Merge remote-tracking branches 'asoc/fix/samsung', 'asoc/fix/tlv320dac33', 'asoc...
[cascardo/linux.git] / drivers / lightnvm / rrpc.c
1 /*
2  * Copyright (C) 2015 IT University of Copenhagen
3  * Initial release: Matias Bjorling <m@bjorling.me>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License version
7  * 2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
15  */
16
17 #include "rrpc.h"
18
19 static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
20 static DECLARE_RWSEM(rrpc_lock);
21
22 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
23                                 struct nvm_rq *rqd, unsigned long flags);
24
25 #define rrpc_for_each_lun(rrpc, rlun, i) \
26                 for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27                         (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
28
29 static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
30 {
31         struct rrpc_block *rblk = a->rblk;
32         unsigned int pg_offset;
33
34         lockdep_assert_held(&rrpc->rev_lock);
35
36         if (a->addr == ADDR_EMPTY || !rblk)
37                 return;
38
39         spin_lock(&rblk->lock);
40
41         div_u64_rem(a->addr, rrpc->dev->pgs_per_blk, &pg_offset);
42         WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
43         rblk->nr_invalid_pages++;
44
45         spin_unlock(&rblk->lock);
46
47         rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
48 }
49
50 static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
51                                                                 unsigned len)
52 {
53         sector_t i;
54
55         spin_lock(&rrpc->rev_lock);
56         for (i = slba; i < slba + len; i++) {
57                 struct rrpc_addr *gp = &rrpc->trans_map[i];
58
59                 rrpc_page_invalidate(rrpc, gp);
60                 gp->rblk = NULL;
61         }
62         spin_unlock(&rrpc->rev_lock);
63 }
64
65 static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
66                                         sector_t laddr, unsigned int pages)
67 {
68         struct nvm_rq *rqd;
69         struct rrpc_inflight_rq *inf;
70
71         rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
72         if (!rqd)
73                 return ERR_PTR(-ENOMEM);
74
75         inf = rrpc_get_inflight_rq(rqd);
76         if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
77                 mempool_free(rqd, rrpc->rq_pool);
78                 return NULL;
79         }
80
81         return rqd;
82 }
83
84 static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
85 {
86         struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
87
88         rrpc_unlock_laddr(rrpc, inf);
89
90         mempool_free(rqd, rrpc->rq_pool);
91 }
92
93 static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
94 {
95         sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
96         sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
97         struct nvm_rq *rqd;
98
99         do {
100                 rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
101                 schedule();
102         } while (!rqd);
103
104         if (IS_ERR(rqd)) {
105                 pr_err("rrpc: unable to acquire inflight IO\n");
106                 bio_io_error(bio);
107                 return;
108         }
109
110         rrpc_invalidate_range(rrpc, slba, len);
111         rrpc_inflight_laddr_release(rrpc, rqd);
112 }
113
114 static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
115 {
116         return (rblk->next_page == rrpc->dev->pgs_per_blk);
117 }
118
119 static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
120 {
121         struct nvm_block *blk = rblk->parent;
122
123         return blk->id * rrpc->dev->pgs_per_blk;
124 }
125
126 static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
127                                                         struct ppa_addr r)
128 {
129         struct ppa_addr l;
130         int secs, pgs, blks, luns;
131         sector_t ppa = r.ppa;
132
133         l.ppa = 0;
134
135         div_u64_rem(ppa, dev->sec_per_pg, &secs);
136         l.g.sec = secs;
137
138         sector_div(ppa, dev->sec_per_pg);
139         div_u64_rem(ppa, dev->sec_per_blk, &pgs);
140         l.g.pg = pgs;
141
142         sector_div(ppa, dev->pgs_per_blk);
143         div_u64_rem(ppa, dev->blks_per_lun, &blks);
144         l.g.blk = blks;
145
146         sector_div(ppa, dev->blks_per_lun);
147         div_u64_rem(ppa, dev->luns_per_chnl, &luns);
148         l.g.lun = luns;
149
150         sector_div(ppa, dev->luns_per_chnl);
151         l.g.ch = ppa;
152
153         return l;
154 }
155
156 static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
157 {
158         struct ppa_addr paddr;
159
160         paddr.ppa = addr;
161         return linear_to_generic_addr(dev, paddr);
162 }
163
164 /* requires lun->lock taken */
165 static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
166 {
167         struct rrpc *rrpc = rlun->rrpc;
168
169         BUG_ON(!rblk);
170
171         if (rlun->cur) {
172                 spin_lock(&rlun->cur->lock);
173                 WARN_ON(!block_is_full(rrpc, rlun->cur));
174                 spin_unlock(&rlun->cur->lock);
175         }
176         rlun->cur = rblk;
177 }
178
179 static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
180                                                         unsigned long flags)
181 {
182         struct nvm_lun *lun = rlun->parent;
183         struct nvm_block *blk;
184         struct rrpc_block *rblk;
185
186         spin_lock(&lun->lock);
187         blk = nvm_get_blk_unlocked(rrpc->dev, rlun->parent, flags);
188         if (!blk) {
189                 pr_err("nvm: rrpc: cannot get new block from media manager\n");
190                 spin_unlock(&lun->lock);
191                 return NULL;
192         }
193
194         rblk = &rlun->blocks[blk->id];
195         list_add_tail(&rblk->list, &rlun->open_list);
196         spin_unlock(&lun->lock);
197
198         blk->priv = rblk;
199         bitmap_zero(rblk->invalid_pages, rrpc->dev->pgs_per_blk);
200         rblk->next_page = 0;
201         rblk->nr_invalid_pages = 0;
202         atomic_set(&rblk->data_cmnt_size, 0);
203
204         return rblk;
205 }
206
207 static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
208 {
209         struct rrpc_lun *rlun = rblk->rlun;
