Merge remote-tracking branches 'spi/fix/qup' and 'spi/fix/topcliff-pch' into spi...
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 static inline int ring_space(struct intel_ring_buffer *ring)
37 {
38         int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
39         if (space < 0)
40                 space += ring->size;
41         return space;
42 }
43
44 void __intel_ring_advance(struct intel_ring_buffer *ring)
45 {
46         struct drm_i915_private *dev_priv = ring->dev->dev_private;
47
48         ring->tail &= ring->size - 1;
49         if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
50                 return;
51         ring->write_tail(ring, ring->tail);
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56                        u32      invalidate_domains,
57                        u32      flush_domains)
58 {
59         u32 cmd;
60         int ret;
61
62         cmd = MI_FLUSH;
63         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64                 cmd |= MI_NO_WRITE_FLUSH;
65
66         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67                 cmd |= MI_READ_FLUSH;
68
69         ret = intel_ring_begin(ring, 2);
70         if (ret)
71                 return ret;
72
73         intel_ring_emit(ring, cmd);
74         intel_ring_emit(ring, MI_NOOP);
75         intel_ring_advance(ring);
76
77         return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82                        u32      invalidate_domains,
83                        u32      flush_domains)
84 {
85         struct drm_device *dev = ring->dev;
86         u32 cmd;
87         int ret;
88
89         /*
90          * read/write caches:
91          *
92          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
94          * also flushed at 2d versus 3d pipeline switches.
95          *
96          * read-only caches:
97          *
98          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99          * MI_READ_FLUSH is set, and is always flushed on 965.
100          *
101          * I915_GEM_DOMAIN_COMMAND may not exist?
102          *
103          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104          * invalidated when MI_EXE_FLUSH is set.
105          *
106          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107          * invalidated with every MI_FLUSH.
108          *
109          * TLBs:
110          *
111          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114          * are flushed at any MI_FLUSH.
115          */
116
117         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119                 cmd &= ~MI_NO_WRITE_FLUSH;
120         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121                 cmd |= MI_EXE_FLUSH;
122
123         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124             (IS_G4X(dev) || IS_GEN5(dev)))
125                 cmd |= MI_INVALIDATE_ISP;
126
127         ret = intel_ring_begin(ring, 2);
128         if (ret)
129                 return ret;
130
131         intel_ring_emit(ring, cmd);
132         intel_ring_emit(ring, MI_NOOP);
133         intel_ring_advance(ring);
134
135         return 0;
136 }
137
138 /**
139  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140  * implementing two workarounds on gen6.  From section 1.4.7.1
141  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142  *
143  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144  * produced by non-pipelined state commands), software needs to first
145  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146  * 0.
147  *
148  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150  *
151  * And the workaround for these two requires this workaround first:
152  *
153  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154  * BEFORE the pipe-control with a post-sync op and no write-cache
155  * flushes.
156  *
157  * And this last workaround is tricky because of the requirements on
158  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159  * volume 2 part 1:
160  *
161  *     "1 of the following must also be set:
162  *      - Render Target Cache Flush Enable ([12] of DW1)
163  *      - Depth Cache Flush Enable ([0] of DW1)
164  *      - Stall at Pixel Scoreboard ([1] of DW1)
165  *      - Depth Stall ([13] of DW1)
166  *      - Post-Sync Operation ([13] of DW1)
167  *      - Notify Enable ([8] of DW1)"
168  *
169  * The cache flushes require the workaround flush that triggered this
170  * one, so we can't use it.  Depth stall would trigger the same.
171  * Post-sync nonzero is what triggered this second workaround, so we
172  * can't use that one either.  Notify enable is IRQs, which aren't
173  * really our business.  That leaves only stall at scoreboard.
174  */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178         u32 scratch_addr = ring->scratch.gtt_offset + 128;
179         int ret;
180
181
182         ret = intel_ring_begin(ring, 6);
183         if (ret)
184                 return ret;
185
186         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
189         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
190         intel_ring_emit(ring, 0); /* low dword */
191         intel_ring_emit(ring, 0); /* high dword */
192         intel_ring_emit(ring, MI_NOOP);
193         intel_ring_advance(ring);
194
195         ret = intel_ring_begin(ring, 6);
196         if (ret)
197                 return ret;
198
199         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
202         intel_ring_emit(ring, 0);
203         intel_ring_emit(ring, 0);
204         intel_ring_emit(ring, MI_NOOP);
205         intel_ring_advance(ring);
206
207         return 0;
208 }
209
210 static int
211 gen6_render_ring_flush(struct intel_ring_buffer *ring,
212                          u32 invalidate_domains, u32 flush_domains)
213 {
214         u32 flags = 0;
215         u32 scratch_addr = ring->scratch.gtt_offset + 128;
216         int ret;
217
218         /* Force SNB workarounds for PIPE_CONTROL flushes */
219         ret = intel_emit_post_sync_nonzero_flush(ring);
220         if (ret)
221                 return ret;
222
223         /* Just flush everything.  Experiments have shown that reducing the
224          * number of bits based on the write domains has little performance
225          * impact.
226          */
227         if (flush_domains) {
228                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
229                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
230                 /*
231                  * Ensure that any following seqno writes only happen
232                  * when the render cache is indeed flushed.
233                  */
234                 flags |= PIPE_CONTROL_CS_STALL;
235         }
236         if (invalidate_domains) {
237                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
238                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
239                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
240                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
241                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
242                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
243                 /*
244                  * TLB invalidate requires a post-sync write.
245                  */
246                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
247         }
248
249         ret = intel_ring_begin(ring, 4);
250         if (ret)
251                 return ret;
252
253         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
254         intel_ring_emit(ring, flags);
255         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
256         intel_ring_emit(ring, 0);
257         intel_ring_advance(ring);
258
259         return 0;
260 }
261
262 static int
263 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
264 {
265         int ret;
266
267         ret = intel_ring_begin(ring, 4);
268         if (ret)
269                 return ret;
270
271         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
272         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
273                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
274         intel_ring_emit(ring, 0);
275         intel_ring_emit(ring, 0);
276         intel_ring_advance(ring);
277
278         return 0;
279 }
280
281 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
282 {
283         int ret;
284
285         if (!ring->fbc_dirty)
286                 return 0;
287
288         ret = intel_ring_begin(ring, 6);
289         if (ret)
290                 return ret;
291         /* WaFbcNukeOn3DBlt:ivb/hsw */
292         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
293         intel_ring_emit(ring, MSG_FBC_REND_STATE);
294         intel_ring_emit(ring, value);
295         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
296         intel_ring_emit(ring, MSG_FBC_REND_STATE);
297         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
298         intel_ring_advance(ring);
299
300         ring->fbc_dirty = false;
301         return 0;
302 }
303
304 static int
305 gen7_render_ring_flush(struct intel_ring_buffer *ring,
306                        u32 invalidate_domains, u32 flush_domains)
307 {
308         u32 flags = 0;
309         u32 scratch_addr = ring->scratch.gtt_offset + 128;
310         int ret;
311
312         /*
313          * Ensure that any following seqno writes only happen when the render
314          * cache is indeed flushed.
315          *
316          * Workaround: 4th PIPE_CONTROL command (except the ones with only
317          * read-cache invalidate bits set) must have the CS_STALL bit set. We
318          * don't try to be clever and just set it unconditionally.
319          */
320         flags |= PIPE_CONTROL_CS_STALL;
321
322         /* Just flush everything.  Experiments have shown that reducing the
323          * number of bits based on the write domains has little performance
324          * impact.
325          */
326         if (flush_domains) {
327                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
328                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
329         }
330         if (invalidate_domains) {
331                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
332                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
333                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
334                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
335                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
336                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
337                 /*
338                  * TLB invalidate requires a post-sync write.
