Merge tag 'md/4.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md
[cascardo/linux.git] / drivers / hv / vmbus_drv.c
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <asm/hyperv.h>
38 #include <asm/hypervisor.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include "hyperv_vmbus.h"
45
46 static struct acpi_device  *hv_acpi_dev;
47
48 static struct completion probe_event;
49
50
51 static void hyperv_report_panic(struct pt_regs *regs)
52 {
53         static bool panic_reported;
54
55         /*
56          * We prefer to report panic on 'die' chain as we have proper
57          * registers to report, but if we miss it (e.g. on BUG()) we need
58          * to report it on 'panic'.
59          */
60         if (panic_reported)
61                 return;
62         panic_reported = true;
63
64         wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip);
65         wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax);
66         wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx);
67         wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx);
68         wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx);
69
70         /*
71          * Let Hyper-V know there is crash data available
72          */
73         wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
74 }
75
76 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
77                               void *args)
78 {
79         struct pt_regs *regs;
80
81         regs = current_pt_regs();
82
83         hyperv_report_panic(regs);
84         return NOTIFY_DONE;
85 }
86
87 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
88                             void *args)
89 {
90         struct die_args *die = (struct die_args *)args;
91         struct pt_regs *regs = die->regs;
92
93         hyperv_report_panic(regs);
94         return NOTIFY_DONE;
95 }
96
97 static struct notifier_block hyperv_die_block = {
98         .notifier_call = hyperv_die_event,
99 };
100 static struct notifier_block hyperv_panic_block = {
101         .notifier_call = hyperv_panic_event,
102 };
103
104 struct resource *hyperv_mmio;
105
106 static int vmbus_exists(void)
107 {
108         if (hv_acpi_dev == NULL)
109                 return -ENODEV;
110
111         return 0;
112 }
113
114 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
115 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
116 {
117         int i;
118         for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
119                 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
120 }
121
122 static u8 channel_monitor_group(struct vmbus_channel *channel)
123 {
124         return (u8)channel->offermsg.monitorid / 32;
125 }
126
127 static u8 channel_monitor_offset(struct vmbus_channel *channel)
128 {
129         return (u8)channel->offermsg.monitorid % 32;
130 }
131
132 static u32 channel_pending(struct vmbus_channel *channel,
133                            struct hv_monitor_page *monitor_page)
134 {
135         u8 monitor_group = channel_monitor_group(channel);
136         return monitor_page->trigger_group[monitor_group].pending;
137 }
138
139 static u32 channel_latency(struct vmbus_channel *channel,
140                            struct hv_monitor_page *monitor_page)
141 {
142         u8 monitor_group = channel_monitor_group(channel);
143         u8 monitor_offset = channel_monitor_offset(channel);
144         return monitor_page->latency[monitor_group][monitor_offset];
145 }
146
147 static u32 channel_conn_id(struct vmbus_channel *channel,
148                            struct hv_monitor_page *monitor_page)
149 {
150         u8 monitor_group = channel_monitor_group(channel);
151         u8 monitor_offset = channel_monitor_offset(channel);
152         return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
153 }
154
155 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
156                        char *buf)
157 {
158         struct hv_device *hv_dev = device_to_hv_device(dev);
159
160         if (!hv_dev->channel)
161                 return -ENODEV;
162         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
163 }
164 static DEVICE_ATTR_RO(id);
165
166 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
167                           char *buf)
168 {
169         struct hv_device *hv_dev = device_to_hv_device(dev);
170
171         if (!hv_dev->channel)
172                 return -ENODEV;
173         return sprintf(buf, "%d\n", hv_dev->channel->state);
174 }
175 static DEVICE_ATTR_RO(state);
176
177 static ssize_t monitor_id_show(struct device *dev,
178                                struct device_attribute *dev_attr, char *buf)
179 {
180         struct hv_device *hv_dev = device_to_hv_device(dev);
181
182         if (!hv_dev->channel)
183                 return -ENODEV;
184         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
185 }
186 static DEVICE_ATTR_RO(monitor_id);
187
188 static ssize_t class_id_show(struct device *dev,
189                                struct device_attribute *dev_attr, char *buf)
190 {
191         struct hv_device *hv_dev = device_to_hv_device(dev);
192
193         if (!hv_dev->channel)
194                 return -ENODEV;
195         return sprintf(buf, "{%pUl}\n",
196                        hv_dev->channel->offermsg.offer.if_type.b);
197 }
198 static DEVICE_ATTR_RO(class_id);
199
200 static ssize_t device_id_show(struct device *dev,
201                               struct device_attribute *dev_attr, char *buf)
202 {
203         struct hv_device *hv_dev = device_to_hv_device(dev);
204
205         if (!hv_dev->channel)
206                 return -ENODEV;
207         return sprintf(buf, "{%pUl}\n",
208                        hv_dev->channel->offermsg.offer.if_instance.b);
209 }
210 static DEVICE_ATTR_RO(device_id);
211
212 static ssize_t modalias_show(struct device *dev,
213                              struct device_attribute *dev_attr, char *buf)
214 {
215         struct hv_device *hv_dev = device_to_hv_device(dev);
216         char alias_name[VMBUS_ALIAS_LEN + 1];
217
218         print_alias_name(hv_dev, alias_name);
219         return sprintf(buf, "vmbus:%s\n", alias_name);
220 }
221 static DEVICE_ATTR_RO(modalias);
222
223 static ssize_t server_monitor_pending_show(struct device *dev,
224                                            struct device_attribute *dev_attr,
225                                            char *buf)
226 {