210         struct nvm_lun *lun = rlun->parent;
211
212         spin_lock(&lun->lock);
213         nvm_put_blk_unlocked(rrpc->dev, rblk->parent);
214         list_del(&rblk->list);
215         spin_unlock(&lun->lock);
216 }
217
218 static void rrpc_put_blks(struct rrpc *rrpc)
219 {
220         struct rrpc_lun *rlun;
221         int i;
222
223         for (i = 0; i < rrpc->nr_luns; i++) {
224                 rlun = &rrpc->luns[i];
225                 if (rlun->cur)
226                         rrpc_put_blk(rrpc, rlun->cur);
227                 if (rlun->gc_cur)
228                         rrpc_put_blk(rrpc, rlun->gc_cur);
229         }
230 }
231
232 static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
233 {
234         int next = atomic_inc_return(&rrpc->next_lun);
235
236         return &rrpc->luns[next % rrpc->nr_luns];
237 }
238
239 static void rrpc_gc_kick(struct rrpc *rrpc)
240 {
241         struct rrpc_lun *rlun;
242         unsigned int i;
243
244         for (i = 0; i < rrpc->nr_luns; i++) {
245                 rlun = &rrpc->luns[i];
246                 queue_work(rrpc->krqd_wq, &rlun->ws_gc);
247         }
248 }
249
250 /*
251  * timed GC every interval.
252  */
253 static void rrpc_gc_timer(unsigned long data)
254 {
255         struct rrpc *rrpc = (struct rrpc *)data;
256
257         rrpc_gc_kick(rrpc);
258         mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
259 }
260
261 static void rrpc_end_sync_bio(struct bio *bio)
262 {
263         struct completion *waiting = bio->bi_private;
264
265         if (bio->bi_error)
266                 pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
267
268         complete(waiting);
269 }
270
271 /*
272  * rrpc_move_valid_pages -- migrate live data off the block
273  * @rrpc: the 'rrpc' structure
274  * @block: the block from which to migrate live pages
275  *
276  * Description:
277  *   GC algorithms may call this function to migrate remaining live
278  *   pages off the block prior to erasing it. This function blocks
279  *   further execution until the operation is complete.
280  */
281 static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
282 {
283         struct request_queue *q = rrpc->dev->q;
284         struct rrpc_rev_addr *rev;
285         struct nvm_rq *rqd;
286         struct bio *bio;
287         struct page *page;
288         int slot;
289         int nr_pgs_per_blk = rrpc->dev->pgs_per_blk;
290         u64 phys_addr;
291         DECLARE_COMPLETION_ONSTACK(wait);
292
293         if (bitmap_full(rblk->invalid_pages, nr_pgs_per_blk))
294                 return 0;
295
296         bio = bio_alloc(GFP_NOIO, 1);
297         if (!bio) {
298                 pr_err("nvm: could not alloc bio to gc\n");
299                 return -ENOMEM;
300         }
301
302         page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
303         if (!page) {
304                 bio_put(bio);
305                 return -ENOMEM;
306         }
307
308         while ((slot = find_first_zero_bit(rblk->invalid_pages,
309                                             nr_pgs_per_blk)) < nr_pgs_per_blk) {
310
311                 /* Lock laddr */
312                 phys_addr = (rblk->parent->id * nr_pgs_per_blk) + slot;
313
314 try:
315                 spin_lock(&rrpc->rev_lock);
316                 /* Get logical address from physical to logical table */
317                 rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
318                 /* already updated by previous regular write */
319                 if (rev->addr == ADDR_EMPTY) {
320                         spin_unlock(&rrpc->rev_lock);
321                         continue;
322                 }
323
324                 rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
325                 if (IS_ERR_OR_NULL(rqd)) {
326                         spin_unlock(&rrpc->rev_lock);
327                         schedule();
328                         goto try;
329                 }
330
331                 spin_unlock(&rrpc->rev_lock);
332
333                 /* Perform read to do GC */
334                 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
335                 bio->bi_rw = READ;
336                 bio->bi_private = &wait;
337                 bio->bi_end_io = rrpc_end_sync_bio;
338
339                 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
340                 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
341
342                 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
343                         pr_err("rrpc: gc read failed.\n");
344                         rrpc_inflight_laddr_release(rrpc, rqd);
345                         goto finished;
346                 }
347                 wait_for_completion_io(&wait);
348                 if (bio->bi_error) {
349                         rrpc_inflight_laddr_release(rrpc, rqd);
350                         goto finished;
351                 }
352
353                 bio_reset(bio);
354                 reinit_completion(&wait);
355
356                 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
357                 bio->bi_rw = WRITE;
358                 bio->bi_private = &wait;
359                 bio->bi_end_io = rrpc_end_sync_bio;
360
361                 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
362
363                 /* turn the command around and write the data back to a new
364                  * address
365                  */
366                 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
367                         pr_err("rrpc: gc write failed.\n");
368                         rrpc_inflight_laddr_release(rrpc, rqd);
369                         goto finished;
370                 }
371                 wait_for_completion_io(&wait);
372
373                 rrpc_inflight_laddr_release(rrpc, rqd);
374                 if (bio->bi_error)
375                         goto finished;
376
377                 bio_reset(bio);
378         }
379
380 finished:
381         mempool_free(page, rrpc->page_pool);
382         bio_put(bio);
383
384         if (!bitmap_full(rblk->invalid_pages, nr_pgs_per_blk)) {
385                 pr_err("nvm: failed to garbage collect block\n");
386                 return -EIO;
387         }
388
389         return 0;
390 }
391
392 static void rrpc_block_gc(struct work_struct *work)
393 {
394         struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