339                  */
340                 flags |= PIPE_CONTROL_QW_WRITE;
341                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
342
343                 /* Workaround: we must issue a pipe_control with CS-stall bit
344                  * set before a pipe_control command that has the state cache
345                  * invalidate bit set. */
346                 gen7_render_ring_cs_stall_wa(ring);
347         }
348
349         ret = intel_ring_begin(ring, 4);
350         if (ret)
351                 return ret;
352
353         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
354         intel_ring_emit(ring, flags);
355         intel_ring_emit(ring, scratch_addr);
356         intel_ring_emit(ring, 0);
357         intel_ring_advance(ring);
358
359         if (!invalidate_domains && flush_domains)
360                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
361
362         return 0;
363 }
364
365 static int
366 gen8_render_ring_flush(struct intel_ring_buffer *ring,
367                        u32 invalidate_domains, u32 flush_domains)
368 {
369         u32 flags = 0;
370         u32 scratch_addr = ring->scratch.gtt_offset + 128;
371         int ret;
372
373         flags |= PIPE_CONTROL_CS_STALL;
374
375         if (flush_domains) {
376                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
377                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
378         }
379         if (invalidate_domains) {
380                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
381                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
382                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
383                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
384                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
385                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
386                 flags |= PIPE_CONTROL_QW_WRITE;
387                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
388         }
389
390         ret = intel_ring_begin(ring, 6);
391         if (ret)
392                 return ret;
393
394         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
395         intel_ring_emit(ring, flags);
396         intel_ring_emit(ring, scratch_addr);
397         intel_ring_emit(ring, 0);
398         intel_ring_emit(ring, 0);
399         intel_ring_emit(ring, 0);
400         intel_ring_advance(ring);
401
402         return 0;
403
404 }
405
406 static void ring_write_tail(struct intel_ring_buffer *ring,
407                             u32 value)
408 {
409         struct drm_i915_private *dev_priv = ring->dev->dev_private;
410         I915_WRITE_TAIL(ring, value);
411 }
412
413 u64 intel_ring_get_active_head(struct intel_ring_buffer *ring)
414 {
415         struct drm_i915_private *dev_priv = ring->dev->dev_private;
416         u64 acthd;
417
418         if (INTEL_INFO(ring->dev)->gen >= 8)
419                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
420                                          RING_ACTHD_UDW(ring->mmio_base));
421         else if (INTEL_INFO(ring->dev)->gen >= 4)
422                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
423         else
424                 acthd = I915_READ(ACTHD);
425
426         return acthd;
427 }
428
429 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
430 {
431         struct drm_i915_private *dev_priv = ring->dev->dev_private;
432         u32 addr;
433
434         addr = dev_priv->status_page_dmah->busaddr;
435         if (INTEL_INFO(ring->dev)->gen >= 4)
436                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
437         I915_WRITE(HWS_PGA, addr);
438 }
439
440 static bool stop_ring(struct intel_ring_buffer *ring)
441 {
442         struct drm_i915_private *dev_priv = to_i915(ring->dev);
443
444         if (!IS_GEN2(ring->dev)) {
445                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
446                 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
447                         DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
448                         return false;
449                 }
450         }
451
452         I915_WRITE_CTL(ring, 0);
453         I915_WRITE_HEAD(ring, 0);
454         ring->write_tail(ring, 0);
455
456         if (!IS_GEN2(ring->dev)) {
457                 (void)I915_READ_CTL(ring);
458                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
459         }
460
461         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
462 }
463
464 static int init_ring_common(struct intel_ring_buffer *ring)
465 {
466         struct drm_device *dev = ring->dev;
467         struct drm_i915_private *dev_priv = dev->dev_private;
468         struct drm_i915_gem_object *obj = ring->obj;
469         int ret = 0;
470
471         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
472
473         if (!stop_ring(ring)) {
474                 /* G45 ring initialization often fails to reset head to zero */
475                 DRM_DEBUG_KMS("%s head not reset to zero "
476                               "ctl %08x head %08x tail %08x start %08x\n",
477                               ring->name,
478                               I915_READ_CTL(ring),
479                               I915_READ_HEAD(ring),
480                               I915_READ_TAIL(ring),
481                               I915_READ_START(ring));
482
483                 if (!stop_ring(ring)) {
484                         DRM_ERROR("failed to set %s head to zero "
485                                   "ctl %08x head %08x tail %08x start %08x\n",
486                                   ring->name,
487                                   I915_READ_CTL(ring),
488                                   I915_READ_HEAD(ring),
489                                   I915_READ_TAIL(ring),
490                                   I915_READ_START(ring));
491                         ret = -EIO;
492                         goto out;
493                 }
494         }
495
496         if (I915_NEED_GFX_HWS(dev))
497                 intel_ring_setup_status_page(ring);
498         else
499                 ring_setup_phys_status_page(ring);
500
501         /* Initialize the ring. This must happen _after_ we've cleared the ring
502          * registers with the above sequence (the readback of the HEAD registers
503          * also enforces ordering), otherwise the hw might lose the new ring
504          * register values. */
505         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
506         I915_WRITE_CTL(ring,
507                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
508                         | RING_VALID);
509
510         /* If the head is still not zero, the ring is dead */
511         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
512                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
513                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
514                 DRM_ERROR("%s initialization failed "
515                                 "ctl %08x head %08x tail %08x start %08x\n",
516                                 ring->name,
517                                 I915_READ_CTL(ring),
518                                 I915_READ_HEAD(ring),
519                                 I915_READ_TAIL(ring),
520                                 I915_READ_START(ring));
521                 ret = -EIO;
522                 goto out;
523         }
524
525         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
526                 i915_kernel_lost_context(ring->dev);
527         else {
528                 ring->head = I915_READ_HEAD(ring);
529                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
530                 ring->space = ring_space(ring);
531                 ring->last_retired_head = -1;
532         }
533
534         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
535
536 out:
537         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
538
539         return ret;
540 }
541
542 static int
543 init_pipe_control(struct intel_ring_buffer *ring)
544 {
545         int ret;
546
547         if (ring->scratch.obj)
548                 return 0;
549
550         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
551         if (ring->scratch.obj == NULL) {
552                 DRM_ERROR("Failed to allocate seqno page\n");
553                 ret = -ENOMEM;
554                 goto err;
555         }
556
557         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
558         if (ret)
559                 goto err_unref;
560
561         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
562         if (ret)
563                 goto err_unref;
564
565         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
566         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
567         if (ring->scratch.cpu_page == NULL) {
568                 ret = -ENOMEM;
569                 goto err_unpin;
570         }
571
572         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
573                          ring->name, ring->scratch.gtt_offset);
574         return 0;
575
576 err_unpin:
577         i915_gem_object_ggtt_unpin(ring->scratch.obj);
578 err_unref:
579         drm_gem_object_unreference(&ring->scratch.obj->base);
580 err:
581         return ret;
582 }
583
584 static int init_render_ring(struct intel_ring_buffer *ring)
585 {
586         struct drm_device *dev = ring->dev;
587         struct drm_i915_private *dev_priv = dev->dev_private;
588         int ret = init_ring_common(ring);
589
590         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
591         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
592                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
593
594         /* We need to disable the AsyncFlip performance optimisations in order
595          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
596          * programmed to '1' on all products.
597          *
598          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw
599          */
600         if (INTEL_INFO(dev)->gen >= 6)
601                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
602
603         /* Required for the hardware to program scanline values for waiting */
604         if (INTEL_INFO(dev)->gen == 6)
605                 I915_WRITE(GFX_MODE,
606                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
607
608         if (IS_GEN7(dev))
609                 I915_WRITE(GFX_MODE_GEN7,
610                            _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
611                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
612
613         if (INTEL_INFO(dev)->gen >= 5) {
614                 ret = init_pipe_control(ring);
615                 if (ret)
616                         return ret;
617         }
618
619         if (IS_GEN6(dev)) {
620                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
621                  * "If this bit is set, STCunit will have LRA as replacement
622                  *  policy. [...] This bit must be reset.  LRA replacement
623                  *  policy is not supported."
624                  */
625                 I915_WRITE(CACHE_MODE_0,
626                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
627
628                 /* This is not explicitly set for GEN6, so read the register.
629                  * see intel_ring_mi_set_context() for why we care.
