Merge tag 'blackfin-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/realm...
[cascardo/linux.git] / drivers / md / bcache / request.c
1 /*
2  * Main bcache entry point - handle a read or a write request and decide what to
3  * do with it; the make_request functions are called by the block layer.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14
15 #include <linux/module.h>
16 #include <linux/hash.h>
17 #include <linux/random.h>
18
19 #include <trace/events/bcache.h>
20
21 #define CUTOFF_CACHE_ADD        95
22 #define CUTOFF_CACHE_READA      90
23
24 struct kmem_cache *bch_search_cache;
25
26 static void bch_data_insert_start(struct closure *);
27
28 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
29 {
30         return BDEV_CACHE_MODE(&dc->sb);
31 }
32
33 static bool verify(struct cached_dev *dc, struct bio *bio)
34 {
35         return dc->verify;
36 }
37
38 static void bio_csum(struct bio *bio, struct bkey *k)
39 {
40         struct bio_vec bv;
41         struct bvec_iter iter;
42         uint64_t csum = 0;
43
44         bio_for_each_segment(bv, bio, iter) {
45                 void *d = kmap(bv.bv_page) + bv.bv_offset;
46                 csum = bch_crc64_update(csum, d, bv.bv_len);
47                 kunmap(bv.bv_page);
48         }
49
50         k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
51 }
52
53 /* Insert data into cache */
54
55 static void bch_data_insert_keys(struct closure *cl)
56 {
57         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
58         atomic_t *journal_ref = NULL;
59         struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
60         int ret;
61
62         /*
63          * If we're looping, might already be waiting on
64          * another journal write - can't wait on more than one journal write at
65          * a time
66          *
67          * XXX: this looks wrong
68          */
69 #if 0
70         while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
71                 closure_sync(&s->cl);
72 #endif
73
74         if (!op->replace)
75                 journal_ref = bch_journal(op->c, &op->insert_keys,
76                                           op->flush_journal ? cl : NULL);
77
78         ret = bch_btree_insert(op->c, &op->insert_keys,
79                                journal_ref, replace_key);
80         if (ret == -ESRCH) {
81                 op->replace_collision = true;
82         } else if (ret) {
83                 op->error               = -ENOMEM;
84                 op->insert_data_done    = true;
85         }
86
87         if (journal_ref)
88                 atomic_dec_bug(journal_ref);
89
90         if (!op->insert_data_done)
91                 continue_at(cl, bch_data_insert_start, op->wq);
92
93         bch_keylist_free(&op->insert_keys);
94         closure_return(cl);
95 }
96
97 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
98                                struct cache_set *c)
99 {
100         size_t oldsize = bch_keylist_nkeys(l);
101         size_t newsize = oldsize + u64s;
102
103         /*
104          * The journalling code doesn't handle the case where the keys to insert
105          * is bigger than an empty write: If we just return -ENOMEM here,
106          * bio_insert() and bio_invalidate() will insert the keys created so far
107          * and finish the rest when the keylist is empty.
108          */
109         if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
110                 return -ENOMEM;
111
112         return __bch_keylist_realloc(l, u64s);
113 }
114
115 static void bch_data_invalidate(struct closure *cl)
116 {
117         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
118         struct bio *bio = op->bio;
119
120         pr_debug("invalidating %i sectors from %llu",
121                  bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
122
123         while (bio_sectors(bio)) {
124                 unsigned sectors = min(bio_sectors(bio),
125                                        1U << (KEY_SIZE_BITS - 1));
126
127                 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
128                         goto out;
129
130                 bio->bi_iter.bi_sector  += sectors;
131                 bio->bi_iter.bi_size    -= sectors << 9;
132
133                 bch_keylist_add(&op->insert_keys,
134                                 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
135         }
136
137         op->insert_data_done = true;
138         bio_put(bio);
139 out:
140         continue_at(cl, bch_data_insert_keys, op->wq);
141 }
142
143 static void bch_data_insert_error(struct closure *cl)
144 {
145         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
146
147         /*
148          * Our data write just errored, which means we've got a bunch of keys to
149          * insert that point to data that wasn't succesfully written.
150          *
151          * We don't have to insert those keys but we still have to invalidate
152          * that region of the cache - so, if we just strip off all the pointers
153          * from the keys we'll accomplish just that.
