Merge tag 'iio-fixes-for-4.0a' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[cascardo/linux.git] / drivers / hv / hv_balloon.c
1 /*
2  * Copyright (c) 2012, Microsoft Corporation.
3  *
4  * Author:
5  *   K. Y. Srinivasan <kys@microsoft.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  * NON INFRINGEMENT.  See the GNU General Public License for more
15  * details.
16  *
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/jiffies.h>
23 #include <linux/mman.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/kthread.h>
29 #include <linux/completion.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/memory.h>
32 #include <linux/notifier.h>
33 #include <linux/percpu_counter.h>
34
35 #include <linux/hyperv.h>
36
37 /*
38  * We begin with definitions supporting the Dynamic Memory protocol
39  * with the host.
40  *
41  * Begin protocol definitions.
42  */
43
44
45
46 /*
47  * Protocol versions. The low word is the minor version, the high word the major
48  * version.
49  *
50  * History:
51  * Initial version 1.0
52  * Changed to 0.1 on 2009/03/25
53  * Changes to 0.2 on 2009/05/14
54  * Changes to 0.3 on 2009/12/03
55  * Changed to 1.0 on 2011/04/05
56  */
57
58 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
59 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
60 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
61
62 enum {
63         DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
64         DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
65
66         DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
67         DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
68
69         DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN8
70 };
71
72
73
74 /*
75  * Message Types
76  */
77
78 enum dm_message_type {
79         /*
80          * Version 0.3
81          */
82         DM_ERROR                        = 0,
83         DM_VERSION_REQUEST              = 1,
84         DM_VERSION_RESPONSE             = 2,
85         DM_CAPABILITIES_REPORT          = 3,
86         DM_CAPABILITIES_RESPONSE        = 4,
87         DM_STATUS_REPORT                = 5,
88         DM_BALLOON_REQUEST              = 6,
89         DM_BALLOON_RESPONSE             = 7,
90         DM_UNBALLOON_REQUEST            = 8,
91         DM_UNBALLOON_RESPONSE           = 9,
92         DM_MEM_HOT_ADD_REQUEST          = 10,
93         DM_MEM_HOT_ADD_RESPONSE         = 11,
94         DM_VERSION_03_MAX               = 11,
95         /*
96          * Version 1.0.
97          */
98         DM_INFO_MESSAGE                 = 12,
99         DM_VERSION_1_MAX                = 12
100 };
101
102
103 /*
104  * Structures defining the dynamic memory management
105  * protocol.
106  */
107
108 union dm_version {
109         struct {
110                 __u16 minor_version;
111                 __u16 major_version;
112         };
113         __u32 version;
114 } __packed;
115
116
117 union dm_caps {
118         struct {
119                 __u64 balloon:1;
120                 __u64 hot_add:1;
121                 /*
122                  * To support guests that may have alignment
123                  * limitations on hot-add, the guest can specify
124                  * its alignment requirements; a value of n
125                  * represents an alignment of 2^n in mega bytes.
126                  */
127                 __u64 hot_add_alignment:4;
128                 __u64 reservedz:58;
129         } cap_bits;
130         __u64 caps;
131 } __packed;
132
133 union dm_mem_page_range {
134         struct  {
135                 /*
136                  * The PFN number of the first page in the range.
137                  * 40 bits is the architectural limit of a PFN
138                  * number for AMD64.
139                  */
140                 __u64 start_page:40;
141                 /*
142                  * The number of pages in the range.
143                  */
144                 __u64 page_cnt:24;
145         } finfo;
146         __u64  page_range;
147 } __packed;
148
149
150
151 /*
152  * The header for all dynamic memory messages:
153  *
154  * type: Type of the message.
155  * size: Size of the message in bytes; including the header.
156  * trans_id: The guest is responsible for manufacturing this ID.
157  */
158
159 struct dm_header {
160         __u16 type;
161         __u16 size;
162         __u32 trans_id;
163 } __packed;
164
165 /*
166  * A generic message format for dynamic memory.
167  * Specific message formats are defined later in the file.
168  */
169
170 struct dm_message {
171         struct dm_header hdr;
172         __u8 data[]; /* enclosed message */
173 } __packed;
174
175
176 /*
177  * Specific message types supporting the dynamic memory protocol.
178  */
179
180 /*
181  * Version negotiation message. Sent from the guest to the host.
182  * The guest is free to try different versions until the host
183  * accepts the version.
184  *
185  * dm_version: The protocol version requested.
186  * is_last_attempt: If TRUE, this is the last version guest will request.
187  * reservedz: Reserved field, set to zero.
188  */
189
190 struct dm_version_request {
191         struct dm_header hdr;
192         union dm_version version;
193         __u32 is_last_attempt:1;
194         __u32 reservedz:31;
195 } __packed;
196
197 /*
198  * Version response message; Host to Guest and indicates
199  * if the host has accepted the version sent by the guest.
200  *
201  * is_accepted: If TRUE, host has accepted the version and the guest
202  * should proceed to the next stage of the protocol. FALSE indicates that
203  * guest should re-try with a different version.
204  *
205  * reservedz: Reserved field, set to zero.
206  */
207
208 struct dm_version_response {
209         struct dm_header hdr;
210         __u64 is_accepted:1;
211         __u64 reservedz:63;
212 } __packed;
213
214 /*
215  * Message reporting capabilities. This is sent from the guest to the
216  * host.
217  */
218
219 struct dm_capabilities {
220         struct dm_header hdr;
221         union dm_caps caps;
222         __u64 min_page_cnt;
223         __u64 max_page_number;
224 } __packed;
225
226 /*
227  * Response to the capabilities message. This is sent from the host to the
228  * guest. This message notifies if the host has accepted the guest's
229  * capabilities. If the host has not accepted, the guest must shutdown
230  * the service.
231  *
232  * is_accepted: Indicates if the host has accepted guest's capabilities.
233  * reservedz: Must be 0.
234  */
235
236 struct dm_capabilities_resp_msg {
237         struct dm_header hdr;
238         __u64 is_accepted:1;
239         __u64 reservedz:63;
240 } __packed;
241
242 /*
243  * This message is used to report memory pressure from the guest.
