our driver does this later */
5269
5270         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5271         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5272
5273         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5274 }
5275
5276 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5277 {
5278         struct intel_engine_cs *engine;
5279         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5280         u32 gtfifodbg;
5281         int rc6_mode;
5282         int ret;
5283
5284         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5285
5286         /* Here begins a magic sequence of register writes to enable
5287          * auto-downclocking.
5288          *
5289          * Perhaps there might be some value in exposing these to
5290          * userspace...
5291          */
5292         I915_WRITE(GEN6_RC_STATE, 0);
5293
5294         /* Clear the DBG now so we don't confuse earlier errors */
5295         gtfifodbg = I915_READ(GTFIFODBG);
5296         if (gtfifodbg) {
5297                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5298                 I915_WRITE(GTFIFODBG, gtfifodbg);
5299         }
5300
5301         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5302
5303         /* Initialize rps frequencies */
5304         gen6_init_rps_frequencies(dev_priv);
5305
5306         /* disable the counters and set deterministic thresholds */
5307         I915_WRITE(GEN6_RC_CONTROL, 0);
5308
5309         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5310         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5311         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5312         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5313         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5314
5315         for_each_engine(engine, dev_priv)
5316                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5317
5318         I915_WRITE(GEN6_RC_SLEEP, 0);
5319         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5320         if (IS_IVYBRIDGE(dev_priv))
5321                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5322         else
5323                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5324         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5325         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5326
5327         /* Check if we are enabling RC6 */
5328         rc6_mode = intel_enable_rc6();
5329         if (rc6_mode & INTEL_RC6_ENABLE)
5330                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5331
5332         /* We don't use those on Haswell */
5333         if (!IS_HASWELL(dev_priv)) {
5334                 if (rc6_mode & INTEL_RC6p_ENABLE)
5335                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5336
5337                 if (rc6_mode & INTEL_RC6pp_ENABLE)
5338                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5339         }
5340
5341         intel_print_rc6_info(dev_priv, rc6_mask);
5342
5343         I915_WRITE(GEN6_RC_CONTROL,
5344                    rc6_mask |
5345                    GEN6_RC_CTL_EI_MODE(1) |
5346                    GEN6_RC_CTL_HW_ENABLE);
5347
5348         /* Power down if completely idle for over 50ms */
5349         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5350         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5351
5352         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5353         if (ret)
5354                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5355
5356         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5357         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5358                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5359                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5360                                  (pcu_mbox & 0xff) * 50);
5361                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5362         }
5363
5364         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5365         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5366
5367         rc6vids = 0;
5368         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5369         if (IS_GEN6(dev_priv) && ret) {
5370                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5371         } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5372                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5373                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5374                 rc6vids &= 0xffff00;
5375                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5376                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5377                 if (ret)
5378                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5379         }
5380
5381         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5382 }
5383
5384 static void __gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5385 {
5386         int min_freq = 15;
5387         unsigned int gpu_freq;
5388         unsigned int max_ia_freq, min_ring_freq;
5389         unsigned int max_gpu_freq, min_gpu_freq;
5390         int scaling_factor = 180;
5391         struct cpufreq_policy *policy;
5392
5393         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5394
5395         policy = cpufreq_cpu_get(0);
5396         if (policy) {
5397                 max_ia_freq = policy->cpuinfo.max_freq;
5398                 cpufreq_cpu_put(policy);
5399         } else {
5400                 /*
5401                  * Default to measured freq if none found, PCU will ensure we
5402                  * don't go over
5403                  */
5404                 max_ia_freq = tsc_khz;
5405         }
5406
5407         /* Convert from kHz to MHz */
5408         max_ia_freq /= 1000;
5409
5410         min_ring_freq = I915_READ(DCLK) & 0xf;
5411         /* convert DDR frequency from units of 266.6MHz to bandwidth */
5412         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5413
5414         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5415                 /* Convert GT frequency to 50 HZ units */
5416                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5417                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5418         } else {
5419                 min_gpu_freq = dev_priv->rps.min_freq;
5420                 max_gpu_freq = dev_priv->rps.max_freq;
5421         }
5422
5423         /*
5424          * For each potential GPU frequency, load a ring frequency we'd like
5425          * to use for memory access.  We do this by specifying the IA frequency
5426          * the PCU should use as a reference to determine the ring frequency.
5427          */
5428         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5429                 int diff = max_gpu_freq - gpu_freq;
5430                 unsigned int ia_freq = 0, ring_freq = 0;
5431
5432                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5433                         /*
5434                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
5435                          * No floor required for ring frequency on SKL.
5436                          */
5437                         ring_freq = gpu_freq;
5438                 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
5439                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
5440                         ring_freq = max(min_ring_freq, gpu_freq);
5441                 } else if (IS_HASWELL(dev_priv)) {
5442                         ring_freq = mult_frac(gpu_freq, 5, 4);
5443                         ring_freq = max(min_ring_freq, ring_freq);
5444                         /* leave ia_freq as the default, chosen by cpufreq */
5445                 } else {
5446                         /* On older processors, there is no separate ring
5447                          * clock domain, so in order to boost the bandwidth
5448                          * of the ring, we need to upclock the CPU (ia_freq).
5449                          *
5450                          * For GPU frequencies less than 750MHz,
5451                          * just use the lowest ring freq.
5452                          */
5453                         if (gpu_freq < min_freq)
5454                                 ia_freq = 800;
5455                         else
5456                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5457                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5458                 }
5459
5460                 sandybridge_pcode_write(dev_priv,
5461                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5462                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5463                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5464                                         gpu_freq);
5465         }
5466 }
5467
5468 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5469 {
5470         if (!HAS_CORE_RING_FREQ(dev_priv))
5471                 return;
5472
5473         mutex_lock(&dev_priv->rps.hw_lock);
5474         __gen6_update_ring_freq(dev_priv);
5475         mutex_unlock(&dev_priv->rps.hw_lock);
5476 }
5477
5478 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5479 {
5480         u32 val, rp0;
5481
5482         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5483
5484         switch (INTEL_INFO(dev_priv)->eu_total) {
5485         case 8:
5486                 /* (2 * 4) config */
5487                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5488                 break;
5489         case 12:
5490                 /* (2 * 6) config */
5491                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5492                 break;
5493         case 16:
5494                 /* (2 * 8) config */
5495         default:
5496                 /* Setting (2 * 8) Min RP0 for any other combination */
5497                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5498                 break;
5499         }
5500
5501         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5502
5503         return rp0;
5504 }
5505
5506 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5507 {
5508         u32 val, rpe;
5509
5510         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5511         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5512
5513         return rpe;
5514 }
5515
5516 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5517 {
5518         u32 val, rp1;
5519
5520         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5521         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5522
5523         return rp1;
5524 }
5525
5526 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5527 {
5528         u32 val, rp1;
5529
5530         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5531
5532         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5533
5534         return rp1;
5535 }
5536
5537 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5538 {
5539         u32 val, rp0;
5540
5541         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5542
5543         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5544         /* Clamp to max */
5545         rp0 = min_t(u32, rp0, 0xea);
5546
5547         return rp0;
5548 }
5549
5550 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5551 {
5552         u32 val, rpe;
5553
5554         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5555         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5556         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5557         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5558
5559         return rpe;
5560 }
5561
5562 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5563 {
5564         u32 val;
5565
5566         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5567         /*
5568          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5569          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5570          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5571          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5572          * to make sure it matches what Punit accepts.
5573          */
5574         return max_t(u32, val, 0xc0);
5575 }
5576
5577 /* Check that the pctx buffer wasn't move under us. */
5578 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5579 {
5580         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5581
5582         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5583                              dev_priv->vlv_pctx->stolen->start);
5584 }
5585
5586
5587 /* Check that the pcbr address is not empty. */
5588 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5589 {
5590         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5591
5592         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5593 }
5594
5595 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5596 {
5597         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5598         unsigned long pctx_paddr, paddr;
5599         u32 pcbr;
5600         int pctx_size = 32*1024;
5601
5602         pcbr = I915_READ(VLV_PCBR);
5603         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5604                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5605                 paddr = (dev_priv->mm.stolen_base +
5606                          (ggtt->stolen_size - pctx_size));
5607
5608                 pctx_paddr = (paddr & (~4095));
5609                 I915_WRITE(VLV_PCBR, pctx_paddr);
5610         }
5611
5612         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5613 }
5614
5615 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5616 {
5617         struct drm_i915_gem_object *pctx;
5618         unsigned long pctx_paddr;
5619         u32 pcbr;
5620         int pctx_size = 24*1024;
5621
5622         mutex_lock(&dev_priv->dev->struct_mutex);
5623
5624         pcbr = I915_READ(VLV_PCBR);
5625         if (pcbr) {
5626                 /* BIOS set it up already, grab the pre-alloc'd space */
5627                 int pcbr_offset;
5628
5629                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5630                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5631                                                                       pcbr_offset,
5632                                                                       I915_GTT_OFFSET_NONE,
5633                                                                       pctx_size);
5634                 goto out;
5635         }
5636
5637         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5638
5639         /*
5640          * From the Gunit register HAS:
5641          * The Gfx driver is expected to program this register and ensure
5642          * proper allocation within Gfx stolen memory.  For example, this
5643          * register should be programmed such than the PCBR range does not
5644          * overlap with other ranges, such as the frame buffer, protected
5645          * memory, or any other relevant ranges.
