Merge branch 'clksrc/cleanup' into next/multiplatform
[cascardo/linux.git] / drivers / md / dm-cache-target.c
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-cache-metadata.h"
10
11 #include <linux/dm-io.h>
12 #include <linux/dm-kcopyd.h>
13 #include <linux/init.h>
14 #include <linux/mempool.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/vmalloc.h>
18
19 #define DM_MSG_PREFIX "cache"
20
21 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
22         "A percentage of time allocated for copying to and/or from cache");
23
24 /*----------------------------------------------------------------*/
25
26 /*
27  * Glossary:
28  *
29  * oblock: index of an origin block
30  * cblock: index of a cache block
31  * promotion: movement of a block from origin to cache
32  * demotion: movement of a block from cache to origin
33  * migration: movement of a block between the origin and cache device,
34  *            either direction
35  */
36
37 /*----------------------------------------------------------------*/
38
39 static size_t bitset_size_in_bytes(unsigned nr_entries)
40 {
41         return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
42 }
43
44 static unsigned long *alloc_bitset(unsigned nr_entries)
45 {
46         size_t s = bitset_size_in_bytes(nr_entries);
47         return vzalloc(s);
48 }
49
50 static void clear_bitset(void *bitset, unsigned nr_entries)
51 {
52         size_t s = bitset_size_in_bytes(nr_entries);
53         memset(bitset, 0, s);
54 }
55
56 static void free_bitset(unsigned long *bits)
57 {
58         vfree(bits);
59 }
60
61 /*----------------------------------------------------------------*/
62
63 #define PRISON_CELLS 1024
64 #define MIGRATION_POOL_SIZE 128
65 #define COMMIT_PERIOD HZ
66 #define MIGRATION_COUNT_WINDOW 10
67
68 /*
69  * The block size of the device holding cache data must be >= 32KB
70  */
71 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
72
73 /*
74  * FIXME: the cache is read/write for the time being.
75  */
76 enum cache_mode {
77         CM_WRITE,               /* metadata may be changed */
78         CM_READ_ONLY,           /* metadata may not be changed */
79 };
80
81 struct cache_features {
82         enum cache_mode mode;
83         bool write_through:1;
84 };
85
86 struct cache_stats {
87         atomic_t read_hit;
88         atomic_t read_miss;
89         atomic_t write_hit;
90         atomic_t write_miss;
91         atomic_t demotion;
92         atomic_t promotion;
93         atomic_t copies_avoided;
94         atomic_t cache_cell_clash;
95         atomic_t commit_count;
96         atomic_t discard_count;
97 };
98
99 struct cache {
100         struct dm_target *ti;
101         struct dm_target_callbacks callbacks;
102
103         /*
104          * Metadata is written to this device.
105          */
106         struct dm_dev *metadata_dev;
107
108         /*
109          * The slower of the two data devices.  Typically a spindle.
110          */
111         struct dm_dev *origin_dev;
112
113         /*
114          * The faster of the two data devices.  Typically an SSD.
115          */
116         struct dm_dev *cache_dev;
117
118         /*
119          * Cache features such as write-through.
120          */
121         struct cache_features features;
122
123         /*
124          * Size of the origin device in _complete_ blocks and native sectors.
125          */
126         dm_oblock_t origin_blocks;
127         sector_t origin_sectors;
128
129         /*
130          * Size of the cache device in blocks.
131          */
132         dm_cblock_t cache_size;
133
134         /*
135          * Fields for converting from sectors to blocks.
136          */
137         uint32_t sectors_per_block;
138         int sectors_per_block_shift;
139
140         struct dm_cache_metadata *cmd;
141
142         spinlock_t lock;
143         struct bio_list deferred_bios;
144         struct bio_list deferred_flush_bios;
145         struct bio_list deferred_writethrough_bios;
146         struct list_head quiesced_migrations;
147         struct list_head completed_migrations;
148         struct list_head need_commit_migrations;
149         sector_t migration_threshold;
150         atomic_t nr_migrations;
151         wait_queue_head_t migration_wait;
152
153         /*
154          * cache_size entries, dirty if set
155          */
156         dm_cblock_t nr_dirty;
157         unsigned long *dirty_bitset;
158
159         /*
160          * origin_blocks entries, discarded if set.
