Merge remote-tracking branch 'asoc/topic/omap' into asoc-next
[cascardo/linux.git] / drivers / lightnvm / rrpc.c
1 /*
2  * Copyright (C) 2015 IT University of Copenhagen
3  * Initial release: Matias Bjorling <m@bjorling.me>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License version
7  * 2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
15  */
16
17 #include "rrpc.h"
18
19 static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
20 static DECLARE_RWSEM(rrpc_lock);
21
22 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
23                                 struct nvm_rq *rqd, unsigned long flags);
24
25 #define rrpc_for_each_lun(rrpc, rlun, i) \
26                 for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27                         (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
28
29 static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
30 {
31         struct rrpc_block *rblk = a->rblk;
32         unsigned int pg_offset;
33
34         lockdep_assert_held(&rrpc->rev_lock);
35
36         if (a->addr == ADDR_EMPTY || !rblk)
37                 return;
38
39         spin_lock(&rblk->lock);
40
41         div_u64_rem(a->addr, rrpc->dev->sec_per_blk, &pg_offset);
42         WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
43         rblk->nr_invalid_pages++;
44
45         spin_unlock(&rblk->lock);
46
47         rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
48 }
49
50 static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
51                                                                 unsigned len)
52 {
53         sector_t i;
54
55         spin_lock(&rrpc->rev_lock);
56         for (i = slba; i < slba + len; i++) {
57                 struct rrpc_addr *gp = &rrpc->trans_map[i];
58
59                 rrpc_page_invalidate(rrpc, gp);
60                 gp->rblk = NULL;
61         }
62         spin_unlock(&rrpc->rev_lock);
63 }
64
65 static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
66                                         sector_t laddr, unsigned int pages)
67 {
68         struct nvm_rq *rqd;
69         struct rrpc_inflight_rq *inf;
70
71         rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
72         if (!rqd)
73                 return ERR_PTR(-ENOMEM);
74
75         inf = rrpc_get_inflight_rq(rqd);
76         if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
77                 mempool_free(rqd, rrpc->rq_pool);
78                 return NULL;
79         }
80
81         return rqd;
82 }
83
84 static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
85 {
86         struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
87
88         rrpc_unlock_laddr(rrpc, inf);
89
90         mempool_free(rqd, rrpc->rq_pool);
91 }
92
93 static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
94 {
95         sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
96         sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
97         struct nvm_rq *rqd;
98
99         do {
100                 rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
101                 schedule();
102         } while (!rqd);
103
104         if (IS_ERR(rqd)) {
105                 pr_err("rrpc: unable to acquire inflight IO\n");
106                 bio_io_error(bio);
107                 return;
108         }
109
110         rrpc_invalidate_range(rrpc, slba, len);
111         rrpc_inflight_laddr_release(rrpc, rqd);
112 }
113
114 static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
115 {
116         return (rblk->next_page == rrpc->dev->sec_per_blk);
117 }
118
119 /* Calculate relative addr for the given block, considering instantiated LUNs */
120 static u64 block_to_rel_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
121 {
122         struct nvm_block *blk = rblk->parent;
123         int lun_blk = blk->id % (rrpc->dev->blks_per_lun * rrpc->nr_luns);
124
125         return lun_blk * rrpc->dev->sec_per_blk;
126 }
127
128 /* Calculate global addr for the given block */
129 static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
130 {
131         struct nvm_block *blk = rblk->parent;
132
133         return blk->id * rrpc->dev->sec_per_blk;
134 }
135
136 static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
137                                                         struct ppa_addr r)
138 {
139         struct ppa_addr l;
140         int secs, pgs, blks, luns;
141         sector_t ppa = r.ppa;
142
143         l.ppa = 0;
144
145         div_u64_rem(ppa, dev->sec_per_pg, &secs);
146         l.g.sec = secs;
147
148         sector_div(ppa, dev->sec_per_pg);
149         div_u64_rem(ppa, dev->pgs_per_blk, &pgs);
150         l.g.pg = pgs;
151
152         sector_div(ppa, dev->pgs_per_blk);
153         div_u64_rem(ppa, dev->blks_per_lun, &blks);
154         l.g.blk = blks;
155
156         sector_div(ppa, dev->blks_per_lun);
157         div_u64_rem(ppa, dev->luns_per_chnl, &luns);
158         l.g.lun = luns;
159
160         sector_div(ppa, dev->luns_per_chnl);
161         l.g.ch = ppa;
162
163         return l;
164 }
165
166 static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
167 {
168         struct ppa_addr paddr;
169
170         paddr.ppa = addr;
171         return linear_to_generic_addr(dev, paddr);
172 }
173
174 /* requires lun->lock taken */
175 static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
176 {
177         struct rrpc *rrpc = rlun->rrpc;
178
179         BUG_ON(!rblk);
180
181         if (rlun->cur) {
182                 spin_lock(&rlun->cur->lock);
183                 WARN_ON(!block_is_full(rrpc, rlun->cur));
184                 spin_unlock(&rlun->cur->lock);
185         }
186         rlun->cur = rblk;
187 }
188
189 static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
190                                                         unsigned long flags)
191 {
192         struct nvm_lun *lun = rlun->parent;
193         struct nvm_block *blk;
194         struct rrpc_block *rblk;
195
196         spin_lock(&lun->lock);
197         blk = nvm_get_blk_unlocked(rrpc->dev, rlun->parent, flags);
198         if (!blk) {
199                 pr_err("nvm: rrpc: cannot get new block from media manager\n");
200                 spin_unlock(&lun->lock);
201                 return NULL;
202         }
203
204         rblk = rrpc_get_rblk(rlun, blk->id);
205         list_add_tail(&rblk->list, &rlun->open_list);
206         spin_unlock(&lun->lock);
207
208         blk->priv = rblk;
209         bitmap_zero(rblk->invalid_pages, rrpc->dev->sec_per_blk);
210         rblk->next_page = 0;
211         rblk->nr_invalid_pages = 0;
212         atomic_set(&rblk->data_cmnt_size, 0);
213
