Merge tag 'v3.14' into next
[cascardo/linux.git] / drivers / gpu / drm / vmwgfx / vmwgfx_buffer.c
1 /**************************************************************************
2  *
3  * Copyright © 2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31 #include <drm/ttm/ttm_page_alloc.h>
32
33 static uint32_t vram_placement_flags = TTM_PL_FLAG_VRAM |
34         TTM_PL_FLAG_CACHED;
35
36 static uint32_t vram_ne_placement_flags = TTM_PL_FLAG_VRAM |
37         TTM_PL_FLAG_CACHED |
38         TTM_PL_FLAG_NO_EVICT;
39
40 static uint32_t sys_placement_flags = TTM_PL_FLAG_SYSTEM |
41         TTM_PL_FLAG_CACHED;
42
43 static uint32_t sys_ne_placement_flags = TTM_PL_FLAG_SYSTEM |
44         TTM_PL_FLAG_CACHED |
45         TTM_PL_FLAG_NO_EVICT;
46
47 static uint32_t gmr_placement_flags = VMW_PL_FLAG_GMR |
48         TTM_PL_FLAG_CACHED;
49
50 static uint32_t gmr_ne_placement_flags = VMW_PL_FLAG_GMR |
51         TTM_PL_FLAG_CACHED |
52         TTM_PL_FLAG_NO_EVICT;
53
54 static uint32_t mob_placement_flags = VMW_PL_FLAG_MOB |
55         TTM_PL_FLAG_CACHED;
56
57 struct ttm_placement vmw_vram_placement = {
58         .fpfn = 0,
59         .lpfn = 0,
60         .num_placement = 1,
61         .placement = &vram_placement_flags,
62         .num_busy_placement = 1,
63         .busy_placement = &vram_placement_flags
64 };
65
66 static uint32_t vram_gmr_placement_flags[] = {
67         TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED,
68         VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
69 };
70
71 static uint32_t gmr_vram_placement_flags[] = {
72         VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED,
73         TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
74 };
75
76 struct ttm_placement vmw_vram_gmr_placement = {
77         .fpfn = 0,
78         .lpfn = 0,
79         .num_placement = 2,
80         .placement = vram_gmr_placement_flags,
81         .num_busy_placement = 1,
82         .busy_placement = &gmr_placement_flags
83 };
84
85 static uint32_t vram_gmr_ne_placement_flags[] = {
86         TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT,
87         VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
88 };
89
90 struct ttm_placement vmw_vram_gmr_ne_placement = {
91         .fpfn = 0,
92         .lpfn = 0,
93         .num_placement = 2,
94         .placement = vram_gmr_ne_placement_flags,
95         .num_busy_placement = 1,
96         .busy_placement = &gmr_ne_placement_flags
97 };
98
99 struct ttm_placement vmw_vram_sys_placement = {
100         .fpfn = 0,
101         .lpfn = 0,
102         .num_placement = 1,
103         .placement = &vram_placement_flags,
104         .num_busy_placement = 1,
105         .busy_placement = &sys_placement_flags
106 };
107
108 struct ttm_placement vmw_vram_ne_placement = {
109         .fpfn = 0,
110         .lpfn = 0,
111         .num_placement = 1,
112         .placement = &vram_ne_placement_flags,
113         .num_busy_placement = 1,
114         .busy_placement = &vram_ne_placement_flags
115 };
116
117 struct ttm_placement vmw_sys_placement = {
118         .fpfn = 0,
119         .lpfn = 0,
120         .num_placement = 1,
121         .placement = &sys_placement_flags,
122         .num_busy_placement = 1,
123         .busy_placement = &sys_placement_flags
124 };
125
126 struct ttm_placement vmw_sys_ne_placement = {
127         .fpfn = 0,
128         .lpfn = 0,
129         .num_placement = 1,
130         .placement = &sys_ne_placement_flags,
131         .num_busy_placement = 1,
132         .busy_placement = &sys_ne_placement_flags
133 };
134
135 static uint32_t evictable_placement_flags[] = {
136         TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED,
137         TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED,
138         VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED,
139         VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
140 };
141
142 struct ttm_placement vmw_evictable_placement = {
143         .fpfn = 0,
144         .lpfn = 0,
145         .num_placement = 4,
146         .placement = evictable_placement_flags,
147         .num_busy_placement = 1,
148         .busy_placement = &sys_placement_flags
149 };
150
151 struct ttm_placement vmw_srf_placement = {
152         .fpfn = 0,
153         .lpfn = 0,
154         .num_placement = 1,
155         .num_busy_placement = 2,
156         .placement = &gmr_placement_flags,
157         .busy_placement = gmr_vram_placement_flags
158 };
159
160 struct ttm_placement vmw_mob_placement = {
161         .fpfn = 0,
162         .lpfn = 0,
163         .num_placement = 1,
164         .num_busy_placement = 1,
165         .placement = &mob_placement_flags,
166         .busy_placement = &mob_placement_flags
167 };
168
169 struct vmw_ttm_tt {
170         struct ttm_dma_tt dma_ttm;
171         struct vmw_private *dev_priv;
172         int gmr_id;
173         struct vmw_mob *mob;
174         int mem_type;
175         struct sg_table sgt;
176         struct vmw_sg_table vsgt;
177         uint64_t sg_alloc_size;
178         bool mapped;
179 };
180
181 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
182
183 /**
184  * Helper functions to advance a struct vmw_piter iterator.
