x86/nmi: Fix use of unallocated cpumask_var_t
[cascardo/linux.git] / drivers / iommu / arm-smmu.c
1 /*
2  * IOMMU API for ARM architected SMMU implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16  *
17  * Copyright (C) 2013 ARM Limited
18  *
19  * Author: Will Deacon <will.deacon@arm.com>
20  *
21  * This driver currently supports:
22  *      - SMMUv1 and v2 implementations
23  *      - Stream-matching and stream-indexing
24  *      - v7/v8 long-descriptor format
25  *      - Non-secure access to the SMMU
26  *      - 4k and 64k pages, with contiguous pte hints.
27  *      - Up to 48-bit addressing (dependent on VA_BITS)
28  *      - Context fault reporting
29  */
30
31 #define pr_fmt(fmt) "arm-smmu: " fmt
32
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/err.h>
36 #include <linux/interrupt.h>
37 #include <linux/io.h>
38 #include <linux/iommu.h>
39 #include <linux/mm.h>
40 #include <linux/module.h>
41 #include <linux/of.h>
42 #include <linux/pci.h>
43 #include <linux/platform_device.h>
44 #include <linux/slab.h>
45 #include <linux/spinlock.h>
46
47 #include <linux/amba/bus.h>
48
49 #include <asm/pgalloc.h>
50
51 /* Maximum number of stream IDs assigned to a single device */
52 #define MAX_MASTER_STREAMIDS            MAX_PHANDLE_ARGS
53
54 /* Maximum number of context banks per SMMU */
55 #define ARM_SMMU_MAX_CBS                128
56
57 /* Maximum number of mapping groups per SMMU */
58 #define ARM_SMMU_MAX_SMRS               128
59
60 /* SMMU global address space */
61 #define ARM_SMMU_GR0(smmu)              ((smmu)->base)
62 #define ARM_SMMU_GR1(smmu)              ((smmu)->base + (1 << (smmu)->pgshift))
63
64 /*
65  * SMMU global address space with conditional offset to access secure
66  * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
67  * nsGFSYNR0: 0x450)
68  */
69 #define ARM_SMMU_GR0_NS(smmu)                                           \
70         ((smmu)->base +                                                 \
71                 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)       \
72                         ? 0x400 : 0))
73
74 /* Page table bits */
75 #define ARM_SMMU_PTE_XN                 (((pteval_t)3) << 53)
76 #define ARM_SMMU_PTE_CONT               (((pteval_t)1) << 52)
77 #define ARM_SMMU_PTE_AF                 (((pteval_t)1) << 10)
78 #define ARM_SMMU_PTE_SH_NS              (((pteval_t)0) << 8)
79 #define ARM_SMMU_PTE_SH_OS              (((pteval_t)2) << 8)
80 #define ARM_SMMU_PTE_SH_IS              (((pteval_t)3) << 8)
81 #define ARM_SMMU_PTE_PAGE               (((pteval_t)3) << 0)
82
83 #if PAGE_SIZE == SZ_4K
84 #define ARM_SMMU_PTE_CONT_ENTRIES       16
85 #elif PAGE_SIZE == SZ_64K
86 #define ARM_SMMU_PTE_CONT_ENTRIES       32
87 #else
88 #define ARM_SMMU_PTE_CONT_ENTRIES       1
89 #endif
90
91 #define ARM_SMMU_PTE_CONT_SIZE          (PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
92 #define ARM_SMMU_PTE_CONT_MASK          (~(ARM_SMMU_PTE_CONT_SIZE - 1))
93
94 /* Stage-1 PTE */
95 #define ARM_SMMU_PTE_AP_UNPRIV          (((pteval_t)1) << 6)
96 #define ARM_SMMU_PTE_AP_RDONLY          (((pteval_t)2) << 6)
97 #define ARM_SMMU_PTE_ATTRINDX_SHIFT     2
98 #define ARM_SMMU_PTE_nG                 (((pteval_t)1) << 11)
99
100 /* Stage-2 PTE */
101 #define ARM_SMMU_PTE_HAP_FAULT          (((pteval_t)0) << 6)
102 #define ARM_SMMU_PTE_HAP_READ           (((pteval_t)1) << 6)
103 #define ARM_SMMU_PTE_HAP_WRITE          (((pteval_t)2) << 6)
104 #define ARM_SMMU_PTE_MEMATTR_OIWB       (((pteval_t)0xf) << 2)
105 #define ARM_SMMU_PTE_MEMATTR_NC         (((pteval_t)0x5) << 2)
106 #define ARM_SMMU_PTE_MEMATTR_DEV        (((pteval_t)0x1) << 2)
107
108 /* Configuration registers */
109 #define ARM_SMMU_GR0_sCR0               0x0
110 #define sCR0_CLIENTPD                   (1 << 0)
111 #define sCR0_GFRE                       (1 << 1)
112 #define sCR0_GFIE                       (1 << 2)
113 #define sCR0_GCFGFRE                    (1 << 4)
114 #define sCR0_GCFGFIE                    (1 << 5)
115 #define sCR0_USFCFG                     (1 << 10)
116 #define sCR0_VMIDPNE                    (1 << 11)
117 #define sCR0_PTM                        (1 << 12)
118 #define sCR0_FB                         (1 << 13)
119 #define sCR0_BSU_SHIFT                  14
120 #define sCR0_BSU_MASK                   0x3
121
122 /* Identification registers */
123 #define ARM_SMMU_GR0_ID0                0x20
124 #define ARM_SMMU_GR0_ID1                0x24
125 #define ARM_SMMU_GR0_ID2                0x28
126 #define ARM_SMMU_GR0_ID3                0x2c
127 #define ARM_SMMU_GR0_ID4                0x30
128 #define ARM_SMMU_GR0_ID5                0x34
129 #define ARM_SMMU_GR0_ID6                0x38
130 #define ARM_SMMU_GR0_ID7                0x3c
131 #define ARM_SMMU_GR0_sGFSR              0x48
132 #define ARM_SMMU_GR0_sGFSYNR0           0x50
133 #define ARM_SMMU_GR0_sGFSYNR1           0x54
134 #define ARM_SMMU_GR0_sGFSYNR2           0x58
135 #define ARM_SMMU_GR0_PIDR0              0xfe0
136 #define ARM_SMMU_GR0_PIDR1              0xfe4
137 #define ARM_SMMU_GR0_PIDR2              0xfe8
138
139 #define ID0_S1TS                        (1 << 30)
140 #define ID0_S2TS                        (1 << 29)
141 #define ID0_NTS                         (1 << 28)
142 #define ID0_SMS                         (1 << 27)
143 #define ID0_PTFS_SHIFT                  24
144 #define ID0_PTFS_MASK                   0x2
145 #define ID0_PTFS_V8_ONLY                0x2
146 #define ID0_CTTW                        (1 << 14)
147 #define ID0_NUMIRPT_SHIFT               16
148 #define ID0_NUMIRPT_MASK                0xff
149 #define ID0_NUMSIDB_SHIFT               9
150 #define ID0_NUMSIDB_MASK                0xf
151 #define ID0_NUMSMRG_SHIFT               0
152 #define ID0_NUMSMRG_MASK                0xff
153
154 #define ID1_PAGESIZE                    (1 << 31)
155 #define ID1_NUMPAGENDXB_SHIFT           28
156 #define ID1_NUMPAGENDXB_MASK            7
157 #define ID1_NUMS2CB_SHIFT               16
158 #define ID1_NUMS2CB_MASK                0xff
159 #define ID1_NUMCB_SHIFT                 0
160 #define ID1_NUMCB_MASK                  0xff
161
162 #define ID2_OAS_SHIFT                   4
163 #define ID2_OAS_MASK                    0xf
164 #define ID2_IAS_SHIFT                   0
165 #define ID2_IAS_MASK                    0xf
166 #define ID2_UBS_SHIFT                   8
167 #define ID2_UBS_MASK                    0xf
168 #define ID2_PTFS_4K                     (1 << 12)
169 #define ID2_PTFS_16K                    (1 << 13)
170 #define ID2_PTFS_64K                    (1 << 14)
171
172 #define PIDR2_ARCH_SHIFT                4
173 #define PIDR2_ARCH_MASK                 0xf
174
175 /* Global TLB invalidation */
176 #define ARM_SMMU_GR0_STLBIALL           0x60
177 #define ARM_SMMU_GR0_TLBIVMID           0x64
178 #define ARM_SMMU_GR0_TLBIALLNSNH        0x68
179 #define ARM_SMMU_GR0_TLBIALLH           0x6c
180 #define ARM_SMMU_GR0_sTLBGSYNC          0x70
181 #define ARM_SMMU_GR0_sTLBGSTATUS        0x74
182 #define sTLBGSTATUS_GSACTIVE            (1 << 0)
183 #define TLB_LOOP_TIMEOUT                1000000 /* 1s! */
184
185 /* Stream mapping registers */
186 #define ARM_SMMU_GR0_SMR(n)             (0x800 + ((n) << 2))
187 #define SMR_VALID                       (1 << 31)
188 #define SMR_MASK_SHIFT                  16
189 #define SMR_MASK_MASK                   0x7fff
190 #define SMR_ID_SHIFT                    0
191 #define SMR_ID_MASK                     0x7fff
192
193 #define ARM_SMMU_GR0_S2CR(n)            (0xc00 + ((n) << 2))
194 #define S2CR_CBNDX_SHIFT                0
195 #define S2CR_CBNDX_MASK                 0xff
196 #define S2CR_TYPE_SHIFT                 16
197 #define S2CR_TYPE_MASK                  0x3
198 #define S2CR_TYPE_TRANS                 (0 << S2CR_TYPE_SHIFT)
199 #define S2CR_TYPE_BYPASS                (1 << S2CR_TYPE_SHIFT)
200 #define S2CR_TYPE_FAULT                 (2 << S2CR_TYPE_SHIFT)
201
202 /* Context bank attribute registers */
203 #define ARM_SMMU_GR1_CBAR(n)            (0x0 + ((n) << 2))
204 #define CBAR_VMID_SHIFT                 0
205 #define CBAR_VMID_MASK                  0xff
206 #define CBAR_S1_BPSHCFG_SHIFT           8
207 #define CBAR_S1_BPSHCFG_MASK            3
208 #define CBAR_S1_BPSHCFG_NSH             3
209 #define CBAR_S1_MEMATTR_SHIFT           12
210 #define CBAR_S1_MEMATTR_MASK            0xf
211 #define CBAR_S1_MEMATTR_WB              0xf
212 #define CBAR_TYPE_SHIFT                 16
213 #define CBAR_TYPE_MASK                  0x3
214 #define CBAR_TYPE_S2_TRANS              (0 << CBAR_TYPE_SHIFT)
215 #define CBAR_TYPE_S1_TRANS_S2_BYPASS    (1 << CBAR_TYPE_SHIFT)
216 #define CBAR_TYPE_S1_TRANS_S2_FAULT     (2 << CBAR_TYPE_SHIFT)
217 #define CBAR_TYPE_S1_TRANS_S2_TRANS     (3 << CBAR_TYPE_SHIFT)
218 #define CBAR_IRPTNDX_SHIFT              24
219 #define CBAR_IRPTNDX_MASK               0xff
220
221 #define ARM_SMMU_GR1_CBA2R(n)           (0x800 + ((n) << 2))
222 #define CBA2R_RW64_32BIT                (0 << 0)
223 #define CBA2R_RW64_64BIT                (1 << 0)
224
225 /* Translation context bank */
226 #define ARM_SMMU_CB_BASE(smmu)          ((smmu)->base + ((smmu)->size >> 1))
227 #define ARM_SMMU_CB(smmu, n)            ((n) * (1 << (smmu)->pgshift))
228
229 #define ARM_SMMU_CB_SCTLR               0x0
230 #define ARM_SMMU_CB_RESUME              0x8
231 #define ARM_SMMU_CB_TTBCR2              0x10
