spi/topcliff-pch: Fix Kconfig dependencies
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 static inline int ring_space(struct intel_ring_buffer *ring)
37 {
38         int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
39         if (space < 0)
40                 space += ring->size;
41         return space;
42 }
43
44 void __intel_ring_advance(struct intel_ring_buffer *ring)
45 {
46         struct drm_i915_private *dev_priv = ring->dev->dev_private;
47
48         ring->tail &= ring->size - 1;
49         if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
50                 return;
51         ring->write_tail(ring, ring->tail);
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56                        u32      invalidate_domains,
57                        u32      flush_domains)
58 {
59         u32 cmd;
60         int ret;
61
62         cmd = MI_FLUSH;
63         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64                 cmd |= MI_NO_WRITE_FLUSH;
65
66         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67                 cmd |= MI_READ_FLUSH;
68
69         ret = intel_ring_begin(ring, 2);
70         if (ret)
71                 return ret;
72
73         intel_ring_emit(ring, cmd);
74         intel_ring_emit(ring, MI_NOOP);
75         intel_ring_advance(ring);
76
77         return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82                        u32      invalidate_domains,
83                        u32      flush_domains)
84 {
85         struct drm_device *dev = ring->dev;
86         u32 cmd;
87         int ret;
88
89         /*
90          * read/write caches:
91          *
92          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
94          * also flushed at 2d versus 3d pipeline switches.
95          *
96          * read-only caches:
97          *
98          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99          * MI_READ_FLUSH is set, and is always flushed on 965.
100          *
101          * I915_GEM_DOMAIN_COMMAND may not exist?
102          *
103          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104          * invalidated when MI_EXE_FLUSH is set.
105          *
106          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107          * invalidated with every MI_FLUSH.
108          *
109          * TLBs:
110          *
111          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114          * are flushed at any MI_FLUSH.
115          */
116
117         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119                 cmd &= ~MI_NO_WRITE_FLUSH;
120         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121                 cmd |= MI_EXE_FLUSH;
122
123         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124             (IS_G4X(dev) || IS_GEN5(dev)))
125                 cmd |= MI_INVALIDATE_ISP;
126
127         ret = intel_ring_begin(ring, 2);
128         if (ret)
129                 return ret;
130
131         intel_ring_emit(ring, cmd);
132         intel_ring_emit(ring, MI_NOOP);
133         intel_ring_advance(ring);
134
135         return 0;
136 }
137
138 /**
139  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140  * implementing two workarounds on gen6.  From section 1.4.7.1
141  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142  *
143  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144  * produced by non-pipelined state commands), software needs to first
145  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146  * 0.
147  *
148  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150  *
151  * And the workaround for these two requires this workaround first:
152  *
153  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154  * BEFORE the pipe-control with a post-sync op and no write-cache
155  * flushes.
156  *
157  * And this last workaround is tricky because of the requirements on
158  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159  * volume 2 part 1:
160  *
161  *     "1 of the following must also be set:
162  *      - Render Target Cache Flush Enable ([12] of DW1)
163  *      - Depth Cache Flush Enable ([0] of DW1)
164  *      - Stall at Pixel Scoreboard ([1] of DW1)
165  *      - Depth Stall ([13] of DW1)
166  *      - Post-Sync Operation ([13] of DW1)
167  *      - Notify Enable ([8] of DW1)"
168  *
169  * The cache flushes require the workaround flush that triggered this
170  * one, so we can't use it.  Depth stall would trigger the same.
171  * Post-sync nonzero is what triggered this second workaround, so we
172  * can't use that one either.  Notify enable is IRQs, which aren't
173  * really our business.  That leaves only stall at scoreboard.
174  */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178         u32 scratch_addr = ring->scratch.gtt_offset + 128;
179         int ret;
180
181
182         ret = intel_ring_begin(ring, 6);
183         if (ret)
184                 return ret;
185
186         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
189         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
190         intel_ring_emit(ring, 0); /* low dword */
191         intel_ring_emit(ring, 0); /* high dword */
192         intel_ring_emit(ring, MI_NOOP);
193         intel_ring_advance(ring);
194
195         ret = intel_ring_begin(ring, 6);
196         if (ret)
197                 return ret;
198
199         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
202         intel_ring_emit(ring, 0);
203         intel_ring_emit(ring, 0);
204         intel_ring_emit(ring, MI_NOOP);
205         intel_ring_advance(ring);
206
207         return 0;
208 }
209
210 static int
211 gen6_render_ring_flush(struct intel_ring_buffer *ring,
212                          u32 invalidate_domains, u32 flush_domains)
213 {
214         u32 flags = 0;
215         u32 scratch_addr = ring->scratch.gtt_offset + 128;
216         int ret;
217
218         /* Force SNB workarounds for PIPE_CONTROL flushes */
219         ret = intel_emit_post_sync_nonzero_flush(ring);
220         if (ret)
221                 return ret;
222
223         /* Just flush everything.  Experiments have shown that reducing the
224          * number of bits based on the write domains has little performance
225          * impact.
226          */
227         if (flush_domains) {
228                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
229                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
230                 /*
231                  * Ensure that any following seqno writes only happen
232                  * when the render cache is indeed flushed.
233                  */
234                 flags |= PIPE_CONTROL_CS_STALL;
235         }
236         if (invalidate_domains) {
237                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
238                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
239                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
240                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
241                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
242                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
243                 /*
244                  * TLB invalidate requires a post-sync write.
245                  */
246                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
247         }
248
249         ret = intel_ring_begin(ring, 4);
250         if (ret)
251                 return ret;
252
253         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
254         intel_ring_emit(ring, flags);
255         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
256         intel_ring_emit(ring, 0);
257         intel_ring_advance(ring);
258
259         return 0;
260 }
261
262 static int
263 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
264 {
265         int ret;
266
267         ret = intel_ring_begin(ring, 4);
268         if (ret)
269                 return ret;
270
271         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
272         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
273                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
274         intel_ring_emit(ring, 0);
275         intel_ring_emit(ring, 0);
276         intel_ring_advance(ring);
277
278         return 0;
279 }
280
281 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
282 {
283         int ret;
284
285         if (!ring->fbc_dirty)
286                 return 0;
287
288         ret = intel_ring_begin(ring, 6);
289         if (ret)
290                 return ret;
291         /* WaFbcNukeOn3DBlt:ivb/hsw */
292         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
293         intel_ring_emit(ring, MSG_FBC_REND_STATE);
294         intel_ring_emit(ring, value);
295         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
296         intel_ring_emit(ring, MSG_FBC_REND_STATE);
297         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
298         intel_ring_advance(ring);
299
300         ring->fbc_dirty = false;
301         return 0;
302 }
303
304 static int
305 gen7_render_ring_flush(struct intel_ring_buffer *ring,
306                        u32 invalidate_domains, u32 flush_domains)
307 {
308         u32 flags = 0;
309         u32 scratch_addr = ring->scratch.gtt_offset + 128;
310         int ret;
311
312         /*
313          * Ensure that any following seqno writes only happen when the render
314          * cache is indeed flushed.
315          *
316          * Workaround: 4th PIPE_CONTROL command (except the ones with only
317          * read-cache invalidate bits set) must have the CS_STALL bit set. We
318          * don't try to be clever and just set it unconditionally.
319          */
320         flags |= PIPE_CONTROL_CS_STALL;
321
322         /* Just flush everything.  Experiments have shown that reducing the
323          * number of bits based on the write domains has little performance
324          * impact.
325          */
326         if (flush_domains) {
327                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
328                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
329         }
330         if (invalidate_domains) {
331                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
332                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
333                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
334                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
335                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
336                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
337                 /*
338                  * TLB invalidate requires a post-sync write.