185  *
186  * @viter: Pointer to the iterator.
187  *
188  * These functions return false if past the end of the list,
189  * true otherwise. Functions are selected depending on the current
190  * DMA mapping mode.
191  */
192 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
193 {
194         return ++(viter->i) < viter->num_pages;
195 }
196
197 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
198 {
199         return __sg_page_iter_next(&viter->iter);
200 }
201
202
203 /**
204  * Helper functions to return a pointer to the current page.
205  *
206  * @viter: Pointer to the iterator
207  *
208  * These functions return a pointer to the page currently
209  * pointed to by @viter. Functions are selected depending on the
210  * current mapping mode.
211  */
212 static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
213 {
214         return viter->pages[viter->i];
215 }
216
217 static struct page *__vmw_piter_sg_page(struct vmw_piter *viter)
218 {
219         return sg_page_iter_page(&viter->iter);
220 }
221
222
223 /**
224  * Helper functions to return the DMA address of the current page.
225  *
226  * @viter: Pointer to the iterator
227  *
228  * These functions return the DMA address of the page currently
229  * pointed to by @viter. Functions are selected depending on the
230  * current mapping mode.
231  */
232 static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
233 {
234         return page_to_phys(viter->pages[viter->i]);
235 }
236
237 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
238 {
239         return viter->addrs[viter->i];
240 }
241
242 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
243 {
244         return sg_page_iter_dma_address(&viter->iter);
245 }
246
247
248 /**
249  * vmw_piter_start - Initialize a struct vmw_piter.
250  *
251  * @viter: Pointer to the iterator to initialize
252  * @vsgt: Pointer to a struct vmw_sg_table to initialize from
253  *
254  * Note that we're following the convention of __sg_page_iter_start, so that
255  * the iterator doesn't point to a valid page after initialization; it has
256  * to be advanced one step first.
257  */
258 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
259                      unsigned long p_offset)
260 {
261         viter->i = p_offset - 1;
262         viter->num_pages = vsgt->num_pages;
263         switch (vsgt->mode) {
264         case vmw_dma_phys:
265                 viter->next = &__vmw_piter_non_sg_next;
266                 viter->dma_address = &__vmw_piter_phys_addr;
267                 viter->page = &__vmw_piter_non_sg_page;
268                 viter->pages = vsgt->pages;
269                 break;
270         case vmw_dma_alloc_coherent:
271                 viter->next = &__vmw_piter_non_sg_next;
272                 viter->dma_address = &__vmw_piter_dma_addr;
273                 viter->page = &__vmw_piter_non_sg_page;
274                 viter->addrs = vsgt->addrs;
275                 viter->pages = vsgt->pages;
276                 break;
277         case vmw_dma_map_populate:
278         case vmw_dma_map_bind:
279                 viter->next = &__vmw_piter_sg_next;
280                 viter->dma_address = &__vmw_piter_sg_addr;
281                 viter->page = &__vmw_piter_sg_page;
282                 __sg_page_iter_start(&viter->iter, vsgt->sgt->sgl,
283                                      vsgt->sgt->orig_nents, p_offset);
284                 break;
285         default:
286                 BUG();
287         }
288 }
289
290 /**
291  * vmw_ttm_unmap_from_dma - unmap  device addresses previsouly mapped for
292  * TTM pages
293  *
294  * @vmw_tt: Pointer to a struct vmw_ttm_backend
295  *
296  * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
297  */
298 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
299 {
300         struct device *dev = vmw_tt->dev_priv->dev->dev;
301
302         dma_unmap_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.nents,
303                 DMA_BIDIRECTIONAL);
304         vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
305 }
306
307 /**
308  * vmw_ttm_map_for_dma - map TTM pages to get device addresses
309  *
310  * @vmw_tt: Pointer to a struct vmw_ttm_backend
311  *
312  * This function is used to get device addresses from the kernel DMA layer.