161          */
162         uint32_t discard_block_size; /* a power of 2 times sectors per block */
163         dm_dblock_t discard_nr_blocks;
164         unsigned long *discard_bitset;
165
166         struct dm_kcopyd_client *copier;
167         struct workqueue_struct *wq;
168         struct work_struct worker;
169
170         struct delayed_work waker;
171         unsigned long last_commit_jiffies;
172
173         struct dm_bio_prison *prison;
174         struct dm_deferred_set *all_io_ds;
175
176         mempool_t *migration_pool;
177         struct dm_cache_migration *next_migration;
178
179         struct dm_cache_policy *policy;
180         unsigned policy_nr_args;
181
182         bool need_tick_bio:1;
183         bool sized:1;
184         bool quiescing:1;
185         bool commit_requested:1;
186         bool loaded_mappings:1;
187         bool loaded_discards:1;
188
189         struct cache_stats stats;
190
191         /*
192          * Rather than reconstructing the table line for the status we just
193          * save it and regurgitate.
194          */
195         unsigned nr_ctr_args;
196         const char **ctr_args;
197 };
198
199 struct per_bio_data {
200         bool tick:1;
201         unsigned req_nr:2;
202         struct dm_deferred_entry *all_io_entry;
203
204         /* writethrough fields */
205         struct cache *cache;
206         dm_cblock_t cblock;
207         bio_end_io_t *saved_bi_end_io;
208 };
209
210 struct dm_cache_migration {
211         struct list_head list;
212         struct cache *cache;
213
214         unsigned long start_jiffies;
215         dm_oblock_t old_oblock;
216         dm_oblock_t new_oblock;
217         dm_cblock_t cblock;
218
219         bool err:1;
220         bool writeback:1;
221         bool demote:1;
222         bool promote:1;
223
224         struct dm_bio_prison_cell *old_ocell;
225         struct dm_bio_prison_cell *new_ocell;
226 };
227
228 /*
229  * Processing a bio in the worker thread may require these memory
230  * allocations.  We prealloc to avoid deadlocks (the same worker thread
231  * frees them back to the mempool).
232  */
233 struct prealloc {
234         struct dm_cache_migration *mg;
235         struct dm_bio_prison_cell *cell1;
236         struct dm_bio_prison_cell *cell2;
237 };
238
239 static void wake_worker(struct cache *cache)
240 {
241         queue_work(cache->wq, &cache->worker);
242 }
243
244 /*----------------------------------------------------------------*/
245
246 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
247 {
248         /* FIXME: change to use a local slab. */
249         return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
250 }
251
252 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
253 {
254         dm_bio_prison_free_cell(cache->prison, cell);
255 }
256
257 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
258 {
259         if (!p->mg) {
260                 p->mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
261                 if (!p->mg)
262                         return -ENOMEM;
263         }
264
265         if (!p->cell1) {
266                 p->cell1 = alloc_prison_cell(cache);
267                 if (!p->cell1)
268                         return -ENOMEM;
269         }
270
271         if (!p->cell2) {
272                 p->cell2 = alloc_prison_cell(cache);
273                 if (!p->cell2)
274                         return -ENOMEM;
275         }
276
277         return 0;
278 }
279
280 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
281 {
282         if (p->cell2)
283                 free_prison_cell(cache, p->cell2);
284
285         if (p->cell1)
286                 free_prison_cell(cache, p->cell1);
287
288         if (p->mg)
289                 mempool_free(p->mg, cache->migration_pool);
290 }
291
292 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
293 {
294         struct dm_cache_migration *mg = p->mg;
295
296         BUG_ON(!mg);
297         p->mg = NULL;
298
299         return mg;
300 }
301
302 /*
303  * You must have a cell within the prealloc struct to return.  If not this
304  * function will BUG() rather than returning NULL.
305  */
306 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
307 {
308         struct dm_bio_prison_cell *r = NULL;
309
310         if (p->cell1) {
311                 r = p->cell1;
312                 p->cell1 = NULL;
313
314         } else if (p->cell2) {
315                 r = p->cell2;
316                 p->cell2 = NULL;
317         } else
318                 BUG();
319
320         return r;
321 }
322
323 /*
324  * You can't have more than two cells in a prealloc struct.  BUG() will be
325  * called if you try and overfill.