339                  */
340                 flags |= PIPE_CONTROL_QW_WRITE;
341                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
342
343                 /* Workaround: we must issue a pipe_control with CS-stall bit
344                  * set before a pipe_control command that has the state cache
345                  * invalidate bit set. */
346                 gen7_render_ring_cs_stall_wa(ring);
347         }
348
349         ret = intel_ring_begin(ring, 4);
350         if (ret)
351                 return ret;
352
353         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
354         intel_ring_emit(ring, flags);
355         intel_ring_emit(ring, scratch_addr);
356         intel_ring_emit(ring, 0);
357         intel_ring_advance(ring);
358
359         if (!invalidate_domains && flush_domains)
360                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
361
362         return 0;
363 }
364
365 static int
366 gen8_render_ring_flush(struct intel_ring_buffer *ring,
367                        u32 invalidate_domains, u32 flush_domains)
368 {
369         u32 flags = 0;
370         u32 scratch_addr = ring->scratch.gtt_offset + 128;
371         int ret;
372
373         flags |= PIPE_CONTROL_CS_STALL;
374
375         if (flush_domains) {
376                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
377                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
378         }
379         if (invalidate_domains) {
380                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
381                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
382                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
383                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
384                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
385                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
386                 flags |= PIPE_CONTROL_QW_WRITE;
387                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
388         }
389
390         ret = intel_ring_begin(ring, 6);
391         if (ret)
392                 return ret;
393
394         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
395         intel_ring_emit(ring, flags);
396         intel_ring_emit(ring, scratch_addr);
397         intel_ring_emit(ring, 0);
398         intel_ring_emit(ring, 0);
399         intel_ring_emit(ring, 0);
400         intel_ring_advance(ring);
401
402         return 0;
403
404 }
405
406 static void ring_write_tail(struct intel_ring_buffer *ring,
407                             u32 value)
408 {
409         struct drm_i915_private *dev_priv = ring->dev->dev_private;
410         I915_WRITE_TAIL(ring, value);
411 }
412
413 u64 intel_ring_get_active_head(struct intel_ring_buffer *ring)
414 {
415         struct drm_i915_private *dev_priv = ring->dev->dev_private;
416         u64 acthd;
417
418         if (INTEL_INFO(ring->dev)->gen >= 8)
419                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
420                                          RING_ACTHD_UDW(ring->mmio_base));
421         else if (INTEL_INFO(ring->dev)->gen >= 4)
422                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
423         else
424                 acthd = I915_READ(ACTHD);
425
426         return acthd;
427 }
428
429 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
430 {
431         struct drm_i915_private *dev_priv = ring->dev->dev_private;
432         u32 addr;
433
434         addr = dev_priv->status_page_dmah->busaddr;
435         if (INTEL_INFO(ring->dev)->gen >= 4)
436                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
437         I915_WRITE(HWS_PGA, addr);
438 }
439
440 static int init_ring_common(struct intel_ring_buffer *ring)
441 {
442         struct drm_device *dev = ring->dev;
443         struct drm_i915_private *dev_priv = dev->dev_private;
444         struct drm_i915_gem_object *obj = ring->obj;
445         int ret = 0;
446         u32 head;
447
448         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
449
450         /* Stop the ring if it's running. */
451         I915_WRITE_CTL(ring, 0);
452         I915_WRITE_HEAD(ring, 0);
453         ring->write_tail(ring, 0);
454         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000))
455                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
456
457         if (I915_NEED_GFX_HWS(dev))
458                 intel_ring_setup_status_page(ring);
459         else
460                 ring_setup_phys_status_page(ring);
461
462         head = I915_READ_HEAD(ring) & HEAD_ADDR;
463
464         /* G45 ring initialization fails to reset head to zero */
465         if (head != 0) {
466                 DRM_DEBUG_KMS("%s head not reset to zero "
467                               "ctl %08x head %08x tail %08x start %08x\n",
468                               ring->name,
469                               I915_READ_CTL(ring),
470                               I915_READ_HEAD(ring),
471                               I915_READ_TAIL(ring),
472                               I915_READ_START(ring));
473
474                 I915_WRITE_HEAD(ring, 0);
475
476                 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
477                         DRM_ERROR("failed to set %s head to zero "
478                                   "ctl %08x head %08x tail %08x start %08x\n",
479                                   ring->name,
480                                   I915_READ_CTL(ring),
481                                   I915_READ_HEAD(ring),
482                                   I915_READ_TAIL(ring),
483                                   I915_READ_START(ring));
484                 }
485         }
486
487         /* Initialize the ring. This must happen _after_ we've cleared the ring
488          * registers with the above sequence (the readback of the HEAD registers
489          * also enforces ordering), otherwise the hw might lose the new ring
490          * register values. */
491         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
492         I915_WRITE_CTL(ring,
493                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
494                         | RING_VALID);
495
496         /* If the head is still not zero, the ring is dead */
497         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
498                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
499                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
500                 DRM_ERROR("%s initialization failed "
501                                 "ctl %08x head %08x tail %08x start %08x\n",
502                                 ring->name,
503                                 I915_READ_CTL(ring),
504                                 I915_READ_HEAD(ring),
505                                 I915_READ_TAIL(ring),
506                                 I915_READ_START(ring));
507                 ret = -EIO;
508                 goto out;
509         }
510
511         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
512                 i915_kernel_lost_context(ring->dev);
513         else {
514                 ring->head = I915_READ_HEAD(ring);
515                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
516                 ring->space = ring_space(ring);
517                 ring->last_retired_head = -1;
518         }
519
520         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
521
522 out:
523         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
524
525         return ret;
526 }
527
528 static int
529 init_pipe_control(struct intel_ring_buffer *ring)
530 {
531         int ret;
532
533         if (ring->scratch.obj)
534                 return 0;
535
536         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
537         if (ring->scratch.obj == NULL) {
538                 DRM_ERROR("Failed to allocate seqno page\n");
539                 ret = -ENOMEM;
540                 goto err;
541         }
542
543         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
544         if (ret)
545                 goto err_unref;
546
547         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
548         if (ret)
549                 goto err_unref;
550
551         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
552         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
553         if (ring->scratch.cpu_page == NULL) {
554                 ret = -ENOMEM;
555                 goto err_unpin;
556         }
557
558         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
559                          ring->name, ring->scratch.gtt_offset);
560         return 0;
561
562 err_unpin:
563         i915_gem_object_ggtt_unpin(ring->scratch.obj);
564 err_unref:
565         drm_gem_object_unreference(&ring->scratch.obj->base);
566 err:
567         return ret;
568 }
569
570 static int init_render_ring(struct intel_ring_buffer *ring)
571 {
572         struct drm_device *dev = ring->dev;
573         struct drm_i915_private *dev_priv = dev->dev_private;
574         int ret = init_ring_common(ring);
575
576         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
577         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
578                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
579
580         /* We need to disable the AsyncFlip performance optimisations in order
581          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
582          * programmed to '1' on all products.
583          *
584          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw
585          */
586         if (INTEL_INFO(dev)->gen >= 6)
587                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
588
589         /* Required for the hardware to program scanline values for waiting */
590         if (INTEL_INFO(dev)->gen == 6)
591                 I915_WRITE(GFX_MODE,
592                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
593
594         if (IS_GEN7(dev))
595                 I915_WRITE(GFX_MODE_GEN7,
596                            _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
597                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
598
599         if (INTEL_INFO(dev)->gen >= 5) {
600                 ret = init_pipe_control(ring);
601                 if (ret)
602                         return ret;
603         }
604
605         if (IS_GEN6(dev)) {
606                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
607                  * "If this bit is set, STCunit will have LRA as replacement
608                  *  policy. [...] This bit must be reset.  LRA replacement
609                  *  policy is not supported."
610                  */
611                 I915_WRITE(CACHE_MODE_0,
612                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
613
614                 /* This is not explicitly set for GEN6, so read the register.
615                  * see intel_ring_mi_set_context() for why we care.