232 #define ARM_SMMU_CB_TTBR0_LO            0x20
233 #define ARM_SMMU_CB_TTBR0_HI            0x24
234 #define ARM_SMMU_CB_TTBCR               0x30
235 #define ARM_SMMU_CB_S1_MAIR0            0x38
236 #define ARM_SMMU_CB_FSR                 0x58
237 #define ARM_SMMU_CB_FAR_LO              0x60
238 #define ARM_SMMU_CB_FAR_HI              0x64
239 #define ARM_SMMU_CB_FSYNR0              0x68
240 #define ARM_SMMU_CB_S1_TLBIASID         0x610
241
242 #define SCTLR_S1_ASIDPNE                (1 << 12)
243 #define SCTLR_CFCFG                     (1 << 7)
244 #define SCTLR_CFIE                      (1 << 6)
245 #define SCTLR_CFRE                      (1 << 5)
246 #define SCTLR_E                         (1 << 4)
247 #define SCTLR_AFE                       (1 << 2)
248 #define SCTLR_TRE                       (1 << 1)
249 #define SCTLR_M                         (1 << 0)
250 #define SCTLR_EAE_SBOP                  (SCTLR_AFE | SCTLR_TRE)
251
252 #define RESUME_RETRY                    (0 << 0)
253 #define RESUME_TERMINATE                (1 << 0)
254
255 #define TTBCR_EAE                       (1 << 31)
256
257 #define TTBCR_PASIZE_SHIFT              16
258 #define TTBCR_PASIZE_MASK               0x7
259
260 #define TTBCR_TG0_4K                    (0 << 14)
261 #define TTBCR_TG0_64K                   (1 << 14)
262
263 #define TTBCR_SH0_SHIFT                 12
264 #define TTBCR_SH0_MASK                  0x3
265 #define TTBCR_SH_NS                     0
266 #define TTBCR_SH_OS                     2
267 #define TTBCR_SH_IS                     3
268
269 #define TTBCR_ORGN0_SHIFT               10
270 #define TTBCR_IRGN0_SHIFT               8
271 #define TTBCR_RGN_MASK                  0x3
272 #define TTBCR_RGN_NC                    0
273 #define TTBCR_RGN_WBWA                  1
274 #define TTBCR_RGN_WT                    2
275 #define TTBCR_RGN_WB                    3
276
277 #define TTBCR_SL0_SHIFT                 6
278 #define TTBCR_SL0_MASK                  0x3
279 #define TTBCR_SL0_LVL_2                 0
280 #define TTBCR_SL0_LVL_1                 1
281
282 #define TTBCR_T1SZ_SHIFT                16
283 #define TTBCR_T0SZ_SHIFT                0
284 #define TTBCR_SZ_MASK                   0xf
285
286 #define TTBCR2_SEP_SHIFT                15
287 #define TTBCR2_SEP_MASK                 0x7
288
289 #define TTBCR2_PASIZE_SHIFT             0
290 #define TTBCR2_PASIZE_MASK              0x7
291
292 /* Common definitions for PASize and SEP fields */
293 #define TTBCR2_ADDR_32                  0
294 #define TTBCR2_ADDR_36                  1
295 #define TTBCR2_ADDR_40                  2
296 #define TTBCR2_ADDR_42                  3
297 #define TTBCR2_ADDR_44                  4
298 #define TTBCR2_ADDR_48                  5
299
300 #define TTBRn_HI_ASID_SHIFT             16
301
302 #define MAIR_ATTR_SHIFT(n)              ((n) << 3)
303 #define MAIR_ATTR_MASK                  0xff
304 #define MAIR_ATTR_DEVICE                0x04
305 #define MAIR_ATTR_NC                    0x44
306 #define MAIR_ATTR_WBRWA                 0xff
307 #define MAIR_ATTR_IDX_NC                0
308 #define MAIR_ATTR_IDX_CACHE             1
309 #define MAIR_ATTR_IDX_DEV               2
310
311 #define FSR_MULTI                       (1 << 31)
312 #define FSR_SS                          (1 << 30)
313 #define FSR_UUT                         (1 << 8)
314 #define FSR_ASF                         (1 << 7)
315 #define FSR_TLBLKF                      (1 << 6)
316 #define FSR_TLBMCF                      (1 << 5)
317 #define FSR_EF                          (1 << 4)
318 #define FSR_PF                          (1 << 3)
319 #define FSR_AFF                         (1 << 2)
320 #define FSR_TF                          (1 << 1)
321
322 #define FSR_IGN                         (FSR_AFF | FSR_ASF | \
323                                          FSR_TLBMCF | FSR_TLBLKF)
324 #define FSR_FAULT                       (FSR_MULTI | FSR_SS | FSR_UUT | \
325                                          FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
326
327 #define FSYNR0_WNR                      (1 << 4)
328
329 static int force_stage;
330 module_param_named(force_stage, force_stage, int, S_IRUGO | S_IWUSR);
331 MODULE_PARM_DESC(force_stage,
332         "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
333
334 enum arm_smmu_arch_version {
335         ARM_SMMU_V1 = 1,
336         ARM_SMMU_V2,
337 };
338
339 struct arm_smmu_smr {
340         u8                              idx;
341         u16                             mask;
342         u16                             id;
343 };
344
345 struct arm_smmu_master_cfg {
346         int                             num_streamids;
347         u16                             streamids[MAX_MASTER_STREAMIDS];
348         struct arm_smmu_smr             *smrs;
349 };
350
351 struct arm_smmu_master {
352         struct device_node              *of_node;
353         struct rb_node                  node;
354         struct arm_smmu_master_cfg      cfg;
355 };
356
357 struct arm_smmu_device {
358         struct device                   *dev;
359
360         void __iomem                    *base;
361         unsigned long                   size;
362         unsigned long                   pgshift;
363
364 #define ARM_SMMU_FEAT_COHERENT_WALK     (1 << 0)
365 #define ARM_SMMU_FEAT_STREAM_MATCH      (1 << 1)
366 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 2)
367 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 3)
368 #define ARM_SMMU_FEAT_TRANS_NESTED      (1 << 4)
369         u32                             features;
370
371 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
372         u32                             options;
373         enum arm_smmu_arch_version      version;
374
375         u32                             num_context_banks;
376         u32                             num_s2_context_banks;
377         DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
378         atomic_t                        irptndx;
379
380         u32                             num_mapping_groups;
381         DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
382
383         unsigned long                   s1_input_size;
384         unsigned long                   s1_output_size;
385         unsigned long                   s2_input_size;
386         unsigned long                   s2_output_size;
387
388         u32                             num_global_irqs;
389         u32                             num_context_irqs;
390         unsigned int                    *irqs;
391
392         struct list_head                list;
393         struct rb_root                  masters;
394 };
395
396 struct arm_smmu_cfg {
397         u8                              cbndx;
398         u8                              irptndx;
399         u32                             cbar;
400         pgd_t                           *pgd;
401 };
402 #define INVALID_IRPTNDX                 0xff
403
404 #define ARM_SMMU_CB_ASID(cfg)           ((cfg)->cbndx)
405 #define ARM_SMMU_CB_VMID(cfg)           ((cfg)->cbndx + 1)
406
407 struct arm_smmu_domain {
408         struct arm_smmu_device          *smmu;
409         struct arm_smmu_cfg             cfg;
410         spinlock_t                      lock;
411 };
412
413 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
414 static LIST_HEAD(arm_smmu_devices);
415
416 struct arm_smmu_option_prop {
417         u32 opt;
418         const char *prop;
419 };
420
421 static struct arm_smmu_option_prop arm_smmu_options[] = {
422         { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
423         { 0, NULL},
424 };
425
426 static void parse_driver_options(struct arm_smmu_device *smmu)
427 {
428         int i = 0;
429
430         do {
431                 if (of_property_read_bool(smmu->dev->of_node,
432                                                 arm_smmu_options[i].prop)) {
433                         smmu->options |= arm_smmu_options[i].opt;
434                         dev_notice(smmu->dev, "option %s\n",
435                                 arm_smmu_options[i].prop);
436                 }
437         } while (arm_smmu_options[++i].opt);
438 }
439
440 static struct device_node *dev_get_dev_node(struct device *dev)
441 {
442         if (dev_is_pci(dev)) {
443                 struct pci_bus *bus = to_pci_dev(dev)->bus;
444
445                 while (!pci_is_root_bus(bus))
446                         bus = bus->parent;
447                 return bus->bridge->parent->of_node;
448         }
449
450         return dev->of_node;
451 }
452
453 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
454                                                 struct device_node *dev_node)
455 {
456         struct rb_node *node = smmu->masters.rb_node;
457
458         while (node) {
459                 struct arm_smmu_master *master;
460
461                 master = container_of(node, struct arm_smmu_master, node);
462
463                 if (dev_node < master->of_node)
464                         node = node->rb_left;
465                 else if (dev_node > master->of_node)
466                         node = node->rb_right;
467                 else
468                         return master;
469         }
470
471         return NULL;
472 }
473
474 static struct arm_smmu_master_cfg *
475 find_smmu_master_cfg(struct device *dev)
476 {
477         struct arm_smmu_master_cfg *cfg = NULL;