227         struct hv_device *hv_dev = device_to_hv_device(dev);
228
229         if (!hv_dev->channel)
230                 return -ENODEV;
231         return sprintf(buf, "%d\n",
232                        channel_pending(hv_dev->channel,
233                                        vmbus_connection.monitor_pages[1]));
234 }
235 static DEVICE_ATTR_RO(server_monitor_pending);
236
237 static ssize_t client_monitor_pending_show(struct device *dev,
238                                            struct device_attribute *dev_attr,
239                                            char *buf)
240 {
241         struct hv_device *hv_dev = device_to_hv_device(dev);
242
243         if (!hv_dev->channel)
244                 return -ENODEV;
245         return sprintf(buf, "%d\n",
246                        channel_pending(hv_dev->channel,
247                                        vmbus_connection.monitor_pages[1]));
248 }
249 static DEVICE_ATTR_RO(client_monitor_pending);
250
251 static ssize_t server_monitor_latency_show(struct device *dev,
252                                            struct device_attribute *dev_attr,
253                                            char *buf)
254 {
255         struct hv_device *hv_dev = device_to_hv_device(dev);
256
257         if (!hv_dev->channel)
258                 return -ENODEV;
259         return sprintf(buf, "%d\n",
260                        channel_latency(hv_dev->channel,
261                                        vmbus_connection.monitor_pages[0]));
262 }
263 static DEVICE_ATTR_RO(server_monitor_latency);
264
265 static ssize_t client_monitor_latency_show(struct device *dev,
266                                            struct device_attribute *dev_attr,
267                                            char *buf)
268 {
269         struct hv_device *hv_dev = device_to_hv_device(dev);
270
271         if (!hv_dev->channel)
272                 return -ENODEV;
273         return sprintf(buf, "%d\n",
274                        channel_latency(hv_dev->channel,
275                                        vmbus_connection.monitor_pages[1]));
276 }
277 static DEVICE_ATTR_RO(client_monitor_latency);
278
279 static ssize_t server_monitor_conn_id_show(struct device *dev,
280                                            struct device_attribute *dev_attr,
281                                            char *buf)
282 {
283         struct hv_device *hv_dev = device_to_hv_device(dev);
284
285         if (!hv_dev->channel)
286                 return -ENODEV;
287         return sprintf(buf, "%d\n",
288                        channel_conn_id(hv_dev->channel,
289                                        vmbus_connection.monitor_pages[0]));
290 }
291 static DEVICE_ATTR_RO(server_monitor_conn_id);
292
293 static ssize_t client_monitor_conn_id_show(struct device *dev,
294                                            struct device_attribute *dev_attr,
295                                            char *buf)
296 {
297         struct hv_device *hv_dev = device_to_hv_device(dev);
298
299         if (!hv_dev->channel)
300                 return -ENODEV;
301         return sprintf(buf, "%d\n",
302                        channel_conn_id(hv_dev->channel,
303                                        vmbus_connection.monitor_pages[1]));
304 }
305 static DEVICE_ATTR_RO(client_monitor_conn_id);
306
307 static ssize_t out_intr_mask_show(struct device *dev,
308                                   struct device_attribute *dev_attr, char *buf)
309 {
310         struct hv_device *hv_dev = device_to_hv_device(dev);
311         struct hv_ring_buffer_debug_info outbound;
312
313         if (!hv_dev->channel)
314                 return -ENODEV;
315         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
316         return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
317 }
318 static DEVICE_ATTR_RO(out_intr_mask);
319
320 static ssize_t out_read_index_show(struct device *dev,
321                                    struct device_attribute *dev_attr, char *buf)
322 {
323         struct hv_device *hv_dev = device_to_hv_device(dev);
324         struct hv_ring_buffer_debug_info outbound;
325
326         if (!hv_dev->channel)
327                 return -ENODEV;
328         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
329         return sprintf(buf, "%d\n", outbound.current_read_index);
330 }
331 static DEVICE_ATTR_RO(out_read_index);
332
333 static ssize_t out_write_index_show(struct device *dev,
334                                     struct device_attribute *dev_attr,
335                                     char *buf)
336 {
337         struct hv_device *hv_dev = device_to_hv_device(dev);
338         struct hv_ring_buffer_debug_info outbound;
339
340         if (!hv_dev->channel)
341                 return -ENODEV;
342         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
343         return sprintf(buf, "%d\n", outbound.current_write_index);
344 }
345 static DEVICE_ATTR_RO(out_write_index);
346
347 static ssize_t out_read_bytes_avail_show(struct device *dev,
348                                          struct device_attribute *dev_attr,
349                                          char *buf)
350 {
351         struct hv_device *hv_dev = device_to_hv_device(dev);
352         struct hv_ring_buffer_debug_info outbound;
353
354         if (!hv_dev->channel)
355                 return -ENODEV;
356         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
357         return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
358 }
359 static DEVICE_ATTR_RO(out_read_bytes_avail);
360
361 static ssize_t out_write_bytes_avail_show(struct device *dev,
362                                           struct device_attribute *dev_attr,
363                                           char *buf)
364 {
365         struct hv_device *hv_dev = device_to_hv_device(dev);
366         struct hv_ring_buffer_debug_info outbound;
367
368         if (!hv_dev->channel)
369                 return -ENODEV;
370         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
371         return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
372 }
373 static DEVICE_ATTR_RO(out_write_bytes_avail);
374
375 static ssize_t in_intr_mask_show(struct device *dev,
376                                  struct device_attribute *dev_attr, char *buf)
377 {
378         struct hv_device *hv_dev = device_to_hv_device(dev);
379         struct hv_ring_buffer_debug_info inbound;