313  * However, it's violating the DMA API in that when this operation has been
314  * performed, it's illegal for the CPU to write to the pages without first
315  * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
316  * therefore only legal to call this function if we know that the function
317  * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
318  * a CPU write buffer flush.
319  */
320 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
321 {
322         struct device *dev = vmw_tt->dev_priv->dev->dev;
323         int ret;
324
325         ret = dma_map_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.orig_nents,
326                          DMA_BIDIRECTIONAL);
327         if (unlikely(ret == 0))
328                 return -ENOMEM;
329
330         vmw_tt->sgt.nents = ret;
331
332         return 0;
333 }
334
335 /**
336  * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
337  *
338  * @vmw_tt: Pointer to a struct vmw_ttm_tt
339  *
340  * Select the correct function for and make sure the TTM pages are
341  * visible to the device. Allocate storage for the device mappings.
342  * If a mapping has already been performed, indicated by the storage
343  * pointer being non NULL, the function returns success.
344  */
345 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
346 {
347         struct vmw_private *dev_priv = vmw_tt->dev_priv;
348         struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
349         struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
350         struct vmw_piter iter;
351         dma_addr_t old;
352         int ret = 0;
353         static size_t sgl_size;
354         static size_t sgt_size;
355
356         if (vmw_tt->mapped)
357                 return 0;
358
359         vsgt->mode = dev_priv->map_mode;
360         vsgt->pages = vmw_tt->dma_ttm.ttm.pages;
361         vsgt->num_pages = vmw_tt->dma_ttm.ttm.num_pages;
362         vsgt->addrs = vmw_tt->dma_ttm.dma_address;
363         vsgt->sgt = &vmw_tt->sgt;
364
365         switch (dev_priv->map_mode) {
366         case vmw_dma_map_bind:
367         case vmw_dma_map_populate:
368                 if (unlikely(!sgl_size)) {
369                         sgl_size = ttm_round_pot(sizeof(struct scatterlist));
370                         sgt_size = ttm_round_pot(sizeof(struct sg_table));
371                 }
372                 vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
373                 ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, false,
374                                            true);
375                 if (unlikely(ret != 0))
376                         return ret;
377
378                 ret = sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages,
379                                                 vsgt->num_pages, 0,
380                                                 (unsigned long)
381                                                 vsgt->num_pages << PAGE_SHIFT,
382                                                 GFP_KERNEL);
383                 if (unlikely(ret != 0))
384                         goto out_sg_alloc_fail;
385
386                 if (vsgt->num_pages > vmw_tt->sgt.nents) {
387                         uint64_t over_alloc =
388                                 sgl_size * (vsgt->num_pages -
389                                             vmw_tt->sgt.nents);
390
391                         ttm_mem_global_free(glob, over_alloc);
392                         vmw_tt->sg_alloc_size -= over_alloc;
393                 }
394
395                 ret = vmw_ttm_map_for_dma(vmw_tt);
396                 if (unlikely(ret != 0))
397                         goto out_map_fail;
398
399                 break;
400         default:
401                 break;
402         }
403
404         old = ~((dma_addr_t) 0);
405         vmw_tt->vsgt.num_regions = 0;
406         for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
407                 dma_addr_t cur = vmw_piter_dma_addr(&iter);
408
409                 if (cur != old + PAGE_SIZE)
410                         vmw_tt->vsgt.num_regions++;
411                 old = cur;
412         }
413
414         vmw_tt->mapped = true;
415         return 0;
416
417 out_map_fail:
418         sg_free_table(vmw_tt->vsgt.sgt);
419         vmw_tt->vsgt.sgt = NULL;
420 out_sg_alloc_fail:
421         ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
422         return ret;
423 }
424
425 /**
426  * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
427  *
428  * @vmw_tt: Pointer to a struct vmw_ttm_tt
429  *
430  * Tear down any previously set up device DMA mappings and free
431  * any storage space allocated for them. If there are no mappings set up,
432  * this function is a NOP.