154          */
155
156         struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
157
158         while (src != op->insert_keys.top) {
159                 struct bkey *n = bkey_next(src);
160
161                 SET_KEY_PTRS(src, 0);
162                 memmove(dst, src, bkey_bytes(src));
163
164                 dst = bkey_next(dst);
165                 src = n;
166         }
167
168         op->insert_keys.top = dst;
169
170         bch_data_insert_keys(cl);
171 }
172
173 static void bch_data_insert_endio(struct bio *bio, int error)
174 {
175         struct closure *cl = bio->bi_private;
176         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
177
178         if (error) {
179                 /* TODO: We could try to recover from this. */
180                 if (op->writeback)
181                         op->error = error;
182                 else if (!op->replace)
183                         set_closure_fn(cl, bch_data_insert_error, op->wq);
184                 else
185                         set_closure_fn(cl, NULL, NULL);
186         }
187
188         bch_bbio_endio(op->c, bio, error, "writing data to cache");
189 }
190
191 static void bch_data_insert_start(struct closure *cl)
192 {
193         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
194         struct bio *bio = op->bio, *n;
195
196         if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
197                 set_gc_sectors(op->c);
198                 wake_up_gc(op->c);
199         }
200
201         if (op->bypass)
202                 return bch_data_invalidate(cl);
203
204         /*
205          * Journal writes are marked REQ_FLUSH; if the original write was a
206          * flush, it'll wait on the journal write.
207          */
208         bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
209
210         do {
211                 unsigned i;
212                 struct bkey *k;
213                 struct bio_set *split = op->c->bio_split;
214
215                 /* 1 for the device pointer and 1 for the chksum */
216                 if (bch_keylist_realloc(&op->insert_keys,
217                                         3 + (op->csum ? 1 : 0),
218                                         op->c))
219                         continue_at(cl, bch_data_insert_keys, op->wq);
220
221                 k = op->insert_keys.top;
222                 bkey_init(k);
223                 SET_KEY_INODE(k, op->inode);
224                 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
225
226                 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
227                                        op->write_point, op->write_prio,
228                                        op->writeback))
229                         goto err;
230
231                 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
232
233                 n->bi_end_io    = bch_data_insert_endio;
234                 n->bi_private   = cl;
235
236                 if (op->writeback) {
237                         SET_KEY_DIRTY(k, true);
238
239                         for (i = 0; i < KEY_PTRS(k); i++)
240                                 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
241                                             GC_MARK_DIRTY);
242                 }
243
244                 SET_KEY_CSUM(k, op->csum);
245                 if (KEY_CSUM(k))
246                         bio_csum(n, k);
247
248                 trace_bcache_cache_insert(k);
249                 bch_keylist_push(&op->insert_keys);
250
251                 n->bi_rw |= REQ_WRITE;
252                 bch_submit_bbio(n, op->c, k, 0);
253         } while (n != bio);
254
255         op->insert_data_done = true;
256         continue_at(cl, bch_data_insert_keys, op->wq);
257 err:
258         /* bch_alloc_sectors() blocks if s->writeback = true */
259         BUG_ON(op->writeback);
260
261         /*
262          * But if it's not a writeback write we'd rather just bail out if
263          * there aren't any buckets ready to write to - it might take awhile and
264          * we might be starving btree writes for gc or something.
265          */
266
267         if (!op->replace) {
268                 /*
269                  * Writethrough write: We can't complete the write until we've
270                  * updated the index. But we don't want to delay the write while
271                  * we wait for buckets to be freed up, so just invalidate the
272                  * rest of the write.
273                  */
274                 op->bypass = true;
275                 return bch_data_invalidate(cl);
276         } else {
277                 /*
278                  * From a cache miss, we can just insert the keys for the data
279                  * we have written or bail out if we didn't do anything.
280                  */
281                 op->insert_data_done = true;
282                 bio_put(bio);
283
284                 if (!bch_keylist_empty(&op->insert_keys))
285                         continue_at(cl, bch_data_insert_keys, op->wq);
286                 else
287                         closure_return(cl);
288         }
289 }
290
291 /**
292  * bch_data_insert - stick some data in the cache
293  *
294  * This is the starting point for any data to end up in a cache device; it could
295  * be from a normal write, or a writeback write, or a write to a flash only
296  * volume - it's also used by the moving garbage collector to compact data in
297  * mostly empty buckets.