630                  * TODO: consider explicitly setting the bit for GEN5
631                  */
632                 ring->itlb_before_ctx_switch =
633                         !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
634         }
635
636         if (INTEL_INFO(dev)->gen >= 6)
637                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
638
639         if (HAS_L3_DPF(dev))
640                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
641
642         return ret;
643 }
644
645 static void render_ring_cleanup(struct intel_ring_buffer *ring)
646 {
647         struct drm_device *dev = ring->dev;
648
649         if (ring->scratch.obj == NULL)
650                 return;
651
652         if (INTEL_INFO(dev)->gen >= 5) {
653                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
654                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
655         }
656
657         drm_gem_object_unreference(&ring->scratch.obj->base);
658         ring->scratch.obj = NULL;
659 }
660
661 static void
662 update_mboxes(struct intel_ring_buffer *ring,
663               u32 mmio_offset)
664 {
665 /* NB: In order to be able to do semaphore MBOX updates for varying number
666  * of rings, it's easiest if we round up each individual update to a
667  * multiple of 2 (since ring updates must always be a multiple of 2)
668  * even though the actual update only requires 3 dwords.
669  */
670 #define MBOX_UPDATE_DWORDS 4
671         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
672         intel_ring_emit(ring, mmio_offset);
673         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
674         intel_ring_emit(ring, MI_NOOP);
675 }
676
677 /**
678  * gen6_add_request - Update the semaphore mailbox registers
679  * 
680  * @ring - ring that is adding a request
681  * @seqno - return seqno stuck into the ring
682  *
683  * Update the mailbox registers in the *other* rings with the current seqno.
684  * This acts like a signal in the canonical semaphore.
685  */
686 static int
687 gen6_add_request(struct intel_ring_buffer *ring)
688 {
689         struct drm_device *dev = ring->dev;
690         struct drm_i915_private *dev_priv = dev->dev_private;
691         struct intel_ring_buffer *useless;
692         int i, ret, num_dwords = 4;
693
694         if (i915_semaphore_is_enabled(dev))
695                 num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
696 #undef MBOX_UPDATE_DWORDS
697
698         ret = intel_ring_begin(ring, num_dwords);
699         if (ret)
700                 return ret;
701
702         if (i915_semaphore_is_enabled(dev)) {
703                 for_each_ring(useless, dev_priv, i) {
704                         u32 mbox_reg = ring->signal_mbox[i];
705                         if (mbox_reg != GEN6_NOSYNC)
706                                 update_mboxes(ring, mbox_reg);
707                 }
708         }
709
710         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
711         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
712         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
713         intel_ring_emit(ring, MI_USER_INTERRUPT);
714         __intel_ring_advance(ring);
715
716         return 0;
717 }
718
719 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
720                                               u32 seqno)
721 {
722         struct drm_i915_private *dev_priv = dev->dev_private;
723         return dev_priv->last_seqno < seqno;
724 }
725
726 /**
727  * intel_ring_sync - sync the waiter to the signaller on seqno
728  *
729  * @waiter - ring that is waiting
730  * @signaller - ring which has, or will signal
731  * @seqno - seqno which the waiter will block on
732  */
733 static int
734 gen6_ring_sync(struct intel_ring_buffer *waiter,
735                struct intel_ring_buffer *signaller,
736                u32 seqno)
737 {
738         int ret;
739         u32 dw1 = MI_SEMAPHORE_MBOX |
740                   MI_SEMAPHORE_COMPARE |
741                   MI_SEMAPHORE_REGISTER;
742
743         /* Throughout all of the GEM code, seqno passed implies our current
744          * seqno is >= the last seqno executed. However for hardware the
745          * comparison is strictly greater than.
746          */
747         seqno -= 1;
748
749         WARN_ON(signaller->semaphore_register[waiter->id] ==
750                 MI_SEMAPHORE_SYNC_INVALID);
751
752         ret = intel_ring_begin(waiter, 4);
753         if (ret)
754                 return ret;
755
756         /* If seqno wrap happened, omit the wait with no-ops */
757         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
758                 intel_ring_emit(waiter,
759                                 dw1 |
760                                 signaller->semaphore_register[waiter->id]);
761                 intel_ring_emit(waiter, seqno);
762                 intel_ring_emit(waiter, 0);
763                 intel_ring_emit(waiter, MI_NOOP);
764         } else {
765                 intel_ring_emit(waiter, MI_NOOP);
766                 intel_ring_emit(waiter, MI_NOOP);
767                 intel_ring_emit(waiter, MI_NOOP);
768                 intel_ring_emit(waiter, MI_NOOP);
769         }
770         intel_ring_advance(waiter);
771
772         return 0;
773 }
774
775 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
776 do {                                                                    \
777         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
778                  PIPE_CONTROL_DEPTH_STALL);                             \
779         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
780         intel_ring_emit(ring__, 0);                                                     \
781         intel_ring_emit(ring__, 0);                                                     \
782 } while (0)
783
784 static int
785 pc_render_add_request(struct intel_ring_buffer *ring)
786 {
787         u32 scratch_addr = ring->scratch.gtt_offset + 128;
788         int ret;
789
790         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
791          * incoherent with writes to memory, i.e. completely fubar,
792          * so we need to use PIPE_NOTIFY instead.
793          *
794          * However, we also need to workaround the qword write
795          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
796          * memory before requesting an interrupt.
797          */
798         ret = intel_ring_begin(ring, 32);
799         if (ret)
800                 return ret;
801
802         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
803                         PIPE_CONTROL_WRITE_FLUSH |
804                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
805         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
806         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
807         intel_ring_emit(ring, 0);
808         PIPE_CONTROL_FLUSH(ring, scratch_addr);
809         scratch_addr += 128; /* write to separate cachelines */
810         PIPE_CONTROL_FLUSH(ring, scratch_addr);
811         scratch_addr += 128;
812         PIPE_CONTROL_FLUSH(ring, scratch_addr);
813         scratch_addr += 128;
814         PIPE_CONTROL_FLUSH(ring, scratch_addr);
815         scratch_addr += 128;
816         PIPE_CONTROL_FLUSH(ring, scratch_addr);
817         scratch_addr += 128;
818         PIPE_CONTROL_FLUSH(ring, scratch_addr);
819
820         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
821                         PIPE_CONTROL_WRITE_FLUSH |
822                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
823                         PIPE_CONTROL_NOTIFY);
824         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
825         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
826         intel_ring_emit(ring, 0);
827         __intel_ring_advance(ring);
828
829         return 0;
830 }
831
832 static u32
833 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
834 {
835         /* Workaround to force correct ordering between irq and seqno writes on
836          * ivb (and maybe also on snb) by reading from a CS register (like
837          * ACTHD) before reading the status page. */
838         if (!lazy_coherency) {
839                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
840                 POSTING_READ(RING_ACTHD(ring->mmio_base));
841         }
842
843         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
844 }
845
846 static u32
847 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
848 {
849         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
850 }
851
852 static void
853 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
854 {
855         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
856 }
857
858 static u32
859 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
860 {
861         return ring->scratch.cpu_page[0];
862 }
863
864 static void
865 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
866 {
867         ring->scratch.cpu_page[0] = seqno;
868 }
869
870 static bool
871 gen5_ring_get_irq(struct intel_ring_buffer *ring)
872 {
873         struct drm_device *dev = ring->dev;
874         struct drm_i915_private *dev_priv = dev->dev_private;
875         unsigned long flags;
876
877         if (!dev->irq_enabled)
878                 return false;
879
880         spin_lock_irqsave(&dev_priv->irq_lock, flags);
881         if (ring->irq_refcount++ == 0)
882                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
883         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
884
885         return true;
886 }
887
888 static void
889 gen5_ring_put_irq(struct intel_ring_buffer *ring)
890 {
891         struct drm_device *dev = ring->dev;
892         struct drm_i915_private *dev_priv = dev->dev_private;
893         unsigned long flags;
894
895         spin_lock_irqsave(&dev_priv->irq_lock, flags);
896         if (--ring->irq_refcount == 0)
897                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
898         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
899 }
900
901 static bool
902 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
903 {
904         struct drm_device *dev = ring->dev;
905         struct drm_i915_private *dev_priv = dev->dev_private;
906         unsigned long flags;
907
908         if (!dev->irq_enabled)
909                 return false;
910
911         spin_lock_irqsave(&dev_priv->irq_lock, flags);
912         if (ring->irq_refcount++ == 0) {
913                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
914                 I915_WRITE(IMR, dev_priv->irq_mask);
915                 POSTING_READ(IMR);
916         }
917         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
918
919         return true;
920 }
921
922 static void
923 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
924 {
925         struct drm_device *dev = ring->dev;
926         struct drm_i915_private *dev_priv = dev->dev_private;
927         unsigned long flags;
928
929         spin_lock_irqsave(&dev_priv->irq_lock, flags);
930         if (--ring->irq_refcount == 0) {
931                 dev_priv->irq_mask |= ring->irq_enable_mask;
932                 I915_WRITE(IMR, dev_priv->irq_mask);
933                 POSTING_READ(IMR);
934         }
935         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
936 }
937
938 static bool
939 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
940 {
941         struct drm_device *dev = ring->dev;
942         struct drm_i915_private *dev_priv = dev->dev_private;
943         unsigned long flags;
944
945         if (!dev->irq_enabled)
946                 return false;
947
948         spin_lock_irqsave(&dev_priv->irq_lock, flags);
949         if (ring->irq_refcount++ == 0) {
950                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
951                 I915_WRITE16(IMR, dev_priv->irq_mask);
952                 POSTING_READ16(IMR);
953         }
954         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
955
956         return true;
957 }
958
959 static void
960 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
961 {
962         struct drm_device *dev = ring->dev;
963         struct drm_i915_private *dev_priv = dev->dev_private;
964         unsigned long flags;
965
966         spin_lock_irqsave(&dev_priv->irq_lock, flags);
967         if (--ring->irq_refcount == 0) {
968                 dev_priv->irq_mask |= ring->irq_enable_mask;
969                 I915_WRITE16(IMR, dev_priv->irq_mask);
970                 POSTING_READ16(IMR);
971         }
972         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
973 }
974
975 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
976 {
977         struct drm_device *dev = ring->dev;
978         struct drm_i915_private *dev_priv = ring->dev->dev_private;
979         u32 mmio = 0;
980
981         /* The ring status page addresses are no longer next to the rest of
982          * the ring registers as of gen7.