433  */
434 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
435 {
436         struct vmw_private *dev_priv = vmw_tt->dev_priv;
437
438         if (!vmw_tt->vsgt.sgt)
439                 return;
440
441         switch (dev_priv->map_mode) {
442         case vmw_dma_map_bind:
443         case vmw_dma_map_populate:
444                 vmw_ttm_unmap_from_dma(vmw_tt);
445                 sg_free_table(vmw_tt->vsgt.sgt);
446                 vmw_tt->vsgt.sgt = NULL;
447                 ttm_mem_global_free(vmw_mem_glob(dev_priv),
448                                     vmw_tt->sg_alloc_size);
449                 break;
450         default:
451                 break;
452         }
453         vmw_tt->mapped = false;
454 }
455
456
457 /**
458  * vmw_bo_map_dma - Make sure buffer object pages are visible to the device
459  *
460  * @bo: Pointer to a struct ttm_buffer_object
461  *
462  * Wrapper around vmw_ttm_map_dma, that takes a TTM buffer object pointer
463  * instead of a pointer to a struct vmw_ttm_backend as argument.
464  * Note that the buffer object must be either pinned or reserved before
465  * calling this function.
466  */
467 int vmw_bo_map_dma(struct ttm_buffer_object *bo)
468 {
469         struct vmw_ttm_tt *vmw_tt =
470                 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
471
472         return vmw_ttm_map_dma(vmw_tt);
473 }
474
475
476 /**
477  * vmw_bo_unmap_dma - Make sure buffer object pages are visible to the device
478  *
479  * @bo: Pointer to a struct ttm_buffer_object
480  *
481  * Wrapper around vmw_ttm_unmap_dma, that takes a TTM buffer object pointer
482  * instead of a pointer to a struct vmw_ttm_backend as argument.
483  */
484 void vmw_bo_unmap_dma(struct ttm_buffer_object *bo)
485 {
486         struct vmw_ttm_tt *vmw_tt =
487                 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
488
489         vmw_ttm_unmap_dma(vmw_tt);
490 }
491
492
493 /**
494  * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
495  * TTM buffer object
496  *
497  * @bo: Pointer to a struct ttm_buffer_object
498  *
499  * Returns a pointer to a struct vmw_sg_table object. The object should
500  * not be freed after use.
501  * Note that for the device addresses to be valid, the buffer object must
502  * either be reserved or pinned.
503  */
504 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
505 {
506         struct vmw_ttm_tt *vmw_tt =
507                 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
508
509         return &vmw_tt->vsgt;
510 }
511
512
513 static int vmw_ttm_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
514 {
515         struct vmw_ttm_tt *vmw_be =
516                 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
517         int ret;
518
519         ret = vmw_ttm_map_dma(vmw_be);
520         if (unlikely(ret != 0))
521                 return ret;
522
523         vmw_be->gmr_id = bo_mem->start;
524         vmw_be->mem_type = bo_mem->mem_type;
525
526         switch (bo_mem->mem_type) {
527         case VMW_PL_GMR:
528                 return vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
529                                     ttm->num_pages, vmw_be->gmr_id);
530         case VMW_PL_MOB:
531                 if (unlikely(vmw_be->mob == NULL)) {
532                         vmw_be->mob =
533                                 vmw_mob_create(ttm->num_pages);
534                         if (unlikely(vmw_be->mob == NULL))
535                                 return -ENOMEM;
536                 }
537
538                 return vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
539                                     &vmw_be->vsgt, ttm->num_pages,
540                                     vmw_be->gmr_id);
541         default:
542                 BUG();
543         }
544         return 0;
545 }
546
547 static int vmw_ttm_unbind(struct ttm_tt *ttm)
548 {
549         struct vmw_ttm_tt *vmw_be =
550                 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
551
552         switch (vmw_be->mem_type) {
553         case VMW_PL_GMR:
554                 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
555                 break;
556         case VMW_PL_MOB:
557                 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
558                 break;
559         default:
560                 BUG();
561         }
562
563         if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
564                 vmw_ttm_unmap_dma(vmw_be);
565
566         return 0;
567 }
568
569
570 static void vmw_ttm_destroy(struct ttm_tt *ttm)
571 {
572         struct vmw_ttm_tt *vmw_be =
573                 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
574
575         vmw_ttm_unmap_dma(vmw_be);
576         if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
