drm/nouveau/bios: convert to new-style nvkm_subdev
[cascardo/linux.git] / drivers / gpu / drm / nouveau / nvkm / subdev / clk / gf100.c
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include <subdev/clk.h>
25 #include "pll.h"
26
27 #include <subdev/bios.h>
28 #include <subdev/bios/pll.h>
29 #include <subdev/timer.h>
30
31 struct gf100_clk_info {
32         u32 freq;
33         u32 ssel;
34         u32 mdiv;
35         u32 dsrc;
36         u32 ddiv;
37         u32 coef;
38 };
39
40 struct gf100_clk {
41         struct nvkm_clk base;
42         struct gf100_clk_info eng[16];
43 };
44
45 static u32 read_div(struct gf100_clk *, int, u32, u32);
46
47 static u32
48 read_vco(struct gf100_clk *clk, u32 dsrc)
49 {
50         struct nvkm_device *device = clk->base.subdev.device;
51         u32 ssrc = nvkm_rd32(device, dsrc);
52         if (!(ssrc & 0x00000100))
53                 return clk->base.read(&clk->base, nv_clk_src_sppll0);
54         return clk->base.read(&clk->base, nv_clk_src_sppll1);
55 }
56
57 static u32
58 read_pll(struct gf100_clk *clk, u32 pll)
59 {
60         struct nvkm_device *device = clk->base.subdev.device;
61         u32 ctrl = nvkm_rd32(device, pll + 0x00);
62         u32 coef = nvkm_rd32(device, pll + 0x04);
63         u32 P = (coef & 0x003f0000) >> 16;
64         u32 N = (coef & 0x0000ff00) >> 8;
65         u32 M = (coef & 0x000000ff) >> 0;
66         u32 sclk;
67
68         if (!(ctrl & 0x00000001))
69                 return 0;
70
71         switch (pll) {
72         case 0x00e800:
73         case 0x00e820:
74                 sclk = device->crystal;
75                 P = 1;
76                 break;
77         case 0x132000:
78                 sclk = clk->base.read(&clk->base, nv_clk_src_mpllsrc);
79                 break;
80         case 0x132020:
81                 sclk = clk->base.read(&clk->base, nv_clk_src_mpllsrcref);
82                 break;
83         case 0x137000:
84         case 0x137020:
85         case 0x137040:
86         case 0x1370e0:
87                 sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140);
88                 break;
89         default:
90                 return 0;
91         }
92
93         return sclk * N / M / P;
94 }
95
96 static u32
97 read_div(struct gf100_clk *clk, int doff, u32 dsrc, u32 dctl)
98 {
99         struct nvkm_device *device = clk->base.subdev.device;
100         u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4));
101         u32 sctl = nvkm_rd32(device, dctl + (doff * 4));
102
103         switch (ssrc & 0x00000003) {
104         case 0:
105                 if ((ssrc & 0x00030000) != 0x00030000)
106                         return device->crystal;
107                 return 108000;
108         case 2:
109                 return 100000;
110         case 3:
111                 if (sctl & 0x80000000) {
112                         u32 sclk = read_vco(clk, dsrc + (doff * 4));
113                         u32 sdiv = (sctl & 0x0000003f) + 2;
114                         return (sclk * 2) / sdiv;
115                 }
116
117                 return read_vco(clk, dsrc + (doff * 4));
118         default:
119                 return 0;
120         }
121 }
122
123 static u32
124 read_clk(struct gf100_clk *clk, int idx)
125 {
126         struct nvkm_device *device = clk->base.subdev.device;
127         u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4));
128         u32 ssel = nvkm_rd32(device, 0x137100);
129         u32 sclk, sdiv;
130
131         if (ssel & (1 << idx)) {
132                 if (idx < 7)
133                         sclk = read_pll(clk, 0x137000 + (idx * 0x20));
134                 else
135                         sclk = read_pll(clk, 0x1370e0);
136                 sdiv = ((sctl & 0x00003f00) >> 8) + 2;
137         } else {
138                 sclk = read_div(clk, idx, 0x137160, 0x1371d0);
139                 sdiv = ((sctl & 0x0000003f) >> 0) + 2;
140         }
141
142         if (sctl & 0x80000000)
143                 return (sclk * 2) / sdiv;
144
145         return sclk;
146 }
147
148 static int
