Merge tag 'armsoc-fixes-nc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[cascardo/linux.git] / drivers / gpu / drm / nouveau / nvkm / subdev / instmem / gk20a.c
1 /*
2  * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20  * DEALINGS IN THE SOFTWARE.
21  */
22
23 /*
24  * GK20A does not have dedicated video memory, and to accurately represent this
25  * fact Nouveau will not create a RAM device for it. Therefore its instmem
26  * implementation must be done directly on top of system memory, while
27  * preserving coherency for read and write operations.
28  *
29  * Instmem can be allocated through two means:
30  * 1) If an IOMMU unit has been probed, the IOMMU API is used to make memory
31  *    pages contiguous to the GPU. This is the preferred way.
32  * 2) If no IOMMU unit is probed, the DMA API is used to allocate physically
33  *    contiguous memory.
34  *
35  * In both cases CPU read and writes are performed by creating a write-combined
36  * mapping. The GPU L2 cache must thus be flushed/invalidated when required. To
37  * be conservative we do this every time we acquire or release an instobj, but
38  * ideally L2 management should be handled at a higher level.
39  *
40  * To improve performance, CPU mappings are not removed upon instobj release.
41  * Instead they are placed into a LRU list to be recycled when the mapped space
42  * goes beyond a certain threshold. At the moment this limit is 1MB.
43  */
44 #include "priv.h"
45
46 #include <core/memory.h>
47 #include <core/mm.h>
48 #include <core/tegra.h>
49 #include <subdev/fb.h>
50 #include <subdev/ltc.h>
51
52 struct gk20a_instobj {
53         struct nvkm_memory memory;
54         struct nvkm_mem mem;
55         struct gk20a_instmem *imem;
56
57         /* CPU mapping */
58         u32 *vaddr;
59         struct list_head vaddr_node;
60 };
61 #define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory)
62
63 /*
64  * Used for objects allocated using the DMA API
65  */
66 struct gk20a_instobj_dma {
67         struct gk20a_instobj base;
68
69         u32 *cpuaddr;
70         dma_addr_t handle;
71         struct nvkm_mm_node r;
72 };
73 #define gk20a_instobj_dma(p) \
74         container_of(gk20a_instobj(p), struct gk20a_instobj_dma, base)
75
76 /*
77  * Used for objects flattened using the IOMMU API
78  */
79 struct gk20a_instobj_iommu {
80         struct gk20a_instobj base;
81
82         /* will point to the higher half of pages */
83         dma_addr_t *dma_addrs;
84         /* array of base.mem->size pages (+ dma_addr_ts) */
85         struct page *pages[];
86 };
87 #define gk20a_instobj_iommu(p) \
88         container_of(gk20a_instobj(p), struct gk20a_instobj_iommu, base)
89
90 struct gk20a_instmem {
91         struct nvkm_instmem base;
92
93         /* protects vaddr_* and gk20a_instobj::vaddr* */
94         spinlock_t lock;
95
96         /* CPU mappings LRU */
97         unsigned int vaddr_use;
98         unsigned int vaddr_max;
99         struct list_head vaddr_lru;
100
101         /* Only used if IOMMU if present */
102         struct mutex *mm_mutex;
103         struct nvkm_mm *mm;
104         struct iommu_domain *domain;
105         unsigned long iommu_pgshift;
106         u16 iommu_bit;
107
108         /* Only used by DMA API */
109         struct dma_attrs attrs;
110
111         void __iomem * (*cpu_map)(struct nvkm_memory *);
112 };
113 #define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base)
114
115 static enum nvkm_memory_target
116 gk20a_instobj_target(struct nvkm_memory *memory)
117 {
118         return NVKM_MEM_TARGET_HOST;
119 }
120
121 static u64
122 gk20a_instobj_addr(struct nvkm_memory *memory)
123 {
124         return gk20a_instobj(memory)->mem.offset;
125 }
126
127 static u64
128 gk20a_instobj_size(struct nvkm_memory *memory)
129 {
130         return (u64)gk20a_instobj(memory)->mem.size << 12;
131 }
132
133 static void __iomem *
134 gk20a_instobj_cpu_map_dma(struct nvkm_memory *memory)
135 {
136         struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory);
137         struct device *dev = node->base.imem->base.subdev.device->dev;
138         int npages = nvkm_memory_size(memory) >> 12;
139         struct page *pages[npages];
140         int i;
141
142         /* phys_to_page does not exist on all platforms... */
143         pages[0] = pfn_to_page(dma_to_phys(dev, node->handle) >> PAGE_SHIFT);
