Merge branches 'acpi-scan', 'acpi-processor' and 'acpi-assorted'
[cascardo/linux.git] / drivers / iommu / intel-iommu.c
1 /*
2  * Copyright © 2006-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * Authors: David Woodhouse <dwmw2@infradead.org>,
14  *          Ashok Raj <ashok.raj@intel.com>,
15  *          Shaohua Li <shaohua.li@intel.com>,
16  *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17  *          Fenghua Yu <fenghua.yu@intel.com>
18  *          Joerg Roedel <jroedel@suse.de>
19  */
20
21 #define pr_fmt(fmt)     "DMAR: " fmt
22
23 #include <linux/init.h>
24 #include <linux/bitmap.h>
25 #include <linux/debugfs.h>
26 #include <linux/export.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/memory.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <linux/dma-contiguous.h>
46 #include <linux/crash_dump.h>
47 #include <asm/irq_remapping.h>
48 #include <asm/cacheflush.h>
49 #include <asm/iommu.h>
50
51 #include "irq_remapping.h"
52
53 #define ROOT_SIZE               VTD_PAGE_SIZE
54 #define CONTEXT_SIZE            VTD_PAGE_SIZE
55
56 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
60
61 #define IOAPIC_RANGE_START      (0xfee00000)
62 #define IOAPIC_RANGE_END        (0xfeefffff)
63 #define IOVA_START_ADDR         (0x1000)
64
65 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
66
67 #define MAX_AGAW_WIDTH 64
68 #define MAX_AGAW_PFN_WIDTH      (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
69
70 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
71 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
72
73 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
74    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
75 #define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
76                                 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
77 #define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
78
79 /* IO virtual address start page frame number */
80 #define IOVA_START_PFN          (1)
81
82 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
83 #define DMA_32BIT_PFN           IOVA_PFN(DMA_BIT_MASK(32))
84 #define DMA_64BIT_PFN           IOVA_PFN(DMA_BIT_MASK(64))
85
86 /* page table handling */
87 #define LEVEL_STRIDE            (9)
88 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
89
90 /*
91  * This bitmap is used to advertise the page sizes our hardware support
92  * to the IOMMU core, which will then use this information to split
93  * physically contiguous memory regions it is mapping into page sizes
94  * that we support.
95  *
96  * Traditionally the IOMMU core just handed us the mappings directly,
97  * after making sure the size is an order of a 4KiB page and that the
98  * mapping has natural alignment.
99  *
100  * To retain this behavior, we currently advertise that we support
101  * all page sizes that are an order of 4KiB.
102  *
103  * If at some point we'd like to utilize the IOMMU core's new behavior,
104  * we could change this to advertise the real page sizes we support.
105  */
106 #define INTEL_IOMMU_PGSIZES     (~0xFFFUL)
107
108 static inline int agaw_to_level(int agaw)
109 {
110         return agaw + 2;
111 }
112
113 static inline int agaw_to_width(int agaw)
114 {
115         return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
116 }
117
118 static inline int width_to_agaw(int width)
119 {
120         return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
121 }
122
123 static inline unsigned int level_to_offset_bits(int level)
124 {
125         return (level - 1) * LEVEL_STRIDE;
126 }
127
128 static inline int pfn_level_offset(unsigned long pfn, int level)
129 {
130         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
131 }
132
133 static inline unsigned long level_mask(int level)
134 {
135         return -1UL << level_to_offset_bits(level);
136 }
137
138 static inline unsigned long level_size(int level)
139 {
140         return 1UL << level_to_offset_bits(level);
141 }
142
143 static inline unsigned long align_to_level(unsigned long pfn, int level)
144 {
145         return (pfn + level_size(level) - 1) & level_mask(level);
146 }
147
148 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
149 {
150         return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
151 }
152
153 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
154    are never going to work. */
155 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
156 {
157         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
158 }
159
160 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
161 {
162         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
163 }
164 static inline unsigned long page_to_dma_pfn(struct page *pg)
165 {
166         return mm_to_dma_pfn(page_to_pfn(pg));
167 }
168 static inline unsigned long virt_to_dma_pfn(void *p)
169 {
170         return page_to_dma_pfn(virt_to_page(p));
171 }
172
173 /* global iommu list, set NULL for ignored DMAR units */
174 static struct intel_iommu **g_iommus;
175
176 static void __init check_tylersburg_isoch(void);
177 static int rwbf_quirk;
178
179 /*
180  * set to 1 to panic kernel if can't successfully enable VT-d
181  * (used when kernel is launched w/ TXT)
182  */
183 static int force_on = 0;
184
185 /*
186  * 0: Present
187  * 1-11: Reserved
188  * 12-63: Context Ptr (12 - (haw-1))
189  * 64-127: Reserved
190  */
191 struct root_entry {
192         u64     lo;
193         u64     hi;
194 };
195 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
196
197 /*
198  * Take a root_entry and return the Lower Context Table Pointer (LCTP)
199  * if marked present.
200  */
201 static phys_addr_t root_entry_lctp(struct root_entry *re)
202 {
203         if (!(re->lo & 1))
204                 return 0;
205
206         return re->lo & VTD_PAGE_MASK;
207 }
208
209 /*
210  * Take a root_entry and return the Upper Context Table Pointer (UCTP)
211  * if marked present.
212  */
213 static phys_addr_t root_entry_uctp(struct root_entry *re)
214 {
215         if (!(re->hi & 1))
216                 return 0;
217
218         return re->hi & VTD_PAGE_MASK;
219 }
220 /*
221  * low 64 bits:
222  * 0: present
223  * 1: fault processing disable
224  * 2-3: translation type
225  * 12-63: address space root
226  * high 64 bits:
227  * 0-2: address width
228  * 3-6: aval
229  * 8-23: domain id
230  */
231 struct context_entry {
232         u64 lo;
233         u64 hi;
234 };
235
236 static inline void context_clear_pasid_enable(struct context_entry *context)
237 {
238         context->lo &= ~(1ULL << 11);
239 }
240
241 static inline bool context_pasid_enabled(struct context_entry *context)
242 {
243         return !!(context->lo & (1ULL << 11));
244 }
245
246 static inline void context_set_copied(struct context_entry *context)
247 {
248         context->hi |= (1ull << 3);
249 }
250
251 static inline bool context_copied(struct context_entry *context)
252 {
253         return !!(context->hi & (1ULL << 3));
254 }
255
256 static inline bool __context_present(struct context_entry *context)
257 {
258         return (context->lo & 1);
259 }
260
261 static inline bool context_present(struct context_entry *context)
262 {
263         return context_pasid_enabled(context) ?
264              __context_present(context) :
265              __context_present(context) && !context_copied(context);
266 }
267
268 static inline void context_set_present(struct context_entry *context)
269 {
270         context->lo |= 1;
271 }
272
273 static inline void context_set_fault_enable(struct context_entry *context)
274 {
275         context->lo &= (((u64)-1) << 2) | 1;
276 }
277
278 static inline void context_set_translation_type(struct context_entry *context,
279                                                 unsigned long value)
280 {
281         context->lo &= (((u64)-1) << 4) | 3;
282         context->lo |= (value & 3) << 2;
283 }
284
285 static inline void context_set_address_root(struct context_entry *context,
286                                             unsigned long value)
287 {
288         context->lo &= ~VTD_PAGE_MASK;
289         context->lo |= value & VTD_PAGE_MASK;
290 }
291
292 static inline void context_set_address_width(struct context_entry *context,
293                                              unsigned long value)
294 {
295         context->hi |= value & 7;
296 }
297
298 static inline void context_set_domain_id(struct context_entry *context,
299                                          unsigned long value)
300 {
301         context->hi |= (value & ((1 << 16) - 1)) << 8;
302 }
303
304 static inline int context_domain_id(struct context_entry *c)
305 {
306         return((c->hi >> 8) & 0xffff);
307 }
308
309 static inline void context_clear_entry(struct context_entry *context)
310 {
311         context->lo = 0;
312         context->hi = 0;
313 }
314
315 /*
316  * 0: readable
317  * 1: writable
318  * 2-6: reserved
319  * 7: super page
320  * 8-10: available
321  * 11: snoop behavior
322  * 12-63: Host physcial address
323  */
324 struct dma_pte {
325         u64 val;
326 };
327
328 static inline void dma_clear_pte(struct dma_pte *pte)
329 {
330         pte->val = 0;
331 }
332
333 static inline u64 dma_pte_addr(struct dma_pte *pte)
334 {
335 #ifdef CONFIG_64BIT
336         return pte->val & VTD_PAGE_MASK;
337 #else
338         /* Must have a full atomic 64-bit read */
339         return  __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
340 #endif
341 }
342
343 static inline bool dma_pte_present(struct dma_pte *pte)
344 {
345         return (pte->val & 3) != 0;
346 }
347
348 static inline bool dma_pte_superpage(struct dma_pte *pte)
349 {
350         return (pte->val & DMA_PTE_LARGE_PAGE);
351 }
352
353 static inline int first_pte_in_page(struct dma_pte *pte)
354 {
355         return !((unsigned long)pte & ~VTD_PAGE_MASK);
356 }
357
358 /*
359  * This domain is a statically identity mapping domain.
360  *      1. This domain creats a static 1:1 mapping to all usable memory.
361  *      2. It maps to each iommu if successful.
362  *      3. Each iommu mapps to this domain if successful.
363  */
364 static struct dmar_domain *si_domain;
365 static int hw_pass_through = 1;
366
367 /* domain represents a virtual machine, more than one devices
368  * across iommus may be owned in one domain, e.g. kvm guest.
369  */
370 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 0)
371
372 /* si_domain contains mulitple devices */
373 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 1)
374
375 struct dmar_domain {
376         int     id;                     /* domain id */
377         int     nid;                    /* node id */
378         DECLARE_BITMAP(iommu_bmp, DMAR_UNITS_SUPPORTED);
379                                         /* bitmap of iommus this domain uses*/
380
381         struct list_head devices;       /* all devices' list */
382         struct iova_domain iovad;       /* iova's that belong to this domain */
383
384         struct dma_pte  *pgd;           /* virtual address */
385         int             gaw;            /* max guest address width */
386
387         /* adjusted guest address width, 0 is level 2 30-bit */
388         int             agaw;
389
390         int             flags;          /* flags to find out type of domain */
391
392         int             iommu_coherency;/* indicate coherency of iommu access */
393         int             iommu_snooping; /* indicate snooping control feature*/
394         int             iommu_count;    /* reference count of iommu */
395         int             iommu_superpage;/* Level of superpages supported:
396                                            0 == 4KiB (no superpages), 1 == 2MiB,
397                                            2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
398         spinlock_t      iommu_lock;     /* protect iommu set in domain */
399         u64             max_addr;       /* maximum mapped address */
400
401         struct iommu_domain domain;     /* generic domain data structure for
402                                            iommu core */
403 };
404
405 /* PCI domain-device relationship */
406 struct device_domain_info {
407         struct list_head link;  /* link to domain siblings */
408         struct list_head global; /* link to global list */
409         u8 bus;                 /* PCI bus number */
410         u8 devfn;               /* PCI devfn number */
411         struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
412         struct intel_iommu *iommu; /* IOMMU used by this device */
413         struct dmar_domain *domain; /* pointer to domain */
414 };
415
416 struct dmar_rmrr_unit {
417         struct list_head list;          /* list of rmrr units   */
418         struct acpi_dmar_header *hdr;   /* ACPI header          */
419         u64     base_address;           /* reserved base address*/
420         u64     end_address;            /* reserved end address */
421         struct dmar_dev_scope *devices; /* target devices */
422         int     devices_cnt;            /* target device count */
423 };
424
425 struct dmar_atsr_unit {
426         struct list_head list;          /* list of ATSR units */
427         struct acpi_dmar_header *hdr;   /* ACPI header */
428         struct dmar_dev_scope *devices; /* target devices */
429         int devices_cnt;                /* target device count */
430         u8 include_all:1;               /* include all ports */
431 };
432
433 static LIST_HEAD(dmar_atsr_units);
434 static LIST_HEAD(dmar_rmrr_units);
435
436 #define for_each_rmrr_units(rmrr) \
437         list_for_each_entry(rmrr, &dmar_rmrr_units, list)
438
439 static void flush_unmaps_timeout(unsigned long data);
440
441 static DEFINE_TIMER(unmap_timer,  flush_unmaps_timeout, 0, 0);
442
443 #define HIGH_WATER_MARK 250
444 struct deferred_flush_tables {
445         int next;
446         struct iova *iova[HIGH_WATER_MARK];
447         struct dmar_domain *domain[HIGH_WATER_MARK];
448         struct page *freelist[HIGH_WATER_MARK];
449 };
450
451 static struct deferred_flush_tables *deferred_flush;
452
453 /* bitmap for indexing intel_iommus */
454 static int g_num_of_iommus;
455
456 static DEFINE_SPINLOCK(async_umap_flush_lock);
457 static LIST_HEAD(unmaps_to_do);
458
459 static int timer_on;
460 static long list_size;
461
462 static void domain_exit(struct dmar_domain *domain);
463 static void domain_remove_dev_info(struct dmar_domain *domain);
464 static void domain_remove_one_dev_info(struct dmar_domain *domain,
465                                        struct device *dev);
466 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
467                                            struct device *dev);
468 static int domain_detach_iommu(struct dmar_domain *domain,
469                                struct intel_iommu *iommu);
470
471 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
472 int dmar_disabled = 0;
473 #else
474 int dmar_disabled = 1;
475 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
476
477 int intel_iommu_enabled = 0;
478 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
479
480 static int dmar_map_gfx = 1;
481 static int dmar_forcedac;
482 static int intel_iommu_strict;
483 static int intel_iommu_superpage = 1;
484 static int intel_iommu_ecs = 1;
485
486 /* We only actually use ECS when PASID support (on the new bit 40)
487  * is also advertised. Some early implementations — the ones with
488  * PASID support on bit 28 — have issues even when we *only* use
489  * extended root/context tables. */
490 #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
491                             ecap_pasid(iommu->ecap))
492
493 int intel_iommu_gfx_mapped;
494 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
495
496 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
497 static DEFINE_SPINLOCK(device_domain_lock);
498 static LIST_HEAD(device_domain_list);
499
500 static const struct iommu_ops intel_iommu_ops;
501
502 static bool translation_pre_enabled(struct intel_iommu *iommu)
503 {
504         return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
505 }
506
507 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
508 {
509         iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
510 }
511
512 static void init_translation_status(struct intel_iommu *iommu)
513 {
514         u32 gsts;
515
516         gsts = readl(iommu->reg + DMAR_GSTS_REG);
517         if (gsts & DMA_GSTS_TES)
518                 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
519 }
520
521 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
522 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
523 {
524         return container_of(dom, struct dmar_domain, domain);
525 }
526
527 static int __init intel_iommu_setup(char *str)
528 {
529         if (!str)
530                 return -EINVAL;
531         while (*str) {
532                 if (!strncmp(str, "on", 2)) {
533                         dmar_disabled = 0;
534                         pr_info("IOMMU enabled\n");
535                 } else if (!strncmp(str, "off", 3)) {
536                         dmar_disabled = 1;
537                         pr_info("IOMMU disabled\n");
538                 } else if (!strncmp(str, "igfx_off", 8)) {
539                         dmar_map_gfx = 0;
540                         pr_info("Disable GFX device mapping\n");
541                 } else if (!strncmp(str, "forcedac", 8)) {
542                         pr_info("Forcing DAC for PCI devices\n");
543                         dmar_forcedac = 1;
544                 } else if (!strncmp(str, "strict", 6)) {
545                         pr_info("Disable batched IOTLB flush\n");
546                         intel_iommu_strict = 1;
547                 } else if (!strncmp(str, "sp_off", 6)) {
548                         pr_info("Disable supported super page\n");
549                         intel_iommu_superpage = 0;
550                 } else if (!strncmp(str, "ecs_off", 7)) {
551                         printk(KERN_INFO
552                                 "Intel-IOMMU: disable extended context table support\n");
553                         intel_iommu_ecs = 0;
554                 }
555
556                 str += strcspn(str, ",");
557                 while (*str == ',')
558                         str++;
559         }
560         return 0;
561 }
562 __setup("intel_iommu=", intel_iommu_setup);
563
564 static struct kmem_cache *iommu_domain_cache;
565 static struct kmem_cache *iommu_devinfo_cache;
566
567 static inline void *alloc_pgtable_page(int node)
568 {
569         struct page *page;
570         void *vaddr = NULL;
571
572         page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
573         if (page)
574                 vaddr = page_address(page);
575         return vaddr;
576 }
577
578 static inline void free_pgtable_page(void *vaddr)
579 {
580         free_page((unsigned long)vaddr);
581 }
582
583 static inline void *alloc_domain_mem(void)
584 {
585         return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
586 }
587
588 static void free_domain_mem(void *vaddr)
589 {
590         kmem_cache_free(iommu_domain_cache, vaddr);
591 }
592
593 static inline void * alloc_devinfo_mem(void)
594 {
595         return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
596 }
597
598 static inline void free_devinfo_mem(void *vaddr)
599 {
600         kmem_cache_free(iommu_devinfo_cache, vaddr);
601 }
602
603 static inline int domain_type_is_vm(struct dmar_domain *domain)
604 {
605         return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
606 }
607
608 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
609 {
610         return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
611                                 DOMAIN_FLAG_STATIC_IDENTITY);
612 }
613
614 static inline int domain_pfn_supported(struct dmar_domain *domain,
615                                        unsigned long pfn)
616 {
617         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
618
619         return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
620 }
621
622 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
623 {
624         unsigned long sagaw;
625         int agaw = -1;
626
627         sagaw = cap_sagaw(iommu->cap);
628         for (agaw = width_to_agaw(max_gaw);
629              agaw >= 0; agaw--) {
630                 if (test_bit(agaw, &sagaw))
631                         break;
632         }
633
634         return agaw;
635 }
636
637 /*
638  * Calculate max SAGAW for each iommu.
639  */
640 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
641 {
642         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
643 }
644
645 /*
646  * calculate agaw for each iommu.
647  * "SAGAW" may be different across iommus, use a default agaw, and
648  * get a supported less agaw for iommus that don't support the default agaw.