478         struct iommu_group *group = iommu_group_get(dev);
479
480         if (group) {
481                 cfg = iommu_group_get_iommudata(group);
482                 iommu_group_put(group);
483         }
484
485         return cfg;
486 }
487
488 static int insert_smmu_master(struct arm_smmu_device *smmu,
489                               struct arm_smmu_master *master)
490 {
491         struct rb_node **new, *parent;
492
493         new = &smmu->masters.rb_node;
494         parent = NULL;
495         while (*new) {
496                 struct arm_smmu_master *this
497                         = container_of(*new, struct arm_smmu_master, node);
498
499                 parent = *new;
500                 if (master->of_node < this->of_node)
501                         new = &((*new)->rb_left);
502                 else if (master->of_node > this->of_node)
503                         new = &((*new)->rb_right);
504                 else
505                         return -EEXIST;
506         }
507
508         rb_link_node(&master->node, parent, new);
509         rb_insert_color(&master->node, &smmu->masters);
510         return 0;
511 }
512
513 static int register_smmu_master(struct arm_smmu_device *smmu,
514                                 struct device *dev,
515                                 struct of_phandle_args *masterspec)
516 {
517         int i;
518         struct arm_smmu_master *master;
519
520         master = find_smmu_master(smmu, masterspec->np);
521         if (master) {
522                 dev_err(dev,
523                         "rejecting multiple registrations for master device %s\n",
524                         masterspec->np->name);
525                 return -EBUSY;
526         }
527
528         if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
529                 dev_err(dev,
530                         "reached maximum number (%d) of stream IDs for master device %s\n",
531                         MAX_MASTER_STREAMIDS, masterspec->np->name);
532                 return -ENOSPC;
533         }
534
535         master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
536         if (!master)
537                 return -ENOMEM;
538
539         master->of_node                 = masterspec->np;
540         master->cfg.num_streamids       = masterspec->args_count;
541
542         for (i = 0; i < master->cfg.num_streamids; ++i) {
543                 u16 streamid = masterspec->args[i];
544
545                 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
546                      (streamid >= smmu->num_mapping_groups)) {
547                         dev_err(dev,
548                                 "stream ID for master device %s greater than maximum allowed (%d)\n",
549                                 masterspec->np->name, smmu->num_mapping_groups);
550                         return -ERANGE;
551                 }
552                 master->cfg.streamids[i] = streamid;
553         }
554         return insert_smmu_master(smmu, master);
555 }
556
557 static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
558 {
559         struct arm_smmu_device *smmu;
560         struct arm_smmu_master *master = NULL;
561         struct device_node *dev_node = dev_get_dev_node(dev);
562
563         spin_lock(&arm_smmu_devices_lock);
564         list_for_each_entry(smmu, &arm_smmu_devices, list) {
565                 master = find_smmu_master(smmu, dev_node);
566                 if (master)
567                         break;
568         }
569         spin_unlock(&arm_smmu_devices_lock);
570
571         return master ? smmu : NULL;
572 }
573
574 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
575 {
576         int idx;
577
578         do {
579                 idx = find_next_zero_bit(map, end, start);
580                 if (idx == end)
581                         return -ENOSPC;
582         } while (test_and_set_bit(idx, map));
583
584         return idx;
585 }
586
587 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
588 {
589         clear_bit(idx, map);
590 }
591
592 /* Wait for any pending TLB invalidations to complete */
593 static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
594 {
595         int count = 0;
596         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
597
598         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
599         while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
600                & sTLBGSTATUS_GSACTIVE) {
601                 cpu_relax();
602                 if (++count == TLB_LOOP_TIMEOUT) {
603                         dev_err_ratelimited(smmu->dev,
604                         "TLB sync timed out -- SMMU may be deadlocked\n");
605                         return;
606                 }
607                 udelay(1);
608         }
609 }
610
611 static void arm_smmu_tlb_inv_context(struct arm_smmu_domain *smmu_domain)
612 {
613         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
614         struct arm_smmu_device *smmu = smmu_domain->smmu;
615         void __iomem *base = ARM_SMMU_GR0(smmu);
616         bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
617
618         if (stage1) {
619                 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
620                 writel_relaxed(ARM_SMMU_CB_ASID(cfg),
621                                base + ARM_SMMU_CB_S1_TLBIASID);
622         } else {
623                 base = ARM_SMMU_GR0(smmu);
624                 writel_relaxed(ARM_SMMU_CB_VMID(cfg),
625                                base + ARM_SMMU_GR0_TLBIVMID);
626         }
627
628         arm_smmu_tlb_sync(smmu);
629 }
630
631 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
632 {
633         int flags, ret;
634         u32 fsr, far, fsynr, resume;
635         unsigned long iova;
636         struct iommu_domain *domain = dev;
637         struct arm_smmu_domain *smmu_domain = domain->priv;
638         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
639         struct arm_smmu_device *smmu = smmu_domain->smmu;
640         void __iomem *cb_base;
641
642         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
643         fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
644
645         if (!(fsr & FSR_FAULT))
646                 return IRQ_NONE;
647
648         if (fsr & FSR_IGN)
649                 dev_err_ratelimited(smmu->dev,
650                                     "Unexpected context fault (fsr 0x%x)\n",
651                                     fsr);
652
653         fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
654         flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
655
656         far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
657         iova = far;
658 #ifdef CONFIG_64BIT
659         far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
660         iova |= ((unsigned long)far << 32);
661 #endif
662
663         if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
664                 ret = IRQ_HANDLED;
665                 resume = RESUME_RETRY;
666         } else {
667                 dev_err_ratelimited(smmu->dev,
668                     "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
669                     iova, fsynr, cfg->cbndx);
670                 ret = IRQ_NONE;
671                 resume = RESUME_TERMINATE;
672         }
673
674         /* Clear the faulting FSR */
675         writel(fsr, cb_base + ARM_SMMU_CB_FSR);
676
677         /* Retry or terminate any stalled transactions */
678         if (fsr & FSR_SS)
679                 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
680
681         return ret;
682 }
683
684 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
685 {
686         u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
687         struct arm_smmu_device *smmu = dev;
688         void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
689
690         gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
691         gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
692         gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
693         gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
694
695         if (!gfsr)
696                 return IRQ_NONE;
697
698         dev_err_ratelimited(smmu->dev,
699                 "Unexpected global fault, this could be serious\n");
700         dev_err_ratelimited(smmu->dev,
701                 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
702                 gfsr, gfsynr0, gfsynr1, gfsynr2);
703
704         writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
705         return IRQ_HANDLED;
706 }
707
708 static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
709                                    size_t size)
710 {
711         unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
712
713
714         /* Ensure new page tables are visible to the hardware walker */
715         if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
716                 dsb(ishst);
717         } else {
718                 /*
719                  * If the SMMU can't walk tables in the CPU caches, treat them
720                  * like non-coherent DMA since we need to flush the new entries
721                  * all the way out to memory. There's no possibility of
722                  * recursion here as the SMMU table walker will not be wired
723                  * through another SMMU.