144         for (i = 1; i < npages; i++)
145                 pages[i] = pages[0] + i;
146
147         return vmap(pages, npages, VM_MAP, pgprot_writecombine(PAGE_KERNEL));
148 }
149
150 static void __iomem *
151 gk20a_instobj_cpu_map_iommu(struct nvkm_memory *memory)
152 {
153         struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
154         int npages = nvkm_memory_size(memory) >> 12;
155
156         return vmap(node->pages, npages, VM_MAP,
157                     pgprot_writecombine(PAGE_KERNEL));
158 }
159
160 /*
161  * Must be called while holding gk20a_instmem_lock
162  */
163 static void
164 gk20a_instmem_vaddr_gc(struct gk20a_instmem *imem, const u64 size)
165 {
166         while (imem->vaddr_use + size > imem->vaddr_max) {
167                 struct gk20a_instobj *obj;
168
169                 /* no candidate that can be unmapped, abort... */
170                 if (list_empty(&imem->vaddr_lru))
171                         break;
172
173                 obj = list_first_entry(&imem->vaddr_lru, struct gk20a_instobj,
174                                        vaddr_node);
175                 list_del(&obj->vaddr_node);
176                 vunmap(obj->vaddr);
177                 obj->vaddr = NULL;
178                 imem->vaddr_use -= nvkm_memory_size(&obj->memory);
179                 nvkm_debug(&imem->base.subdev, "(GC) vaddr used: %x/%x\n",
180                            imem->vaddr_use, imem->vaddr_max);
181
182         }
183 }
184
185 static void __iomem *
186 gk20a_instobj_acquire(struct nvkm_memory *memory)
187 {
188         struct gk20a_instobj *node = gk20a_instobj(memory);
189         struct gk20a_instmem *imem = node->imem;
190         struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
191         const u64 size = nvkm_memory_size(memory);
192         unsigned long flags;
193
194         nvkm_ltc_flush(ltc);
195
196         spin_lock_irqsave(&imem->lock, flags);
197
198         if (node->vaddr) {
199                 /* remove us from the LRU list since we cannot be unmapped */
200                 list_del(&node->vaddr_node);
201
202                 goto out;
203         }
204
205         /* try to free some address space if we reached the limit */
206         gk20a_instmem_vaddr_gc(imem, size);
207
208         node->vaddr = imem->cpu_map(memory);
209
210         if (!node->vaddr) {
211                 nvkm_error(&imem->base.subdev, "cannot map instobj - "
212                            "this is not going to end well...\n");
213                 goto out;
214         }
215
216         imem->vaddr_use += size;
217         nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n",
218                    imem->vaddr_use, imem->vaddr_max);
219
220 out:
221         spin_unlock_irqrestore(&imem->lock, flags);
222
223         return node->vaddr;
224 }
225
226 static void
227 gk20a_instobj_release(struct nvkm_memory *memory)
228 {
229         struct gk20a_instobj *node = gk20a_instobj(memory);
230         struct gk20a_instmem *imem = node->imem;
231         struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
232         unsigned long flags;
233
234         spin_lock_irqsave(&imem->lock, flags);
235
236         /* add ourselves to the LRU list so our CPU mapping can be freed */
237         list_add_tail(&node->vaddr_node, &imem->vaddr_lru);
238
239         spin_unlock_irqrestore(&imem->lock, flags);
240
241         wmb();
242         nvkm_ltc_invalidate(ltc);
243 }
244
245 static u32
246 gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset)
247 {
248         struct gk20a_instobj *node = gk20a_instobj(memory);
249
250         return node->vaddr[offset / 4];
251 }
252
253 static void
254 gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data)
255 {
256         struct gk20a_instobj *node = gk20a_instobj(memory);
257
258         node->vaddr[offset / 4] = data;
259 }
260
261 static void
262 gk20a_instobj_map(struct nvkm_memory *memory, struct nvkm_vma *vma, u64 offset)
263 {
264         struct gk20a_instobj *node = gk20a_instobj(memory);
265
266         nvkm_vm_map_at(vma, offset, &node->mem);
267 }
268
269 /*
270  * Clear the CPU mapping of an instobj if it exists
271  */
272 static void
273 gk20a_instobj_dtor(struct gk20a_instobj *node)
274 {
275         struct gk20a_instmem *imem = node->imem;
276         struct gk20a_instobj *obj;