649  */
650 int iommu_calculate_agaw(struct intel_iommu *iommu)
651 {
652         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
653 }
654
655 /* This functionin only returns single iommu in a domain */
656 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
657 {
658         int iommu_id;
659
660         /* si_domain and vm domain should not get here. */
661         BUG_ON(domain_type_is_vm_or_si(domain));
662         iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
663         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
664                 return NULL;
665
666         return g_iommus[iommu_id];
667 }
668
669 static void domain_update_iommu_coherency(struct dmar_domain *domain)
670 {
671         struct dmar_drhd_unit *drhd;
672         struct intel_iommu *iommu;
673         bool found = false;
674         int i;
675
676         domain->iommu_coherency = 1;
677
678         for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
679                 found = true;
680                 if (!ecap_coherent(g_iommus[i]->ecap)) {
681                         domain->iommu_coherency = 0;
682                         break;
683                 }
684         }
685         if (found)
686                 return;
687
688         /* No hardware attached; use lowest common denominator */
689         rcu_read_lock();
690         for_each_active_iommu(iommu, drhd) {
691                 if (!ecap_coherent(iommu->ecap)) {
692                         domain->iommu_coherency = 0;
693                         break;
694                 }
695         }
696         rcu_read_unlock();
697 }
698
699 static int domain_update_iommu_snooping(struct intel_iommu *skip)
700 {
701         struct dmar_drhd_unit *drhd;
702         struct intel_iommu *iommu;
703         int ret = 1;
704
705         rcu_read_lock();
706         for_each_active_iommu(iommu, drhd) {
707                 if (iommu != skip) {
708                         if (!ecap_sc_support(iommu->ecap)) {
709                                 ret = 0;
710                                 break;
711                         }
712                 }
713         }
714         rcu_read_unlock();
715
716         return ret;
717 }
718
719 static int domain_update_iommu_superpage(struct intel_iommu *skip)
720 {
721         struct dmar_drhd_unit *drhd;
722         struct intel_iommu *iommu;
723         int mask = 0xf;
724
725         if (!intel_iommu_superpage) {
726                 return 0;
727         }
728
729         /* set iommu_superpage to the smallest common denominator */
730         rcu_read_lock();
731         for_each_active_iommu(iommu, drhd) {
732                 if (iommu != skip) {
733                         mask &= cap_super_page_val(iommu->cap);
734                         if (!mask)
735                                 break;
736                 }
737         }
738         rcu_read_unlock();
739
740         return fls(mask);
741 }
742
743 /* Some capabilities may be different across iommus */
744 static void domain_update_iommu_cap(struct dmar_domain *domain)
745 {
746         domain_update_iommu_coherency(domain);
747         domain->iommu_snooping = domain_update_iommu_snooping(NULL);
748         domain->iommu_superpage = domain_update_iommu_superpage(NULL);
749 }
750
751 static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
752                                                        u8 bus, u8 devfn, int alloc)
753 {
754         struct root_entry *root = &iommu->root_entry[bus];
755         struct context_entry *context;
756         u64 *entry;
757
758         if (ecs_enabled(iommu)) {
759                 if (devfn >= 0x80) {
760                         devfn -= 0x80;
761                         entry = &root->hi;
762                 }
763                 devfn *= 2;
764         }
765         entry = &root->lo;
766         if (*entry & 1)
767                 context = phys_to_virt(*entry & VTD_PAGE_MASK);
768         else {
769                 unsigned long phy_addr;
770                 if (!alloc)
771                         return NULL;
772
773                 context = alloc_pgtable_page(iommu->node);
774                 if (!context)
775                         return NULL;
776
777                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
778                 phy_addr = virt_to_phys((void *)context);
779                 *entry = phy_addr | 1;
780                 __iommu_flush_cache(iommu, entry, sizeof(*entry));
781         }
782         return &context[devfn];
783 }
784
785 static int iommu_dummy(struct device *dev)
786 {
787         return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
788 }
789
790 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
791 {
792         struct dmar_drhd_unit *drhd = NULL;
793         struct intel_iommu *iommu;
794         struct device *tmp;
795         struct pci_dev *ptmp, *pdev = NULL;
796         u16 segment = 0;
797         int i;
798
799         if (iommu_dummy(dev))
800                 return NULL;
801
802         if (dev_is_pci(dev)) {
803                 pdev = to_pci_dev(dev);
804                 segment = pci_domain_nr(pdev->bus);
805         } else if (has_acpi_companion(dev))
806                 dev = &ACPI_COMPANION(dev)->dev;
807
808         rcu_read_lock();
809         for_each_active_iommu(iommu, drhd) {
810                 if (pdev && segment != drhd->segment)
811                         continue;
812
813                 for_each_active_dev_scope(drhd->devices,
814                                           drhd->devices_cnt, i, tmp) {
815                         if (tmp == dev) {
816                                 *bus = drhd->devices[i].bus;
817                                 *devfn = drhd->devices[i].devfn;
818                                 goto out;
819                         }
820
821                         if (!pdev || !dev_is_pci(tmp))
822                                 continue;
823
824                         ptmp = to_pci_dev(tmp);
825                         if (ptmp->subordinate &&
826                             ptmp->subordinate->number <= pdev->bus->number &&
827                             ptmp->subordinate->busn_res.end >= pdev->bus->number)
828                                 goto got_pdev;
829                 }
830
831                 if (pdev && drhd->include_all) {
832                 got_pdev:
833                         *bus = pdev->bus->number;
834                         *devfn = pdev->devfn;
835                         goto out;
836                 }
837         }
838         iommu = NULL;
839  out:
840         rcu_read_unlock();
841
842         return iommu;
843 }
844
845 static void domain_flush_cache(struct dmar_domain *domain,
846                                void *addr, int size)
847 {
848         if (!domain->iommu_coherency)
849                 clflush_cache_range(addr, size);
850 }
851
852 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
853 {
854         struct context_entry *context;
855         int ret = 0;
856         unsigned long flags;
857
858         spin_lock_irqsave(&iommu->lock, flags);
859         context = iommu_context_addr(iommu, bus, devfn, 0);
860         if (context)
861                 ret = context_present(context);
862         spin_unlock_irqrestore(&iommu->lock, flags);
863         return ret;
864 }
865
866 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
867 {
868         struct context_entry *context;
869         unsigned long flags;
870
871         spin_lock_irqsave(&iommu->lock, flags);
872         context = iommu_context_addr(iommu, bus, devfn, 0);
873         if (context) {
874                 context_clear_entry(context);
875                 __iommu_flush_cache(iommu, context, sizeof(*context));
876         }
877         spin_unlock_irqrestore(&iommu->lock, flags);
878 }
879
880 static void free_context_table(struct intel_iommu *iommu)
881 {
882         int i;
883         unsigned long flags;
884         struct context_entry *context;
885
886         spin_lock_irqsave(&iommu->lock, flags);
887         if (!iommu->root_entry) {
888                 goto out;
889         }
890         for (i = 0; i < ROOT_ENTRY_NR; i++) {
891                 context = iommu_context_addr(iommu, i, 0, 0);
892                 if (context)
893                         free_pgtable_page(context);
894
895                 if (!ecs_enabled(iommu))
896                         continue;
897
898                 context = iommu_context_addr(iommu, i, 0x80, 0);
899                 if (context)
900                         free_pgtable_page(context);
901
902         }
903         free_pgtable_page(iommu->root_entry);
904         iommu->root_entry = NULL;
905 out:
906         spin_unlock_irqrestore(&iommu->lock, flags);
907 }
908
909 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
910                                       unsigned long pfn, int *target_level)
911 {
912         struct dma_pte *parent, *pte = NULL;
913         int level = agaw_to_level(domain->agaw);
914         int offset;
915
916         BUG_ON(!domain->pgd);
917
918         if (!domain_pfn_supported(domain, pfn))
919                 /* Address beyond IOMMU's addressing capabilities. */
920                 return NULL;
921
922         parent = domain->pgd;
923
924         while (1) {
925                 void *tmp_page;
926
927                 offset = pfn_level_offset(pfn, level);
928                 pte = &parent[offset];
929                 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
930                         break;
931                 if (level == *target_level)
932                         break;
933
934                 if (!dma_pte_present(pte)) {
935                         uint64_t pteval;
936
937                         tmp_page = alloc_pgtable_page(domain->nid);
938
939                         if (!tmp_page)
940                                 return NULL;
941
942                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
943                         pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
944                         if (cmpxchg64(&pte->val, 0ULL, pteval))
945                                 /* Someone else set it while we were thinking; use theirs. */
946                                 free_pgtable_page(tmp_page);
947                         else
948                                 domain_flush_cache(domain, pte, sizeof(*pte));
949                 }
950                 if (level == 1)
951                         break;
952
953                 parent = phys_to_virt(dma_pte_addr(pte));
954                 level--;
955         }
956
957         if (!*target_level)
958                 *target_level = level;
959
960         return pte;
961 }
962
963
964 /* return address's pte at specific level */
965 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
966                                          unsigned long pfn,
967                                          int level, int *large_page)
968 {
969         struct dma_pte *parent, *pte = NULL;
970         int total = agaw_to_level(domain->agaw);
971         int offset;
972
973         parent = domain->pgd;
974         while (level <= total) {
975                 offset = pfn_level_offset(pfn, total);
976                 pte = &parent[offset];
977                 if (level == total)
978                         return pte;
979
980                 if (!dma_pte_present(pte)) {
981                         *large_page = total;
982                         break;
983                 }
984
985                 if (dma_pte_superpage(pte)) {
986                         *large_page = total;
987                         return pte;
988                 }
989
990                 parent = phys_to_virt(dma_pte_addr(pte));
991                 total--;
992         }
993         return NULL;
994 }
995
996 /* clear last level pte, a tlb flush should be followed */
997 static void dma_pte_clear_range(struct dmar_domain *domain,
998                                 unsigned long start_pfn,
999                                 unsigned long last_pfn)
1000 {
1001         unsigned int large_page = 1;
1002         struct dma_pte *first_pte, *pte;
1003
1004         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1005         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1006         BUG_ON(start_pfn > last_pfn);
1007
1008         /* we don't need lock here; nobody else touches the iova range */
1009         do {
1010                 large_page = 1;
1011                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1012                 if (!pte) {
1013                         start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1014                         continue;
1015                 }
1016                 do {
1017                         dma_clear_pte(pte);
1018                         start_pfn += lvl_to_nr_pages(large_page);
1019                         pte++;
1020                 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1021
1022                 domain_flush_cache(domain, first_pte,
1023                                    (void *)pte - (void *)first_pte);
1024
1025         } while (start_pfn && start_pfn <= last_pfn);
1026 }
1027
1028 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1029                                struct dma_pte *pte, unsigned long pfn,
1030                                unsigned long start_pfn, unsigned long last_pfn)
1031 {
1032         pfn = max(start_pfn, pfn);
1033         pte = &pte[pfn_level_offset(pfn, level)];
1034
1035         do {
1036                 unsigned long level_pfn;
1037                 struct dma_pte *level_pte;
1038
1039                 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1040                         goto next;
1041
1042                 level_pfn = pfn & level_mask(level - 1);
1043                 level_pte = phys_to_virt(dma_pte_addr(pte));
1044
1045                 if (level > 2)
1046                         dma_pte_free_level(domain, level - 1, level_pte,
1047                                            level_pfn, start_pfn, last_pfn);
1048
1049                 /* If range covers entire pagetable, free it */
1050                 if (!(start_pfn > level_pfn ||
1051                       last_pfn < level_pfn + level_size(level) - 1)) {
1052                         dma_clear_pte(pte);
1053                         domain_flush_cache(domain, pte, sizeof(*pte));
1054                         free_pgtable_page(level_pte);
1055                 }
1056 next:
1057                 pfn += level_size(level);
1058         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1059 }
1060
1061 /* free page table pages. last level pte should already be cleared */
1062 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1063                                    unsigned long start_pfn,
1064                                    unsigned long last_pfn)
1065 {
1066         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1067         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1068         BUG_ON(start_pfn > last_pfn);
1069
1070         dma_pte_clear_range(domain, start_pfn, last_pfn);
1071
1072         /* We don't need lock here; nobody else touches the iova range */
1073         dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1074                            domain->pgd, 0, start_pfn, last_pfn);
1075
1076         /* free pgd */
1077         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1078                 free_pgtable_page(domain->pgd);
1079                 domain->pgd = NULL;
1080         }
1081 }
1082
1083 /* When a page at a given level is being unlinked from its parent, we don't
1084    need to *modify* it at all. All we need to do is make a list of all the
1085    pages which can be freed just as soon as we've flushed the IOTLB and we
1086    know the hardware page-walk will no longer touch them.
1087    The 'pte' argument is the *parent* PTE, pointing to the page that is to
1088    be freed. */
1089 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1090                                             int level, struct dma_pte *pte,
1091                                             struct page *freelist)
1092 {
1093         struct page *pg;
1094
1095         pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1096         pg->freelist = freelist;
1097         freelist = pg;
1098
1099         if (level == 1)
1100                 return freelist;
1101
1102         pte = page_address(pg);
1103         do {
1104                 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1105                         freelist = dma_pte_list_pagetables(domain, level - 1,
1106                                                            pte, freelist);
1107                 pte++;
1108         } while (!first_pte_in_page(pte));
1109
1110         return freelist;
1111 }
1112
1113 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1114                                         struct dma_pte *pte, unsigned long pfn,
1115                                         unsigned long start_pfn,
1116                                         unsigned long last_pfn,
1117                                         struct page *freelist)
1118 {
1119         struct dma_pte *first_pte = NULL, *last_pte = NULL;
1120
1121         pfn = max(start_pfn, pfn);
1122         pte = &pte[pfn_level_offset(pfn, level)];
1123
1124         do {
1125                 unsigned long level_pfn;
1126
1127                 if (!dma_pte_present(pte))
1128                         goto next;
1129
1130                 level_pfn = pfn & level_mask(level);
1131
1132                 /* If range covers entire pagetable, free it */
1133                 if (start_pfn <= level_pfn &&
1134                     last_pfn >= level_pfn + level_size(level) - 1) {
1135                         /* These suborbinate page tables are going away entirely. Don't
1136                            bother to clear them; we're just going to *free* them. */
1137                         if (level > 1 && !dma_pte_superpage(pte))
1138                                 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1139
1140                         dma_clear_pte(pte);
1141                         if (!first_pte)
1142                                 first_pte = pte;
1143                         last_pte = pte;
1144                 } else if (level > 1) {
1145                         /* Recurse down into a level that isn't *entirely* obsolete */
1146                         freelist = dma_pte_clear_level(domain, level - 1,
1147                                                        phys_to_virt(dma_pte_addr(pte)),
1148                                                        level_pfn, start_pfn, last_pfn,
1149                                                        freelist);
1150                 }
1151 next:
1152                 pfn += level_size(level);
1153         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1154
1155         if (first_pte)
1156                 domain_flush_cache(domain, first_pte,
1157                                    (void *)++last_pte - (void *)first_pte);
1158
1159         return freelist;
1160 }
1161
1162 /* We can't just free the pages because the IOMMU may still be walking
1163    the page tables, and may have cached the intermediate levels. The
1164    pages can only be freed after the IOTLB flush has been done. */
1165 struct page *domain_unmap(struct dmar_domain *domain,
1166                           unsigned long start_pfn,
1167                           unsigned long last_pfn)
1168 {
1169         struct page *freelist = NULL;
1170
1171         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1172         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1173         BUG_ON(start_pfn > last_pfn);
1174
1175         /* we don't need lock here; nobody else touches the iova range */
1176         freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1177                                        domain->pgd, 0, start_pfn, last_pfn, NULL);
1178
1179         /* free pgd */
1180         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1181                 struct page *pgd_page = virt_to_page(domain->pgd);
1182                 pgd_page->freelist = freelist;
1183                 freelist = pgd_page;
1184
1185                 domain->pgd = NULL;
1186         }
1187
1188         return freelist;
1189 }
1190
1191 void dma_free_pagelist(struct page *freelist)
1192 {
1193         struct page *pg;
1194
1195         while ((pg = freelist)) {
1196                 freelist = pg->freelist;
1197                 free_pgtable_page(page_address(pg));
1198         }
1199 }
1200
1201 /* iommu handling */
1202 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1203 {
1204         struct root_entry *root;
1205         unsigned long flags;
1206
1207         root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1208         if (!root) {
1209                 pr_err("Allocating root entry for %s failed\n",
1210                         iommu->name);
1211                 return -ENOMEM;
1212         }
1213
1214         __iommu_flush_cache(iommu, root, ROOT_SIZE);
1215
1216         spin_lock_irqsave(&iommu->lock, flags);
1217         iommu->root_entry = root;
1218         spin_unlock_irqrestore(&iommu->lock, flags);
1219
1220         return 0;
1221 }
1222
1223 static void iommu_set_root_entry(struct intel_iommu *iommu)
1224 {
1225         u64 addr;
1226         u32 sts;
1227         unsigned long flag;
1228
1229         addr = virt_to_phys(iommu->root_entry);
1230         if (ecs_enabled(iommu))
1231                 addr |= DMA_RTADDR_RTT;
1232
1233         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1234         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1235
1236         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1237
1238         /* Make sure hardware complete it */
1239         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1240                       readl, (sts & DMA_GSTS_RTPS), sts);
1241
1242         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1243 }
1244
1245 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1246 {
1247         u32 val;
1248         unsigned long flag;
1249
1250         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1251                 return;
1252
1253         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1254         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1255
1256         /* Make sure hardware complete it */
1257         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1258                       readl, (!(val & DMA_GSTS_WBFS)), val);
1259
1260         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1261 }
1262
1263 /* return value determine if we need a write buffer flush */
1264 static void __iommu_flush_context(struct intel_iommu *iommu,
1265                                   u16 did, u16 source_id, u8 function_mask,
1266                                   u64 type)
1267 {
1268         u64 val = 0;
1269         unsigned long flag;
1270
1271         switch (type) {
1272         case DMA_CCMD_GLOBAL_INVL:
1273                 val = DMA_CCMD_GLOBAL_INVL;
1274                 break;
1275         case DMA_CCMD_DOMAIN_INVL:
1276                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1277                 break;
1278         case DMA_CCMD_DEVICE_INVL:
1279                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1280                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1281                 break;
1282         default:
1283                 BUG();
1284         }
1285         val |= DMA_CCMD_ICC;
1286
1287         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1288         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1289
1290         /* Make sure hardware complete it */
1291         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1292                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1293
1294         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1295 }
1296
1297 /* return value determine if we need a write buffer flush */
1298 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1299                                 u64 addr, unsigned int size_order, u64 type)
1300 {
1301         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1302         u64 val = 0, val_iva = 0;
1303         unsigned long flag;
1304
1305         switch (type) {
1306         case DMA_TLB_GLOBAL_FLUSH:
1307                 /* global flush doesn't need set IVA_REG */
1308                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1309                 break;
1310         case DMA_TLB_DSI_FLUSH:
1311                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1312                 break;
1313         case DMA_TLB_PSI_FLUSH:
1314                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1315                 /* IH bit is passed in as part of address */
1316                 val_iva = size_order | addr;
1317                 break;
1318         default:
1319                 BUG();
1320         }
1321         /* Note: set drain read/write */
1322 #if 0
1323         /*
1324          * This is probably to be super secure.. Looks like we can
1325          * ignore it without any impact.