380
381         if (!hv_dev->channel)
382                 return -ENODEV;
383         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
384         return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
385 }
386 static DEVICE_ATTR_RO(in_intr_mask);
387
388 static ssize_t in_read_index_show(struct device *dev,
389                                   struct device_attribute *dev_attr, char *buf)
390 {
391         struct hv_device *hv_dev = device_to_hv_device(dev);
392         struct hv_ring_buffer_debug_info inbound;
393
394         if (!hv_dev->channel)
395                 return -ENODEV;
396         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
397         return sprintf(buf, "%d\n", inbound.current_read_index);
398 }
399 static DEVICE_ATTR_RO(in_read_index);
400
401 static ssize_t in_write_index_show(struct device *dev,
402                                    struct device_attribute *dev_attr, char *buf)
403 {
404         struct hv_device *hv_dev = device_to_hv_device(dev);
405         struct hv_ring_buffer_debug_info inbound;
406
407         if (!hv_dev->channel)
408                 return -ENODEV;
409         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
410         return sprintf(buf, "%d\n", inbound.current_write_index);
411 }
412 static DEVICE_ATTR_RO(in_write_index);
413
414 static ssize_t in_read_bytes_avail_show(struct device *dev,
415                                         struct device_attribute *dev_attr,
416                                         char *buf)
417 {
418         struct hv_device *hv_dev = device_to_hv_device(dev);
419         struct hv_ring_buffer_debug_info inbound;
420
421         if (!hv_dev->channel)
422                 return -ENODEV;
423         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
424         return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
425 }
426 static DEVICE_ATTR_RO(in_read_bytes_avail);
427
428 static ssize_t in_write_bytes_avail_show(struct device *dev,
429                                          struct device_attribute *dev_attr,
430                                          char *buf)
431 {
432         struct hv_device *hv_dev = device_to_hv_device(dev);
433         struct hv_ring_buffer_debug_info inbound;
434
435         if (!hv_dev->channel)
436                 return -ENODEV;
437         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
438         return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
439 }
440 static DEVICE_ATTR_RO(in_write_bytes_avail);
441
442 static ssize_t channel_vp_mapping_show(struct device *dev,
443                                        struct device_attribute *dev_attr,
444                                        char *buf)
445 {
446         struct hv_device *hv_dev = device_to_hv_device(dev);
447         struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
448         unsigned long flags;
449         int buf_size = PAGE_SIZE, n_written, tot_written;
450         struct list_head *cur;
451
452         if (!channel)
453                 return -ENODEV;
454
455         tot_written = snprintf(buf, buf_size, "%u:%u\n",
456                 channel->offermsg.child_relid, channel->target_cpu);
457
458         spin_lock_irqsave(&channel->lock, flags);
459
460         list_for_each(cur, &channel->sc_list) {
461                 if (tot_written >= buf_size - 1)
462                         break;
463
464                 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
465                 n_written = scnprintf(buf + tot_written,
466                                      buf_size - tot_written,
467                                      "%u:%u\n",
468                                      cur_sc->offermsg.child_relid,
469                                      cur_sc->target_cpu);
470                 tot_written += n_written;
471         }
472
473         spin_unlock_irqrestore(&channel->lock, flags);
474
475         return tot_written;
476 }
477 static DEVICE_ATTR_RO(channel_vp_mapping);
478
479 static ssize_t vendor_show(struct device *dev,
480                            struct device_attribute *dev_attr,
481                            char *buf)
482 {
483         struct hv_device *hv_dev = device_to_hv_device(dev);
484         return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
485 }
486 static DEVICE_ATTR_RO(vendor);
487
488 static ssize_t device_show(struct device *dev,
489                            struct device_attribute *dev_attr,
490                            char *buf)
491 {
492         struct hv_device *hv_dev = device_to_hv_device(dev);
493         return sprintf(buf, "0x%x\n", hv_dev->device_id);
494 }
495 static DEVICE_ATTR_RO(device);
496
497 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
498 static struct attribute *vmbus_attrs[] = {
499         &dev_attr_id.attr,
500         &dev_attr_state.attr,
501         &dev_attr_monitor_id.attr,
502         &dev_attr_class_id.attr,
503         &dev_attr_device_id.attr,
504         &dev_attr_modalias.attr,
505         &dev_attr_server_monitor_pending.attr,
506         &dev_attr_client_monitor_pending.attr,
507         &dev_attr_server_monitor_latency.attr,
508         &dev_attr_client_monitor_latency.attr,
509         &dev_attr_server_monitor_conn_id.attr,
510         &dev_attr_client_monitor_conn_id.attr,
511         &dev_attr_out_intr_mask.attr,
512         &dev_attr_out_read_index.attr,
513         &dev_attr_out_write_index.attr,
514         &dev_attr_out_read_bytes_avail.attr,
515         &dev_attr_out_write_bytes_avail.attr,
516         &dev_attr_in_intr_mask.attr,
517         &dev_attr_in_read_index.attr,
518         &dev_attr_in_write_index.attr,
519         &dev_attr_in_read_bytes_avail.attr,
520         &dev_attr_in_write_bytes_avail.attr,
521         &dev_attr_channel_vp_mapping.attr,
522         &dev_attr_vendor.attr,
523         &dev_attr_device.attr,
524         NULL,
525 };
526 ATTRIBUTE_GROUPS(vmbus);
527
528 /*
529  * vmbus_uevent - add uevent for our device
530  *
531  * This routine is invoked when a device is added or removed on the vmbus to
532  * generate a uevent to udev in the userspace. The udev will then look at its
533  * rule and the uevent generated here to load the appropriate driver
534  *
535  * The alias string will be of the form vmbus:guid where guid is the string
536  * representation of the device guid (each byte of the guid will be
537  * represented with two hex characters.