277         unsigned long flags;
278
279         spin_lock_irqsave(&imem->lock, flags);
280
281         if (!node->vaddr)
282                 goto out;
283
284         list_for_each_entry(obj, &imem->vaddr_lru, vaddr_node) {
285                 if (obj == node) {
286                         list_del(&obj->vaddr_node);
287                         break;
288                 }
289         }
290         vunmap(node->vaddr);
291         node->vaddr = NULL;
292         imem->vaddr_use -= nvkm_memory_size(&node->memory);
293         nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n",
294                    imem->vaddr_use, imem->vaddr_max);
295
296 out:
297         spin_unlock_irqrestore(&imem->lock, flags);
298 }
299
300 static void *
301 gk20a_instobj_dtor_dma(struct nvkm_memory *memory)
302 {
303         struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory);
304         struct gk20a_instmem *imem = node->base.imem;
305         struct device *dev = imem->base.subdev.device->dev;
306
307         gk20a_instobj_dtor(&node->base);
308
309         if (unlikely(!node->cpuaddr))
310                 goto out;
311
312         dma_free_attrs(dev, node->base.mem.size << PAGE_SHIFT, node->cpuaddr,
313                        node->handle, &imem->attrs);
314
315 out:
316         return node;
317 }
318
319 static void *
320 gk20a_instobj_dtor_iommu(struct nvkm_memory *memory)
321 {
322         struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
323         struct gk20a_instmem *imem = node->base.imem;
324         struct device *dev = imem->base.subdev.device->dev;
325         struct nvkm_mm_node *r;
326         int i;
327
328         gk20a_instobj_dtor(&node->base);
329
330         if (unlikely(list_empty(&node->base.mem.regions)))
331                 goto out;
332
333         r = list_first_entry(&node->base.mem.regions, struct nvkm_mm_node,
334                              rl_entry);
335
336         /* clear IOMMU bit to unmap pages */
337         r->offset &= ~BIT(imem->iommu_bit - imem->iommu_pgshift);
338
339         /* Unmap pages from GPU address space and free them */
340         for (i = 0; i < node->base.mem.size; i++) {
341                 iommu_unmap(imem->domain,
342                             (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE);
343                 dma_unmap_page(dev, node->dma_addrs[i], PAGE_SIZE,
344                                DMA_BIDIRECTIONAL);
345                 __free_page(node->pages[i]);
346         }
347
348         /* Release area from GPU address space */
349         mutex_lock(imem->mm_mutex);
350         nvkm_mm_free(imem->mm, &r);
351         mutex_unlock(imem->mm_mutex);
352
353 out:
354         return node;
355 }
356
357 static const struct nvkm_memory_func
358 gk20a_instobj_func_dma = {
359         .dtor = gk20a_instobj_dtor_dma,
360         .target = gk20a_instobj_target,
361         .addr = gk20a_instobj_addr,
362         .size = gk20a_instobj_size,
363         .acquire = gk20a_instobj_acquire,
364         .release = gk20a_instobj_release,
365         .rd32 = gk20a_instobj_rd32,
366         .wr32 = gk20a_instobj_wr32,
367         .map = gk20a_instobj_map,
368 };
369
370 static const struct nvkm_memory_func
371 gk20a_instobj_func_iommu = {
372         .dtor = gk20a_instobj_dtor_iommu,
373         .target = gk20a_instobj_target,
374         .addr = gk20a_instobj_addr,
375         .size = gk20a_instobj_size,
376         .acquire = gk20a_instobj_acquire,
377         .release = gk20a_instobj_release,
378         .rd32 = gk20a_instobj_rd32,
379         .wr32 = gk20a_instobj_wr32,
380         .map = gk20a_instobj_map,
381 };
382
383 static int
384 gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align,
385                        struct gk20a_instobj **_node)
386 {
387         struct gk20a_instobj_dma *node;
388         struct nvkm_subdev *subdev = &imem->base.subdev;
389         struct device *dev = subdev->device->dev;
390
391         if (!(node = kzalloc(sizeof(*node), GFP_KERNEL)))
392                 return -ENOMEM;
393         *_node = &node->base;
394
395         nvkm_memory_ctor(&gk20a_instobj_func_dma, &node->base.memory);
396
397         node->cpuaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT,
398                                         &node->handle, GFP_KERNEL,