244  * This message is not part of any transaction and there is no
245  * response to this message.
246  *
247  * num_avail: Available memory in pages.
248  * num_committed: Committed memory in pages.
249  * page_file_size: The accumulated size of all page files
250  *                 in the system in pages.
251  * zero_free: The nunber of zero and free pages.
252  * page_file_writes: The writes to the page file in pages.
253  * io_diff: An indicator of file cache efficiency or page file activity,
254  *          calculated as File Cache Page Fault Count - Page Read Count.
255  *          This value is in pages.
256  *
257  * Some of these metrics are Windows specific and fortunately
258  * the algorithm on the host side that computes the guest memory
259  * pressure only uses num_committed value.
260  */
261
262 struct dm_status {
263         struct dm_header hdr;
264         __u64 num_avail;
265         __u64 num_committed;
266         __u64 page_file_size;
267         __u64 zero_free;
268         __u32 page_file_writes;
269         __u32 io_diff;
270 } __packed;
271
272
273 /*
274  * Message to ask the guest to allocate memory - balloon up message.
275  * This message is sent from the host to the guest. The guest may not be
276  * able to allocate as much memory as requested.
277  *
278  * num_pages: number of pages to allocate.
279  */
280
281 struct dm_balloon {
282         struct dm_header hdr;
283         __u32 num_pages;
284         __u32 reservedz;
285 } __packed;
286
287
288 /*
289  * Balloon response message; this message is sent from the guest
290  * to the host in response to the balloon message.
291  *
292  * reservedz: Reserved; must be set to zero.
293  * more_pages: If FALSE, this is the last message of the transaction.
294  * if TRUE there will atleast one more message from the guest.
295  *
296  * range_count: The number of ranges in the range array.
297  *
298  * range_array: An array of page ranges returned to the host.
299  *
300  */
301
302 struct dm_balloon_response {
303         struct dm_header hdr;
304         __u32 reservedz;
305         __u32 more_pages:1;
306         __u32 range_count:31;
307         union dm_mem_page_range range_array[];
308 } __packed;
309
310 /*
311  * Un-balloon message; this message is sent from the host
312  * to the guest to give guest more memory.
313  *
314  * more_pages: If FALSE, this is the last message of the transaction.
315  * if TRUE there will atleast one more message from the guest.
316  *
317  * reservedz: Reserved; must be set to zero.
318  *
319  * range_count: The number of ranges in the range array.
320  *
321  * range_array: An array of page ranges returned to the host.
322  *
323  */
324
325 struct dm_unballoon_request {
326         struct dm_header hdr;
327         __u32 more_pages:1;
328         __u32 reservedz:31;
329         __u32 range_count;
330         union dm_mem_page_range range_array[];
331 } __packed;
332
333 /*
334  * Un-balloon response message; this message is sent from the guest
335  * to the host in response to an unballoon request.
336  *
337  */
338
339 struct dm_unballoon_response {
340         struct dm_header hdr;
341 } __packed;
342
343
344 /*
345  * Hot add request message. Message sent from the host to the guest.
346  *
347  * mem_range: Memory range to hot add.
348  *
349  * On Linux we currently don't support this since we cannot hot add
350  * arbitrary granularity of memory.
351  */
352
353 struct dm_hot_add {
354         struct dm_header hdr;
355         union dm_mem_page_range range;
356 } __packed;
357
358 /*
359  * Hot add response message.
360  * This message is sent by the guest to report the status of a hot add request.
361  * If page_count is less than the requested page count, then the host should
362  * assume all further hot add requests will fail, since this indicates that
363  * the guest has hit an upper physical memory barrier.
364  *
365  * Hot adds may also fail due to low resources; in this case, the guest must
366  * not complete this message until the hot add can succeed, and the host must
367  * not send a new hot add request until the response is sent.
368  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
369  * times it fails the request.
370  *
371  *
372  * page_count: number of pages that were successfully hot added.
373  *
374  * result: result of the operation 1: success, 0: failure.
375  *
376  */
377
378 struct dm_hot_add_response {
379         struct dm_header hdr;
380         __u32 page_count;
381         __u32 result;
382 } __packed;
383
384 /*
385  * Types of information sent from host to the guest.
386  */
387
388 enum dm_info_type {
389         INFO_TYPE_MAX_PAGE_CNT = 0,
390         MAX_INFO_TYPE
391 };
392
393
394 /*
395  * Header for the information message.
396  */
397
398 struct dm_info_header {
399         enum dm_info_type type;
400         __u32 data_size;
401 } __packed;
402
403 /*
404  * This message is sent from the host to the guest to pass
405  * some relevant information (win8 addition).
406  *
407  * reserved: no used.
408  * info_size: size of the information blob.
409  * info: information blob.
410  */
411
412 struct dm_info_msg {
413         struct dm_header hdr;
414         __u32 reserved;
415         __u32 info_size;
416         __u8  info[];
417 };
418
419 /*
420  * End protocol definitions.
421  */
422
423 /*
424  * State to manage hot adding memory into the guest.
425  * The range start_pfn : end_pfn specifies the range
426  * that the host has asked us to hot add. The range
427  * start_pfn : ha_end_pfn specifies the range that we have
428  * currently hot added. We hot add in multiples of 128M
429  * chunks; it is possible that we may not be able to bring
430  * online all the pages in the region. The range
431  * covered_start_pfn : covered_end_pfn defines the pages that can
432  * be brough online.
433  */
434
435 struct hv_hotadd_state {
436         struct list_head list;
437         unsigned long start_pfn;
438         unsigned long covered_start_pfn;
439         unsigned long covered_end_pfn;
440         unsigned long ha_end_pfn;
441         unsigned long end_pfn;
442 };
443
444 struct balloon_state {
445         __u32 num_pages;
446         struct work_struct wrk;
447 };
448
449 struct hot_add_wrk {
450         union dm_mem_page_range ha_page_range;
451         union dm_mem_page_range ha_region_range;
452         struct work_struct wrk;
453 };
454
455 static bool hot_add = true;
456 static bool do_hot_add;
457 /*
458  * Delay reporting memory pressure by
459  * the specified number of seconds.
460  */
461 static uint pressure_report_delay = 45;
462
463 /*
464  * The last time we posted a pressure report to host.