983          */
984         if (IS_GEN7(dev)) {
985                 switch (ring->id) {
986                 case RCS:
987                         mmio = RENDER_HWS_PGA_GEN7;
988                         break;
989                 case BCS:
990                         mmio = BLT_HWS_PGA_GEN7;
991                         break;
992                 case VCS:
993                         mmio = BSD_HWS_PGA_GEN7;
994                         break;
995                 case VECS:
996                         mmio = VEBOX_HWS_PGA_GEN7;
997                         break;
998                 }
999         } else if (IS_GEN6(ring->dev)) {
1000                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1001         } else {
1002                 /* XXX: gen8 returns to sanity */
1003                 mmio = RING_HWS_PGA(ring->mmio_base);
1004         }
1005
1006         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1007         POSTING_READ(mmio);
1008
1009         /*
1010          * Flush the TLB for this page
1011          *
1012          * FIXME: These two bits have disappeared on gen8, so a question
1013          * arises: do we still need this and if so how should we go about
1014          * invalidating the TLB?
1015          */
1016         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1017                 u32 reg = RING_INSTPM(ring->mmio_base);
1018
1019                 /* ring should be idle before issuing a sync flush*/
1020                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1021
1022                 I915_WRITE(reg,
1023                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1024                                               INSTPM_SYNC_FLUSH));
1025                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1026                              1000))
1027                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1028                                   ring->name);
1029         }
1030 }
1031
1032 static int
1033 bsd_ring_flush(struct intel_ring_buffer *ring,
1034                u32     invalidate_domains,
1035                u32     flush_domains)
1036 {
1037         int ret;
1038
1039         ret = intel_ring_begin(ring, 2);
1040         if (ret)
1041                 return ret;
1042
1043         intel_ring_emit(ring, MI_FLUSH);
1044         intel_ring_emit(ring, MI_NOOP);
1045         intel_ring_advance(ring);
1046         return 0;
1047 }
1048
1049 static int
1050 i9xx_add_request(struct intel_ring_buffer *ring)
1051 {
1052         int ret;
1053
1054         ret = intel_ring_begin(ring, 4);
1055         if (ret)
1056                 return ret;
1057
1058         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1059         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1060         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1061         intel_ring_emit(ring, MI_USER_INTERRUPT);
1062         __intel_ring_advance(ring);
1063
1064         return 0;
1065 }
1066
1067 static bool
1068 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1069 {
1070         struct drm_device *dev = ring->dev;
1071         struct drm_i915_private *dev_priv = dev->dev_private;
1072         unsigned long flags;
1073
1074         if (!dev->irq_enabled)
1075                return false;
1076
1077         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1078         if (ring->irq_refcount++ == 0) {
1079                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1080                         I915_WRITE_IMR(ring,
1081                                        ~(ring->irq_enable_mask |
1082                                          GT_PARITY_ERROR(dev)));
1083                 else
1084                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1085                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1086         }
1087         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1088
1089         return true;
1090 }
1091
1092 static void
1093 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1094 {
1095         struct drm_device *dev = ring->dev;
1096         struct drm_i915_private *dev_priv = dev->dev_private;
1097         unsigned long flags;
1098
1099         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1100         if (--ring->irq_refcount == 0) {
1101                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1102                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1103                 else
1104                         I915_WRITE_IMR(ring, ~0);
1105                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1106         }
1107         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1108 }
1109
1110 static bool
1111 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1112 {
1113         struct drm_device *dev = ring->dev;
1114         struct drm_i915_private *dev_priv = dev->dev_private;
1115         unsigned long flags;
1116
1117         if (!dev->irq_enabled)
1118                 return false;
1119
1120         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1121         if (ring->irq_refcount++ == 0) {
1122                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1123                 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1124         }
1125         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1126
1127         return true;
1128 }
1129
1130 static void
1131 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1132 {
1133         struct drm_device *dev = ring->dev;
1134         struct drm_i915_private *dev_priv = dev->dev_private;
1135         unsigned long flags;
1136
1137         if (!dev->irq_enabled)
1138                 return;
1139
1140         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1141         if (--ring->irq_refcount == 0) {
1142                 I915_WRITE_IMR(ring, ~0);
1143                 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1144         }
1145         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1146 }
1147
1148 static bool
1149 gen8_ring_get_irq(struct intel_ring_buffer *ring)
1150 {
1151         struct drm_device *dev = ring->dev;
1152         struct drm_i915_private *dev_priv = dev->dev_private;
1153         unsigned long flags;
1154
1155         if (!dev->irq_enabled)
1156                 return false;
1157
1158         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1159         if (ring->irq_refcount++ == 0) {
1160                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1161                         I915_WRITE_IMR(ring,
1162                                        ~(ring->irq_enable_mask |
1163                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1164                 } else {
1165                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1166                 }
1167                 POSTING_READ(RING_IMR(ring->mmio_base));
1168         }
1169         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1170
1171         return true;
1172 }
1173
1174 static void
1175 gen8_ring_put_irq(struct intel_ring_buffer *ring)
1176 {
1177         struct drm_device *dev = ring->dev;
1178         struct drm_i915_private *dev_priv = dev->dev_private;
1179         unsigned long flags;
1180
1181         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1182         if (--ring->irq_refcount == 0) {
1183                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1184                         I915_WRITE_IMR(ring,
1185                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1186                 } else {
1187                         I915_WRITE_IMR(ring, ~0);
1188                 }
1189                 POSTING_READ(RING_IMR(ring->mmio_base));
1190         }
1191         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1192 }
1193
1194 static int
1195 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1196                          u32 offset, u32 length,
1197                          unsigned flags)
1198 {
1199         int ret;
1200
1201         ret = intel_ring_begin(ring, 2);
1202         if (ret)
1203                 return ret;
1204
1205         intel_ring_emit(ring,
1206                         MI_BATCH_BUFFER_START |
1207                         MI_BATCH_GTT |
1208                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1209         intel_ring_emit(ring, offset);
1210         intel_ring_advance(ring);
1211
1212         return 0;
1213 }
1214
1215 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1216 #define I830_BATCH_LIMIT (256*1024)
1217 static int
1218 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1219                                 u32 offset, u32 len,
1220                                 unsigned flags)
1221 {
1222         int ret;
1223
1224         if (flags & I915_DISPATCH_PINNED) {
1225                 ret = intel_ring_begin(ring, 4);
1226                 if (ret)
1227                         return ret;
1228
1229                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1230                 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1231                 intel_ring_emit(ring, offset + len - 8);
1232                 intel_ring_emit(ring, MI_NOOP);
1233                 intel_ring_advance(ring);
1234         } else {
1235                 u32 cs_offset = ring->scratch.gtt_offset;
1236
1237                 if (len > I830_BATCH_LIMIT)
1238                         return -ENOSPC;
1239
1240                 ret = intel_ring_begin(ring, 9+3);
1241                 if (ret)