149 gf100_clk_read(struct nvkm_clk *obj, enum nv_clk_src src)
150 {
151         struct gf100_clk *clk = container_of(obj, typeof(*clk), base);
152         struct nvkm_subdev *subdev = &clk->base.subdev;
153         struct nvkm_device *device = subdev->device;
154
155         switch (src) {
156         case nv_clk_src_crystal:
157                 return device->crystal;
158         case nv_clk_src_href:
159                 return 100000;
160         case nv_clk_src_sppll0:
161                 return read_pll(clk, 0x00e800);
162         case nv_clk_src_sppll1:
163                 return read_pll(clk, 0x00e820);
164
165         case nv_clk_src_mpllsrcref:
166                 return read_div(clk, 0, 0x137320, 0x137330);
167         case nv_clk_src_mpllsrc:
168                 return read_pll(clk, 0x132020);
169         case nv_clk_src_mpll:
170                 return read_pll(clk, 0x132000);
171         case nv_clk_src_mdiv:
172                 return read_div(clk, 0, 0x137300, 0x137310);
173         case nv_clk_src_mem:
174                 if (nvkm_rd32(device, 0x1373f0) & 0x00000002)
175                         return clk->base.read(&clk->base, nv_clk_src_mpll);
176                 return clk->base.read(&clk->base, nv_clk_src_mdiv);
177
178         case nv_clk_src_gpc:
179                 return read_clk(clk, 0x00);
180         case nv_clk_src_rop:
181                 return read_clk(clk, 0x01);
182         case nv_clk_src_hubk07:
183                 return read_clk(clk, 0x02);
184         case nv_clk_src_hubk06:
185                 return read_clk(clk, 0x07);
186         case nv_clk_src_hubk01:
187                 return read_clk(clk, 0x08);
188         case nv_clk_src_copy:
189                 return read_clk(clk, 0x09);
190         case nv_clk_src_daemon:
191                 return read_clk(clk, 0x0c);
192         case nv_clk_src_vdec:
193                 return read_clk(clk, 0x0e);
194         default:
195                 nvkm_error(subdev, "invalid clock source %d\n", src);
196                 return -EINVAL;
197         }
198 }
199
200 static u32
201 calc_div(struct gf100_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv)
202 {
203         u32 div = min((ref * 2) / freq, (u32)65);
204         if (div < 2)
205                 div = 2;
206
207         *ddiv = div - 2;
208         return (ref * 2) / div;
209 }
210
211 static u32
212 calc_src(struct gf100_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv)
213 {
214         u32 sclk;
215
216         /* use one of the fixed frequencies if possible */
217         *ddiv = 0x00000000;
218         switch (freq) {
219         case  27000:
220         case 108000:
221                 *dsrc = 0x00000000;
222                 if (freq == 108000)
223                         *dsrc |= 0x00030000;
224                 return freq;
225         case 100000:
226                 *dsrc = 0x00000002;
227                 return freq;
228         default:
229                 *dsrc = 0x00000003;
230                 break;
231         }
232
233         /* otherwise, calculate the closest divider */
234         sclk = read_vco(clk, 0x137160 + (idx * 4));
235         if (idx < 7)
236                 sclk = calc_div(clk, idx, sclk, freq, ddiv);
237         return sclk;
238 }
239
240 static u32
241 calc_pll(struct gf100_clk *clk, int idx, u32 freq, u32 *coef)
242 {
243         struct nvkm_subdev *subdev = &clk->base.subdev;
244         struct nvkm_bios *bios = subdev->device->bios;
245         struct nvbios_pll limits;
246         int N, M, P, ret;
247
248         ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits);
249         if (ret)
250                 return 0;
251
252         limits.refclk = read_div(clk, idx, 0x137120, 0x137140);
253         if (!limits.refclk)
254                 return 0;
255
256         ret = gt215_pll_calc(subdev, &limits, freq, &N, NULL, &M, &P);
257         if (ret <= 0)
258                 return 0;
259
260         *coef = (P << 16) | (N << 8) | M;
261         return ret;
262 }
263
264 static int
265 calc_clk(struct gf100_clk *clk, struct nvkm_cstate *cstate, int idx, int dom)
