drm/imx: parallel-display: add bridge support
[cascardo/linux.git] / drivers / gpu / drm / nouveau / nvkm / subdev / clk / gk20a.c
1 /*
2  * Copyright (c) 2014-2016, NVIDIA CORPORATION. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20  * DEALINGS IN THE SOFTWARE.
21  *
22  * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
23  *
24  */
25 #include "priv.h"
26 #include "gk20a.h"
27
28 #include <core/tegra.h>
29 #include <subdev/timer.h>
30
31 #define KHZ (1000)
32 #define MHZ (KHZ * 1000)
33
34 #define MASK(w) ((1 << w) - 1)
35
36 #define GPCPLL_CFG              (SYS_GPCPLL_CFG_BASE + 0)
37 #define GPCPLL_CFG_ENABLE       BIT(0)
38 #define GPCPLL_CFG_IDDQ         BIT(1)
39 #define GPCPLL_CFG_LOCK_DET_OFF BIT(4)
40 #define GPCPLL_CFG_LOCK         BIT(17)
41
42 #define GPCPLL_COEFF            (SYS_GPCPLL_CFG_BASE + 4)
43 #define GPCPLL_COEFF_M_SHIFT    0
44 #define GPCPLL_COEFF_M_WIDTH    8
45 #define GPCPLL_COEFF_N_SHIFT    8
46 #define GPCPLL_COEFF_N_WIDTH    8
47 #define GPCPLL_COEFF_P_SHIFT    16
48 #define GPCPLL_COEFF_P_WIDTH    6
49
50 #define GPCPLL_CFG2                     (SYS_GPCPLL_CFG_BASE + 0xc)
51 #define GPCPLL_CFG2_SETUP2_SHIFT        16
52 #define GPCPLL_CFG2_PLL_STEPA_SHIFT     24
53
54 #define GPCPLL_CFG3                     (SYS_GPCPLL_CFG_BASE + 0x18)
55 #define GPCPLL_CFG3_PLL_STEPB_SHIFT     16
56
57 #define GPC_BCASE_GPCPLL_CFG_BASE               0x00132800
58 #define GPCPLL_NDIV_SLOWDOWN                    (SYS_GPCPLL_CFG_BASE + 0x1c)
59 #define GPCPLL_NDIV_SLOWDOWN_NDIV_LO_SHIFT      0
60 #define GPCPLL_NDIV_SLOWDOWN_NDIV_MID_SHIFT     8
61 #define GPCPLL_NDIV_SLOWDOWN_STEP_SIZE_LO2MID_SHIFT     16
62 #define GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT   22
63 #define GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT   31
64
65 #define SEL_VCO                         (SYS_GPCPLL_CFG_BASE + 0x100)
66 #define SEL_VCO_GPC2CLK_OUT_SHIFT       0
67
68 #define GPC2CLK_OUT                     (SYS_GPCPLL_CFG_BASE + 0x250)
69 #define GPC2CLK_OUT_SDIV14_INDIV4_WIDTH 1
70 #define GPC2CLK_OUT_SDIV14_INDIV4_SHIFT 31
71 #define GPC2CLK_OUT_SDIV14_INDIV4_MODE  1
72 #define GPC2CLK_OUT_VCODIV_WIDTH        6
73 #define GPC2CLK_OUT_VCODIV_SHIFT        8
74 #define GPC2CLK_OUT_VCODIV1             0
75 #define GPC2CLK_OUT_VCODIV_MASK         (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \
76                                         GPC2CLK_OUT_VCODIV_SHIFT)
77 #define GPC2CLK_OUT_BYPDIV_WIDTH        6
78 #define GPC2CLK_OUT_BYPDIV_SHIFT        0
79 #define GPC2CLK_OUT_BYPDIV31            0x3c
80 #define GPC2CLK_OUT_INIT_MASK   ((MASK(GPC2CLK_OUT_SDIV14_INDIV4_WIDTH) << \
81                 GPC2CLK_OUT_SDIV14_INDIV4_SHIFT)\
82                 | (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << GPC2CLK_OUT_VCODIV_SHIFT)\
83                 | (MASK(GPC2CLK_OUT_BYPDIV_WIDTH) << GPC2CLK_OUT_BYPDIV_SHIFT))
84 #define GPC2CLK_OUT_INIT_VAL    ((GPC2CLK_OUT_SDIV14_INDIV4_MODE << \
85                 GPC2CLK_OUT_SDIV14_INDIV4_SHIFT) \
86                 | (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT) \
87                 | (GPC2CLK_OUT_BYPDIV31 << GPC2CLK_OUT_BYPDIV_SHIFT))
88
89 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG   (GPC_BCASE_GPCPLL_CFG_BASE + 0xa0)
90 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT     24
91 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \
92             (0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT)
93
94 static const u8 _pl_to_div[] = {
95 /* PL:   0, 1, 2, 3, 4, 5, 6,  7,  8,  9, 10, 11, 12, 13, 14 */
96 /* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
97 };
98
99 static u32 pl_to_div(u32 pl)
100 {
101         if (pl >= ARRAY_SIZE(_pl_to_div))
102                 return 1;
103
104         return _pl_to_div[pl];
105 }
106
107 static u32 div_to_pl(u32 div)
108 {
109         u32 pl;
110
111         for (pl = 0; pl < ARRAY_SIZE(_pl_to_div) - 1; pl++) {
112                 if (_pl_to_div[pl] >= div)
113                         return pl;
114         }
115
116         return ARRAY_SIZE(_pl_to_div) - 1;