724                  */
725                 dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
726                                 DMA_TO_DEVICE);
727         }
728 }
729
730 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
731 {
732         u32 reg;
733         bool stage1;
734         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
735         struct arm_smmu_device *smmu = smmu_domain->smmu;
736         void __iomem *cb_base, *gr0_base, *gr1_base;
737
738         gr0_base = ARM_SMMU_GR0(smmu);
739         gr1_base = ARM_SMMU_GR1(smmu);
740         stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
741         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
742
743         /* CBAR */
744         reg = cfg->cbar;
745         if (smmu->version == ARM_SMMU_V1)
746                 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
747
748         /*
749          * Use the weakest shareability/memory types, so they are
750          * overridden by the ttbcr/pte.
751          */
752         if (stage1) {
753                 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
754                         (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
755         } else {
756                 reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
757         }
758         writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
759
760         if (smmu->version > ARM_SMMU_V1) {
761                 /* CBA2R */
762 #ifdef CONFIG_64BIT
763                 reg = CBA2R_RW64_64BIT;
764 #else
765                 reg = CBA2R_RW64_32BIT;
766 #endif
767                 writel_relaxed(reg,
768                                gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
769
770                 /* TTBCR2 */
771                 switch (smmu->s1_input_size) {
772                 case 32:
773                         reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
774                         break;
775                 case 36:
776                         reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
777                         break;
778                 case 39:
779                 case 40:
780                         reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
781                         break;
782                 case 42:
783                         reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
784                         break;
785                 case 44:
786                         reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
787                         break;
788                 case 48:
789                         reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
790                         break;
791                 }
792
793                 switch (smmu->s1_output_size) {
794                 case 32:
795                         reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
796                         break;
797                 case 36:
798                         reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
799                         break;
800                 case 39:
801                 case 40:
802                         reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
803                         break;
804                 case 42:
805                         reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
806                         break;
807                 case 44:
808                         reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
809                         break;
810                 case 48:
811                         reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
812                         break;
813                 }
814
815                 if (stage1)
816                         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
817         }
818
819         /* TTBR0 */
820         arm_smmu_flush_pgtable(smmu, cfg->pgd,
821                                PTRS_PER_PGD * sizeof(pgd_t));
822         reg = __pa(cfg->pgd);
823         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
824         reg = (phys_addr_t)__pa(cfg->pgd) >> 32;
825         if (stage1)
826                 reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
827         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
828
829         /*
830          * TTBCR
831          * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
832          */
833         if (smmu->version > ARM_SMMU_V1) {
834                 if (PAGE_SIZE == SZ_4K)
835                         reg = TTBCR_TG0_4K;
836                 else
837                         reg = TTBCR_TG0_64K;
838
839                 if (!stage1) {
840                         reg |= (64 - smmu->s2_input_size) << TTBCR_T0SZ_SHIFT;
841
842                         switch (smmu->s2_output_size) {
843                         case 32:
844                                 reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
845                                 break;
846                         case 36:
847                                 reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
848                                 break;
849                         case 40:
850                                 reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
851                                 break;
852                         case 42:
853                                 reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
854                                 break;
855                         case 44:
856                                 reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
857                                 break;
858                         case 48:
859                                 reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
860                                 break;
861                         }
862                 } else {
863                         reg |= (64 - smmu->s1_input_size) << TTBCR_T0SZ_SHIFT;
864                 }
865         } else {
866                 reg = 0;
867         }
868
869         reg |= TTBCR_EAE |
870               (TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
871               (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
872               (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT);
873
874         if (!stage1)
875                 reg |= (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);
876
877         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
878
879         /* MAIR0 (stage-1 only) */
880         if (stage1) {
881                 reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
882                       (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
883                       (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
884                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
885         }
886
887         /* SCTLR */
888         reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
889         if (stage1)
890                 reg |= SCTLR_S1_ASIDPNE;
891 #ifdef __BIG_ENDIAN
892         reg |= SCTLR_E;
893 #endif
894         writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
895 }
896
897 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
898                                         struct arm_smmu_device *smmu)
899 {
900         int irq, start, ret = 0;
901         unsigned long flags;
902         struct arm_smmu_domain *smmu_domain = domain->priv;
903         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
904
905         spin_lock_irqsave(&smmu_domain->lock, flags);
906         if (smmu_domain->smmu)
907                 goto out_unlock;
908
909         if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
910                 /*
911                  * We will likely want to change this if/when KVM gets
912                  * involved.
913                  */
914                 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
915                 start = smmu->num_s2_context_banks;
916         } else if (smmu->features & ARM_SMMU_FEAT_TRANS_S1) {
917                 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
918                 start = smmu->num_s2_context_banks;
919         } else {
920                 cfg->cbar = CBAR_TYPE_S2_TRANS;
921                 start = 0;
922         }
923
924         ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
925                                       smmu->num_context_banks);
926         if (IS_ERR_VALUE(ret))
927                 goto out_unlock;
928
929         cfg->cbndx = ret;
930         if (smmu->version == ARM_SMMU_V1) {
931                 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
932                 cfg->irptndx %= smmu->num_context_irqs;
933         } else {
934                 cfg->irptndx = cfg->cbndx;
935         }
936
937         ACCESS_ONCE(smmu_domain->smmu) = smmu;
938         arm_smmu_init_context_bank(smmu_domain);
939         spin_unlock_irqrestore(&smmu_domain->lock, flags);
940
941         irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
942         ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
943                           "arm-smmu-context-fault", domain);
944         if (IS_ERR_VALUE(ret)) {
945                 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
946                         cfg->irptndx, irq);
947                 cfg->irptndx = INVALID_IRPTNDX;
948         }
949
950         return 0;
951
952 out_unlock:
953         spin_unlock_irqrestore(&smmu_domain->lock, flags);
954         return ret;
955 }
956
957 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
958 {
959         struct arm_smmu_domain *smmu_domain = domain->priv;
960         struct arm_smmu_device *smmu = smmu_domain->smmu;
961         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
962         void __iomem *cb_base;
963         int irq;
964
965         if (!smmu)
966                 return;
967
968         /* Disable the context bank and nuke the TLB before freeing it. */
969         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
970         writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
971         arm_smmu_tlb_inv_context(smmu_domain);
972
973         if (cfg->irptndx != INVALID_IRPTNDX) {
974                 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
975                 free_irq(irq, domain);
976         }
977
978         __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
979 }
980
981 static int arm_smmu_domain_init(struct iommu_domain *domain)
982 {
983         struct arm_smmu_domain *smmu_domain;
984         pgd_t *pgd;
985
986         /*
987          * Allocate the domain and initialise some of its data structures.
988          * We can't really do anything meaningful until we've added a
989          * master.