538  */
539 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
540 {
541         struct hv_device *dev = device_to_hv_device(device);
542         int ret;
543         char alias_name[VMBUS_ALIAS_LEN + 1];
544
545         print_alias_name(dev, alias_name);
546         ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
547         return ret;
548 }
549
550 static const uuid_le null_guid;
551
552 static inline bool is_null_guid(const uuid_le *guid)
553 {
554         if (uuid_le_cmp(*guid, null_guid))
555                 return false;
556         return true;
557 }
558
559 /*
560  * Return a matching hv_vmbus_device_id pointer.
561  * If there is no match, return NULL.
562  */
563 static const struct hv_vmbus_device_id *hv_vmbus_get_id(
564                                         const struct hv_vmbus_device_id *id,
565                                         const uuid_le *guid)
566 {
567         for (; !is_null_guid(&id->guid); id++)
568                 if (!uuid_le_cmp(id->guid, *guid))
569                         return id;
570
571         return NULL;
572 }
573
574
575
576 /*
577  * vmbus_match - Attempt to match the specified device to the specified driver
578  */
579 static int vmbus_match(struct device *device, struct device_driver *driver)
580 {
581         struct hv_driver *drv = drv_to_hv_drv(driver);
582         struct hv_device *hv_dev = device_to_hv_device(device);
583
584         /* The hv_sock driver handles all hv_sock offers. */
585         if (is_hvsock_channel(hv_dev->channel))
586                 return drv->hvsock;
587
588         if (hv_vmbus_get_id(drv->id_table, &hv_dev->dev_type))
589                 return 1;
590
591         return 0;
592 }
593
594 /*
595  * vmbus_probe - Add the new vmbus's child device
596  */
597 static int vmbus_probe(struct device *child_device)
598 {
599         int ret = 0;
600         struct hv_driver *drv =
601                         drv_to_hv_drv(child_device->driver);
602         struct hv_device *dev = device_to_hv_device(child_device);
603         const struct hv_vmbus_device_id *dev_id;
604
605         dev_id = hv_vmbus_get_id(drv->id_table, &dev->dev_type);
606         if (drv->probe) {
607                 ret = drv->probe(dev, dev_id);
608                 if (ret != 0)
609                         pr_err("probe failed for device %s (%d)\n",
610                                dev_name(child_device), ret);
611
612         } else {
613                 pr_err("probe not set for driver %s\n",
614                        dev_name(child_device));
615                 ret = -ENODEV;
616         }
617         return ret;
618 }
619
620 /*
621  * vmbus_remove - Remove a vmbus device
622  */
623 static int vmbus_remove(struct device *child_device)
624 {
625         struct hv_driver *drv;
626         struct hv_device *dev = device_to_hv_device(child_device);
627
628         if (child_device->driver) {
629                 drv = drv_to_hv_drv(child_device->driver);
630                 if (drv->remove)
631                         drv->remove(dev);
632         }
633
634         return 0;
635 }
636
637
638 /*
639  * vmbus_shutdown - Shutdown a vmbus device
640  */
641 static void vmbus_shutdown(struct device *child_device)
642 {
643         struct hv_driver *drv;
644         struct hv_device *dev = device_to_hv_device(child_device);
645
646
647         /* The device may not be attached yet */
648         if (!child_device->driver)
649                 return;
650
651         drv = drv_to_hv_drv(child_device->driver);
652
653         if (drv->shutdown)
654                 drv->shutdown(dev);
655
656         return;
657 }
658
659
660 /*
661  * vmbus_device_release - Final callback release of the vmbus child device
662  */
663 static void vmbus_device_release(struct device *device)
664 {
665         struct hv_device *hv_dev = device_to_hv_device(device);
666         struct vmbus_channel *channel = hv_dev->channel;
667
668         hv_process_channel_removal(channel,
669                                    channel->offermsg.child_relid);
670         kfree(hv_dev);
671
672 }
673
674 /* The one and only one */
675 static struct bus_type  hv_bus = {
676         .name =         "vmbus",
677         .match =                vmbus_match,
678         .shutdown =             vmbus_shutdown,
679         .remove =               vmbus_remove,
680         .probe =                vmbus_probe,
681         .uevent =               vmbus_uevent,
682         .dev_groups =           vmbus_groups,
683 };
684
685 struct onmessage_work_context {
686         struct work_struct work;
687         struct hv_message msg;
688 };
689
690 static void vmbus_onmessage_work(struct work_struct *work)
691 {
692         struct onmessage_work_context *ctx;
693
694         /* Do not process messages if we're in DISCONNECTED state */
695         if (vmbus_connection.conn_state == DISCONNECTED)
696                 return;
697