465  */
466 static unsigned long last_post_time;
467
468 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
469 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
470
471 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
472 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
473 static atomic_t trans_id = ATOMIC_INIT(0);
474
475 static int dm_ring_size = (5 * PAGE_SIZE);
476
477 /*
478  * Driver specific state.
479  */
480
481 enum hv_dm_state {
482         DM_INITIALIZING = 0,
483         DM_INITIALIZED,
484         DM_BALLOON_UP,
485         DM_BALLOON_DOWN,
486         DM_HOT_ADD,
487         DM_INIT_ERROR
488 };
489
490
491 static __u8 recv_buffer[PAGE_SIZE];
492 static __u8 *send_buffer;
493 #define PAGES_IN_2M     512
494 #define HA_CHUNK (32 * 1024)
495
496 struct hv_dynmem_device {
497         struct hv_device *dev;
498         enum hv_dm_state state;
499         struct completion host_event;
500         struct completion config_event;
501
502         /*
503          * Number of pages we have currently ballooned out.
504          */
505         unsigned int num_pages_ballooned;
506
507         /*
508          * State to manage the ballooning (up) operation.
509          */
510         struct balloon_state balloon_wrk;
511
512         /*
513          * State to execute the "hot-add" operation.
514          */
515         struct hot_add_wrk ha_wrk;
516
517         /*
518          * This state tracks if the host has specified a hot-add
519          * region.
520          */
521         bool host_specified_ha_region;
522
523         /*
524          * State to synchronize hot-add.
525          */
526         struct completion  ol_waitevent;
527         bool ha_waiting;
528         /*
529          * This thread handles hot-add
530          * requests from the host as well as notifying
531          * the host with regards to memory pressure in
532          * the guest.
533          */
534         struct task_struct *thread;
535
536         struct mutex ha_region_mutex;
537         struct completion waiter_event;
538
539         /*
540          * A list of hot-add regions.
541          */
542         struct list_head ha_region_list;
543
544         /*
545          * We start with the highest version we can support
546          * and downgrade based on the host; we save here the
547          * next version to try.
548          */
549         __u32 next_version;
550 };
551
552 static struct hv_dynmem_device dm_device;
553
554 static void post_status(struct hv_dynmem_device *dm);
555
556 #ifdef CONFIG_MEMORY_HOTPLUG
557 static void acquire_region_mutex(bool trylock)
558 {
559         if (trylock) {
560                 reinit_completion(&dm_device.waiter_event);
561                 while (!mutex_trylock(&dm_device.ha_region_mutex))
562                         wait_for_completion(&dm_device.waiter_event);
563         } else {
564                 mutex_lock(&dm_device.ha_region_mutex);
565         }
566 }
567
568 static void release_region_mutex(bool trylock)
569 {
570         if (trylock) {
571                 mutex_unlock(&dm_device.ha_region_mutex);
572         } else {
573                 mutex_unlock(&dm_device.ha_region_mutex);
574                 complete(&dm_device.waiter_event);
575         }
576 }
577
578 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
579                               void *v)
580 {
581         switch (val) {
582         case MEM_GOING_ONLINE:
583                 acquire_region_mutex(true);
584                 break;
585
586         case MEM_ONLINE:
587         case MEM_CANCEL_ONLINE:
588                 release_region_mutex(true);
589                 if (dm_device.ha_waiting) {
590                         dm_device.ha_waiting = false;
591                         complete(&dm_device.ol_waitevent);
592                 }
593                 break;
594
595         case MEM_GOING_OFFLINE:
596         case MEM_OFFLINE:
597         case MEM_CANCEL_OFFLINE:
598                 break;
599         }
600         return NOTIFY_OK;
601 }
602
603 static struct notifier_block hv_memory_nb = {
604         .notifier_call = hv_memory_notifier,
605         .priority = 0
606 };
607
608
609 static void hv_bring_pgs_online(unsigned long start_pfn, unsigned long size)
610 {
611         int i;
612
613         for (i = 0; i < size; i++) {
614                 struct page *pg;
615                 pg = pfn_to_page(start_pfn + i);
616                 __online_page_set_limits(pg);
617                 __online_page_increment_counters(pg);
618                 __online_page_free(pg);
619         }
620 }
621
622 static void hv_mem_hot_add(unsigned long start, unsigned long size,
623                                 unsigned long pfn_count,
624                                 struct hv_hotadd_state *has)
625 {
626         int ret = 0;
627         int i, nid;
628         unsigned long start_pfn;
629         unsigned long processed_pfn;
630         unsigned long total_pfn = pfn_count;
631
632         for (i = 0; i < (size/HA_CHUNK); i++) {
633                 start_pfn = start + (i * HA_CHUNK);
634                 has->ha_end_pfn +=  HA_CHUNK;
635
636                 if (total_pfn > HA_CHUNK) {
637                         processed_pfn = HA_CHUNK;
638                         total_pfn -= HA_CHUNK;
639                 } else {
640                         processed_pfn = total_pfn;
641                         total_pfn = 0;
642                 }
643
644                 has->covered_end_pfn +=  processed_pfn;
645
646                 init_completion(&dm_device.ol_waitevent);
647                 dm_device.ha_waiting = true;
648
649                 release_region_mutex(false);
650                 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
651                 ret = add_memory(nid, PFN_PHYS((start_pfn)),
652                                 (HA_CHUNK << PAGE_SHIFT));
653
654                 if (ret) {
655                         pr_info("hot_add memory failed error is %d\n", ret);
656                         if (ret == -EEXIST) {
657                                 /*
658                                  * This error indicates that the error
659                                  * is not a transient failure. This is the
660                                  * case where the guest's physical address map
661                                  * precludes hot adding memory. Stop all further
662                                  * memory hot-add.
663                                  */
664                                 do_hot_add = false;
665                         }
666                         has->ha_end_pfn -= HA_CHUNK;
667                         has->covered_end_pfn -=  processed_pfn;
668                         break;
669                 }
670
671                 /*
672                  * Wait for the memory block to be onlined.
673                  * Since the hot add has succeeded, it is ok to
674                  * proceed even if the pages in the hot added region
675                  * have not been "onlined" within the allowed time.