214         return rblk;
215 }
216
217 static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
218 {
219         struct rrpc_lun *rlun = rblk->rlun;
220         struct nvm_lun *lun = rlun->parent;
221
222         spin_lock(&lun->lock);
223         nvm_put_blk_unlocked(rrpc->dev, rblk->parent);
224         list_del(&rblk->list);
225         spin_unlock(&lun->lock);
226 }
227
228 static void rrpc_put_blks(struct rrpc *rrpc)
229 {
230         struct rrpc_lun *rlun;
231         int i;
232
233         for (i = 0; i < rrpc->nr_luns; i++) {
234                 rlun = &rrpc->luns[i];
235                 if (rlun->cur)
236                         rrpc_put_blk(rrpc, rlun->cur);
237                 if (rlun->gc_cur)
238                         rrpc_put_blk(rrpc, rlun->gc_cur);
239         }
240 }
241
242 static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
243 {
244         int next = atomic_inc_return(&rrpc->next_lun);
245
246         return &rrpc->luns[next % rrpc->nr_luns];
247 }
248
249 static void rrpc_gc_kick(struct rrpc *rrpc)
250 {
251         struct rrpc_lun *rlun;
252         unsigned int i;
253
254         for (i = 0; i < rrpc->nr_luns; i++) {
255                 rlun = &rrpc->luns[i];
256                 queue_work(rrpc->krqd_wq, &rlun->ws_gc);
257         }
258 }
259
260 /*
261  * timed GC every interval.
262  */
263 static void rrpc_gc_timer(unsigned long data)
264 {
265         struct rrpc *rrpc = (struct rrpc *)data;
266
267         rrpc_gc_kick(rrpc);
268         mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
269 }
270
271 static void rrpc_end_sync_bio(struct bio *bio)
272 {
273         struct completion *waiting = bio->bi_private;
274
275         if (bio->bi_error)
276                 pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
277
278         complete(waiting);
279 }
280
281 /*
282  * rrpc_move_valid_pages -- migrate live data off the block
283  * @rrpc: the 'rrpc' structure
284  * @block: the block from which to migrate live pages
285  *
286  * Description:
287  *   GC algorithms may call this function to migrate remaining live
288  *   pages off the block prior to erasing it. This function blocks
289  *   further execution until the operation is complete.
290  */
291 static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
292 {
293         struct request_queue *q = rrpc->dev->q;
294         struct rrpc_rev_addr *rev;
295         struct nvm_rq *rqd;
296         struct bio *bio;
297         struct page *page;
298         int slot;
299         int nr_sec_per_blk = rrpc->dev->sec_per_blk;
300         u64 phys_addr;
301         DECLARE_COMPLETION_ONSTACK(wait);
302
303         if (bitmap_full(rblk->invalid_pages, nr_sec_per_blk))
304                 return 0;
305
306         bio = bio_alloc(GFP_NOIO, 1);
307         if (!bio) {
308                 pr_err("nvm: could not alloc bio to gc\n");
309                 return -ENOMEM;
310         }
311
312         page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
313         if (!page) {
314                 bio_put(bio);
315                 return -ENOMEM;
316         }
317
318         while ((slot = find_first_zero_bit(rblk->invalid_pages,
319                                             nr_sec_per_blk)) < nr_sec_per_blk) {
320
321                 /* Lock laddr */
322                 phys_addr = rblk->parent->id * nr_sec_per_blk + slot;
323
324 try:
325                 spin_lock(&rrpc->rev_lock);
326                 /* Get logical address from physical to logical table */
327                 rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
328                 /* already updated by previous regular write */
329                 if (rev->addr == ADDR_EMPTY) {
330                         spin_unlock(&rrpc->rev_lock);
331                         continue;
332                 }
333
334                 rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
335                 if (IS_ERR_OR_NULL(rqd)) {
336                         spin_unlock(&rrpc->rev_lock);
337                         schedule();
338                         goto try;
339                 }
340
341                 spin_unlock(&rrpc->rev_lock);
342
343                 /* Perform read to do GC */
344                 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
345                 bio->bi_rw = READ;
346                 bio->bi_private = &wait;
347                 bio->bi_end_io = rrpc_end_sync_bio;
348
349                 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
350                 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
351
352                 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
353                         pr_err("rrpc: gc read failed.\n");
354                         rrpc_inflight_laddr_release(rrpc, rqd);
355                         goto finished;
356                 }
357                 wait_for_completion_io(&wait);
358                 if (bio->bi_error) {
359                         rrpc_inflight_laddr_release(rrpc, rqd);
360                         goto finished;
361                 }
362
363                 bio_reset(bio);
364                 reinit_completion(&wait);
365
366                 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
367                 bio->bi_rw = WRITE;
368                 bio->bi_private = &wait;
369                 bio->bi_end_io = rrpc_end_sync_bio;
370
371                 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
372
373                 /* turn the command around and write the data back to a new
374                  * address
375                  */
376                 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
377                         pr_err("rrpc: gc write failed.\n");
378                         rrpc_inflight_laddr_release(rrpc, rqd);
379                         goto finished;
380                 }
381                 wait_for_completion_io(&wait);
382
383                 rrpc_inflight_laddr_release(rrpc, rqd);
384                 if (bio->bi_error)
385                         goto finished;
386
387                 bio_reset(bio);
388         }
389
390 finished:
391         mempool_free(page, rrpc->page_pool);
392         bio_put(bio);
393
394         if (!bitmap_full(rblk->invalid_pages, nr_sec_per_blk)) {
395                 pr_err("nvm: failed to garbage collect block\n");
396                 return -EIO;
397         }
398
399         return 0;
400 }
401
402 static void rrpc_block_gc(struct work_struct *work)
403 {
404         struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
405                                                                         ws_gc);