5646          */
5647         pctx = i915_gem_object_create_stolen(dev_priv->dev, pctx_size);
5648         if (!pctx) {
5649                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5650                 goto out;
5651         }
5652
5653         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5654         I915_WRITE(VLV_PCBR, pctx_paddr);
5655
5656 out:
5657         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5658         dev_priv->vlv_pctx = pctx;
5659         mutex_unlock(&dev_priv->dev->struct_mutex);
5660 }
5661
5662 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5663 {
5664         if (WARN_ON(!dev_priv->vlv_pctx))
5665                 return;
5666
5667         drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5668         dev_priv->vlv_pctx = NULL;
5669 }
5670
5671 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5672 {
5673         dev_priv->rps.gpll_ref_freq =
5674                 vlv_get_cck_clock(dev_priv, "GPLL ref",
5675                                   CCK_GPLL_CLOCK_CONTROL,
5676                                   dev_priv->czclk_freq);
5677
5678         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5679                          dev_priv->rps.gpll_ref_freq);
5680 }
5681
5682 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5683 {
5684         u32 val;
5685
5686         valleyview_setup_pctx(dev_priv);
5687
5688         vlv_init_gpll_ref_freq(dev_priv);
5689
5690         mutex_lock(&dev_priv->rps.hw_lock);
5691
5692         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5693         switch ((val >> 6) & 3) {
5694         case 0:
5695         case 1:
5696                 dev_priv->mem_freq = 800;
5697                 break;
5698         case 2:
5699                 dev_priv->mem_freq = 1066;
5700                 break;
5701         case 3:
5702                 dev_priv->mem_freq = 1333;
5703                 break;
5704         }
5705         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5706
5707         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5708         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5709         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5710                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5711                          dev_priv->rps.max_freq);
5712
5713         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5714         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5715                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5716                          dev_priv->rps.efficient_freq);
5717
5718         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5719         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5720                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5721                          dev_priv->rps.rp1_freq);
5722
5723         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5724         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5725                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5726                          dev_priv->rps.min_freq);
5727
5728         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5729
5730         /* Preserve min/max settings in case of re-init */
5731         if (dev_priv->rps.max_freq_softlimit == 0)
5732                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5733
5734         if (dev_priv->rps.min_freq_softlimit == 0)
5735                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5736
5737         mutex_unlock(&dev_priv->rps.hw_lock);
5738 }
5739
5740 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5741 {
5742         u32 val;
5743
5744         cherryview_setup_pctx(dev_priv);
5745
5746         vlv_init_gpll_ref_freq(dev_priv);
5747
5748         mutex_lock(&dev_priv->rps.hw_lock);
5749
5750         mutex_lock(&dev_priv->sb_lock);
5751         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5752         mutex_unlock(&dev_priv->sb_lock);
5753
5754         switch ((val >> 2) & 0x7) {
5755         case 3:
5756                 dev_priv->mem_freq = 2000;
5757                 break;
5758         default:
5759                 dev_priv->mem_freq = 1600;
5760                 break;
5761         }
5762         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5763
5764         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5765         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5766         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5767                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5768                          dev_priv->rps.max_freq);
5769
5770         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5771         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5772                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5773                          dev_priv->rps.efficient_freq);
5774
5775         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5776         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5777                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5778                          dev_priv->rps.rp1_freq);
5779
5780         /* PUnit validated range is only [RPe, RP0] */
5781         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5782         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5783                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5784                          dev_priv->rps.min_freq);
5785
5786         WARN_ONCE((dev_priv->rps.max_freq |
5787                    dev_priv->rps.efficient_freq |
5788                    dev_priv->rps.rp1_freq |
5789                    dev_priv->rps.min_freq) & 1,
5790                   "Odd GPU freq values\n");
5791
5792         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5793
5794         /* Preserve min/max settings in case of re-init */
5795         if (dev_priv->rps.max_freq_softlimit == 0)
5796                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5797
5798         if (dev_priv->rps.min_freq_softlimit == 0)
5799                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5800
5801         mutex_unlock(&dev_priv->rps.hw_lock);
5802 }
5803
5804 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5805 {
5806         valleyview_cleanup_pctx(dev_priv);
5807 }
5808
5809 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5810 {
5811         struct intel_engine_cs *engine;
5812         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5813
5814         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5815
5816         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
5817                                              GT_FIFO_FREE_ENTRIES_CHV);
5818         if (gtfifodbg) {
5819                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5820                                  gtfifodbg);
5821                 I915_WRITE(GTFIFODBG, gtfifodbg);
5822         }
5823
5824         cherryview_check_pctx(dev_priv);
5825
5826         /* 1a & 1b: Get forcewake during program sequence. Although the driver
5827          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5828         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5829
5830         /*  Disable RC states. */
5831         I915_WRITE(GEN6_RC_CONTROL, 0);
5832
5833         /* 2a: Program RC6 thresholds.*/
5834         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5835         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5836         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5837
5838         for_each_engine(engine, dev_priv)
5839                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5840         I915_WRITE(GEN6_RC_SLEEP, 0);
5841
5842         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5843         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5844
5845         /* allows RC6 residency counter to work */
5846         I915_WRITE(VLV_COUNTER_CONTROL,
5847                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5848                                       VLV_MEDIA_RC6_COUNT_EN |
5849                                       VLV_RENDER_RC6_COUNT_EN));
5850
5851         /* For now we assume BIOS is allocating and populating the PCBR  */
5852         pcbr = I915_READ(VLV_PCBR);
5853
5854         /* 3: Enable RC6 */
5855         if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
5856             (pcbr >> VLV_PCBR_ADDR_SHIFT))
5857                 rc6_mode = GEN7_RC_CTL_TO_MODE;
5858
5859         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5860
5861         /* 4 Program defaults and thresholds for RPS*/
5862         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5863         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5864         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5865         I915_WRITE(GEN6_RP_UP_EI, 66000);
5866         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5867
5868         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5869
5870         /* 5: Enable RPS */
5871         I915_WRITE(GEN6_RP_CONTROL,
5872                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5873                    GEN6_RP_MEDIA_IS_GFX |
5874                    GEN6_RP_ENABLE |
5875                    GEN6_RP_UP_BUSY_AVG |
5876                    GEN6_RP_DOWN_IDLE_AVG);
5877
5878         /* Setting Fixed Bias */
5879         val = VLV_OVERRIDE_EN |
5880                   VLV_SOC_TDP_EN |
5881                   CHV_BIAS_CPU_50_SOC_50;
5882         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5883
5884         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5885
5886         /* RPS code assumes GPLL is used */
5887         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5888
5889         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5890         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5891
5892         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5893         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5894                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5895                          dev_priv->rps.cur_freq);
5896
5897         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5898                          intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
5899                          dev_priv->rps.idle_freq);
5900
5901         valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
5902
5903         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5904 }
5905
5906 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
5907 {
5908         struct intel_engine_cs *engine;
5909         u32 gtfifodbg, val, rc6_mode = 0;
5910
5911         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5912
5913         valleyview_check_pctx(dev_priv);
5914
5915         gtfifodbg = I915_READ(GTFIFODBG);
5916         if (gtfifodbg) {
5917                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5918                                  gtfifodbg);
5919                 I915_WRITE(GTFIFODBG, gtfifodbg);
5920         }
5921
5922         /* If VLV, Forcewake all wells, else re-direct to regular path */
5923         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5924
5925         /*  Disable RC states. */
5926         I915_WRITE(GEN6_RC_CONTROL, 0);
5927
5928         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5929         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5930         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5931         I915_WRITE(GEN6_RP_UP_EI, 66000);
5932         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5933
5934         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5935
5936         I915_WRITE(GEN6_RP_CONTROL,
5937                    GEN6_RP_MEDIA_TURBO |
5938                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5939                    GEN6_RP_MEDIA_IS_GFX |
5940                    GEN6_RP_ENABLE |
5941                    GEN6_RP_UP_BUSY_AVG |
5942                    GEN6_RP_DOWN_IDLE_CONT);
5943
5944         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5945         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5946         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5947
5948         for_each_engine(engine, dev_priv)
5949                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5950
5951         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5952
5953         /* allows RC6 residency counter to work */
5954         I915_WRITE(VLV_COUNTER_CONTROL,
5955                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5956                                       VLV_RENDER_RC0_COUNT_EN |
5957                                       VLV_MEDIA_RC6_COUNT_EN |
5958                                       VLV_RENDER_RC6_COUNT_EN));
5959
5960         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5961                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5962
5963         intel_print_rc6_info(dev_priv, rc6_mode);
5964
5965         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5966
5967         /* Setting Fixed Bias */
5968         val = VLV_OVERRIDE_EN |
5969                   VLV_SOC_TDP_EN |
5970                   VLV_BIAS_CPU_125_SOC_875;
5971         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5972
5973         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5974
5975         /* RPS code assumes GPLL is used */
5976         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5977
5978         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5979         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5980
5981         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5982         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5983                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5984                          dev_priv->rps.cur_freq);
5985
5986         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5987                          intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
5988                          dev_priv->rps.idle_freq);
5989
5990         valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
5991
5992         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5993 }
5994
5995 static unsigned long intel_pxfreq(u32 vidfreq)
5996 {
5997         unsigned long freq;
5998         int div = (vidfreq & 0x3f0000) >> 16;
5999         int post = (vidfreq & 0x3000) >> 12;
6000         int pre = (vidfreq & 0x7);
6001
6002         if (!pre)
6003                 return 0;
6004
6005         freq = ((div * 133333) / ((1<<post) * pre));
6006
6007         return freq;
6008 }
6009
6010 static const struct cparams {
6011         u16 i;
6012         u16 t;
6013         u16 m;
6014         u16 c;
6015 } cparams[] = {
6016         { 1, 1333, 301, 28664 },
6017         { 1, 1066, 294, 24460 },
6018         { 1, 800, 294, 25192 },
6019         { 0, 1333, 276, 27605 },
6020         { 0, 1066, 276, 27605 },
6021         { 0, 800, 231, 23784 },
6022 };
6023
6024 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6025 {
6026         u64 total_count, diff, ret;
6027         u32 count1, count2, count3, m = 0, c = 0;
6028         unsigned long now = jiffies_to_msecs(jiffies), diff1;
6029         int i;
6030
6031         assert_spin_locked(&mchdev_lock);
6032
6033         diff1 = now - dev_priv->ips.last_time1;
6034
6035         /* Prevent division-by-zero if we are asking too fast.