117 }
118
119 static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
120         .min_vco = 1000000, .max_vco = 2064000,
121         .min_u = 12000, .max_u = 38000,
122         .min_m = 1, .max_m = 255,
123         .min_n = 8, .max_n = 255,
124         .min_pl = 1, .max_pl = 32,
125 };
126
127 static void
128 gk20a_pllg_read_mnp(struct gk20a_clk *clk, struct gk20a_pll *pll)
129 {
130         struct nvkm_device *device = clk->base.subdev.device;
131         u32 val;
132
133         val = nvkm_rd32(device, GPCPLL_COEFF);
134         pll->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
135         pll->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
136         pll->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
137 }
138
139 static u32
140 gk20a_pllg_calc_rate(struct gk20a_clk *clk)
141 {
142         u32 rate;
143         u32 divider;
144
145         rate = clk->parent_rate * clk->pll.n;
146         divider = clk->pll.m * clk->pl_to_div(clk->pll.pl);
147
148         return rate / divider / 2;
149 }
150
151 static int
152 gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate)
153 {
154         struct nvkm_subdev *subdev = &clk->base.subdev;
155         u32 target_clk_f, ref_clk_f, target_freq;
156         u32 min_vco_f, max_vco_f;
157         u32 low_pl, high_pl, best_pl;
158         u32 target_vco_f;
159         u32 best_m, best_n;
160         u32 best_delta = ~0;
161         u32 pl;
162
163         target_clk_f = rate * 2 / KHZ;
164         ref_clk_f = clk->parent_rate / KHZ;
165
166         max_vco_f = clk->params->max_vco;
167         min_vco_f = clk->params->min_vco;
168         best_m = clk->params->max_m;
169         best_n = clk->params->min_n;
170         best_pl = clk->params->min_pl;
171
172         target_vco_f = target_clk_f + target_clk_f / 50;
173         if (max_vco_f < target_vco_f)
174                 max_vco_f = target_vco_f;
175
176         /* min_pl <= high_pl <= max_pl */
177         high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
178         high_pl = min(high_pl, clk->params->max_pl);
179         high_pl = max(high_pl, clk->params->min_pl);
180         high_pl = clk->div_to_pl(high_pl);
181
182         /* min_pl <= low_pl <= max_pl */
183         low_pl = min_vco_f / target_vco_f;
184         low_pl = min(low_pl, clk->params->max_pl);
185         low_pl = max(low_pl, clk->params->min_pl);
186         low_pl = clk->div_to_pl(low_pl);
187
188         nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
189                    clk->pl_to_div(low_pl), high_pl, clk->pl_to_div(high_pl));
190
191         /* Select lowest possible VCO */
192         for (pl = low_pl; pl <= high_pl; pl++) {
193                 u32 m, n, n2;
194
195                 target_vco_f = target_clk_f * clk->pl_to_div(pl);
196
197                 for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
198                         u32 u_f, vco_f;
199
200                         u_f = ref_clk_f / m;
201
202                         if (u_f < clk->params->min_u)
203                                 break;
204                         if (u_f > clk->params->max_u)
205                                 continue;
206
207                         n = (target_vco_f * m) / ref_clk_f;
208                         n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
209
210                         if (n > clk->params->max_n)
211                                 break;
212
213                         for (; n <= n2; n++) {
214                                 if (n < clk->params->min_n)
215                                         continue;
216                                 if (n > clk->params->max_n)
217                                         break;
218
219                                 vco_f = ref_clk_f * n / m;
220
221                                 if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
222                                         u32 delta, lwv;
223
224                                         lwv = (vco_f + (clk->pl_to_div(pl) / 2))