395                                                                         ws_gc);
396         struct rrpc *rrpc = gcb->rrpc;
397         struct rrpc_block *rblk = gcb->rblk;
398         struct nvm_dev *dev = rrpc->dev;
399         struct nvm_lun *lun = rblk->parent->lun;
400         struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
401
402         mempool_free(gcb, rrpc->gcb_pool);
403         pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
404
405         if (rrpc_move_valid_pages(rrpc, rblk))
406                 goto put_back;
407
408         if (nvm_erase_blk(dev, rblk->parent))
409                 goto put_back;
410
411         rrpc_put_blk(rrpc, rblk);
412
413         return;
414
415 put_back:
416         spin_lock(&rlun->lock);
417         list_add_tail(&rblk->prio, &rlun->prio_list);
418         spin_unlock(&rlun->lock);
419 }
420
421 /* the block with highest number of invalid pages, will be in the beginning
422  * of the list
423  */
424 static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
425                                                         struct rrpc_block *rb)
426 {
427         if (ra->nr_invalid_pages == rb->nr_invalid_pages)
428                 return ra;
429
430         return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
431 }
432
433 /* linearly find the block with highest number of invalid pages
434  * requires lun->lock
435  */
436 static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
437 {
438         struct list_head *prio_list = &rlun->prio_list;
439         struct rrpc_block *rblock, *max;
440
441         BUG_ON(list_empty(prio_list));
442
443         max = list_first_entry(prio_list, struct rrpc_block, prio);
444         list_for_each_entry(rblock, prio_list, prio)
445                 max = rblock_max_invalid(max, rblock);
446
447         return max;
448 }
449
450 static void rrpc_lun_gc(struct work_struct *work)
451 {
452         struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
453         struct rrpc *rrpc = rlun->rrpc;
454         struct nvm_lun *lun = rlun->parent;
455         struct rrpc_block_gc *gcb;
456         unsigned int nr_blocks_need;
457
458         nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
459
460         if (nr_blocks_need < rrpc->nr_luns)
461                 nr_blocks_need = rrpc->nr_luns;
462
463         spin_lock(&rlun->lock);
464         while (nr_blocks_need > lun->nr_free_blocks &&
465                                         !list_empty(&rlun->prio_list)) {
466                 struct rrpc_block *rblock = block_prio_find_max(rlun);
467                 struct nvm_block *block = rblock->parent;
468
469                 if (!rblock->nr_invalid_pages)
470                         break;
471
472                 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
473                 if (!gcb)
474                         break;
475
476                 list_del_init(&rblock->prio);
477
478                 BUG_ON(!block_is_full(rrpc, rblock));
479
480                 pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
481
482                 gcb->rrpc = rrpc;
483                 gcb->rblk = rblock;
484                 INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
485
486                 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
487
488                 nr_blocks_need--;
489         }
490         spin_unlock(&rlun->lock);
491
492         /* TODO: Hint that request queue can be started again */
493 }
494
495 static void rrpc_gc_queue(struct work_struct *work)
496 {
497         struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
498                                                                         ws_gc);
499         struct rrpc *rrpc = gcb->rrpc;
500         struct rrpc_block *rblk = gcb->rblk;
501         struct nvm_lun *lun = rblk->parent->lun;
502         struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
503
504         spin_lock(&rlun->lock);
505         list_add_tail(&rblk->prio, &rlun->prio_list);
506         spin_unlock(&rlun->lock);
507
508         mempool_free(gcb, rrpc->gcb_pool);
509         pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
510                                                         rblk->parent->id);
511 }
512
513 static const struct block_device_operations rrpc_fops = {
514         .owner          = THIS_MODULE,
515 };
516
517 static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
518 {
519         unsigned int i;
520         struct rrpc_lun *rlun, *max_free;
521
522         if (!is_gc)
523                 return get_next_lun(rrpc);
524
525         /* during GC, we don't care about RR, instead we want to make
526          * sure that we maintain evenness between the block luns.
527          */
528         max_free = &rrpc->luns[0];
529         /* prevent GC-ing lun from devouring pages of a lun with
530          * little free blocks. We don't take the lock as we only need an
531          * estimate.
532          */
533         rrpc_for_each_lun(rrpc, rlun, i) {
534                 if (rlun->parent->nr_free_blocks >
535                                         max_free->parent->nr_free_blocks)
536                         max_free = rlun;
537         }
538
539         return max_free;
540 }
541
542 static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
543                                         struct rrpc_block *rblk, u64 paddr)
544 {
545         struct rrpc_addr *gp;
546         struct rrpc_rev_addr *rev;
547
548         BUG_ON(laddr >= rrpc->nr_pages);
549
550         gp = &rrpc->trans_map[laddr];
551         spin_lock(&rrpc->rev_lock);
552         if (gp->rblk)
553                 rrpc_page_invalidate(rrpc, gp);
554
555         gp->addr = paddr;
556         gp->rblk = rblk;
557
558         rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
559         rev->addr = laddr;
560         spin_unlock(&rrpc->rev_lock);
561
562         return gp;
563 }
564
565 static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
566 {
567         u64 addr = ADDR_EMPTY;
568
569         spin_lock(&rblk->lock);
570         if (block_is_full(rrpc, rblk))
571                 goto out;
572
573         addr = block_to_addr(rrpc, rblk) + rblk->next_page;
574
575         rblk->next_page++;
576 out:
577         spin_unlock(&rblk->lock);
578         return addr;
579 }
580
581 /* Simple round-robin Logical to physical address translation.
