Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[cascardo/linux.git] / drivers / gpu / drm / nouveau / nvkm / subdev / instmem / gk20a.c
1 /*
2  * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20  * DEALINGS IN THE SOFTWARE.
21  */
22
23 /*
24  * GK20A does not have dedicated video memory, and to accurately represent this
25  * fact Nouveau will not create a RAM device for it. Therefore its instmem
26  * implementation must be done directly on top of system memory, while
27  * preserving coherency for read and write operations.
28  *
29  * Instmem can be allocated through two means:
30  * 1) If an IOMMU unit has been probed, the IOMMU API is used to make memory
31  *    pages contiguous to the GPU. This is the preferred way.
32  * 2) If no IOMMU unit is probed, the DMA API is used to allocate physically
33  *    contiguous memory.
34  *
35  * In both cases CPU read and writes are performed by creating a write-combined
36  * mapping. The GPU L2 cache must thus be flushed/invalidated when required. To
37  * be conservative we do this every time we acquire or release an instobj, but
38  * ideally L2 management should be handled at a higher level.
39  *
40  * To improve performance, CPU mappings are not removed upon instobj release.
41  * Instead they are placed into a LRU list to be recycled when the mapped space
42  * goes beyond a certain threshold. At the moment this limit is 1MB.
43  */
44 #include "priv.h"
45
46 #include <core/memory.h>
47 #include <core/mm.h>
48 #include <core/tegra.h>
49 #include <subdev/fb.h>
50 #include <subdev/ltc.h>
51
52 struct gk20a_instobj {
53         struct nvkm_memory memory;
54         struct nvkm_mem mem;
55         struct gk20a_instmem *imem;
56
57         /* CPU mapping */
58         u32 *vaddr;
59 };
60 #define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory)
61
62 /*
63  * Used for objects allocated using the DMA API
64  */
65 struct gk20a_instobj_dma {
66         struct gk20a_instobj base;
67
68         dma_addr_t handle;
69         struct nvkm_mm_node r;
70 };
71 #define gk20a_instobj_dma(p) \
72         container_of(gk20a_instobj(p), struct gk20a_instobj_dma, base)
73
74 /*
75  * Used for objects flattened using the IOMMU API
76  */
77 struct gk20a_instobj_iommu {
78         struct gk20a_instobj base;
79
80         /* to link into gk20a_instmem::vaddr_lru */
81         struct list_head vaddr_node;
82         /* how many clients are using vaddr? */
83         u32 use_cpt;
84
85         /* will point to the higher half of pages */
86         dma_addr_t *dma_addrs;
87         /* array of base.mem->size pages (+ dma_addr_ts) */
88         struct page *pages[];
89 };
90 #define gk20a_instobj_iommu(p) \
91         container_of(gk20a_instobj(p), struct gk20a_instobj_iommu, base)
92
93 struct gk20a_instmem {
94         struct nvkm_instmem base;
95
96         /* protects vaddr_* and gk20a_instobj::vaddr* */
97         spinlock_t lock;
98
99         /* CPU mappings LRU */
100         unsigned int vaddr_use;
101         unsigned int vaddr_max;
102         struct list_head vaddr_lru;
103
104         /* Only used if IOMMU if present */
105         struct mutex *mm_mutex;
106         struct nvkm_mm *mm;
107         struct iommu_domain *domain;
108         unsigned long iommu_pgshift;
109         u16 iommu_bit;
110
111         /* Only used by DMA API */
112         struct dma_attrs attrs;
113 };
114 #define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base)
115
116 static enum nvkm_memory_target
117 gk20a_instobj_target(struct nvkm_memory *memory)
118 {
119         return NVKM_MEM_TARGET_HOST;
120 }
121
122 static u64
123 gk20a_instobj_addr(struct nvkm_memory *memory)
124 {
125         return gk20a_instobj(memory)->mem.offset;
126 }
127
128 static u64
129 gk20a_instobj_size(struct nvkm_memory *memory)
130 {
131         return (u64)gk20a_instobj(memory)->mem.size << 12;
132 }
133
134 /*
135  * Recycle the vaddr of obj. Must be called with gk20a_instmem::lock held.