225                                                 / clk->pl_to_div(pl);
226                                         delta = abs(lwv - target_clk_f);
227
228                                         if (delta < best_delta) {
229                                                 best_delta = delta;
230                                                 best_m = m;
231                                                 best_n = n;
232                                                 best_pl = pl;
233
234                                                 if (best_delta == 0)
235                                                         goto found_match;
236                                         }
237                                 }
238                         }
239                 }
240         }
241
242 found_match:
243         WARN_ON(best_delta == ~0);
244
245         if (best_delta != 0)
246                 nvkm_debug(subdev,
247                            "no best match for target @ %dMHz on gpc_pll",
248                            target_clk_f / KHZ);
249
250         clk->pll.m = best_m;
251         clk->pll.n = best_n;
252         clk->pll.pl = best_pl;
253
254         target_freq = gk20a_pllg_calc_rate(clk);
255
256         nvkm_debug(subdev,
257                    "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
258                    target_freq / MHZ, clk->pll.m, clk->pll.n, clk->pll.pl,
259                    clk->pl_to_div(clk->pll.pl));
260         return 0;
261 }
262
263 static int
264 gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
265 {
266         struct nvkm_subdev *subdev = &clk->base.subdev;
267         struct nvkm_device *device = subdev->device;
268         u32 val;
269         int ramp_timeout;
270
271         /* get old coefficients */
272         val = nvkm_rd32(device, GPCPLL_COEFF);
273         /* do nothing if NDIV is the same */
274         if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH)))
275                 return 0;
276
277         /* setup */
278         nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
279                 0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT);
280         nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
281                 0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT);
282
283         /* pll slowdown mode */
284         nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
285                 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
286                 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
287
288         /* new ndiv ready for ramp */
289         val = nvkm_rd32(device, GPCPLL_COEFF);
290         val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT);
291         val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
292         udelay(1);
293         nvkm_wr32(device, GPCPLL_COEFF, val);
294
295         /* dynamic ramp to new ndiv */
296         val = nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
297         val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT;
298         udelay(1);
299         nvkm_wr32(device, GPCPLL_NDIV_SLOWDOWN, val);
300
301         for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) {
302                 udelay(1);
303                 val = nvkm_rd32(device, GPC_BCAST_NDIV_SLOWDOWN_DEBUG);
304                 if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK)
305                         break;
306         }
307
308         /* exit slowdown mode */
309         nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
310                 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
311                 BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
312         nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
313
314         if (ramp_timeout <= 0) {
315                 nvkm_error(subdev, "gpcpll dynamic ramp timeout\n");
316                 return -ETIMEDOUT;
317         }
318
319         return 0;
320 }
321
322 static void
323 gk20a_pllg_enable(struct gk20a_clk *clk)
324 {
325         struct nvkm_device *device = clk->base.subdev.device;