298  *
299  * It first writes the data to the cache, creating a list of keys to be inserted
300  * (if the data had to be fragmented there will be multiple keys); after the
301  * data is written it calls bch_journal, and after the keys have been added to
302  * the next journal write they're inserted into the btree.
303  *
304  * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
305  * and op->inode is used for the key inode.
306  *
307  * If s->bypass is true, instead of inserting the data it invalidates the
308  * region of the cache represented by s->cache_bio and op->inode.
309  */
310 void bch_data_insert(struct closure *cl)
311 {
312         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
313
314         trace_bcache_write(op->bio, op->writeback, op->bypass);
315
316         bch_keylist_init(&op->insert_keys);
317         bio_get(op->bio);
318         bch_data_insert_start(cl);
319 }
320
321 /* Congested? */
322
323 unsigned bch_get_congested(struct cache_set *c)
324 {
325         int i;
326         long rand;
327
328         if (!c->congested_read_threshold_us &&
329             !c->congested_write_threshold_us)
330                 return 0;
331
332         i = (local_clock_us() - c->congested_last_us) / 1024;
333         if (i < 0)
334                 return 0;
335
336         i += atomic_read(&c->congested);
337         if (i >= 0)
338                 return 0;
339
340         i += CONGESTED_MAX;
341
342         if (i > 0)
343                 i = fract_exp_two(i, 6);
344
345         rand = get_random_int();
346         i -= bitmap_weight(&rand, BITS_PER_LONG);
347
348         return i > 0 ? i : 1;
349 }
350
351 static void add_sequential(struct task_struct *t)
352 {
353         ewma_add(t->sequential_io_avg,
354                  t->sequential_io, 8, 0);
355
356         t->sequential_io = 0;
357 }
358
359 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
360 {
361         return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
362 }
363
364 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
365 {
366         struct cache_set *c = dc->disk.c;
367         unsigned mode = cache_mode(dc, bio);
368         unsigned sectors, congested = bch_get_congested(c);
369         struct task_struct *task = current;
370         struct io *i;
371
372         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
373             c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
374             (bio->bi_rw & REQ_DISCARD))
375                 goto skip;
376
377         if (mode == CACHE_MODE_NONE ||
378             (mode == CACHE_MODE_WRITEAROUND &&
379              (bio->bi_rw & REQ_WRITE)))
380                 goto skip;
381
382         if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
383             bio_sectors(bio) & (c->sb.block_size - 1)) {
384                 pr_debug("skipping unaligned io");
385                 goto skip;
386         }
387
388         if (bypass_torture_test(dc)) {
389                 if ((get_random_int() & 3) == 3)
390                         goto skip;
391                 else
392                         goto rescale;
393         }
394
395         if (!congested && !dc->sequential_cutoff)
396                 goto rescale;
397
398         if (!congested &&
399             mode == CACHE_MODE_WRITEBACK &&
400             (bio->bi_rw & REQ_WRITE) &&
401             (bio->bi_rw & REQ_SYNC))
402                 goto rescale;
403
404         spin_lock(&dc->io_lock);
405
406         hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
407                 if (i->last == bio->bi_iter.bi_sector &&
408                     time_before(jiffies, i->jiffies))
409                         goto found;
410
411         i = list_first_entry(&dc->io_lru, struct io, lru);
412
413         add_sequential(task);
414         i->sequential = 0;
415 found:
416         if (i->sequential + bio->bi_iter.bi_size > i->sequential)
417                 i->sequential   += bio->bi_iter.bi_size;
418
419         i->last                  = bio_end_sector(bio);
420         i->jiffies               = jiffies + msecs_to_jiffies(5000);
421         task->sequential_io      = i->sequential;
422
423         hlist_del(&i->hash);
424         hlist_add_head(&i->hash, iohash(dc, i->last));
425         list_move_tail(&i->lru, &dc->io_lru);
426
427         spin_unlock(&dc->io_lock);
428
429         sectors = max(task->sequential_io,
430                       task->sequential_io_avg) >> 9;
431
432         if (dc->sequential_cutoff &&
433             sectors >= dc->sequential_cutoff >> 9) {
434                 trace_bcache_bypass_sequential(bio);
435                 goto skip;
436         }
437
438         if (congested && sectors >= congested) {
439                 trace_bcache_bypass_congested(bio);
440                 goto skip;
441         }
442
443 rescale:
444         bch_rescale_priorities(c, bio_sectors(bio));
445         return false;
446 skip:
447         bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
448         return true;
449 }
450
451 /* Cache lookup */
452
453 struct search {
454         /* Stack frame for bio_complete */
455         struct closure          cl;
456
457         struct bbio             bio;
458         struct bio              *orig_bio;
459         struct bio              *cache_miss;
460         struct bcache_device    *d;
461
462         unsigned                insert_bio_sectors;
463         unsigned                recoverable:1;
464         unsigned                write:1;
465         unsigned                read_dirty_data:1;
466
467         unsigned long           start_time;
468
469         struct btree_op         op;
470         struct data_insert_op   iop;
471 };
472
473 static void bch_cache_read_endio(struct bio *bio, int error)
474 {
475         struct bbio *b = container_of(bio, struct bbio, bio);
476         struct closure *cl = bio->bi_private;
477         struct search *s = container_of(cl, struct search, cl);
478
479         /*
480          * If the bucket was reused while our bio was in flight, we might have
481          * read the wrong data. Set s->error but not error so it doesn't get
482          * counted against the cache device, but we'll still reread the data
483          * from the backing device.