399                                         &imem->attrs);
400         if (!node->cpuaddr) {
401                 nvkm_error(subdev, "cannot allocate DMA memory\n");
402                 return -ENOMEM;
403         }
404
405         /* alignment check */
406         if (unlikely(node->handle & (align - 1)))
407                 nvkm_warn(subdev,
408                           "memory not aligned as requested: %pad (0x%x)\n",
409                           &node->handle, align);
410
411         /* present memory for being mapped using small pages */
412         node->r.type = 12;
413         node->r.offset = node->handle >> 12;
414         node->r.length = (npages << PAGE_SHIFT) >> 12;
415
416         node->base.mem.offset = node->handle;
417
418         INIT_LIST_HEAD(&node->base.mem.regions);
419         list_add_tail(&node->r.rl_entry, &node->base.mem.regions);
420
421         return 0;
422 }
423
424 static int
425 gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align,
426                          struct gk20a_instobj **_node)
427 {
428         struct gk20a_instobj_iommu *node;
429         struct nvkm_subdev *subdev = &imem->base.subdev;
430         struct device *dev = subdev->device->dev;
431         struct nvkm_mm_node *r;
432         int ret;
433         int i;
434
435         /*
436          * despite their variable size, instmem allocations are small enough
437          * (< 1 page) to be handled by kzalloc
438          */
439         if (!(node = kzalloc(sizeof(*node) + ((sizeof(node->pages[0]) +
440                              sizeof(*node->dma_addrs)) * npages), GFP_KERNEL)))
441                 return -ENOMEM;
442         *_node = &node->base;
443         node->dma_addrs = (void *)(node->pages + npages);
444
445         nvkm_memory_ctor(&gk20a_instobj_func_iommu, &node->base.memory);
446
447         /* Allocate backing memory */
448         for (i = 0; i < npages; i++) {
449                 struct page *p = alloc_page(GFP_KERNEL);
450                 dma_addr_t dma_adr;
451
452                 if (p == NULL) {
453                         ret = -ENOMEM;
454                         goto free_pages;
455                 }
456                 node->pages[i] = p;
457                 dma_adr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
458                 if (dma_mapping_error(dev, dma_adr)) {
459                         nvkm_error(subdev, "DMA mapping error!\n");
460                         ret = -ENOMEM;
461                         goto free_pages;
462                 }
463                 node->dma_addrs[i] = dma_adr;
464         }
465
466         mutex_lock(imem->mm_mutex);
467         /* Reserve area from GPU address space */
468         ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages,
469                            align >> imem->iommu_pgshift, &r);
470         mutex_unlock(imem->mm_mutex);
471         if (ret) {
472                 nvkm_error(subdev, "IOMMU space is full!\n");
473                 goto free_pages;
474         }
475
476         /* Map into GPU address space */
477         for (i = 0; i < npages; i++) {
478                 u32 offset = (r->offset + i) << imem->iommu_pgshift;
479
480                 ret = iommu_map(imem->domain, offset, node->dma_addrs[i],
481                                 PAGE_SIZE, IOMMU_READ | IOMMU_WRITE);
482                 if (ret < 0) {
483                         nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret);
484
485                         while (i-- > 0) {
486                                 offset -= PAGE_SIZE;
487                                 iommu_unmap(imem->domain, offset, PAGE_SIZE);
488                         }
489                         goto release_area;
490                 }
491         }
492
493         /* IOMMU bit tells that an address is to be resolved through the IOMMU */
494         r->offset |= BIT(imem->iommu_bit - imem->iommu_pgshift);
495
496         node->base.mem.offset = ((u64)r->offset) << imem->iommu_pgshift;
497
498         INIT_LIST_HEAD(&node->base.mem.regions);
499         list_add_tail(&r->rl_entry, &node->base.mem.regions);
500
501         return 0;
502
503 release_area:
504         mutex_lock(imem->mm_mutex);
505         nvkm_mm_free(imem->mm, &r);
506         mutex_unlock(imem->mm_mutex);
507
508 free_pages:
509         for (i = 0; i < npages && node->pages[i] != NULL; i++) {