326
327         nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
328         nvkm_rd32(device, GPCPLL_CFG);
329 }
330
331 static void
332 gk20a_pllg_disable(struct gk20a_clk *clk)
333 {
334         struct nvkm_device *device = clk->base.subdev.device;
335
336         nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
337         nvkm_rd32(device, GPCPLL_CFG);
338 }
339
340 static int
341 _gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide)
342 {
343         struct nvkm_subdev *subdev = &clk->base.subdev;
344         struct nvkm_device *device = subdev->device;
345         u32 val, cfg;
346         struct gk20a_pll old_pll;
347         u32 n_lo;
348
349         /* get old coefficients */
350         gk20a_pllg_read_mnp(clk, &old_pll);
351
352         /* do NDIV slide if there is no change in M and PL */
353         cfg = nvkm_rd32(device, GPCPLL_CFG);
354         if (allow_slide && clk->pll.m == old_pll.m &&
355             clk->pll.pl == old_pll.pl && (cfg & GPCPLL_CFG_ENABLE)) {
356                 return gk20a_pllg_slide(clk, clk->pll.n);
357         }
358
359         /* slide down to NDIV_LO */
360         if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
361                 int ret;
362
363                 n_lo = DIV_ROUND_UP(old_pll.m * clk->params->min_vco,
364                                     clk->parent_rate / KHZ);
365                 ret = gk20a_pllg_slide(clk, n_lo);
366
367                 if (ret)
368                         return ret;
369         }
370
371         /* split FO-to-bypass jump in halfs by setting out divider 1:2 */
372         nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
373                 0x2 << GPC2CLK_OUT_VCODIV_SHIFT);
374
375         /* put PLL in bypass before programming it */
376         val = nvkm_rd32(device, SEL_VCO);
377         val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
378         udelay(2);
379         nvkm_wr32(device, SEL_VCO, val);
380
381         /* get out from IDDQ */
382         val = nvkm_rd32(device, GPCPLL_CFG);
383         if (val & GPCPLL_CFG_IDDQ) {
384                 val &= ~GPCPLL_CFG_IDDQ;
385                 nvkm_wr32(device, GPCPLL_CFG, val);
386                 nvkm_rd32(device, GPCPLL_CFG);
387                 udelay(2);
388         }
389
390         gk20a_pllg_disable(clk);
391
392         nvkm_debug(subdev, "%s: m=%d n=%d pl=%d\n", __func__,
393                    clk->pll.m, clk->pll.n, clk->pll.pl);
394
395         n_lo = DIV_ROUND_UP(clk->pll.m * clk->params->min_vco,
396                             clk->parent_rate / KHZ);
397         val = clk->pll.m << GPCPLL_COEFF_M_SHIFT;
398         val |= (allow_slide ? n_lo : clk->pll.n) << GPCPLL_COEFF_N_SHIFT;
399         val |= clk->pll.pl << GPCPLL_COEFF_P_SHIFT;
400         nvkm_wr32(device, GPCPLL_COEFF, val);
401
402         gk20a_pllg_enable(clk);
403
404         val = nvkm_rd32(device, GPCPLL_CFG);
405         if (val & GPCPLL_CFG_LOCK_DET_OFF) {
406                 val &= ~GPCPLL_CFG_LOCK_DET_OFF;
407                 nvkm_wr32(device, GPCPLL_CFG, val);
408         }
409
410         if (nvkm_usec(device, 300,
411                 if (nvkm_rd32(device, GPCPLL_CFG) & GPCPLL_CFG_LOCK)
412                         break;
413         ) < 0)
414                 return -ETIMEDOUT;
415
416         /* switch to VCO mode */
417         nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT),
418                   BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
419
420         /* restore out divider 1:1 */
421         val = nvkm_rd32(device, GPC2CLK_OUT);
422         if ((val & GPC2CLK_OUT_VCODIV_MASK) !=
423             (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT)) {
424                 val &= ~GPC2CLK_OUT_VCODIV_MASK;
425                 val |= GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT;
426                 udelay(2);
427                 nvkm_wr32(device, GPC2CLK_OUT, val);
428                 /* Intentional 2nd write to assure linear divider operation */