6036          * Also, we don't get interesting results if we are polling
6037          * faster than once in 10ms, so just return the saved value
6038          * in such cases.
6039          */
6040         if (diff1 <= 10)
6041                 return dev_priv->ips.chipset_power;
6042
6043         count1 = I915_READ(DMIEC);
6044         count2 = I915_READ(DDREC);
6045         count3 = I915_READ(CSIEC);
6046
6047         total_count = count1 + count2 + count3;
6048
6049         /* FIXME: handle per-counter overflow */
6050         if (total_count < dev_priv->ips.last_count1) {
6051                 diff = ~0UL - dev_priv->ips.last_count1;
6052                 diff += total_count;
6053         } else {
6054                 diff = total_count - dev_priv->ips.last_count1;
6055         }
6056
6057         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6058                 if (cparams[i].i == dev_priv->ips.c_m &&
6059                     cparams[i].t == dev_priv->ips.r_t) {
6060                         m = cparams[i].m;
6061                         c = cparams[i].c;
6062                         break;
6063                 }
6064         }
6065
6066         diff = div_u64(diff, diff1);
6067         ret = ((m * diff) + c);
6068         ret = div_u64(ret, 10);
6069
6070         dev_priv->ips.last_count1 = total_count;
6071         dev_priv->ips.last_time1 = now;
6072
6073         dev_priv->ips.chipset_power = ret;
6074
6075         return ret;
6076 }
6077
6078 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6079 {
6080         unsigned long val;
6081
6082         if (INTEL_INFO(dev_priv)->gen != 5)
6083                 return 0;
6084
6085         spin_lock_irq(&mchdev_lock);
6086
6087         val = __i915_chipset_val(dev_priv);
6088
6089         spin_unlock_irq(&mchdev_lock);
6090
6091         return val;
6092 }
6093
6094 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6095 {
6096         unsigned long m, x, b;
6097         u32 tsfs;
6098
6099         tsfs = I915_READ(TSFS);
6100
6101         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6102         x = I915_READ8(TR1);
6103
6104         b = tsfs & TSFS_INTR_MASK;
6105
6106         return ((m * x) / 127) - b;
6107 }
6108
6109 static int _pxvid_to_vd(u8 pxvid)
6110 {
6111         if (pxvid == 0)
6112                 return 0;
6113
6114         if (pxvid >= 8 && pxvid < 31)
6115                 pxvid = 31;
6116
6117         return (pxvid + 2) * 125;
6118 }
6119
6120 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6121 {
6122         const int vd = _pxvid_to_vd(pxvid);
6123         const int vm = vd - 1125;
6124
6125         if (INTEL_INFO(dev_priv)->is_mobile)
6126                 return vm > 0 ? vm : 0;
6127
6128         return vd;
6129 }
6130
6131 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6132 {
6133         u64 now, diff, diffms;
6134         u32 count;
6135
6136         assert_spin_locked(&mchdev_lock);
6137
6138         now = ktime_get_raw_ns();
6139         diffms = now - dev_priv->ips.last_time2;
6140         do_div(diffms, NSEC_PER_MSEC);
6141
6142         /* Don't divide by 0 */
6143         if (!diffms)
6144                 return;
6145
6146         count = I915_READ(GFXEC);
6147
6148         if (count < dev_priv->ips.last_count2) {
6149                 diff = ~0UL - dev_priv->ips.last_count2;
6150                 diff += count;
6151         } else {
6152                 diff = count - dev_priv->ips.last_count2;
6153         }
6154
6155         dev_priv->ips.last_count2 = count;
6156         dev_priv->ips.last_time2 = now;
6157
6158         /* More magic constants... */
6159         diff = diff * 1181;
6160         diff = div_u64(diff, diffms * 10);
6161         dev_priv->ips.gfx_power = diff;
6162 }
6163
6164 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6165 {
6166         if (INTEL_INFO(dev_priv)->gen != 5)
6167                 return;
6168
6169         spin_lock_irq(&mchdev_lock);
6170
6171         __i915_update_gfx_val(dev_priv);
6172
6173         spin_unlock_irq(&mchdev_lock);
6174 }
6175
6176 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6177 {
6178         unsigned long t, corr, state1, corr2, state2;
6179         u32 pxvid, ext_v;
6180
6181         assert_spin_locked(&mchdev_lock);
6182
6183         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6184         pxvid = (pxvid >> 24) & 0x7f;
6185         ext_v = pvid_to_extvid(dev_priv, pxvid);
6186
6187         state1 = ext_v;
6188
6189         t = i915_mch_val(dev_priv);
6190
6191         /* Revel in the empirically derived constants */
6192
6193         /* Correction factor in 1/100000 units */
6194         if (t > 80)
6195                 corr = ((t * 2349) + 135940);
6196         else if (t >= 50)
6197                 corr = ((t * 964) + 29317);
6198         else /* < 50 */
6199                 corr = ((t * 301) + 1004);
6200
6201         corr = corr * ((150142 * state1) / 10000 - 78642);
6202         corr /= 100000;
6203         corr2 = (corr * dev_priv->ips.corr);
6204
6205         state2 = (corr2 * state1) / 10000;
6206         state2 /= 100; /* convert to mW */
6207
6208         __i915_update_gfx_val(dev_priv);
6209
6210         return dev_priv->ips.gfx_power + state2;
6211 }
6212
6213 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6214 {
6215         unsigned long val;
6216
6217         if (INTEL_INFO(dev_priv)->gen != 5)
6218                 return 0;
6219
6220         spin_lock_irq(&mchdev_lock);
6221
6222         val = __i915_gfx_val(dev_priv);
6223
6224         spin_unlock_irq(&mchdev_lock);
6225
6226         return val;
6227 }
6228
6229 /**
6230  * i915_read_mch_val - return value for IPS use
6231  *
6232  * Calculate and return a value for the IPS driver to use when deciding whether
6233  * we have thermal and power headroom to increase CPU or GPU power budget.
6234  */
6235 unsigned long i915_read_mch_val(void)
6236 {
6237         struct drm_i915_private *dev_priv;
6238         unsigned long chipset_val, graphics_val, ret = 0;
6239
6240         spin_lock_irq(&mchdev_lock);
6241         if (!i915_mch_dev)
6242                 goto out_unlock;
6243         dev_priv = i915_mch_dev;
6244
6245         chipset_val = __i915_chipset_val(dev_priv);
6246         graphics_val = __i915_gfx_val(dev_priv);
6247
6248         ret = chipset_val + graphics_val;
6249
6250 out_unlock:
6251         spin_unlock_irq(&mchdev_lock);
6252
6253         return ret;
6254 }
6255 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6256
6257 /**
6258  * i915_gpu_raise - raise GPU frequency limit
6259  *
6260  * Raise the limit; IPS indicates we have thermal headroom.