616                  * TODO: consider explicitly setting the bit for GEN5
617                  */
618                 ring->itlb_before_ctx_switch =
619                         !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
620         }
621
622         if (INTEL_INFO(dev)->gen >= 6)
623                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
624
625         if (HAS_L3_DPF(dev))
626                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
627
628         return ret;
629 }
630
631 static void render_ring_cleanup(struct intel_ring_buffer *ring)
632 {
633         struct drm_device *dev = ring->dev;
634
635         if (ring->scratch.obj == NULL)
636                 return;
637
638         if (INTEL_INFO(dev)->gen >= 5) {
639                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
640                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
641         }
642
643         drm_gem_object_unreference(&ring->scratch.obj->base);
644         ring->scratch.obj = NULL;
645 }
646
647 static void
648 update_mboxes(struct intel_ring_buffer *ring,
649               u32 mmio_offset)
650 {
651 /* NB: In order to be able to do semaphore MBOX updates for varying number
652  * of rings, it's easiest if we round up each individual update to a
653  * multiple of 2 (since ring updates must always be a multiple of 2)
654  * even though the actual update only requires 3 dwords.
655  */
656 #define MBOX_UPDATE_DWORDS 4
657         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
658         intel_ring_emit(ring, mmio_offset);
659         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
660         intel_ring_emit(ring, MI_NOOP);
661 }
662
663 /**
664  * gen6_add_request - Update the semaphore mailbox registers
665  * 
666  * @ring - ring that is adding a request
667  * @seqno - return seqno stuck into the ring
668  *
669  * Update the mailbox registers in the *other* rings with the current seqno.
670  * This acts like a signal in the canonical semaphore.
671  */
672 static int
673 gen6_add_request(struct intel_ring_buffer *ring)
674 {
675         struct drm_device *dev = ring->dev;
676         struct drm_i915_private *dev_priv = dev->dev_private;
677         struct intel_ring_buffer *useless;
678         int i, ret, num_dwords = 4;
679
680         if (i915_semaphore_is_enabled(dev))
681                 num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
682 #undef MBOX_UPDATE_DWORDS
683
684         ret = intel_ring_begin(ring, num_dwords);
685         if (ret)
686                 return ret;
687
688         if (i915_semaphore_is_enabled(dev)) {
689                 for_each_ring(useless, dev_priv, i) {
690                         u32 mbox_reg = ring->signal_mbox[i];
691                         if (mbox_reg != GEN6_NOSYNC)
692                                 update_mboxes(ring, mbox_reg);
693                 }
694         }
695
696         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
697         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
698         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
699         intel_ring_emit(ring, MI_USER_INTERRUPT);
700         __intel_ring_advance(ring);
701
702         return 0;
703 }
704
705 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
706                                               u32 seqno)
707 {
708         struct drm_i915_private *dev_priv = dev->dev_private;
709         return dev_priv->last_seqno < seqno;
710 }
711
712 /**
713  * intel_ring_sync - sync the waiter to the signaller on seqno
714  *
715  * @waiter - ring that is waiting
716  * @signaller - ring which has, or will signal
717  * @seqno - seqno which the waiter will block on
718  */
719 static int
720 gen6_ring_sync(struct intel_ring_buffer *waiter,
721                struct intel_ring_buffer *signaller,
722                u32 seqno)
723 {
724         int ret;
725         u32 dw1 = MI_SEMAPHORE_MBOX |
726                   MI_SEMAPHORE_COMPARE |
727                   MI_SEMAPHORE_REGISTER;
728
729         /* Throughout all of the GEM code, seqno passed implies our current
730          * seqno is >= the last seqno executed. However for hardware the
731          * comparison is strictly greater than.
732          */
733         seqno -= 1;
734
735         WARN_ON(signaller->semaphore_register[waiter->id] ==
736                 MI_SEMAPHORE_SYNC_INVALID);
737
738         ret = intel_ring_begin(waiter, 4);
739         if (ret)
740                 return ret;
741
742         /* If seqno wrap happened, omit the wait with no-ops */
743         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
744                 intel_ring_emit(waiter,
745                                 dw1 |
746                                 signaller->semaphore_register[waiter->id]);
747                 intel_ring_emit(waiter, seqno);
748                 intel_ring_emit(waiter, 0);
749                 intel_ring_emit(waiter, MI_NOOP);
750         } else {
751                 intel_ring_emit(waiter, MI_NOOP);
752                 intel_ring_emit(waiter, MI_NOOP);
753                 intel_ring_emit(waiter, MI_NOOP);
754                 intel_ring_emit(waiter, MI_NOOP);
755         }
756         intel_ring_advance(waiter);
757
758         return 0;
759 }
760
761 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
762 do {                                                                    \
763         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
764                  PIPE_CONTROL_DEPTH_STALL);                             \
765         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
766         intel_ring_emit(ring__, 0);                                                     \
767         intel_ring_emit(ring__, 0);                                                     \
768 } while (0)
769
770 static int
771 pc_render_add_request(struct intel_ring_buffer *ring)
772 {
773         u32 scratch_addr = ring->scratch.gtt_offset + 128;
774         int ret;
775
776         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
777          * incoherent with writes to memory, i.e. completely fubar,
778          * so we need to use PIPE_NOTIFY instead.
779          *
780          * However, we also need to workaround the qword write
781          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
782          * memory before requesting an interrupt.
783          */
784         ret = intel_ring_begin(ring, 32);
785         if (ret)
786                 return ret;
787
788         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
789                         PIPE_CONTROL_WRITE_FLUSH |
790                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
791         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
792         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
793         intel_ring_emit(ring, 0);
794         PIPE_CONTROL_FLUSH(ring, scratch_addr);
795         scratch_addr += 128; /* write to separate cachelines */
796         PIPE_CONTROL_FLUSH(ring, scratch_addr);
797         scratch_addr += 128;
798         PIPE_CONTROL_FLUSH(ring, scratch_addr);
799         scratch_addr += 128;
800         PIPE_CONTROL_FLUSH(ring, scratch_addr);
801         scratch_addr += 128;
802         PIPE_CONTROL_FLUSH(ring, scratch_addr);
803         scratch_addr += 128;
804         PIPE_CONTROL_FLUSH(ring, scratch_addr);
805
806         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
807                         PIPE_CONTROL_WRITE_FLUSH |
808                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
809                         PIPE_CONTROL_NOTIFY);
810         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
811         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
812         intel_ring_emit(ring, 0);
813         __intel_ring_advance(ring);
814
815         return 0;
816 }
817
818 static u32
819 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
820 {
821         /* Workaround to force correct ordering between irq and seqno writes on
822          * ivb (and maybe also on snb) by reading from a CS register (like
823          * ACTHD) before reading the status page. */
824         if (!lazy_coherency) {
825                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
826                 POSTING_READ(RING_ACTHD(ring->mmio_base));
827         }
828
829         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
830 }
831
832 static u32
833 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
834 {
835         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
836 }
837
838 static void
839 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
840 {
841         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
842 }
843
844 static u32
845 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
846 {
847         return ring->scratch.cpu_page[0];
848 }
849
850 static void
851 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
852 {
853         ring->scratch.cpu_page[0] = seqno;
854 }
855
856 static bool
857 gen5_ring_get_irq(struct intel_ring_buffer *ring)
858 {
859         struct drm_device *dev = ring->dev;
860         struct drm_i915_private *dev_priv = dev->dev_private;
861         unsigned long flags;
862
863         if (!dev->irq_enabled)
864                 return false;
865
866         spin_lock_irqsave(&dev_priv->irq_lock, flags);
867         if (ring->irq_refcount++ == 0)
868                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
869         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
870
871         return true;
872 }
873
874 static void
875 gen5_ring_put_irq(struct intel_ring_buffer *ring)
876 {
877         struct drm_device *dev = ring->dev;
878         struct drm_i915_private *dev_priv = dev->dev_private;
879         unsigned long flags;
880
881         spin_lock_irqsave(&dev_priv->irq_lock, flags);
882         if (--ring->irq_refcount == 0)
883                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
884         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
885 }
886
887 static bool
888 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
889 {
890         struct drm_device *dev = ring->dev;
891         struct drm_i915_private *dev_priv = dev->dev_private;
892         unsigned long flags;
893
894         if (!dev->irq_enabled)
895                 return false;
896
897         spin_lock_irqsave(&dev_priv->irq_lock, flags);
898         if (ring->irq_refcount++ == 0) {
899                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
900                 I915_WRITE(IMR, dev_priv->irq_mask);
901                 POSTING_READ(IMR);
902         }
903         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
904
905         return true;
906 }
907
908 static void
909 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
910 {
911         struct drm_device *dev = ring->dev;
912         struct drm_i915_private *dev_priv = dev->dev_private;
913         unsigned long flags;
914
915         spin_lock_irqsave(&dev_priv->irq_lock, flags);
916         if (--ring->irq_refcount == 0) {
917                 dev_priv->irq_mask |= ring->irq_enable_mask;
918                 I915_WRITE(IMR, dev_priv->irq_mask);
919                 POSTING_READ(IMR);
920         }
921         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
922 }
923
924 static bool
925 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
926 {
927         struct drm_device *dev = ring->dev;
928         struct drm_i915_private *dev_priv = dev->dev_private;
929         unsigned long flags;
930
931         if (!dev->irq_enabled)
932                 return false;
933
934         spin_lock_irqsave(&dev_priv->irq_lock, flags);
935         if (ring->irq_refcount++ == 0) {
936                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
937                 I915_WRITE16(IMR, dev_priv->irq_mask);
938                 POSTING_READ16(IMR);
939         }
940         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
941
942         return true;
943 }
944
945 static void
946 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
947 {
948         struct drm_device *dev = ring->dev;
949         struct drm_i915_private *dev_priv = dev->dev_private;
950         unsigned long flags;
951
952         spin_lock_irqsave(&dev_priv->irq_lock, flags);
953         if (--ring->irq_refcount == 0) {
954                 dev_priv->irq_mask |= ring->irq_enable_mask;
955                 I915_WRITE16(IMR, dev_priv->irq_mask);
956                 POSTING_READ16(IMR);
957         }
958         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
959 }
960
961 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
962 {
963         struct drm_device *dev = ring->dev;
964         struct drm_i915_private *dev_priv = ring->dev->dev_private;
965         u32 mmio = 0;
966
967         /* The ring status page addresses are no longer next to the rest of
968          * the ring registers as of gen7.