1242                         return ret;
1243                 /* Blit the batch (which has now all relocs applied) to the stable batch
1244                  * scratch bo area (so that the CS never stumbles over its tlb
1245                  * invalidation bug) ... */
1246                 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1247                                 XY_SRC_COPY_BLT_WRITE_ALPHA |
1248                                 XY_SRC_COPY_BLT_WRITE_RGB);
1249                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1250                 intel_ring_emit(ring, 0);
1251                 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1252                 intel_ring_emit(ring, cs_offset);
1253                 intel_ring_emit(ring, 0);
1254                 intel_ring_emit(ring, 4096);
1255                 intel_ring_emit(ring, offset);
1256                 intel_ring_emit(ring, MI_FLUSH);
1257
1258                 /* ... and execute it. */
1259                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1260                 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1261                 intel_ring_emit(ring, cs_offset + len - 8);
1262                 intel_ring_advance(ring);
1263         }
1264
1265         return 0;
1266 }
1267
1268 static int
1269 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1270                          u32 offset, u32 len,
1271                          unsigned flags)
1272 {
1273         int ret;
1274
1275         ret = intel_ring_begin(ring, 2);
1276         if (ret)
1277                 return ret;
1278
1279         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1280         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1281         intel_ring_advance(ring);
1282
1283         return 0;
1284 }
1285
1286 static void cleanup_status_page(struct intel_ring_buffer *ring)
1287 {
1288         struct drm_i915_gem_object *obj;
1289
1290         obj = ring->status_page.obj;
1291         if (obj == NULL)
1292                 return;
1293
1294         kunmap(sg_page(obj->pages->sgl));
1295         i915_gem_object_ggtt_unpin(obj);
1296         drm_gem_object_unreference(&obj->base);
1297         ring->status_page.obj = NULL;
1298 }
1299
1300 static int init_status_page(struct intel_ring_buffer *ring)
1301 {
1302         struct drm_device *dev = ring->dev;
1303         struct drm_i915_gem_object *obj;
1304         int ret;
1305
1306         obj = i915_gem_alloc_object(dev, 4096);
1307         if (obj == NULL) {
1308                 DRM_ERROR("Failed to allocate status page\n");
1309                 ret = -ENOMEM;
1310                 goto err;
1311         }
1312
1313         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1314         if (ret)
1315                 goto err_unref;
1316
1317         ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
1318         if (ret)
1319                 goto err_unref;
1320
1321         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1322         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1323         if (ring->status_page.page_addr == NULL) {
1324                 ret = -ENOMEM;
1325                 goto err_unpin;
1326         }
1327         ring->status_page.obj = obj;
1328         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1329
1330         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1331                         ring->name, ring->status_page.gfx_addr);
1332
1333         return 0;
1334
1335 err_unpin:
1336         i915_gem_object_ggtt_unpin(obj);
1337 err_unref:
1338         drm_gem_object_unreference(&obj->base);
1339 err:
1340         return ret;
1341 }
1342
1343 static int init_phys_status_page(struct intel_ring_buffer *ring)
1344 {
1345         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1346
1347         if (!dev_priv->status_page_dmah) {
1348                 dev_priv->status_page_dmah =
1349                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1350                 if (!dev_priv->status_page_dmah)
1351                         return -ENOMEM;
1352         }
1353
1354         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1355         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1356
1357         return 0;
1358 }
1359
1360 static int intel_init_ring_buffer(struct drm_device *dev,
1361                                   struct intel_ring_buffer *ring)
1362 {
1363         struct drm_i915_gem_object *obj;
1364         struct drm_i915_private *dev_priv = dev->dev_private;
1365         int ret;
1366
1367         ring->dev = dev;
1368         INIT_LIST_HEAD(&ring->active_list);
1369         INIT_LIST_HEAD(&ring->request_list);
1370         ring->size = 32 * PAGE_SIZE;
1371         memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1372
1373         init_waitqueue_head(&ring->irq_queue);
1374
1375         if (I915_NEED_GFX_HWS(dev)) {
1376                 ret = init_status_page(ring);
1377                 if (ret)
1378                         return ret;
1379         } else {
1380                 BUG_ON(ring->id != RCS);
1381                 ret = init_phys_status_page(ring);
1382                 if (ret)
1383                         return ret;
1384         }
1385
1386         obj = NULL;
1387         if (!HAS_LLC(dev))
1388                 obj = i915_gem_object_create_stolen(dev, ring->size);
1389         if (obj == NULL)
1390                 obj = i915_gem_alloc_object(dev, ring->size);
1391         if (obj == NULL) {
1392                 DRM_ERROR("Failed to allocate ringbuffer\n");
1393                 ret = -ENOMEM;
1394                 goto err_hws;
1395         }
1396
1397         ring->obj = obj;
1398
1399         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1400         if (ret)
1401                 goto err_unref;
1402
1403         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1404         if (ret)
1405                 goto err_unpin;
1406
1407         ring->virtual_start =
1408                 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1409                            ring->size);
1410         if (ring->virtual_start == NULL) {
1411                 DRM_ERROR("Failed to map ringbuffer.\n");
1412                 ret = -EINVAL;
1413                 goto err_unpin;
1414         }
1415
1416         ret = ring->init(ring);
1417         if (ret)
1418                 goto err_unmap;
1419
1420         /* Workaround an erratum on the i830 which causes a hang if
1421          * the TAIL pointer points to within the last 2 cachelines
1422          * of the buffer.
1423          */
1424         ring->effective_size = ring->size;
1425         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1426                 ring->effective_size -= 128;
1427
1428         i915_cmd_parser_init_ring(ring);
1429
1430         return 0;
1431
1432 err_unmap:
1433         iounmap(ring->virtual_start);
1434 err_unpin:
1435         i915_gem_object_ggtt_unpin(obj);
1436 err_unref:
1437         drm_gem_object_unreference(&obj->base);
1438         ring->obj = NULL;
1439 err_hws:
1440         cleanup_status_page(ring);
1441         return ret;
1442 }
1443
1444 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1445 {
1446         struct drm_i915_private *dev_priv;
1447         int ret;
1448
1449         if (ring->obj == NULL)
1450                 return;
1451
1452         /* Disable the ring buffer. The ring must be idle at this point */
1453         dev_priv = ring->dev->dev_private;
1454         ret = intel_ring_idle(ring);
1455         if (ret && !i915_reset_in_progress(&dev_priv->gpu_error))
1456                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1457                           ring->name, ret);
1458
1459         I915_WRITE_CTL(ring, 0);
1460
1461         iounmap(ring->virtual_start);
1462
1463         i915_gem_object_ggtt_unpin(ring->obj);
1464         drm_gem_object_unreference(&ring->obj->base);
1465         ring->obj = NULL;
1466         ring->preallocated_lazy_request = NULL;
1467         ring->outstanding_lazy_seqno = 0;
1468
1469         if (ring->cleanup)
1470                 ring->cleanup(ring);
1471
1472         cleanup_status_page(ring);
1473 }
1474
1475 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1476 {
1477         struct drm_i915_gem_request *request;
1478         u32 seqno = 0, tail;
1479         int ret;
1480
1481         if (ring->last_retired_head != -1) {
1482                 ring->head = ring->last_retired_head;
1483                 ring->last_retired_head = -1;
1484
1485                 ring->space = ring_space(ring);
1486                 if (ring->space >= n)
1487                         return 0;
1488         }
1489
1490         list_for_each_entry(request, &ring->request_list, list) {
1491                 int space;
1492
1493                 if (request->tail == -1)
1494                         continue;
1495
1496                 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1497                 if (space < 0)
1498                         space += ring->size;
1499                 if (space >= n) {
1500                         seqno = request->seqno;
1501                         tail = request->tail;
1502                         break;
1503                 }
1504
1505                 /* Consume this request in case we need more space than
1506                  * is available and so need to prevent a race between
1507                  * updating last_retired_head and direct reads of
1508                  * I915_RING_HEAD. It also provides a nice sanity check.