429                 nvkm_wr32(device, GPC2CLK_OUT, val);
430                 nvkm_rd32(device, GPC2CLK_OUT);
431         }
432
433         /* slide up to new NDIV */
434         return allow_slide ? gk20a_pllg_slide(clk, clk->pll.n) : 0;
435 }
436
437 static int
438 gk20a_pllg_program_mnp(struct gk20a_clk *clk)
439 {
440         int err;
441
442         err = _gk20a_pllg_program_mnp(clk, true);
443         if (err)
444                 err = _gk20a_pllg_program_mnp(clk, false);
445
446         return err;
447 }
448
449 static struct nvkm_pstate
450 gk20a_pstates[] = {
451         {
452                 .base = {
453                         .domain[nv_clk_src_gpc] = 72000,
454                         .voltage = 0,
455                 },
456         },
457         {
458                 .base = {
459                         .domain[nv_clk_src_gpc] = 108000,
460                         .voltage = 1,
461                 },
462         },
463         {
464                 .base = {
465                         .domain[nv_clk_src_gpc] = 180000,
466                         .voltage = 2,
467                 },
468         },
469         {
470                 .base = {
471                         .domain[nv_clk_src_gpc] = 252000,
472                         .voltage = 3,
473                 },
474         },
475         {
476                 .base = {
477                         .domain[nv_clk_src_gpc] = 324000,
478                         .voltage = 4,
479                 },
480         },
481         {
482                 .base = {
483                         .domain[nv_clk_src_gpc] = 396000,
484                         .voltage = 5,
485                 },
486         },
487         {
488                 .base = {
489                         .domain[nv_clk_src_gpc] = 468000,
490                         .voltage = 6,
491                 },
492         },
493         {
494                 .base = {
495                         .domain[nv_clk_src_gpc] = 540000,
496                         .voltage = 7,
497                 },
498         },
499         {
500                 .base = {
501                         .domain[nv_clk_src_gpc] = 612000,
502                         .voltage = 8,
503                 },
504         },
505         {
506                 .base = {
507                         .domain[nv_clk_src_gpc] = 648000,
508                         .voltage = 9,
509                 },
510         },
511         {
512                 .base = {
513                         .domain[nv_clk_src_gpc] = 684000,
514                         .voltage = 10,
515                 },
516         },
517         {
518                 .base = {
519                         .domain[nv_clk_src_gpc] = 708000,
520                         .voltage = 11,
521                 },
522         },
523         {
524                 .base = {
525                         .domain[nv_clk_src_gpc] = 756000,
526                         .voltage = 12,
527                 },
528         },
529         {
530                 .base = {
531                         .domain[nv_clk_src_gpc] = 804000,
532                         .voltage = 13,
533                 },
534         },
535         {
536                 .base = {
537                         .domain[nv_clk_src_gpc] = 852000,
538                         .voltage = 14,
539                 },
540         },
541 };
542
543 int
544 gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
545 {
546         struct gk20a_clk *clk = gk20a_clk(base);
547         struct nvkm_subdev *subdev = &clk->base.subdev;
548         struct nvkm_device *device = subdev->device;
549
550         switch (src) {
551         case nv_clk_src_crystal:
552                 return device->crystal;
553         case nv_clk_src_gpc:
554                 gk20a_pllg_read_mnp(clk, &clk->pll);
555                 return gk20a_pllg_calc_rate(clk) / GK20A_CLK_GPC_MDIV;
556         default:
557                 nvkm_error(subdev, "invalid clock source %d\n", src);
558                 return -EINVAL;
559         }
560 }
561
562 int
563 gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