990          */
991         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
992         if (!smmu_domain)
993                 return -ENOMEM;
994
995         pgd = kcalloc(PTRS_PER_PGD, sizeof(pgd_t), GFP_KERNEL);
996         if (!pgd)
997                 goto out_free_domain;
998         smmu_domain->cfg.pgd = pgd;
999
1000         spin_lock_init(&smmu_domain->lock);
1001         domain->priv = smmu_domain;
1002         return 0;
1003
1004 out_free_domain:
1005         kfree(smmu_domain);
1006         return -ENOMEM;
1007 }
1008
1009 static void arm_smmu_free_ptes(pmd_t *pmd)
1010 {
1011         pgtable_t table = pmd_pgtable(*pmd);
1012
1013         __free_page(table);
1014 }
1015
1016 static void arm_smmu_free_pmds(pud_t *pud)
1017 {
1018         int i;
1019         pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);
1020
1021         pmd = pmd_base;
1022         for (i = 0; i < PTRS_PER_PMD; ++i) {
1023                 if (pmd_none(*pmd))
1024                         continue;
1025
1026                 arm_smmu_free_ptes(pmd);
1027                 pmd++;
1028         }
1029
1030         pmd_free(NULL, pmd_base);
1031 }
1032
1033 static void arm_smmu_free_puds(pgd_t *pgd)
1034 {
1035         int i;
1036         pud_t *pud, *pud_base = pud_offset(pgd, 0);
1037
1038         pud = pud_base;
1039         for (i = 0; i < PTRS_PER_PUD; ++i) {
1040                 if (pud_none(*pud))
1041                         continue;
1042
1043                 arm_smmu_free_pmds(pud);
1044                 pud++;
1045         }
1046
1047         pud_free(NULL, pud_base);
1048 }
1049
1050 static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
1051 {
1052         int i;
1053         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1054         pgd_t *pgd, *pgd_base = cfg->pgd;
1055
1056         /*
1057          * Recursively free the page tables for this domain. We don't
1058          * care about speculative TLB filling because the tables should
1059          * not be active in any context bank at this point (SCTLR.M is 0).
1060          */
1061         pgd = pgd_base;
1062         for (i = 0; i < PTRS_PER_PGD; ++i) {
1063                 if (pgd_none(*pgd))
1064                         continue;
1065                 arm_smmu_free_puds(pgd);
1066                 pgd++;
1067         }
1068
1069         kfree(pgd_base);
1070 }
1071
1072 static void arm_smmu_domain_destroy(struct iommu_domain *domain)
1073 {
1074         struct arm_smmu_domain *smmu_domain = domain->priv;
1075
1076         /*
1077          * Free the domain resources. We assume that all devices have
1078          * already been detached.
1079          */
1080         arm_smmu_destroy_domain_context(domain);
1081         arm_smmu_free_pgtables(smmu_domain);
1082         kfree(smmu_domain);
1083 }
1084
1085 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1086                                           struct arm_smmu_master_cfg *cfg)
1087 {
1088         int i;
1089         struct arm_smmu_smr *smrs;
1090         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1091
1092         if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
1093                 return 0;
1094
1095         if (cfg->smrs)
1096                 return -EEXIST;
1097
1098         smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1099         if (!smrs) {
1100                 dev_err(smmu->dev, "failed to allocate %d SMRs\n",
1101                         cfg->num_streamids);
1102                 return -ENOMEM;
1103         }
1104
1105         /* Allocate the SMRs on the SMMU */
1106         for (i = 0; i < cfg->num_streamids; ++i) {
1107                 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1108                                                   smmu->num_mapping_groups);
1109                 if (IS_ERR_VALUE(idx)) {
1110                         dev_err(smmu->dev, "failed to allocate free SMR\n");
1111                         goto err_free_smrs;
1112                 }
1113
1114                 smrs[i] = (struct arm_smmu_smr) {
1115                         .idx    = idx,
1116                         .mask   = 0, /* We don't currently share SMRs */
1117                         .id     = cfg->streamids[i],
1118                 };
1119         }
1120
1121         /* It worked! Now, poke the actual hardware */
1122         for (i = 0; i < cfg->num_streamids; ++i) {
1123                 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1124                           smrs[i].mask << SMR_MASK_SHIFT;
1125                 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1126         }
1127
1128         cfg->smrs = smrs;
1129         return 0;
1130
1131 err_free_smrs:
1132         while (--i >= 0)
1133                 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1134         kfree(smrs);
1135         return -ENOSPC;
1136 }
1137
1138 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1139                                       struct arm_smmu_master_cfg *cfg)
1140 {
1141         int i;
1142         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1143         struct arm_smmu_smr *smrs = cfg->smrs;
1144
1145         if (!smrs)
1146                 return;
1147
1148         /* Invalidate the SMRs before freeing back to the allocator */
1149         for (i = 0; i < cfg->num_streamids; ++i) {
1150                 u8 idx = smrs[i].idx;
1151
1152                 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1153                 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1154         }
1155
1156         cfg->smrs = NULL;
1157         kfree(smrs);
1158 }
1159
1160 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1161                                       struct arm_smmu_master_cfg *cfg)
1162 {
1163         int i, ret;
1164         struct arm_smmu_device *smmu = smmu_domain->smmu;
1165         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1166
1167         /* Devices in an IOMMU group may already be configured */
1168         ret = arm_smmu_master_configure_smrs(smmu, cfg);
1169         if (ret)
1170                 return ret == -EEXIST ? 0 : ret;
1171
1172         for (i = 0; i < cfg->num_streamids; ++i) {
1173                 u32 idx, s2cr;
1174
1175                 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1176                 s2cr = S2CR_TYPE_TRANS |
1177                        (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1178                 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1179         }
1180
1181         return 0;
1182 }
1183
1184 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1185                                           struct arm_smmu_master_cfg *cfg)
1186 {
1187         int i;
1188         struct arm_smmu_device *smmu = smmu_domain->smmu;
1189         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1190
1191         /* An IOMMU group is torn down by the first device to be removed */
1192         if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
1193                 return;
1194
1195         /*
1196          * We *must* clear the S2CR first, because freeing the SMR means
1197          * that it can be re-allocated immediately.
1198          */
1199         for (i = 0; i < cfg->num_streamids; ++i) {
1200                 u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1201
1202                 writel_relaxed(S2CR_TYPE_BYPASS,
1203                                gr0_base + ARM_SMMU_GR0_S2CR(idx));
1204         }
1205
1206         arm_smmu_master_free_smrs(smmu, cfg);
1207 }
1208
1209 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1210 {
1211         int ret;
1212         struct arm_smmu_domain *smmu_domain = domain->priv;
1213         struct arm_smmu_device *smmu, *dom_smmu;
1214         struct arm_smmu_master_cfg *cfg;
1215
1216         smmu = find_smmu_for_device(dev);
1217         if (!smmu) {
1218                 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1219                 return -ENXIO;
1220         }
1221
1222         if (dev->archdata.iommu) {
1223                 dev_err(dev, "already attached to IOMMU domain\n");
1224                 return -EEXIST;
1225         }
1226
1227         /*
1228          * Sanity check the domain. We don't support domains across
1229          * different SMMUs.