326  */
327 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
328 {
329         if (!p->cell2)
330                 p->cell2 = cell;
331
332         else if (!p->cell1)
333                 p->cell1 = cell;
334
335         else
336                 BUG();
337 }
338
339 /*----------------------------------------------------------------*/
340
341 static void build_key(dm_oblock_t oblock, struct dm_cell_key *key)
342 {
343         key->virtual = 0;
344         key->dev = 0;
345         key->block = from_oblock(oblock);
346 }
347
348 /*
349  * The caller hands in a preallocated cell, and a free function for it.
350  * The cell will be freed if there's an error, or if it wasn't used because
351  * a cell with that key already exists.
352  */
353 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
354
355 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
356                       struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
357                       cell_free_fn free_fn, void *free_context,
358                       struct dm_bio_prison_cell **cell_result)
359 {
360         int r;
361         struct dm_cell_key key;
362
363         build_key(oblock, &key);
364         r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
365         if (r)
366                 free_fn(free_context, cell_prealloc);
367
368         return r;
369 }
370
371 static int get_cell(struct cache *cache,
372                     dm_oblock_t oblock,
373                     struct prealloc *structs,
374                     struct dm_bio_prison_cell **cell_result)
375 {
376         int r;
377         struct dm_cell_key key;
378         struct dm_bio_prison_cell *cell_prealloc;
379
380         cell_prealloc = prealloc_get_cell(structs);
381
382         build_key(oblock, &key);
383         r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
384         if (r)
385                 prealloc_put_cell(structs, cell_prealloc);
386
387         return r;
388 }
389
390  /*----------------------------------------------------------------*/
391
392 static bool is_dirty(struct cache *cache, dm_cblock_t b)
393 {
394         return test_bit(from_cblock(b), cache->dirty_bitset);
395 }
396
397 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
398 {
399         if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
400                 cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) + 1);
401                 policy_set_dirty(cache->policy, oblock);
402         }
403 }
404
405 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
406 {
407         if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
408                 policy_clear_dirty(cache->policy, oblock);
409                 cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) - 1);
410                 if (!from_cblock(cache->nr_dirty))
411                         dm_table_event(cache->ti->table);
412         }
413 }
414
415 /*----------------------------------------------------------------*/
416 static bool block_size_is_power_of_two(struct cache *cache)
417 {
418         return cache->sectors_per_block_shift >= 0;
419 }
420
421 static dm_block_t block_div(dm_block_t b, uint32_t n)
422 {
423         do_div(b, n);
424
425         return b;
426 }
427
428 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
429 {
430         uint32_t discard_blocks = cache->discard_block_size;
431         dm_block_t b = from_oblock(oblock);
432
433         if (!block_size_is_power_of_two(cache))
434                 discard_blocks = discard_blocks / cache->sectors_per_block;
435         else
436                 discard_blocks >>= cache->sectors_per_block_shift;
437
438         b = block_div(b, discard_blocks);
439
440         return to_dblock(b);
441 }
442
443 static void set_discard(struct cache *cache, dm_dblock_t b)
444 {
445         unsigned long flags;
446
447         atomic_inc(&cache->stats.discard_count);
448
449         spin_lock_irqsave(&cache->lock, flags);
450         set_bit(from_dblock(b), cache->discard_bitset);
451         spin_unlock_irqrestore(&cache->lock, flags);
452 }
453
454 static void clear_discard(struct cache *cache, dm_dblock_t b)
455 {
456         unsigned long flags;
457
458         spin_lock_irqsave(&cache->lock, flags);
459         clear_bit(from_dblock(b), cache->discard_bitset);
460         spin_unlock_irqrestore(&cache->lock, flags);
461 }
462
463 static bool is_discarded(struct cache *cache, dm_dblock_t b)
464 {
465         int r;
466         unsigned long flags;
467
468         spin_lock_irqsave(&cache->lock, flags);
469         r = test_bit(from_dblock(b), cache->discard_bitset);
470         spin_unlock_irqrestore(&cache->lock, flags);
471
472         return r;
473 }
474
475 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
476 {
477         int r;
478         unsigned long flags;
479
480         spin_lock_irqsave(&cache->lock, flags);