577                 ttm_dma_tt_fini(&vmw_be->dma_ttm);
578         else
579                 ttm_tt_fini(ttm);
580
581         if (vmw_be->mob)
582                 vmw_mob_destroy(vmw_be->mob);
583
584         kfree(vmw_be);
585 }
586
587
588 static int vmw_ttm_populate(struct ttm_tt *ttm)
589 {
590         struct vmw_ttm_tt *vmw_tt =
591                 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
592         struct vmw_private *dev_priv = vmw_tt->dev_priv;
593         struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
594         int ret;
595
596         if (ttm->state != tt_unpopulated)
597                 return 0;
598
599         if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
600                 size_t size =
601                         ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
602                 ret = ttm_mem_global_alloc(glob, size, false, true);
603                 if (unlikely(ret != 0))
604                         return ret;
605
606                 ret = ttm_dma_populate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
607                 if (unlikely(ret != 0))
608                         ttm_mem_global_free(glob, size);
609         } else
610                 ret = ttm_pool_populate(ttm);
611
612         return ret;
613 }
614
615 static void vmw_ttm_unpopulate(struct ttm_tt *ttm)
616 {
617         struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
618                                                  dma_ttm.ttm);
619         struct vmw_private *dev_priv = vmw_tt->dev_priv;
620         struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
621
622
623         if (vmw_tt->mob) {
624                 vmw_mob_destroy(vmw_tt->mob);
625                 vmw_tt->mob = NULL;
626         }
627
628         vmw_ttm_unmap_dma(vmw_tt);
629         if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
630                 size_t size =
631                         ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
632
633                 ttm_dma_unpopulate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
634                 ttm_mem_global_free(glob, size);
635         } else
636                 ttm_pool_unpopulate(ttm);
637 }
638
639 static struct ttm_backend_func vmw_ttm_func = {
640         .bind = vmw_ttm_bind,
641         .unbind = vmw_ttm_unbind,
642         .destroy = vmw_ttm_destroy,
643 };
644
645 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_bo_device *bdev,
646                                  unsigned long size, uint32_t page_flags,
647                                  struct page *dummy_read_page)
648 {
649         struct vmw_ttm_tt *vmw_be;
650         int ret;
651
652         vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
653         if (!vmw_be)
654                 return NULL;
655
656         vmw_be->dma_ttm.ttm.func = &vmw_ttm_func;
657         vmw_be->dev_priv = container_of(bdev, struct vmw_private, bdev);
658         vmw_be->mob = NULL;
659
660         if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
661                 ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bdev, size, page_flags,
662                                       dummy_read_page);
663         else
664                 ret = ttm_tt_init(&vmw_be->dma_ttm.ttm, bdev, size, page_flags,
665                                   dummy_read_page);
666         if (unlikely(ret != 0))
667                 goto out_no_init;
668
669         return &vmw_be->dma_ttm.ttm;
670 out_no_init:
671         kfree(vmw_be);
672         return NULL;
673 }
674
675 static int vmw_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
676 {
677         return 0;
678 }
679
680 static int vmw_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
681                       struct ttm_mem_type_manager *man)
682 {
683         switch (type) {
684         case TTM_PL_SYSTEM:
685                 /* System memory */
686
687                 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
688                 man->available_caching = TTM_PL_FLAG_CACHED;
689                 man->default_caching = TTM_PL_FLAG_CACHED;
690                 break;
691         case TTM_PL_VRAM:
692                 /* "On-card" video ram */
693                 man->func = &ttm_bo_manager_func;
694                 man->gpu_offset = 0;
695                 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_MAPPABLE;
696                 man->available_caching = TTM_PL_FLAG_CACHED;
697                 man->default_caching = TTM_PL_FLAG_CACHED;
698                 break;
699         case VMW_PL_GMR:
700         case VMW_PL_MOB:
701                 /*
702                  * "Guest Memory Regions" is an aperture like feature with
703                  *  one slot per bo. There is an upper limit of the number of
704                  *  slots as well as the bo size.