406         struct rrpc *rrpc = gcb->rrpc;
407         struct rrpc_block *rblk = gcb->rblk;
408         struct nvm_dev *dev = rrpc->dev;
409         struct nvm_lun *lun = rblk->parent->lun;
410         struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
411
412         mempool_free(gcb, rrpc->gcb_pool);
413         pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
414
415         if (rrpc_move_valid_pages(rrpc, rblk))
416                 goto put_back;
417
418         if (nvm_erase_blk(dev, rblk->parent))
419                 goto put_back;
420
421         rrpc_put_blk(rrpc, rblk);
422
423         return;
424
425 put_back:
426         spin_lock(&rlun->lock);
427         list_add_tail(&rblk->prio, &rlun->prio_list);
428         spin_unlock(&rlun->lock);
429 }
430
431 /* the block with highest number of invalid pages, will be in the beginning
432  * of the list
433  */
434 static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
435                                                         struct rrpc_block *rb)
436 {
437         if (ra->nr_invalid_pages == rb->nr_invalid_pages)
438                 return ra;
439
440         return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
441 }
442
443 /* linearly find the block with highest number of invalid pages
444  * requires lun->lock
445  */
446 static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
447 {
448         struct list_head *prio_list = &rlun->prio_list;
449         struct rrpc_block *rblock, *max;
450
451         BUG_ON(list_empty(prio_list));
452
453         max = list_first_entry(prio_list, struct rrpc_block, prio);
454         list_for_each_entry(rblock, prio_list, prio)
455                 max = rblock_max_invalid(max, rblock);
456
457         return max;
458 }
459
460 static void rrpc_lun_gc(struct work_struct *work)
461 {
462         struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
463         struct rrpc *rrpc = rlun->rrpc;
464         struct nvm_lun *lun = rlun->parent;
465         struct rrpc_block_gc *gcb;
466         unsigned int nr_blocks_need;
467
468         nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
469
470         if (nr_blocks_need < rrpc->nr_luns)
471                 nr_blocks_need = rrpc->nr_luns;
472
473         spin_lock(&rlun->lock);
474         while (nr_blocks_need > lun->nr_free_blocks &&
475                                         !list_empty(&rlun->prio_list)) {
476                 struct rrpc_block *rblock = block_prio_find_max(rlun);
477                 struct nvm_block *block = rblock->parent;
478
479                 if (!rblock->nr_invalid_pages)
480                         break;
481
482                 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
483                 if (!gcb)
484                         break;
485
486                 list_del_init(&rblock->prio);
487
488                 BUG_ON(!block_is_full(rrpc, rblock));
489
490                 pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
491
492                 gcb->rrpc = rrpc;
493                 gcb->rblk = rblock;
494                 INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
495
496                 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
497
498                 nr_blocks_need--;
499         }
500         spin_unlock(&rlun->lock);
501
502         /* TODO: Hint that request queue can be started again */
503 }
504
505 static void rrpc_gc_queue(struct work_struct *work)
506 {
507         struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
508                                                                         ws_gc);
509         struct rrpc *rrpc = gcb->rrpc;
510         struct rrpc_block *rblk = gcb->rblk;
511         struct nvm_lun *lun = rblk->parent->lun;
512         struct nvm_block *blk = rblk->parent;
513         struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
514
515         spin_lock(&rlun->lock);
516         list_add_tail(&rblk->prio, &rlun->prio_list);
517         spin_unlock(&rlun->lock);
518
519         spin_lock(&lun->lock);
520         lun->nr_open_blocks--;
521         lun->nr_closed_blocks++;
522         blk->state &= ~NVM_BLK_ST_OPEN;
523         blk->state |= NVM_BLK_ST_CLOSED;
524         list_move_tail(&rblk->list, &rlun->closed_list);
525         spin_unlock(&lun->lock);
526
527         mempool_free(gcb, rrpc->gcb_pool);
528         pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
529                                                         rblk->parent->id);
530 }
531
532 static const struct block_device_operations rrpc_fops = {
533         .owner          = THIS_MODULE,
534 };
535
536 static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
537 {
538         unsigned int i;
539         struct rrpc_lun *rlun, *max_free;
540
541         if (!is_gc)
542                 return get_next_lun(rrpc);
543
544         /* during GC, we don't care about RR, instead we want to make
545          * sure that we maintain evenness between the block luns.
546          */
547         max_free = &rrpc->luns[0];
548         /* prevent GC-ing lun from devouring pages of a lun with
549          * little free blocks. We don't take the lock as we only need an
550          * estimate.
551          */
552         rrpc_for_each_lun(rrpc, rlun, i) {
553                 if (rlun->parent->nr_free_blocks >
554                                         max_free->parent->nr_free_blocks)
555                         max_free = rlun;
556         }
557
558         return max_free;
559 }
560
561 static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
562                                         struct rrpc_block *rblk, u64 paddr)
563 {
564         struct rrpc_addr *gp;
565         struct rrpc_rev_addr *rev;
566
567         BUG_ON(laddr >= rrpc->nr_sects);
568
569         gp = &rrpc->trans_map[laddr];
570         spin_lock(&rrpc->rev_lock);
571         if (gp->rblk)
572                 rrpc_page_invalidate(rrpc, gp);
573
574         gp->addr = paddr;
575         gp->rblk = rblk;
576
577         rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
578         rev->addr = laddr;
579         spin_unlock(&rrpc->rev_lock);
580
581         return gp;
582 }
583
584 static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
585 {
586         u64 addr = ADDR_EMPTY;
587
588         spin_lock(&rblk->lock);
589         if (block_is_full(rrpc, rblk))
590                 goto out;
591
592         addr = block_to_addr(rrpc, rblk) + rblk->next_page;
593
594         rblk->next_page++;
595 out:
596         spin_unlock(&rblk->lock);
597         return addr;
598 }
599
600 /* Simple round-robin Logical to physical address translation.