481         r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
482                      cache->discard_bitset);
483         spin_unlock_irqrestore(&cache->lock, flags);
484
485         return r;
486 }
487
488 /*----------------------------------------------------------------*/
489
490 static void load_stats(struct cache *cache)
491 {
492         struct dm_cache_statistics stats;
493
494         dm_cache_metadata_get_stats(cache->cmd, &stats);
495         atomic_set(&cache->stats.read_hit, stats.read_hits);
496         atomic_set(&cache->stats.read_miss, stats.read_misses);
497         atomic_set(&cache->stats.write_hit, stats.write_hits);
498         atomic_set(&cache->stats.write_miss, stats.write_misses);
499 }
500
501 static void save_stats(struct cache *cache)
502 {
503         struct dm_cache_statistics stats;
504
505         stats.read_hits = atomic_read(&cache->stats.read_hit);
506         stats.read_misses = atomic_read(&cache->stats.read_miss);
507         stats.write_hits = atomic_read(&cache->stats.write_hit);
508         stats.write_misses = atomic_read(&cache->stats.write_miss);
509
510         dm_cache_metadata_set_stats(cache->cmd, &stats);
511 }
512
513 /*----------------------------------------------------------------
514  * Per bio data
515  *--------------------------------------------------------------*/
516 static struct per_bio_data *get_per_bio_data(struct bio *bio)
517 {
518         struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
519         BUG_ON(!pb);
520         return pb;
521 }
522
523 static struct per_bio_data *init_per_bio_data(struct bio *bio)
524 {
525         struct per_bio_data *pb = get_per_bio_data(bio);
526
527         pb->tick = false;
528         pb->req_nr = dm_bio_get_target_bio_nr(bio);
529         pb->all_io_entry = NULL;
530
531         return pb;
532 }
533
534 /*----------------------------------------------------------------
535  * Remapping
536  *--------------------------------------------------------------*/
537 static void remap_to_origin(struct cache *cache, struct bio *bio)
538 {
539         bio->bi_bdev = cache->origin_dev->bdev;
540 }
541
542 static void remap_to_cache(struct cache *cache, struct bio *bio,
543                            dm_cblock_t cblock)
544 {
545         sector_t bi_sector = bio->bi_sector;
546
547         bio->bi_bdev = cache->cache_dev->bdev;
548         if (!block_size_is_power_of_two(cache))
549                 bio->bi_sector = (from_cblock(cblock) * cache->sectors_per_block) +
550                                 sector_div(bi_sector, cache->sectors_per_block);
551         else
552                 bio->bi_sector = (from_cblock(cblock) << cache->sectors_per_block_shift) |
553                                 (bi_sector & (cache->sectors_per_block - 1));
554 }
555
556 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
557 {
558         unsigned long flags;
559         struct per_bio_data *pb = get_per_bio_data(bio);
560
561         spin_lock_irqsave(&cache->lock, flags);
562         if (cache->need_tick_bio &&
563             !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
564                 pb->tick = true;
565                 cache->need_tick_bio = false;
566         }
567         spin_unlock_irqrestore(&cache->lock, flags);
568 }
569
570 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
571                                   dm_oblock_t oblock)
572 {
573         check_if_tick_bio_needed(cache, bio);
574         remap_to_origin(cache, bio);
575         if (bio_data_dir(bio) == WRITE)
576                 clear_discard(cache, oblock_to_dblock(cache, oblock));
577 }
578
579 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
580                                  dm_oblock_t oblock, dm_cblock_t cblock)
581 {
582         remap_to_cache(cache, bio, cblock);
583         if (bio_data_dir(bio) == WRITE) {
584                 set_dirty(cache, oblock, cblock);
585                 clear_discard(cache, oblock_to_dblock(cache, oblock));
586         }
587 }
588
589 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
590 {
591         sector_t block_nr = bio->bi_sector;
592
593         if (!block_size_is_power_of_two(cache))
594                 (void) sector_div(block_nr, cache->sectors_per_block);
595         else
596                 block_nr >>= cache->sectors_per_block_shift;
597
598         return to_oblock(block_nr);
599 }
600
601 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
602 {
603         return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
604 }
605
606 static void issue(struct cache *cache, struct bio *bio)
607 {
608         unsigned long flags;
609
610         if (!bio_triggers_commit(cache, bio)) {
611                 generic_make_request(bio);
612                 return;
613         }
614
615         /*
616          * Batch together any bios that trigger commits and then issue a
617          * single commit for them in do_worker().