6261  */
6262 bool i915_gpu_raise(void)
6263 {
6264         struct drm_i915_private *dev_priv;
6265         bool ret = true;
6266
6267         spin_lock_irq(&mchdev_lock);
6268         if (!i915_mch_dev) {
6269                 ret = false;
6270                 goto out_unlock;
6271         }
6272         dev_priv = i915_mch_dev;
6273
6274         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6275                 dev_priv->ips.max_delay--;
6276
6277 out_unlock:
6278         spin_unlock_irq(&mchdev_lock);
6279
6280         return ret;
6281 }
6282 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6283
6284 /**
6285  * i915_gpu_lower - lower GPU frequency limit
6286  *
6287  * IPS indicates we're close to a thermal limit, so throttle back the GPU
6288  * frequency maximum.
6289  */
6290 bool i915_gpu_lower(void)
6291 {
6292         struct drm_i915_private *dev_priv;
6293         bool ret = true;
6294
6295         spin_lock_irq(&mchdev_lock);
6296         if (!i915_mch_dev) {
6297                 ret = false;
6298                 goto out_unlock;
6299         }
6300         dev_priv = i915_mch_dev;
6301
6302         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6303                 dev_priv->ips.max_delay++;
6304
6305 out_unlock:
6306         spin_unlock_irq(&mchdev_lock);
6307
6308         return ret;
6309 }
6310 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6311
6312 /**
6313  * i915_gpu_busy - indicate GPU business to IPS
6314  *
6315  * Tell the IPS driver whether or not the GPU is busy.
6316  */
6317 bool i915_gpu_busy(void)
6318 {
6319         struct drm_i915_private *dev_priv;
6320         struct intel_engine_cs *engine;
6321         bool ret = false;
6322
6323         spin_lock_irq(&mchdev_lock);
6324         if (!i915_mch_dev)
6325                 goto out_unlock;
6326         dev_priv = i915_mch_dev;
6327
6328         for_each_engine(engine, dev_priv)
6329                 ret |= !list_empty(&engine->request_list);
6330
6331 out_unlock:
6332         spin_unlock_irq(&mchdev_lock);
6333
6334         return ret;
6335 }
6336 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6337
6338 /**
6339  * i915_gpu_turbo_disable - disable graphics turbo
6340  *
6341  * Disable graphics turbo by resetting the max frequency and setting the
6342  * current frequency to the default.
6343  */
6344 bool i915_gpu_turbo_disable(void)
6345 {
6346         struct drm_i915_private *dev_priv;
6347         bool ret = true;
6348
6349         spin_lock_irq(&mchdev_lock);
6350         if (!i915_mch_dev) {
6351                 ret = false;
6352                 goto out_unlock;
6353         }
6354         dev_priv = i915_mch_dev;
6355
6356         dev_priv->ips.max_delay = dev_priv->ips.fstart;
6357
6358         if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6359                 ret = false;
6360
6361 out_unlock:
6362         spin_unlock_irq(&mchdev_lock);
6363
6364         return ret;
6365 }
6366 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6367
6368 /**
6369  * Tells the intel_ips driver that the i915 driver is now loaded, if
6370  * IPS got loaded first.
6371  *
6372  * This awkward dance is so that neither module has to depend on the
6373  * other in order for IPS to do the appropriate communication of
6374  * GPU turbo limits to i915.
6375  */
6376 static void
6377 ips_ping_for_i915_load(void)
6378 {
6379         void (*link)(void);
6380
6381         link = symbol_get(ips_link_to_i915_driver);
6382         if (link) {
6383                 link();
6384                 symbol_put(ips_link_to_i915_driver);
6385         }
6386 }
6387
6388 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6389 {
6390         /* We only register the i915 ips part with intel-ips once everything is
6391          * set up, to avoid intel-ips sneaking in and reading bogus values. */
6392         spin_lock_irq(&mchdev_lock);
6393         i915_mch_dev = dev_priv;
6394         spin_unlock_irq(&mchdev_lock);
6395
6396         ips_ping_for_i915_load();
6397 }
6398
6399 void intel_gpu_ips_teardown(void)
6400 {
6401         spin_lock_irq(&mchdev_lock);
6402         i915_mch_dev = NULL;
6403         spin_unlock_irq(&mchdev_lock);
6404 }
6405
6406 static void intel_init_emon(struct drm_i915_private *dev_priv)
6407 {
6408         u32 lcfuse;
6409         u8 pxw[16];
6410         int i;
6411
6412         /* Disable to program */
6413         I915_WRITE(ECR, 0);
6414         POSTING_READ(ECR);
6415
6416         /* Program energy weights for various events */
6417         I915_WRITE(SDEW, 0x15040d00);
6418         I915_WRITE(CSIEW0, 0x007f0000);
6419         I915_WRITE(CSIEW1, 0x1e220004);
6420         I915_WRITE(CSIEW2, 0x04000004);
6421
6422         for (i = 0; i < 5; i++)
6423                 I915_WRITE(PEW(i), 0);
6424         for (i = 0; i < 3; i++)
6425                 I915_WRITE(DEW(i), 0);
6426
6427         /* Program P-state weights to account for frequency power adjustment */
6428         for (i = 0; i < 16; i++) {
6429                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6430                 unsigned long freq = intel_pxfreq(pxvidfreq);
6431                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6432                         PXVFREQ_PX_SHIFT;
6433                 unsigned long val;
6434
6435                 val = vid * vid;
6436                 val *= (freq / 1000);
6437                 val *= 255;
6438                 val /= (127*127*900);
6439                 if (val > 0xff)
6440                         DRM_ERROR("bad pxval: %ld\n", val);
6441                 pxw[i] = val;
6442         }
6443         /* Render standby states get 0 weight */
6444         pxw[14] = 0;
6445         pxw[15] = 0;
6446
6447         for (i = 0; i < 4; i++) {
6448                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6449                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6450                 I915_WRITE(PXW(i), val);
6451         }
6452
6453         /* Adjust magic regs to magic values (more experimental results) */
6454         I915_WRITE(OGW0, 0);
6455         I915_WRITE(OGW1, 0);
6456         I915_WRITE(EG0, 0x00007f00);
6457         I915_WRITE(EG1, 0x0000000e);
6458         I915_WRITE(EG2, 0x000e0000);
6459         I915_WRITE(EG3, 0x68000300);
6460         I915_WRITE(EG4, 0x42000000);
6461         I915_WRITE(EG5, 0x00140031);
6462         I915_WRITE(EG6, 0);
6463         I915_WRITE(EG7, 0);
6464
6465         for (i = 0; i < 8; i++)
6466                 I915_WRITE(PXWL(i), 0);
6467
6468         /* Enable PMON + select events */
6469         I915_WRITE(ECR, 0x80000019);
6470
6471         lcfuse = I915_READ(LCFUSE02);
6472
6473         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6474 }
6475
6476 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6477 {
6478         /*
6479          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6480          * requirement.
6481          */
6482         if (!i915.enable_rc6) {
6483                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6484                 intel_runtime_pm_get(dev_priv);
6485         }
6486
6487         if (IS_CHERRYVIEW(dev_priv))
6488                 cherryview_init_gt_powersave(dev_priv);
6489         else if (IS_VALLEYVIEW(dev_priv))
6490                 valleyview_init_gt_powersave(dev_priv);
6491 }
6492
6493 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6494 {
6495         if (IS_CHERRYVIEW(dev_priv))
6496                 return;
6497         else if (IS_VALLEYVIEW(dev_priv))
6498                 valleyview_cleanup_gt_powersave(dev_priv);
6499
6500         if (!i915.enable_rc6)
6501                 intel_runtime_pm_put(dev_priv);
6502 }
6503
6504 static void gen6_suspend_rps(struct drm_i915_private *dev_priv)
6505 {
6506         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6507
6508         gen6_disable_rps_interrupts(dev_priv);
6509 }
6510
6511 /**
6512  * intel_suspend_gt_powersave - suspend PM work and helper threads
6513  * @dev_priv: i915 device
6514  *
6515  * We don't want to disable RC6 or other features here, we just want
6516  * to make sure any work we've queued has finished and won't bother
6517  * us while we're suspended.