1326          */
1327         if (cap_read_drain(iommu->cap))
1328                 val |= DMA_TLB_READ_DRAIN;
1329 #endif
1330         if (cap_write_drain(iommu->cap))
1331                 val |= DMA_TLB_WRITE_DRAIN;
1332
1333         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1334         /* Note: Only uses first TLB reg currently */
1335         if (val_iva)
1336                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1337         dmar_writeq(iommu->reg + tlb_offset + 8, val);
1338
1339         /* Make sure hardware complete it */
1340         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1341                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1342
1343         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1344
1345         /* check IOTLB invalidation granularity */
1346         if (DMA_TLB_IAIG(val) == 0)
1347                 pr_err("Flush IOTLB failed\n");
1348         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1349                 pr_debug("TLB flush request %Lx, actual %Lx\n",
1350                         (unsigned long long)DMA_TLB_IIRG(type),
1351                         (unsigned long long)DMA_TLB_IAIG(val));
1352 }
1353
1354 static struct device_domain_info *
1355 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1356                          u8 bus, u8 devfn)
1357 {
1358         bool found = false;
1359         unsigned long flags;
1360         struct device_domain_info *info;
1361         struct pci_dev *pdev;
1362
1363         if (!ecap_dev_iotlb_support(iommu->ecap))
1364                 return NULL;
1365
1366         if (!iommu->qi)
1367                 return NULL;
1368
1369         spin_lock_irqsave(&device_domain_lock, flags);
1370         list_for_each_entry(info, &domain->devices, link)
1371                 if (info->iommu == iommu && info->bus == bus &&
1372                     info->devfn == devfn) {
1373                         found = true;
1374                         break;
1375                 }
1376         spin_unlock_irqrestore(&device_domain_lock, flags);
1377
1378         if (!found || !info->dev || !dev_is_pci(info->dev))
1379                 return NULL;
1380
1381         pdev = to_pci_dev(info->dev);
1382
1383         if (!pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS))
1384                 return NULL;
1385
1386         if (!dmar_find_matched_atsr_unit(pdev))
1387                 return NULL;
1388
1389         return info;
1390 }
1391
1392 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1393 {
1394         if (!info || !dev_is_pci(info->dev))
1395                 return;
1396
1397         pci_enable_ats(to_pci_dev(info->dev), VTD_PAGE_SHIFT);
1398 }
1399
1400 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1401 {
1402         if (!info->dev || !dev_is_pci(info->dev) ||
1403             !pci_ats_enabled(to_pci_dev(info->dev)))
1404                 return;
1405
1406         pci_disable_ats(to_pci_dev(info->dev));
1407 }
1408
1409 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1410                                   u64 addr, unsigned mask)
1411 {
1412         u16 sid, qdep;
1413         unsigned long flags;
1414         struct device_domain_info *info;
1415
1416         spin_lock_irqsave(&device_domain_lock, flags);
1417         list_for_each_entry(info, &domain->devices, link) {
1418                 struct pci_dev *pdev;
1419                 if (!info->dev || !dev_is_pci(info->dev))
1420                         continue;
1421
1422                 pdev = to_pci_dev(info->dev);
1423                 if (!pci_ats_enabled(pdev))
1424                         continue;
1425
1426                 sid = info->bus << 8 | info->devfn;
1427                 qdep = pci_ats_queue_depth(pdev);
1428                 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1429         }
1430         spin_unlock_irqrestore(&device_domain_lock, flags);
1431 }
1432
1433 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1434                                   unsigned long pfn, unsigned int pages, int ih, int map)
1435 {
1436         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1437         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1438
1439         BUG_ON(pages == 0);
1440
1441         if (ih)
1442                 ih = 1 << 6;
1443         /*
1444          * Fallback to domain selective flush if no PSI support or the size is
1445          * too big.
1446          * PSI requires page size to be 2 ^ x, and the base address is naturally
1447          * aligned to the size
1448          */
1449         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1450                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1451                                                 DMA_TLB_DSI_FLUSH);
1452         else
1453                 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1454                                                 DMA_TLB_PSI_FLUSH);
1455
1456         /*
1457          * In caching mode, changes of pages from non-present to present require
1458          * flush. However, device IOTLB doesn't need to be flushed in this case.
1459          */
1460         if (!cap_caching_mode(iommu->cap) || !map)
1461                 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1462 }
1463
1464 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1465 {
1466         u32 pmen;
1467         unsigned long flags;
1468
1469         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1470         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1471         pmen &= ~DMA_PMEN_EPM;
1472         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1473
1474         /* wait for the protected region status bit to clear */
1475         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1476                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1477
1478         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1479 }
1480
1481 static void iommu_enable_translation(struct intel_iommu *iommu)
1482 {
1483         u32 sts;
1484         unsigned long flags;
1485
1486         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1487         iommu->gcmd |= DMA_GCMD_TE;
1488         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1489
1490         /* Make sure hardware complete it */
1491         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1492                       readl, (sts & DMA_GSTS_TES), sts);
1493
1494         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1495 }
1496
1497 static void iommu_disable_translation(struct intel_iommu *iommu)
1498 {
1499         u32 sts;
1500         unsigned long flag;
1501
1502         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1503         iommu->gcmd &= ~DMA_GCMD_TE;
1504         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1505
1506         /* Make sure hardware complete it */
1507         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1508                       readl, (!(sts & DMA_GSTS_TES)), sts);
1509
1510         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1511 }
1512
1513
1514 static int iommu_init_domains(struct intel_iommu *iommu)
1515 {
1516         unsigned long ndomains;
1517         unsigned long nlongs;
1518
1519         ndomains = cap_ndoms(iommu->cap);
1520         pr_debug("%s: Number of Domains supported <%ld>\n",
1521                  iommu->name, ndomains);
1522         nlongs = BITS_TO_LONGS(ndomains);
1523
1524         spin_lock_init(&iommu->lock);
1525
1526         /* TBD: there might be 64K domains,
1527          * consider other allocation for future chip
1528          */
1529         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1530         if (!iommu->domain_ids) {
1531                 pr_err("%s: Allocating domain id array failed\n",
1532                        iommu->name);
1533                 return -ENOMEM;
1534         }
1535         iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1536                         GFP_KERNEL);
1537         if (!iommu->domains) {
1538                 pr_err("%s: Allocating domain array failed\n",
1539                        iommu->name);
1540                 kfree(iommu->domain_ids);
1541                 iommu->domain_ids = NULL;
1542                 return -ENOMEM;
1543         }
1544
1545         /*
1546          * if Caching mode is set, then invalid translations are tagged
1547          * with domainid 0. Hence we need to pre-allocate it.
1548          */
1549         if (cap_caching_mode(iommu->cap))
1550                 set_bit(0, iommu->domain_ids);
1551         return 0;
1552 }
1553
1554 static void disable_dmar_iommu(struct intel_iommu *iommu)
1555 {
1556         struct dmar_domain *domain;
1557         int i;
1558
1559         if ((iommu->domains) && (iommu->domain_ids)) {
1560                 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1561                         /*
1562                          * Domain id 0 is reserved for invalid translation
1563                          * if hardware supports caching mode.
1564                          */
1565                         if (cap_caching_mode(iommu->cap) && i == 0)
1566                                 continue;
1567
1568                         domain = iommu->domains[i];
1569                         clear_bit(i, iommu->domain_ids);
1570                         if (domain_detach_iommu(domain, iommu) == 0 &&
1571                             !domain_type_is_vm(domain))
1572                                 domain_exit(domain);
1573                 }
1574         }
1575
1576         if (iommu->gcmd & DMA_GCMD_TE)
1577                 iommu_disable_translation(iommu);
1578 }
1579
1580 static void free_dmar_iommu(struct intel_iommu *iommu)
1581 {
1582         if ((iommu->domains) && (iommu->domain_ids)) {
1583                 kfree(iommu->domains);
1584                 kfree(iommu->domain_ids);
1585                 iommu->domains = NULL;
1586                 iommu->domain_ids = NULL;
1587         }
1588
1589         g_iommus[iommu->seq_id] = NULL;
1590
1591         /* free context mapping */
1592         free_context_table(iommu);
1593 }
1594
1595 static struct dmar_domain *alloc_domain(int flags)
1596 {
1597         /* domain id for virtual machine, it won't be set in context */
1598         static atomic_t vm_domid = ATOMIC_INIT(0);
1599         struct dmar_domain *domain;
1600
1601         domain = alloc_domain_mem();
1602         if (!domain)
1603                 return NULL;
1604
1605         memset(domain, 0, sizeof(*domain));
1606         domain->nid = -1;
1607         domain->flags = flags;
1608         spin_lock_init(&domain->iommu_lock);
1609         INIT_LIST_HEAD(&domain->devices);
1610         if (flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1611                 domain->id = atomic_inc_return(&vm_domid);
1612
1613         return domain;
1614 }
1615
1616 static int __iommu_attach_domain(struct dmar_domain *domain,
1617                                  struct intel_iommu *iommu)
1618 {
1619         int num;
1620         unsigned long ndomains;
1621
1622         ndomains = cap_ndoms(iommu->cap);
1623         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1624         if (num < ndomains) {
1625                 set_bit(num, iommu->domain_ids);
1626                 iommu->domains[num] = domain;
1627         } else {
1628                 num = -ENOSPC;
1629         }
1630
1631         return num;
1632 }
1633
1634 static int iommu_attach_domain(struct dmar_domain *domain,
1635                                struct intel_iommu *iommu)
1636 {
1637         int num;
1638         unsigned long flags;
1639
1640         spin_lock_irqsave(&iommu->lock, flags);
1641         num = __iommu_attach_domain(domain, iommu);
1642         spin_unlock_irqrestore(&iommu->lock, flags);
1643         if (num < 0)
1644                 pr_err("%s: No free domain ids\n", iommu->name);
1645
1646         return num;
1647 }
1648
1649 static int iommu_attach_vm_domain(struct dmar_domain *domain,
1650                                   struct intel_iommu *iommu)
1651 {
1652         int num;
1653         unsigned long ndomains;
1654
1655         ndomains = cap_ndoms(iommu->cap);
1656         for_each_set_bit(num, iommu->domain_ids, ndomains)
1657                 if (iommu->domains[num] == domain)
1658                         return num;
1659
1660         return __iommu_attach_domain(domain, iommu);
1661 }
1662
1663 static void iommu_detach_domain(struct dmar_domain *domain,
1664                                 struct intel_iommu *iommu)
1665 {
1666         unsigned long flags;
1667         int num, ndomains;
1668
1669         spin_lock_irqsave(&iommu->lock, flags);
1670         if (domain_type_is_vm_or_si(domain)) {
1671                 ndomains = cap_ndoms(iommu->cap);
1672                 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1673                         if (iommu->domains[num] == domain) {
1674                                 clear_bit(num, iommu->domain_ids);
1675                                 iommu->domains[num] = NULL;
1676                                 break;
1677                         }
1678                 }
1679         } else {
1680                 clear_bit(domain->id, iommu->domain_ids);
1681                 iommu->domains[domain->id] = NULL;
1682         }
1683         spin_unlock_irqrestore(&iommu->lock, flags);
1684 }
1685
1686 static void domain_attach_iommu(struct dmar_domain *domain,
1687                                struct intel_iommu *iommu)
1688 {
1689         unsigned long flags;
1690
1691         spin_lock_irqsave(&domain->iommu_lock, flags);
1692         if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1693                 domain->iommu_count++;
1694                 if (domain->iommu_count == 1)
1695                         domain->nid = iommu->node;
1696                 domain_update_iommu_cap(domain);
1697         }
1698         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1699 }
1700
1701 static int domain_detach_iommu(struct dmar_domain *domain,
1702                                struct intel_iommu *iommu)
1703 {
1704         unsigned long flags;
1705         int count = INT_MAX;
1706
1707         spin_lock_irqsave(&domain->iommu_lock, flags);
1708         if (test_and_clear_bit(iommu->seq_id, domain->iommu_bmp)) {
1709                 count = --domain->iommu_count;
1710                 domain_update_iommu_cap(domain);
1711         }
1712         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1713
1714         return count;
1715 }
1716
1717 static struct iova_domain reserved_iova_list;
1718 static struct lock_class_key reserved_rbtree_key;
1719
1720 static int dmar_init_reserved_ranges(void)
1721 {
1722         struct pci_dev *pdev = NULL;
1723         struct iova *iova;
1724         int i;
1725
1726         init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1727                         DMA_32BIT_PFN);
1728
1729         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1730                 &reserved_rbtree_key);
1731
1732         /* IOAPIC ranges shouldn't be accessed by DMA */
1733         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1734                 IOVA_PFN(IOAPIC_RANGE_END));
1735         if (!iova) {
1736                 pr_err("Reserve IOAPIC range failed\n");
1737                 return -ENODEV;
1738         }
1739
1740         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1741         for_each_pci_dev(pdev) {
1742                 struct resource *r;
1743
1744                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1745                         r = &pdev->resource[i];
1746                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1747                                 continue;
1748                         iova = reserve_iova(&reserved_iova_list,
1749                                             IOVA_PFN(r->start),
1750                                             IOVA_PFN(r->end));
1751                         if (!iova) {
1752                                 pr_err("Reserve iova failed\n");
1753                                 return -ENODEV;
1754                         }
1755                 }
1756         }
1757         return 0;
1758 }
1759
1760 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1761 {
1762         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1763 }
1764
1765 static inline int guestwidth_to_adjustwidth(int gaw)
1766 {
1767         int agaw;
1768         int r = (gaw - 12) % 9;
1769
1770         if (r == 0)
1771                 agaw = gaw;
1772         else
1773                 agaw = gaw + 9 - r;
1774         if (agaw > 64)
1775                 agaw = 64;
1776         return agaw;
1777 }
1778
1779 static int domain_init(struct dmar_domain *domain, int guest_width)
1780 {
1781         struct intel_iommu *iommu;
1782         int adjust_width, agaw;
1783         unsigned long sagaw;
1784
1785         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1786                         DMA_32BIT_PFN);
1787         domain_reserve_special_ranges(domain);
1788
1789         /* calculate AGAW */
1790         iommu = domain_get_iommu(domain);
1791         if (guest_width > cap_mgaw(iommu->cap))
1792                 guest_width = cap_mgaw(iommu->cap);
1793         domain->gaw = guest_width;
1794         adjust_width = guestwidth_to_adjustwidth(guest_width);
1795         agaw = width_to_agaw(adjust_width);
1796         sagaw = cap_sagaw(iommu->cap);
1797         if (!test_bit(agaw, &sagaw)) {
1798                 /* hardware doesn't support it, choose a bigger one */
1799                 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1800                 agaw = find_next_bit(&sagaw, 5, agaw);
1801                 if (agaw >= 5)
1802                         return -ENODEV;
1803         }
1804         domain->agaw = agaw;
1805
1806         if (ecap_coherent(iommu->ecap))
1807                 domain->iommu_coherency = 1;
1808         else
1809                 domain->iommu_coherency = 0;
1810
1811         if (ecap_sc_support(iommu->ecap))
1812                 domain->iommu_snooping = 1;
1813         else
1814                 domain->iommu_snooping = 0;
1815
1816         if (intel_iommu_superpage)
1817                 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1818         else
1819                 domain->iommu_superpage = 0;
1820
1821         domain->nid = iommu->node;
1822
1823         /* always allocate the top pgd */
1824         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1825         if (!domain->pgd)
1826                 return -ENOMEM;
1827         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1828         return 0;
1829 }
1830
1831 static void domain_exit(struct dmar_domain *domain)
1832 {
1833         struct dmar_drhd_unit *drhd;
1834         struct intel_iommu *iommu;
1835         struct page *freelist = NULL;
1836
1837         /* Domain 0 is reserved, so dont process it */
1838         if (!domain)
1839                 return;
1840
1841         /* Flush any lazy unmaps that may reference this domain */
1842         if (!intel_iommu_strict)
1843                 flush_unmaps_timeout(0);
1844
1845         /* remove associated devices */
1846         domain_remove_dev_info(domain);
1847
1848         /* destroy iovas */
1849         put_iova_domain(&domain->iovad);
1850
1851         freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1852
1853         /* clear attached or cached domains */
1854         rcu_read_lock();
1855         for_each_active_iommu(iommu, drhd)
1856                 if (domain_type_is_vm(domain) ||
1857                     test_bit(iommu->seq_id, domain->iommu_bmp))
1858                         iommu_detach_domain(domain, iommu);
1859         rcu_read_unlock();
1860
1861         dma_free_pagelist(freelist);
1862
1863         free_domain_mem(domain);
1864 }
1865
1866 static int domain_context_mapping_one(struct dmar_domain *domain,
1867                                       struct intel_iommu *iommu,
1868                                       u8 bus, u8 devfn, int translation)
1869 {
1870         struct context_entry *context;
1871         unsigned long flags;
1872         struct dma_pte *pgd;
1873         int id;
1874         int agaw;
1875         struct device_domain_info *info = NULL;
1876
1877         pr_debug("Set context mapping for %02x:%02x.%d\n",
1878                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1879
1880         BUG_ON(!domain->pgd);
1881         BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1882                translation != CONTEXT_TT_MULTI_LEVEL);
1883
1884         spin_lock_irqsave(&iommu->lock, flags);
1885         context = iommu_context_addr(iommu, bus, devfn, 1);
1886         spin_unlock_irqrestore(&iommu->lock, flags);
1887         if (!context)
1888                 return -ENOMEM;
1889         spin_lock_irqsave(&iommu->lock, flags);
1890         if (context_present(context)) {
1891                 spin_unlock_irqrestore(&iommu->lock, flags);
1892                 return 0;
1893         }
1894
1895         context_clear_entry(context);
1896
1897         id = domain->id;
1898         pgd = domain->pgd;
1899
1900         if (domain_type_is_vm_or_si(domain)) {
1901                 if (domain_type_is_vm(domain)) {
1902                         id = iommu_attach_vm_domain(domain, iommu);
1903                         if (id < 0) {
1904                                 spin_unlock_irqrestore(&iommu->lock, flags);
1905                                 pr_err("%s: No free domain ids\n", iommu->name);
1906                                 return -EFAULT;
1907                         }
1908                 }
1909
1910                 /* Skip top levels of page tables for
1911                  * iommu which has less agaw than default.
1912                  * Unnecessary for PT mode.
1913                  */
1914                 if (translation != CONTEXT_TT_PASS_THROUGH) {
1915                         for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1916                                 pgd = phys_to_virt(dma_pte_addr(pgd));
1917                                 if (!dma_pte_present(pgd)) {
1918                                         spin_unlock_irqrestore(&iommu->lock, flags);
1919                                         return -ENOMEM;
1920                                 }
1921                         }
1922                 }
1923         }
1924
1925         context_set_domain_id(context, id);
1926
1927         if (translation != CONTEXT_TT_PASS_THROUGH) {
1928                 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
1929                 translation = info ? CONTEXT_TT_DEV_IOTLB :
1930                                      CONTEXT_TT_MULTI_LEVEL;
1931         }
1932         /*
1933          * In pass through mode, AW must be programmed to indicate the largest
1934          * AGAW value supported by hardware. And ASR is ignored by hardware.