676                  */
677                 wait_for_completion_timeout(&dm_device.ol_waitevent, 5*HZ);
678                 acquire_region_mutex(false);
679                 post_status(&dm_device);
680         }
681
682         return;
683 }
684
685 static void hv_online_page(struct page *pg)
686 {
687         struct list_head *cur;
688         struct hv_hotadd_state *has;
689         unsigned long cur_start_pgp;
690         unsigned long cur_end_pgp;
691
692         list_for_each(cur, &dm_device.ha_region_list) {
693                 has = list_entry(cur, struct hv_hotadd_state, list);
694                 cur_start_pgp = (unsigned long)
695                                 pfn_to_page(has->covered_start_pfn);
696                 cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn);
697
698                 if (((unsigned long)pg >= cur_start_pgp) &&
699                         ((unsigned long)pg < cur_end_pgp)) {
700                         /*
701                          * This frame is currently backed; online the
702                          * page.
703                          */
704                         __online_page_set_limits(pg);
705                         __online_page_increment_counters(pg);
706                         __online_page_free(pg);
707                         has->covered_start_pfn++;
708                 }
709         }
710 }
711
712 static bool pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
713 {
714         struct list_head *cur;
715         struct hv_hotadd_state *has;
716         unsigned long residual, new_inc;
717
718         if (list_empty(&dm_device.ha_region_list))
719                 return false;
720
721         list_for_each(cur, &dm_device.ha_region_list) {
722                 has = list_entry(cur, struct hv_hotadd_state, list);
723
724                 /*
725                  * If the pfn range we are dealing with is not in the current
726                  * "hot add block", move on.
727                  */
728                 if ((start_pfn >= has->end_pfn))
729                         continue;
730                 /*
731                  * If the current hot add-request extends beyond
732                  * our current limit; extend it.
733                  */
734                 if ((start_pfn + pfn_cnt) > has->end_pfn) {
735                         residual = (start_pfn + pfn_cnt - has->end_pfn);
736                         /*
737                          * Extend the region by multiples of HA_CHUNK.
738                          */
739                         new_inc = (residual / HA_CHUNK) * HA_CHUNK;
740                         if (residual % HA_CHUNK)
741                                 new_inc += HA_CHUNK;
742
743                         has->end_pfn += new_inc;
744                 }
745
746                 /*
747                  * If the current start pfn is not where the covered_end
748                  * is, update it.
749                  */
750
751                 if (has->covered_end_pfn != start_pfn) {
752                         has->covered_end_pfn = start_pfn;
753                         has->covered_start_pfn = start_pfn;
754                 }
755                 return true;
756
757         }
758
759         return false;
760 }
761
762 static unsigned long handle_pg_range(unsigned long pg_start,
763                                         unsigned long pg_count)
764 {
765         unsigned long start_pfn = pg_start;
766         unsigned long pfn_cnt = pg_count;
767         unsigned long size;
768         struct list_head *cur;
769         struct hv_hotadd_state *has;
770         unsigned long pgs_ol = 0;
771         unsigned long old_covered_state;
772
773         if (list_empty(&dm_device.ha_region_list))
774                 return 0;
775
776         list_for_each(cur, &dm_device.ha_region_list) {
777                 has = list_entry(cur, struct hv_hotadd_state, list);
778
779                 /*
780                  * If the pfn range we are dealing with is not in the current
781                  * "hot add block", move on.
782                  */
783                 if ((start_pfn >= has->end_pfn))
784                         continue;
785
786                 old_covered_state = has->covered_end_pfn;
787
788                 if (start_pfn < has->ha_end_pfn) {
789                         /*
790                          * This is the case where we are backing pages
791                          * in an already hot added region. Bring
792                          * these pages online first.
793                          */
794                         pgs_ol = has->ha_end_pfn - start_pfn;
795                         if (pgs_ol > pfn_cnt)
796                                 pgs_ol = pfn_cnt;
797                         hv_bring_pgs_online(start_pfn, pgs_ol);
798                         has->covered_end_pfn +=  pgs_ol;
799                         has->covered_start_pfn +=  pgs_ol;
800                         pfn_cnt -= pgs_ol;
801                 }
802
803                 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
804                         /*
805                          * We have some residual hot add range
806                          * that needs to be hot added; hot add
807                          * it now. Hot add a multiple of
808                          * of HA_CHUNK that fully covers the pages
809                          * we have.
810                          */
811                         size = (has->end_pfn - has->ha_end_pfn);
812                         if (pfn_cnt <= size) {
813                                 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
814                                 if (pfn_cnt % HA_CHUNK)
815                                         size += HA_CHUNK;
816                         } else {
817                                 pfn_cnt = size;
818                         }
819                         hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
820                 }
821                 /*
822                  * If we managed to online any pages that were given to us,
823                  * we declare success.
824                  */
825                 return has->covered_end_pfn - old_covered_state;
826
827         }
828
829         return 0;
830 }
831
832 static unsigned long process_hot_add(unsigned long pg_start,
833                                         unsigned long pfn_cnt,
834                                         unsigned long rg_start,
835                                         unsigned long rg_size)
836 {
837         struct hv_hotadd_state *ha_region = NULL;
838
839         if (pfn_cnt == 0)
840                 return 0;
841
842         if (!dm_device.host_specified_ha_region)
843                 if (pfn_covered(pg_start, pfn_cnt))
844                         goto do_pg_range;
845
846         /*
847          * If the host has specified a hot-add range; deal with it first.
848          */
849
850         if (rg_size != 0) {
851                 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
852                 if (!ha_region)
853                         return 0;
854
855                 INIT_LIST_HEAD(&ha_region->list);
856
857                 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
858                 ha_region->start_pfn = rg_start;
859                 ha_region->ha_end_pfn = rg_start;
860                 ha_region->covered_start_pfn = pg_start;
861                 ha_region->covered_end_pfn = pg_start;
862                 ha_region->end_pfn = rg_start + rg_size;
863         }
864
865 do_pg_range:
866         /*
867          * Process the page range specified; bringing them
868          * online if possible.