6518  */
6519 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6520 {
6521         if (INTEL_GEN(dev_priv) < 6)
6522                 return;
6523
6524         gen6_suspend_rps(dev_priv);
6525
6526         /* Force GPU to min freq during suspend */
6527         gen6_rps_idle(dev_priv);
6528 }
6529
6530 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6531 {
6532         if (IS_IRONLAKE_M(dev_priv)) {
6533                 ironlake_disable_drps(dev_priv);
6534         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6535                 intel_suspend_gt_powersave(dev_priv);
6536
6537                 mutex_lock(&dev_priv->rps.hw_lock);
6538                 if (INTEL_INFO(dev_priv)->gen >= 9) {
6539                         gen9_disable_rc6(dev_priv);
6540                         gen9_disable_rps(dev_priv);
6541                 } else if (IS_CHERRYVIEW(dev_priv))
6542                         cherryview_disable_rps(dev_priv);
6543                 else if (IS_VALLEYVIEW(dev_priv))
6544                         valleyview_disable_rps(dev_priv);
6545                 else
6546                         gen6_disable_rps(dev_priv);
6547
6548                 dev_priv->rps.enabled = false;
6549                 mutex_unlock(&dev_priv->rps.hw_lock);
6550         }
6551 }
6552
6553 static void intel_gen6_powersave_work(struct work_struct *work)
6554 {
6555         struct drm_i915_private *dev_priv =
6556                 container_of(work, struct drm_i915_private,
6557                              rps.delayed_resume_work.work);
6558
6559         mutex_lock(&dev_priv->rps.hw_lock);
6560
6561         gen6_reset_rps_interrupts(dev_priv);
6562
6563         if (IS_CHERRYVIEW(dev_priv)) {
6564                 cherryview_enable_rps(dev_priv);
6565         } else if (IS_VALLEYVIEW(dev_priv)) {
6566                 valleyview_enable_rps(dev_priv);
6567         } else if (INTEL_INFO(dev_priv)->gen >= 9) {
6568                 gen9_enable_rc6(dev_priv);
6569                 gen9_enable_rps(dev_priv);
6570                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6571                         __gen6_update_ring_freq(dev_priv);
6572         } else if (IS_BROADWELL(dev_priv)) {
6573                 gen8_enable_rps(dev_priv);
6574                 __gen6_update_ring_freq(dev_priv);
6575         } else {
6576                 gen6_enable_rps(dev_priv);
6577                 __gen6_update_ring_freq(dev_priv);
6578         }
6579
6580         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6581         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6582
6583         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6584         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6585
6586         dev_priv->rps.enabled = true;
6587
6588         gen6_enable_rps_interrupts(dev_priv);
6589
6590         mutex_unlock(&dev_priv->rps.hw_lock);
6591
6592         intel_runtime_pm_put(dev_priv);
6593 }
6594
6595 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6596 {
6597         /* Powersaving is controlled by the host when inside a VM */
6598         if (intel_vgpu_active(dev_priv))
6599                 return;
6600
6601         if (IS_IRONLAKE_M(dev_priv)) {
6602                 ironlake_enable_drps(dev_priv);
6603                 mutex_lock(&dev_priv->dev->struct_mutex);
6604                 intel_init_emon(dev_priv);
6605                 mutex_unlock(&dev_priv->dev->struct_mutex);
6606         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6607                 /*
6608                  * PCU communication is slow and this doesn't need to be
6609                  * done at any specific time, so do this out of our fast path
6610                  * to make resume and init faster.
6611                  *
6612                  * We depend on the HW RC6 power context save/restore
6613                  * mechanism when entering D3 through runtime PM suspend. So
6614                  * disable RPM until RPS/RC6 is properly setup. We can only
6615                  * get here via the driver load/system resume/runtime resume
6616                  * paths, so the _noresume version is enough (and in case of
6617                  * runtime resume it's necessary).
6618                  */
6619                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6620                                            round_jiffies_up_relative(HZ)))
6621                         intel_runtime_pm_get_noresume(dev_priv);
6622         }
6623 }
6624
6625 void intel_reset_gt_powersave(struct drm_i915_private *dev_priv)
6626 {
6627         if (INTEL_INFO(dev_priv)->gen < 6)
6628                 return;
6629
6630         gen6_suspend_rps(dev_priv);
6631         dev_priv->rps.enabled = false;
6632 }
6633
6634 static void ibx_init_clock_gating(struct drm_device *dev)
6635 {
6636         struct drm_i915_private *dev_priv = dev->dev_private;
6637
6638         /*
6639          * On Ibex Peak and Cougar Point, we need to disable clock
6640          * gating for the panel power sequencer or it will fail to
6641          * start up when no ports are active.
6642          */
6643         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6644 }
6645
6646 static void g4x_disable_trickle_feed(struct drm_device *dev)
6647 {
6648         struct drm_i915_private *dev_priv = dev->dev_private;
6649         enum pipe pipe;
6650
6651         for_each_pipe(dev_priv, pipe) {
6652                 I915_WRITE(DSPCNTR(pipe),
6653                            I915_READ(DSPCNTR(pipe)) |
6654                            DISPPLANE_TRICKLE_FEED_DISABLE);
6655
6656                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6657                 POSTING_READ(DSPSURF(pipe));
6658         }
6659 }
6660
6661 static void ilk_init_lp_watermarks(struct drm_device *dev)
6662 {
6663         struct drm_i915_private *dev_priv = dev->dev_private;
6664
6665         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6666         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6667         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6668
6669         /*
6670          * Don't touch WM1S_LP_EN here.
6671          * Doing so could cause underruns.
6672          */
6673 }
6674
6675 static void ironlake_init_clock_gating(struct drm_device *dev)
6676 {
6677         struct drm_i915_private *dev_priv = dev->dev_private;
6678         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6679
6680         /*
6681          * Required for FBC
6682          * WaFbcDisableDpfcClockGating:ilk
6683          */
6684         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6685                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6686                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6687
6688         I915_WRITE(PCH_3DCGDIS0,
6689                    MARIUNIT_CLOCK_GATE_DISABLE |
6690                    SVSMUNIT_CLOCK_GATE_DISABLE);
6691         I915_WRITE(PCH_3DCGDIS1,
6692                    VFMUNIT_CLOCK_GATE_DISABLE);
6693
6694         /*
6695          * According to the spec the following bits should be set in
6696          * order to enable memory self-refresh
6697          * The bit 22/21 of 0x42004
6698          * The bit 5 of 0x42020
6699          * The bit 15 of 0x45000
6700          */
6701         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6702                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6703                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6704         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6705         I915_WRITE(DISP_ARB_CTL,
6706                    (I915_READ(DISP_ARB_CTL) |
6707                     DISP_FBC_WM_DIS));
6708
6709         ilk_init_lp_watermarks(dev);
6710
6711         /*
6712          * Based on the document from hardware guys the following bits
6713          * should be set unconditionally in order to enable FBC.
6714          * The bit 22 of 0x42000
6715          * The bit 22 of 0x42004
6716          * The bit 7,8,9 of 0x42020.
6717          */
6718         if (IS_IRONLAKE_M(dev)) {
6719                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6720                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6721                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6722                            ILK_FBCQ_DIS);
6723                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6724                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6725                            ILK_DPARB_GATE);
6726         }
6727
6728         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6729
6730         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6731                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6732                    ILK_ELPIN_409_SELECT);
6733         I915_WRITE(_3D_CHICKEN2,
6734                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6735                    _3D_CHICKEN2_WM_READ_PIPELINED);
6736
6737         /* WaDisableRenderCachePipelinedFlush:ilk */
6738         I915_WRITE(CACHE_MODE_0,
6739                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6740
6741         /* WaDisable_RenderCache_OperationalFlush:ilk */
6742         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6743
6744         g4x_disable_trickle_feed(dev);
6745
6746         ibx_init_clock_gating(dev);
6747 }
6748
6749 static void cpt_init_clock_gating(struct drm_device *dev)
6750 {
6751         struct drm_i915_private *dev_priv = dev->dev_private;
6752         int pipe;
6753         uint32_t val;
6754
6755         /*
6756          * On Ibex Peak and Cougar Point, we need to disable clock
6757          * gating for the panel power sequencer or it will fail to
6758          * start up when no ports are active.
6759          */
6760         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6761                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6762                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6763         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6764                    DPLS_EDP_PPS_FIX_DIS);
6765         /* The below fixes the weird display corruption, a few pixels shifted
6766          * downward, on (only) LVDS of some HP laptops with IVY.
6767          */
6768         for_each_pipe(dev_priv, pipe) {
6769                 val = I915_READ(TRANS_CHICKEN2(pipe));
6770                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6771                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6772                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6773                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6774                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6775                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6776                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6777                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6778         }
6779         /* WADP0ClockGatingDisable */
6780         for_each_pipe(dev_priv, pipe) {
6781                 I915_WRITE(TRANS_CHICKEN1(pipe),
6782                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6783         }
6784 }
6785
6786 static void gen6_check_mch_setup(struct drm_device *dev)
6787 {
6788         struct drm_i915_private *dev_priv = dev->dev_private;
6789         uint32_t tmp;
6790
6791         tmp = I915_READ(MCH_SSKPD);
6792         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6793                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6794                               tmp);
6795 }
6796
6797 static void gen6_init_clock_gating(struct drm_device *dev)
6798 {
6799         struct drm_i915_private *dev_priv = dev->dev_private;
6800         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6801
6802         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6803
6804         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6805                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6806                    ILK_ELPIN_409_SELECT);
6807
6808         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6809         I915_WRITE(_3D_CHICKEN,
6810                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6811
6812         /* WaDisable_RenderCache_OperationalFlush:snb */
6813         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6814
6815         /*
6816          * BSpec recoomends 8x4 when MSAA is used,
6817          * however in practice 16x4 seems fastest.