136  */
137 static void
138 gk20a_instobj_iommu_recycle_vaddr(struct gk20a_instobj_iommu *obj)
139 {
140         struct gk20a_instmem *imem = obj->base.imem;
141         /* there should not be any user left... */
142         WARN_ON(obj->use_cpt);
143         list_del(&obj->vaddr_node);
144         vunmap(obj->base.vaddr);
145         obj->base.vaddr = NULL;
146         imem->vaddr_use -= nvkm_memory_size(&obj->base.memory);
147         nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", imem->vaddr_use,
148                    imem->vaddr_max);
149 }
150
151 /*
152  * Must be called while holding gk20a_instmem::lock
153  */
154 static void
155 gk20a_instmem_vaddr_gc(struct gk20a_instmem *imem, const u64 size)
156 {
157         while (imem->vaddr_use + size > imem->vaddr_max) {
158                 /* no candidate that can be unmapped, abort... */
159                 if (list_empty(&imem->vaddr_lru))
160                         break;
161
162                 gk20a_instobj_iommu_recycle_vaddr(
163                                 list_first_entry(&imem->vaddr_lru,
164                                 struct gk20a_instobj_iommu, vaddr_node));
165         }
166 }
167
168 static void __iomem *
169 gk20a_instobj_acquire_dma(struct nvkm_memory *memory)
170 {
171         struct gk20a_instobj *node = gk20a_instobj(memory);
172         struct gk20a_instmem *imem = node->imem;
173         struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
174
175         nvkm_ltc_flush(ltc);
176
177         return node->vaddr;
178 }
179
180 static void __iomem *
181 gk20a_instobj_acquire_iommu(struct nvkm_memory *memory)
182 {
183         struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
184         struct gk20a_instmem *imem = node->base.imem;
185         struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
186         const u64 size = nvkm_memory_size(memory);
187         unsigned long flags;
188
189         nvkm_ltc_flush(ltc);
190
191         spin_lock_irqsave(&imem->lock, flags);
192
193         if (node->base.vaddr) {
194                 if (!node->use_cpt) {
195                         /* remove from LRU list since mapping in use again */
196                         list_del(&node->vaddr_node);
197                 }
198                 goto out;
199         }
200
201         /* try to free some address space if we reached the limit */
202         gk20a_instmem_vaddr_gc(imem, size);
203
204         /* map the pages */
205         node->base.vaddr = vmap(node->pages, size >> PAGE_SHIFT, VM_MAP,
206                                 pgprot_writecombine(PAGE_KERNEL));
207         if (!node->base.vaddr) {
208                 nvkm_error(&imem->base.subdev, "cannot map instobj - "
209                            "this is not going to end well...\n");
210                 goto out;
211         }
212
213         imem->vaddr_use += size;
214         nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n",
215                    imem->vaddr_use, imem->vaddr_max);
216
217 out:
218         node->use_cpt++;
219         spin_unlock_irqrestore(&imem->lock, flags);
220
221         return node->base.vaddr;
222 }
223
224 static void
225 gk20a_instobj_release_dma(struct nvkm_memory *memory)
226 {
227         struct gk20a_instobj *node = gk20a_instobj(memory);
228         struct gk20a_instmem *imem = node->imem;
229         struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
230
231         nvkm_ltc_invalidate(ltc);
232 }
233
234 static void
235 gk20a_instobj_release_iommu(struct nvkm_memory *memory)
236 {
237         struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
238         struct gk20a_instmem *imem = node->base.imem;
239         struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
240         unsigned long flags;
241
242         spin_lock_irqsave(&imem->lock, flags);
243
244         /* we should at least have one user to release... */
245         if (WARN_ON(node->use_cpt == 0))
246                 goto out;
247
248         /* add unused objs to the LRU list to recycle their mapping */
249         if (--node->use_cpt == 0)
250                 list_add_tail(&node->vaddr_node, &imem->vaddr_lru);
251
252 out:
253         spin_unlock_irqrestore(&imem->lock, flags);
254
255         wmb();
256         nvkm_ltc_invalidate(ltc);
257 }