1509                  */
1510                 request->tail = -1;
1511         }
1512
1513         if (seqno == 0)
1514                 return -ENOSPC;
1515
1516         ret = i915_wait_seqno(ring, seqno);
1517         if (ret)
1518                 return ret;
1519
1520         ring->head = tail;
1521         ring->space = ring_space(ring);
1522         if (WARN_ON(ring->space < n))
1523                 return -ENOSPC;
1524
1525         return 0;
1526 }
1527
1528 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1529 {
1530         struct drm_device *dev = ring->dev;
1531         struct drm_i915_private *dev_priv = dev->dev_private;
1532         unsigned long end;
1533         int ret;
1534
1535         ret = intel_ring_wait_request(ring, n);
1536         if (ret != -ENOSPC)
1537                 return ret;
1538
1539         /* force the tail write in case we have been skipping them */
1540         __intel_ring_advance(ring);
1541
1542         trace_i915_ring_wait_begin(ring);
1543         /* With GEM the hangcheck timer should kick us out of the loop,
1544          * leaving it early runs the risk of corrupting GEM state (due
1545          * to running on almost untested codepaths). But on resume
1546          * timers don't work yet, so prevent a complete hang in that
1547          * case by choosing an insanely large timeout. */
1548         end = jiffies + 60 * HZ;
1549
1550         do {
1551                 ring->head = I915_READ_HEAD(ring);
1552                 ring->space = ring_space(ring);
1553                 if (ring->space >= n) {
1554                         trace_i915_ring_wait_end(ring);
1555                         return 0;
1556                 }
1557
1558                 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1559                     dev->primary->master) {
1560                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1561                         if (master_priv->sarea_priv)
1562                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1563                 }
1564
1565                 msleep(1);
1566
1567                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1568                                            dev_priv->mm.interruptible);
1569                 if (ret)
1570                         return ret;
1571         } while (!time_after(jiffies, end));
1572         trace_i915_ring_wait_end(ring);
1573         return -EBUSY;
1574 }
1575
1576 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1577 {
1578         uint32_t __iomem *virt;
1579         int rem = ring->size - ring->tail;
1580
1581         if (ring->space < rem) {
1582                 int ret = ring_wait_for_space(ring, rem);
1583                 if (ret)
1584                         return ret;
1585         }
1586
1587         virt = ring->virtual_start + ring->tail;
1588         rem /= 4;
1589         while (rem--)
1590                 iowrite32(MI_NOOP, virt++);
1591
1592         ring->tail = 0;
1593         ring->space = ring_space(ring);
1594
1595         return 0;
1596 }
1597
1598 int intel_ring_idle(struct intel_ring_buffer *ring)
1599 {
1600         u32 seqno;
1601         int ret;
1602
1603         /* We need to add any requests required to flush the objects and ring */
1604         if (ring->outstanding_lazy_seqno) {
1605                 ret = i915_add_request(ring, NULL);
1606                 if (ret)
1607                         return ret;
1608         }
1609
1610         /* Wait upon the last request to be completed */
1611         if (list_empty(&ring->request_list))
1612                 return 0;
1613
1614         seqno = list_entry(ring->request_list.prev,
1615                            struct drm_i915_gem_request,
1616                            list)->seqno;
1617
1618         return i915_wait_seqno(ring, seqno);
1619 }
1620
1621 static int
1622 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1623 {
1624         if (ring->outstanding_lazy_seqno)
1625                 return 0;
1626
1627         if (ring->preallocated_lazy_request == NULL) {
1628                 struct drm_i915_gem_request *request;
1629
1630                 request = kmalloc(sizeof(*request), GFP_KERNEL);
1631                 if (request == NULL)
1632                         return -ENOMEM;
1633
1634                 ring->preallocated_lazy_request = request;
1635         }
1636
1637         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1638 }
1639
1640 static int __intel_ring_prepare(struct intel_ring_buffer *ring,
1641                                 int bytes)
1642 {
1643         int ret;
1644
1645         if (unlikely(ring->tail + bytes > ring->effective_size)) {
1646                 ret = intel_wrap_ring_buffer(ring);
1647                 if (unlikely(ret))
1648                         return ret;
1649         }
1650
1651         if (unlikely(ring->space < bytes)) {
1652                 ret = ring_wait_for_space(ring, bytes);
1653                 if (unlikely(ret))
1654                         return ret;
1655         }
1656
1657         return 0;
1658 }
1659
1660 int intel_ring_begin(struct intel_ring_buffer *ring,
1661                      int num_dwords)
1662 {
1663         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1664         int ret;
1665
1666         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1667                                    dev_priv->mm.interruptible);
1668         if (ret)
1669                 return ret;
1670
1671         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1672         if (ret)
1673                 return ret;
1674
1675         /* Preallocate the olr before touching the ring */
1676         ret = intel_ring_alloc_seqno(ring);
1677         if (ret)
1678                 return ret;
1679
1680         ring->space -= num_dwords * sizeof(uint32_t);
1681         return 0;
1682 }
1683
1684 /* Align the ring tail to a cacheline boundary */
1685 int intel_ring_cacheline_align(struct intel_ring_buffer *ring)
1686 {
1687         int num_dwords = (64 - (ring->tail & 63)) / sizeof(uint32_t);
1688         int ret;
1689
1690         if (num_dwords == 0)
1691                 return 0;
1692
1693         ret = intel_ring_begin(ring, num_dwords);
1694         if (ret)
1695                 return ret;
1696
1697         while (num_dwords--)
1698                 intel_ring_emit(ring, MI_NOOP);
1699
1700         intel_ring_advance(ring);
1701
1702         return 0;
1703 }
1704
1705 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1706 {
1707         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1708
1709         BUG_ON(ring->outstanding_lazy_seqno);
1710
1711         if (INTEL_INFO(ring->dev)->gen >= 6) {
1712                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1713                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1714                 if (HAS_VEBOX(ring->dev))
1715                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1716         }
1717
1718         ring->set_seqno(ring, seqno);
1719         ring->hangcheck.seqno = seqno;
1720 }
1721
1722 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1723                                      u32 value)
1724 {
1725         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1726
1727        /* Every tail move must follow the sequence below */
1728
1729         /* Disable notification that the ring is IDLE. The GT
1730          * will then assume that it is busy and bring it out of rc6.
1731          */
1732         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1733                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1734
1735         /* Clear the context id. Here be magic! */
1736         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1737
1738         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1739         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1740                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1741                      50))
1742                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1743
1744         /* Now that the ring is fully powered up, update the tail */
1745         I915_WRITE_TAIL(ring, value);
1746         POSTING_READ(RING_TAIL(ring->mmio_base));
1747
1748         /* Let the ring send IDLE messages to the GT again,
1749          * and so let it sleep to conserve power when idle.
1750          */
1751         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1752                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1753 }
1754
1755 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1756                                u32 invalidate, u32 flush)
1757 {
1758         uint32_t cmd;
1759         int ret;
1760
1761         ret = intel_ring_begin(ring, 4);
1762         if (ret)
1763                 return ret;
1764
1765         cmd = MI_FLUSH_DW;
1766         if (INTEL_INFO(ring->dev)->gen >= 8)
1767                 cmd += 1;
1768         /*
1769          * Bspec vol 1c.5 - video engine command streamer:
1770          * "If ENABLED, all TLBs will be invalidated once the flush
1771          * operation is complete. This bit is only valid when the
1772          * Post-Sync Operation field is a value of 1h or 3h."