698         ctx = container_of(work, struct onmessage_work_context,
699                            work);
700         vmbus_onmessage(&ctx->msg);
701         kfree(ctx);
702 }
703
704 static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
705 {
706         struct clock_event_device *dev = hv_context.clk_evt[cpu];
707
708         if (dev->event_handler)
709                 dev->event_handler(dev);
710
711         vmbus_signal_eom(msg);
712 }
713
714 void vmbus_on_msg_dpc(unsigned long data)
715 {
716         int cpu = smp_processor_id();
717         void *page_addr = hv_context.synic_message_page[cpu];
718         struct hv_message *msg = (struct hv_message *)page_addr +
719                                   VMBUS_MESSAGE_SINT;
720         struct vmbus_channel_message_header *hdr;
721         struct vmbus_channel_message_table_entry *entry;
722         struct onmessage_work_context *ctx;
723
724         if (msg->header.message_type == HVMSG_NONE)
725                 /* no msg */
726                 return;
727
728         hdr = (struct vmbus_channel_message_header *)msg->u.payload;
729
730         if (hdr->msgtype >= CHANNELMSG_COUNT) {
731                 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
732                 goto msg_handled;
733         }
734
735         entry = &channel_message_table[hdr->msgtype];
736         if (entry->handler_type == VMHT_BLOCKING) {
737                 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
738                 if (ctx == NULL)
739                         return;
740
741                 INIT_WORK(&ctx->work, vmbus_onmessage_work);
742                 memcpy(&ctx->msg, msg, sizeof(*msg));
743
744                 queue_work(vmbus_connection.work_queue, &ctx->work);
745         } else
746                 entry->message_handler(hdr);
747
748 msg_handled:
749         vmbus_signal_eom(msg);
750 }
751
752 static void vmbus_isr(void)
753 {
754         int cpu = smp_processor_id();
755         void *page_addr;
756         struct hv_message *msg;
757         union hv_synic_event_flags *event;
758         bool handled = false;
759
760         page_addr = hv_context.synic_event_page[cpu];
761         if (page_addr == NULL)
762                 return;
763
764         event = (union hv_synic_event_flags *)page_addr +
765                                          VMBUS_MESSAGE_SINT;
766         /*
767          * Check for events before checking for messages. This is the order
768          * in which events and messages are checked in Windows guests on
769          * Hyper-V, and the Windows team suggested we do the same.
770          */
771
772         if ((vmbus_proto_version == VERSION_WS2008) ||
773                 (vmbus_proto_version == VERSION_WIN7)) {
774
775                 /* Since we are a child, we only need to check bit 0 */
776                 if (sync_test_and_clear_bit(0,
777                         (unsigned long *) &event->flags32[0])) {
778                         handled = true;
779                 }
780         } else {
781                 /*
782                  * Our host is win8 or above. The signaling mechanism
783                  * has changed and we can directly look at the event page.
784                  * If bit n is set then we have an interrup on the channel
785                  * whose id is n.
786                  */
787                 handled = true;
788         }
789
790         if (handled)
791                 tasklet_schedule(hv_context.event_dpc[cpu]);
792
793
794         page_addr = hv_context.synic_message_page[cpu];
795         msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
796
797         /* Check if there are actual msgs to be processed */
798         if (msg->header.message_type != HVMSG_NONE) {
799                 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
800                         hv_process_timer_expiration(msg, cpu);
801                 else
802                         tasklet_schedule(hv_context.msg_dpc[cpu]);
803         }
804 }
805
806
807 /*
808  * vmbus_bus_init -Main vmbus driver initialization routine.
809  *
810  * Here, we
811  *      - initialize the vmbus driver context
812  *      - invoke the vmbus hv main init routine
813  *      - retrieve the channel offers
814  */
815 static int vmbus_bus_init(void)
816 {
817         int ret;
818
819         /* Hypervisor initialization...setup hypercall page..etc */
820         ret = hv_init();
821         if (ret != 0) {
822                 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
823                 return ret;
824         }
825
826         ret = bus_register(&hv_bus);
827         if (ret)
828                 goto err_cleanup;
829
830         hv_setup_vmbus_irq(vmbus_isr);
831
832         ret = hv_synic_alloc();
833         if (ret)
834                 goto err_alloc;
835         /*
836          * Initialize the per-cpu interrupt state and
837          * connect to the host.