484          */
485
486         if (error)
487                 s->iop.error = error;
488         else if (!KEY_DIRTY(&b->key) &&
489                  ptr_stale(s->iop.c, &b->key, 0)) {
490                 atomic_long_inc(&s->iop.c->cache_read_races);
491                 s->iop.error = -EINTR;
492         }
493
494         bch_bbio_endio(s->iop.c, bio, error, "reading from cache");
495 }
496
497 /*
498  * Read from a single key, handling the initial cache miss if the key starts in
499  * the middle of the bio
500  */
501 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
502 {
503         struct search *s = container_of(op, struct search, op);
504         struct bio *n, *bio = &s->bio.bio;
505         struct bkey *bio_key;
506         unsigned ptr;
507
508         if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
509                 return MAP_CONTINUE;
510
511         if (KEY_INODE(k) != s->iop.inode ||
512             KEY_START(k) > bio->bi_iter.bi_sector) {
513                 unsigned bio_sectors = bio_sectors(bio);
514                 unsigned sectors = KEY_INODE(k) == s->iop.inode
515                         ? min_t(uint64_t, INT_MAX,
516                                 KEY_START(k) - bio->bi_iter.bi_sector)
517                         : INT_MAX;
518
519                 int ret = s->d->cache_miss(b, s, bio, sectors);
520                 if (ret != MAP_CONTINUE)
521                         return ret;
522
523                 /* if this was a complete miss we shouldn't get here */
524                 BUG_ON(bio_sectors <= sectors);
525         }
526
527         if (!KEY_SIZE(k))
528                 return MAP_CONTINUE;
529
530         /* XXX: figure out best pointer - for multiple cache devices */
531         ptr = 0;
532
533         PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
534
535         if (KEY_DIRTY(k))
536                 s->read_dirty_data = true;
537
538         n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
539                                       KEY_OFFSET(k) - bio->bi_iter.bi_sector),
540                            GFP_NOIO, s->d->bio_split);
541
542         bio_key = &container_of(n, struct bbio, bio)->key;
543         bch_bkey_copy_single_ptr(bio_key, k, ptr);
544
545         bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
546         bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
547
548         n->bi_end_io    = bch_cache_read_endio;
549         n->bi_private   = &s->cl;
550
551         /*
552          * The bucket we're reading from might be reused while our bio
553          * is in flight, and we could then end up reading the wrong
554          * data.
555          *
556          * We guard against this by checking (in cache_read_endio()) if
557          * the pointer is stale again; if so, we treat it as an error
558          * and reread from the backing device (but we don't pass that
559          * error up anywhere).