601  *
602  * Retrieve the mapping using the active append point. Then update the ap for
603  * the next write to the disk.
604  *
605  * Returns rrpc_addr with the physical address and block. Remember to return to
606  * rrpc->addr_cache when request is finished.
607  */
608 static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
609                                                                 int is_gc)
610 {
611         struct rrpc_lun *rlun;
612         struct rrpc_block *rblk;
613         struct nvm_lun *lun;
614         u64 paddr;
615
616         rlun = rrpc_get_lun_rr(rrpc, is_gc);
617         lun = rlun->parent;
618
619         if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
620                 return NULL;
621
622         spin_lock(&rlun->lock);
623
624         rblk = rlun->cur;
625 retry:
626         paddr = rrpc_alloc_addr(rrpc, rblk);
627
628         if (paddr == ADDR_EMPTY) {
629                 rblk = rrpc_get_blk(rrpc, rlun, 0);
630                 if (rblk) {
631                         rrpc_set_lun_cur(rlun, rblk);
632                         goto retry;
633                 }
634
635                 if (is_gc) {
636                         /* retry from emergency gc block */
637                         paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
638                         if (paddr == ADDR_EMPTY) {
639                                 rblk = rrpc_get_blk(rrpc, rlun, 1);
640                                 if (!rblk) {
641                                         pr_err("rrpc: no more blocks");
642                                         goto err;
643                                 }
644
645                                 rlun->gc_cur = rblk;
646                                 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
647                         }
648                         rblk = rlun->gc_cur;
649                 }
650         }
651
652         spin_unlock(&rlun->lock);
653         return rrpc_update_map(rrpc, laddr, rblk, paddr);
654 err:
655         spin_unlock(&rlun->lock);
656         return NULL;
657 }
658
659 static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
660 {
661         struct rrpc_block_gc *gcb;
662
663         gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
664         if (!gcb) {
665                 pr_err("rrpc: unable to queue block for gc.");
666                 return;
667         }
668
669         gcb->rrpc = rrpc;
670         gcb->rblk = rblk;
671
672         INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
673         queue_work(rrpc->kgc_wq, &gcb->ws_gc);
674 }
675
676 static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
677                                                 sector_t laddr, uint8_t npages)
678 {
679         struct rrpc_addr *p;
680         struct rrpc_block *rblk;
681         struct nvm_lun *lun;
682         int cmnt_size, i;
683
684         for (i = 0; i < npages; i++) {
685                 p = &rrpc->trans_map[laddr + i];
686                 rblk = p->rblk;
687                 lun = rblk->parent->lun;
688
689                 cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
690                 if (unlikely(cmnt_size == rrpc->dev->sec_per_blk))
691                         rrpc_run_gc(rrpc, rblk);
692         }
693 }
694
695 static void rrpc_end_io(struct nvm_rq *rqd)
696 {
697         struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
698         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
699         uint8_t npages = rqd->nr_pages;
700         sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
701
702         if (bio_data_dir(rqd->bio) == WRITE)
703                 rrpc_end_io_write(rrpc, rrqd, laddr, npages);
704
705         bio_put(rqd->bio);
706
707         if (rrqd->flags & NVM_IOTYPE_GC)
708                 return;
709
710         rrpc_unlock_rq(rrpc, rqd);
711
712         if (npages > 1)
713                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
714         if (rqd->metadata)
715                 nvm_dev_dma_free(rrpc->dev, rqd->metadata, rqd->dma_metadata);
716
717         mempool_free(rqd, rrpc->rq_pool);
718 }
719
720 static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
721                         struct nvm_rq *rqd, unsigned long flags, int npages)
722 {
723         struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
724         struct rrpc_addr *gp;
725         sector_t laddr = rrpc_get_laddr(bio);
726         int is_gc = flags & NVM_IOTYPE_GC;
727         int i;
728
729         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
730                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
731                 return NVM_IO_REQUEUE;
732         }
733
734         for (i = 0; i < npages; i++) {
735                 /* We assume that mapping occurs at 4KB granularity */
736                 BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_sects));
737                 gp = &rrpc->trans_map[laddr + i];
738
739                 if (gp->rblk) {
740                         rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
741                                                                 gp->addr);
742                 } else {
743                         BUG_ON(is_gc);
744                         rrpc_unlock_laddr(rrpc, r);
745                         nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
746                                                         rqd->dma_ppa_list);
747                         return NVM_IO_DONE;
748                 }
749         }
750
751         rqd->opcode = NVM_OP_HBREAD;
752
753         return NVM_IO_OK;
754 }
755
756 static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
757                                                         unsigned long flags)
758 {
759         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
760         int is_gc = flags & NVM_IOTYPE_GC;
761         sector_t laddr = rrpc_get_laddr(bio);
762         struct rrpc_addr *gp;
763
764         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
765                 return NVM_IO_REQUEUE;
766
767         BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_sects));
768         gp = &rrpc->trans_map[laddr];
769
770         if (gp->rblk) {
771                 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
772         } else {
773                 BUG_ON(is_gc);
774                 rrpc_unlock_rq(rrpc, rqd);
775                 return NVM_IO_DONE;
776         }
777
778         rqd->opcode = NVM_OP_HBREAD;
779         rrqd->addr = gp;
780
781         return NVM_IO_OK;
782 }
783
784 static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
785                         struct nvm_rq *rqd, unsigned long flags, int npages)
786 {
787         struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
788         struct rrpc_addr *p;
789         sector_t laddr = rrpc_get_laddr(bio);
790         int is_gc = flags & NVM_IOTYPE_GC;
791         int i;
792
793         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
794                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
795                 return NVM_IO_REQUEUE;
796         }
797
798         for (i = 0; i < npages; i++) {
799                 /* We assume that mapping occurs at 4KB granularity */
800                 p = rrpc_map_page(rrpc, laddr + i, is_gc);
801                 if (!p) {
802                         BUG_ON(is_gc);
803                         rrpc_unlock_laddr(rrpc, r);