969          */
970         if (IS_GEN7(dev)) {
971                 switch (ring->id) {
972                 case RCS:
973                         mmio = RENDER_HWS_PGA_GEN7;
974                         break;
975                 case BCS:
976                         mmio = BLT_HWS_PGA_GEN7;
977                         break;
978                 case VCS:
979                         mmio = BSD_HWS_PGA_GEN7;
980                         break;
981                 case VECS:
982                         mmio = VEBOX_HWS_PGA_GEN7;
983                         break;
984                 }
985         } else if (IS_GEN6(ring->dev)) {
986                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
987         } else {
988                 /* XXX: gen8 returns to sanity */
989                 mmio = RING_HWS_PGA(ring->mmio_base);
990         }
991
992         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
993         POSTING_READ(mmio);
994
995         /*
996          * Flush the TLB for this page
997          *
998          * FIXME: These two bits have disappeared on gen8, so a question
999          * arises: do we still need this and if so how should we go about
1000          * invalidating the TLB?
1001          */
1002         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1003                 u32 reg = RING_INSTPM(ring->mmio_base);
1004
1005                 /* ring should be idle before issuing a sync flush*/
1006                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1007
1008                 I915_WRITE(reg,
1009                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1010                                               INSTPM_SYNC_FLUSH));
1011                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1012                              1000))
1013                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1014                                   ring->name);
1015         }
1016 }
1017
1018 static int
1019 bsd_ring_flush(struct intel_ring_buffer *ring,
1020                u32     invalidate_domains,
1021                u32     flush_domains)
1022 {
1023         int ret;
1024
1025         ret = intel_ring_begin(ring, 2);
1026         if (ret)
1027                 return ret;
1028
1029         intel_ring_emit(ring, MI_FLUSH);
1030         intel_ring_emit(ring, MI_NOOP);
1031         intel_ring_advance(ring);
1032         return 0;
1033 }
1034
1035 static int
1036 i9xx_add_request(struct intel_ring_buffer *ring)
1037 {
1038         int ret;
1039
1040         ret = intel_ring_begin(ring, 4);
1041         if (ret)
1042                 return ret;
1043
1044         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1045         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1046         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1047         intel_ring_emit(ring, MI_USER_INTERRUPT);
1048         __intel_ring_advance(ring);
1049
1050         return 0;
1051 }
1052
1053 static bool
1054 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1055 {
1056         struct drm_device *dev = ring->dev;
1057         struct drm_i915_private *dev_priv = dev->dev_private;
1058         unsigned long flags;
1059
1060         if (!dev->irq_enabled)
1061                return false;
1062
1063         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1064         if (ring->irq_refcount++ == 0) {
1065                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1066                         I915_WRITE_IMR(ring,
1067                                        ~(ring->irq_enable_mask |
1068                                          GT_PARITY_ERROR(dev)));
1069                 else
1070                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1071                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1072         }
1073         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1074
1075         return true;
1076 }
1077
1078 static void
1079 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1080 {
1081         struct drm_device *dev = ring->dev;
1082         struct drm_i915_private *dev_priv = dev->dev_private;
1083         unsigned long flags;
1084
1085         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1086         if (--ring->irq_refcount == 0) {
1087                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1088                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1089                 else
1090                         I915_WRITE_IMR(ring, ~0);
1091                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1092         }
1093         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1094 }
1095
1096 static bool
1097 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1098 {
1099         struct drm_device *dev = ring->dev;
1100         struct drm_i915_private *dev_priv = dev->dev_private;
1101         unsigned long flags;
1102
1103         if (!dev->irq_enabled)
1104                 return false;
1105
1106         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1107         if (ring->irq_refcount++ == 0) {
1108                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1109                 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1110         }
1111         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1112
1113         return true;
1114 }
1115
1116 static void
1117 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1118 {
1119         struct drm_device *dev = ring->dev;
1120         struct drm_i915_private *dev_priv = dev->dev_private;
1121         unsigned long flags;
1122
1123         if (!dev->irq_enabled)
1124                 return;
1125
1126         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1127         if (--ring->irq_refcount == 0) {
1128                 I915_WRITE_IMR(ring, ~0);
1129                 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1130         }
1131         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1132 }
1133
1134 static bool
1135 gen8_ring_get_irq(struct intel_ring_buffer *ring)
1136 {
1137         struct drm_device *dev = ring->dev;
1138         struct drm_i915_private *dev_priv = dev->dev_private;
1139         unsigned long flags;
1140
1141         if (!dev->irq_enabled)
1142                 return false;
1143
1144         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1145         if (ring->irq_refcount++ == 0) {
1146                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1147                         I915_WRITE_IMR(ring,
1148                                        ~(ring->irq_enable_mask |
1149                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1150                 } else {
1151                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1152                 }
1153                 POSTING_READ(RING_IMR(ring->mmio_base));
1154         }
1155         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1156
1157         return true;
1158 }
1159
1160 static void
1161 gen8_ring_put_irq(struct intel_ring_buffer *ring)
1162 {
1163         struct drm_device *dev = ring->dev;
1164         struct drm_i915_private *dev_priv = dev->dev_private;
1165         unsigned long flags;
1166
1167         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1168         if (--ring->irq_refcount == 0) {
1169                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1170                         I915_WRITE_IMR(ring,
1171                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1172                 } else {
1173                         I915_WRITE_IMR(ring, ~0);
1174                 }
1175                 POSTING_READ(RING_IMR(ring->mmio_base));
1176         }
1177         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1178 }
1179
1180 static int
1181 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1182                          u32 offset, u32 length,
1183                          unsigned flags)
1184 {
1185         int ret;
1186
1187         ret = intel_ring_begin(ring, 2);
1188         if (ret)
1189                 return ret;
1190
1191         intel_ring_emit(ring,
1192                         MI_BATCH_BUFFER_START |
1193                         MI_BATCH_GTT |
1194                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1195         intel_ring_emit(ring, offset);
1196         intel_ring_advance(ring);
1197
1198         return 0;
1199 }
1200
1201 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1202 #define I830_BATCH_LIMIT (256*1024)
1203 static int
1204 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1205                                 u32 offset, u32 len,
1206                                 unsigned flags)
1207 {
1208         int ret;
1209
1210         if (flags & I915_DISPATCH_PINNED) {
1211                 ret = intel_ring_begin(ring, 4);
1212                 if (ret)
1213                         return ret;
1214
1215                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1216                 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1217                 intel_ring_emit(ring, offset + len - 8);
1218                 intel_ring_emit(ring, MI_NOOP);
1219                 intel_ring_advance(ring);
1220         } else {
1221                 u32 cs_offset = ring->scratch.gtt_offset;
1222
1223                 if (len > I830_BATCH_LIMIT)
1224                         return -ENOSPC;
1225
1226                 ret = intel_ring_begin(ring, 9+3);
1227                 if (ret)