258
259 static u32
260 gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset)
261 {
262         struct gk20a_instobj *node = gk20a_instobj(memory);
263
264         return node->vaddr[offset / 4];
265 }
266
267 static void
268 gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data)
269 {
270         struct gk20a_instobj *node = gk20a_instobj(memory);
271
272         node->vaddr[offset / 4] = data;
273 }
274
275 static void
276 gk20a_instobj_map(struct nvkm_memory *memory, struct nvkm_vma *vma, u64 offset)
277 {
278         struct gk20a_instobj *node = gk20a_instobj(memory);
279
280         nvkm_vm_map_at(vma, offset, &node->mem);
281 }
282
283 static void *
284 gk20a_instobj_dtor_dma(struct nvkm_memory *memory)
285 {
286         struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory);
287         struct gk20a_instmem *imem = node->base.imem;
288         struct device *dev = imem->base.subdev.device->dev;
289
290         if (unlikely(!node->base.vaddr))
291                 goto out;
292
293         dma_free_attrs(dev, node->base.mem.size << PAGE_SHIFT, node->base.vaddr,
294                        node->handle, &imem->attrs);
295
296 out:
297         return node;
298 }
299
300 static void *
301 gk20a_instobj_dtor_iommu(struct nvkm_memory *memory)
302 {
303         struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
304         struct gk20a_instmem *imem = node->base.imem;
305         struct device *dev = imem->base.subdev.device->dev;
306         struct nvkm_mm_node *r;
307         unsigned long flags;
308         int i;
309
310         if (unlikely(list_empty(&node->base.mem.regions)))
311                 goto out;
312
313         spin_lock_irqsave(&imem->lock, flags);
314
315         /* vaddr has already been recycled */
316         if (node->base.vaddr)
317                 gk20a_instobj_iommu_recycle_vaddr(node);
318
319         spin_unlock_irqrestore(&imem->lock, flags);
320
321         r = list_first_entry(&node->base.mem.regions, struct nvkm_mm_node,
322                              rl_entry);
323
324         /* clear IOMMU bit to unmap pages */
325         r->offset &= ~BIT(imem->iommu_bit - imem->iommu_pgshift);
326
327         /* Unmap pages from GPU address space and free them */
328         for (i = 0; i < node->base.mem.size; i++) {
329                 iommu_unmap(imem->domain,
330                             (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE);
331                 dma_unmap_page(dev, node->dma_addrs[i], PAGE_SIZE,
332                                DMA_BIDIRECTIONAL);
333                 __free_page(node->pages[i]);
334         }
335
336         /* Release area from GPU address space */
337         mutex_lock(imem->mm_mutex);
338         nvkm_mm_free(imem->mm, &r);
339         mutex_unlock(imem->mm_mutex);
340
341 out:
342         return node;
343 }
344
345 static const struct nvkm_memory_func
346 gk20a_instobj_func_dma = {
347         .dtor = gk20a_instobj_dtor_dma,
348         .target = gk20a_instobj_target,
349         .addr = gk20a_instobj_addr,
350         .size = gk20a_instobj_size,
351         .acquire = gk20a_instobj_acquire_dma,
352         .release = gk20a_instobj_release_dma,
353         .rd32 = gk20a_instobj_rd32,
354         .wr32 = gk20a_instobj_wr32,
355         .map = gk20a_instobj_map,
356 };
357
358 static const struct nvkm_memory_func
359 gk20a_instobj_func_iommu = {
360         .dtor = gk20a_instobj_dtor_iommu,
361         .target = gk20a_instobj_target,
362         .addr = gk20a_instobj_addr,
363         .size = gk20a_instobj_size,
364         .acquire = gk20a_instobj_acquire_iommu,
365         .release = gk20a_instobj_release_iommu,
366         .rd32 = gk20a_instobj_rd32,
367         .wr32 = gk20a_instobj_wr32,
368         .map = gk20a_instobj_map,
369 };
370
371 static int
372 gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align,
373                        struct gk20a_instobj **_node)
374 {
375         struct gk20a_instobj_dma *node;
376         struct nvkm_subdev *subdev = &imem->base.subdev;
377         struct device *dev = subdev->device->dev;
378
379         if (!(node = kzalloc(sizeof(*node), GFP_KERNEL)))
380                 return -ENOMEM;
381         *_node = &node->base;
382
383         nvkm_memory_ctor(&gk20a_instobj_func_dma, &node->base.memory);