869          */
870         return handle_pg_range(pg_start, pfn_cnt);
871 }
872
873 #endif
874
875 static void hot_add_req(struct work_struct *dummy)
876 {
877         struct dm_hot_add_response resp;
878 #ifdef CONFIG_MEMORY_HOTPLUG
879         unsigned long pg_start, pfn_cnt;
880         unsigned long rg_start, rg_sz;
881 #endif
882         struct hv_dynmem_device *dm = &dm_device;
883
884         memset(&resp, 0, sizeof(struct dm_hot_add_response));
885         resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
886         resp.hdr.size = sizeof(struct dm_hot_add_response);
887
888 #ifdef CONFIG_MEMORY_HOTPLUG
889         acquire_region_mutex(false);
890         pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
891         pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
892
893         rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
894         rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
895
896         if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
897                 unsigned long region_size;
898                 unsigned long region_start;
899
900                 /*
901                  * The host has not specified the hot-add region.
902                  * Based on the hot-add page range being specified,
903                  * compute a hot-add region that can cover the pages
904                  * that need to be hot-added while ensuring the alignment
905                  * and size requirements of Linux as it relates to hot-add.
906                  */
907                 region_start = pg_start;
908                 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
909                 if (pfn_cnt % HA_CHUNK)
910                         region_size += HA_CHUNK;
911
912                 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
913
914                 rg_start = region_start;
915                 rg_sz = region_size;
916         }
917
918         if (do_hot_add)
919                 resp.page_count = process_hot_add(pg_start, pfn_cnt,
920                                                 rg_start, rg_sz);
921         release_region_mutex(false);
922 #endif
923         /*
924          * The result field of the response structure has the
925          * following semantics:
926          *
927          * 1. If all or some pages hot-added: Guest should return success.
928          *
929          * 2. If no pages could be hot-added:
930          *
931          * If the guest returns success, then the host
932          * will not attempt any further hot-add operations. This
933          * signifies a permanent failure.
934          *
935          * If the guest returns failure, then this failure will be
936          * treated as a transient failure and the host may retry the
937          * hot-add operation after some delay.
938          */
939         if (resp.page_count > 0)
940                 resp.result = 1;
941         else if (!do_hot_add)
942                 resp.result = 1;
943         else
944                 resp.result = 0;
945
946         if (!do_hot_add || (resp.page_count == 0))
947                 pr_info("Memory hot add failed\n");
948
949         dm->state = DM_INITIALIZED;
950         resp.hdr.trans_id = atomic_inc_return(&trans_id);
951         vmbus_sendpacket(dm->dev->channel, &resp,
952                         sizeof(struct dm_hot_add_response),
953                         (unsigned long)NULL,
954                         VM_PKT_DATA_INBAND, 0);
955 }
956
957 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
958 {
959         struct dm_info_header *info_hdr;
960
961         info_hdr = (struct dm_info_header *)msg->info;
962
963         switch (info_hdr->type) {
964         case INFO_TYPE_MAX_PAGE_CNT:
965                 pr_info("Received INFO_TYPE_MAX_PAGE_CNT\n");
966                 pr_info("Data Size is %d\n", info_hdr->data_size);
967                 break;
968         default:
969                 pr_info("Received Unknown type: %d\n", info_hdr->type);
970         }
971 }
972
973 static unsigned long compute_balloon_floor(void)
974 {
975         unsigned long min_pages;
976 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
977         /* Simple continuous piecewiese linear function:
978          *  max MiB -> min MiB  gradient
979          *       0         0
980          *      16        16
981          *      32        24
982          *     128        72    (1/2)
983          *     512       168    (1/4)
984          *    2048       360    (1/8)
985          *    8192       768    (1/16)
986          *   32768      1536    (1/32)
987          */
988         if (totalram_pages < MB2PAGES(128))
989                 min_pages = MB2PAGES(8) + (totalram_pages >> 1);
990         else if (totalram_pages < MB2PAGES(512))
991                 min_pages = MB2PAGES(40) + (totalram_pages >> 2);
992         else if (totalram_pages < MB2PAGES(2048))
993                 min_pages = MB2PAGES(104) + (totalram_pages >> 3);
994         else if (totalram_pages < MB2PAGES(8192))
995                 min_pages = MB2PAGES(256) + (totalram_pages >> 4);
996         else
997                 min_pages = MB2PAGES(512) + (totalram_pages >> 5);
998 #undef MB2PAGES
999         return min_pages;
1000 }
1001
1002 /*
1003  * Post our status as it relates memory pressure to the
1004  * host. Host expects the guests to post this status
1005  * periodically at 1 second intervals.
1006  *
1007  * The metrics specified in this protocol are very Windows
1008  * specific and so we cook up numbers here to convey our memory
1009  * pressure.
1010  */
1011
1012 static void post_status(struct hv_dynmem_device *dm)
1013 {
1014         struct dm_status status;
1015         struct sysinfo val;
1016         unsigned long now = jiffies;
1017         unsigned long last_post = last_post_time;
1018
1019         if (pressure_report_delay > 0) {
1020                 --pressure_report_delay;
1021                 return;
1022         }
1023
1024         if (!time_after(now, (last_post_time + HZ)))
1025                 return;
1026
1027         si_meminfo(&val);
1028         memset(&status, 0, sizeof(struct dm_status));
1029         status.hdr.type = DM_STATUS_REPORT;
1030         status.hdr.size = sizeof(struct dm_status);
1031         status.hdr.trans_id = atomic_inc_return(&trans_id);
1032
1033         /*
1034          * The host expects the guest to report free memory.
1035          * Further, the host expects the pressure information to
1036          * include the ballooned out pages.
1037          * For a given amount of memory that we are managing, we
1038          * need to compute a floor below which we should not balloon.
1039          * Compute this and add it to the pressure report.
1040          */
1041         status.num_avail = val.freeram;
1042         status.num_committed = vm_memory_committed() +
1043                                 dm->num_pages_ballooned +
1044                                 compute_balloon_floor();
1045
1046         /*
1047          * If our transaction ID is no longer current, just don't
1048          * send the status. This can happen if we were interrupted
1049          * after we picked our transaction ID.
1050          */
1051         if (status.hdr.trans_id != atomic_read(&trans_id))
1052                 return;
1053
1054         /*
1055          * If the last post time that we sampled has changed,
1056          * we have raced, don't post the status.