1773          */
1774         if (invalidate & I915_GEM_GPU_DOMAINS)
1775                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1776                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1777         intel_ring_emit(ring, cmd);
1778         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1779         if (INTEL_INFO(ring->dev)->gen >= 8) {
1780                 intel_ring_emit(ring, 0); /* upper addr */
1781                 intel_ring_emit(ring, 0); /* value */
1782         } else  {
1783                 intel_ring_emit(ring, 0);
1784                 intel_ring_emit(ring, MI_NOOP);
1785         }
1786         intel_ring_advance(ring);
1787         return 0;
1788 }
1789
1790 static int
1791 gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1792                               u32 offset, u32 len,
1793                               unsigned flags)
1794 {
1795         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1796         bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1797                 !(flags & I915_DISPATCH_SECURE);
1798         int ret;
1799
1800         ret = intel_ring_begin(ring, 4);
1801         if (ret)
1802                 return ret;
1803
1804         /* FIXME(BDW): Address space and security selectors. */
1805         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1806         intel_ring_emit(ring, offset);
1807         intel_ring_emit(ring, 0);
1808         intel_ring_emit(ring, MI_NOOP);
1809         intel_ring_advance(ring);
1810
1811         return 0;
1812 }
1813
1814 static int
1815 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1816                               u32 offset, u32 len,
1817                               unsigned flags)
1818 {
1819         int ret;
1820
1821         ret = intel_ring_begin(ring, 2);
1822         if (ret)
1823                 return ret;
1824
1825         intel_ring_emit(ring,
1826                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1827                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1828         /* bit0-7 is the length on GEN6+ */
1829         intel_ring_emit(ring, offset);
1830         intel_ring_advance(ring);
1831
1832         return 0;
1833 }
1834
1835 static int
1836 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1837                               u32 offset, u32 len,
1838                               unsigned flags)
1839 {
1840         int ret;
1841
1842         ret = intel_ring_begin(ring, 2);
1843         if (ret)
1844                 return ret;
1845
1846         intel_ring_emit(ring,
1847                         MI_BATCH_BUFFER_START |
1848                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1849         /* bit0-7 is the length on GEN6+ */
1850         intel_ring_emit(ring, offset);
1851         intel_ring_advance(ring);
1852
1853         return 0;
1854 }
1855
1856 /* Blitter support (SandyBridge+) */
1857
1858 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1859                            u32 invalidate, u32 flush)
1860 {
1861         struct drm_device *dev = ring->dev;
1862         uint32_t cmd;
1863         int ret;
1864
1865         ret = intel_ring_begin(ring, 4);
1866         if (ret)
1867                 return ret;
1868
1869         cmd = MI_FLUSH_DW;
1870         if (INTEL_INFO(ring->dev)->gen >= 8)
1871                 cmd += 1;
1872         /*
1873          * Bspec vol 1c.3 - blitter engine command streamer:
1874          * "If ENABLED, all TLBs will be invalidated once the flush
1875          * operation is complete. This bit is only valid when the
1876          * Post-Sync Operation field is a value of 1h or 3h."
1877          */
1878         if (invalidate & I915_GEM_DOMAIN_RENDER)
1879                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1880                         MI_FLUSH_DW_OP_STOREDW;
1881         intel_ring_emit(ring, cmd);
1882         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1883         if (INTEL_INFO(ring->dev)->gen >= 8) {
1884                 intel_ring_emit(ring, 0); /* upper addr */
1885                 intel_ring_emit(ring, 0); /* value */
1886         } else  {
1887                 intel_ring_emit(ring, 0);
1888                 intel_ring_emit(ring, MI_NOOP);
1889         }
1890         intel_ring_advance(ring);
1891
1892         if (IS_GEN7(dev) && !invalidate && flush)
1893                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1894
1895         return 0;
1896 }
1897
1898 int intel_init_render_ring_buffer(struct drm_device *dev)
1899 {
1900         struct drm_i915_private *dev_priv = dev->dev_private;
1901         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1902
1903         ring->name = "render ring";
1904         ring->id = RCS;
1905         ring->mmio_base = RENDER_RING_BASE;
1906
1907         if (INTEL_INFO(dev)->gen >= 6) {
1908                 ring->add_request = gen6_add_request;
1909                 ring->flush = gen7_render_ring_flush;
1910                 if (INTEL_INFO(dev)->gen == 6)
1911                         ring->flush = gen6_render_ring_flush;
1912                 if (INTEL_INFO(dev)->gen >= 8) {
1913                         ring->flush = gen8_render_ring_flush;
1914                         ring->irq_get = gen8_ring_get_irq;
1915                         ring->irq_put = gen8_ring_put_irq;
1916                 } else {
1917                         ring->irq_get = gen6_ring_get_irq;
1918                         ring->irq_put = gen6_ring_put_irq;
1919                 }
1920                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1921                 ring->get_seqno = gen6_ring_get_seqno;
1922                 ring->set_seqno = ring_set_seqno;
1923                 ring->sync_to = gen6_ring_sync;
1924                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1925                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1926                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1927                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1928                 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1929                 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1930                 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1931                 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1932         } else if (IS_GEN5(dev)) {
1933                 ring->add_request = pc_render_add_request;
1934                 ring->flush = gen4_render_ring_flush;
1935                 ring->get_seqno = pc_render_get_seqno;
1936                 ring->set_seqno = pc_render_set_seqno;
1937                 ring->irq_get = gen5_ring_get_irq;
1938                 ring->irq_put = gen5_ring_put_irq;
1939                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1940                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1941         } else {
1942                 ring->add_request = i9xx_add_request;
1943                 if (INTEL_INFO(dev)->gen < 4)
1944                         ring->flush = gen2_render_ring_flush;
1945                 else
1946                         ring->flush = gen4_render_ring_flush;
1947                 ring->get_seqno = ring_get_seqno;
1948                 ring->set_seqno = ring_set_seqno;
1949                 if (IS_GEN2(dev)) {
1950                         ring->irq_get = i8xx_ring_get_irq;
1951                         ring->irq_put = i8xx_ring_put_irq;
1952                 } else {
1953                         ring->irq_get = i9xx_ring_get_irq;
1954                         ring->irq_put = i9xx_ring_put_irq;
1955                 }
1956                 ring->irq_enable_mask = I915_USER_INTERRUPT;
1957         }
1958         ring->write_tail = ring_write_tail;
1959         if (IS_HASWELL(dev))
1960                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1961         else if (IS_GEN8(dev))
1962                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
1963         else if (INTEL_INFO(dev)->gen >= 6)
1964                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1965         else if (INTEL_INFO(dev)->gen >= 4)
1966                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1967         else if (IS_I830(dev) || IS_845G(dev))
1968                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1969         else
1970                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1971         ring->init = init_render_ring;
1972         ring->cleanup = render_ring_cleanup;
1973
1974         /* Workaround batchbuffer to combat CS tlb bug. */
1975         if (HAS_BROKEN_CS_TLB(dev)) {
1976                 struct drm_i915_gem_object *obj;
1977                 int ret;
1978
1979                 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1980                 if (obj == NULL) {
1981                         DRM_ERROR("Failed to allocate batch bo\n");
1982                         return -ENOMEM;
1983                 }
1984
1985                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
1986                 if (ret != 0) {
1987                         drm_gem_object_unreference(&obj->base);
1988                         DRM_ERROR("Failed to ping batch bo\n");
1989                         return ret;
1990                 }
1991
1992                 ring->scratch.obj = obj;
1993                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
1994         }
1995
1996         return intel_init_ring_buffer(dev, ring);
1997 }
1998
1999 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2000 {
2001         struct drm_i915_private *dev_priv = dev->dev_private;
2002         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2003         int ret;
2004
2005         ring->name = "render ring";
2006         ring->id = RCS;
2007         ring->mmio_base = RENDER_RING_BASE;
2008
2009         if (INTEL_INFO(dev)->gen >= 6) {
2010                 /* non-kms not supported on gen6+ */
2011                 return -ENODEV;
2012         }
2013