1935          */
1936         if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1937                 context_set_address_width(context, iommu->msagaw);
1938         else {
1939                 context_set_address_root(context, virt_to_phys(pgd));
1940                 context_set_address_width(context, iommu->agaw);
1941         }
1942
1943         context_set_translation_type(context, translation);
1944         context_set_fault_enable(context);
1945         context_set_present(context);
1946         domain_flush_cache(domain, context, sizeof(*context));
1947
1948         /*
1949          * It's a non-present to present mapping. If hardware doesn't cache
1950          * non-present entry we only need to flush the write-buffer. If the
1951          * _does_ cache non-present entries, then it does so in the special
1952          * domain #0, which we have to flush:
1953          */
1954         if (cap_caching_mode(iommu->cap)) {
1955                 iommu->flush.flush_context(iommu, 0,
1956                                            (((u16)bus) << 8) | devfn,
1957                                            DMA_CCMD_MASK_NOBIT,
1958                                            DMA_CCMD_DEVICE_INVL);
1959                 iommu->flush.flush_iotlb(iommu, id, 0, 0, DMA_TLB_DSI_FLUSH);
1960         } else {
1961                 iommu_flush_write_buffer(iommu);
1962         }
1963         iommu_enable_dev_iotlb(info);
1964         spin_unlock_irqrestore(&iommu->lock, flags);
1965
1966         domain_attach_iommu(domain, iommu);
1967
1968         return 0;
1969 }
1970
1971 struct domain_context_mapping_data {
1972         struct dmar_domain *domain;
1973         struct intel_iommu *iommu;
1974         int translation;
1975 };
1976
1977 static int domain_context_mapping_cb(struct pci_dev *pdev,
1978                                      u16 alias, void *opaque)
1979 {
1980         struct domain_context_mapping_data *data = opaque;
1981
1982         return domain_context_mapping_one(data->domain, data->iommu,
1983                                           PCI_BUS_NUM(alias), alias & 0xff,
1984                                           data->translation);
1985 }
1986
1987 static int
1988 domain_context_mapping(struct dmar_domain *domain, struct device *dev,
1989                        int translation)
1990 {
1991         struct intel_iommu *iommu;
1992         u8 bus, devfn;
1993         struct domain_context_mapping_data data;
1994
1995         iommu = device_to_iommu(dev, &bus, &devfn);
1996         if (!iommu)
1997                 return -ENODEV;
1998
1999         if (!dev_is_pci(dev))
2000                 return domain_context_mapping_one(domain, iommu, bus, devfn,
2001                                                   translation);
2002
2003         data.domain = domain;
2004         data.iommu = iommu;
2005         data.translation = translation;
2006
2007         return pci_for_each_dma_alias(to_pci_dev(dev),
2008                                       &domain_context_mapping_cb, &data);
2009 }
2010
2011 static int domain_context_mapped_cb(struct pci_dev *pdev,
2012                                     u16 alias, void *opaque)
2013 {
2014         struct intel_iommu *iommu = opaque;
2015
2016         return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2017 }
2018
2019 static int domain_context_mapped(struct device *dev)
2020 {
2021         struct intel_iommu *iommu;
2022         u8 bus, devfn;
2023
2024         iommu = device_to_iommu(dev, &bus, &devfn);
2025         if (!iommu)
2026                 return -ENODEV;
2027
2028         if (!dev_is_pci(dev))
2029                 return device_context_mapped(iommu, bus, devfn);
2030
2031         return !pci_for_each_dma_alias(to_pci_dev(dev),
2032                                        domain_context_mapped_cb, iommu);
2033 }
2034
2035 /* Returns a number of VTD pages, but aligned to MM page size */
2036 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2037                                             size_t size)
2038 {
2039         host_addr &= ~PAGE_MASK;
2040         return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2041 }
2042
2043 /* Return largest possible superpage level for a given mapping */
2044 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2045                                           unsigned long iov_pfn,
2046                                           unsigned long phy_pfn,
2047                                           unsigned long pages)
2048 {
2049         int support, level = 1;
2050         unsigned long pfnmerge;
2051
2052         support = domain->iommu_superpage;
2053
2054         /* To use a large page, the virtual *and* physical addresses
2055            must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2056            of them will mean we have to use smaller pages. So just
2057            merge them and check both at once. */
2058         pfnmerge = iov_pfn | phy_pfn;
2059
2060         while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2061                 pages >>= VTD_STRIDE_SHIFT;
2062                 if (!pages)
2063                         break;
2064                 pfnmerge >>= VTD_STRIDE_SHIFT;
2065                 level++;
2066                 support--;
2067         }
2068         return level;
2069 }
2070
2071 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2072                             struct scatterlist *sg, unsigned long phys_pfn,
2073                             unsigned long nr_pages, int prot)
2074 {
2075         struct dma_pte *first_pte = NULL, *pte = NULL;
2076         phys_addr_t uninitialized_var(pteval);
2077         unsigned long sg_res = 0;
2078         unsigned int largepage_lvl = 0;
2079         unsigned long lvl_pages = 0;
2080
2081         BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2082
2083         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2084                 return -EINVAL;
2085
2086         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2087
2088         if (!sg) {
2089                 sg_res = nr_pages;
2090                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2091         }
2092
2093         while (nr_pages > 0) {
2094                 uint64_t tmp;
2095
2096                 if (!sg_res) {
2097                         sg_res = aligned_nrpages(sg->offset, sg->length);
2098                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2099                         sg->dma_length = sg->length;
2100                         pteval = page_to_phys(sg_page(sg)) | prot;
2101                         phys_pfn = pteval >> VTD_PAGE_SHIFT;
2102                 }
2103
2104                 if (!pte) {
2105                         largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2106
2107                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2108                         if (!pte)
2109                                 return -ENOMEM;
2110                         /* It is large page*/
2111                         if (largepage_lvl > 1) {
2112                                 pteval |= DMA_PTE_LARGE_PAGE;
2113                                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2114                                 /*
2115                                  * Ensure that old small page tables are
2116                                  * removed to make room for superpage,
2117                                  * if they exist.
2118                                  */
2119                                 dma_pte_free_pagetable(domain, iov_pfn,
2120                                                        iov_pfn + lvl_pages - 1);
2121                         } else {
2122                                 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2123                         }
2124
2125                 }
2126                 /* We don't need lock here, nobody else
2127                  * touches the iova range
2128                  */
2129                 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2130                 if (tmp) {
2131                         static int dumps = 5;
2132                         pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2133                                 iov_pfn, tmp, (unsigned long long)pteval);
2134                         if (dumps) {
2135                                 dumps--;
2136                                 debug_dma_dump_mappings(NULL);
2137                         }
2138                         WARN_ON(1);
2139                 }
2140
2141                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2142
2143                 BUG_ON(nr_pages < lvl_pages);
2144                 BUG_ON(sg_res < lvl_pages);
2145
2146                 nr_pages -= lvl_pages;
2147                 iov_pfn += lvl_pages;
2148                 phys_pfn += lvl_pages;
2149                 pteval += lvl_pages * VTD_PAGE_SIZE;
2150                 sg_res -= lvl_pages;
2151
2152                 /* If the next PTE would be the first in a new page, then we
2153                    need to flush the cache on the entries we've just written.
2154                    And then we'll need to recalculate 'pte', so clear it and
2155                    let it get set again in the if (!pte) block above.
2156
2157                    If we're done (!nr_pages) we need to flush the cache too.
2158
2159                    Also if we've been setting superpages, we may need to
2160                    recalculate 'pte' and switch back to smaller pages for the
2161                    end of the mapping, if the trailing size is not enough to
2162                    use another superpage (i.e. sg_res < lvl_pages). */
2163                 pte++;
2164                 if (!nr_pages || first_pte_in_page(pte) ||
2165                     (largepage_lvl > 1 && sg_res < lvl_pages)) {
2166                         domain_flush_cache(domain, first_pte,
2167                                            (void *)pte - (void *)first_pte);
2168                         pte = NULL;
2169                 }
2170
2171                 if (!sg_res && nr_pages)
2172                         sg = sg_next(sg);
2173         }
2174         return 0;
2175 }
2176
2177 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2178                                     struct scatterlist *sg, unsigned long nr_pages,
2179                                     int prot)
2180 {
2181         return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2182 }
2183
2184 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2185                                      unsigned long phys_pfn, unsigned long nr_pages,
2186                                      int prot)
2187 {
2188         return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2189 }
2190
2191 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
2192 {
2193         if (!iommu)
2194                 return;
2195
2196         clear_context_table(iommu, bus, devfn);
2197         iommu->flush.flush_context(iommu, 0, 0, 0,
2198                                            DMA_CCMD_GLOBAL_INVL);
2199         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2200 }
2201
2202 static inline void unlink_domain_info(struct device_domain_info *info)
2203 {
2204         assert_spin_locked(&device_domain_lock);
2205         list_del(&info->link);
2206         list_del(&info->global);
2207         if (info->dev)
2208                 info->dev->archdata.iommu = NULL;
2209 }
2210
2211 static void domain_remove_dev_info(struct dmar_domain *domain)
2212 {
2213         struct device_domain_info *info, *tmp;
2214         unsigned long flags;
2215
2216         spin_lock_irqsave(&device_domain_lock, flags);
2217         list_for_each_entry_safe(info, tmp, &domain->devices, link) {
2218                 unlink_domain_info(info);
2219                 spin_unlock_irqrestore(&device_domain_lock, flags);
2220
2221                 iommu_disable_dev_iotlb(info);
2222                 iommu_detach_dev(info->iommu, info->bus, info->devfn);
2223
2224                 if (domain_type_is_vm(domain)) {
2225                         iommu_detach_dependent_devices(info->iommu, info->dev);
2226                         domain_detach_iommu(domain, info->iommu);
2227                 }
2228
2229                 free_devinfo_mem(info);
2230                 spin_lock_irqsave(&device_domain_lock, flags);
2231         }
2232         spin_unlock_irqrestore(&device_domain_lock, flags);
2233 }
2234
2235 /*
2236  * find_domain
2237  * Note: we use struct device->archdata.iommu stores the info
2238  */
2239 static struct dmar_domain *find_domain(struct device *dev)
2240 {
2241         struct device_domain_info *info;
2242
2243         /* No lock here, assumes no domain exit in normal case */
2244         info = dev->archdata.iommu;
2245         if (info)
2246                 return info->domain;
2247         return NULL;
2248 }
2249
2250 static inline struct device_domain_info *
2251 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2252 {
2253         struct device_domain_info *info;
2254
2255         list_for_each_entry(info, &device_domain_list, global)
2256                 if (info->iommu->segment == segment && info->bus == bus &&
2257                     info->devfn == devfn)
2258                         return info;
2259
2260         return NULL;
2261 }
2262
2263 static struct dmar_domain *dmar_insert_dev_info(struct intel_iommu *iommu,
2264                                                 int bus, int devfn,
2265                                                 struct device *dev,
2266                                                 struct dmar_domain *domain)
2267 {
2268         struct dmar_domain *found = NULL;
2269         struct device_domain_info *info;
2270         unsigned long flags;
2271
2272         info = alloc_devinfo_mem();
2273         if (!info)
2274                 return NULL;
2275
2276         info->bus = bus;
2277         info->devfn = devfn;
2278         info->dev = dev;
2279         info->domain = domain;
2280         info->iommu = iommu;
2281
2282         spin_lock_irqsave(&device_domain_lock, flags);
2283         if (dev)
2284                 found = find_domain(dev);
2285         else {
2286                 struct device_domain_info *info2;
2287                 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2288                 if (info2)
2289                         found = info2->domain;
2290         }
2291         if (found) {
2292                 spin_unlock_irqrestore(&device_domain_lock, flags);
2293                 free_devinfo_mem(info);
2294                 /* Caller must free the original domain */
2295                 return found;
2296         }
2297
2298         list_add(&info->link, &domain->devices);
2299         list_add(&info->global, &device_domain_list);
2300         if (dev)
2301                 dev->archdata.iommu = info;
2302         spin_unlock_irqrestore(&device_domain_lock, flags);
2303
2304         return domain;
2305 }
2306
2307 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2308 {
2309         *(u16 *)opaque = alias;
2310         return 0;
2311 }
2312
2313 /* domain is initialized */
2314 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2315 {
2316         struct dmar_domain *domain, *tmp;
2317         struct intel_iommu *iommu;
2318         struct device_domain_info *info;
2319         u16 dma_alias;
2320         unsigned long flags;
2321         u8 bus, devfn;
2322
2323         domain = find_domain(dev);
2324         if (domain)
2325                 return domain;
2326
2327         iommu = device_to_iommu(dev, &bus, &devfn);
2328         if (!iommu)
2329                 return NULL;
2330
2331         if (dev_is_pci(dev)) {
2332                 struct pci_dev *pdev = to_pci_dev(dev);
2333
2334                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2335
2336                 spin_lock_irqsave(&device_domain_lock, flags);
2337                 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2338                                                       PCI_BUS_NUM(dma_alias),
2339                                                       dma_alias & 0xff);
2340                 if (info) {
2341                         iommu = info->iommu;
2342                         domain = info->domain;
2343                 }
2344                 spin_unlock_irqrestore(&device_domain_lock, flags);
2345
2346                 /* DMA alias already has a domain, uses it */
2347                 if (info)
2348                         goto found_domain;
2349         }
2350
2351         /* Allocate and initialize new domain for the device */
2352         domain = alloc_domain(0);
2353         if (!domain)
2354                 return NULL;
2355         domain->id = iommu_attach_domain(domain, iommu);
2356         if (domain->id < 0) {
2357                 free_domain_mem(domain);
2358                 return NULL;
2359         }
2360         domain_attach_iommu(domain, iommu);
2361         if (domain_init(domain, gaw)) {
2362                 domain_exit(domain);
2363                 return NULL;
2364         }
2365
2366         /* register PCI DMA alias device */
2367         if (dev_is_pci(dev)) {
2368                 tmp = dmar_insert_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2369                                            dma_alias & 0xff, NULL, domain);
2370
2371                 if (!tmp || tmp != domain) {
2372                         domain_exit(domain);
2373                         domain = tmp;
2374                 }
2375
2376                 if (!domain)
2377                         return NULL;
2378         }
2379
2380 found_domain:
2381         tmp = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2382
2383         if (!tmp || tmp != domain) {
2384                 domain_exit(domain);
2385                 domain = tmp;
2386         }
2387
2388         return domain;
2389 }
2390
2391 static int iommu_identity_mapping;
2392 #define IDENTMAP_ALL            1
2393 #define IDENTMAP_GFX            2
2394 #define IDENTMAP_AZALIA         4
2395
2396 static int iommu_domain_identity_map(struct dmar_domain *domain,
2397                                      unsigned long long start,
2398                                      unsigned long long end)
2399 {
2400         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2401         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2402
2403         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2404                           dma_to_mm_pfn(last_vpfn))) {
2405                 pr_err("Reserving iova failed\n");
2406                 return -ENOMEM;
2407         }
2408
2409         pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2410                  start, end, domain->id);
2411         /*
2412          * RMRR range might have overlap with physical memory range,
2413          * clear it first
2414          */
2415         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2416
2417         return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2418                                   last_vpfn - first_vpfn + 1,
2419                                   DMA_PTE_READ|DMA_PTE_WRITE);
2420 }
2421
2422 static int iommu_prepare_identity_map(struct device *dev,
2423                                       unsigned long long start,
2424                                       unsigned long long end)
2425 {
2426         struct dmar_domain *domain;
2427         int ret;
2428
2429         domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2430         if (!domain)
2431                 return -ENOMEM;
2432
2433         /* For _hardware_ passthrough, don't bother. But for software
2434            passthrough, we do it anyway -- it may indicate a memory
2435            range which is reserved in E820, so which didn't get set
2436            up to start with in si_domain */
2437         if (domain == si_domain && hw_pass_through) {
2438                 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2439                         dev_name(dev), start, end);
2440                 return 0;
2441         }
2442
2443         pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2444                 dev_name(dev), start, end);
2445
2446         if (end < start) {
2447                 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2448                         "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2449                         dmi_get_system_info(DMI_BIOS_VENDOR),
2450                         dmi_get_system_info(DMI_BIOS_VERSION),
2451                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2452                 ret = -EIO;
2453                 goto error;
2454         }
2455
2456         if (end >> agaw_to_width(domain->agaw)) {
2457                 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2458                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2459                      agaw_to_width(domain->agaw),
2460                      dmi_get_system_info(DMI_BIOS_VENDOR),
2461                      dmi_get_system_info(DMI_BIOS_VERSION),
2462                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2463                 ret = -EIO;
2464                 goto error;
2465         }
2466
2467         ret = iommu_domain_identity_map(domain, start, end);
2468         if (ret)
2469                 goto error;
2470
2471         /* context entry init */
2472         ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2473         if (ret)
2474                 goto error;
2475
2476         return 0;
2477
2478  error:
2479         domain_exit(domain);
2480         return ret;
2481 }
2482
2483 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2484                                          struct device *dev)
2485 {
2486         if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2487                 return 0;
2488         return iommu_prepare_identity_map(dev, rmrr->base_address,
2489                                           rmrr->end_address);
2490 }
2491
2492 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2493 static inline void iommu_prepare_isa(void)
2494 {
2495         struct pci_dev *pdev;
2496         int ret;
2497
2498         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2499         if (!pdev)
2500                 return;
2501
2502         pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2503         ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2504
2505         if (ret)
2506                 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2507
2508         pci_dev_put(pdev);
2509 }
2510 #else
2511 static inline void iommu_prepare_isa(void)
2512 {
2513         return;
2514 }
2515 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2516
2517 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2518
2519 static int __init si_domain_init(int hw)
2520 {
2521         struct dmar_drhd_unit *drhd;
2522         struct intel_iommu *iommu;
2523         int nid, ret = 0;
2524         bool first = true;
2525
2526         si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2527         if (!si_domain)
2528                 return -EFAULT;
2529
2530         for_each_active_iommu(iommu, drhd) {
2531                 ret = iommu_attach_domain(si_domain, iommu);
2532                 if (ret < 0) {
2533                         domain_exit(si_domain);
2534                         return -EFAULT;
2535                 } else if (first) {
2536                         si_domain->id = ret;
2537                         first = false;
2538                 } else if (si_domain->id != ret) {
2539                         domain_exit(si_domain);
2540                         return -EFAULT;
2541                 }
2542                 domain_attach_iommu(si_domain, iommu);
2543         }
2544
2545         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2546                 domain_exit(si_domain);
2547                 return -EFAULT;
2548         }
2549
2550         pr_debug("Identity mapping domain is domain %d\n",
2551                  si_domain->id);
2552
2553         if (hw)
2554                 return 0;
2555
2556         for_each_online_node(nid) {
2557                 unsigned long start_pfn, end_pfn;
2558                 int i;
2559
2560                 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2561                         ret = iommu_domain_identity_map(si_domain,
2562                                         PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2563                         if (ret)
2564                                 return ret;
2565                 }
2566         }
2567
2568         return 0;
2569 }
2570
2571 static int identity_mapping(struct device *dev)
2572 {
2573         struct device_domain_info *info;
2574
2575         if (likely(!iommu_identity_mapping))
2576                 return 0;
2577
2578         info = dev->archdata.iommu;
2579         if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2580                 return (info->domain == si_domain);
2581
2582         return 0;
2583 }
2584
2585 static int domain_add_dev_info(struct dmar_domain *domain,
2586                                struct device *dev, int translation)
2587 {
2588         struct dmar_domain *ndomain;
2589         struct intel_iommu *iommu;
2590         u8 bus, devfn;
2591         int ret;
2592
2593         iommu = device_to_iommu(dev, &bus, &devfn);
2594         if (!iommu)
2595                 return -ENODEV;
2596
2597         ndomain = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2598         if (ndomain != domain)
2599                 return -EBUSY;
2600
2601         ret = domain_context_mapping(domain, dev, translation);
2602         if (ret) {
2603                 domain_remove_one_dev_info(domain, dev);
2604                 return ret;
2605         }
2606
2607         return 0;
2608 }
2609
2610 static bool device_has_rmrr(struct device *dev)
2611 {
2612         struct dmar_rmrr_unit *rmrr;
2613         struct device *tmp;
2614         int i;
2615
2616         rcu_read_lock();
2617         for_each_rmrr_units(rmrr) {
2618                 /*
2619                  * Return TRUE if this RMRR contains the device that
2620                  * is passed in.