1230          */
1231         dom_smmu = ACCESS_ONCE(smmu_domain->smmu);
1232         if (!dom_smmu) {
1233                 /* Now that we have a master, we can finalise the domain */
1234                 ret = arm_smmu_init_domain_context(domain, smmu);
1235                 if (IS_ERR_VALUE(ret))
1236                         return ret;
1237
1238                 dom_smmu = smmu_domain->smmu;
1239         }
1240
1241         if (dom_smmu != smmu) {
1242                 dev_err(dev,
1243                         "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1244                         dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1245                 return -EINVAL;
1246         }
1247
1248         /* Looks ok, so add the device to the domain */
1249         cfg = find_smmu_master_cfg(dev);
1250         if (!cfg)
1251                 return -ENODEV;
1252
1253         ret = arm_smmu_domain_add_master(smmu_domain, cfg);
1254         if (!ret)
1255                 dev->archdata.iommu = domain;
1256         return ret;
1257 }
1258
1259 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1260 {
1261         struct arm_smmu_domain *smmu_domain = domain->priv;
1262         struct arm_smmu_master_cfg *cfg;
1263
1264         cfg = find_smmu_master_cfg(dev);
1265         if (!cfg)
1266                 return;
1267
1268         dev->archdata.iommu = NULL;
1269         arm_smmu_domain_remove_master(smmu_domain, cfg);
1270 }
1271
1272 static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
1273                                              unsigned long end)
1274 {
1275         return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
1276                 (addr + ARM_SMMU_PTE_CONT_SIZE <= end);
1277 }
1278
1279 static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
1280                                    unsigned long addr, unsigned long end,
1281                                    unsigned long pfn, int prot, int stage)
1282 {
1283         pte_t *pte, *start;
1284         pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF | ARM_SMMU_PTE_XN;
1285
1286         if (pmd_none(*pmd)) {
1287                 /* Allocate a new set of tables */
1288                 pgtable_t table = alloc_page(GFP_ATOMIC|__GFP_ZERO);
1289
1290                 if (!table)
1291                         return -ENOMEM;
1292
1293                 arm_smmu_flush_pgtable(smmu, page_address(table), PAGE_SIZE);
1294                 pmd_populate(NULL, pmd, table);
1295                 arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
1296         }
1297
1298         if (stage == 1) {
1299                 pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
1300                 if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
1301                         pteval |= ARM_SMMU_PTE_AP_RDONLY;
1302
1303                 if (prot & IOMMU_CACHE)
1304                         pteval |= (MAIR_ATTR_IDX_CACHE <<
1305                                    ARM_SMMU_PTE_ATTRINDX_SHIFT);
1306         } else {
1307                 pteval |= ARM_SMMU_PTE_HAP_FAULT;
1308                 if (prot & IOMMU_READ)
1309                         pteval |= ARM_SMMU_PTE_HAP_READ;
1310                 if (prot & IOMMU_WRITE)
1311                         pteval |= ARM_SMMU_PTE_HAP_WRITE;
1312                 if (prot & IOMMU_CACHE)
1313                         pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
1314                 else
1315                         pteval |= ARM_SMMU_PTE_MEMATTR_NC;
1316         }
1317
1318         /* If no access, create a faulting entry to avoid TLB fills */
1319         if (prot & IOMMU_EXEC)
1320                 pteval &= ~ARM_SMMU_PTE_XN;
1321         else if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
1322                 pteval &= ~ARM_SMMU_PTE_PAGE;
1323
1324         pteval |= ARM_SMMU_PTE_SH_IS;
1325         start = pmd_page_vaddr(*pmd) + pte_index(addr);
1326         pte = start;
1327
1328         /*
1329          * Install the page table entries. This is fairly complicated
1330          * since we attempt to make use of the contiguous hint in the
1331          * ptes where possible. The contiguous hint indicates a series
1332          * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
1333          * contiguous region with the following constraints:
1334          *
1335          *   - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
1336          *   - Each pte in the region has the contiguous hint bit set
1337          *
1338          * This complicates unmapping (also handled by this code, when
1339          * neither IOMMU_READ or IOMMU_WRITE are set) because it is
1340          * possible, yet highly unlikely, that a client may unmap only
1341          * part of a contiguous range. This requires clearing of the
1342          * contiguous hint bits in the range before installing the new
1343          * faulting entries.
1344          *
1345          * Note that re-mapping an address range without first unmapping
1346          * it is not supported, so TLB invalidation is not required here
1347          * and is instead performed at unmap and domain-init time.
1348          */
1349         do {
1350                 int i = 1;
1351
1352                 pteval &= ~ARM_SMMU_PTE_CONT;
1353
1354                 if (arm_smmu_pte_is_contiguous_range(addr, end)) {
1355                         i = ARM_SMMU_PTE_CONT_ENTRIES;
1356                         pteval |= ARM_SMMU_PTE_CONT;
1357                 } else if (pte_val(*pte) &
1358                            (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
1359                         int j;
1360                         pte_t *cont_start;
1361                         unsigned long idx = pte_index(addr);
1362
1363                         idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
1364                         cont_start = pmd_page_vaddr(*pmd) + idx;
1365                         for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
1366                                 pte_val(*(cont_start + j)) &=
1367                                         ~ARM_SMMU_PTE_CONT;
1368
1369                         arm_smmu_flush_pgtable(smmu, cont_start,
1370                                                sizeof(*pte) *
1371                                                ARM_SMMU_PTE_CONT_ENTRIES);
1372                 }
1373
1374                 do {
1375                         *pte = pfn_pte(pfn, __pgprot(pteval));
1376                 } while (pte++, pfn++, addr += PAGE_SIZE, --i);
1377         } while (addr != end);
1378
1379         arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
1380         return 0;
1381 }
1382
1383 static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
1384                                    unsigned long addr, unsigned long end,
1385                                    phys_addr_t phys, int prot, int stage)
1386 {
1387         int ret;
1388         pmd_t *pmd;
1389         unsigned long next, pfn = __phys_to_pfn(phys);
1390
1391 #ifndef __PAGETABLE_PMD_FOLDED
1392         if (pud_none(*pud)) {
1393                 pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
1394                 if (!pmd)
1395                         return -ENOMEM;
1396
1397                 arm_smmu_flush_pgtable(smmu, pmd, PAGE_SIZE);
1398                 pud_populate(NULL, pud, pmd);
1399                 arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));
1400
1401                 pmd += pmd_index(addr);
1402         } else
1403 #endif
1404                 pmd = pmd_offset(pud, addr);
1405
1406         do {
1407                 next = pmd_addr_end(addr, end);
1408                 ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, next, pfn,
1409                                               prot, stage);
1410                 phys += next - addr;
1411                 pfn = __phys_to_pfn(phys);
1412         } while (pmd++, addr = next, addr < end);
1413
1414         return ret;
1415 }
1416
1417 static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
1418                                    unsigned long addr, unsigned long end,
1419                                    phys_addr_t phys, int prot, int stage)
1420 {
1421         int ret = 0;
1422         pud_t *pud;
1423         unsigned long next;
1424
1425 #ifndef __PAGETABLE_PUD_FOLDED
1426         if (pgd_none(*pgd)) {
1427                 pud = (pud_t *)get_zeroed_page(GFP_ATOMIC);
1428                 if (!pud)
1429                         return -ENOMEM;
1430
1431                 arm_smmu_flush_pgtable(smmu, pud, PAGE_SIZE);
1432                 pgd_populate(NULL, pgd, pud);
1433                 arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));
1434
1435                 pud += pud_index(addr);
1436         } else
1437 #endif
1438                 pud = pud_offset(pgd, addr);
1439
1440         do {
1441                 next = pud_addr_end(addr, end);
1442                 ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
1443                                               prot, stage);
1444                 phys += next - addr;
1445         } while (pud++, addr = next, addr < end);
1446
1447         return ret;
1448 }
1449
1450 static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
1451                                    unsigned long iova, phys_addr_t paddr,
1452                                    size_t size, int prot)
1453 {
1454         int ret, stage;
1455         unsigned long end;
1456         phys_addr_t input_mask, output_mask;
1457         struct arm_smmu_device *smmu = smmu_domain->smmu;
1458         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1459         pgd_t *pgd = cfg->pgd;
1460         unsigned long flags;
1461
1462         if (cfg->cbar == CBAR_TYPE_S2_TRANS) {
1463                 stage = 2;
1464                 input_mask = (1ULL << smmu->s2_input_size) - 1;
1465                 output_mask = (1ULL << smmu->s2_output_size) - 1;
1466         } else {
1467                 stage = 1;
1468                 input_mask = (1ULL << smmu->s1_input_size) - 1;
1469                 output_mask = (1ULL << smmu->s1_output_size) - 1;
1470         }
1471
1472         if (!pgd)
1473                 return -EINVAL;
1474
1475         if (size & ~PAGE_MASK)
1476                 return -EINVAL;
1477
1478         if ((phys_addr_t)iova & ~input_mask)
1479                 return -ERANGE;
1480
1481         if (paddr & ~output_mask)
1482                 return -ERANGE;
1483
1484         spin_lock_irqsave(&smmu_domain->lock, flags);
1485         pgd += pgd_index(iova);
1486         end = iova + size;
1487         do {
1488                 unsigned long next = pgd_addr_end(iova, end);
1489
1490                 ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
1491                                               prot, stage);
1492                 if (ret)
1493                         goto out_unlock;
1494
1495                 paddr += next - iova;
1496                 iova = next;
1497         } while (pgd++, iova != end);
1498
1499 out_unlock:
1500         spin_unlock_irqrestore(&smmu_domain->lock, flags);
1501
1502         return ret;
1503 }
1504
1505 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1506                         phys_addr_t paddr, size_t size, int prot)
1507 {
1508         struct arm_smmu_domain *smmu_domain = domain->priv;
1509
1510         if (!smmu_domain)
1511                 return -ENODEV;
1512
1513         return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, prot);
1514 }
1515
1516 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1517                              size_t size)
1518 {
1519         int ret;
1520         struct arm_smmu_domain *smmu_domain = domain->priv;
1521
1522         ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
1523         arm_smmu_tlb_inv_context(smmu_domain);
1524         return ret ? 0 : size;
1525 }
1526
1527 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1528                                          dma_addr_t iova)
1529 {
1530         pgd_t *pgdp, pgd;
1531         pud_t pud;
1532         pmd_t pmd;
1533         pte_t pte;
1534         struct arm_smmu_domain *smmu_domain = domain->priv;
1535         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1536
1537         pgdp = cfg->pgd;
1538         if (!pgdp)
1539                 return 0;
1540
1541         pgd = *(pgdp + pgd_index(iova));
1542         if (pgd_none(pgd))
1543                 return 0;
1544
1545         pud = *pud_offset(&pgd, iova);
1546         if (pud_none(pud))
1547                 return 0;
1548
1549         pmd = *pmd_offset(&pud, iova);
1550         if (pmd_none(pmd))
1551                 return 0;
1552
1553         pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
1554         if (pte_none(pte))
1555                 return 0;
1556
1557         return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
1558 }
1559
1560 static bool arm_smmu_capable(enum iommu_cap cap)
1561 {
1562         switch (cap) {
1563         case IOMMU_CAP_CACHE_COHERENCY:
1564                 /*
1565                  * Return true here as the SMMU can always send out coherent
1566                  * requests.