510                 dma_addr_t dma_addr = node->dma_addrs[i];
511                 if (dma_addr)
512                         dma_unmap_page(dev, dma_addr, PAGE_SIZE,
513                                        DMA_BIDIRECTIONAL);
514                 __free_page(node->pages[i]);
515         }
516
517         return ret;
518 }
519
520 static int
521 gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero,
522                   struct nvkm_memory **pmemory)
523 {
524         struct gk20a_instmem *imem = gk20a_instmem(base);
525         struct nvkm_subdev *subdev = &imem->base.subdev;
526         struct gk20a_instobj *node = NULL;
527         int ret;
528
529         nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__,
530                    imem->domain ? "IOMMU" : "DMA", size, align);
531
532         /* Round size and align to page bounds */
533         size = max(roundup(size, PAGE_SIZE), PAGE_SIZE);
534         align = max(roundup(align, PAGE_SIZE), PAGE_SIZE);
535
536         if (imem->domain)
537                 ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT,
538                                                align, &node);
539         else
540                 ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT,
541                                              align, &node);
542         *pmemory = node ? &node->memory : NULL;
543         if (ret)
544                 return ret;
545
546         node->imem = imem;
547
548         /* present memory for being mapped using small pages */
549         node->mem.size = size >> 12;
550         node->mem.memtype = 0;
551         node->mem.page_shift = 12;
552
553         nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n",
554                    size, align, node->mem.offset);
555
556         return 0;
557 }
558
559 static void *
560 gk20a_instmem_dtor(struct nvkm_instmem *base)
561 {
562         struct gk20a_instmem *imem = gk20a_instmem(base);
563
564         /* perform some sanity checks... */
565         if (!list_empty(&imem->vaddr_lru))
566                 nvkm_warn(&base->subdev, "instobj LRU not empty!\n");
567
568         if (imem->vaddr_use != 0)
569                 nvkm_warn(&base->subdev, "instobj vmap area not empty! "
570                           "0x%x bytes still mapped\n", imem->vaddr_use);
571
572         return imem;
573 }
574
575 static const struct nvkm_instmem_func
576 gk20a_instmem = {
577         .dtor = gk20a_instmem_dtor,
578         .memory_new = gk20a_instobj_new,
579         .persistent = true,
580         .zero = false,
581 };
582
583 int
584 gk20a_instmem_new(struct nvkm_device *device, int index,
585                   struct nvkm_instmem **pimem)
586 {
587         struct nvkm_device_tegra *tdev = device->func->tegra(device);
588         struct gk20a_instmem *imem;
589
590         if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL)))
591                 return -ENOMEM;
592         nvkm_instmem_ctor(&gk20a_instmem, device, index, &imem->base);
593         spin_lock_init(&imem->lock);
594         *pimem = &imem->base;
595
596         /* do not allow more than 1MB of CPU-mapped instmem */
597         imem->vaddr_use = 0;
598         imem->vaddr_max = 0x100000;
599         INIT_LIST_HEAD(&imem->vaddr_lru);
600
601         if (tdev->iommu.domain) {
602                 imem->mm_mutex = &tdev->iommu.mutex;
603                 imem->mm = &tdev->iommu.mm;
604                 imem->domain = tdev->iommu.domain;
605                 imem->iommu_pgshift = tdev->iommu.pgshift;
606                 imem->cpu_map = gk20a_instobj_cpu_map_iommu;
607                 imem->iommu_bit = tdev->func->iommu_bit;
608
609                 nvkm_info(&imem->base.subdev, "using IOMMU\n");
610         } else {
611                 init_dma_attrs(&imem->attrs);
612                 /* We will access the memory through our own mapping */
613                 dma_set_attr(DMA_ATTR_NON_CONSISTENT, &imem->attrs);
614                 dma_set_attr(DMA_ATTR_WEAK_ORDERING, &imem->attrs);
615                 dma_set_attr(DMA_ATTR_WRITE_COMBINE, &imem->attrs);
616                 dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &imem->attrs);
617                 imem->cpu_map = gk20a_instobj_cpu_map_dma;
618
619                 nvkm_info(&imem->base.subdev, "using DMA API\n");
620         }
621
622         return 0;
623 }