838          */
839         on_each_cpu(hv_synic_init, NULL, 1);
840         ret = vmbus_connect();
841         if (ret)
842                 goto err_connect;
843
844         if (vmbus_proto_version > VERSION_WIN7)
845                 cpu_hotplug_disable();
846
847         /*
848          * Only register if the crash MSRs are available
849          */
850         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
851                 register_die_notifier(&hyperv_die_block);
852                 atomic_notifier_chain_register(&panic_notifier_list,
853                                                &hyperv_panic_block);
854         }
855
856         vmbus_request_offers();
857
858         return 0;
859
860 err_connect:
861         on_each_cpu(hv_synic_cleanup, NULL, 1);
862 err_alloc:
863         hv_synic_free();
864         hv_remove_vmbus_irq();
865
866         bus_unregister(&hv_bus);
867
868 err_cleanup:
869         hv_cleanup();
870
871         return ret;
872 }
873
874 /**
875  * __vmbus_child_driver_register() - Register a vmbus's driver
876  * @hv_driver: Pointer to driver structure you want to register
877  * @owner: owner module of the drv
878  * @mod_name: module name string
879  *
880  * Registers the given driver with Linux through the 'driver_register()' call
881  * and sets up the hyper-v vmbus handling for this driver.
882  * It will return the state of the 'driver_register()' call.
883  *
884  */
885 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
886 {
887         int ret;
888
889         pr_info("registering driver %s\n", hv_driver->name);
890
891         ret = vmbus_exists();
892         if (ret < 0)
893                 return ret;
894
895         hv_driver->driver.name = hv_driver->name;
896         hv_driver->driver.owner = owner;
897         hv_driver->driver.mod_name = mod_name;
898         hv_driver->driver.bus = &hv_bus;
899
900         ret = driver_register(&hv_driver->driver);
901
902         return ret;
903 }
904 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
905
906 /**
907  * vmbus_driver_unregister() - Unregister a vmbus's driver
908  * @hv_driver: Pointer to driver structure you want to
909  *             un-register
910  *
911  * Un-register the given driver that was previous registered with a call to
912  * vmbus_driver_register()
913  */
914 void vmbus_driver_unregister(struct hv_driver *hv_driver)
915 {
916         pr_info("unregistering driver %s\n", hv_driver->name);
917
918         if (!vmbus_exists())
919                 driver_unregister(&hv_driver->driver);
920 }
921 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
922
923 /*
924  * vmbus_device_create - Creates and registers a new child device
925  * on the vmbus.
926  */
927 struct hv_device *vmbus_device_create(const uuid_le *type,
928                                       const uuid_le *instance,
929                                       struct vmbus_channel *channel)
930 {
931         struct hv_device *child_device_obj;
932
933         child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
934         if (!child_device_obj) {
935                 pr_err("Unable to allocate device object for child device\n");
936                 return NULL;
937         }
938
939         child_device_obj->channel = channel;
940         memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
941         memcpy(&child_device_obj->dev_instance, instance,
942                sizeof(uuid_le));
943         child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
944
945
946         return child_device_obj;
947 }
948
949 /*
950  * vmbus_device_register - Register the child device
951  */
952 int vmbus_device_register(struct hv_device *child_device_obj)
953 {
954         int ret = 0;
955
956         dev_set_name(&child_device_obj->device, "vmbus_%d",
957                      child_device_obj->channel->id);
958
959         child_device_obj->device.bus = &hv_bus;
960         child_device_obj->device.parent = &hv_acpi_dev->dev;
961         child_device_obj->device.release = vmbus_device_release;
962
963         /*
964          * Register with the LDM. This will kick off the driver/device
965          * binding...which will eventually call vmbus_match() and vmbus_probe()
966          */
967         ret = device_register(&child_device_obj->device);
968
969         if (ret)
970                 pr_err("Unable to register child device\n");
971         else
972                 pr_debug("child device %s registered\n",
973                         dev_name(&child_device_obj->device));
974
975         return ret;
976 }
977
978 /*
979  * vmbus_device_unregister - Remove the specified child device
980  * from the vmbus.
981  */
982 void vmbus_device_unregister(struct hv_device *device_obj)
983 {
984         pr_debug("child device %s unregistered\n",
985                 dev_name(&device_obj->device));
986
987         /*
988          * Kick off the process of unregistering the device.
989          * This will call vmbus_remove() and eventually vmbus_device_release()
990          */
991         device_unregister(&device_obj->device);
992 }
993
994
995 /*
996  * VMBUS is an acpi enumerated device. Get the information we
997  * need from DSDT.
998  */
999 #define VTPM_BASE_ADDRESS 0xfed40000
1000 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1001 {
1002         resource_size_t start = 0;
1003         resource_size_t end = 0;
1004         struct resource *new_res;
1005         struct resource **old_res = &hyperv_mmio;
1006         struct resource **prev_res = NULL;
1007
1008         switch (res->type) {
1009
1010         /*
1011          * "Address" descriptors are for bus windows. Ignore
1012          * "memory" descriptors, which are for registers on
1013          * devices.