2621                  */
2622                 for_each_active_dev_scope(rmrr->devices,
2623                                           rmrr->devices_cnt, i, tmp)
2624                         if (tmp == dev) {
2625                                 rcu_read_unlock();
2626                                 return true;
2627                         }
2628         }
2629         rcu_read_unlock();
2630         return false;
2631 }
2632
2633 /*
2634  * There are a couple cases where we need to restrict the functionality of
2635  * devices associated with RMRRs.  The first is when evaluating a device for
2636  * identity mapping because problems exist when devices are moved in and out
2637  * of domains and their respective RMRR information is lost.  This means that
2638  * a device with associated RMRRs will never be in a "passthrough" domain.
2639  * The second is use of the device through the IOMMU API.  This interface
2640  * expects to have full control of the IOVA space for the device.  We cannot
2641  * satisfy both the requirement that RMRR access is maintained and have an
2642  * unencumbered IOVA space.  We also have no ability to quiesce the device's
2643  * use of the RMRR space or even inform the IOMMU API user of the restriction.
2644  * We therefore prevent devices associated with an RMRR from participating in
2645  * the IOMMU API, which eliminates them from device assignment.
2646  *
2647  * In both cases we assume that PCI USB devices with RMRRs have them largely
2648  * for historical reasons and that the RMRR space is not actively used post
2649  * boot.  This exclusion may change if vendors begin to abuse it.
2650  *
2651  * The same exception is made for graphics devices, with the requirement that
2652  * any use of the RMRR regions will be torn down before assigning the device
2653  * to a guest.
2654  */
2655 static bool device_is_rmrr_locked(struct device *dev)
2656 {
2657         if (!device_has_rmrr(dev))
2658                 return false;
2659
2660         if (dev_is_pci(dev)) {
2661                 struct pci_dev *pdev = to_pci_dev(dev);
2662
2663                 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2664                         return false;
2665         }
2666
2667         return true;
2668 }
2669
2670 static int iommu_should_identity_map(struct device *dev, int startup)
2671 {
2672
2673         if (dev_is_pci(dev)) {
2674                 struct pci_dev *pdev = to_pci_dev(dev);
2675
2676                 if (device_is_rmrr_locked(dev))
2677                         return 0;
2678
2679                 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2680                         return 1;
2681
2682                 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2683                         return 1;
2684
2685                 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2686                         return 0;
2687
2688                 /*
2689                  * We want to start off with all devices in the 1:1 domain, and
2690                  * take them out later if we find they can't access all of memory.
2691                  *
2692                  * However, we can't do this for PCI devices behind bridges,
2693                  * because all PCI devices behind the same bridge will end up
2694                  * with the same source-id on their transactions.
2695                  *
2696                  * Practically speaking, we can't change things around for these
2697                  * devices at run-time, because we can't be sure there'll be no
2698                  * DMA transactions in flight for any of their siblings.
2699                  *
2700                  * So PCI devices (unless they're on the root bus) as well as
2701                  * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2702                  * the 1:1 domain, just in _case_ one of their siblings turns out
2703                  * not to be able to map all of memory.
2704                  */
2705                 if (!pci_is_pcie(pdev)) {
2706                         if (!pci_is_root_bus(pdev->bus))
2707                                 return 0;
2708                         if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2709                                 return 0;
2710                 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2711                         return 0;
2712         } else {
2713                 if (device_has_rmrr(dev))
2714                         return 0;
2715         }
2716
2717         /*
2718          * At boot time, we don't yet know if devices will be 64-bit capable.
2719          * Assume that they will — if they turn out not to be, then we can
2720          * take them out of the 1:1 domain later.
2721          */
2722         if (!startup) {
2723                 /*
2724                  * If the device's dma_mask is less than the system's memory
2725                  * size then this is not a candidate for identity mapping.
2726                  */
2727                 u64 dma_mask = *dev->dma_mask;
2728
2729                 if (dev->coherent_dma_mask &&
2730                     dev->coherent_dma_mask < dma_mask)
2731                         dma_mask = dev->coherent_dma_mask;
2732
2733                 return dma_mask >= dma_get_required_mask(dev);
2734         }
2735
2736         return 1;
2737 }
2738
2739 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2740 {
2741         int ret;
2742
2743         if (!iommu_should_identity_map(dev, 1))
2744                 return 0;
2745
2746         ret = domain_add_dev_info(si_domain, dev,
2747                                   hw ? CONTEXT_TT_PASS_THROUGH :
2748                                        CONTEXT_TT_MULTI_LEVEL);
2749         if (!ret)
2750                 pr_info("%s identity mapping for device %s\n",
2751                         hw ? "Hardware" : "Software", dev_name(dev));
2752         else if (ret == -ENODEV)
2753                 /* device not associated with an iommu */
2754                 ret = 0;
2755
2756         return ret;
2757 }
2758
2759
2760 static int __init iommu_prepare_static_identity_mapping(int hw)
2761 {
2762         struct pci_dev *pdev = NULL;
2763         struct dmar_drhd_unit *drhd;
2764         struct intel_iommu *iommu;
2765         struct device *dev;
2766         int i;
2767         int ret = 0;
2768
2769         for_each_pci_dev(pdev) {
2770                 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2771                 if (ret)
2772                         return ret;
2773         }
2774
2775         for_each_active_iommu(iommu, drhd)
2776                 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2777                         struct acpi_device_physical_node *pn;
2778                         struct acpi_device *adev;
2779
2780                         if (dev->bus != &acpi_bus_type)
2781                                 continue;
2782
2783                         adev= to_acpi_device(dev);
2784                         mutex_lock(&adev->physical_node_lock);
2785                         list_for_each_entry(pn, &adev->physical_node_list, node) {
2786                                 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2787                                 if (ret)
2788                                         break;
2789                         }
2790                         mutex_unlock(&adev->physical_node_lock);
2791                         if (ret)
2792                                 return ret;
2793                 }
2794
2795         return 0;
2796 }
2797
2798 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2799 {
2800         /*
2801          * Start from the sane iommu hardware state.
2802          * If the queued invalidation is already initialized by us
2803          * (for example, while enabling interrupt-remapping) then
2804          * we got the things already rolling from a sane state.
2805          */
2806         if (!iommu->qi) {
2807                 /*
2808                  * Clear any previous faults.
2809                  */
2810                 dmar_fault(-1, iommu);
2811                 /*
2812                  * Disable queued invalidation if supported and already enabled
2813                  * before OS handover.
2814                  */
2815                 dmar_disable_qi(iommu);
2816         }
2817
2818         if (dmar_enable_qi(iommu)) {
2819                 /*
2820                  * Queued Invalidate not enabled, use Register Based Invalidate
2821                  */
2822                 iommu->flush.flush_context = __iommu_flush_context;
2823                 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2824                 pr_info("%s: Using Register based invalidation\n",
2825                         iommu->name);
2826         } else {
2827                 iommu->flush.flush_context = qi_flush_context;
2828                 iommu->flush.flush_iotlb = qi_flush_iotlb;
2829                 pr_info("%s: Using Queued invalidation\n", iommu->name);
2830         }
2831 }
2832
2833 static int copy_context_table(struct intel_iommu *iommu,
2834                               struct root_entry *old_re,
2835                               struct context_entry **tbl,
2836                               int bus, bool ext)
2837 {
2838         struct context_entry *old_ce = NULL, *new_ce = NULL, ce;
2839         int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2840         phys_addr_t old_ce_phys;
2841
2842         tbl_idx = ext ? bus * 2 : bus;
2843
2844         for (devfn = 0; devfn < 256; devfn++) {
2845                 /* First calculate the correct index */
2846                 idx = (ext ? devfn * 2 : devfn) % 256;
2847
2848                 if (idx == 0) {
2849                         /* First save what we may have and clean up */
2850                         if (new_ce) {
2851                                 tbl[tbl_idx] = new_ce;
2852                                 __iommu_flush_cache(iommu, new_ce,
2853                                                     VTD_PAGE_SIZE);
2854                                 pos = 1;
2855                         }
2856
2857                         if (old_ce)
2858                                 iounmap(old_ce);
2859
2860                         ret = 0;
2861                         if (devfn < 0x80)
2862                                 old_ce_phys = root_entry_lctp(old_re);
2863                         else
2864                                 old_ce_phys = root_entry_uctp(old_re);
2865
2866                         if (!old_ce_phys) {
2867                                 if (ext && devfn == 0) {
2868                                         /* No LCTP, try UCTP */
2869                                         devfn = 0x7f;
2870                                         continue;
2871                                 } else {
2872                                         goto out;
2873                                 }
2874                         }
2875
2876                         ret = -ENOMEM;
2877                         old_ce = ioremap_cache(old_ce_phys, PAGE_SIZE);
2878                         if (!old_ce)
2879                                 goto out;
2880
2881                         new_ce = alloc_pgtable_page(iommu->node);
2882                         if (!new_ce)
2883                                 goto out_unmap;
2884
2885                         ret = 0;
2886                 }
2887
2888                 /* Now copy the context entry */
2889                 ce = old_ce[idx];
2890
2891                 if (!__context_present(&ce))
2892                         continue;
2893
2894                 did = context_domain_id(&ce);
2895                 if (did >= 0 && did < cap_ndoms(iommu->cap))
2896                         set_bit(did, iommu->domain_ids);
2897
2898                 /*
2899                  * We need a marker for copied context entries. This
2900                  * marker needs to work for the old format as well as
2901                  * for extended context entries.
2902                  *
2903                  * Bit 67 of the context entry is used. In the old
2904                  * format this bit is available to software, in the
2905                  * extended format it is the PGE bit, but PGE is ignored
2906                  * by HW if PASIDs are disabled (and thus still
2907                  * available).
2908                  *
2909                  * So disable PASIDs first and then mark the entry
2910                  * copied. This means that we don't copy PASID
2911                  * translations from the old kernel, but this is fine as
2912                  * faults there are not fatal.
2913                  */
2914                 context_clear_pasid_enable(&ce);
2915                 context_set_copied(&ce);
2916
2917                 new_ce[idx] = ce;
2918         }
2919
2920         tbl[tbl_idx + pos] = new_ce;
2921
2922         __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
2923
2924 out_unmap:
2925         iounmap(old_ce);
2926
2927 out:
2928         return ret;
2929 }
2930
2931 static int copy_translation_tables(struct intel_iommu *iommu)
2932 {
2933         struct context_entry **ctxt_tbls;
2934         struct root_entry *old_rt;
2935         phys_addr_t old_rt_phys;
2936         int ctxt_table_entries;
2937         unsigned long flags;
2938         u64 rtaddr_reg;
2939         int bus, ret;
2940         bool new_ext, ext;
2941
2942         rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
2943         ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
2944         new_ext    = !!ecap_ecs(iommu->ecap);
2945
2946         /*
2947          * The RTT bit can only be changed when translation is disabled,
2948          * but disabling translation means to open a window for data
2949          * corruption. So bail out and don't copy anything if we would
2950          * have to change the bit.
2951          */
2952         if (new_ext != ext)
2953                 return -EINVAL;
2954
2955         old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
2956         if (!old_rt_phys)
2957                 return -EINVAL;
2958
2959         old_rt = ioremap_cache(old_rt_phys, PAGE_SIZE);
2960         if (!old_rt)
2961                 return -ENOMEM;
2962
2963         /* This is too big for the stack - allocate it from slab */
2964         ctxt_table_entries = ext ? 512 : 256;
2965         ret = -ENOMEM;
2966         ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
2967         if (!ctxt_tbls)
2968                 goto out_unmap;
2969
2970         for (bus = 0; bus < 256; bus++) {
2971                 ret = copy_context_table(iommu, &old_rt[bus],
2972                                          ctxt_tbls, bus, ext);
2973                 if (ret) {
2974                         pr_err("%s: Failed to copy context table for bus %d\n",
2975                                 iommu->name, bus);
2976                         continue;
2977                 }
2978         }
2979
2980         spin_lock_irqsave(&iommu->lock, flags);
2981
2982         /* Context tables are copied, now write them to the root_entry table */
2983         for (bus = 0; bus < 256; bus++) {
2984                 int idx = ext ? bus * 2 : bus;
2985                 u64 val;
2986
2987                 if (ctxt_tbls[idx]) {
2988                         val = virt_to_phys(ctxt_tbls[idx]) | 1;
2989                         iommu->root_entry[bus].lo = val;
2990                 }
2991
2992                 if (!ext || !ctxt_tbls[idx + 1])
2993                         continue;
2994
2995                 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
2996                 iommu->root_entry[bus].hi = val;
2997         }
2998
2999         spin_unlock_irqrestore(&iommu->lock, flags);
3000
3001         kfree(ctxt_tbls);
3002
3003         __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3004
3005         ret = 0;
3006
3007 out_unmap:
3008         iounmap(old_rt);
3009
3010         return ret;
3011 }
3012
3013 static int __init init_dmars(void)
3014 {
3015         struct dmar_drhd_unit *drhd;
3016         struct dmar_rmrr_unit *rmrr;
3017         bool copied_tables = false;
3018         struct device *dev;
3019         struct intel_iommu *iommu;
3020         int i, ret;
3021
3022         /*
3023          * for each drhd
3024          *    allocate root
3025          *    initialize and program root entry to not present
3026          * endfor
3027          */
3028         for_each_drhd_unit(drhd) {
3029                 /*
3030                  * lock not needed as this is only incremented in the single
3031                  * threaded kernel __init code path all other access are read
3032                  * only
3033                  */
3034                 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3035                         g_num_of_iommus++;
3036                         continue;
3037                 }
3038                 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3039         }
3040
3041         /* Preallocate enough resources for IOMMU hot-addition */
3042         if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3043                 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3044
3045         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3046                         GFP_KERNEL);
3047         if (!g_iommus) {
3048                 pr_err("Allocating global iommu array failed\n");
3049                 ret = -ENOMEM;
3050                 goto error;
3051         }
3052
3053         deferred_flush = kzalloc(g_num_of_iommus *
3054                 sizeof(struct deferred_flush_tables), GFP_KERNEL);
3055         if (!deferred_flush) {
3056                 ret = -ENOMEM;
3057                 goto free_g_iommus;
3058         }
3059
3060         for_each_active_iommu(iommu, drhd) {
3061                 g_iommus[iommu->seq_id] = iommu;
3062
3063                 intel_iommu_init_qi(iommu);
3064
3065                 ret = iommu_init_domains(iommu);
3066                 if (ret)
3067                         goto free_iommu;
3068
3069                 init_translation_status(iommu);
3070
3071                 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3072                         iommu_disable_translation(iommu);
3073                         clear_translation_pre_enabled(iommu);
3074                         pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3075                                 iommu->name);
3076                 }
3077
3078                 /*
3079                  * TBD:
3080                  * we could share the same root & context tables
3081                  * among all IOMMU's. Need to Split it later.
3082                  */
3083                 ret = iommu_alloc_root_entry(iommu);
3084                 if (ret)
3085                         goto free_iommu;
3086
3087                 if (translation_pre_enabled(iommu)) {
3088                         pr_info("Translation already enabled - trying to copy translation structures\n");
3089
3090                         ret = copy_translation_tables(iommu);
3091                         if (ret) {
3092                                 /*
3093                                  * We found the IOMMU with translation
3094                                  * enabled - but failed to copy over the
3095                                  * old root-entry table. Try to proceed
3096                                  * by disabling translation now and
3097                                  * allocating a clean root-entry table.
3098                                  * This might cause DMAR faults, but
3099                                  * probably the dump will still succeed.
3100                                  */
3101                                 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3102                                        iommu->name);
3103                                 iommu_disable_translation(iommu);
3104                                 clear_translation_pre_enabled(iommu);
3105                         } else {
3106                                 pr_info("Copied translation tables from previous kernel for %s\n",
3107                                         iommu->name);
3108                                 copied_tables = true;
3109                         }
3110                 }
3111
3112                 iommu_flush_write_buffer(iommu);
3113                 iommu_set_root_entry(iommu);
3114                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3115                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3116
3117                 if (!ecap_pass_through(iommu->ecap))
3118                         hw_pass_through = 0;
3119         }
3120
3121         if (iommu_pass_through)
3122                 iommu_identity_mapping |= IDENTMAP_ALL;
3123
3124 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3125         iommu_identity_mapping |= IDENTMAP_GFX;
3126 #endif
3127
3128         if (iommu_identity_mapping) {
3129                 ret = si_domain_init(hw_pass_through);
3130                 if (ret)
3131                         goto free_iommu;
3132         }
3133
3134         check_tylersburg_isoch();
3135
3136         /*
3137          * If we copied translations from a previous kernel in the kdump
3138          * case, we can not assign the devices to domains now, as that
3139          * would eliminate the old mappings. So skip this part and defer
3140          * the assignment to device driver initialization time.
3141          */
3142         if (copied_tables)
3143                 goto domains_done;
3144
3145         /*
3146          * If pass through is not set or not enabled, setup context entries for
3147          * identity mappings for rmrr, gfx, and isa and may fall back to static
3148          * identity mapping if iommu_identity_mapping is set.