1057          */
1058         if (last_post != last_post_time)
1059                 return;
1060
1061         last_post_time = jiffies;
1062         vmbus_sendpacket(dm->dev->channel, &status,
1063                                 sizeof(struct dm_status),
1064                                 (unsigned long)NULL,
1065                                 VM_PKT_DATA_INBAND, 0);
1066
1067 }
1068
1069 static void free_balloon_pages(struct hv_dynmem_device *dm,
1070                          union dm_mem_page_range *range_array)
1071 {
1072         int num_pages = range_array->finfo.page_cnt;
1073         __u64 start_frame = range_array->finfo.start_page;
1074         struct page *pg;
1075         int i;
1076
1077         for (i = 0; i < num_pages; i++) {
1078                 pg = pfn_to_page(i + start_frame);
1079                 __free_page(pg);
1080                 dm->num_pages_ballooned--;
1081         }
1082 }
1083
1084
1085
1086 static int  alloc_balloon_pages(struct hv_dynmem_device *dm, int num_pages,
1087                          struct dm_balloon_response *bl_resp, int alloc_unit,
1088                          bool *alloc_error)
1089 {
1090         int i = 0;
1091         struct page *pg;
1092
1093         if (num_pages < alloc_unit)
1094                 return 0;
1095
1096         for (i = 0; (i * alloc_unit) < num_pages; i++) {
1097                 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1098                         PAGE_SIZE)
1099                         return i * alloc_unit;
1100
1101                 /*
1102                  * We execute this code in a thread context. Furthermore,
1103                  * we don't want the kernel to try too hard.
1104                  */
1105                 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1106                                 __GFP_NOMEMALLOC | __GFP_NOWARN,
1107                                 get_order(alloc_unit << PAGE_SHIFT));
1108
1109                 if (!pg) {
1110                         *alloc_error = true;
1111                         return i * alloc_unit;
1112                 }
1113
1114
1115                 dm->num_pages_ballooned += alloc_unit;
1116
1117                 /*
1118                  * If we allocatted 2M pages; split them so we
1119                  * can free them in any order we get.
1120                  */
1121
1122                 if (alloc_unit != 1)
1123                         split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1124
1125                 bl_resp->range_count++;
1126                 bl_resp->range_array[i].finfo.start_page =
1127                         page_to_pfn(pg);
1128                 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1129                 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1130
1131         }
1132
1133         return num_pages;
1134 }
1135
1136
1137
1138 static void balloon_up(struct work_struct *dummy)
1139 {
1140         int num_pages = dm_device.balloon_wrk.num_pages;
1141         int num_ballooned = 0;
1142         struct dm_balloon_response *bl_resp;
1143         int alloc_unit;
1144         int ret;
1145         bool alloc_error;
1146         bool done = false;
1147         int i;
1148
1149         /* The host balloons pages in 2M granularity. */
1150         WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
1151
1152         /*
1153          * We will attempt 2M allocations. However, if we fail to
1154          * allocate 2M chunks, we will go back to 4k allocations.
1155          */
1156         alloc_unit = 512;
1157
1158         while (!done) {
1159                 bl_resp = (struct dm_balloon_response *)send_buffer;
1160                 memset(send_buffer, 0, PAGE_SIZE);
1161                 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1162                 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1163                 bl_resp->more_pages = 1;
1164
1165
1166                 num_pages -= num_ballooned;
1167                 alloc_error = false;
1168                 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1169                                                 bl_resp, alloc_unit,
1170                                                  &alloc_error);
1171
1172                 if (alloc_unit != 1 && num_ballooned == 0) {
1173                         alloc_unit = 1;
1174                         continue;
1175                 }
1176
1177                 if ((alloc_unit == 1 && alloc_error) ||
1178                         (num_ballooned == num_pages)) {
1179                         bl_resp->more_pages = 0;
1180                         done = true;
1181                         dm_device.state = DM_INITIALIZED;
1182                 }
1183
1184                 /*
1185                  * We are pushing a lot of data through the channel;
1186                  * deal with transient failures caused because of the
1187                  * lack of space in the ring buffer.
1188                  */
1189
1190                 do {
1191                         bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1192                         ret = vmbus_sendpacket(dm_device.dev->channel,
1193                                                 bl_resp,
1194                                                 bl_resp->hdr.size,
1195                                                 (unsigned long)NULL,
1196                                                 VM_PKT_DATA_INBAND, 0);
1197
1198                         if (ret == -EAGAIN)
1199                                 msleep(20);
1200                         post_status(&dm_device);
1201                 } while (ret == -EAGAIN);
1202
1203                 if (ret) {
1204                         /*
1205                          * Free up the memory we allocatted.
1206                          */
1207                         pr_info("Balloon response failed\n");
1208
1209                         for (i = 0; i < bl_resp->range_count; i++)
1210                                 free_balloon_pages(&dm_device,
1211                                                  &bl_resp->range_array[i]);
1212
1213                         done = true;
1214                 }
1215         }
1216
1217 }
1218
1219 static void balloon_down(struct hv_dynmem_device *dm,
1220                         struct dm_unballoon_request *req)
1221 {
1222         union dm_mem_page_range *range_array = req->range_array;
1223         int range_count = req->range_count;
1224         struct dm_unballoon_response resp;
1225         int i;
1226
1227         for (i = 0; i < range_count; i++) {
1228                 free_balloon_pages(dm, &range_array[i]);
1229                 complete(&dm_device.config_event);
1230         }
1231
1232         if (req->more_pages == 1)
1233                 return;
1234
1235         memset(&resp, 0, sizeof(struct dm_unballoon_response));
1236         resp.hdr.type = DM_UNBALLOON_RESPONSE;
1237         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1238         resp.hdr.size = sizeof(struct dm_unballoon_response);
1239
1240         vmbus_sendpacket(dm_device.dev->channel, &resp,
1241                                 sizeof(struct dm_unballoon_response),
1242                                 (unsigned long)NULL,
1243                                 VM_PKT_DATA_INBAND, 0);
1244
1245         dm->state = DM_INITIALIZED;
1246 }
1247
1248 static void balloon_onchannelcallback(void *context);
1249
1250 static int dm_thread_func(void *dm_dev)
1251 {
1252         struct hv_dynmem_device *dm = dm_dev;
1253
1254         while (!kthread_should_stop()) {
1255                 wait_for_completion_interruptible_timeout(
1256                                                 &dm_device.config_event, 1*HZ);
1257                 /*
1258                  * The host expects us to post information on the memory
1259                  * pressure every second.