560          */
561
562         __bch_submit_bbio(n, b->c);
563         return n == bio ? MAP_DONE : MAP_CONTINUE;
564 }
565
566 static void cache_lookup(struct closure *cl)
567 {
568         struct search *s = container_of(cl, struct search, iop.cl);
569         struct bio *bio = &s->bio.bio;
570         int ret;
571
572         bch_btree_op_init(&s->op, -1);
573
574         ret = bch_btree_map_keys(&s->op, s->iop.c,
575                                  &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
576                                  cache_lookup_fn, MAP_END_KEY);
577         if (ret == -EAGAIN)
578                 continue_at(cl, cache_lookup, bcache_wq);
579
580         closure_return(cl);
581 }
582
583 /* Common code for the make_request functions */
584
585 static void request_endio(struct bio *bio, int error)
586 {
587         struct closure *cl = bio->bi_private;
588
589         if (error) {
590                 struct search *s = container_of(cl, struct search, cl);
591                 s->iop.error = error;
592                 /* Only cache read errors are recoverable */
593                 s->recoverable = false;
594         }
595
596         bio_put(bio);
597         closure_put(cl);
598 }
599
600 static void bio_complete(struct search *s)
601 {
602         if (s->orig_bio) {
603                 int cpu, rw = bio_data_dir(s->orig_bio);
604                 unsigned long duration = jiffies - s->start_time;
605
606                 cpu = part_stat_lock();
607                 part_round_stats(cpu, &s->d->disk->part0);
608                 part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
609                 part_stat_unlock();
610
611                 trace_bcache_request_end(s->d, s->orig_bio);
612                 bio_endio(s->orig_bio, s->iop.error);
613                 s->orig_bio = NULL;
614         }
615 }
616
617 static void do_bio_hook(struct search *s, struct bio *orig_bio)
618 {
619         struct bio *bio = &s->bio.bio;
620
621         bio_init(bio);
622         __bio_clone_fast(bio, orig_bio);
623         bio->bi_end_io          = request_endio;
624         bio->bi_private         = &s->cl;
625
626         atomic_set(&bio->bi_cnt, 3);
627 }
628
629 static void search_free(struct closure *cl)
630 {
631         struct search *s = container_of(cl, struct search, cl);
632         bio_complete(s);
633
634         if (s->iop.bio)
635                 bio_put(s->iop.bio);
636
637         closure_debug_destroy(cl);
638         mempool_free(s, s->d->c->search);
639 }
640
641 static inline struct search *search_alloc(struct bio *bio,
642                                           struct bcache_device *d)
643 {
644         struct search *s;
645
646         s = mempool_alloc(d->c->search, GFP_NOIO);
647
648         closure_init(&s->cl, NULL);
649         do_bio_hook(s, bio);
650
651         s->orig_bio             = bio;
652         s->cache_miss           = NULL;
653         s->d                    = d;
654         s->recoverable          = 1;
655         s->write                = (bio->bi_rw & REQ_WRITE) != 0;
656         s->read_dirty_data      = 0;
657         s->start_time           = jiffies;
658
659         s->iop.c                = d->c;
660         s->iop.bio              = NULL;
661         s->iop.inode            = d->id;
662         s->iop.write_point      = hash_long((unsigned long) current, 16);
663         s->iop.write_prio       = 0;
664         s->iop.error            = 0;
665         s->iop.flags            = 0;
666         s->iop.flush_journal    = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
667         s->iop.wq               = bcache_wq;
668
669         return s;
670 }
671
672 /* Cached devices */
673
674 static void cached_dev_bio_complete(struct closure *cl)
675 {
676         struct search *s = container_of(cl, struct search, cl);
677         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
678
679         search_free(cl);
680         cached_dev_put(dc);
681 }
682
683 /* Process reads */
684
685 static void cached_dev_cache_miss_done(struct closure *cl)
686 {
687         struct search *s = container_of(cl, struct search, cl);
688
689         if (s->iop.replace_collision)
690                 bch_mark_cache_miss_collision(s->iop.c, s->d);
691
692         if (s->iop.bio) {
693                 int i;
694                 struct bio_vec *bv;
695
696                 bio_for_each_segment_all(bv, s->iop.bio, i)
697                         __free_page(bv->bv_page);
698         }
699
700         cached_dev_bio_complete(cl);
701 }
702
703 static void cached_dev_read_error(struct closure *cl)
704 {
705         struct search *s = container_of(cl, struct search, cl);
706         struct bio *bio = &s->bio.bio;
707
708         if (s->recoverable) {
709                 /* Retry from the backing device: */
710                 trace_bcache_read_retry(s->orig_bio);
711
712                 s->iop.error = 0;
713                 do_bio_hook(s, s->orig_bio);
714
715                 /* XXX: invalidate cache */
716
717                 closure_bio_submit(bio, cl, s->d);
718         }
719
720         continue_at(cl, cached_dev_cache_miss_done, NULL);
721 }
722
723 static void cached_dev_read_done(struct closure *cl)
724 {
725         struct search *s = container_of(cl, struct search, cl);
726         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
727
728         /*
729          * We had a cache miss; cache_bio now contains data ready to be inserted
730          * into the cache.