1228                         return ret;
1229                 /* Blit the batch (which has now all relocs applied) to the stable batch
1230                  * scratch bo area (so that the CS never stumbles over its tlb
1231                  * invalidation bug) ... */
1232                 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1233                                 XY_SRC_COPY_BLT_WRITE_ALPHA |
1234                                 XY_SRC_COPY_BLT_WRITE_RGB);
1235                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1236                 intel_ring_emit(ring, 0);
1237                 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1238                 intel_ring_emit(ring, cs_offset);
1239                 intel_ring_emit(ring, 0);
1240                 intel_ring_emit(ring, 4096);
1241                 intel_ring_emit(ring, offset);
1242                 intel_ring_emit(ring, MI_FLUSH);
1243
1244                 /* ... and execute it. */
1245                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1246                 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1247                 intel_ring_emit(ring, cs_offset + len - 8);
1248                 intel_ring_advance(ring);
1249         }
1250
1251         return 0;
1252 }
1253
1254 static int
1255 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1256                          u32 offset, u32 len,
1257                          unsigned flags)
1258 {
1259         int ret;
1260
1261         ret = intel_ring_begin(ring, 2);
1262         if (ret)
1263                 return ret;
1264
1265         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1266         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1267         intel_ring_advance(ring);
1268
1269         return 0;
1270 }
1271
1272 static void cleanup_status_page(struct intel_ring_buffer *ring)
1273 {
1274         struct drm_i915_gem_object *obj;
1275
1276         obj = ring->status_page.obj;
1277         if (obj == NULL)
1278                 return;
1279
1280         kunmap(sg_page(obj->pages->sgl));
1281         i915_gem_object_ggtt_unpin(obj);
1282         drm_gem_object_unreference(&obj->base);
1283         ring->status_page.obj = NULL;
1284 }
1285
1286 static int init_status_page(struct intel_ring_buffer *ring)
1287 {
1288         struct drm_device *dev = ring->dev;
1289         struct drm_i915_gem_object *obj;
1290         int ret;
1291
1292         obj = i915_gem_alloc_object(dev, 4096);
1293         if (obj == NULL) {
1294                 DRM_ERROR("Failed to allocate status page\n");
1295                 ret = -ENOMEM;
1296                 goto err;
1297         }
1298
1299         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1300         if (ret)
1301                 goto err_unref;
1302
1303         ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
1304         if (ret)
1305                 goto err_unref;
1306
1307         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1308         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1309         if (ring->status_page.page_addr == NULL) {
1310                 ret = -ENOMEM;
1311                 goto err_unpin;
1312         }
1313         ring->status_page.obj = obj;
1314         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1315
1316         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1317                         ring->name, ring->status_page.gfx_addr);
1318
1319         return 0;
1320
1321 err_unpin:
1322         i915_gem_object_ggtt_unpin(obj);
1323 err_unref:
1324         drm_gem_object_unreference(&obj->base);
1325 err:
1326         return ret;
1327 }
1328
1329 static int init_phys_status_page(struct intel_ring_buffer *ring)
1330 {
1331         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1332
1333         if (!dev_priv->status_page_dmah) {
1334                 dev_priv->status_page_dmah =
1335                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1336                 if (!dev_priv->status_page_dmah)
1337                         return -ENOMEM;
1338         }
1339
1340         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1341         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1342
1343         return 0;
1344 }
1345
1346 static int intel_init_ring_buffer(struct drm_device *dev,
1347                                   struct intel_ring_buffer *ring)
1348 {
1349         struct drm_i915_gem_object *obj;
1350         struct drm_i915_private *dev_priv = dev->dev_private;
1351         int ret;
1352
1353         ring->dev = dev;
1354         INIT_LIST_HEAD(&ring->active_list);
1355         INIT_LIST_HEAD(&ring->request_list);
1356         ring->size = 32 * PAGE_SIZE;
1357         memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1358
1359         init_waitqueue_head(&ring->irq_queue);
1360
1361         if (I915_NEED_GFX_HWS(dev)) {
1362                 ret = init_status_page(ring);
1363                 if (ret)
1364                         return ret;
1365         } else {
1366                 BUG_ON(ring->id != RCS);
1367                 ret = init_phys_status_page(ring);
1368                 if (ret)
1369                         return ret;
1370         }
1371
1372         obj = NULL;
1373         if (!HAS_LLC(dev))
1374                 obj = i915_gem_object_create_stolen(dev, ring->size);
1375         if (obj == NULL)
1376                 obj = i915_gem_alloc_object(dev, ring->size);
1377         if (obj == NULL) {
1378                 DRM_ERROR("Failed to allocate ringbuffer\n");
1379                 ret = -ENOMEM;
1380                 goto err_hws;
1381         }
1382
1383         ring->obj = obj;
1384
1385         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1386         if (ret)
1387                 goto err_unref;
1388
1389         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1390         if (ret)
1391                 goto err_unpin;
1392
1393         ring->virtual_start =
1394                 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1395                            ring->size);
1396         if (ring->virtual_start == NULL) {
1397                 DRM_ERROR("Failed to map ringbuffer.\n");
1398                 ret = -EINVAL;
1399                 goto err_unpin;
1400         }
1401
1402         ret = ring->init(ring);
1403         if (ret)
1404                 goto err_unmap;
1405
1406         /* Workaround an erratum on the i830 which causes a hang if
1407          * the TAIL pointer points to within the last 2 cachelines
1408          * of the buffer.
1409          */
1410         ring->effective_size = ring->size;
1411         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1412                 ring->effective_size -= 128;
1413
1414         i915_cmd_parser_init_ring(ring);
1415
1416         return 0;
1417
1418 err_unmap:
1419         iounmap(ring->virtual_start);
1420 err_unpin:
1421         i915_gem_object_ggtt_unpin(obj);
1422 err_unref:
1423         drm_gem_object_unreference(&obj->base);
1424         ring->obj = NULL;
1425 err_hws:
1426         cleanup_status_page(ring);
1427         return ret;
1428 }
1429
1430 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1431 {
1432         struct drm_i915_private *dev_priv;
1433         int ret;
1434
1435         if (ring->obj == NULL)
1436                 return;
1437
1438         /* Disable the ring buffer. The ring must be idle at this point */
1439         dev_priv = ring->dev->dev_private;
1440         ret = intel_ring_idle(ring);
1441         if (ret && !i915_reset_in_progress(&dev_priv->gpu_error))
1442                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1443                           ring->name, ret);
1444
1445         I915_WRITE_CTL(ring, 0);
1446
1447         iounmap(ring->virtual_start);
1448
1449         i915_gem_object_ggtt_unpin(ring->obj);
1450         drm_gem_object_unreference(&ring->obj->base);
1451         ring->obj = NULL;
1452         ring->preallocated_lazy_request = NULL;
1453         ring->outstanding_lazy_seqno = 0;
1454
1455         if (ring->cleanup)
1456                 ring->cleanup(ring);
1457
1458         cleanup_status_page(ring);
1459 }
1460
1461 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1462 {
1463         struct drm_i915_gem_request *request;
1464         u32 seqno = 0, tail;
1465         int ret;
1466
1467         if (ring->last_retired_head != -1) {
1468                 ring->head = ring->last_retired_head;
1469                 ring->last_retired_head = -1;
1470
1471                 ring->space = ring_space(ring);
1472                 if (ring->space >= n)
1473                         return 0;
1474         }
1475
1476         list_for_each_entry(request, &ring->request_list, list) {
1477                 int space;
1478
1479                 if (request->tail == -1)
1480                         continue;
1481
1482                 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1483                 if (space < 0)
1484                         space += ring->size;
1485                 if (space >= n) {
1486                         seqno = request->seqno;
1487                         tail = request->tail;
1488                         break;
1489                 }
1490
1491                 /* Consume this request in case we need more space than
1492                  * is available and so need to prevent a race between
1493                  * updating last_retired_head and direct reads of
1494                  * I915_RING_HEAD. It also provides a nice sanity check.