582  *
583  * Retrieve the mapping using the active append point. Then update the ap for
584  * the next write to the disk.
585  *
586  * Returns rrpc_addr with the physical address and block. Remember to return to
587  * rrpc->addr_cache when request is finished.
588  */
589 static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
590                                                                 int is_gc)
591 {
592         struct rrpc_lun *rlun;
593         struct rrpc_block *rblk;
594         struct nvm_lun *lun;
595         u64 paddr;
596
597         rlun = rrpc_get_lun_rr(rrpc, is_gc);
598         lun = rlun->parent;
599
600         if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
601                 return NULL;
602
603         spin_lock(&rlun->lock);
604
605         rblk = rlun->cur;
606 retry:
607         paddr = rrpc_alloc_addr(rrpc, rblk);
608
609         if (paddr == ADDR_EMPTY) {
610                 rblk = rrpc_get_blk(rrpc, rlun, 0);
611                 if (rblk) {
612                         rrpc_set_lun_cur(rlun, rblk);
613                         goto retry;
614                 }
615
616                 if (is_gc) {
617                         /* retry from emergency gc block */
618                         paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
619                         if (paddr == ADDR_EMPTY) {
620                                 rblk = rrpc_get_blk(rrpc, rlun, 1);
621                                 if (!rblk) {
622                                         pr_err("rrpc: no more blocks");
623                                         goto err;
624                                 }
625
626                                 rlun->gc_cur = rblk;
627                                 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
628                         }
629                         rblk = rlun->gc_cur;
630                 }
631         }
632
633         spin_unlock(&rlun->lock);
634         return rrpc_update_map(rrpc, laddr, rblk, paddr);
635 err:
636         spin_unlock(&rlun->lock);
637         return NULL;
638 }
639
640 static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
641 {
642         struct rrpc_block_gc *gcb;
643
644         gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
645         if (!gcb) {
646                 pr_err("rrpc: unable to queue block for gc.");
647                 return;
648         }
649
650         gcb->rrpc = rrpc;
651         gcb->rblk = rblk;
652
653         INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
654         queue_work(rrpc->kgc_wq, &gcb->ws_gc);
655 }
656
657 static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
658                                                 sector_t laddr, uint8_t npages)
659 {
660         struct rrpc_addr *p;
661         struct rrpc_block *rblk;
662         struct nvm_lun *lun;
663         int cmnt_size, i;
664
665         for (i = 0; i < npages; i++) {
666                 p = &rrpc->trans_map[laddr + i];
667                 rblk = p->rblk;
668                 lun = rblk->parent->lun;
669
670                 cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
671                 if (unlikely(cmnt_size == rrpc->dev->pgs_per_blk)) {
672                         struct nvm_block *blk = rblk->parent;
673                         struct rrpc_lun *rlun = rblk->rlun;
674
675                         spin_lock(&lun->lock);
676                         lun->nr_open_blocks--;
677                         lun->nr_closed_blocks++;
678                         blk->state &= ~NVM_BLK_ST_OPEN;
679                         blk->state |= NVM_BLK_ST_CLOSED;
680                         list_move_tail(&rblk->list, &rlun->closed_list);
681                         spin_unlock(&lun->lock);
682
683                         rrpc_run_gc(rrpc, rblk);
684                 }
685         }
686 }
687
688 static void rrpc_end_io(struct nvm_rq *rqd)
689 {
690         struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
691         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
692         uint8_t npages = rqd->nr_pages;
693         sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
694
695         if (bio_data_dir(rqd->bio) == WRITE)
696                 rrpc_end_io_write(rrpc, rrqd, laddr, npages);
697
698         bio_put(rqd->bio);
699
700         if (rrqd->flags & NVM_IOTYPE_GC)
701                 return;
702
703         rrpc_unlock_rq(rrpc, rqd);
704
705         if (npages > 1)
706                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
707         if (rqd->metadata)
708                 nvm_dev_dma_free(rrpc->dev, rqd->metadata, rqd->dma_metadata);
709
710         mempool_free(rqd, rrpc->rq_pool);
711 }
712
713 static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
714                         struct nvm_rq *rqd, unsigned long flags, int npages)
715 {
716         struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
717         struct rrpc_addr *gp;
718         sector_t laddr = rrpc_get_laddr(bio);
719         int is_gc = flags & NVM_IOTYPE_GC;
720         int i;
721
722         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
723                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
724                 return NVM_IO_REQUEUE;
725         }
726
727         for (i = 0; i < npages; i++) {
728                 /* We assume that mapping occurs at 4KB granularity */
729                 BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_pages));
730                 gp = &rrpc->trans_map[laddr + i];
731
732                 if (gp->rblk) {
733                         rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
734                                                                 gp->addr);
735                 } else {
736                         BUG_ON(is_gc);
737                         rrpc_unlock_laddr(rrpc, r);