731          *
732          * First, we copy the data we just read from cache_bio's bounce buffers
733          * to the buffers the original bio pointed to:
734          */
735
736         if (s->iop.bio) {
737                 bio_reset(s->iop.bio);
738                 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
739                 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
740                 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
741                 bch_bio_map(s->iop.bio, NULL);
742
743                 bio_copy_data(s->cache_miss, s->iop.bio);
744
745                 bio_put(s->cache_miss);
746                 s->cache_miss = NULL;
747         }
748
749         if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
750                 bch_data_verify(dc, s->orig_bio);
751
752         bio_complete(s);
753
754         if (s->iop.bio &&
755             !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
756                 BUG_ON(!s->iop.replace);
757                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
758         }
759
760         continue_at(cl, cached_dev_cache_miss_done, NULL);
761 }
762
763 static void cached_dev_read_done_bh(struct closure *cl)
764 {
765         struct search *s = container_of(cl, struct search, cl);
766         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
767
768         bch_mark_cache_accounting(s->iop.c, s->d,
769                                   !s->cache_miss, s->iop.bypass);
770         trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
771
772         if (s->iop.error)
773                 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
774         else if (s->iop.bio || verify(dc, &s->bio.bio))
775                 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
776         else
777                 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
778 }
779
780 static int cached_dev_cache_miss(struct btree *b, struct search *s,
781                                  struct bio *bio, unsigned sectors)
782 {
783         int ret = MAP_CONTINUE;
784         unsigned reada = 0;
785         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
786         struct bio *miss, *cache_bio;
787
788         if (s->cache_miss || s->iop.bypass) {
789                 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
790                 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
791                 goto out_submit;
792         }
793
794         if (!(bio->bi_rw & REQ_RAHEAD) &&
795             !(bio->bi_rw & REQ_META) &&
796             s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
797                 reada = min_t(sector_t, dc->readahead >> 9,
798                               bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
799
800         s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
801
802         s->iop.replace_key = KEY(s->iop.inode,
803                                  bio->bi_iter.bi_sector + s->insert_bio_sectors,
804                                  s->insert_bio_sectors);
805
806         ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
807         if (ret)
808                 return ret;
809
810         s->iop.replace = true;
811
812         miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
813
814         /* btree_search_recurse()'s btree iterator is no good anymore */
815         ret = miss == bio ? MAP_DONE : -EINTR;
816
817         cache_bio = bio_alloc_bioset(GFP_NOWAIT,
818                         DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
819                         dc->disk.bio_split);
820         if (!cache_bio)
821                 goto out_submit;
822
823         cache_bio->bi_iter.bi_sector    = miss->bi_iter.bi_sector;
824         cache_bio->bi_bdev              = miss->bi_bdev;
825         cache_bio->bi_iter.bi_size      = s->insert_bio_sectors << 9;
826
827         cache_bio->bi_end_io    = request_endio;
828         cache_bio->bi_private   = &s->cl;
829
830         bch_bio_map(cache_bio, NULL);
831         if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
832                 goto out_put;
833
834         if (reada)
835                 bch_mark_cache_readahead(s->iop.c, s->d);
836
837         s->cache_miss   = miss;
838         s->iop.bio      = cache_bio;
839         bio_get(cache_bio);
840         closure_bio_submit(cache_bio, &s->cl, s->d);
841
842         return ret;
843 out_put:
844         bio_put(cache_bio);
845 out_submit:
846         miss->bi_end_io         = request_endio;
847         miss->bi_private        = &s->cl;
848         closure_bio_submit(miss, &s->cl, s->d);
849         return ret;
850 }
851
852 static void cached_dev_read(struct cached_dev *dc, struct search *s)
853 {
854         struct closure *cl = &s->cl;
855
856         closure_call(&s->iop.cl, cache_lookup, NULL, cl);
857         continue_at(cl, cached_dev_read_done_bh, NULL);
858 }
859
860 /* Process writes */
861
862 static void cached_dev_write_complete(struct closure *cl)
863 {
864         struct search *s = container_of(cl, struct search, cl);
865         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
866
867         up_read_non_owner(&dc->writeback_lock);
868         cached_dev_bio_complete(cl);
869 }
870
871 static void cached_dev_write(struct cached_dev *dc, struct search *s)
872 {
873         struct closure *cl = &s->cl;
874         struct bio *bio = &s->bio.bio;
875         struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
876         struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
877
878         bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
879
880         down_read_non_owner(&dc->writeback_lock);
881         if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
882                 /*
883                  * We overlap with some dirty data undergoing background
884                  * writeback, force this write to writeback
885                  */
886                 s->iop.bypass = false;
887                 s->iop.writeback = true;
888         }
889
890         /*
891          * Discards aren't _required_ to do anything, so skipping if
892          * check_overlapping returned true is ok
893          *
894          * But check_overlapping drops dirty keys for which io hasn't started,
895          * so we still want to call it.