804                         nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
805                                                         rqd->dma_ppa_list);
806                         rrpc_gc_kick(rrpc);
807                         return NVM_IO_REQUEUE;
808                 }
809
810                 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
811                                                                 p->addr);
812         }
813
814         rqd->opcode = NVM_OP_HBWRITE;
815
816         return NVM_IO_OK;
817 }
818
819 static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
820                                 struct nvm_rq *rqd, unsigned long flags)
821 {
822         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
823         struct rrpc_addr *p;
824         int is_gc = flags & NVM_IOTYPE_GC;
825         sector_t laddr = rrpc_get_laddr(bio);
826
827         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
828                 return NVM_IO_REQUEUE;
829
830         p = rrpc_map_page(rrpc, laddr, is_gc);
831         if (!p) {
832                 BUG_ON(is_gc);
833                 rrpc_unlock_rq(rrpc, rqd);
834                 rrpc_gc_kick(rrpc);
835                 return NVM_IO_REQUEUE;
836         }
837
838         rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
839         rqd->opcode = NVM_OP_HBWRITE;
840         rrqd->addr = p;
841
842         return NVM_IO_OK;
843 }
844
845 static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
846                         struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
847 {
848         if (npages > 1) {
849                 rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
850                                                         &rqd->dma_ppa_list);
851                 if (!rqd->ppa_list) {
852                         pr_err("rrpc: not able to allocate ppa list\n");
853                         return NVM_IO_ERR;
854                 }
855
856                 if (bio_rw(bio) == WRITE)
857                         return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
858                                                                         npages);
859
860                 return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
861         }
862
863         if (bio_rw(bio) == WRITE)
864                 return rrpc_write_rq(rrpc, bio, rqd, flags);
865
866         return rrpc_read_rq(rrpc, bio, rqd, flags);
867 }
868
869 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
870                                 struct nvm_rq *rqd, unsigned long flags)
871 {
872         int err;
873         struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
874         uint8_t nr_pages = rrpc_get_pages(bio);
875         int bio_size = bio_sectors(bio) << 9;
876
877         if (bio_size < rrpc->dev->sec_size)
878                 return NVM_IO_ERR;
879         else if (bio_size > rrpc->dev->max_rq_size)
880                 return NVM_IO_ERR;
881
882         err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
883         if (err)
884                 return err;
885
886         bio_get(bio);
887         rqd->bio = bio;
888         rqd->ins = &rrpc->instance;
889         rqd->nr_pages = nr_pages;
890         rrq->flags = flags;
891
892         err = nvm_submit_io(rrpc->dev, rqd);
893         if (err) {
894                 pr_err("rrpc: I/O submission failed: %d\n", err);
895                 bio_put(bio);
896                 if (!(flags & NVM_IOTYPE_GC)) {
897                         rrpc_unlock_rq(rrpc, rqd);
898                         if (rqd->nr_pages > 1)
899                                 nvm_dev_dma_free(rrpc->dev,
900                         rqd->ppa_list, rqd->dma_ppa_list);
901                 }
902                 return NVM_IO_ERR;
903         }
904
905         return NVM_IO_OK;
906 }
907
908 static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
909 {
910         struct rrpc *rrpc = q->queuedata;
911         struct nvm_rq *rqd;
912         int err;
913
914         if (bio->bi_rw & REQ_DISCARD) {
915                 rrpc_discard(rrpc, bio);
916                 return BLK_QC_T_NONE;
917         }
918
919         rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
920         if (!rqd) {
921                 pr_err_ratelimited("rrpc: not able to queue bio.");
922                 bio_io_error(bio);
923                 return BLK_QC_T_NONE;
924         }
925         memset(rqd, 0, sizeof(struct nvm_rq));
926
927         err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
928         switch (err) {
929         case NVM_IO_OK:
930                 return BLK_QC_T_NONE;
931         case NVM_IO_ERR:
932                 bio_io_error(bio);
933                 break;
934         case NVM_IO_DONE:
935                 bio_endio(bio);
936                 break;
937         case NVM_IO_REQUEUE:
938                 spin_lock(&rrpc->bio_lock);
939                 bio_list_add(&rrpc->requeue_bios, bio);
940                 spin_unlock(&rrpc->bio_lock);
941                 queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
942                 break;
943         }
944
945         mempool_free(rqd, rrpc->rq_pool);
946         return BLK_QC_T_NONE;
947 }
948
949 static void rrpc_requeue(struct work_struct *work)
950 {
951         struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
952         struct bio_list bios;
953         struct bio *bio;
954
955         bio_list_init(&bios);
956
957         spin_lock(&rrpc->bio_lock);
958         bio_list_merge(&bios, &rrpc->requeue_bios);
959         bio_list_init(&rrpc->requeue_bios);
960         spin_unlock(&rrpc->bio_lock);
961
962         while ((bio = bio_list_pop(&bios)))
963                 rrpc_make_rq(rrpc->disk->queue, bio);
964 }
965
966 static void rrpc_gc_free(struct rrpc *rrpc)
967 {
968         if (rrpc->krqd_wq)
969                 destroy_workqueue(rrpc->krqd_wq);
970
971         if (rrpc->kgc_wq)
972                 destroy_workqueue(rrpc->kgc_wq);
973 }
974
975 static int rrpc_gc_init(struct rrpc *rrpc)
976 {
977         rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
978                                                                 rrpc->nr_luns);
979         if (!rrpc->krqd_wq)
980                 return -ENOMEM;
981
982         rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
983         if (!rrpc->kgc_wq)
984                 return -ENOMEM;
985
986         setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
987
988         return 0;
989 }
990
991 static void rrpc_map_free(struct rrpc *rrpc)
992 {
993         vfree(rrpc->rev_trans_map);
994         vfree(rrpc->trans_map);
995 }
996
997 static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
998 {
999         struct rrpc *rrpc = (struct rrpc *)private;
1000         struct nvm_dev *dev = rrpc->dev;
1001         struct rrpc_addr *addr = rrpc->trans_map + slba;
1002         struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
1003         u64 elba = slba + nlb;
1004         u64 i;
1005
1006         if (unlikely(elba > dev->total_secs)) {
1007                 pr_err("nvm: L2P data from device is out of bounds!\n");
1008                 return -EINVAL;
1009         }
1010
1011         for (i = 0; i < nlb; i++) {
1012                 u64 pba = le64_to_cpu(entries[i]);
1013                 unsigned int mod;
1014                 /* LNVM treats address-spaces as silos, LBA and PBA are
1015                  * equally large and zero-indexed.