738                         nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
739                                                         rqd->dma_ppa_list);
740                         return NVM_IO_DONE;
741                 }
742         }
743
744         rqd->opcode = NVM_OP_HBREAD;
745
746         return NVM_IO_OK;
747 }
748
749 static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
750                                                         unsigned long flags)
751 {
752         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
753         int is_gc = flags & NVM_IOTYPE_GC;
754         sector_t laddr = rrpc_get_laddr(bio);
755         struct rrpc_addr *gp;
756
757         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
758                 return NVM_IO_REQUEUE;
759
760         BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_pages));
761         gp = &rrpc->trans_map[laddr];
762
763         if (gp->rblk) {
764                 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
765         } else {
766                 BUG_ON(is_gc);
767                 rrpc_unlock_rq(rrpc, rqd);
768                 return NVM_IO_DONE;
769         }
770
771         rqd->opcode = NVM_OP_HBREAD;
772         rrqd->addr = gp;
773
774         return NVM_IO_OK;
775 }
776
777 static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
778                         struct nvm_rq *rqd, unsigned long flags, int npages)
779 {
780         struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
781         struct rrpc_addr *p;
782         sector_t laddr = rrpc_get_laddr(bio);
783         int is_gc = flags & NVM_IOTYPE_GC;
784         int i;
785
786         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
787                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
788                 return NVM_IO_REQUEUE;
789         }
790
791         for (i = 0; i < npages; i++) {
792                 /* We assume that mapping occurs at 4KB granularity */
793                 p = rrpc_map_page(rrpc, laddr + i, is_gc);
794                 if (!p) {
795                         BUG_ON(is_gc);
796                         rrpc_unlock_laddr(rrpc, r);
797                         nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
798                                                         rqd->dma_ppa_list);
799                         rrpc_gc_kick(rrpc);
800                         return NVM_IO_REQUEUE;
801                 }
802
803                 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
804                                                                 p->addr);
805         }
806
807         rqd->opcode = NVM_OP_HBWRITE;
808
809         return NVM_IO_OK;
810 }
811
812 static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
813                                 struct nvm_rq *rqd, unsigned long flags)
814 {
815         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
816         struct rrpc_addr *p;
817         int is_gc = flags & NVM_IOTYPE_GC;
818         sector_t laddr = rrpc_get_laddr(bio);
819
820         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
821                 return NVM_IO_REQUEUE;
822
823         p = rrpc_map_page(rrpc, laddr, is_gc);
824         if (!p) {
825                 BUG_ON(is_gc);
826                 rrpc_unlock_rq(rrpc, rqd);
827                 rrpc_gc_kick(rrpc);
828                 return NVM_IO_REQUEUE;
829         }
830
831         rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
832         rqd->opcode = NVM_OP_HBWRITE;
833         rrqd->addr = p;
834
835         return NVM_IO_OK;
836 }
837
838 static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
839                         struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
840 {
841         if (npages > 1) {
842                 rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
843                                                         &rqd->dma_ppa_list);
844                 if (!rqd->ppa_list) {
845                         pr_err("rrpc: not able to allocate ppa list\n");
846                         return NVM_IO_ERR;
847                 }
848
849                 if (bio_rw(bio) == WRITE)
850                         return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
851                                                                         npages);
852
853                 return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
854         }
855
856         if (bio_rw(bio) == WRITE)
857                 return rrpc_write_rq(rrpc, bio, rqd, flags);
858
859         return rrpc_read_rq(rrpc, bio, rqd, flags);
860 }
861
862 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
863                                 struct nvm_rq *rqd, unsigned long flags)
864 {
865         int err;
866         struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
867         uint8_t nr_pages = rrpc_get_pages(bio);
868         int bio_size = bio_sectors(bio) << 9;
869
870         if (bio_size < rrpc->dev->sec_size)
871                 return NVM_IO_ERR;
872         else if (bio_size > rrpc->dev->max_rq_size)
873                 return NVM_IO_ERR;
874
875         err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
876         if (err)
877                 return err;
878
879         bio_get(bio);
880         rqd->bio = bio;
881         rqd->ins = &rrpc->instance;
882         rqd->nr_pages = nr_pages;
883         rrq->flags = flags;
884
885         err = nvm_submit_io(rrpc->dev, rqd);
886         if (err) {
887                 pr_err("rrpc: I/O submission failed: %d\n", err);
888                 bio_put(bio);
889                 if (!(flags & NVM_IOTYPE_GC)) {
890                         rrpc_unlock_rq(rrpc, rqd);
891                         if (rqd->nr_pages > 1)
892                                 nvm_dev_dma_free(rrpc->dev,