2014         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2015          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2016          * the special gen5 functions. */
2017         ring->add_request = i9xx_add_request;
2018         if (INTEL_INFO(dev)->gen < 4)
2019                 ring->flush = gen2_render_ring_flush;
2020         else
2021                 ring->flush = gen4_render_ring_flush;
2022         ring->get_seqno = ring_get_seqno;
2023         ring->set_seqno = ring_set_seqno;
2024         if (IS_GEN2(dev)) {
2025                 ring->irq_get = i8xx_ring_get_irq;
2026                 ring->irq_put = i8xx_ring_put_irq;
2027         } else {
2028                 ring->irq_get = i9xx_ring_get_irq;
2029                 ring->irq_put = i9xx_ring_put_irq;
2030         }
2031         ring->irq_enable_mask = I915_USER_INTERRUPT;
2032         ring->write_tail = ring_write_tail;
2033         if (INTEL_INFO(dev)->gen >= 4)
2034                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2035         else if (IS_I830(dev) || IS_845G(dev))
2036                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2037         else
2038                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2039         ring->init = init_render_ring;
2040         ring->cleanup = render_ring_cleanup;
2041
2042         ring->dev = dev;
2043         INIT_LIST_HEAD(&ring->active_list);
2044         INIT_LIST_HEAD(&ring->request_list);
2045
2046         ring->size = size;
2047         ring->effective_size = ring->size;
2048         if (IS_I830(ring->dev) || IS_845G(ring->dev))
2049                 ring->effective_size -= 128;
2050
2051         ring->virtual_start = ioremap_wc(start, size);
2052         if (ring->virtual_start == NULL) {
2053                 DRM_ERROR("can not ioremap virtual address for"
2054                           " ring buffer\n");
2055                 return -ENOMEM;
2056         }
2057
2058         if (!I915_NEED_GFX_HWS(dev)) {
2059                 ret = init_phys_status_page(ring);
2060                 if (ret)
2061                         return ret;
2062         }
2063
2064         return 0;
2065 }
2066
2067 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2068 {
2069         struct drm_i915_private *dev_priv = dev->dev_private;
2070         struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
2071
2072         ring->name = "bsd ring";
2073         ring->id = VCS;
2074
2075         ring->write_tail = ring_write_tail;
2076         if (INTEL_INFO(dev)->gen >= 6) {
2077                 ring->mmio_base = GEN6_BSD_RING_BASE;
2078                 /* gen6 bsd needs a special wa for tail updates */
2079                 if (IS_GEN6(dev))
2080                         ring->write_tail = gen6_bsd_ring_write_tail;
2081                 ring->flush = gen6_bsd_ring_flush;
2082                 ring->add_request = gen6_add_request;
2083                 ring->get_seqno = gen6_ring_get_seqno;
2084                 ring->set_seqno = ring_set_seqno;
2085                 if (INTEL_INFO(dev)->gen >= 8) {
2086                         ring->irq_enable_mask =
2087                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2088                         ring->irq_get = gen8_ring_get_irq;
2089                         ring->irq_put = gen8_ring_put_irq;
2090                         ring->dispatch_execbuffer =
2091                                 gen8_ring_dispatch_execbuffer;
2092                 } else {
2093                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2094                         ring->irq_get = gen6_ring_get_irq;
2095                         ring->irq_put = gen6_ring_put_irq;
2096                         ring->dispatch_execbuffer =
2097                                 gen6_ring_dispatch_execbuffer;
2098                 }
2099                 ring->sync_to = gen6_ring_sync;
2100                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
2101                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2102                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
2103                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
2104                 ring->signal_mbox[RCS] = GEN6_RVSYNC;
2105                 ring->signal_mbox[VCS] = GEN6_NOSYNC;
2106                 ring->signal_mbox[BCS] = GEN6_BVSYNC;
2107                 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
2108         } else {
2109                 ring->mmio_base = BSD_RING_BASE;
2110                 ring->flush = bsd_ring_flush;
2111                 ring->add_request = i9xx_add_request;
2112                 ring->get_seqno = ring_get_seqno;
2113                 ring->set_seqno = ring_set_seqno;
2114                 if (IS_GEN5(dev)) {
2115                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2116                         ring->irq_get = gen5_ring_get_irq;
2117                         ring->irq_put = gen5_ring_put_irq;
2118                 } else {
2119                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2120                         ring->irq_get = i9xx_ring_get_irq;
2121                         ring->irq_put = i9xx_ring_put_irq;
2122                 }
2123                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2124         }
2125         ring->init = init_ring_common;
2126
2127         return intel_init_ring_buffer(dev, ring);
2128 }
2129
2130 int intel_init_blt_ring_buffer(struct drm_device *dev)
2131 {
2132         struct drm_i915_private *dev_priv = dev->dev_private;
2133         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
2134
2135         ring->name = "blitter ring";
2136         ring->id = BCS;
2137
2138         ring->mmio_base = BLT_RING_BASE;
2139         ring->write_tail = ring_write_tail;
2140         ring->flush = gen6_ring_flush;
2141         ring->add_request = gen6_add_request;
2142         ring->get_seqno = gen6_ring_get_seqno;
2143         ring->set_seqno = ring_set_seqno;
2144         if (INTEL_INFO(dev)->gen >= 8) {
2145                 ring->irq_enable_mask =
2146                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2147                 ring->irq_get = gen8_ring_get_irq;
2148                 ring->irq_put = gen8_ring_put_irq;
2149                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2150         } else {
2151                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2152                 ring->irq_get = gen6_ring_get_irq;
2153                 ring->irq_put = gen6_ring_put_irq;
2154                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2155         }
2156         ring->sync_to = gen6_ring_sync;
2157         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
2158         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
2159         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2160         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
2161         ring->signal_mbox[RCS] = GEN6_RBSYNC;
2162         ring->signal_mbox[VCS] = GEN6_VBSYNC;
2163         ring->signal_mbox[BCS] = GEN6_NOSYNC;
2164         ring->signal_mbox[VECS] = GEN6_VEBSYNC;
2165         ring->init = init_ring_common;
2166
2167         return intel_init_ring_buffer(dev, ring);
2168 }
2169
2170 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2171 {
2172         struct drm_i915_private *dev_priv = dev->dev_private;
2173         struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2174
2175         ring->name = "video enhancement ring";
2176         ring->id = VECS;
2177
2178         ring->mmio_base = VEBOX_RING_BASE;
2179         ring->write_tail = ring_write_tail;
2180         ring->flush = gen6_ring_flush;
2181         ring->add_request = gen6_add_request;
2182         ring->get_seqno = gen6_ring_get_seqno;
2183         ring->set_seqno = ring_set_seqno;
2184
2185         if (INTEL_INFO(dev)->gen >= 8) {
2186                 ring->irq_enable_mask =
2187                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2188                 ring->irq_get = gen8_ring_get_irq;
2189                 ring->irq_put = gen8_ring_put_irq;
2190                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2191         } else {
2192                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2193                 ring->irq_get = hsw_vebox_get_irq;
2194                 ring->irq_put = hsw_vebox_put_irq;
2195                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2196         }
2197         ring->sync_to = gen6_ring_sync;
2198         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2199         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2200         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2201         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2202         ring->signal_mbox[RCS] = GEN6_RVESYNC;
2203         ring->signal_mbox[VCS] = GEN6_VVESYNC;
2204         ring->signal_mbox[BCS] = GEN6_BVESYNC;
2205         ring->signal_mbox[VECS] = GEN6_NOSYNC;
2206         ring->init = init_ring_common;
2207
2208         return intel_init_ring_buffer(dev, ring);
2209 }
2210
2211 int
2212 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2213 {
2214         int ret;
2215
2216         if (!ring->gpu_caches_dirty)
2217                 return 0;
2218
2219         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2220         if (ret)
2221                 return ret;
2222
2223         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2224
2225         ring->gpu_caches_dirty = false;
2226         return 0;
2227 }
2228
2229 int
2230 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2231 {
2232         uint32_t flush_domains;
2233         int ret;
2234
2235         flush_domains = 0;
2236         if (ring->gpu_caches_dirty)
2237                 flush_domains = I915_GEM_GPU_DOMAINS;
2238
2239         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2240         if (ret)
2241                 return ret;
2242
2243         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2244
2245         ring->gpu_caches_dirty = false;
2246         return 0;
2247 }