1495                  */
1496                 request->tail = -1;
1497         }
1498
1499         if (seqno == 0)
1500                 return -ENOSPC;
1501
1502         ret = i915_wait_seqno(ring, seqno);
1503         if (ret)
1504                 return ret;
1505
1506         ring->head = tail;
1507         ring->space = ring_space(ring);
1508         if (WARN_ON(ring->space < n))
1509                 return -ENOSPC;
1510
1511         return 0;
1512 }
1513
1514 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1515 {
1516         struct drm_device *dev = ring->dev;
1517         struct drm_i915_private *dev_priv = dev->dev_private;
1518         unsigned long end;
1519         int ret;
1520
1521         ret = intel_ring_wait_request(ring, n);
1522         if (ret != -ENOSPC)
1523                 return ret;
1524
1525         /* force the tail write in case we have been skipping them */
1526         __intel_ring_advance(ring);
1527
1528         trace_i915_ring_wait_begin(ring);
1529         /* With GEM the hangcheck timer should kick us out of the loop,
1530          * leaving it early runs the risk of corrupting GEM state (due
1531          * to running on almost untested codepaths). But on resume
1532          * timers don't work yet, so prevent a complete hang in that
1533          * case by choosing an insanely large timeout. */
1534         end = jiffies + 60 * HZ;
1535
1536         do {
1537                 ring->head = I915_READ_HEAD(ring);
1538                 ring->space = ring_space(ring);
1539                 if (ring->space >= n) {
1540                         trace_i915_ring_wait_end(ring);
1541                         return 0;
1542                 }
1543
1544                 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1545                     dev->primary->master) {
1546                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1547                         if (master_priv->sarea_priv)
1548                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1549                 }
1550
1551                 msleep(1);
1552
1553                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1554                                            dev_priv->mm.interruptible);
1555                 if (ret)
1556                         return ret;
1557         } while (!time_after(jiffies, end));
1558         trace_i915_ring_wait_end(ring);
1559         return -EBUSY;
1560 }
1561
1562 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1563 {
1564         uint32_t __iomem *virt;
1565         int rem = ring->size - ring->tail;
1566
1567         if (ring->space < rem) {
1568                 int ret = ring_wait_for_space(ring, rem);
1569                 if (ret)
1570                         return ret;
1571         }
1572
1573         virt = ring->virtual_start + ring->tail;
1574         rem /= 4;
1575         while (rem--)
1576                 iowrite32(MI_NOOP, virt++);
1577
1578         ring->tail = 0;
1579         ring->space = ring_space(ring);
1580
1581         return 0;
1582 }
1583
1584 int intel_ring_idle(struct intel_ring_buffer *ring)
1585 {
1586         u32 seqno;
1587         int ret;
1588
1589         /* We need to add any requests required to flush the objects and ring */
1590         if (ring->outstanding_lazy_seqno) {
1591                 ret = i915_add_request(ring, NULL);
1592                 if (ret)
1593                         return ret;
1594         }
1595
1596         /* Wait upon the last request to be completed */
1597         if (list_empty(&ring->request_list))
1598                 return 0;
1599
1600         seqno = list_entry(ring->request_list.prev,
1601                            struct drm_i915_gem_request,
1602                            list)->seqno;
1603
1604         return i915_wait_seqno(ring, seqno);
1605 }
1606
1607 static int
1608 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1609 {
1610         if (ring->outstanding_lazy_seqno)
1611                 return 0;
1612
1613         if (ring->preallocated_lazy_request == NULL) {
1614                 struct drm_i915_gem_request *request;
1615
1616                 request = kmalloc(sizeof(*request), GFP_KERNEL);
1617                 if (request == NULL)
1618                         return -ENOMEM;
1619
1620                 ring->preallocated_lazy_request = request;
1621         }
1622
1623         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1624 }
1625
1626 static int __intel_ring_prepare(struct intel_ring_buffer *ring,
1627                                 int bytes)
1628 {
1629         int ret;
1630
1631         if (unlikely(ring->tail + bytes > ring->effective_size)) {
1632                 ret = intel_wrap_ring_buffer(ring);
1633                 if (unlikely(ret))
1634                         return ret;
1635         }
1636
1637         if (unlikely(ring->space < bytes)) {
1638                 ret = ring_wait_for_space(ring, bytes);
1639                 if (unlikely(ret))
1640                         return ret;
1641         }
1642
1643         return 0;
1644 }
1645
1646 int intel_ring_begin(struct intel_ring_buffer *ring,
1647                      int num_dwords)
1648 {
1649         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1650         int ret;
1651
1652         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1653                                    dev_priv->mm.interruptible);
1654         if (ret)
1655                 return ret;
1656
1657         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1658         if (ret)
1659                 return ret;
1660
1661         /* Preallocate the olr before touching the ring */
1662         ret = intel_ring_alloc_seqno(ring);
1663         if (ret)
1664                 return ret;
1665
1666         ring->space -= num_dwords * sizeof(uint32_t);
1667         return 0;
1668 }
1669
1670 /* Align the ring tail to a cacheline boundary */
1671 int intel_ring_cacheline_align(struct intel_ring_buffer *ring)
1672 {
1673         int num_dwords = (64 - (ring->tail & 63)) / sizeof(uint32_t);
1674         int ret;
1675
1676         if (num_dwords == 0)
1677                 return 0;
1678
1679         ret = intel_ring_begin(ring, num_dwords);
1680         if (ret)
1681                 return ret;
1682
1683         while (num_dwords--)
1684                 intel_ring_emit(ring, MI_NOOP);
1685
1686         intel_ring_advance(ring);
1687
1688         return 0;
1689 }
1690
1691 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1692 {
1693         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1694
1695         BUG_ON(ring->outstanding_lazy_seqno);
1696
1697         if (INTEL_INFO(ring->dev)->gen >= 6) {
1698                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1699                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1700                 if (HAS_VEBOX(ring->dev))
1701                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1702         }
1703
1704         ring->set_seqno(ring, seqno);
1705         ring->hangcheck.seqno = seqno;
1706 }
1707
1708 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1709                                      u32 value)
1710 {
1711         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1712
1713        /* Every tail move must follow the sequence below */
1714
1715         /* Disable notification that the ring is IDLE. The GT
1716          * will then assume that it is busy and bring it out of rc6.
1717          */
1718         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1719                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1720
1721         /* Clear the context id. Here be magic! */
1722         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1723
1724         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1725         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1726                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1727                      50))
1728                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1729
1730         /* Now that the ring is fully powered up, update the tail */
1731         I915_WRITE_TAIL(ring, value);
1732         POSTING_READ(RING_TAIL(ring->mmio_base));
1733
1734         /* Let the ring send IDLE messages to the GT again,
1735          * and so let it sleep to conserve power when idle.
1736          */
1737         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1738                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1739 }
1740
1741 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1742                                u32 invalidate, u32 flush)
1743 {
1744         uint32_t cmd;
1745         int ret;
1746
1747         ret = intel_ring_begin(ring, 4);
1748         if (ret)
1749                 return ret;
1750
1751         cmd = MI_FLUSH_DW;
1752         if (INTEL_INFO(ring->dev)->gen >= 8)
1753                 cmd += 1;
1754         /*
1755          * Bspec vol 1c.5 - video engine command streamer:
1756          * "If ENABLED, all TLBs will be invalidated once the flush
1757          * operation is complete. This bit is only valid when the
1758          * Post-Sync Operation field is a value of 1h or 3h."