1016                  */
1017                 if (unlikely(pba >= dev->total_secs && pba != U64_MAX)) {
1018                         pr_err("nvm: L2P data entry is out of bounds!\n");
1019                         return -EINVAL;
1020                 }
1021
1022                 /* Address zero is a special one. The first page on a disk is
1023                  * protected. As it often holds internal device boot
1024                  * information.
1025                  */
1026                 if (!pba)
1027                         continue;
1028
1029                 div_u64_rem(pba, rrpc->nr_sects, &mod);
1030
1031                 addr[i].addr = pba;
1032                 raddr[mod].addr = slba + i;
1033         }
1034
1035         return 0;
1036 }
1037
1038 static int rrpc_map_init(struct rrpc *rrpc)
1039 {
1040         struct nvm_dev *dev = rrpc->dev;
1041         sector_t i;
1042         u64 slba;
1043         int ret;
1044
1045         slba = rrpc->soffset >> (ilog2(dev->sec_size) - 9);
1046
1047         rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_sects);
1048         if (!rrpc->trans_map)
1049                 return -ENOMEM;
1050
1051         rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
1052                                                         * rrpc->nr_sects);
1053         if (!rrpc->rev_trans_map)
1054                 return -ENOMEM;
1055
1056         for (i = 0; i < rrpc->nr_sects; i++) {
1057                 struct rrpc_addr *p = &rrpc->trans_map[i];
1058                 struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
1059
1060                 p->addr = ADDR_EMPTY;
1061                 r->addr = ADDR_EMPTY;
1062         }
1063
1064         if (!dev->ops->get_l2p_tbl)
1065                 return 0;
1066
1067         /* Bring up the mapping table from device */
1068         ret = dev->ops->get_l2p_tbl(dev, slba, rrpc->nr_sects, rrpc_l2p_update,
1069                                                                         rrpc);
1070         if (ret) {
1071                 pr_err("nvm: rrpc: could not read L2P table.\n");
1072                 return -EINVAL;
1073         }
1074
1075         return 0;
1076 }
1077
1078 /* Minimum pages needed within a lun */
1079 #define PAGE_POOL_SIZE 16
1080 #define ADDR_POOL_SIZE 64
1081
1082 static int rrpc_core_init(struct rrpc *rrpc)
1083 {
1084         down_write(&rrpc_lock);
1085         if (!rrpc_gcb_cache) {
1086                 rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
1087                                 sizeof(struct rrpc_block_gc), 0, 0, NULL);
1088                 if (!rrpc_gcb_cache) {
1089                         up_write(&rrpc_lock);
1090                         return -ENOMEM;
1091                 }
1092
1093                 rrpc_rq_cache = kmem_cache_create("rrpc_rq",
1094                                 sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
1095                                 0, 0, NULL);
1096                 if (!rrpc_rq_cache) {
1097                         kmem_cache_destroy(rrpc_gcb_cache);
1098                         up_write(&rrpc_lock);
1099                         return -ENOMEM;
1100                 }
1101         }
1102         up_write(&rrpc_lock);
1103
1104         rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
1105         if (!rrpc->page_pool)
1106                 return -ENOMEM;
1107
1108         rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
1109                                                                 rrpc_gcb_cache);
1110         if (!rrpc->gcb_pool)
1111                 return -ENOMEM;
1112
1113         rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
1114         if (!rrpc->rq_pool)
1115                 return -ENOMEM;
1116
1117         spin_lock_init(&rrpc->inflights.lock);
1118         INIT_LIST_HEAD(&rrpc->inflights.reqs);
1119
1120         return 0;
1121 }
1122
1123 static void rrpc_core_free(struct rrpc *rrpc)
1124 {
1125         mempool_destroy(rrpc->page_pool);
1126         mempool_destroy(rrpc->gcb_pool);
1127         mempool_destroy(rrpc->rq_pool);
1128 }
1129
1130 static void rrpc_luns_free(struct rrpc *rrpc)
1131 {
1132         struct nvm_dev *dev = rrpc->dev;
1133         struct nvm_lun *lun;
1134         struct rrpc_lun *rlun;
1135         int i;
1136
1137         if (!rrpc->luns)
1138                 return;
1139
1140         for (i = 0; i < rrpc->nr_luns; i++) {
1141                 rlun = &rrpc->luns[i];
1142                 lun = rlun->parent;
1143                 if (!lun)
1144                         break;
1145                 dev->mt->release_lun(dev, lun->id);
1146                 vfree(rlun->blocks);