6818          *
6819          * Note that PS/WM thread counts depend on the WIZ hashing
6820          * disable bit, which we don't touch here, but it's good
6821          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6822          */
6823         I915_WRITE(GEN6_GT_MODE,
6824                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6825
6826         ilk_init_lp_watermarks(dev);
6827
6828         I915_WRITE(CACHE_MODE_0,
6829                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6830
6831         I915_WRITE(GEN6_UCGCTL1,
6832                    I915_READ(GEN6_UCGCTL1) |
6833                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6834                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6835
6836         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6837          * gating disable must be set.  Failure to set it results in
6838          * flickering pixels due to Z write ordering failures after
6839          * some amount of runtime in the Mesa "fire" demo, and Unigine
6840          * Sanctuary and Tropics, and apparently anything else with
6841          * alpha test or pixel discard.
6842          *
6843          * According to the spec, bit 11 (RCCUNIT) must also be set,
6844          * but we didn't debug actual testcases to find it out.
6845          *
6846          * WaDisableRCCUnitClockGating:snb
6847          * WaDisableRCPBUnitClockGating:snb
6848          */
6849         I915_WRITE(GEN6_UCGCTL2,
6850                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6851                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6852
6853         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6854         I915_WRITE(_3D_CHICKEN3,
6855                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6856
6857         /*
6858          * Bspec says:
6859          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6860          * 3DSTATE_SF number of SF output attributes is more than 16."
6861          */
6862         I915_WRITE(_3D_CHICKEN3,
6863                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6864
6865         /*
6866          * According to the spec the following bits should be
6867          * set in order to enable memory self-refresh and fbc:
6868          * The bit21 and bit22 of 0x42000
6869          * The bit21 and bit22 of 0x42004
6870          * The bit5 and bit7 of 0x42020
6871          * The bit14 of 0x70180
6872          * The bit14 of 0x71180
6873          *
6874          * WaFbcAsynchFlipDisableFbcQueue:snb
6875          */
6876         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6877                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6878                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6879         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6880                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6881                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6882         I915_WRITE(ILK_DSPCLK_GATE_D,
6883                    I915_READ(ILK_DSPCLK_GATE_D) |
6884                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6885                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6886
6887         g4x_disable_trickle_feed(dev);
6888
6889         cpt_init_clock_gating(dev);
6890
6891         gen6_check_mch_setup(dev);
6892 }
6893
6894 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6895 {
6896         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6897
6898         /*
6899          * WaVSThreadDispatchOverride:ivb,vlv
6900          *
6901          * This actually overrides the dispatch
6902          * mode for all thread types.
6903          */
6904         reg &= ~GEN7_FF_SCHED_MASK;
6905         reg |= GEN7_FF_TS_SCHED_HW;
6906         reg |= GEN7_FF_VS_SCHED_HW;
6907         reg |= GEN7_FF_DS_SCHED_HW;
6908
6909         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6910 }
6911
6912 static void lpt_init_clock_gating(struct drm_device *dev)
6913 {
6914         struct drm_i915_private *dev_priv = dev->dev_private;
6915
6916         /*
6917          * TODO: this bit should only be enabled when really needed, then
6918          * disabled when not needed anymore in order to save power.
6919          */
6920         if (HAS_PCH_LPT_LP(dev))
6921                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6922                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6923                            PCH_LP_PARTITION_LEVEL_DISABLE);
6924
6925         /* WADPOClockGatingDisable:hsw */
6926         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6927                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6928                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6929 }
6930
6931 static void lpt_suspend_hw(struct drm_device *dev)
6932 {
6933         struct drm_i915_private *dev_priv = dev->dev_private;
6934
6935         if (HAS_PCH_LPT_LP(dev)) {
6936                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6937
6938                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6939                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6940         }
6941 }
6942
6943 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
6944                                    int general_prio_credits,
6945                                    int high_prio_credits)
6946 {
6947         u32 misccpctl;
6948
6949         /* WaTempDisableDOPClkGating:bdw */
6950         misccpctl = I915_READ(GEN7_MISCCPCTL);
6951         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6952
6953         I915_WRITE(GEN8_L3SQCREG1,
6954                    L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
6955                    L3_HIGH_PRIO_CREDITS(high_prio_credits));
6956
6957         /*
6958          * Wait at least 100 clocks before re-enabling clock gating.
6959          * See the definition of L3SQCREG1 in BSpec.
6960          */
6961         POSTING_READ(GEN8_L3SQCREG1);
6962         udelay(1);
6963         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6964 }
6965
6966 static void skylake_init_clock_gating(struct drm_device *dev)
6967 {
6968         struct drm_i915_private *dev_priv = dev->dev_private;
6969
6970         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,kbl */
6971         I915_WRITE(CHICKEN_PAR1_1,
6972                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
6973 }
6974
6975 static void broadwell_init_clock_gating(struct drm_device *dev)
6976 {
6977         struct drm_i915_private *dev_priv = dev->dev_private;
6978         enum pipe pipe;
6979
6980         ilk_init_lp_watermarks(dev);
6981
6982         /* WaSwitchSolVfFArbitrationPriority:bdw */
6983         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6984
6985         /* WaPsrDPAMaskVBlankInSRD:bdw */
6986         I915_WRITE(CHICKEN_PAR1_1,
6987                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6988
6989         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6990         for_each_pipe(dev_priv, pipe) {
6991                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6992                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
6993                            BDW_DPRS_MASK_VBLANK_SRD);
6994         }
6995
6996         /* WaVSRefCountFullforceMissDisable:bdw */
6997         /* WaDSRefCountFullforceMissDisable:bdw */
6998         I915_WRITE(GEN7_FF_THREAD_MODE,
6999                    I915_READ(GEN7_FF_THREAD_MODE) &
7000                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7001
7002         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7003                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7004
7005         /* WaDisableSDEUnitClockGating:bdw */
7006         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7007                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7008
7009         /* WaProgramL3SqcReg1Default:bdw */
7010         gen8_set_l3sqc_credits(dev_priv, 30, 2);
7011
7012         /*
7013          * WaGttCachingOffByDefault:bdw
7014          * GTT cache may not work with big pages, so if those
7015          * are ever enabled GTT cache may need to be disabled.
7016          */
7017         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7018
7019         lpt_init_clock_gating(dev);
7020 }
7021
7022 static void haswell_init_clock_gating(struct drm_device *dev)
7023 {
7024         struct drm_i915_private *dev_priv = dev->dev_private;
7025
7026         ilk_init_lp_watermarks(dev);
7027
7028         /* L3 caching of data atomics doesn't work -- disable it. */
7029         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7030         I915_WRITE(HSW_ROW_CHICKEN3,
7031                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7032
7033         /* This is required by WaCatErrorRejectionIssue:hsw */
7034         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7035                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7036                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7037
7038         /* WaVSRefCountFullforceMissDisable:hsw */
7039         I915_WRITE(GEN7_FF_THREAD_MODE,
7040                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7041
7042         /* WaDisable_RenderCache_OperationalFlush:hsw */
7043         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7044
7045         /* enable HiZ Raw Stall Optimization */
7046         I915_WRITE(CACHE_MODE_0_GEN7,
7047                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7048
7049         /* WaDisable4x2SubspanOptimization:hsw */
7050         I915_WRITE(CACHE_MODE_1,
7051                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7052
7053         /*
7054          * BSpec recommends 8x4 when MSAA is used,
7055          * however in practice 16x4 seems fastest.
7056          *
7057          * Note that PS/WM thread counts depend on the WIZ hashing
7058          * disable bit, which we don't touch here, but it's good
7059          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7060          */
7061         I915_WRITE(GEN7_GT_MODE,
7062                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7063
7064         /* WaSampleCChickenBitEnable:hsw */
7065         I915_WRITE(HALF_SLICE_CHICKEN3,
7066                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7067
7068         /* WaSwitchSolVfFArbitrationPriority:hsw */
7069         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7070
7071         /* WaRsPkgCStateDisplayPMReq:hsw */
7072         I915_WRITE(CHICKEN_PAR1_1,
7073                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7074
7075         lpt_init_clock_gating(dev);
7076 }
7077
7078 static void ivybridge_init_clock_gating(struct drm_device *dev)
7079 {
7080         struct drm_i915_private *dev_priv = dev->dev_private;
7081         uint32_t snpcr;
7082
7083         ilk_init_lp_watermarks(dev);
7084
7085         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7086
7087         /* WaDisableEarlyCull:ivb */
7088         I915_WRITE(_3D_CHICKEN3,
7089                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7090
7091         /* WaDisableBackToBackFlipFix:ivb */
7092         I915_WRITE(IVB_CHICKEN3,
7093                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7094                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7095
7096         /* WaDisablePSDDualDispatchEnable:ivb */
7097         if (IS_IVB_GT1(dev))
7098                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7099                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7100
7101         /* WaDisable_RenderCache_OperationalFlush:ivb */
7102         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7103
7104         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7105         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7106                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7107
7108         /* WaApplyL3ControlAndL3ChickenMode:ivb */
7109         I915_WRITE(GEN7_L3CNTLREG1,
7110                         GEN7_WA_FOR_GEN7_L3_CONTROL);
7111         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7112                    GEN7_WA_L3_CHICKEN_MODE);
7113         if (IS_IVB_GT1(dev))
7114                 I915_WRITE(GEN7_ROW_CHICKEN2,
7115                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7116         else {
7117                 /* must write both registers */
7118                 I915_WRITE(GEN7_ROW_CHICKEN2,
7119                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7120                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7121                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7122         }
7123
7124         /* WaForceL3Serialization:ivb */
7125         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7126                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7127
7128         /*
7129          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7130          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7131          */
7132         I915_WRITE(GEN6_UCGCTL2,
7133                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7134
7135         /* This is required by WaCatErrorRejectionIssue:ivb */
7136         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7137                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7138                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7139
7140         g4x_disable_trickle_feed(dev);
7141
7142         gen7_setup_fixed_func_scheduler(dev_priv);
7143
7144         if (0) { /* causes HiZ corruption on ivb:gt1 */
7145                 /* enable HiZ Raw Stall Optimization */
7146                 I915_WRITE(CACHE_MODE_0_GEN7,
7147                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7148         }
7149
7150         /* WaDisable4x2SubspanOptimization:ivb */
7151         I915_WRITE(CACHE_MODE_1,
7152                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7153
7154         /*
7155          * BSpec recommends 8x4 when MSAA is used,
7156          * however in practice 16x4 seems fastest.