266 {
267         struct gf100_clk_info *info = &clk->eng[idx];
268         u32 freq = cstate->domain[dom];
269         u32 src0, div0, div1D, div1P = 0;
270         u32 clk0, clk1 = 0;
271
272         /* invalid clock domain */
273         if (!freq)
274                 return 0;
275
276         /* first possible path, using only dividers */
277         clk0 = calc_src(clk, idx, freq, &src0, &div0);
278         clk0 = calc_div(clk, idx, clk0, freq, &div1D);
279
280         /* see if we can get any closer using PLLs */
281         if (clk0 != freq && (0x00004387 & (1 << idx))) {
282                 if (idx <= 7)
283                         clk1 = calc_pll(clk, idx, freq, &info->coef);
284                 else
285                         clk1 = cstate->domain[nv_clk_src_hubk06];
286                 clk1 = calc_div(clk, idx, clk1, freq, &div1P);
287         }
288
289         /* select the method which gets closest to target freq */
290         if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
291                 info->dsrc = src0;
292                 if (div0) {
293                         info->ddiv |= 0x80000000;
294                         info->ddiv |= div0 << 8;
295                         info->ddiv |= div0;
296                 }
297                 if (div1D) {
298                         info->mdiv |= 0x80000000;
299                         info->mdiv |= div1D;
300                 }
301                 info->ssel = info->coef = 0;
302                 info->freq = clk0;
303         } else {
304                 if (div1P) {
305                         info->mdiv |= 0x80000000;
306                         info->mdiv |= div1P << 8;
307                 }
308                 info->ssel = (1 << idx);
309                 info->freq = clk1;
310         }
311
312         return 0;
313 }
314
315 static int
316 gf100_clk_calc(struct nvkm_clk *obj, struct nvkm_cstate *cstate)
317 {
318         struct gf100_clk *clk = container_of(obj, typeof(*clk), base);
319         int ret;
320
321         if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) ||
322             (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) ||
323             (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) ||
324             (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) ||
325             (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) ||
326             (ret = calc_clk(clk, cstate, 0x09, nv_clk_src_copy)) ||
327             (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_daemon)) ||
328             (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec)))
329                 return ret;
330
331         return 0;
332 }
333
334 static void
335 gf100_clk_prog_0(struct gf100_clk *clk, int idx)
336 {
337         struct gf100_clk_info *info = &clk->eng[idx];
338         struct nvkm_device *device = clk->base.subdev.device;
339         if (idx < 7 && !info->ssel) {
340                 nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x80003f3f, info->ddiv);
341                 nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc);
342         }
343 }
344
345 static void
346 gf100_clk_prog_1(struct gf100_clk *clk, int idx)
347 {
348         struct nvkm_device *device = clk->base.subdev.device;
349         nvkm_mask(device, 0x137100, (1 << idx), 0x00000000);
350         nvkm_msec(device, 2000,
351                 if (!(nvkm_rd32(device, 0x137100) & (1 << idx)))
352                         break;
353         );
354 }
355
356 static void
357 gf100_clk_prog_2(struct gf100_clk *clk, int idx)
358 {
359         struct gf100_clk_info *info = &clk->eng[idx];
360         struct nvkm_device *device = clk->base.subdev.device;
361         const u32 addr = 0x137000 + (idx * 0x20);
362         if (idx <= 7) {
363                 nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000);
364                 nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000);
365                 if (info->coef) {
366                         nvkm_wr32(device, addr + 0x04, info->coef);