705                  */
706                 man->func = &vmw_gmrid_manager_func;
707                 man->gpu_offset = 0;
708                 man->flags = TTM_MEMTYPE_FLAG_CMA | TTM_MEMTYPE_FLAG_MAPPABLE;
709                 man->available_caching = TTM_PL_FLAG_CACHED;
710                 man->default_caching = TTM_PL_FLAG_CACHED;
711                 break;
712         default:
713                 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
714                 return -EINVAL;
715         }
716         return 0;
717 }
718
719 static void vmw_evict_flags(struct ttm_buffer_object *bo,
720                      struct ttm_placement *placement)
721 {
722         *placement = vmw_sys_placement;
723 }
724
725 static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
726 {
727         struct ttm_object_file *tfile =
728                 vmw_fpriv((struct drm_file *)filp->private_data)->tfile;
729
730         return vmw_user_dmabuf_verify_access(bo, tfile);
731 }
732
733 static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
734 {
735         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
736         struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
737
738         mem->bus.addr = NULL;
739         mem->bus.is_iomem = false;
740         mem->bus.offset = 0;
741         mem->bus.size = mem->num_pages << PAGE_SHIFT;
742         mem->bus.base = 0;
743         if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
744                 return -EINVAL;
745         switch (mem->mem_type) {
746         case TTM_PL_SYSTEM:
747         case VMW_PL_GMR:
748         case VMW_PL_MOB:
749                 return 0;
750         case TTM_PL_VRAM:
751                 mem->bus.offset = mem->start << PAGE_SHIFT;
752                 mem->bus.base = dev_priv->vram_start;
753                 mem->bus.is_iomem = true;
754                 break;
755         default:
756                 return -EINVAL;
757         }
758         return 0;
759 }
760
761 static void vmw_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
762 {
763 }
764
765 static int vmw_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
766 {
767         return 0;
768 }
769
770 /**
771  * FIXME: We're using the old vmware polling method to sync.
772  * Do this with fences instead.
773  */
774
775 static void *vmw_sync_obj_ref(void *sync_obj)
776 {
777
778         return (void *)
779                 vmw_fence_obj_reference((struct vmw_fence_obj *) sync_obj);
780 }
781
782 static void vmw_sync_obj_unref(void **sync_obj)
783 {
784         vmw_fence_obj_unreference((struct vmw_fence_obj **) sync_obj);
785 }
786
787 static int vmw_sync_obj_flush(void *sync_obj)
788 {
789         vmw_fence_obj_flush((struct vmw_fence_obj *) sync_obj);
790         return 0;
791 }
792
793 static bool vmw_sync_obj_signaled(void *sync_obj)
794 {
795         return  vmw_fence_obj_signaled((struct vmw_fence_obj *) sync_obj,
796                                        DRM_VMW_FENCE_FLAG_EXEC);
797
798 }
799
800 static int vmw_sync_obj_wait(void *sync_obj, bool lazy, bool interruptible)
801 {
802         return vmw_fence_obj_wait((struct vmw_fence_obj *) sync_obj,
803                                   DRM_VMW_FENCE_FLAG_EXEC,
804                                   lazy, interruptible,
805                                   VMW_FENCE_WAIT_TIMEOUT);
806 }
807
808 /**
809  * vmw_move_notify - TTM move_notify_callback
810  *
811  * @bo:             The TTM buffer object about to move.
812  * @mem:            The truct ttm_mem_reg indicating to what memory
813  *                  region the move is taking place.
814  *
815  * Calls move_notify for all subsystems needing it.
816  * (currently only resources).
817  */
818 static void vmw_move_notify(struct ttm_buffer_object *bo,
819                             struct ttm_mem_reg *mem)
820 {
821         vmw_resource_move_notify(bo, mem);
822 }
823
824
825 /**
826  * vmw_swap_notify - TTM move_notify_callback
827  *
828  * @bo:             The TTM buffer object about to be swapped out.
829  */
830 static void vmw_swap_notify(struct ttm_buffer_object *bo)
831 {
832         struct ttm_bo_device *bdev = bo->bdev;
833
834         spin_lock(&bdev->fence_lock);
835         ttm_bo_wait(bo, false, false, false);
836         spin_unlock(&bdev->fence_lock);
837 }
838
839
840 struct ttm_bo_driver vmw_bo_driver = {
841         .ttm_tt_create = &vmw_ttm_tt_create,
842         .ttm_tt_populate = &vmw_ttm_populate,
843         .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
844         .invalidate_caches = vmw_invalidate_caches,
845         .init_mem_type = vmw_init_mem_type,
846         .evict_flags = vmw_evict_flags,
847         .move = NULL,
848         .verify_access = vmw_verify_access,
849         .sync_obj_signaled = vmw_sync_obj_signaled,
850         .sync_obj_wait = vmw_sync_obj_wait,
851         .sync_obj_flush = vmw_sync_obj_flush,
852         .sync_obj_unref = vmw_sync_obj_unref,
853         .sync_obj_ref = vmw_sync_obj_ref,
854         .move_notify = vmw_move_notify,
855         .swap_notify = vmw_swap_notify,
856         .fault_reserve_notify = &vmw_ttm_fault_reserve_notify,
857         .io_mem_reserve = &vmw_ttm_io_mem_reserve,
858         .io_mem_free = &vmw_ttm_io_mem_free,
859 };