1014          */
1015         case ACPI_RESOURCE_TYPE_ADDRESS32:
1016                 start = res->data.address32.address.minimum;
1017                 end = res->data.address32.address.maximum;
1018                 break;
1019
1020         case ACPI_RESOURCE_TYPE_ADDRESS64:
1021                 start = res->data.address64.address.minimum;
1022                 end = res->data.address64.address.maximum;
1023                 break;
1024
1025         default:
1026                 /* Unused resource type */
1027                 return AE_OK;
1028
1029         }
1030         /*
1031          * Ignore ranges that are below 1MB, as they're not
1032          * necessary or useful here.
1033          */
1034         if (end < 0x100000)
1035                 return AE_OK;
1036
1037         new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1038         if (!new_res)
1039                 return AE_NO_MEMORY;
1040
1041         /* If this range overlaps the virtual TPM, truncate it. */
1042         if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1043                 end = VTPM_BASE_ADDRESS;
1044
1045         new_res->name = "hyperv mmio";
1046         new_res->flags = IORESOURCE_MEM;
1047         new_res->start = start;
1048         new_res->end = end;
1049
1050         /*
1051          * Stick ranges from higher in address space at the front of the list.
1052          * If two ranges are adjacent, merge them.
1053          */
1054         do {
1055                 if (!*old_res) {
1056                         *old_res = new_res;
1057                         break;
1058                 }
1059
1060                 if (((*old_res)->end + 1) == new_res->start) {
1061                         (*old_res)->end = new_res->end;
1062                         kfree(new_res);
1063                         break;
1064                 }
1065
1066                 if ((*old_res)->start == new_res->end + 1) {
1067                         (*old_res)->start = new_res->start;
1068                         kfree(new_res);
1069                         break;
1070                 }
1071
1072                 if ((*old_res)->end < new_res->start) {
1073                         new_res->sibling = *old_res;
1074                         if (prev_res)
1075                                 (*prev_res)->sibling = new_res;
1076                         *old_res = new_res;
1077                         break;
1078                 }
1079
1080                 prev_res = old_res;
1081                 old_res = &(*old_res)->sibling;
1082
1083         } while (1);
1084
1085         return AE_OK;
1086 }
1087
1088 static int vmbus_acpi_remove(struct acpi_device *device)
1089 {
1090         struct resource *cur_res;
1091         struct resource *next_res;
1092
1093         if (hyperv_mmio) {
1094                 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1095                         next_res = cur_res->sibling;
1096                         kfree(cur_res);
1097                 }
1098         }
1099
1100         return 0;
1101 }
1102
1103 /**
1104  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1105  * @new:                If successful, supplied a pointer to the
1106  *                      allocated MMIO space.
1107  * @device_obj:         Identifies the caller
1108  * @min:                Minimum guest physical address of the
1109  *                      allocation
1110  * @max:                Maximum guest physical address
1111  * @size:               Size of the range to be allocated
1112  * @align:              Alignment of the range to be allocated
1113  * @fb_overlap_ok:      Whether this allocation can be allowed
1114  *                      to overlap the video frame buffer.
1115  *
1116  * This function walks the resources granted to VMBus by the
1117  * _CRS object in the ACPI namespace underneath the parent
1118  * "bridge" whether that's a root PCI bus in the Generation 1
1119  * case or a Module Device in the Generation 2 case.  It then
1120  * attempts to allocate from the global MMIO pool in a way that
1121  * matches the constraints supplied in these parameters and by
1122  * that _CRS.
1123  *
1124  * Return: 0 on success, -errno on failure
1125  */
1126 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1127                         resource_size_t min, resource_size_t max,
1128                         resource_size_t size, resource_size_t align,
1129                         bool fb_overlap_ok)
1130 {
1131         struct resource *iter;
1132         resource_size_t range_min, range_max, start, local_min, local_max;
1133         const char *dev_n = dev_name(&device_obj->device);
1134         u32 fb_end = screen_info.lfb_base + (screen_info.lfb_size << 1);
1135         int i;
1136
1137         for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1138                 if ((iter->start >= max) || (iter->end <= min))
1139                         continue;
1140
1141                 range_min = iter->start;
1142                 range_max = iter->end;
1143
1144                 /* If this range overlaps the frame buffer, split it into
1145                    two tries. */
1146                 for (i = 0; i < 2; i++) {
1147                         local_min = range_min;
1148                         local_max = range_max;
1149                         if (fb_overlap_ok || (range_min >= fb_end) ||
1150                             (range_max <= screen_info.lfb_base)) {
1151                                 i++;
1152                         } else {
1153                                 if ((range_min <= screen_info.lfb_base) &&
1154                                     (range_max >= screen_info.lfb_base)) {
1155                                         /*
1156                                          * The frame buffer is in this window,
1157                                          * so trim this into the part that
1158                                          * preceeds the frame buffer.
1159                                          */
1160                                         local_max = screen_info.lfb_base - 1;
1161                                         range_min = fb_end;
1162                                 } else {
1163                                         range_min = fb_end;
1164                                         continue;
1165                                 }
1166                         }
1167
1168                         start = (local_min + align - 1) & ~(align - 1);
1169                         for (; start + size - 1 <= local_max; start += align) {
1170                                 *new = request_mem_region_exclusive(start, size,
1171                                                                     dev_n);
1172                                 if (*new)
1173                                         return 0;
1174                         }
1175                 }
1176         }
1177
1178         return -ENXIO;
1179 }
1180 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1181
1182 /**
1183  * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1184  * @cpu_number: CPU number in Linux terms
1185  *
1186  * This function returns the mapping between the Linux processor
1187  * number and the hypervisor's virtual processor number, useful
1188  * in making hypercalls and such that talk about specific
1189  * processors.