1260                  */
1261                 reinit_completion(&dm_device.config_event);
1262                 post_status(dm);
1263         }
1264
1265         return 0;
1266 }
1267
1268
1269 static void version_resp(struct hv_dynmem_device *dm,
1270                         struct dm_version_response *vresp)
1271 {
1272         struct dm_version_request version_req;
1273         int ret;
1274
1275         if (vresp->is_accepted) {
1276                 /*
1277                  * We are done; wakeup the
1278                  * context waiting for version
1279                  * negotiation.
1280                  */
1281                 complete(&dm->host_event);
1282                 return;
1283         }
1284         /*
1285          * If there are more versions to try, continue
1286          * with negotiations; if not
1287          * shutdown the service since we are not able
1288          * to negotiate a suitable version number
1289          * with the host.
1290          */
1291         if (dm->next_version == 0)
1292                 goto version_error;
1293
1294         dm->next_version = 0;
1295         memset(&version_req, 0, sizeof(struct dm_version_request));
1296         version_req.hdr.type = DM_VERSION_REQUEST;
1297         version_req.hdr.size = sizeof(struct dm_version_request);
1298         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1299         version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN7;
1300         version_req.is_last_attempt = 1;
1301
1302         ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1303                                 sizeof(struct dm_version_request),
1304                                 (unsigned long)NULL,
1305                                 VM_PKT_DATA_INBAND, 0);
1306
1307         if (ret)
1308                 goto version_error;
1309
1310         return;
1311
1312 version_error:
1313         dm->state = DM_INIT_ERROR;
1314         complete(&dm->host_event);
1315 }
1316
1317 static void cap_resp(struct hv_dynmem_device *dm,
1318                         struct dm_capabilities_resp_msg *cap_resp)
1319 {
1320         if (!cap_resp->is_accepted) {
1321                 pr_info("Capabilities not accepted by host\n");
1322                 dm->state = DM_INIT_ERROR;
1323         }
1324         complete(&dm->host_event);
1325 }
1326
1327 static void balloon_onchannelcallback(void *context)
1328 {
1329         struct hv_device *dev = context;
1330         u32 recvlen;
1331         u64 requestid;
1332         struct dm_message *dm_msg;
1333         struct dm_header *dm_hdr;
1334         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1335         struct dm_balloon *bal_msg;
1336         struct dm_hot_add *ha_msg;
1337         union dm_mem_page_range *ha_pg_range;
1338         union dm_mem_page_range *ha_region;
1339
1340         memset(recv_buffer, 0, sizeof(recv_buffer));
1341         vmbus_recvpacket(dev->channel, recv_buffer,
1342                          PAGE_SIZE, &recvlen, &requestid);
1343
1344         if (recvlen > 0) {
1345                 dm_msg = (struct dm_message *)recv_buffer;
1346                 dm_hdr = &dm_msg->hdr;
1347
1348                 switch (dm_hdr->type) {
1349                 case DM_VERSION_RESPONSE:
1350                         version_resp(dm,
1351                                  (struct dm_version_response *)dm_msg);
1352                         break;
1353
1354                 case DM_CAPABILITIES_RESPONSE:
1355                         cap_resp(dm,
1356                                  (struct dm_capabilities_resp_msg *)dm_msg);
1357                         break;
1358
1359                 case DM_BALLOON_REQUEST:
1360                         if (dm->state == DM_BALLOON_UP)
1361                                 pr_warn("Currently ballooning\n");
1362                         bal_msg = (struct dm_balloon *)recv_buffer;
1363                         dm->state = DM_BALLOON_UP;
1364                         dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1365                         schedule_work(&dm_device.balloon_wrk.wrk);
1366                         break;
1367
1368                 case DM_UNBALLOON_REQUEST:
1369                         dm->state = DM_BALLOON_DOWN;
1370                         balloon_down(dm,
1371                                  (struct dm_unballoon_request *)recv_buffer);
1372                         break;
1373
1374                 case DM_MEM_HOT_ADD_REQUEST:
1375                         if (dm->state == DM_HOT_ADD)
1376                                 pr_warn("Currently hot-adding\n");
1377                         dm->state = DM_HOT_ADD;
1378                         ha_msg = (struct dm_hot_add *)recv_buffer;
1379                         if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1380                                 /*
1381                                  * This is a normal hot-add request specifying
1382                                  * hot-add memory.
1383                                  */
1384                                 ha_pg_range = &ha_msg->range;
1385                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1386                                 dm->ha_wrk.ha_region_range.page_range = 0;
1387                         } else {
1388                                 /*
1389                                  * Host is specifying that we first hot-add
1390                                  * a region and then partially populate this
1391                                  * region.
1392                                  */
1393                                 dm->host_specified_ha_region = true;
1394                                 ha_pg_range = &ha_msg->range;
1395                                 ha_region = &ha_pg_range[1];
1396                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1397                                 dm->ha_wrk.ha_region_range = *ha_region;
1398                         }
1399                         schedule_work(&dm_device.ha_wrk.wrk);
1400                         break;
1401
1402                 case DM_INFO_MESSAGE:
1403                         process_info(dm, (struct dm_info_msg *)dm_msg);
1404                         break;
1405
1406                 default:
1407                         pr_err("Unhandled message: type: %d\n", dm_hdr->type);
1408
1409                 }
1410         }
1411
1412 }
1413
1414 static int balloon_probe(struct hv_device *dev,
1415                         const struct hv_vmbus_device_id *dev_id)
1416 {
1417         int ret, t;
1418         struct dm_version_request version_req;
1419         struct dm_capabilities cap_msg;
1420
1421         do_hot_add = hot_add;
1422
1423         /*
1424          * First allocate a send buffer.