1567                  */
1568                 return true;
1569         case IOMMU_CAP_INTR_REMAP:
1570                 return true; /* MSIs are just memory writes */
1571         default:
1572                 return false;
1573         }
1574 }
1575
1576 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
1577 {
1578         *((u16 *)data) = alias;
1579         return 0; /* Continue walking */
1580 }
1581
1582 static void __arm_smmu_release_pci_iommudata(void *data)
1583 {
1584         kfree(data);
1585 }
1586
1587 static int arm_smmu_add_device(struct device *dev)
1588 {
1589         struct arm_smmu_device *smmu;
1590         struct arm_smmu_master_cfg *cfg;
1591         struct iommu_group *group;
1592         void (*releasefn)(void *) = NULL;
1593         int ret;
1594
1595         smmu = find_smmu_for_device(dev);
1596         if (!smmu)
1597                 return -ENODEV;
1598
1599         group = iommu_group_alloc();
1600         if (IS_ERR(group)) {
1601                 dev_err(dev, "Failed to allocate IOMMU group\n");
1602                 return PTR_ERR(group);
1603         }
1604
1605         if (dev_is_pci(dev)) {
1606                 struct pci_dev *pdev = to_pci_dev(dev);
1607
1608                 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1609                 if (!cfg) {
1610                         ret = -ENOMEM;
1611                         goto out_put_group;
1612                 }
1613
1614                 cfg->num_streamids = 1;
1615                 /*
1616                  * Assume Stream ID == Requester ID for now.
1617                  * We need a way to describe the ID mappings in FDT.
1618                  */
1619                 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid,
1620                                        &cfg->streamids[0]);
1621                 releasefn = __arm_smmu_release_pci_iommudata;
1622         } else {
1623                 struct arm_smmu_master *master;
1624
1625                 master = find_smmu_master(smmu, dev->of_node);
1626                 if (!master) {
1627                         ret = -ENODEV;
1628                         goto out_put_group;
1629                 }
1630
1631                 cfg = &master->cfg;
1632         }
1633
1634         iommu_group_set_iommudata(group, cfg, releasefn);
1635         ret = iommu_group_add_device(group, dev);
1636
1637 out_put_group:
1638         iommu_group_put(group);
1639         return ret;
1640 }
1641
1642 static void arm_smmu_remove_device(struct device *dev)
1643 {
1644         iommu_group_remove_device(dev);
1645 }
1646
1647 static const struct iommu_ops arm_smmu_ops = {
1648         .capable        = arm_smmu_capable,
1649         .domain_init    = arm_smmu_domain_init,
1650         .domain_destroy = arm_smmu_domain_destroy,
1651         .attach_dev     = arm_smmu_attach_dev,
1652         .detach_dev     = arm_smmu_detach_dev,
1653         .map            = arm_smmu_map,
1654         .unmap          = arm_smmu_unmap,
1655         .iova_to_phys   = arm_smmu_iova_to_phys,
1656         .add_device     = arm_smmu_add_device,
1657         .remove_device  = arm_smmu_remove_device,
1658         .pgsize_bitmap  = (SECTION_SIZE |
1659                            ARM_SMMU_PTE_CONT_SIZE |
1660                            PAGE_SIZE),
1661 };
1662
1663 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1664 {
1665         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1666         void __iomem *cb_base;
1667         int i = 0;
1668         u32 reg;
1669
1670         /* clear global FSR */
1671         reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1672         writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1673
1674         /* Mark all SMRn as invalid and all S2CRn as bypass */
1675         for (i = 0; i < smmu->num_mapping_groups; ++i) {
1676                 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1677                 writel_relaxed(S2CR_TYPE_BYPASS,
1678                         gr0_base + ARM_SMMU_GR0_S2CR(i));
1679         }
1680
1681         /* Make sure all context banks are disabled and clear CB_FSR  */
1682         for (i = 0; i < smmu->num_context_banks; ++i) {
1683                 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1684                 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1685                 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1686         }
1687
1688         /* Invalidate the TLB, just in case */
1689         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
1690         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1691         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1692
1693         reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1694
1695         /* Enable fault reporting */
1696         reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1697
1698         /* Disable TLB broadcasting. */
1699         reg |= (sCR0_VMIDPNE | sCR0_PTM);
1700
1701         /* Enable client access, but bypass when no mapping is found */
1702         reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1703
1704         /* Disable forced broadcasting */
1705         reg &= ~sCR0_FB;
1706
1707         /* Don't upgrade barriers */
1708         reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1709
1710         /* Push the button */
1711         arm_smmu_tlb_sync(smmu);
1712         writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1713 }
1714
1715 static int arm_smmu_id_size_to_bits(int size)
1716 {
1717         switch (size) {
1718         case 0:
1719                 return 32;
1720         case 1:
1721                 return 36;
1722         case 2:
1723                 return 40;
1724         case 3:
1725                 return 42;
1726         case 4:
1727                 return 44;
1728         case 5:
1729         default:
1730                 return 48;
1731         }
1732 }
1733
1734 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1735 {
1736         unsigned long size;
1737         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1738         u32 id;
1739
1740         dev_notice(smmu->dev, "probing hardware configuration...\n");
1741         dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1742
1743         /* ID0 */
1744         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1745 #ifndef CONFIG_64BIT
1746         if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
1747                 dev_err(smmu->dev, "\tno v7 descriptor support!\n");
1748                 return -ENODEV;
1749         }
1750 #endif
1751
1752         /* Restrict available stages based on module parameter */
1753         if (force_stage == 1)
1754                 id &= ~(ID0_S2TS | ID0_NTS);
1755         else if (force_stage == 2)
1756                 id &= ~(ID0_S1TS | ID0_NTS);
1757
1758         if (id & ID0_S1TS) {
1759                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1760                 dev_notice(smmu->dev, "\tstage 1 translation\n");
1761         }
1762
1763         if (id & ID0_S2TS) {
1764                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1765                 dev_notice(smmu->dev, "\tstage 2 translation\n");
1766         }
1767
1768         if (id & ID0_NTS) {
1769                 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1770                 dev_notice(smmu->dev, "\tnested translation\n");
1771         }
1772
1773         if (!(smmu->features &
1774                 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1775                 dev_err(smmu->dev, "\tno translation support!\n");
1776                 return -ENODEV;
1777         }
1778
1779         if (id & ID0_CTTW) {
1780                 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1781                 dev_notice(smmu->dev, "\tcoherent table walk\n");
1782         }
1783
1784         if (id & ID0_SMS) {
1785                 u32 smr, sid, mask;
1786
1787                 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1788                 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1789                                            ID0_NUMSMRG_MASK;
1790                 if (smmu->num_mapping_groups == 0) {
1791                         dev_err(smmu->dev,
1792                                 "stream-matching supported, but no SMRs present!\n");
1793                         return -ENODEV;
1794                 }
1795
1796                 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1797                 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1798                 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1799                 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1800
1801                 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1802                 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1803                 if ((mask & sid) != sid) {
1804                         dev_err(smmu->dev,
1805                                 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1806                                 mask, sid);
1807                         return -ENODEV;
1808                 }
1809
1810                 dev_notice(smmu->dev,
1811                            "\tstream matching with %u register groups, mask 0x%x",
1812                            smmu->num_mapping_groups, mask);
1813         } else {
1814                 smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
1815                                            ID0_NUMSIDB_MASK;
1816         }
1817
1818         /* ID1 */
1819         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1820         smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1821
1822         /* Check for size mismatch of SMMU address space from mapped region */
1823         size = 1 <<
1824                 (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1825         size *= 2 << smmu->pgshift;
1826         if (smmu->size != size)
1827                 dev_warn(smmu->dev,
1828                         "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1829                         size, smmu->size);
1830
1831         smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
1832                                       ID1_NUMS2CB_MASK;
1833         smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1834         if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1835                 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1836                 return -ENODEV;
1837         }