893                         rqd->ppa_list, rqd->dma_ppa_list);
894                 }
895                 return NVM_IO_ERR;
896         }
897
898         return NVM_IO_OK;
899 }
900
901 static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
902 {
903         struct rrpc *rrpc = q->queuedata;
904         struct nvm_rq *rqd;
905         int err;
906
907         if (bio->bi_rw & REQ_DISCARD) {
908                 rrpc_discard(rrpc, bio);
909                 return BLK_QC_T_NONE;
910         }
911
912         rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
913         if (!rqd) {
914                 pr_err_ratelimited("rrpc: not able to queue bio.");
915                 bio_io_error(bio);
916                 return BLK_QC_T_NONE;
917         }
918         memset(rqd, 0, sizeof(struct nvm_rq));
919
920         err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
921         switch (err) {
922         case NVM_IO_OK:
923                 return BLK_QC_T_NONE;
924         case NVM_IO_ERR:
925                 bio_io_error(bio);
926                 break;
927         case NVM_IO_DONE:
928                 bio_endio(bio);
929                 break;
930         case NVM_IO_REQUEUE:
931                 spin_lock(&rrpc->bio_lock);
932                 bio_list_add(&rrpc->requeue_bios, bio);
933                 spin_unlock(&rrpc->bio_lock);
934                 queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
935                 break;
936         }
937
938         mempool_free(rqd, rrpc->rq_pool);
939         return BLK_QC_T_NONE;
940 }
941
942 static void rrpc_requeue(struct work_struct *work)
943 {
944         struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
945         struct bio_list bios;
946         struct bio *bio;
947
948         bio_list_init(&bios);
949
950         spin_lock(&rrpc->bio_lock);
951         bio_list_merge(&bios, &rrpc->requeue_bios);
952         bio_list_init(&rrpc->requeue_bios);
953         spin_unlock(&rrpc->bio_lock);
954
955         while ((bio = bio_list_pop(&bios)))
956                 rrpc_make_rq(rrpc->disk->queue, bio);
957 }
958
959 static void rrpc_gc_free(struct rrpc *rrpc)
960 {
961         struct rrpc_lun *rlun;
962         int i;
963
964         if (rrpc->krqd_wq)
965                 destroy_workqueue(rrpc->krqd_wq);
966
967         if (rrpc->kgc_wq)
968                 destroy_workqueue(rrpc->kgc_wq);
969
970         if (!rrpc->luns)
971                 return;
972
973         for (i = 0; i < rrpc->nr_luns; i++) {
974                 rlun = &rrpc->luns[i];
975
976                 if (!rlun->blocks)
977                         break;
978                 vfree(rlun->blocks);
979         }
980 }
981
982 static int rrpc_gc_init(struct rrpc *rrpc)
983 {
984         rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
985                                                                 rrpc->nr_luns);
986         if (!rrpc->krqd_wq)
987                 return -ENOMEM;
988
989         rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
990         if (!rrpc->kgc_wq)
991                 return -ENOMEM;
992
993         setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
994
995         return 0;
996 }
997
998 static void rrpc_map_free(struct rrpc *rrpc)
999 {
1000         vfree(rrpc->rev_trans_map);
1001         vfree(rrpc->trans_map);
1002 }
1003
1004 static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
1005 {
1006         struct rrpc *rrpc = (struct rrpc *)private;
1007         struct nvm_dev *dev = rrpc->dev;
1008         struct rrpc_addr *addr = rrpc->trans_map + slba;
1009         struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
1010         sector_t max_pages = dev->total_pages * (dev->sec_size >> 9);
1011         u64 elba = slba + nlb;
1012         u64 i;
1013
1014         if (unlikely(elba > dev->total_pages)) {
1015                 pr_err("nvm: L2P data from device is out of bounds!\n");
1016                 return -EINVAL;
1017         }
1018
1019         for (i = 0; i < nlb; i++) {
1020                 u64 pba = le64_to_cpu(entries[i]);
1021                 /* LNVM treats address-spaces as silos, LBA and PBA are
1022                  * equally large and zero-indexed.
1023                  */
1024                 if (unlikely(pba >= max_pages && pba != U64_MAX)) {
1025                         pr_err("nvm: L2P data entry is out of bounds!\n");
1026                         return -EINVAL;
1027                 }
1028
1029                 /* Address zero is a special one. The first page on a disk is
1030                  * protected. As it often holds internal device boot
1031                  * information.
1032                  */
1033                 if (!pba)
1034                         continue;
1035
1036                 addr[i].addr = pba;
1037                 raddr[pba].addr = slba + i;
1038         }
1039
1040         return 0;
1041 }
1042
1043 static int rrpc_map_init(struct rrpc *rrpc)
1044 {
1045         struct nvm_dev *dev = rrpc->dev;
1046         sector_t i;
1047         int ret;
1048
1049         rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_pages);
1050         if (!rrpc->trans_map)
1051                 return -ENOMEM;
1052
1053         rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
1054                                                         * rrpc->nr_pages);
1055         if (!rrpc->rev_trans_map)
1056                 return -ENOMEM;
1057
1058         for (i = 0; i < rrpc->nr_pages; i++) {
1059                 struct rrpc_addr *p = &rrpc->trans_map[i];
1060                 struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
1061
1062                 p->addr = ADDR_EMPTY;
1063                 r->addr = ADDR_EMPTY;
1064         }
1065
1066         if (!dev->ops->get_l2p_tbl)
1067                 return 0;
1068
1069         /* Bring up the mapping table from device */