7157          *
7158          * Note that PS/WM thread counts depend on the WIZ hashing
7159          * disable bit, which we don't touch here, but it's good
7160          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7161          */
7162         I915_WRITE(GEN7_GT_MODE,
7163                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7164
7165         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7166         snpcr &= ~GEN6_MBC_SNPCR_MASK;
7167         snpcr |= GEN6_MBC_SNPCR_MED;
7168         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7169
7170         if (!HAS_PCH_NOP(dev))
7171                 cpt_init_clock_gating(dev);
7172
7173         gen6_check_mch_setup(dev);
7174 }
7175
7176 static void valleyview_init_clock_gating(struct drm_device *dev)
7177 {
7178         struct drm_i915_private *dev_priv = dev->dev_private;
7179
7180         /* WaDisableEarlyCull:vlv */
7181         I915_WRITE(_3D_CHICKEN3,
7182                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7183
7184         /* WaDisableBackToBackFlipFix:vlv */
7185         I915_WRITE(IVB_CHICKEN3,
7186                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7187                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7188
7189         /* WaPsdDispatchEnable:vlv */
7190         /* WaDisablePSDDualDispatchEnable:vlv */
7191         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7192                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7193                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7194
7195         /* WaDisable_RenderCache_OperationalFlush:vlv */
7196         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7197
7198         /* WaForceL3Serialization:vlv */
7199         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7200                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7201
7202         /* WaDisableDopClockGating:vlv */
7203         I915_WRITE(GEN7_ROW_CHICKEN2,
7204                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7205
7206         /* This is required by WaCatErrorRejectionIssue:vlv */
7207         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7208                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7209                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7210
7211         gen7_setup_fixed_func_scheduler(dev_priv);
7212
7213         /*
7214          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7215          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7216          */
7217         I915_WRITE(GEN6_UCGCTL2,
7218                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7219
7220         /* WaDisableL3Bank2xClockGate:vlv
7221          * Disabling L3 clock gating- MMIO 940c[25] = 1
7222          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7223         I915_WRITE(GEN7_UCGCTL4,
7224                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7225
7226         /*
7227          * BSpec says this must be set, even though
7228          * WaDisable4x2SubspanOptimization isn't listed for VLV.
7229          */
7230         I915_WRITE(CACHE_MODE_1,
7231                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7232
7233         /*
7234          * BSpec recommends 8x4 when MSAA is used,
7235          * however in practice 16x4 seems fastest.
7236          *
7237          * Note that PS/WM thread counts depend on the WIZ hashing
7238          * disable bit, which we don't touch here, but it's good
7239          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7240          */
7241         I915_WRITE(GEN7_GT_MODE,
7242                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7243
7244         /*
7245          * WaIncreaseL3CreditsForVLVB0:vlv
7246          * This is the hardware default actually.
7247          */
7248         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7249
7250         /*
7251          * WaDisableVLVClockGating_VBIIssue:vlv
7252          * Disable clock gating on th GCFG unit to prevent a delay
7253          * in the reporting of vblank events.
7254          */
7255         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7256 }
7257
7258 static void cherryview_init_clock_gating(struct drm_device *dev)
7259 {
7260         struct drm_i915_private *dev_priv = dev->dev_private;
7261
7262         /* WaVSRefCountFullforceMissDisable:chv */
7263         /* WaDSRefCountFullforceMissDisable:chv */
7264         I915_WRITE(GEN7_FF_THREAD_MODE,
7265                    I915_READ(GEN7_FF_THREAD_MODE) &
7266                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7267
7268         /* WaDisableSemaphoreAndSyncFlipWait:chv */
7269         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7270                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7271
7272         /* WaDisableCSUnitClockGating:chv */
7273         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7274                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7275
7276         /* WaDisableSDEUnitClockGating:chv */
7277         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7278                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7279
7280         /*
7281          * WaProgramL3SqcReg1Default:chv
7282          * See gfxspecs/Related Documents/Performance Guide/
7283          * LSQC Setting Recommendations.
7284          */
7285         gen8_set_l3sqc_credits(dev_priv, 38, 2);
7286
7287         /*
7288          * GTT cache may not work with big pages, so if those
7289          * are ever enabled GTT cache may need to be disabled.
7290          */
7291         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7292 }
7293
7294 static void g4x_init_clock_gating(struct drm_device *dev)
7295 {
7296         struct drm_i915_private *dev_priv = dev->dev_private;
7297         uint32_t dspclk_gate;
7298
7299         I915_WRITE(RENCLK_GATE_D1, 0);
7300         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7301                    GS_UNIT_CLOCK_GATE_DISABLE |
7302                    CL_UNIT_CLOCK_GATE_DISABLE);
7303         I915_WRITE(RAMCLK_GATE_D, 0);
7304         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7305                 OVRUNIT_CLOCK_GATE_DISABLE |
7306                 OVCUNIT_CLOCK_GATE_DISABLE;
7307         if (IS_GM45(dev))
7308                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7309         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7310
7311         /* WaDisableRenderCachePipelinedFlush */
7312         I915_WRITE(CACHE_MODE_0,
7313                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7314
7315         /* WaDisable_RenderCache_OperationalFlush:g4x */
7316         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7317
7318         g4x_disable_trickle_feed(dev);
7319 }
7320
7321 static void crestline_init_clock_gating(struct drm_device *dev)
7322 {
7323         struct drm_i915_private *dev_priv = dev->dev_private;
7324
7325         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7326         I915_WRITE(RENCLK_GATE_D2, 0);
7327         I915_WRITE(DSPCLK_GATE_D, 0);
7328         I915_WRITE(RAMCLK_GATE_D, 0);
7329         I915_WRITE16(DEUC, 0);
7330         I915_WRITE(MI_ARB_STATE,
7331                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7332
7333         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7334         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7335 }
7336
7337 static void broadwater_init_clock_gating(struct drm_device *dev)
7338 {
7339         struct drm_i915_private *dev_priv = dev->dev_private;
7340
7341         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7342                    I965_RCC_CLOCK_GATE_DISABLE |
7343                    I965_RCPB_CLOCK_GATE_DISABLE |
7344                    I965_ISC_CLOCK_GATE_DISABLE |
7345                    I965_FBC_CLOCK_GATE_DISABLE);
7346         I915_WRITE(RENCLK_GATE_D2, 0);
7347         I915_WRITE(MI_ARB_STATE,
7348                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7349
7350         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7351         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7352 }
7353
7354 static void gen3_init_clock_gating(struct drm_device *dev)
7355 {
7356         struct drm_i915_private *dev_priv = dev->dev_private;
7357         u32 dstate = I915_READ(D_STATE);
7358
7359         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7360                 DSTATE_DOT_CLOCK_GATING;
7361         I915_WRITE(D_STATE, dstate);
7362
7363         if (IS_PINEVIEW(dev))
7364                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7365
7366         /* IIR "flip pending" means done if this bit is set */
7367         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7368
7369         /* interrupts should cause a wake up from C3 */
7370         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7371
7372         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7373         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7374
7375         I915_WRITE(MI_ARB_STATE,
7376                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7377 }
7378
7379 static void i85x_init_clock_gating(struct drm_device *dev)
7380 {
7381         struct drm_i915_private *dev_priv = dev->dev_private;
7382
7383         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7384
7385         /* interrupts should cause a wake up from C3 */
7386         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7387                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7388
7389         I915_WRITE(MEM_MODE,
7390                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7391 }
7392
7393 static void i830_init_clock_gating(struct drm_device *dev)
7394 {
7395         struct drm_i915_private *dev_priv = dev->dev_private;
7396
7397         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7398
7399         I915_WRITE(MEM_MODE,
7400                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7401                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7402 }
7403
7404 void intel_init_clock_gating(struct drm_device *dev)
7405 {
7406         struct drm_i915_private *dev_priv = dev->dev_private;
7407
7408         dev_priv->display.init_clock_gating(dev);
7409 }
7410
7411 void intel_suspend_hw(struct drm_device *dev)
7412 {
7413         if (HAS_PCH_LPT(dev))
7414                 lpt_suspend_hw(dev);
7415 }
7416
7417 static void nop_init_clock_gating(struct drm_device *dev)
7418 {
7419         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7420 }
7421
7422 /**
7423  * intel_init_clock_gating_hooks - setup the clock gating hooks
7424  * @dev_priv: device private
7425  *
7426  * Setup the hooks that configure which clocks of a given platform can be
7427  * gated and also apply various GT and display specific workarounds for these
7428  * platforms. Note that some GT specific workarounds are applied separately
7429  * when GPU contexts or batchbuffers start their execution.