367                         nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001);
368                         nvkm_msec(device, 2000,
369                                 if (nvkm_rd32(device, addr + 0x00) & 0x00020000)
370                                         break;
371                         );
372                         nvkm_mask(device, addr + 0x00, 0x00020004, 0x00000004);
373                 }
374         }
375 }
376
377 static void
378 gf100_clk_prog_3(struct gf100_clk *clk, int idx)
379 {
380         struct gf100_clk_info *info = &clk->eng[idx];
381         struct nvkm_device *device = clk->base.subdev.device;
382         if (info->ssel) {
383                 nvkm_mask(device, 0x137100, (1 << idx), info->ssel);
384                 nvkm_msec(device, 2000,
385                         u32 tmp = nvkm_rd32(device, 0x137100) & (1 << idx);
386                         if (tmp == info->ssel)
387                                 break;
388                 );
389         }
390 }
391
392 static void
393 gf100_clk_prog_4(struct gf100_clk *clk, int idx)
394 {
395         struct gf100_clk_info *info = &clk->eng[idx];
396         struct nvkm_device *device = clk->base.subdev.device;
397         nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f3f, info->mdiv);
398 }
399
400 static int
401 gf100_clk_prog(struct nvkm_clk *obj)
402 {
403         struct gf100_clk *clk = container_of(obj, typeof(*clk), base);
404         struct {
405                 void (*exec)(struct gf100_clk *, int);
406         } stage[] = {
407                 { gf100_clk_prog_0 }, /* div programming */
408                 { gf100_clk_prog_1 }, /* select div mode */
409                 { gf100_clk_prog_2 }, /* (maybe) program pll */
410                 { gf100_clk_prog_3 }, /* (maybe) select pll mode */
411                 { gf100_clk_prog_4 }, /* final divider */
412         };
413         int i, j;
414
415         for (i = 0; i < ARRAY_SIZE(stage); i++) {
416                 for (j = 0; j < ARRAY_SIZE(clk->eng); j++) {
417                         if (!clk->eng[j].freq)
418                                 continue;
419                         stage[i].exec(clk, j);
420                 }
421         }
422
423         return 0;
424 }
425
426 static void
427 gf100_clk_tidy(struct nvkm_clk *obj)
428 {
429         struct gf100_clk *clk = container_of(obj, typeof(*clk), base);
430         memset(clk->eng, 0x00, sizeof(clk->eng));
431 }
432
433 static struct nvkm_domain
434 gf100_domain[] = {
435         { nv_clk_src_crystal, 0xff },
436         { nv_clk_src_href   , 0xff },
437         { nv_clk_src_hubk06 , 0x00 },
438         { nv_clk_src_hubk01 , 0x01 },
439         { nv_clk_src_copy   , 0x02 },
440         { nv_clk_src_gpc    , 0x03, 0, "core", 2000 },
441         { nv_clk_src_rop    , 0x04 },
442         { nv_clk_src_mem    , 0x05, 0, "memory", 1000 },
443         { nv_clk_src_vdec   , 0x06 },
444         { nv_clk_src_daemon , 0x0a },
445         { nv_clk_src_hubk07 , 0x0b },
446         { nv_clk_src_max }
447 };
448
449 static int
450 gf100_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
451                struct nvkm_oclass *oclass, void *data, u32 size,
452                struct nvkm_object **pobject)
453 {
454         struct gf100_clk *clk;
455         int ret;
456
457         ret = nvkm_clk_create(parent, engine, oclass, gf100_domain,
458                               NULL, 0, false, &clk);
459         *pobject = nv_object(clk);
460         if (ret)
461                 return ret;
462
463         clk->base.read = gf100_clk_read;
464         clk->base.calc = gf100_clk_calc;
465         clk->base.prog = gf100_clk_prog;
466         clk->base.tidy = gf100_clk_tidy;
467         return 0;
468 }
469
470 struct nvkm_oclass
471 gf100_clk_oclass = {
472         .handle = NV_SUBDEV(CLK, 0xc0),
473         .ofuncs = &(struct nvkm_ofuncs) {
474                 .ctor = gf100_clk_ctor,
475                 .dtor = _nvkm_clk_dtor,
476                 .init = _nvkm_clk_init,
477                 .fini = _nvkm_clk_fini,
478         },
479 };