1070         ret = dev->ops->get_l2p_tbl(dev, 0, dev->total_pages,
1071                                                         rrpc_l2p_update, rrpc);
1072         if (ret) {
1073                 pr_err("nvm: rrpc: could not read L2P table.\n");
1074                 return -EINVAL;
1075         }
1076
1077         return 0;
1078 }
1079
1080
1081 /* Minimum pages needed within a lun */
1082 #define PAGE_POOL_SIZE 16
1083 #define ADDR_POOL_SIZE 64
1084
1085 static int rrpc_core_init(struct rrpc *rrpc)
1086 {
1087         down_write(&rrpc_lock);
1088         if (!rrpc_gcb_cache) {
1089                 rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
1090                                 sizeof(struct rrpc_block_gc), 0, 0, NULL);
1091                 if (!rrpc_gcb_cache) {
1092                         up_write(&rrpc_lock);
1093                         return -ENOMEM;
1094                 }
1095
1096                 rrpc_rq_cache = kmem_cache_create("rrpc_rq",
1097                                 sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
1098                                 0, 0, NULL);
1099                 if (!rrpc_rq_cache) {
1100                         kmem_cache_destroy(rrpc_gcb_cache);
1101                         up_write(&rrpc_lock);
1102                         return -ENOMEM;
1103                 }
1104         }
1105         up_write(&rrpc_lock);
1106
1107         rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
1108         if (!rrpc->page_pool)
1109                 return -ENOMEM;
1110
1111         rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
1112                                                                 rrpc_gcb_cache);
1113         if (!rrpc->gcb_pool)
1114                 return -ENOMEM;
1115
1116         rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
1117         if (!rrpc->rq_pool)
1118                 return -ENOMEM;
1119
1120         spin_lock_init(&rrpc->inflights.lock);
1121         INIT_LIST_HEAD(&rrpc->inflights.reqs);
1122
1123         return 0;
1124 }
1125
1126 static void rrpc_core_free(struct rrpc *rrpc)
1127 {
1128         mempool_destroy(rrpc->page_pool);
1129         mempool_destroy(rrpc->gcb_pool);
1130         mempool_destroy(rrpc->rq_pool);
1131 }
1132
1133 static void rrpc_luns_free(struct rrpc *rrpc)
1134 {
1135         kfree(rrpc->luns);
1136 }
1137
1138 static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
1139 {
1140         struct nvm_dev *dev = rrpc->dev;
1141         struct rrpc_lun *rlun;
1142         int i, j;
1143
1144         if (dev->pgs_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
1145                 pr_err("rrpc: number of pages per block too high.");
1146                 return -EINVAL;
1147         }
1148
1149         spin_lock_init(&rrpc->rev_lock);
1150
1151         rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
1152                                                                 GFP_KERNEL);
1153         if (!rrpc->luns)
1154                 return -ENOMEM;
1155
1156         /* 1:1 mapping */
1157         for (i = 0; i < rrpc->nr_luns; i++) {
1158                 struct nvm_lun *lun = dev->mt->get_lun(dev, lun_begin + i);
1159
1160                 rlun = &rrpc->luns[i];
1161                 rlun->rrpc = rrpc;
1162                 rlun->parent = lun;
1163                 INIT_LIST_HEAD(&rlun->prio_list);
1164                 INIT_LIST_HEAD(&rlun->open_list);
1165                 INIT_LIST_HEAD(&rlun->closed_list);
1166
1167                 INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
1168                 spin_lock_init(&rlun->lock);
1169
1170                 rrpc->total_blocks += dev->blks_per_lun;
1171                 rrpc->nr_pages += dev->sec_per_lun;
1172
1173                 rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
1174                                                 rrpc->dev->blks_per_lun);
1175                 if (!rlun->blocks)
1176                         goto err;
1177
1178                 for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
1179                         struct rrpc_block *rblk = &rlun->blocks[j];
1180                         struct nvm_block *blk = &lun->blocks[j];
1181
1182                         rblk->parent = blk;
1183                         rblk->rlun = rlun;
1184                         INIT_LIST_HEAD(&rblk->prio);
1185                         spin_lock_init(&rblk->lock);
1186                 }
1187         }
1188
1189         return 0;
1190 err:
1191         return -ENOMEM;
1192 }
1193
1194 static void rrpc_free(struct rrpc *rrpc)
1195 {
1196         rrpc_gc_free(rrpc);
1197         rrpc_map_free(rrpc);
1198         rrpc_core_free(rrpc);
1199         rrpc_luns_free(rrpc);
1200
1201         kfree(rrpc);
1202 }
1203
1204 static void rrpc_exit(void *private)
1205 {
1206         struct rrpc *rrpc = private;
1207
1208         del_timer(&rrpc->gc_timer);
1209
1210         flush_workqueue(rrpc->krqd_wq);
1211         flush_workqueue(rrpc->kgc_wq);
1212
1213         rrpc_free(rrpc);
1214 }
1215
1216 static sector_t rrpc_capacity(void *private)
1217 {
1218         struct rrpc *rrpc = private;
1219         struct nvm_dev *dev = rrpc->dev;
1220         sector_t reserved, provisioned;
1221
1222         /* cur, gc, and two emergency blocks for each lun */
1223         reserved = rrpc->nr_luns * dev->max_pages_per_blk * 4;
1224         provisioned = rrpc->nr_pages - reserved;
1225
1226         if (reserved > rrpc->nr_pages) {
1227                 pr_err("rrpc: not enough space available to expose storage.\n");
1228                 return 0;
1229         }
1230
1231         sector_div(provisioned, 10);
1232         return provisioned * 9 * NR_PHY_IN_LOG;
1233 }
1234
1235 /*
1236  * Looks up the logical address from reverse trans map and check if its valid by
1237  * comparing the logical to physical address with the physical address.