1838         dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1839                    smmu->num_context_banks, smmu->num_s2_context_banks);
1840
1841         /* ID2 */
1842         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1843         size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1844         smmu->s1_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size);
1845
1846         /* Stage-2 input size limited due to pgd allocation (PTRS_PER_PGD) */
1847 #ifdef CONFIG_64BIT
1848         smmu->s2_input_size = min_t(unsigned long, VA_BITS, size);
1849 #else
1850         smmu->s2_input_size = min(32UL, size);
1851 #endif
1852
1853         /* The stage-2 output mask is also applied for bypass */
1854         size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1855         smmu->s2_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size);
1856
1857         if (smmu->version == ARM_SMMU_V1) {
1858                 smmu->s1_input_size = 32;
1859         } else {
1860 #ifdef CONFIG_64BIT
1861                 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1862                 size = min(VA_BITS, arm_smmu_id_size_to_bits(size));
1863 #else
1864                 size = 32;
1865 #endif
1866                 smmu->s1_input_size = size;
1867
1868                 if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
1869                     (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
1870                     (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
1871                         dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
1872                                 PAGE_SIZE);
1873                         return -ENODEV;
1874                 }
1875         }
1876
1877         if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1878                 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1879                            smmu->s1_input_size, smmu->s1_output_size);
1880
1881         if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1882                 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1883                            smmu->s2_input_size, smmu->s2_output_size);
1884
1885         return 0;
1886 }
1887
1888 static const struct of_device_id arm_smmu_of_match[] = {
1889         { .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
1890         { .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
1891         { .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
1892         { .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1893         { .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
1894         { },
1895 };
1896 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1897
1898 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1899 {
1900         const struct of_device_id *of_id;
1901         struct resource *res;
1902         struct arm_smmu_device *smmu;
1903         struct device *dev = &pdev->dev;
1904         struct rb_node *node;
1905         struct of_phandle_args masterspec;
1906         int num_irqs, i, err;
1907
1908         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1909         if (!smmu) {
1910                 dev_err(dev, "failed to allocate arm_smmu_device\n");
1911                 return -ENOMEM;
1912         }
1913         smmu->dev = dev;
1914
1915         of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1916         smmu->version = (enum arm_smmu_arch_version)of_id->data;
1917
1918         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1919         smmu->base = devm_ioremap_resource(dev, res);
1920         if (IS_ERR(smmu->base))
1921                 return PTR_ERR(smmu->base);
1922         smmu->size = resource_size(res);
1923
1924         if (of_property_read_u32(dev->of_node, "#global-interrupts",
1925                                  &smmu->num_global_irqs)) {
1926                 dev_err(dev, "missing #global-interrupts property\n");
1927                 return -ENODEV;
1928         }
1929
1930         num_irqs = 0;
1931         while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1932                 num_irqs++;
1933                 if (num_irqs > smmu->num_global_irqs)
1934                         smmu->num_context_irqs++;
1935         }
1936
1937         if (!smmu->num_context_irqs) {
1938                 dev_err(dev, "found %d interrupts but expected at least %d\n",
1939                         num_irqs, smmu->num_global_irqs + 1);
1940                 return -ENODEV;
1941         }
1942
1943         smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1944                                   GFP_KERNEL);
1945         if (!smmu->irqs) {
1946                 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1947                 return -ENOMEM;
1948         }
1949
1950         for (i = 0; i < num_irqs; ++i) {
1951                 int irq = platform_get_irq(pdev, i);
1952
1953                 if (irq < 0) {
1954                         dev_err(dev, "failed to get irq index %d\n", i);
1955                         return -ENODEV;
1956                 }
1957                 smmu->irqs[i] = irq;
1958         }
1959
1960         err = arm_smmu_device_cfg_probe(smmu);
1961         if (err)
1962                 return err;
1963
1964         i = 0;
1965         smmu->masters = RB_ROOT;
1966         while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1967                                            "#stream-id-cells", i,
1968                                            &masterspec)) {
1969                 err = register_smmu_master(smmu, dev, &masterspec);
1970                 if (err) {
1971                         dev_err(dev, "failed to add master %s\n",
1972                                 masterspec.np->name);
1973                         goto out_put_masters;
1974                 }
1975
1976                 i++;
1977         }
1978         dev_notice(dev, "registered %d master devices\n", i);
1979
1980         parse_driver_options(smmu);
1981
1982         if (smmu->version > ARM_SMMU_V1 &&
1983             smmu->num_context_banks != smmu->num_context_irqs) {
1984                 dev_err(dev,
1985                         "found only %d context interrupt(s) but %d required\n",
1986                         smmu->num_context_irqs, smmu->num_context_banks);
1987                 err = -ENODEV;
1988                 goto out_put_masters;
1989         }
1990
1991         for (i = 0; i < smmu->num_global_irqs; ++i) {
1992                 err = request_irq(smmu->irqs[i],
1993                                   arm_smmu_global_fault,
1994                                   IRQF_SHARED,
1995                                   "arm-smmu global fault",
1996                                   smmu);
1997                 if (err) {
1998                         dev_err(dev, "failed to request global IRQ %d (%u)\n",
1999                                 i, smmu->irqs[i]);
2000                         goto out_free_irqs;
2001                 }
2002         }
2003
2004         INIT_LIST_HEAD(&smmu->list);
2005         spin_lock(&arm_smmu_devices_lock);
2006         list_add(&smmu->list, &arm_smmu_devices);
2007         spin_unlock(&arm_smmu_devices_lock);
2008
2009         arm_smmu_device_reset(smmu);
2010         return 0;
2011
2012 out_free_irqs:
2013         while (i--)
2014                 free_irq(smmu->irqs[i], smmu);
2015
2016 out_put_masters:
2017         for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2018                 struct arm_smmu_master *master
2019                         = container_of(node, struct arm_smmu_master, node);
2020                 of_node_put(master->of_node);
2021         }
2022
2023         return err;
2024 }
2025
2026 static int arm_smmu_device_remove(struct platform_device *pdev)
2027 {
2028         int i;
2029         struct device *dev = &pdev->dev;
2030         struct arm_smmu_device *curr, *smmu = NULL;
2031         struct rb_node *node;
2032
2033         spin_lock(&arm_smmu_devices_lock);
2034         list_for_each_entry(curr, &arm_smmu_devices, list) {
2035                 if (curr->dev == dev) {
2036                         smmu = curr;
2037                         list_del(&smmu->list);
2038                         break;
2039                 }
2040         }
2041         spin_unlock(&arm_smmu_devices_lock);
2042
2043         if (!smmu)
2044                 return -ENODEV;
2045
2046         for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2047                 struct arm_smmu_master *master
2048                         = container_of(node, struct arm_smmu_master, node);
2049                 of_node_put(master->of_node);
2050         }
2051
2052         if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2053                 dev_err(dev, "removing device with active domains!\n");
2054
2055         for (i = 0; i < smmu->num_global_irqs; ++i)
2056                 free_irq(smmu->irqs[i], smmu);
2057
2058         /* Turn the thing off */
2059         writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2060         return 0;
2061 }
2062
2063 static struct platform_driver arm_smmu_driver = {
2064         .driver = {
2065                 .owner          = THIS_MODULE,
2066                 .name           = "arm-smmu",
2067                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2068         },
2069         .probe  = arm_smmu_device_dt_probe,
2070         .remove = arm_smmu_device_remove,
2071 };
2072
2073 static int __init arm_smmu_init(void)
2074 {
2075         int ret;
2076
2077         ret = platform_driver_register(&arm_smmu_driver);
2078         if (ret)
2079                 return ret;
2080
2081         /* Oh, for a proper bus abstraction */
2082         if (!iommu_present(&platform_bus_type))
2083                 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2084
2085 #ifdef CONFIG_ARM_AMBA
2086         if (!iommu_present(&amba_bustype))
2087                 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2088 #endif
2089
2090 #ifdef CONFIG_PCI
2091         if (!iommu_present(&pci_bus_type))
2092                 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2093 #endif
2094
2095         return 0;
2096 }
2097
2098 static void __exit arm_smmu_exit(void)
2099 {
2100         return platform_driver_unregister(&arm_smmu_driver);
2101 }
2102
2103 subsys_initcall(arm_smmu_init);
2104 module_exit(arm_smmu_exit);
2105
2106 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
2107 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2108 MODULE_LICENSE("GPL v2");