1759          */
1760         if (invalidate & I915_GEM_GPU_DOMAINS)
1761                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1762                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1763         intel_ring_emit(ring, cmd);
1764         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1765         if (INTEL_INFO(ring->dev)->gen >= 8) {
1766                 intel_ring_emit(ring, 0); /* upper addr */
1767                 intel_ring_emit(ring, 0); /* value */
1768         } else  {
1769                 intel_ring_emit(ring, 0);
1770                 intel_ring_emit(ring, MI_NOOP);
1771         }
1772         intel_ring_advance(ring);
1773         return 0;
1774 }
1775
1776 static int
1777 gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1778                               u32 offset, u32 len,
1779                               unsigned flags)
1780 {
1781         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1782         bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1783                 !(flags & I915_DISPATCH_SECURE);
1784         int ret;
1785
1786         ret = intel_ring_begin(ring, 4);
1787         if (ret)
1788                 return ret;
1789
1790         /* FIXME(BDW): Address space and security selectors. */
1791         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1792         intel_ring_emit(ring, offset);
1793         intel_ring_emit(ring, 0);
1794         intel_ring_emit(ring, MI_NOOP);
1795         intel_ring_advance(ring);
1796
1797         return 0;
1798 }
1799
1800 static int
1801 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1802                               u32 offset, u32 len,
1803                               unsigned flags)
1804 {
1805         int ret;
1806
1807         ret = intel_ring_begin(ring, 2);
1808         if (ret)
1809                 return ret;
1810
1811         intel_ring_emit(ring,
1812                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1813                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1814         /* bit0-7 is the length on GEN6+ */
1815         intel_ring_emit(ring, offset);
1816         intel_ring_advance(ring);
1817
1818         return 0;
1819 }
1820
1821 static int
1822 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1823                               u32 offset, u32 len,
1824                               unsigned flags)
1825 {
1826         int ret;
1827
1828         ret = intel_ring_begin(ring, 2);
1829         if (ret)
1830                 return ret;
1831
1832         intel_ring_emit(ring,
1833                         MI_BATCH_BUFFER_START |
1834                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1835         /* bit0-7 is the length on GEN6+ */
1836         intel_ring_emit(ring, offset);
1837         intel_ring_advance(ring);
1838
1839         return 0;
1840 }
1841
1842 /* Blitter support (SandyBridge+) */
1843
1844 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1845                            u32 invalidate, u32 flush)
1846 {
1847         struct drm_device *dev = ring->dev;
1848         uint32_t cmd;
1849         int ret;
1850
1851         ret = intel_ring_begin(ring, 4);
1852         if (ret)
1853                 return ret;
1854
1855         cmd = MI_FLUSH_DW;
1856         if (INTEL_INFO(ring->dev)->gen >= 8)
1857                 cmd += 1;
1858         /*
1859          * Bspec vol 1c.3 - blitter engine command streamer:
1860          * "If ENABLED, all TLBs will be invalidated once the flush
1861          * operation is complete. This bit is only valid when the
1862          * Post-Sync Operation field is a value of 1h or 3h."
1863          */
1864         if (invalidate & I915_GEM_DOMAIN_RENDER)
1865                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1866                         MI_FLUSH_DW_OP_STOREDW;
1867         intel_ring_emit(ring, cmd);
1868         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1869         if (INTEL_INFO(ring->dev)->gen >= 8) {
1870                 intel_ring_emit(ring, 0); /* upper addr */
1871                 intel_ring_emit(ring, 0); /* value */
1872         } else  {
1873                 intel_ring_emit(ring, 0);
1874                 intel_ring_emit(ring, MI_NOOP);
1875         }
1876         intel_ring_advance(ring);
1877
1878         if (IS_GEN7(dev) && !invalidate && flush)
1879                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1880
1881         return 0;
1882 }
1883
1884 int intel_init_render_ring_buffer(struct drm_device *dev)
1885 {
1886         struct drm_i915_private *dev_priv = dev->dev_private;
1887         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1888
1889         ring->name = "render ring";
1890         ring->id = RCS;
1891         ring->mmio_base = RENDER_RING_BASE;
1892
1893         if (INTEL_INFO(dev)->gen >= 6) {
1894                 ring->add_request = gen6_add_request;
1895                 ring->flush = gen7_render_ring_flush;
1896                 if (INTEL_INFO(dev)->gen == 6)
1897                         ring->flush = gen6_render_ring_flush;
1898                 if (INTEL_INFO(dev)->gen >= 8) {
1899                         ring->flush = gen8_render_ring_flush;
1900                         ring->irq_get = gen8_ring_get_irq;
1901                         ring->irq_put = gen8_ring_put_irq;
1902                 } else {
1903                         ring->irq_get = gen6_ring_get_irq;
1904                         ring->irq_put = gen6_ring_put_irq;
1905                 }
1906                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1907                 ring->get_seqno = gen6_ring_get_seqno;
1908                 ring->set_seqno = ring_set_seqno;
1909                 ring->sync_to = gen6_ring_sync;
1910                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1911                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1912                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1913                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1914                 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1915                 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1916                 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1917                 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1918         } else if (IS_GEN5(dev)) {
1919                 ring->add_request = pc_render_add_request;
1920                 ring->flush = gen4_render_ring_flush;
1921                 ring->get_seqno = pc_render_get_seqno;
1922                 ring->set_seqno = pc_render_set_seqno;
1923                 ring->irq_get = gen5_ring_get_irq;
1924                 ring->irq_put = gen5_ring_put_irq;
1925                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1926                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1927         } else {
1928                 ring->add_request = i9xx_add_request;
1929                 if (INTEL_INFO(dev)->gen < 4)
1930                         ring->flush = gen2_render_ring_flush;
1931                 else
1932                         ring->flush = gen4_render_ring_flush;
1933                 ring->get_seqno = ring_get_seqno;
1934                 ring->set_seqno = ring_set_seqno;
1935                 if (IS_GEN2(dev)) {
1936                         ring->irq_get = i8xx_ring_get_irq;
1937                         ring->irq_put = i8xx_ring_put_irq;
1938                 } else {
1939                         ring->irq_get = i9xx_ring_get_irq;
1940                         ring->irq_put = i9xx_ring_put_irq;
1941                 }
1942                 ring->irq_enable_mask = I915_USER_INTERRUPT;
1943         }
1944         ring->write_tail = ring_write_tail;
1945         if (IS_HASWELL(dev))
1946                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1947         else if (IS_GEN8(dev))
1948                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
1949         else if (INTEL_INFO(dev)->gen >= 6)
1950                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1951         else if (INTEL_INFO(dev)->gen >= 4)
1952                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1953         else if (IS_I830(dev) || IS_845G(dev))
1954                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1955         else
1956                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1957         ring->init = init_render_ring;
1958         ring->cleanup = render_ring_cleanup;
1959
1960         /* Workaround batchbuffer to combat CS tlb bug. */
1961         if (HAS_BROKEN_CS_TLB(dev)) {
1962                 struct drm_i915_gem_object *obj;
1963                 int ret;
1964
1965                 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1966                 if (obj == NULL) {
1967                         DRM_ERROR("Failed to allocate batch bo\n");
1968                         return -ENOMEM;
1969                 }
1970
1971                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
1972                 if (ret != 0) {
1973                         drm_gem_object_unreference(&obj->base);
1974                         DRM_ERROR("Failed to ping batch bo\n");
1975                         return ret;
1976                 }
1977
1978                 ring->scratch.obj = obj;
1979                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
1980         }
1981
1982         return intel_init_ring_buffer(dev, ring);
1983 }
1984
1985 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1986 {
1987         struct drm_i915_private *dev_priv = dev->dev_private;
1988         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1989         int ret;
1990
1991         ring->name = "render ring";
1992         ring->id = RCS;
1993         ring->mmio_base = RENDER_RING_BASE;
1994
1995         if (INTEL_INFO(dev)->gen >= 6) {
1996                 /* non-kms not supported on gen6+ */
1997                 return -ENODEV;
1998         }
1999