3149          */
3150         if (iommu_identity_mapping) {
3151                 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3152                 if (ret) {
3153                         pr_crit("Failed to setup IOMMU pass-through\n");
3154                         goto free_iommu;
3155                 }
3156         }
3157         /*
3158          * For each rmrr
3159          *   for each dev attached to rmrr
3160          *   do
3161          *     locate drhd for dev, alloc domain for dev
3162          *     allocate free domain
3163          *     allocate page table entries for rmrr
3164          *     if context not allocated for bus
3165          *           allocate and init context
3166          *           set present in root table for this bus
3167          *     init context with domain, translation etc
3168          *    endfor
3169          * endfor
3170          */
3171         pr_info("Setting RMRR:\n");
3172         for_each_rmrr_units(rmrr) {
3173                 /* some BIOS lists non-exist devices in DMAR table. */
3174                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3175                                           i, dev) {
3176                         ret = iommu_prepare_rmrr_dev(rmrr, dev);
3177                         if (ret)
3178                                 pr_err("Mapping reserved region failed\n");
3179                 }
3180         }
3181
3182         iommu_prepare_isa();
3183
3184 domains_done:
3185
3186         /*
3187          * for each drhd
3188          *   enable fault log
3189          *   global invalidate context cache
3190          *   global invalidate iotlb
3191          *   enable translation
3192          */
3193         for_each_iommu(iommu, drhd) {
3194                 if (drhd->ignored) {
3195                         /*
3196                          * we always have to disable PMRs or DMA may fail on
3197                          * this device
3198                          */
3199                         if (force_on)
3200                                 iommu_disable_protect_mem_regions(iommu);
3201                         continue;
3202                 }
3203
3204                 iommu_flush_write_buffer(iommu);
3205
3206                 ret = dmar_set_interrupt(iommu);
3207                 if (ret)
3208                         goto free_iommu;
3209
3210                 if (!translation_pre_enabled(iommu))
3211                         iommu_enable_translation(iommu);
3212
3213                 iommu_disable_protect_mem_regions(iommu);
3214         }
3215
3216         return 0;
3217
3218 free_iommu:
3219         for_each_active_iommu(iommu, drhd) {
3220                 disable_dmar_iommu(iommu);
3221                 free_dmar_iommu(iommu);
3222         }
3223         kfree(deferred_flush);
3224 free_g_iommus:
3225         kfree(g_iommus);
3226 error:
3227         return ret;
3228 }
3229
3230 /* This takes a number of _MM_ pages, not VTD pages */
3231 static struct iova *intel_alloc_iova(struct device *dev,
3232                                      struct dmar_domain *domain,
3233                                      unsigned long nrpages, uint64_t dma_mask)
3234 {
3235         struct iova *iova = NULL;
3236
3237         /* Restrict dma_mask to the width that the iommu can handle */
3238         dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3239
3240         if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3241                 /*
3242                  * First try to allocate an io virtual address in
3243                  * DMA_BIT_MASK(32) and if that fails then try allocating
3244                  * from higher range
3245                  */
3246                 iova = alloc_iova(&domain->iovad, nrpages,
3247                                   IOVA_PFN(DMA_BIT_MASK(32)), 1);
3248                 if (iova)
3249                         return iova;
3250         }
3251         iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
3252         if (unlikely(!iova)) {
3253                 pr_err("Allocating %ld-page iova for %s failed",
3254                        nrpages, dev_name(dev));
3255                 return NULL;
3256         }
3257
3258         return iova;
3259 }
3260
3261 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
3262 {
3263         struct dmar_domain *domain;
3264         int ret;
3265
3266         domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3267         if (!domain) {
3268                 pr_err("Allocating domain for %s failed\n",
3269                        dev_name(dev));
3270                 return NULL;
3271         }
3272
3273         /* make sure context mapping is ok */
3274         if (unlikely(!domain_context_mapped(dev))) {
3275                 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
3276                 if (ret) {
3277                         pr_err("Domain context map for %s failed\n",
3278                                dev_name(dev));
3279                         return NULL;
3280                 }
3281         }
3282
3283         return domain;
3284 }
3285
3286 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3287 {
3288         struct device_domain_info *info;
3289
3290         /* No lock here, assumes no domain exit in normal case */
3291         info = dev->archdata.iommu;
3292         if (likely(info))
3293                 return info->domain;
3294
3295         return __get_valid_domain_for_dev(dev);
3296 }
3297
3298 /* Check if the dev needs to go through non-identity map and unmap process.*/
3299 static int iommu_no_mapping(struct device *dev)
3300 {
3301         int found;
3302
3303         if (iommu_dummy(dev))
3304                 return 1;
3305
3306         if (!iommu_identity_mapping)
3307                 return 0;
3308
3309         found = identity_mapping(dev);
3310         if (found) {
3311                 if (iommu_should_identity_map(dev, 0))
3312                         return 1;
3313                 else {
3314                         /*
3315                          * 32 bit DMA is removed from si_domain and fall back
3316                          * to non-identity mapping.
3317                          */
3318                         domain_remove_one_dev_info(si_domain, dev);
3319                         pr_info("32bit %s uses non-identity mapping\n",
3320                                 dev_name(dev));
3321                         return 0;
3322                 }
3323         } else {
3324                 /*
3325                  * In case of a detached 64 bit DMA device from vm, the device
3326                  * is put into si_domain for identity mapping.
3327                  */
3328                 if (iommu_should_identity_map(dev, 0)) {
3329                         int ret;
3330                         ret = domain_add_dev_info(si_domain, dev,
3331                                                   hw_pass_through ?
3332                                                   CONTEXT_TT_PASS_THROUGH :
3333                                                   CONTEXT_TT_MULTI_LEVEL);
3334                         if (!ret) {
3335                                 pr_info("64bit %s uses identity mapping\n",
3336                                         dev_name(dev));
3337                                 return 1;
3338                         }
3339                 }
3340         }
3341
3342         return 0;
3343 }
3344
3345 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3346                                      size_t size, int dir, u64 dma_mask)
3347 {
3348         struct dmar_domain *domain;
3349         phys_addr_t start_paddr;
3350         struct iova *iova;
3351         int prot = 0;
3352         int ret;
3353         struct intel_iommu *iommu;
3354         unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3355
3356         BUG_ON(dir == DMA_NONE);
3357
3358         if (iommu_no_mapping(dev))
3359                 return paddr;
3360
3361         domain = get_valid_domain_for_dev(dev);
3362         if (!domain)
3363                 return 0;
3364
3365         iommu = domain_get_iommu(domain);
3366         size = aligned_nrpages(paddr, size);
3367
3368         iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3369         if (!iova)
3370                 goto error;
3371
3372         /*
3373          * Check if DMAR supports zero-length reads on write only
3374          * mappings..
3375          */
3376         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3377                         !cap_zlr(iommu->cap))
3378                 prot |= DMA_PTE_READ;
3379         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3380                 prot |= DMA_PTE_WRITE;
3381         /*
3382          * paddr - (paddr + size) might be partial page, we should map the whole
3383          * page.  Note: if two part of one page are separately mapped, we
3384          * might have two guest_addr mapping to the same host paddr, but this
3385          * is not a big problem
3386          */
3387         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
3388                                  mm_to_dma_pfn(paddr_pfn), size, prot);
3389         if (ret)
3390                 goto error;
3391
3392         /* it's a non-present to present mapping. Only flush if caching mode */
3393         if (cap_caching_mode(iommu->cap))
3394                 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 0, 1);
3395         else
3396                 iommu_flush_write_buffer(iommu);
3397
3398         start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
3399         start_paddr += paddr & ~PAGE_MASK;
3400         return start_paddr;
3401
3402 error:
3403         if (iova)
3404                 __free_iova(&domain->iovad, iova);
3405         pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3406                 dev_name(dev), size, (unsigned long long)paddr, dir);
3407         return 0;
3408 }
3409
3410 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3411                                  unsigned long offset, size_t size,
3412                                  enum dma_data_direction dir,
3413                                  struct dma_attrs *attrs)
3414 {
3415         return __intel_map_single(dev, page_to_phys(page) + offset, size,
3416                                   dir, *dev->dma_mask);
3417 }
3418
3419 static void flush_unmaps(void)
3420 {
3421         int i, j;
3422
3423         timer_on = 0;
3424
3425         /* just flush them all */
3426         for (i = 0; i < g_num_of_iommus; i++) {
3427                 struct intel_iommu *iommu = g_iommus[i];
3428                 if (!iommu)
3429                         continue;
3430
3431                 if (!deferred_flush[i].next)
3432                         continue;
3433
3434                 /* In caching mode, global flushes turn emulation expensive */
3435                 if (!cap_caching_mode(iommu->cap))
3436                         iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3437                                          DMA_TLB_GLOBAL_FLUSH);
3438                 for (j = 0; j < deferred_flush[i].next; j++) {
3439                         unsigned long mask;
3440                         struct iova *iova = deferred_flush[i].iova[j];
3441                         struct dmar_domain *domain = deferred_flush[i].domain[j];
3442
3443                         /* On real hardware multiple invalidations are expensive */
3444                         if (cap_caching_mode(iommu->cap))
3445                                 iommu_flush_iotlb_psi(iommu, domain->id,
3446                                         iova->pfn_lo, iova_size(iova),
3447                                         !deferred_flush[i].freelist[j], 0);
3448                         else {
3449                                 mask = ilog2(mm_to_dma_pfn(iova_size(iova)));
3450                                 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
3451                                                 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
3452                         }
3453                         __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
3454                         if (deferred_flush[i].freelist[j])
3455                                 dma_free_pagelist(deferred_flush[i].freelist[j]);
3456                 }
3457                 deferred_flush[i].next = 0;
3458         }
3459
3460         list_size = 0;
3461 }
3462
3463 static void flush_unmaps_timeout(unsigned long data)
3464 {
3465         unsigned long flags;
3466
3467         spin_lock_irqsave(&async_umap_flush_lock, flags);
3468         flush_unmaps();
3469         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3470 }
3471
3472 static void add_unmap(struct dmar_domain *dom, struct iova *iova, struct page *freelist)
3473 {
3474         unsigned long flags;
3475         int next, iommu_id;
3476         struct intel_iommu *iommu;
3477
3478         spin_lock_irqsave(&async_umap_flush_lock, flags);
3479         if (list_size == HIGH_WATER_MARK)
3480                 flush_unmaps();
3481
3482         iommu = domain_get_iommu(dom);
3483         iommu_id = iommu->seq_id;
3484
3485         next = deferred_flush[iommu_id].next;
3486         deferred_flush[iommu_id].domain[next] = dom;
3487         deferred_flush[iommu_id].iova[next] = iova;
3488         deferred_flush[iommu_id].freelist[next] = freelist;
3489         deferred_flush[iommu_id].next++;
3490
3491         if (!timer_on) {
3492                 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
3493                 timer_on = 1;
3494         }
3495         list_size++;
3496         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3497 }
3498
3499 static void intel_unmap(struct device *dev, dma_addr_t dev_addr)
3500 {
3501         struct dmar_domain *domain;
3502         unsigned long start_pfn, last_pfn;
3503         struct iova *iova;
3504         struct intel_iommu *iommu;
3505         struct page *freelist;
3506
3507         if (iommu_no_mapping(dev))
3508                 return;
3509
3510         domain = find_domain(dev);
3511         BUG_ON(!domain);
3512
3513         iommu = domain_get_iommu(domain);
3514
3515         iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
3516         if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
3517                       (unsigned long long)dev_addr))
3518                 return;
3519
3520         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3521         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3522
3523         pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3524                  dev_name(dev), start_pfn, last_pfn);
3525
3526         freelist = domain_unmap(domain, start_pfn, last_pfn);
3527
3528         if (intel_iommu_strict) {
3529                 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3530                                       last_pfn - start_pfn + 1, !freelist, 0);
3531                 /* free iova */
3532                 __free_iova(&domain->iovad, iova);
3533                 dma_free_pagelist(freelist);
3534         } else {
3535                 add_unmap(domain, iova, freelist);
3536                 /*
3537                  * queue up the release of the unmap to save the 1/6th of the
3538                  * cpu used up by the iotlb flush operation...
3539                  */
3540         }
3541 }
3542
3543 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3544                              size_t size, enum dma_data_direction dir,
3545                              struct dma_attrs *attrs)
3546 {
3547         intel_unmap(dev, dev_addr);
3548 }
3549
3550 static void *intel_alloc_coherent(struct device *dev, size_t size,
3551                                   dma_addr_t *dma_handle, gfp_t flags,
3552                                   struct dma_attrs *attrs)
3553 {
3554         struct page *page = NULL;
3555         int order;
3556
3557         size = PAGE_ALIGN(size);
3558         order = get_order(size);
3559
3560         if (!iommu_no_mapping(dev))
3561                 flags &= ~(GFP_DMA | GFP_DMA32);
3562         else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3563                 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3564                         flags |= GFP_DMA;
3565                 else
3566                         flags |= GFP_DMA32;
3567         }
3568
3569         if (flags & __GFP_WAIT) {
3570                 unsigned int count = size >> PAGE_SHIFT;
3571
3572                 page = dma_alloc_from_contiguous(dev, count, order);
3573                 if (page && iommu_no_mapping(dev) &&
3574                     page_to_phys(page) + size > dev->coherent_dma_mask) {
3575                         dma_release_from_contiguous(dev, page, count);
3576                         page = NULL;
3577                 }
3578         }
3579
3580         if (!page)
3581                 page = alloc_pages(flags, order);
3582         if (!page)
3583                 return NULL;
3584         memset(page_address(page), 0, size);
3585
3586         *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3587                                          DMA_BIDIRECTIONAL,
3588                                          dev->coherent_dma_mask);
3589         if (*dma_handle)
3590                 return page_address(page);
3591         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3592                 __free_pages(page, order);
3593
3594         return NULL;
3595 }
3596
3597 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3598                                 dma_addr_t dma_handle, struct dma_attrs *attrs)
3599 {
3600         int order;
3601         struct page *page = virt_to_page(vaddr);
3602
3603         size = PAGE_ALIGN(size);
3604         order = get_order(size);
3605
3606         intel_unmap(dev, dma_handle);
3607         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3608                 __free_pages(page, order);
3609 }
3610
3611 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3612                            int nelems, enum dma_data_direction dir,
3613                            struct dma_attrs *attrs)
3614 {
3615         intel_unmap(dev, sglist[0].dma_address);
3616 }
3617
3618 static int intel_nontranslate_map_sg(struct device *hddev,
3619         struct scatterlist *sglist, int nelems, int dir)
3620 {
3621         int i;
3622         struct scatterlist *sg;
3623
3624         for_each_sg(sglist, sg, nelems, i) {
3625                 BUG_ON(!sg_page(sg));
3626                 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3627                 sg->dma_length = sg->length;
3628         }
3629         return nelems;
3630 }
3631
3632 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3633                         enum dma_data_direction dir, struct dma_attrs *attrs)
3634 {
3635         int i;
3636         struct dmar_domain *domain;
3637         size_t size = 0;
3638         int prot = 0;
3639         struct iova *iova = NULL;
3640         int ret;
3641         struct scatterlist *sg;
3642         unsigned long start_vpfn;
3643         struct intel_iommu *iommu;
3644
3645         BUG_ON(dir == DMA_NONE);
3646         if (iommu_no_mapping(dev))
3647                 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3648
3649         domain = get_valid_domain_for_dev(dev);
3650         if (!domain)
3651                 return 0;
3652
3653         iommu = domain_get_iommu(domain);
3654
3655         for_each_sg(sglist, sg, nelems, i)
3656                 size += aligned_nrpages(sg->offset, sg->length);
3657
3658         iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3659                                 *dev->dma_mask);
3660         if (!iova) {
3661                 sglist->dma_length = 0;
3662                 return 0;
3663         }
3664
3665         /*
3666          * Check if DMAR supports zero-length reads on write only
3667          * mappings..
3668          */
3669         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3670                         !cap_zlr(iommu->cap))
3671                 prot |= DMA_PTE_READ;
3672         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3673                 prot |= DMA_PTE_WRITE;
3674
3675         start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3676
3677         ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3678         if (unlikely(ret)) {
3679                 dma_pte_free_pagetable(domain, start_vpfn,
3680                                        start_vpfn + size - 1);
3681                 __free_iova(&domain->iovad, iova);
3682                 return 0;
3683         }
3684
3685         /* it's a non-present to present mapping. Only flush if caching mode */
3686         if (cap_caching_mode(iommu->cap))
3687                 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 0, 1);
3688         else
3689                 iommu_flush_write_buffer(iommu);
3690
3691         return nelems;
3692 }
3693
3694 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3695 {
3696         return !dma_addr;
3697 }
3698
3699 struct dma_map_ops intel_dma_ops = {
3700         .alloc = intel_alloc_coherent,
3701         .free = intel_free_coherent,
3702         .map_sg = intel_map_sg,
3703         .unmap_sg = intel_unmap_sg,
3704         .map_page = intel_map_page,
3705         .unmap_page = intel_unmap_page,
3706         .mapping_error = intel_mapping_error,
3707 };
3708
3709 static inline int iommu_domain_cache_init(void)
3710 {
3711         int ret = 0;
3712
3713         iommu_domain_cache = kmem_cache_create("iommu_domain",
3714                                          sizeof(struct dmar_domain),
3715                                          0,
3716                                          SLAB_HWCACHE_ALIGN,
3717
3718                                          NULL);
3719         if (!iommu_domain_cache) {
3720                 pr_err("Couldn't create iommu_domain cache\n");
3721                 ret = -ENOMEM;
3722         }
3723
3724         return ret;
3725 }
3726
3727 static inline int iommu_devinfo_cache_init(void)
3728 {
3729         int ret = 0;
3730
3731         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3732                                          sizeof(struct device_domain_info),
3733                                          0,
3734                                          SLAB_HWCACHE_ALIGN,
3735                                          NULL);
3736         if (!iommu_devinfo_cache) {
3737                 pr_err("Couldn't create devinfo cache\n");
3738                 ret = -ENOMEM;
3739         }
3740
3741         return ret;
3742 }
3743
3744 static int __init iommu_init_mempool(void)
3745 {
3746         int ret;
3747         ret = iommu_iova_cache_init();
3748         if (ret)
3749                 return ret;
3750
3751         ret = iommu_domain_cache_init();
3752         if (ret)
3753                 goto domain_error;
3754
3755         ret = iommu_devinfo_cache_init();
3756         if (!ret)
3757                 return ret;
3758
3759         kmem_cache_destroy(iommu_domain_cache);
3760 domain_error:
3761         iommu_iova_cache_destroy();
3762
3763         return -ENOMEM;
3764 }
3765
3766 static void __init iommu_exit_mempool(void)
3767 {
3768         kmem_cache_destroy(iommu_devinfo_cache);
3769         kmem_cache_destroy(iommu_domain_cache);
3770         iommu_iova_cache_destroy();
3771 }
3772
3773 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3774 {
3775         struct dmar_drhd_unit *drhd;
3776         u32 vtbar;
3777         int rc;
3778
3779         /* We know that this device on this chipset has its own IOMMU.
3780          * If we find it under a different IOMMU, then the BIOS is lying
3781          * to us. Hope that the IOMMU for this device is actually
3782          * disabled, and it needs no translation...