1190  *
1191  * Return: Virtual processor number in Hyper-V terms
1192  */
1193 int vmbus_cpu_number_to_vp_number(int cpu_number)
1194 {
1195         return hv_context.vp_index[cpu_number];
1196 }
1197 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1198
1199 static int vmbus_acpi_add(struct acpi_device *device)
1200 {
1201         acpi_status result;
1202         int ret_val = -ENODEV;
1203         struct acpi_device *ancestor;
1204
1205         hv_acpi_dev = device;
1206
1207         result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1208                                         vmbus_walk_resources, NULL);
1209
1210         if (ACPI_FAILURE(result))
1211                 goto acpi_walk_err;
1212         /*
1213          * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1214          * firmware) is the VMOD that has the mmio ranges. Get that.
1215          */
1216         for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1217                 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1218                                              vmbus_walk_resources, NULL);
1219
1220                 if (ACPI_FAILURE(result))
1221                         continue;
1222                 if (hyperv_mmio)
1223                         break;
1224         }
1225         ret_val = 0;
1226
1227 acpi_walk_err:
1228         complete(&probe_event);
1229         if (ret_val)
1230                 vmbus_acpi_remove(device);
1231         return ret_val;
1232 }
1233
1234 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1235         {"VMBUS", 0},
1236         {"VMBus", 0},
1237         {"", 0},
1238 };
1239 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1240
1241 static struct acpi_driver vmbus_acpi_driver = {
1242         .name = "vmbus",
1243         .ids = vmbus_acpi_device_ids,
1244         .ops = {
1245                 .add = vmbus_acpi_add,
1246                 .remove = vmbus_acpi_remove,
1247         },
1248 };
1249
1250 static void hv_kexec_handler(void)
1251 {
1252         int cpu;
1253
1254         hv_synic_clockevents_cleanup();
1255         vmbus_initiate_unload(false);
1256         for_each_online_cpu(cpu)
1257                 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1258         hv_cleanup();
1259 };
1260
1261 static void hv_crash_handler(struct pt_regs *regs)
1262 {
1263         vmbus_initiate_unload(true);
1264         /*
1265          * In crash handler we can't schedule synic cleanup for all CPUs,
1266          * doing the cleanup for current CPU only. This should be sufficient
1267          * for kdump.
1268          */
1269         hv_synic_cleanup(NULL);
1270         hv_cleanup();
1271 };
1272
1273 static int __init hv_acpi_init(void)
1274 {
1275         int ret, t;
1276
1277         if (x86_hyper != &x86_hyper_ms_hyperv)
1278                 return -ENODEV;
1279
1280         init_completion(&probe_event);
1281
1282         /*
1283          * Get ACPI resources first.
1284          */
1285         ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1286
1287         if (ret)
1288                 return ret;
1289
1290         t = wait_for_completion_timeout(&probe_event, 5*HZ);
1291         if (t == 0) {
1292                 ret = -ETIMEDOUT;
1293                 goto cleanup;
1294         }
1295
1296         ret = vmbus_bus_init();
1297         if (ret)
1298                 goto cleanup;
1299
1300         hv_setup_kexec_handler(hv_kexec_handler);
1301         hv_setup_crash_handler(hv_crash_handler);
1302
1303         return 0;
1304
1305 cleanup:
1306         acpi_bus_unregister_driver(&vmbus_acpi_driver);
1307         hv_acpi_dev = NULL;
1308         return ret;
1309 }
1310
1311 static void __exit vmbus_exit(void)
1312 {
1313         int cpu;
1314
1315         hv_remove_kexec_handler();
1316         hv_remove_crash_handler();
1317         vmbus_connection.conn_state = DISCONNECTED;
1318         hv_synic_clockevents_cleanup();
1319         vmbus_disconnect();
1320         hv_remove_vmbus_irq();
1321         for_each_online_cpu(cpu)
1322                 tasklet_kill(hv_context.msg_dpc[cpu]);
1323         vmbus_free_channels();
1324         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1325                 unregister_die_notifier(&hyperv_die_block);
1326                 atomic_notifier_chain_unregister(&panic_notifier_list,
1327                                                  &hyperv_panic_block);
1328         }
1329         bus_unregister(&hv_bus);
1330         hv_cleanup();
1331         for_each_online_cpu(cpu) {
1332                 tasklet_kill(hv_context.event_dpc[cpu]);
1333                 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1334         }
1335         hv_synic_free();
1336         acpi_bus_unregister_driver(&vmbus_acpi_driver);
1337         if (vmbus_proto_version > VERSION_WIN7)
1338                 cpu_hotplug_enable();
1339 }
1340
1341
1342 MODULE_LICENSE("GPL");
1343
1344 subsys_initcall(hv_acpi_init);
1345 module_exit(vmbus_exit);