2000         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2001          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2002          * the special gen5 functions. */
2003         ring->add_request = i9xx_add_request;
2004         if (INTEL_INFO(dev)->gen < 4)
2005                 ring->flush = gen2_render_ring_flush;
2006         else
2007                 ring->flush = gen4_render_ring_flush;
2008         ring->get_seqno = ring_get_seqno;
2009         ring->set_seqno = ring_set_seqno;
2010         if (IS_GEN2(dev)) {
2011                 ring->irq_get = i8xx_ring_get_irq;
2012                 ring->irq_put = i8xx_ring_put_irq;
2013         } else {
2014                 ring->irq_get = i9xx_ring_get_irq;
2015                 ring->irq_put = i9xx_ring_put_irq;
2016         }
2017         ring->irq_enable_mask = I915_USER_INTERRUPT;
2018         ring->write_tail = ring_write_tail;
2019         if (INTEL_INFO(dev)->gen >= 4)
2020                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2021         else if (IS_I830(dev) || IS_845G(dev))
2022                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2023         else
2024                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2025         ring->init = init_render_ring;
2026         ring->cleanup = render_ring_cleanup;
2027
2028         ring->dev = dev;
2029         INIT_LIST_HEAD(&ring->active_list);
2030         INIT_LIST_HEAD(&ring->request_list);
2031
2032         ring->size = size;
2033         ring->effective_size = ring->size;
2034         if (IS_I830(ring->dev) || IS_845G(ring->dev))
2035                 ring->effective_size -= 128;
2036
2037         ring->virtual_start = ioremap_wc(start, size);
2038         if (ring->virtual_start == NULL) {
2039                 DRM_ERROR("can not ioremap virtual address for"
2040                           " ring buffer\n");
2041                 return -ENOMEM;
2042         }
2043
2044         if (!I915_NEED_GFX_HWS(dev)) {
2045                 ret = init_phys_status_page(ring);
2046                 if (ret)
2047                         return ret;
2048         }
2049
2050         return 0;
2051 }
2052
2053 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2054 {
2055         struct drm_i915_private *dev_priv = dev->dev_private;
2056         struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
2057
2058         ring->name = "bsd ring";
2059         ring->id = VCS;
2060
2061         ring->write_tail = ring_write_tail;
2062         if (INTEL_INFO(dev)->gen >= 6) {
2063                 ring->mmio_base = GEN6_BSD_RING_BASE;
2064                 /* gen6 bsd needs a special wa for tail updates */
2065                 if (IS_GEN6(dev))
2066                         ring->write_tail = gen6_bsd_ring_write_tail;
2067                 ring->flush = gen6_bsd_ring_flush;
2068                 ring->add_request = gen6_add_request;
2069                 ring->get_seqno = gen6_ring_get_seqno;
2070                 ring->set_seqno = ring_set_seqno;
2071                 if (INTEL_INFO(dev)->gen >= 8) {
2072                         ring->irq_enable_mask =
2073                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2074                         ring->irq_get = gen8_ring_get_irq;
2075                         ring->irq_put = gen8_ring_put_irq;
2076                         ring->dispatch_execbuffer =
2077                                 gen8_ring_dispatch_execbuffer;
2078                 } else {
2079                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2080                         ring->irq_get = gen6_ring_get_irq;
2081                         ring->irq_put = gen6_ring_put_irq;
2082                         ring->dispatch_execbuffer =
2083                                 gen6_ring_dispatch_execbuffer;
2084                 }
2085                 ring->sync_to = gen6_ring_sync;
2086                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
2087                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2088                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
2089                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
2090                 ring->signal_mbox[RCS] = GEN6_RVSYNC;
2091                 ring->signal_mbox[VCS] = GEN6_NOSYNC;
2092                 ring->signal_mbox[BCS] = GEN6_BVSYNC;
2093                 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
2094         } else {
2095                 ring->mmio_base = BSD_RING_BASE;
2096                 ring->flush = bsd_ring_flush;
2097                 ring->add_request = i9xx_add_request;
2098                 ring->get_seqno = ring_get_seqno;
2099                 ring->set_seqno = ring_set_seqno;
2100                 if (IS_GEN5(dev)) {
2101                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2102                         ring->irq_get = gen5_ring_get_irq;
2103                         ring->irq_put = gen5_ring_put_irq;
2104                 } else {
2105                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2106                         ring->irq_get = i9xx_ring_get_irq;
2107                         ring->irq_put = i9xx_ring_put_irq;
2108                 }
2109                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2110         }
2111         ring->init = init_ring_common;
2112
2113         return intel_init_ring_buffer(dev, ring);
2114 }
2115
2116 int intel_init_blt_ring_buffer(struct drm_device *dev)
2117 {
2118         struct drm_i915_private *dev_priv = dev->dev_private;
2119         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
2120
2121         ring->name = "blitter ring";
2122         ring->id = BCS;
2123
2124         ring->mmio_base = BLT_RING_BASE;
2125         ring->write_tail = ring_write_tail;
2126         ring->flush = gen6_ring_flush;
2127         ring->add_request = gen6_add_request;
2128         ring->get_seqno = gen6_ring_get_seqno;
2129         ring->set_seqno = ring_set_seqno;
2130         if (INTEL_INFO(dev)->gen >= 8) {
2131                 ring->irq_enable_mask =
2132                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2133                 ring->irq_get = gen8_ring_get_irq;
2134                 ring->irq_put = gen8_ring_put_irq;
2135                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2136         } else {
2137                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2138                 ring->irq_get = gen6_ring_get_irq;
2139                 ring->irq_put = gen6_ring_put_irq;
2140                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2141         }
2142         ring->sync_to = gen6_ring_sync;
2143         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
2144         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
2145         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2146         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
2147         ring->signal_mbox[RCS] = GEN6_RBSYNC;
2148         ring->signal_mbox[VCS] = GEN6_VBSYNC;
2149         ring->signal_mbox[BCS] = GEN6_NOSYNC;
2150         ring->signal_mbox[VECS] = GEN6_VEBSYNC;
2151         ring->init = init_ring_common;
2152
2153         return intel_init_ring_buffer(dev, ring);
2154 }
2155
2156 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2157 {
2158         struct drm_i915_private *dev_priv = dev->dev_private;
2159         struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2160
2161         ring->name = "video enhancement ring";
2162         ring->id = VECS;
2163
2164         ring->mmio_base = VEBOX_RING_BASE;
2165         ring->write_tail = ring_write_tail;
2166         ring->flush = gen6_ring_flush;
2167         ring->add_request = gen6_add_request;
2168         ring->get_seqno = gen6_ring_get_seqno;
2169         ring->set_seqno = ring_set_seqno;
2170
2171         if (INTEL_INFO(dev)->gen >= 8) {
2172                 ring->irq_enable_mask =
2173                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2174                 ring->irq_get = gen8_ring_get_irq;
2175                 ring->irq_put = gen8_ring_put_irq;
2176                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2177         } else {
2178                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2179                 ring->irq_get = hsw_vebox_get_irq;
2180                 ring->irq_put = hsw_vebox_put_irq;
2181                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2182         }
2183         ring->sync_to = gen6_ring_sync;
2184         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2185         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2186         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2187         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2188         ring->signal_mbox[RCS] = GEN6_RVESYNC;
2189         ring->signal_mbox[VCS] = GEN6_VVESYNC;
2190         ring->signal_mbox[BCS] = GEN6_BVESYNC;
2191         ring->signal_mbox[VECS] = GEN6_NOSYNC;
2192         ring->init = init_ring_common;
2193
2194         return intel_init_ring_buffer(dev, ring);
2195 }
2196
2197 int
2198 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2199 {
2200         int ret;
2201
2202         if (!ring->gpu_caches_dirty)
2203                 return 0;
2204
2205         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2206         if (ret)
2207                 return ret;
2208
2209         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2210
2211         ring->gpu_caches_dirty = false;
2212         return 0;
2213 }
2214
2215 int
2216 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2217 {
2218         uint32_t flush_domains;
2219         int ret;
2220
2221         flush_domains = 0;
2222         if (ring->gpu_caches_dirty)
2223                 flush_domains = I915_GEM_GPU_DOMAINS;
2224
2225         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2226         if (ret)
2227                 return ret;
2228
2229         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2230
2231         ring->gpu_caches_dirty = false;
2232         return 0;
2233 }