3783          */
3784         rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3785         if (rc) {
3786                 /* "can't" happen */
3787                 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3788                 return;
3789         }
3790         vtbar &= 0xffff0000;
3791
3792         /* we know that the this iommu should be at offset 0xa000 from vtbar */
3793         drhd = dmar_find_matched_drhd_unit(pdev);
3794         if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3795                             TAINT_FIRMWARE_WORKAROUND,
3796                             "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3797                 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3798 }
3799 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3800
3801 static void __init init_no_remapping_devices(void)
3802 {
3803         struct dmar_drhd_unit *drhd;
3804         struct device *dev;
3805         int i;
3806
3807         for_each_drhd_unit(drhd) {
3808                 if (!drhd->include_all) {
3809                         for_each_active_dev_scope(drhd->devices,
3810                                                   drhd->devices_cnt, i, dev)
3811                                 break;
3812                         /* ignore DMAR unit if no devices exist */
3813                         if (i == drhd->devices_cnt)
3814                                 drhd->ignored = 1;
3815                 }
3816         }
3817
3818         for_each_active_drhd_unit(drhd) {
3819                 if (drhd->include_all)
3820                         continue;
3821
3822                 for_each_active_dev_scope(drhd->devices,
3823                                           drhd->devices_cnt, i, dev)
3824                         if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3825                                 break;
3826                 if (i < drhd->devices_cnt)
3827                         continue;
3828
3829                 /* This IOMMU has *only* gfx devices. Either bypass it or
3830                    set the gfx_mapped flag, as appropriate */
3831                 if (dmar_map_gfx) {
3832                         intel_iommu_gfx_mapped = 1;
3833                 } else {
3834                         drhd->ignored = 1;
3835                         for_each_active_dev_scope(drhd->devices,
3836                                                   drhd->devices_cnt, i, dev)
3837                                 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3838                 }
3839         }
3840 }
3841
3842 #ifdef CONFIG_SUSPEND
3843 static int init_iommu_hw(void)
3844 {
3845         struct dmar_drhd_unit *drhd;
3846         struct intel_iommu *iommu = NULL;
3847
3848         for_each_active_iommu(iommu, drhd)
3849                 if (iommu->qi)
3850                         dmar_reenable_qi(iommu);
3851
3852         for_each_iommu(iommu, drhd) {
3853                 if (drhd->ignored) {
3854                         /*
3855                          * we always have to disable PMRs or DMA may fail on
3856                          * this device
3857                          */
3858                         if (force_on)
3859                                 iommu_disable_protect_mem_regions(iommu);
3860                         continue;
3861                 }
3862         
3863                 iommu_flush_write_buffer(iommu);
3864
3865                 iommu_set_root_entry(iommu);
3866
3867                 iommu->flush.flush_context(iommu, 0, 0, 0,
3868                                            DMA_CCMD_GLOBAL_INVL);
3869                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3870                 iommu_enable_translation(iommu);
3871                 iommu_disable_protect_mem_regions(iommu);
3872         }
3873
3874         return 0;
3875 }
3876
3877 static void iommu_flush_all(void)
3878 {
3879         struct dmar_drhd_unit *drhd;
3880         struct intel_iommu *iommu;
3881
3882         for_each_active_iommu(iommu, drhd) {
3883                 iommu->flush.flush_context(iommu, 0, 0, 0,
3884                                            DMA_CCMD_GLOBAL_INVL);
3885                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3886                                          DMA_TLB_GLOBAL_FLUSH);
3887         }
3888 }
3889
3890 static int iommu_suspend(void)
3891 {
3892         struct dmar_drhd_unit *drhd;
3893         struct intel_iommu *iommu = NULL;
3894         unsigned long flag;
3895
3896         for_each_active_iommu(iommu, drhd) {
3897                 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3898                                                  GFP_ATOMIC);
3899                 if (!iommu->iommu_state)
3900                         goto nomem;
3901         }
3902
3903         iommu_flush_all();
3904
3905         for_each_active_iommu(iommu, drhd) {
3906                 iommu_disable_translation(iommu);
3907
3908                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3909
3910                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3911                         readl(iommu->reg + DMAR_FECTL_REG);
3912                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3913                         readl(iommu->reg + DMAR_FEDATA_REG);
3914                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3915                         readl(iommu->reg + DMAR_FEADDR_REG);
3916                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3917                         readl(iommu->reg + DMAR_FEUADDR_REG);
3918
3919                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3920         }
3921         return 0;
3922
3923 nomem:
3924         for_each_active_iommu(iommu, drhd)
3925                 kfree(iommu->iommu_state);
3926
3927         return -ENOMEM;
3928 }
3929
3930 static void iommu_resume(void)
3931 {
3932         struct dmar_drhd_unit *drhd;
3933         struct intel_iommu *iommu = NULL;
3934         unsigned long flag;
3935
3936         if (init_iommu_hw()) {
3937                 if (force_on)
3938                         panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3939                 else
3940                         WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3941                 return;
3942         }
3943
3944         for_each_active_iommu(iommu, drhd) {
3945
3946                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3947
3948                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3949                         iommu->reg + DMAR_FECTL_REG);
3950                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3951                         iommu->reg + DMAR_FEDATA_REG);
3952                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3953                         iommu->reg + DMAR_FEADDR_REG);
3954                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3955                         iommu->reg + DMAR_FEUADDR_REG);
3956
3957                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3958         }
3959
3960         for_each_active_iommu(iommu, drhd)
3961                 kfree(iommu->iommu_state);
3962 }
3963
3964 static struct syscore_ops iommu_syscore_ops = {
3965         .resume         = iommu_resume,
3966         .suspend        = iommu_suspend,
3967 };
3968
3969 static void __init init_iommu_pm_ops(void)
3970 {
3971         register_syscore_ops(&iommu_syscore_ops);
3972 }
3973
3974 #else
3975 static inline void init_iommu_pm_ops(void) {}
3976 #endif  /* CONFIG_PM */
3977
3978
3979 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
3980 {
3981         struct acpi_dmar_reserved_memory *rmrr;
3982         struct dmar_rmrr_unit *rmrru;
3983
3984         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3985         if (!rmrru)
3986                 return -ENOMEM;
3987
3988         rmrru->hdr = header;
3989         rmrr = (struct acpi_dmar_reserved_memory *)header;
3990         rmrru->base_address = rmrr->base_address;
3991         rmrru->end_address = rmrr->end_address;
3992         rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3993                                 ((void *)rmrr) + rmrr->header.length,
3994                                 &rmrru->devices_cnt);
3995         if (rmrru->devices_cnt && rmrru->devices == NULL) {
3996                 kfree(rmrru);
3997                 return -ENOMEM;
3998         }
3999
4000         list_add(&rmrru->list, &dmar_rmrr_units);
4001
4002         return 0;
4003 }
4004
4005 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4006 {
4007         struct dmar_atsr_unit *atsru;
4008         struct acpi_dmar_atsr *tmp;
4009
4010         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4011                 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4012                 if (atsr->segment != tmp->segment)
4013                         continue;
4014                 if (atsr->header.length != tmp->header.length)
4015                         continue;
4016                 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4017                         return atsru;
4018         }
4019
4020         return NULL;
4021 }
4022
4023 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4024 {
4025         struct acpi_dmar_atsr *atsr;
4026         struct dmar_atsr_unit *atsru;
4027
4028         if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
4029                 return 0;
4030
4031         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4032         atsru = dmar_find_atsr(atsr);
4033         if (atsru)
4034                 return 0;
4035
4036         atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4037         if (!atsru)
4038                 return -ENOMEM;
4039
4040         /*
4041          * If memory is allocated from slab by ACPI _DSM method, we need to
4042          * copy the memory content because the memory buffer will be freed
4043          * on return.
4044          */
4045         atsru->hdr = (void *)(atsru + 1);
4046         memcpy(atsru->hdr, hdr, hdr->length);
4047         atsru->include_all = atsr->flags & 0x1;
4048         if (!atsru->include_all) {
4049                 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4050                                 (void *)atsr + atsr->header.length,
4051                                 &atsru->devices_cnt);
4052                 if (atsru->devices_cnt && atsru->devices == NULL) {
4053                         kfree(atsru);
4054                         return -ENOMEM;
4055                 }
4056         }
4057
4058         list_add_rcu(&atsru->list, &dmar_atsr_units);
4059
4060         return 0;
4061 }
4062
4063 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4064 {
4065         dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4066         kfree(atsru);
4067 }
4068
4069 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4070 {
4071         struct acpi_dmar_atsr *atsr;
4072         struct dmar_atsr_unit *atsru;
4073
4074         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4075         atsru = dmar_find_atsr(atsr);
4076         if (atsru) {
4077                 list_del_rcu(&atsru->list);
4078                 synchronize_rcu();
4079                 intel_iommu_free_atsr(atsru);
4080         }
4081
4082         return 0;
4083 }
4084
4085 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4086 {
4087         int i;
4088         struct device *dev;
4089         struct acpi_dmar_atsr *atsr;
4090         struct dmar_atsr_unit *atsru;
4091
4092         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4093         atsru = dmar_find_atsr(atsr);
4094         if (!atsru)
4095                 return 0;
4096
4097         if (!atsru->include_all && atsru->devices && atsru->devices_cnt)
4098                 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4099                                           i, dev)
4100                         return -EBUSY;
4101
4102         return 0;
4103 }
4104
4105 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4106 {
4107         int sp, ret = 0;
4108         struct intel_iommu *iommu = dmaru->iommu;
4109
4110         if (g_iommus[iommu->seq_id])
4111                 return 0;
4112
4113         if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4114                 pr_warn("%s: Doesn't support hardware pass through.\n",
4115                         iommu->name);
4116                 return -ENXIO;
4117         }
4118         if (!ecap_sc_support(iommu->ecap) &&
4119             domain_update_iommu_snooping(iommu)) {
4120                 pr_warn("%s: Doesn't support snooping.\n",
4121                         iommu->name);
4122                 return -ENXIO;
4123         }
4124         sp = domain_update_iommu_superpage(iommu) - 1;
4125         if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4126                 pr_warn("%s: Doesn't support large page.\n",
4127                         iommu->name);
4128                 return -ENXIO;
4129         }
4130
4131         /*
4132          * Disable translation if already enabled prior to OS handover.
4133          */
4134         if (iommu->gcmd & DMA_GCMD_TE)
4135                 iommu_disable_translation(iommu);
4136
4137         g_iommus[iommu->seq_id] = iommu;
4138         ret = iommu_init_domains(iommu);
4139         if (ret == 0)
4140                 ret = iommu_alloc_root_entry(iommu);
4141         if (ret)
4142                 goto out;
4143
4144         if (dmaru->ignored) {
4145                 /*
4146                  * we always have to disable PMRs or DMA may fail on this device
4147                  */
4148                 if (force_on)
4149                         iommu_disable_protect_mem_regions(iommu);
4150                 return 0;
4151         }
4152
4153         intel_iommu_init_qi(iommu);
4154         iommu_flush_write_buffer(iommu);
4155         ret = dmar_set_interrupt(iommu);
4156         if (ret)
4157                 goto disable_iommu;
4158
4159         iommu_set_root_entry(iommu);
4160         iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4161         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4162         iommu_enable_translation(iommu);
4163
4164         if (si_domain) {
4165                 ret = iommu_attach_domain(si_domain, iommu);
4166                 if (ret < 0 || si_domain->id != ret)
4167                         goto disable_iommu;
4168                 domain_attach_iommu(si_domain, iommu);
4169         }
4170
4171         iommu_disable_protect_mem_regions(iommu);
4172         return 0;
4173
4174 disable_iommu:
4175         disable_dmar_iommu(iommu);
4176 out:
4177         free_dmar_iommu(iommu);
4178         return ret;
4179 }
4180
4181 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4182 {
4183         int ret = 0;
4184         struct intel_iommu *iommu = dmaru->iommu;
4185
4186         if (!intel_iommu_enabled)
4187                 return 0;
4188         if (iommu == NULL)
4189                 return -EINVAL;
4190
4191         if (insert) {
4192                 ret = intel_iommu_add(dmaru);
4193         } else {
4194                 disable_dmar_iommu(iommu);
4195                 free_dmar_iommu(iommu);
4196         }
4197
4198         return ret;
4199 }
4200
4201 static void intel_iommu_free_dmars(void)
4202 {
4203         struct dmar_rmrr_unit *rmrru, *rmrr_n;
4204         struct dmar_atsr_unit *atsru, *atsr_n;
4205
4206         list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4207                 list_del(&rmrru->list);
4208                 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4209                 kfree(rmrru);
4210         }
4211
4212         list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4213                 list_del(&atsru->list);
4214                 intel_iommu_free_atsr(atsru);
4215         }
4216 }
4217
4218 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4219 {
4220         int i, ret = 1;
4221         struct pci_bus *bus;
4222         struct pci_dev *bridge = NULL;
4223         struct device *tmp;
4224         struct acpi_dmar_atsr *atsr;
4225         struct dmar_atsr_unit *atsru;
4226
4227         dev = pci_physfn(dev);
4228         for (bus = dev->bus; bus; bus = bus->parent) {
4229                 bridge = bus->self;
4230                 if (!bridge || !pci_is_pcie(bridge) ||
4231                     pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4232                         return 0;
4233                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4234                         break;
4235         }
4236         if (!bridge)
4237                 return 0;
4238
4239         rcu_read_lock();
4240         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4241                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4242                 if (atsr->segment != pci_domain_nr(dev->bus))
4243                         continue;
4244
4245                 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4246                         if (tmp == &bridge->dev)
4247                                 goto out;
4248
4249                 if (atsru->include_all)
4250                         goto out;
4251         }
4252         ret = 0;
4253 out:
4254         rcu_read_unlock();
4255
4256         return ret;
4257 }
4258
4259 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4260 {
4261         int ret = 0;
4262         struct dmar_rmrr_unit *rmrru;
4263         struct dmar_atsr_unit *atsru;
4264         struct acpi_dmar_atsr *atsr;
4265         struct acpi_dmar_reserved_memory *rmrr;
4266
4267         if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
4268                 return 0;
4269
4270         list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4271                 rmrr = container_of(rmrru->hdr,
4272                                     struct acpi_dmar_reserved_memory, header);
4273                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4274                         ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4275                                 ((void *)rmrr) + rmrr->header.length,
4276                                 rmrr->segment, rmrru->devices,
4277                                 rmrru->devices_cnt);
4278                         if(ret < 0)
4279                                 return ret;
4280                 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
4281                         dmar_remove_dev_scope(info, rmrr->segment,
4282                                 rmrru->devices, rmrru->devices_cnt);
4283                 }
4284         }
4285
4286         list_for_each_entry(atsru, &dmar_atsr_units, list) {
4287                 if (atsru->include_all)
4288                         continue;
4289
4290                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4291                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4292                         ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4293                                         (void *)atsr + atsr->header.length,
4294                                         atsr->segment, atsru->devices,
4295                                         atsru->devices_cnt);
4296                         if (ret > 0)
4297                                 break;
4298                         else if(ret < 0)
4299                                 return ret;
4300                 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
4301                         if (dmar_remove_dev_scope(info, atsr->segment,
4302                                         atsru->devices, atsru->devices_cnt))
4303                                 break;
4304                 }
4305         }
4306
4307         return 0;
4308 }
4309
4310 /*
4311  * Here we only respond to action of unbound device from driver.
4312  *
4313  * Added device is not attached to its DMAR domain here yet. That will happen
4314  * when mapping the device to iova.
4315  */
4316 static int device_notifier(struct notifier_block *nb,
4317                                   unsigned long action, void *data)
4318 {
4319         struct device *dev = data;
4320         struct dmar_domain *domain;
4321
4322         if (iommu_dummy(dev))
4323                 return 0;
4324
4325         if (action != BUS_NOTIFY_REMOVED_DEVICE)
4326                 return 0;
4327
4328         domain = find_domain(dev);
4329         if (!domain)
4330                 return 0;
4331
4332         down_read(&dmar_global_lock);
4333         domain_remove_one_dev_info(domain, dev);
4334         if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4335                 domain_exit(domain);
4336         up_read(&dmar_global_lock);
4337
4338         return 0;
4339 }
4340
4341 static struct notifier_block device_nb = {
4342         .notifier_call = device_notifier,
4343 };
4344
4345 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4346                                        unsigned long val, void *v)
4347 {
4348         struct memory_notify *mhp = v;
4349         unsigned long long start, end;
4350         unsigned long start_vpfn, last_vpfn;
4351
4352         switch (val) {
4353         case MEM_GOING_ONLINE:
4354                 start = mhp->start_pfn << PAGE_SHIFT;
4355                 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4356                 if (iommu_domain_identity_map(si_domain, start, end)) {
4357                         pr_warn("Failed to build identity map for [%llx-%llx]\n",
4358                                 start, end);
4359                         return NOTIFY_BAD;
4360                 }
4361                 break;
4362
4363         case MEM_OFFLINE:
4364         case MEM_CANCEL_ONLINE:
4365                 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4366                 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4367                 while (start_vpfn <= last_vpfn) {
4368                         struct iova *iova;
4369                         struct dmar_drhd_unit *drhd;
4370                         struct intel_iommu *iommu;
4371                         struct page *freelist;
4372
4373                         iova = find_iova(&si_domain->iovad, start_vpfn);
4374                         if (iova == NULL) {
4375                                 pr_debug("Failed get IOVA for PFN %lx\n",
4376                                          start_vpfn);
4377                                 break;
4378                         }
4379
4380                         iova = split_and_remove_iova(&si_domain->iovad, iova,
4381                                                      start_vpfn, last_vpfn);
4382                         if (iova == NULL) {
4383                                 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4384                                         start_vpfn, last_vpfn);
4385                                 return NOTIFY_BAD;
4386                         }
4387
4388                         freelist = domain_unmap(si_domain, iova->pfn_lo,
4389                                                iova->pfn_hi);
4390
4391                         rcu_read_lock();
4392                         for_each_active_iommu(iommu, drhd)
4393                                 iommu_flush_iotlb_psi(iommu, si_domain->id,
4394                                         iova->pfn_lo, iova_size(iova),
4395                                         !freelist, 0);
4396                         rcu_read_unlock();
4397                         dma_free_pagelist(freelist);
4398
4399                         start_vpfn = iova->pfn_hi + 1;
4400                         free_iova_mem(iova);
4401                 }
4402                 break;
4403         }
4404
4405         return NOTIFY_OK;
4406 }
4407
4408 static struct notifier_block intel_iommu_memory_nb = {
4409         .notifier_call = intel_iommu_memory_notifier,
4410         .priority = 0
4411 };
4412
4413
4414 static ssize_t intel_iommu_show_version(struct device *dev,
4415                                         struct device_attribute *attr,
4416                                         char *buf)
4417 {
4418         struct intel_iommu *iommu = dev_get_drvdata(dev);
4419         u32 ver = readl(iommu->reg + DMAR_VER_REG);
4420         return sprintf(buf, "%d:%d\n",
4421                        DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4422 }
4423 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4424
4425 static ssize_t intel_iommu_show_address(struct device *dev,
4426                                         struct device_attribute *attr,
4427                                         char *buf)
4428 {
4429         struct intel_iommu *iommu = dev_get_drvdata(dev);
4430         return sprintf(buf, "%llx\n", iommu->reg_phys);
4431 }
4432 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4433
4434 static ssize_t intel_iommu_show_cap(struct device *dev,
4435                                     struct device_attribute *attr,
4436                                     char *buf)
4437 {
4438         struct intel_iommu *iommu = dev_get_drvdata(dev);
4439         return sprintf(buf, "%llx\n", iommu->cap);
4440 }
4441 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4442
4443 static ssize_t intel_iommu_show_ecap(struct device *dev,
4444                                     struct device_attribute *attr,
4445                                     char *buf)
4446 {
4447         struct intel_iommu *iommu = dev_get_drvdata(dev);
4448         return sprintf(buf, "%llx\n", iommu->ecap);
4449 }
4450 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4451
4452 static struct attribute *intel_iommu_attrs[] = {
4453         &dev_attr_version.attr,
4454         &dev_attr_address.attr,
4455         &dev_attr_cap.attr,
4456         &dev_attr_ecap.attr,
4457         NULL,
4458 };
4459
4460 static struct attribute_group intel_iommu_group = {
4461         .name = "intel-iommu",
4462         .attrs = intel_iommu_attrs,
4463 };
4464
4465 const struct attribute_group *intel_iommu_groups[] = {
4466         &intel_iommu_group,
4467         NULL,
4468 };
4469
4470 int __init intel_iommu_init(void)
4471 {
4472         int ret = -ENODEV;
4473         struct dmar_drhd_unit *drhd;
4474         struct intel_iommu *iommu;
4475
4476         /* VT-d is required for a TXT/tboot launch, so enforce that */
4477         force_on = tboot_force_iommu();
4478
4479         if (iommu_init_mempool()) {
4480                 if (force_on)
4481                         panic("tboot: Failed to initialize iommu memory\n");
4482                 return -ENOMEM;
4483         }
4484
4485         down_write(&dmar_global_lock);
4486         if (dmar_table_init()) {
4487                 if (force_on)
4488                         panic("tboot: Failed to initialize DMAR table\n");
4489                 goto out_free_dmar;
4490         }
4491
4492         if (dmar_dev_scope_init() < 0) {
4493                 if (force_on)
4494                         panic("tboot: Failed to initialize DMAR device scope\n");
4495                 goto out_free_dmar;
4496         }
4497
4498         if (no_iommu || dmar_disabled)
4499                 goto out_free_dmar;
4500
4501         if (list_empty(&dmar_rmrr_units))
4502                 pr_info("No RMRR found\n");
4503
4504         if (list_empty(&dmar_atsr_units))
4505                 pr_info("No ATSR found\n");
4506
4507         if (dmar_init_reserved_ranges()) {
4508                 if (force_on)
4509                         panic("tboot: Failed to reserve iommu ranges\n");
4510                 goto out_free_reserved_range;
4511         }
4512
4513         init_no_remapping_devices();
4514
4515         ret = init_dmars();
4516         if (ret) {
4517                 if (force_on)
4518                         panic("tboot: Failed to initialize DMARs\n");
4519                 pr_err("Initialization failed\n");
4520                 goto out_free_reserved_range;
4521         }
4522         up_write(&dmar_global_lock);
4523         pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4524
4525         init_timer(&unmap_timer);
4526 #ifdef CONFIG_SWIOTLB
4527         swiotlb = 0;
4528 #endif
4529         dma_ops = &intel_dma_ops;
4530
4531         init_iommu_pm_ops();
4532
4533         for_each_active_iommu(iommu, drhd)
4534                 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4535                                                        intel_iommu_groups,
4536                                                        iommu->name);
4537
4538         bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4539         bus_register_notifier(&pci_bus_type, &device_nb);
4540         if (si_domain && !hw_pass_through)
4541                 register_memory_notifier(&intel_iommu_memory_nb);
4542
4543         intel_iommu_enabled = 1;
4544
4545         return 0;
4546
4547 out_free_reserved_range:
4548         put_iova_domain(&reserved_iova_list);
4549 out_free_dmar:
4550         intel_iommu_free_dmars();
4551         up_write(&dmar_global_lock);
4552         iommu_exit_mempool();
4553         return ret;
4554 }
4555
4556 static int iommu_detach_dev_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4557 {
4558         struct intel_iommu *iommu = opaque;
4559
4560         iommu_detach_dev(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4561         return 0;
4562 }
4563
4564 /*
4565  * NB - intel-iommu lacks any sort of reference counting for the users of
4566  * dependent devices.  If multiple endpoints have intersecting dependent
4567  * devices, unbinding the driver from any one of them will possibly leave
4568  * the others unable to operate.