1147         }
1148
1149         kfree(rrpc->luns);
1150 }
1151
1152 static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
1153 {
1154         struct nvm_dev *dev = rrpc->dev;
1155         struct rrpc_lun *rlun;
1156         int i, j, ret = -EINVAL;
1157
1158         if (dev->sec_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
1159                 pr_err("rrpc: number of pages per block too high.");
1160                 return -EINVAL;
1161         }
1162
1163         spin_lock_init(&rrpc->rev_lock);
1164
1165         rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
1166                                                                 GFP_KERNEL);
1167         if (!rrpc->luns)
1168                 return -ENOMEM;
1169
1170         /* 1:1 mapping */
1171         for (i = 0; i < rrpc->nr_luns; i++) {
1172                 int lunid = lun_begin + i;
1173                 struct nvm_lun *lun;
1174
1175                 if (dev->mt->reserve_lun(dev, lunid)) {
1176                         pr_err("rrpc: lun %u is already allocated\n", lunid);
1177                         goto err;
1178                 }
1179
1180                 lun = dev->mt->get_lun(dev, lunid);
1181                 if (!lun)
1182                         goto err;
1183
1184                 rlun = &rrpc->luns[i];
1185                 rlun->parent = lun;
1186                 rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
1187                                                 rrpc->dev->blks_per_lun);
1188                 if (!rlun->blocks) {
1189                         ret = -ENOMEM;
1190                         goto err;
1191                 }
1192
1193                 for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
1194                         struct rrpc_block *rblk = &rlun->blocks[j];
1195                         struct nvm_block *blk = &lun->blocks[j];
1196
1197                         rblk->parent = blk;
1198                         rblk->rlun = rlun;
1199                         INIT_LIST_HEAD(&rblk->prio);
1200                         spin_lock_init(&rblk->lock);
1201                 }
1202
1203                 rlun->rrpc = rrpc;
1204                 INIT_LIST_HEAD(&rlun->prio_list);
1205                 INIT_LIST_HEAD(&rlun->open_list);
1206                 INIT_LIST_HEAD(&rlun->closed_list);
1207
1208                 INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
1209                 spin_lock_init(&rlun->lock);
1210
1211                 rrpc->total_blocks += dev->blks_per_lun;
1212                 rrpc->nr_sects += dev->sec_per_lun;
1213
1214         }
1215
1216         return 0;
1217 err:
1218         return ret;
1219 }
1220
1221 /* returns 0 on success and stores the beginning address in *begin */
1222 static int rrpc_area_init(struct rrpc *rrpc, sector_t *begin)
1223 {
1224         struct nvm_dev *dev = rrpc->dev;
1225         struct nvmm_type *mt = dev->mt;
1226         sector_t size = rrpc->nr_sects * dev->sec_size;
1227
1228         size >>= 9;
1229
1230         return mt->get_area(dev, begin, size);
1231 }
1232
1233 static void rrpc_area_free(struct rrpc *rrpc)
1234 {
1235         struct nvm_dev *dev = rrpc->dev;
1236         struct nvmm_type *mt = dev->mt;
1237
1238         mt->put_area(dev, rrpc->soffset);
1239 }
1240
1241 static void rrpc_free(struct rrpc *rrpc)
1242 {
1243         rrpc_gc_free(rrpc);
1244         rrpc_map_free(rrpc);
1245         rrpc_core_free(rrpc);
1246         rrpc_luns_free(rrpc);
1247         rrpc_area_free(rrpc);
1248
1249         kfree(rrpc);
1250 }
1251
1252 static void rrpc_exit(void *private)
1253 {
1254         struct rrpc *rrpc = private;
1255
1256         del_timer(&rrpc->gc_timer);
1257
1258         flush_workqueue(rrpc->krqd_wq);
1259         flush_workqueue(rrpc->kgc_wq);
1260
1261         rrpc_free(rrpc);
1262 }
1263
1264 static sector_t rrpc_capacity(void *private)
1265 {
1266         struct rrpc *rrpc = private;
1267         struct nvm_dev *dev = rrpc->dev;
1268         sector_t reserved, provisioned;
1269
1270         /* cur, gc, and two emergency blocks for each lun */
1271         reserved = rrpc->nr_luns * dev->max_pages_per_blk * 4;
1272         provisioned = rrpc->nr_sects - reserved;
1273
1274         if (reserved > rrpc->nr_sects) {
1275                 pr_err("rrpc: not enough space available to expose storage.\n");
1276                 return 0;
1277         }
1278
1279         sector_div(provisioned, 10);
1280         return provisioned * 9 * NR_PHY_IN_LOG;
1281 }
1282
1283 /*
1284  * Looks up the logical address from reverse trans map and check if its valid by
1285  * comparing the logical to physical address with the physical address.