896          */
897         if (bio->bi_rw & REQ_DISCARD)
898                 s->iop.bypass = true;
899
900         if (should_writeback(dc, s->orig_bio,
901                              cache_mode(dc, bio),
902                              s->iop.bypass)) {
903                 s->iop.bypass = false;
904                 s->iop.writeback = true;
905         }
906
907         if (s->iop.bypass) {
908                 s->iop.bio = s->orig_bio;
909                 bio_get(s->iop.bio);
910
911                 if (!(bio->bi_rw & REQ_DISCARD) ||
912                     blk_queue_discard(bdev_get_queue(dc->bdev)))
913                         closure_bio_submit(bio, cl, s->d);
914         } else if (s->iop.writeback) {
915                 bch_writeback_add(dc);
916                 s->iop.bio = bio;
917
918                 if (bio->bi_rw & REQ_FLUSH) {
919                         /* Also need to send a flush to the backing device */
920                         struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
921                                                              dc->disk.bio_split);
922
923                         flush->bi_rw    = WRITE_FLUSH;
924                         flush->bi_bdev  = bio->bi_bdev;
925                         flush->bi_end_io = request_endio;
926                         flush->bi_private = cl;
927
928                         closure_bio_submit(flush, cl, s->d);
929                 }
930         } else {
931                 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
932
933                 closure_bio_submit(bio, cl, s->d);
934         }
935
936         closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
937         continue_at(cl, cached_dev_write_complete, NULL);
938 }
939
940 static void cached_dev_nodata(struct closure *cl)
941 {
942         struct search *s = container_of(cl, struct search, cl);
943         struct bio *bio = &s->bio.bio;
944
945         if (s->iop.flush_journal)
946                 bch_journal_meta(s->iop.c, cl);
947
948         /* If it's a flush, we send the flush to the backing device too */
949         closure_bio_submit(bio, cl, s->d);
950
951         continue_at(cl, cached_dev_bio_complete, NULL);
952 }
953
954 /* Cached devices - read & write stuff */
955
956 static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
957 {
958         struct search *s;
959         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
960         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
961         int cpu, rw = bio_data_dir(bio);
962
963         cpu = part_stat_lock();
964         part_stat_inc(cpu, &d->disk->part0, ios[rw]);
965         part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
966         part_stat_unlock();
967
968         bio->bi_bdev = dc->bdev;
969         bio->bi_iter.bi_sector += dc->sb.data_offset;
970
971         if (cached_dev_get(dc)) {
972                 s = search_alloc(bio, d);
973                 trace_bcache_request_start(s->d, bio);
974
975                 if (!bio->bi_iter.bi_size) {
976                         /*
977                          * can't call bch_journal_meta from under
978                          * generic_make_request
979                          */
980                         continue_at_nobarrier(&s->cl,
981                                               cached_dev_nodata,
982                                               bcache_wq);
983                 } else {
984                         s->iop.bypass = check_should_bypass(dc, bio);
985
986                         if (rw)
987                                 cached_dev_write(dc, s);
988                         else
989                                 cached_dev_read(dc, s);
990                 }
991         } else {
992                 if ((bio->bi_rw & REQ_DISCARD) &&
993                     !blk_queue_discard(bdev_get_queue(dc->bdev)))
994                         bio_endio(bio, 0);
995                 else
996                         bch_generic_make_request(bio, &d->bio_split_hook);
997         }
998 }
999
1000 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1001                             unsigned int cmd, unsigned long arg)
1002 {
1003         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1004         return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1005 }
1006
1007 static int cached_dev_congested(void *data, int bits)
1008 {
1009         struct bcache_device *d = data;
1010         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1011         struct request_queue *q = bdev_get_queue(dc->bdev);
1012         int ret = 0;
1013
1014         if (bdi_congested(&q->backing_dev_info, bits))
1015                 return 1;
1016
1017         if (cached_dev_get(dc)) {
1018                 unsigned i;