564 {
565         struct gk20a_clk *clk = gk20a_clk(base);
566
567         return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
568                                          GK20A_CLK_GPC_MDIV);
569 }
570
571 int
572 gk20a_clk_prog(struct nvkm_clk *base)
573 {
574         struct gk20a_clk *clk = gk20a_clk(base);
575
576         return gk20a_pllg_program_mnp(clk);
577 }
578
579 void
580 gk20a_clk_tidy(struct nvkm_clk *base)
581 {
582 }
583
584 void
585 gk20a_clk_fini(struct nvkm_clk *base)
586 {
587         struct nvkm_device *device = base->subdev.device;
588         struct gk20a_clk *clk = gk20a_clk(base);
589         u32 val;
590
591         /* slide to VCO min */
592         val = nvkm_rd32(device, GPCPLL_CFG);
593         if (val & GPCPLL_CFG_ENABLE) {
594                 struct gk20a_pll pll;
595                 u32 n_lo;
596
597                 gk20a_pllg_read_mnp(clk, &pll);
598                 n_lo = DIV_ROUND_UP(pll.m * clk->params->min_vco,
599                                     clk->parent_rate / KHZ);
600                 gk20a_pllg_slide(clk, n_lo);
601         }
602
603         /* put PLL in bypass before disabling it */
604         nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
605
606         gk20a_pllg_disable(clk);
607 }
608
609 static int
610 gk20a_clk_init(struct nvkm_clk *base)
611 {
612         struct gk20a_clk *clk = gk20a_clk(base);
613         struct nvkm_subdev *subdev = &clk->base.subdev;
614         struct nvkm_device *device = subdev->device;
615         int ret;
616
617         nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK,
618                   GPC2CLK_OUT_INIT_VAL);
619
620         /* Start with lowest frequency */
621         base->func->calc(base, &base->func->pstates[0].base);
622         ret = base->func->prog(&clk->base);
623         if (ret) {
624                 nvkm_error(subdev, "cannot initialize clock\n");
625                 return ret;
626         }
627
628         return 0;
629 }
630
631 static const struct nvkm_clk_func
632 gk20a_clk = {
633         .init = gk20a_clk_init,
634         .fini = gk20a_clk_fini,
635         .read = gk20a_clk_read,
636         .calc = gk20a_clk_calc,
637         .prog = gk20a_clk_prog,
638         .tidy = gk20a_clk_tidy,
639         .pstates = gk20a_pstates,
640         .nr_pstates = ARRAY_SIZE(gk20a_pstates),
641         .domains = {
642                 { nv_clk_src_crystal, 0xff },
643                 { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
644                 { nv_clk_src_max }
645         }
646 };
647
648 int
649 _gk20a_clk_ctor(struct nvkm_device *device, int index,
650                 const struct nvkm_clk_func *func,
651                 const struct gk20a_clk_pllg_params *params,
652                 struct gk20a_clk *clk)
653 {
654         struct nvkm_device_tegra *tdev = device->func->tegra(device);
655         int ret;
656         int i;
657
658         /* Finish initializing the pstates */
659         for (i = 0; i < func->nr_pstates; i++) {
660                 INIT_LIST_HEAD(&func->pstates[i].list);
661                 func->pstates[i].pstate = i + 1;
662         }
663
664         clk->params = params;
665         clk->parent_rate = clk_get_rate(tdev->clk);
666
667         ret = nvkm_clk_ctor(func, device, index, true, &clk->base);
668         if (ret)
669                 return ret;
670
671         nvkm_debug(&clk->base.subdev, "parent clock rate: %d Khz\n",
672                    clk->parent_rate / KHZ);
673
674         return 0;
675 }
676
677 int
678 gk20a_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
679 {
680         struct gk20a_clk *clk;
681         int ret;
682
683         clk = kzalloc(sizeof(*clk), GFP_KERNEL);
684         if (!clk)
685                 return -ENOMEM;
686         *pclk = &clk->base;
687
688         ret = _gk20a_clk_ctor(device, index, &gk20a_clk, &gk20a_pllg_params,
689                               clk);
690
691         clk->pl_to_div = pl_to_div;
692         clk->div_to_pl = div_to_pl;
693
694         return ret;
695 }