1238  * Returns 0 on free, otherwise 1 if in use
1239  */
1240 static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
1241 {
1242         struct nvm_dev *dev = rrpc->dev;
1243         int offset;
1244         struct rrpc_addr *laddr;
1245         u64 paddr, pladdr;
1246
1247         for (offset = 0; offset < dev->pgs_per_blk; offset++) {
1248                 paddr = block_to_addr(rrpc, rblk) + offset;
1249
1250                 pladdr = rrpc->rev_trans_map[paddr].addr;
1251                 if (pladdr == ADDR_EMPTY)
1252                         continue;
1253
1254                 laddr = &rrpc->trans_map[pladdr];
1255
1256                 if (paddr == laddr->addr) {
1257                         laddr->rblk = rblk;
1258                 } else {
1259                         set_bit(offset, rblk->invalid_pages);
1260                         rblk->nr_invalid_pages++;
1261                 }
1262         }
1263 }
1264
1265 static int rrpc_blocks_init(struct rrpc *rrpc)
1266 {
1267         struct rrpc_lun *rlun;
1268         struct rrpc_block *rblk;
1269         int lun_iter, blk_iter;
1270
1271         for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
1272                 rlun = &rrpc->luns[lun_iter];
1273
1274                 for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
1275                                                                 blk_iter++) {
1276                         rblk = &rlun->blocks[blk_iter];
1277                         rrpc_block_map_update(rrpc, rblk);
1278                 }
1279         }
1280
1281         return 0;
1282 }
1283
1284 static int rrpc_luns_configure(struct rrpc *rrpc)
1285 {
1286         struct rrpc_lun *rlun;
1287         struct rrpc_block *rblk;
1288         int i;
1289
1290         for (i = 0; i < rrpc->nr_luns; i++) {
1291                 rlun = &rrpc->luns[i];
1292
1293                 rblk = rrpc_get_blk(rrpc, rlun, 0);
1294                 if (!rblk)
1295                         goto err;
1296
1297                 rrpc_set_lun_cur(rlun, rblk);
1298
1299                 /* Emergency gc block */
1300                 rblk = rrpc_get_blk(rrpc, rlun, 1);
1301                 if (!rblk)
1302                         goto err;
1303                 rlun->gc_cur = rblk;
1304         }
1305
1306         return 0;
1307 err:
1308         rrpc_put_blks(rrpc);
1309         return -EINVAL;
1310 }
1311
1312 static struct nvm_tgt_type tt_rrpc;
1313
1314 static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
1315                                                 int lun_begin, int lun_end)
1316 {
1317         struct request_queue *bqueue = dev->q;
1318         struct request_queue *tqueue = tdisk->queue;
1319         struct rrpc *rrpc;
1320         int ret;
1321
1322         if (!(dev->identity.dom & NVM_RSP_L2P)) {
1323                 pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1324                                                         dev->identity.dom);
1325                 return ERR_PTR(-EINVAL);
1326         }
1327
1328         rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
1329         if (!rrpc)
1330                 return ERR_PTR(-ENOMEM);
1331
1332         rrpc->instance.tt = &tt_rrpc;
1333         rrpc->dev = dev;
1334         rrpc->disk = tdisk;
1335
1336         bio_list_init(&rrpc->requeue_bios);
1337         spin_lock_init(&rrpc->bio_lock);
1338         INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
1339
1340         rrpc->nr_luns = lun_end - lun_begin + 1;
1341
1342         /* simple round-robin strategy */
1343         atomic_set(&rrpc->next_lun, -1);
1344
1345         ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
1346         if (ret) {
1347                 pr_err("nvm: rrpc: could not initialize luns\n");
1348                 goto err;
1349         }
1350
1351         rrpc->poffset = dev->sec_per_lun * lun_begin;
1352         rrpc->lun_offset = lun_begin;
1353
1354         ret = rrpc_core_init(rrpc);
1355         if (ret) {
1356                 pr_err("nvm: rrpc: could not initialize core\n");
1357                 goto err;
1358         }
1359
1360         ret = rrpc_map_init(rrpc);
1361         if (ret) {
1362                 pr_err("nvm: rrpc: could not initialize maps\n");
1363                 goto err;
1364         }
1365
1366         ret = rrpc_blocks_init(rrpc);
1367         if (ret) {
1368                 pr_err("nvm: rrpc: could not initialize state for blocks\n");
1369                 goto err;
1370         }
1371
1372         ret = rrpc_luns_configure(rrpc);
1373         if (ret) {
1374                 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1375                 goto err;
1376         }
1377
1378         ret = rrpc_gc_init(rrpc);
1379         if (ret) {
1380                 pr_err("nvm: rrpc: could not initialize gc\n");
1381                 goto err;
1382         }
1383
1384         /* inherit the size from the underlying device */
1385         blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
1386         blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
1387
1388         pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1389                         rrpc->nr_luns, (unsigned long long)rrpc->nr_pages);
1390
1391         mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
1392
1393         return rrpc;
1394 err:
1395         rrpc_free(rrpc);
1396         return ERR_PTR(ret);
1397 }
1398
1399 /* round robin, page-based FTL, and cost-based GC */
1400 static struct nvm_tgt_type tt_rrpc = {
1401         .name           = "rrpc",
1402         .version        = {1, 0, 0},
1403
1404         .make_rq        = rrpc_make_rq,
1405         .capacity       = rrpc_capacity,
1406         .end_io         = rrpc_end_io,
1407
1408         .init           = rrpc_init,
1409         .exit           = rrpc_exit,
1410 };
1411
1412 static int __init rrpc_module_init(void)
1413 {
1414         return nvm_register_target(&tt_rrpc);
1415 }
1416
1417 static void rrpc_module_exit(void)
1418 {
1419         nvm_unregister_target(&tt_rrpc);
1420 }
1421
1422 module_init(rrpc_module_init);
1423 module_exit(rrpc_module_exit);
1424 MODULE_LICENSE("GPL v2");
1425 MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");