1019                 struct cache *ca;
1020
1021                 for_each_cache(ca, d->c, i) {
1022                         q = bdev_get_queue(ca->bdev);
1023                         ret |= bdi_congested(&q->backing_dev_info, bits);
1024                 }
1025
1026                 cached_dev_put(dc);
1027         }
1028
1029         return ret;
1030 }
1031
1032 void bch_cached_dev_request_init(struct cached_dev *dc)
1033 {
1034         struct gendisk *g = dc->disk.disk;
1035
1036         g->queue->make_request_fn               = cached_dev_make_request;
1037         g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1038         dc->disk.cache_miss                     = cached_dev_cache_miss;
1039         dc->disk.ioctl                          = cached_dev_ioctl;
1040 }
1041
1042 /* Flash backed devices */
1043
1044 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1045                                 struct bio *bio, unsigned sectors)
1046 {
1047         unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1048
1049         swap(bio->bi_iter.bi_size, bytes);
1050         zero_fill_bio(bio);
1051         swap(bio->bi_iter.bi_size, bytes);
1052
1053         bio_advance(bio, bytes);
1054
1055         if (!bio->bi_iter.bi_size)
1056                 return MAP_DONE;
1057
1058         return MAP_CONTINUE;
1059 }
1060
1061 static void flash_dev_nodata(struct closure *cl)
1062 {
1063         struct search *s = container_of(cl, struct search, cl);
1064
1065         if (s->iop.flush_journal)
1066                 bch_journal_meta(s->iop.c, cl);
1067
1068         continue_at(cl, search_free, NULL);
1069 }
1070
1071 static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1072 {
1073         struct search *s;
1074         struct closure *cl;
1075         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1076         int cpu, rw = bio_data_dir(bio);
1077
1078         cpu = part_stat_lock();
1079         part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1080         part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1081         part_stat_unlock();
1082
1083         s = search_alloc(bio, d);
1084         cl = &s->cl;
1085         bio = &s->bio.bio;
1086
1087         trace_bcache_request_start(s->d, bio);
1088
1089         if (!bio->bi_iter.bi_size) {
1090                 /*
1091                  * can't call bch_journal_meta from under
1092                  * generic_make_request
1093                  */
1094                 continue_at_nobarrier(&s->cl,
1095                                       flash_dev_nodata,
1096                                       bcache_wq);
1097         } else if (rw) {
1098                 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1099                                         &KEY(d->id, bio->bi_iter.bi_sector, 0),
1100                                         &KEY(d->id, bio_end_sector(bio), 0));
1101
1102                 s->iop.bypass           = (bio->bi_rw & REQ_DISCARD) != 0;
1103                 s->iop.writeback        = true;
1104                 s->iop.bio              = bio;
1105
1106                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1107         } else {
1108                 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1109         }
1110
1111         continue_at(cl, search_free, NULL);
1112 }
1113
1114 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1115                            unsigned int cmd, unsigned long arg)
1116 {
1117         return -ENOTTY;
1118 }
1119
1120 static int flash_dev_congested(void *data, int bits)
1121 {
1122         struct bcache_device *d = data;
1123         struct request_queue *q;
1124         struct cache *ca;
1125         unsigned i;
1126         int ret = 0;
1127
1128         for_each_cache(ca, d->c, i) {
1129                 q = bdev_get_queue(ca->bdev);
1130                 ret |= bdi_congested(&q->backing_dev_info, bits);
1131         }
1132
1133         return ret;
1134 }
1135
1136 void bch_flash_dev_request_init(struct bcache_device *d)
1137 {
1138         struct gendisk *g = d->disk;
1139
1140         g->queue->make_request_fn               = flash_dev_make_request;
1141         g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1142         d->cache_miss                           = flash_dev_cache_miss;
1143         d->ioctl                                = flash_dev_ioctl;
1144 }
1145
1146 void bch_request_exit(void)
1147 {
1148         if (bch_search_cache)
1149                 kmem_cache_destroy(bch_search_cache);
1150 }
1151
1152 int __init bch_request_init(void)
1153 {
1154         bch_search_cache = KMEM_CACHE(search, 0);
1155         if (!bch_search_cache)
1156                 return -ENOMEM;
1157
1158         return 0;
1159 }