1286  * Returns 0 on free, otherwise 1 if in use
1287  */
1288 static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
1289 {
1290         struct nvm_dev *dev = rrpc->dev;
1291         int offset;
1292         struct rrpc_addr *laddr;
1293         u64 bpaddr, paddr, pladdr;
1294
1295         bpaddr = block_to_rel_addr(rrpc, rblk);
1296         for (offset = 0; offset < dev->sec_per_blk; offset++) {
1297                 paddr = bpaddr + offset;
1298
1299                 pladdr = rrpc->rev_trans_map[paddr].addr;
1300                 if (pladdr == ADDR_EMPTY)
1301                         continue;
1302
1303                 laddr = &rrpc->trans_map[pladdr];
1304
1305                 if (paddr == laddr->addr) {
1306                         laddr->rblk = rblk;
1307                 } else {
1308                         set_bit(offset, rblk->invalid_pages);
1309                         rblk->nr_invalid_pages++;
1310                 }
1311         }
1312 }
1313
1314 static int rrpc_blocks_init(struct rrpc *rrpc)
1315 {
1316         struct rrpc_lun *rlun;
1317         struct rrpc_block *rblk;
1318         int lun_iter, blk_iter;
1319
1320         for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
1321                 rlun = &rrpc->luns[lun_iter];
1322
1323                 for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
1324                                                                 blk_iter++) {
1325                         rblk = &rlun->blocks[blk_iter];
1326                         rrpc_block_map_update(rrpc, rblk);
1327                 }
1328         }
1329
1330         return 0;
1331 }
1332
1333 static int rrpc_luns_configure(struct rrpc *rrpc)
1334 {
1335         struct rrpc_lun *rlun;
1336         struct rrpc_block *rblk;
1337         int i;
1338
1339         for (i = 0; i < rrpc->nr_luns; i++) {
1340                 rlun = &rrpc->luns[i];
1341
1342                 rblk = rrpc_get_blk(rrpc, rlun, 0);
1343                 if (!rblk)
1344                         goto err;
1345
1346                 rrpc_set_lun_cur(rlun, rblk);
1347
1348                 /* Emergency gc block */
1349                 rblk = rrpc_get_blk(rrpc, rlun, 1);
1350                 if (!rblk)
1351                         goto err;
1352                 rlun->gc_cur = rblk;
1353         }
1354
1355         return 0;
1356 err:
1357         rrpc_put_blks(rrpc);
1358         return -EINVAL;
1359 }
1360
1361 static struct nvm_tgt_type tt_rrpc;
1362
1363 static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
1364                                                 int lun_begin, int lun_end)
1365 {
1366         struct request_queue *bqueue = dev->q;
1367         struct request_queue *tqueue = tdisk->queue;
1368         struct rrpc *rrpc;
1369         sector_t soffset;
1370         int ret;
1371
1372         if (!(dev->identity.dom & NVM_RSP_L2P)) {
1373                 pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1374                                                         dev->identity.dom);
1375                 return ERR_PTR(-EINVAL);
1376         }
1377
1378         rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
1379         if (!rrpc)
1380                 return ERR_PTR(-ENOMEM);
1381
1382         rrpc->instance.tt = &tt_rrpc;
1383         rrpc->dev = dev;
1384         rrpc->disk = tdisk;
1385
1386         bio_list_init(&rrpc->requeue_bios);
1387         spin_lock_init(&rrpc->bio_lock);
1388         INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
1389
1390         rrpc->nr_luns = lun_end - lun_begin + 1;
1391
1392         /* simple round-robin strategy */
1393         atomic_set(&rrpc->next_lun, -1);
1394
1395         ret = rrpc_area_init(rrpc, &soffset);
1396         if (ret < 0) {
1397                 pr_err("nvm: rrpc: could not initialize area\n");
1398                 return ERR_PTR(ret);
1399         }
1400         rrpc->soffset = soffset;
1401
1402         ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
1403         if (ret) {
1404                 pr_err("nvm: rrpc: could not initialize luns\n");
1405                 goto err;
1406         }
1407
1408         rrpc->poffset = dev->sec_per_lun * lun_begin;
1409         rrpc->lun_offset = lun_begin;
1410
1411         ret = rrpc_core_init(rrpc);
1412         if (ret) {
1413                 pr_err("nvm: rrpc: could not initialize core\n");
1414                 goto err;
1415         }
1416
1417         ret = rrpc_map_init(rrpc);
1418         if (ret) {
1419                 pr_err("nvm: rrpc: could not initialize maps\n");
1420                 goto err;
1421         }
1422
1423         ret = rrpc_blocks_init(rrpc);
1424         if (ret) {
1425                 pr_err("nvm: rrpc: could not initialize state for blocks\n");
1426                 goto err;
1427         }
1428
1429         ret = rrpc_luns_configure(rrpc);
1430         if (ret) {
1431                 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1432                 goto err;
1433         }
1434
1435         ret = rrpc_gc_init(rrpc);
1436         if (ret) {
1437                 pr_err("nvm: rrpc: could not initialize gc\n");
1438                 goto err;
1439         }
1440
1441         /* inherit the size from the underlying device */
1442         blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
1443         blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
1444
1445         pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1446                         rrpc->nr_luns, (unsigned long long)rrpc->nr_sects);
1447
1448         mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
1449
1450         return rrpc;
1451 err:
1452         rrpc_free(rrpc);
1453         return ERR_PTR(ret);
1454 }
1455
1456 /* round robin, page-based FTL, and cost-based GC */
1457 static struct nvm_tgt_type tt_rrpc = {
1458         .name           = "rrpc",
1459         .version        = {1, 0, 0},
1460
1461         .make_rq        = rrpc_make_rq,
1462         .capacity       = rrpc_capacity,
1463         .end_io         = rrpc_end_io,
1464
1465         .init           = rrpc_init,
1466         .exit           = rrpc_exit,
1467 };
1468
1469 static int __init rrpc_module_init(void)
1470 {
1471         return nvm_register_target(&tt_rrpc);
1472 }
1473
1474 static void rrpc_module_exit(void)
1475 {
1476         nvm_unregister_target(&tt_rrpc);
1477 }
1478
1479 module_init(rrpc_module_init);
1480 module_exit(rrpc_module_exit);
1481 MODULE_LICENSE("GPL v2");
1482 MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");