1425          */
1426
1427         send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1428         if (!send_buffer)
1429                 return -ENOMEM;
1430
1431         ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1432                         balloon_onchannelcallback, dev);
1433
1434         if (ret)
1435                 goto probe_error0;
1436
1437         dm_device.dev = dev;
1438         dm_device.state = DM_INITIALIZING;
1439         dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1440         init_completion(&dm_device.host_event);
1441         init_completion(&dm_device.config_event);
1442         init_completion(&dm_device.waiter_event);
1443         INIT_LIST_HEAD(&dm_device.ha_region_list);
1444         mutex_init(&dm_device.ha_region_mutex);
1445         INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1446         INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1447         dm_device.host_specified_ha_region = false;
1448
1449         dm_device.thread =
1450                  kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1451         if (IS_ERR(dm_device.thread)) {
1452                 ret = PTR_ERR(dm_device.thread);
1453                 goto probe_error1;
1454         }
1455
1456 #ifdef CONFIG_MEMORY_HOTPLUG
1457         set_online_page_callback(&hv_online_page);
1458         register_memory_notifier(&hv_memory_nb);
1459 #endif
1460
1461         hv_set_drvdata(dev, &dm_device);
1462         /*
1463          * Initiate the hand shake with the host and negotiate
1464          * a version that the host can support. We start with the
1465          * highest version number and go down if the host cannot
1466          * support it.
1467          */
1468         memset(&version_req, 0, sizeof(struct dm_version_request));
1469         version_req.hdr.type = DM_VERSION_REQUEST;
1470         version_req.hdr.size = sizeof(struct dm_version_request);
1471         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1472         version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN8;
1473         version_req.is_last_attempt = 0;
1474
1475         ret = vmbus_sendpacket(dev->channel, &version_req,
1476                                 sizeof(struct dm_version_request),
1477                                 (unsigned long)NULL,
1478                                 VM_PKT_DATA_INBAND, 0);
1479         if (ret)
1480                 goto probe_error2;
1481
1482         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1483         if (t == 0) {
1484                 ret = -ETIMEDOUT;
1485                 goto probe_error2;
1486         }
1487
1488         /*
1489          * If we could not negotiate a compatible version with the host
1490          * fail the probe function.
1491          */
1492         if (dm_device.state == DM_INIT_ERROR) {
1493                 ret = -ETIMEDOUT;
1494                 goto probe_error2;
1495         }
1496         /*
1497          * Now submit our capabilities to the host.
1498          */
1499         memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1500         cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1501         cap_msg.hdr.size = sizeof(struct dm_capabilities);
1502         cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1503
1504         cap_msg.caps.cap_bits.balloon = 1;
1505         cap_msg.caps.cap_bits.hot_add = 1;
1506
1507         /*
1508          * Specify our alignment requirements as it relates
1509          * memory hot-add. Specify 128MB alignment.
1510          */
1511         cap_msg.caps.cap_bits.hot_add_alignment = 7;
1512
1513         /*
1514          * Currently the host does not use these
1515          * values and we set them to what is done in the
1516          * Windows driver.
1517          */
1518         cap_msg.min_page_cnt = 0;
1519         cap_msg.max_page_number = -1;
1520
1521         ret = vmbus_sendpacket(dev->channel, &cap_msg,
1522                                 sizeof(struct dm_capabilities),
1523                                 (unsigned long)NULL,
1524                                 VM_PKT_DATA_INBAND, 0);
1525         if (ret)
1526                 goto probe_error2;
1527
1528         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1529         if (t == 0) {
1530                 ret = -ETIMEDOUT;
1531                 goto probe_error2;
1532         }
1533
1534         /*
1535          * If the host does not like our capabilities,
1536          * fail the probe function.
1537          */
1538         if (dm_device.state == DM_INIT_ERROR) {
1539                 ret = -ETIMEDOUT;
1540                 goto probe_error2;
1541         }
1542
1543         dm_device.state = DM_INITIALIZED;
1544
1545         return 0;
1546
1547 probe_error2:
1548 #ifdef CONFIG_MEMORY_HOTPLUG
1549         restore_online_page_callback(&hv_online_page);
1550 #endif
1551         kthread_stop(dm_device.thread);
1552
1553 probe_error1:
1554         vmbus_close(dev->channel);
1555 probe_error0:
1556         kfree(send_buffer);
1557         return ret;
1558 }
1559
1560 static int balloon_remove(struct hv_device *dev)
1561 {
1562         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1563         struct list_head *cur, *tmp;
1564         struct hv_hotadd_state *has;
1565
1566         if (dm->num_pages_ballooned != 0)
1567                 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1568
1569         cancel_work_sync(&dm->balloon_wrk.wrk);
1570         cancel_work_sync(&dm->ha_wrk.wrk);
1571
1572         vmbus_close(dev->channel);
1573         kthread_stop(dm->thread);
1574         kfree(send_buffer);
1575 #ifdef CONFIG_MEMORY_HOTPLUG
1576         restore_online_page_callback(&hv_online_page);
1577         unregister_memory_notifier(&hv_memory_nb);
1578 #endif
1579         list_for_each_safe(cur, tmp, &dm->ha_region_list) {
1580                 has = list_entry(cur, struct hv_hotadd_state, list);
1581                 list_del(&has->list);
1582                 kfree(has);
1583         }
1584
1585         return 0;
1586 }
1587
1588 static const struct hv_vmbus_device_id id_table[] = {
1589         /* Dynamic Memory Class ID */
1590         /* 525074DC-8985-46e2-8057-A307DC18A502 */
1591         { HV_DM_GUID, },
1592         { },
1593 };
1594
1595 MODULE_DEVICE_TABLE(vmbus, id_table);
1596
1597 static  struct hv_driver balloon_drv = {
1598         .name = "hv_balloon",
1599         .id_table = id_table,
1600         .probe =  balloon_probe,
1601         .remove =  balloon_remove,
1602 };
1603
1604 static int __init init_balloon_drv(void)
1605 {
1606
1607         return vmbus_driver_register(&balloon_drv);
1608 }
1609
1610 module_init(init_balloon_drv);
1611
1612 MODULE_DESCRIPTION("Hyper-V Balloon");
1613 MODULE_LICENSE("GPL");