384
385         node->base.vaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT,
386                                            &node->handle, GFP_KERNEL,
387                                            &imem->attrs);
388         if (!node->base.vaddr) {
389                 nvkm_error(subdev, "cannot allocate DMA memory\n");
390                 return -ENOMEM;
391         }
392
393         /* alignment check */
394         if (unlikely(node->handle & (align - 1)))
395                 nvkm_warn(subdev,
396                           "memory not aligned as requested: %pad (0x%x)\n",
397                           &node->handle, align);
398
399         /* present memory for being mapped using small pages */
400         node->r.type = 12;
401         node->r.offset = node->handle >> 12;
402         node->r.length = (npages << PAGE_SHIFT) >> 12;
403
404         node->base.mem.offset = node->handle;
405
406         INIT_LIST_HEAD(&node->base.mem.regions);
407         list_add_tail(&node->r.rl_entry, &node->base.mem.regions);
408
409         return 0;
410 }
411
412 static int
413 gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align,
414                          struct gk20a_instobj **_node)
415 {
416         struct gk20a_instobj_iommu *node;
417         struct nvkm_subdev *subdev = &imem->base.subdev;
418         struct device *dev = subdev->device->dev;
419         struct nvkm_mm_node *r;
420         int ret;
421         int i;
422
423         /*
424          * despite their variable size, instmem allocations are small enough
425          * (< 1 page) to be handled by kzalloc
426          */
427         if (!(node = kzalloc(sizeof(*node) + ((sizeof(node->pages[0]) +
428                              sizeof(*node->dma_addrs)) * npages), GFP_KERNEL)))
429                 return -ENOMEM;
430         *_node = &node->base;
431         node->dma_addrs = (void *)(node->pages + npages);
432
433         nvkm_memory_ctor(&gk20a_instobj_func_iommu, &node->base.memory);
434
435         /* Allocate backing memory */
436         for (i = 0; i < npages; i++) {
437                 struct page *p = alloc_page(GFP_KERNEL);
438                 dma_addr_t dma_adr;
439
440                 if (p == NULL) {
441                         ret = -ENOMEM;
442                         goto free_pages;
443                 }
444                 node->pages[i] = p;
445                 dma_adr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
446                 if (dma_mapping_error(dev, dma_adr)) {
447                         nvkm_error(subdev, "DMA mapping error!\n");
448                         ret = -ENOMEM;
449                         goto free_pages;
450                 }
451                 node->dma_addrs[i] = dma_adr;
452         }
453
454         mutex_lock(imem->mm_mutex);
455         /* Reserve area from GPU address space */
456         ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages,
457                            align >> imem->iommu_pgshift, &r);
458         mutex_unlock(imem->mm_mutex);
459         if (ret) {
460                 nvkm_error(subdev, "IOMMU space is full!\n");
461                 goto free_pages;
462         }
463
464         /* Map into GPU address space */
465         for (i = 0; i < npages; i++) {
466                 u32 offset = (r->offset + i) << imem->iommu_pgshift;
467
468                 ret = iommu_map(imem->domain, offset, node->dma_addrs[i],
469                                 PAGE_SIZE, IOMMU_READ | IOMMU_WRITE);
470                 if (ret < 0) {
471                         nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret);
472
473                         while (i-- > 0) {
474                                 offset -= PAGE_SIZE;
475                                 iommu_unmap(imem->domain, offset, PAGE_SIZE);
476                         }
477                         goto release_area;
478                 }
479         }
480
481         /* IOMMU bit tells that an address is to be resolved through the IOMMU */
482         r->offset |= BIT(imem->iommu_bit - imem->iommu_pgshift);
483
484         node->base.mem.offset = ((u64)r->offset) << imem->iommu_pgshift;
485
486         INIT_LIST_HEAD(&node->base.mem.regions);
487         list_add_tail(&r->rl_entry, &node->base.mem.regions);
488