7430  */
7431 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7432 {
7433         if (IS_SKYLAKE(dev_priv))
7434                 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7435         else if (IS_KABYLAKE(dev_priv))
7436                 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7437         else if (IS_BROXTON(dev_priv))
7438                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7439         else if (IS_BROADWELL(dev_priv))
7440                 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7441         else if (IS_CHERRYVIEW(dev_priv))
7442                 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7443         else if (IS_HASWELL(dev_priv))
7444                 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7445         else if (IS_IVYBRIDGE(dev_priv))
7446                 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7447         else if (IS_VALLEYVIEW(dev_priv))
7448                 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7449         else if (IS_GEN6(dev_priv))
7450                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7451         else if (IS_GEN5(dev_priv))
7452                 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7453         else if (IS_G4X(dev_priv))
7454                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7455         else if (IS_CRESTLINE(dev_priv))
7456                 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7457         else if (IS_BROADWATER(dev_priv))
7458                 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7459         else if (IS_GEN3(dev_priv))
7460                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7461         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7462                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7463         else if (IS_GEN2(dev_priv))
7464                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7465         else {
7466                 MISSING_CASE(INTEL_DEVID(dev_priv));
7467                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7468         }
7469 }
7470
7471 /* Set up chip specific power management-related functions */
7472 void intel_init_pm(struct drm_device *dev)
7473 {
7474         struct drm_i915_private *dev_priv = dev->dev_private;
7475
7476         intel_fbc_init(dev_priv);
7477
7478         /* For cxsr */
7479         if (IS_PINEVIEW(dev))
7480                 i915_pineview_get_mem_freq(dev);
7481         else if (IS_GEN5(dev))
7482                 i915_ironlake_get_mem_freq(dev);
7483
7484         /* For FIFO watermark updates */
7485         if (INTEL_INFO(dev)->gen >= 9) {
7486                 skl_setup_wm_latency(dev);
7487                 dev_priv->display.update_wm = skl_update_wm;
7488                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7489         } else if (HAS_PCH_SPLIT(dev)) {
7490                 ilk_setup_wm_latency(dev);
7491
7492                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7493                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7494                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7495                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7496                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7497                         dev_priv->display.compute_intermediate_wm =
7498                                 ilk_compute_intermediate_wm;
7499                         dev_priv->display.initial_watermarks =
7500                                 ilk_initial_watermarks;
7501                         dev_priv->display.optimize_watermarks =
7502                                 ilk_optimize_watermarks;
7503                 } else {
7504                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7505                                       "Disable CxSR\n");
7506                 }
7507         } else if (IS_CHERRYVIEW(dev)) {
7508                 vlv_setup_wm_latency(dev);
7509                 dev_priv->display.update_wm = vlv_update_wm;
7510         } else if (IS_VALLEYVIEW(dev)) {
7511                 vlv_setup_wm_latency(dev);
7512                 dev_priv->display.update_wm = vlv_update_wm;
7513         } else if (IS_PINEVIEW(dev)) {
7514                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7515                                             dev_priv->is_ddr3,
7516                                             dev_priv->fsb_freq,
7517                                             dev_priv->mem_freq)) {
7518                         DRM_INFO("failed to find known CxSR latency "
7519                                  "(found ddr%s fsb freq %d, mem freq %d), "
7520                                  "disabling CxSR\n",
7521                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7522                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7523                         /* Disable CxSR and never update its watermark again */
7524                         intel_set_memory_cxsr(dev_priv, false);
7525                         dev_priv->display.update_wm = NULL;
7526                 } else
7527                         dev_priv->display.update_wm = pineview_update_wm;
7528         } else if (IS_G4X(dev)) {
7529                 dev_priv->display.update_wm = g4x_update_wm;
7530         } else if (IS_GEN4(dev)) {
7531                 dev_priv->display.update_wm = i965_update_wm;
7532         } else if (IS_GEN3(dev)) {
7533                 dev_priv->display.update_wm = i9xx_update_wm;
7534                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7535         } else if (IS_GEN2(dev)) {
7536                 if (INTEL_INFO(dev)->num_pipes == 1) {
7537                         dev_priv->display.update_wm = i845_update_wm;
7538                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7539                 } else {
7540                         dev_priv->display.update_wm = i9xx_update_wm;
7541                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7542                 }
7543         } else {
7544                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7545         }
7546 }
7547
7548 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7549 {
7550         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7551
7552         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7553                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7554                 return -EAGAIN;
7555         }
7556
7557         I915_WRITE(GEN6_PCODE_DATA, *val);
7558         I915_WRITE(GEN6_PCODE_DATA1, 0);
7559         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7560
7561         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7562                      500)) {
7563                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7564                 return -ETIMEDOUT;
7565         }
7566
7567         *val = I915_READ(GEN6_PCODE_DATA);
7568         I915_WRITE(GEN6_PCODE_DATA, 0);
7569
7570         return 0;
7571 }
7572
7573 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7574 {
7575         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7576
7577         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7578                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7579                 return -EAGAIN;
7580         }
7581
7582         I915_WRITE(GEN6_PCODE_DATA, val);
7583         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7584
7585         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7586                      500)) {
7587                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7588                 return -ETIMEDOUT;
7589         }
7590
7591         I915_WRITE(GEN6_PCODE_DATA, 0);
7592
7593         return 0;
7594 }
7595
7596 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7597 {
7598         /*
7599          * N = val - 0xb7
7600          * Slow = Fast = GPLL ref * N
7601          */
7602         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7603 }
7604
7605 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7606 {
7607         return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7608 }
7609
7610 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7611 {
7612         /*
7613          * N = val / 2
7614          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
7615          */
7616         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7617 }
7618
7619 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7620 {
7621         /* CHV needs even values */
7622         return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7623 }
7624
7625 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7626 {
7627         if (IS_GEN9(dev_priv))
7628                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7629                                          GEN9_FREQ_SCALER);
7630         else if (IS_CHERRYVIEW(dev_priv))
7631                 return chv_gpu_freq(dev_priv, val);
7632         else if (IS_VALLEYVIEW(dev_priv))
7633                 return byt_gpu_freq(dev_priv, val);
7634         else
7635                 return val * GT_FREQUENCY_MULTIPLIER;
7636 }
7637
7638 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7639 {
7640         if (IS_GEN9(dev_priv))
7641                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7642                                          GT_FREQUENCY_MULTIPLIER);
7643         else if (IS_CHERRYVIEW(dev_priv))
7644                 return chv_freq_opcode(dev_priv, val);
7645         else if (IS_VALLEYVIEW(dev_priv))
7646                 return byt_freq_opcode(dev_priv, val);
7647         else
7648                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7649 }
7650
7651 struct request_boost {
7652         struct work_struct work;
7653         struct drm_i915_gem_request *req;
7654 };
7655
7656 static void __intel_rps_boost_work(struct work_struct *work)
7657 {
7658         struct request_boost *boost = container_of(work, struct request_boost, work);
7659         struct drm_i915_gem_request *req = boost->req;
7660
7661         if (!i915_gem_request_completed(req, true))
7662                 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7663
7664         i915_gem_request_unreference(req);
7665         kfree(boost);
7666 }
7667
7668 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7669 {
7670         struct request_boost *boost;
7671
7672         if (req == NULL || INTEL_GEN(req->i915) < 6)
7673                 return;
7674
7675         if (i915_gem_request_completed(req, true))
7676                 return;
7677
7678         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7679         if (boost == NULL)
7680                 return;
7681
7682         i915_gem_request_reference(req);
7683         boost->req = req;
7684
7685         INIT_WORK(&boost->work, __intel_rps_boost_work);
7686         queue_work(req->i915->wq, &boost->work);
7687 }
7688
7689 void intel_pm_setup(struct drm_device *dev)
7690 {
7691         struct drm_i915_private *dev_priv = dev->dev_private;
7692
7693         mutex_init(&dev_priv->rps.hw_lock);
7694         spin_lock_init(&dev_priv->rps.client_lock);
7695
7696         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7697                           intel_gen6_powersave_work);
7698         INIT_LIST_HEAD(&dev_priv->rps.clients);
7699         INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7700         INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7701
7702         dev_priv->pm.suspended = false;
7703         atomic_set(&dev_priv->pm.wakeref_count, 0);
7704         atomic_set(&dev_priv->pm.atomic_seq, 0);
7705 }