4569  */
4570 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
4571                                            struct device *dev)
4572 {
4573         if (!iommu || !dev || !dev_is_pci(dev))
4574                 return;
4575
4576         pci_for_each_dma_alias(to_pci_dev(dev), &iommu_detach_dev_cb, iommu);
4577 }
4578
4579 static void domain_remove_one_dev_info(struct dmar_domain *domain,
4580                                        struct device *dev)
4581 {
4582         struct device_domain_info *info, *tmp;
4583         struct intel_iommu *iommu;
4584         unsigned long flags;
4585         bool found = false;
4586         u8 bus, devfn;
4587
4588         iommu = device_to_iommu(dev, &bus, &devfn);
4589         if (!iommu)
4590                 return;
4591
4592         spin_lock_irqsave(&device_domain_lock, flags);
4593         list_for_each_entry_safe(info, tmp, &domain->devices, link) {
4594                 if (info->iommu == iommu && info->bus == bus &&
4595                     info->devfn == devfn) {
4596                         unlink_domain_info(info);
4597                         spin_unlock_irqrestore(&device_domain_lock, flags);
4598
4599                         iommu_disable_dev_iotlb(info);
4600                         iommu_detach_dev(iommu, info->bus, info->devfn);
4601                         iommu_detach_dependent_devices(iommu, dev);
4602                         free_devinfo_mem(info);
4603
4604                         spin_lock_irqsave(&device_domain_lock, flags);
4605
4606                         if (found)
4607                                 break;
4608                         else
4609                                 continue;
4610                 }
4611
4612                 /* if there is no other devices under the same iommu
4613                  * owned by this domain, clear this iommu in iommu_bmp
4614                  * update iommu count and coherency
4615                  */
4616                 if (info->iommu == iommu)
4617                         found = true;
4618         }
4619
4620         spin_unlock_irqrestore(&device_domain_lock, flags);
4621
4622         if (found == 0) {
4623                 domain_detach_iommu(domain, iommu);
4624                 if (!domain_type_is_vm_or_si(domain))
4625                         iommu_detach_domain(domain, iommu);
4626         }
4627 }
4628
4629 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4630 {
4631         int adjust_width;
4632
4633         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4634                         DMA_32BIT_PFN);
4635         domain_reserve_special_ranges(domain);
4636
4637         /* calculate AGAW */
4638         domain->gaw = guest_width;
4639         adjust_width = guestwidth_to_adjustwidth(guest_width);
4640         domain->agaw = width_to_agaw(adjust_width);
4641
4642         domain->iommu_coherency = 0;
4643         domain->iommu_snooping = 0;
4644         domain->iommu_superpage = 0;
4645         domain->max_addr = 0;
4646
4647         /* always allocate the top pgd */
4648         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4649         if (!domain->pgd)
4650                 return -ENOMEM;
4651         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4652         return 0;
4653 }
4654
4655 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4656 {
4657         struct dmar_domain *dmar_domain;
4658         struct iommu_domain *domain;
4659
4660         if (type != IOMMU_DOMAIN_UNMANAGED)
4661                 return NULL;
4662
4663         dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4664         if (!dmar_domain) {
4665                 pr_err("Can't allocate dmar_domain\n");
4666                 return NULL;
4667         }
4668         if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4669                 pr_err("Domain initialization failed\n");
4670                 domain_exit(dmar_domain);
4671                 return NULL;
4672         }
4673         domain_update_iommu_cap(dmar_domain);
4674
4675         domain = &dmar_domain->domain;
4676         domain->geometry.aperture_start = 0;
4677         domain->geometry.aperture_end   = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4678         domain->geometry.force_aperture = true;
4679
4680         return domain;
4681 }
4682
4683 static void intel_iommu_domain_free(struct iommu_domain *domain)
4684 {
4685         domain_exit(to_dmar_domain(domain));
4686 }
4687
4688 static int intel_iommu_attach_device(struct iommu_domain *domain,
4689                                      struct device *dev)
4690 {
4691         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4692         struct intel_iommu *iommu;
4693         int addr_width;
4694         u8 bus, devfn;
4695
4696         if (device_is_rmrr_locked(dev)) {
4697                 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
4698                 return -EPERM;
4699         }
4700
4701         /* normally dev is not mapped */
4702         if (unlikely(domain_context_mapped(dev))) {
4703                 struct dmar_domain *old_domain;
4704
4705                 old_domain = find_domain(dev);
4706                 if (old_domain) {
4707                         if (domain_type_is_vm_or_si(dmar_domain))
4708                                 domain_remove_one_dev_info(old_domain, dev);
4709                         else
4710                                 domain_remove_dev_info(old_domain);
4711
4712                         if (!domain_type_is_vm_or_si(old_domain) &&
4713                              list_empty(&old_domain->devices))
4714                                 domain_exit(old_domain);
4715                 }
4716         }
4717
4718         iommu = device_to_iommu(dev, &bus, &devfn);
4719         if (!iommu)
4720                 return -ENODEV;
4721
4722         /* check if this iommu agaw is sufficient for max mapped address */
4723         addr_width = agaw_to_width(iommu->agaw);
4724         if (addr_width > cap_mgaw(iommu->cap))
4725                 addr_width = cap_mgaw(iommu->cap);
4726
4727         if (dmar_domain->max_addr > (1LL << addr_width)) {
4728                 pr_err("%s: iommu width (%d) is not "
4729                        "sufficient for the mapped address (%llx)\n",
4730                        __func__, addr_width, dmar_domain->max_addr);
4731                 return -EFAULT;
4732         }
4733         dmar_domain->gaw = addr_width;
4734
4735         /*
4736          * Knock out extra levels of page tables if necessary
4737          */
4738         while (iommu->agaw < dmar_domain->agaw) {
4739                 struct dma_pte *pte;
4740
4741                 pte = dmar_domain->pgd;
4742                 if (dma_pte_present(pte)) {
4743                         dmar_domain->pgd = (struct dma_pte *)
4744                                 phys_to_virt(dma_pte_addr(pte));
4745                         free_pgtable_page(pte);
4746                 }
4747                 dmar_domain->agaw--;
4748         }
4749
4750         return domain_add_dev_info(dmar_domain, dev, CONTEXT_TT_MULTI_LEVEL);
4751 }
4752
4753 static void intel_iommu_detach_device(struct iommu_domain *domain,
4754                                       struct device *dev)
4755 {
4756         domain_remove_one_dev_info(to_dmar_domain(domain), dev);
4757 }
4758
4759 static int intel_iommu_map(struct iommu_domain *domain,
4760                            unsigned long iova, phys_addr_t hpa,
4761                            size_t size, int iommu_prot)
4762 {
4763         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4764         u64 max_addr;
4765         int prot = 0;
4766         int ret;
4767
4768         if (iommu_prot & IOMMU_READ)
4769                 prot |= DMA_PTE_READ;
4770         if (iommu_prot & IOMMU_WRITE)
4771                 prot |= DMA_PTE_WRITE;
4772         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4773                 prot |= DMA_PTE_SNP;
4774
4775         max_addr = iova + size;
4776         if (dmar_domain->max_addr < max_addr) {
4777                 u64 end;
4778
4779                 /* check if minimum agaw is sufficient for mapped address */
4780                 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4781                 if (end < max_addr) {
4782                         pr_err("%s: iommu width (%d) is not "
4783                                "sufficient for the mapped address (%llx)\n",
4784                                __func__, dmar_domain->gaw, max_addr);
4785                         return -EFAULT;
4786                 }
4787                 dmar_domain->max_addr = max_addr;
4788         }
4789         /* Round up size to next multiple of PAGE_SIZE, if it and
4790            the low bits of hpa would take us onto the next page */
4791         size = aligned_nrpages(hpa, size);
4792         ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4793                                  hpa >> VTD_PAGE_SHIFT, size, prot);
4794         return ret;
4795 }
4796
4797 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4798                                 unsigned long iova, size_t size)
4799 {
4800         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4801         struct page *freelist = NULL;
4802         struct intel_iommu *iommu;
4803         unsigned long start_pfn, last_pfn;
4804         unsigned int npages;
4805         int iommu_id, num, ndomains, level = 0;
4806
4807         /* Cope with horrid API which requires us to unmap more than the
4808            size argument if it happens to be a large-page mapping. */
4809         if (!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level))
4810                 BUG();
4811
4812         if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4813                 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4814
4815         start_pfn = iova >> VTD_PAGE_SHIFT;
4816         last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4817
4818         freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
4819
4820         npages = last_pfn - start_pfn + 1;
4821
4822         for_each_set_bit(iommu_id, dmar_domain->iommu_bmp, g_num_of_iommus) {
4823                iommu = g_iommus[iommu_id];
4824
4825                /*
4826                 * find bit position of dmar_domain
4827                 */
4828                ndomains = cap_ndoms(iommu->cap);
4829                for_each_set_bit(num, iommu->domain_ids, ndomains) {
4830                        if (iommu->domains[num] == dmar_domain)
4831                                iommu_flush_iotlb_psi(iommu, num, start_pfn,
4832                                                      npages, !freelist, 0);
4833                }
4834
4835         }
4836
4837         dma_free_pagelist(freelist);
4838
4839         if (dmar_domain->max_addr == iova + size)
4840                 dmar_domain->max_addr = iova;
4841
4842         return size;
4843 }
4844
4845 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4846                                             dma_addr_t iova)
4847 {
4848         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4849         struct dma_pte *pte;
4850         int level = 0;
4851         u64 phys = 0;
4852
4853         pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
4854         if (pte)
4855                 phys = dma_pte_addr(pte);
4856
4857         return phys;
4858 }
4859
4860 static bool intel_iommu_capable(enum iommu_cap cap)
4861 {
4862         if (cap == IOMMU_CAP_CACHE_COHERENCY)
4863                 return domain_update_iommu_snooping(NULL) == 1;
4864         if (cap == IOMMU_CAP_INTR_REMAP)
4865                 return irq_remapping_enabled == 1;
4866
4867         return false;
4868 }
4869
4870 static int intel_iommu_add_device(struct device *dev)
4871 {
4872         struct intel_iommu *iommu;
4873         struct iommu_group *group;
4874         u8 bus, devfn;
4875
4876         iommu = device_to_iommu(dev, &bus, &devfn);
4877         if (!iommu)
4878                 return -ENODEV;
4879
4880         iommu_device_link(iommu->iommu_dev, dev);
4881
4882         group = iommu_group_get_for_dev(dev);
4883
4884         if (IS_ERR(group))
4885                 return PTR_ERR(group);
4886
4887         iommu_group_put(group);
4888         return 0;
4889 }
4890
4891 static void intel_iommu_remove_device(struct device *dev)
4892 {
4893         struct intel_iommu *iommu;
4894         u8 bus, devfn;
4895
4896         iommu = device_to_iommu(dev, &bus, &devfn);
4897         if (!iommu)
4898                 return;
4899
4900         iommu_group_remove_device(dev);
4901
4902         iommu_device_unlink(iommu->iommu_dev, dev);
4903 }
4904
4905 static const struct iommu_ops intel_iommu_ops = {
4906         .capable        = intel_iommu_capable,
4907         .domain_alloc   = intel_iommu_domain_alloc,
4908         .domain_free    = intel_iommu_domain_free,
4909         .attach_dev     = intel_iommu_attach_device,
4910         .detach_dev     = intel_iommu_detach_device,
4911         .map            = intel_iommu_map,
4912         .unmap          = intel_iommu_unmap,
4913         .map_sg         = default_iommu_map_sg,
4914         .iova_to_phys   = intel_iommu_iova_to_phys,
4915         .add_device     = intel_iommu_add_device,
4916         .remove_device  = intel_iommu_remove_device,
4917         .pgsize_bitmap  = INTEL_IOMMU_PGSIZES,
4918 };
4919
4920 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4921 {
4922         /* G4x/GM45 integrated gfx dmar support is totally busted. */
4923         pr_info("Disabling IOMMU for graphics on this chipset\n");
4924         dmar_map_gfx = 0;
4925 }
4926
4927 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4928 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4929 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4930 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4931 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4932 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4933 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4934
4935 static void quirk_iommu_rwbf(struct pci_dev *dev)
4936 {
4937         /*
4938          * Mobile 4 Series Chipset neglects to set RWBF capability,
4939          * but needs it. Same seems to hold for the desktop versions.
4940          */
4941         pr_info("Forcing write-buffer flush capability\n");
4942         rwbf_quirk = 1;
4943 }
4944
4945 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4946 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4947 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4948 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4949 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4950 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4951 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4952
4953 #define GGC 0x52
4954 #define GGC_MEMORY_SIZE_MASK    (0xf << 8)
4955 #define GGC_MEMORY_SIZE_NONE    (0x0 << 8)
4956 #define GGC_MEMORY_SIZE_1M      (0x1 << 8)
4957 #define GGC_MEMORY_SIZE_2M      (0x3 << 8)
4958 #define GGC_MEMORY_VT_ENABLED   (0x8 << 8)
4959 #define GGC_MEMORY_SIZE_2M_VT   (0x9 << 8)
4960 #define GGC_MEMORY_SIZE_3M_VT   (0xa << 8)
4961 #define GGC_MEMORY_SIZE_4M_VT   (0xb << 8)
4962
4963 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4964 {
4965         unsigned short ggc;
4966
4967         if (pci_read_config_word(dev, GGC, &ggc))
4968                 return;
4969
4970         if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4971                 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4972                 dmar_map_gfx = 0;
4973         } else if (dmar_map_gfx) {
4974                 /* we have to ensure the gfx device is idle before we flush */
4975                 pr_info("Disabling batched IOTLB flush on Ironlake\n");
4976                 intel_iommu_strict = 1;
4977        }
4978 }
4979 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4980 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4981 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4982 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4983
4984 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4985    ISOCH DMAR unit for the Azalia sound device, but not give it any
4986    TLB entries, which causes it to deadlock. Check for that.  We do
4987    this in a function called from init_dmars(), instead of in a PCI
4988    quirk, because we don't want to print the obnoxious "BIOS broken"
4989    message if VT-d is actually disabled.
4990 */
4991 static void __init check_tylersburg_isoch(void)
4992 {
4993         struct pci_dev *pdev;
4994         uint32_t vtisochctrl;
4995
4996         /* If there's no Azalia in the system anyway, forget it. */
4997         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4998         if (!pdev)
4999                 return;
5000         pci_dev_put(pdev);
5001
5002         /* System Management Registers. Might be hidden, in which case
5003            we can't do the sanity check. But that's OK, because the
5004            known-broken BIOSes _don't_ actually hide it, so far. */
5005         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5006         if (!pdev)
5007                 return;
5008
5009         if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5010                 pci_dev_put(pdev);
5011                 return;
5012         }
5013
5014         pci_dev_put(pdev);
5015
5016         /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5017         if (vtisochctrl & 1)
5018                 return;
5019
5020         /* Drop all bits other than the number of TLB entries */
5021         vtisochctrl &= 0x1c;
5022
5023         /* If we have the recommended number of TLB entries (16), fine. */
5024         if (vtisochctrl == 0x10)
5025                 return;
5026
5027         /* Zero TLB entries? You get to ride the short bus to school. */
5028         if (!vtisochctrl) {
5029                 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5030                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5031                      dmi_get_system_info(DMI_BIOS_VENDOR),
5032                      dmi_get_system_info(DMI_BIOS_VERSION),
5033                      dmi_get_system_info(DMI_PRODUCT_VERSION));
5034                 iommu_identity_mapping |= IDENTMAP_AZALIA;
5035                 return;
5036         }
5037
5038         pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5039                vtisochctrl);
5040 }