489         return 0;
490
491 release_area:
492         mutex_lock(imem->mm_mutex);
493         nvkm_mm_free(imem->mm, &r);
494         mutex_unlock(imem->mm_mutex);
495
496 free_pages:
497         for (i = 0; i < npages && node->pages[i] != NULL; i++) {
498                 dma_addr_t dma_addr = node->dma_addrs[i];
499                 if (dma_addr)
500                         dma_unmap_page(dev, dma_addr, PAGE_SIZE,
501                                        DMA_BIDIRECTIONAL);
502                 __free_page(node->pages[i]);
503         }
504
505         return ret;
506 }
507
508 static int
509 gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero,
510                   struct nvkm_memory **pmemory)
511 {
512         struct gk20a_instmem *imem = gk20a_instmem(base);
513         struct nvkm_subdev *subdev = &imem->base.subdev;
514         struct gk20a_instobj *node = NULL;
515         int ret;
516
517         nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__,
518                    imem->domain ? "IOMMU" : "DMA", size, align);
519
520         /* Round size and align to page bounds */
521         size = max(roundup(size, PAGE_SIZE), PAGE_SIZE);
522         align = max(roundup(align, PAGE_SIZE), PAGE_SIZE);
523
524         if (imem->domain)
525                 ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT,
526                                                align, &node);
527         else
528                 ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT,
529                                              align, &node);
530         *pmemory = node ? &node->memory : NULL;
531         if (ret)
532                 return ret;
533
534         node->imem = imem;
535
536         /* present memory for being mapped using small pages */
537         node->mem.size = size >> 12;
538         node->mem.memtype = 0;
539         node->mem.page_shift = 12;
540
541         nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n",
542                    size, align, node->mem.offset);
543
544         return 0;
545 }
546
547 static void *
548 gk20a_instmem_dtor(struct nvkm_instmem *base)
549 {
550         struct gk20a_instmem *imem = gk20a_instmem(base);
551
552         /* perform some sanity checks... */
553         if (!list_empty(&imem->vaddr_lru))
554                 nvkm_warn(&base->subdev, "instobj LRU not empty!\n");
555
556         if (imem->vaddr_use != 0)
557                 nvkm_warn(&base->subdev, "instobj vmap area not empty! "
558                           "0x%x bytes still mapped\n", imem->vaddr_use);
559
560         return imem;
561 }
562
563 static const struct nvkm_instmem_func
564 gk20a_instmem = {
565         .dtor = gk20a_instmem_dtor,
566         .memory_new = gk20a_instobj_new,
567         .persistent = true,
568         .zero = false,
569 };
570
571 int
572 gk20a_instmem_new(struct nvkm_device *device, int index,
573                   struct nvkm_instmem **pimem)
574 {
575         struct nvkm_device_tegra *tdev = device->func->tegra(device);
576         struct gk20a_instmem *imem;
577
578         if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL)))
579                 return -ENOMEM;
580         nvkm_instmem_ctor(&gk20a_instmem, device, index, &imem->base);
581         spin_lock_init(&imem->lock);
582         *pimem = &imem->base;
583
584         /* do not allow more than 1MB of CPU-mapped instmem */
585         imem->vaddr_use = 0;
586         imem->vaddr_max = 0x100000;
587         INIT_LIST_HEAD(&imem->vaddr_lru);
588
589         if (tdev->iommu.domain) {
590                 imem->mm_mutex = &tdev->iommu.mutex;
591                 imem->mm = &tdev->iommu.mm;
592                 imem->domain = tdev->iommu.domain;
593                 imem->iommu_pgshift = tdev->iommu.pgshift;
594                 imem->iommu_bit = tdev->func->iommu_bit;
595
596                 nvkm_info(&imem->base.subdev, "using IOMMU\n");
597         } else {
598                 init_dma_attrs(&imem->attrs);
599                 dma_set_attr(DMA_ATTR_NON_CONSISTENT, &imem->attrs);
600                 dma_set_attr(DMA_ATTR_WEAK_ORDERING, &imem->attrs);
601                 dma_set_attr(DMA_ATTR_WRITE_COMBINE, &imem->attrs);
602
603                 nvkm_info(&imem->base.subdev, "using DMA API\n");
604         }
605
606         return 0;
607 }