618          */
619         spin_lock_irqsave(&cache->lock, flags);
620         cache->commit_requested = true;
621         bio_list_add(&cache->deferred_flush_bios, bio);
622         spin_unlock_irqrestore(&cache->lock, flags);
623 }
624
625 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
626 {
627         unsigned long flags;
628
629         spin_lock_irqsave(&cache->lock, flags);
630         bio_list_add(&cache->deferred_writethrough_bios, bio);
631         spin_unlock_irqrestore(&cache->lock, flags);
632
633         wake_worker(cache);
634 }
635
636 static void writethrough_endio(struct bio *bio, int err)
637 {
638         struct per_bio_data *pb = get_per_bio_data(bio);
639         bio->bi_end_io = pb->saved_bi_end_io;
640
641         if (err) {
642                 bio_endio(bio, err);
643                 return;
644         }
645
646         remap_to_cache(pb->cache, bio, pb->cblock);
647
648         /*
649          * We can't issue this bio directly, since we're in interrupt
650          * context.  So it get's put on a bio list for processing by the
651          * worker thread.
652          */
653         defer_writethrough_bio(pb->cache, bio);
654 }
655
656 /*
657  * When running in writethrough mode we need to send writes to clean blocks
658  * to both the cache and origin devices.  In future we'd like to clone the
659  * bio and send them in parallel, but for now we're doing them in
660  * series as this is easier.
661  */
662 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
663                                        dm_oblock_t oblock, dm_cblock_t cblock)
664 {
665         struct per_bio_data *pb = get_per_bio_data(bio);
666
667         pb->cache = cache;
668         pb->cblock = cblock;
669         pb->saved_bi_end_io = bio->bi_end_io;
670         bio->bi_end_io = writethrough_endio;
671
672         remap_to_origin_clear_discard(pb->cache, bio, oblock);
673 }
674
675 /*----------------------------------------------------------------
676  * Migration processing
677  *
678  * Migration covers moving data from the origin device to the cache, or
679  * vice versa.
680  *--------------------------------------------------------------*/
681 static void free_migration(struct dm_cache_migration *mg)
682 {
683         mempool_free(mg, mg->cache->migration_pool);
684 }
685
686 static void inc_nr_migrations(struct cache *cache)
687 {
688         atomic_inc(&cache->nr_migrations);
689 }
690
691 static void dec_nr_migrations(struct cache *cache)
692 {
693         atomic_dec(&cache->nr_migrations);
694
695         /*
696          * Wake the worker in case we're suspending the target.
697          */
698         wake_up(&cache->migration_wait);
699 }
700
701 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
702                          bool holder)
703 {
704         (holder ? dm_cell_release : dm_cell_release_no_holder)
705                 (cache->prison, cell, &cache->deferred_bios);
706         free_prison_cell(cache, cell);
707 }
708
709 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
710                        bool holder)
711 {
712         unsigned long flags;
713
714         spin_lock_irqsave(&cache->lock, flags);
715         __cell_defer(cache, cell, holder);
716         spin_unlock_irqrestore(&cache->lock, flags);
717
718         wake_worker(cache);
719 }
720
721 static void cleanup_migration(struct dm_cache_migration *mg)
722 {
723         dec_nr_migrations(mg->cache);
724         free_migration(mg);
725 }
726
727 static void migration_failure(struct dm_cache_migration *mg)
728 {
729         struct cache *cache = mg->cache;
730
731         if (mg->writeback) {
732                 DMWARN_LIMIT("writeback failed; couldn't copy block");
733                 set_dirty(cache, mg->old_oblock, mg->cblock);
734                 cell_defer(cache, mg->old_ocell, false);
735
736         } else if (mg->demote) {
737                 DMWARN_LIMIT("demotion failed; couldn't copy block");
738                 policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
739
740                 cell_defer(cache, mg->old_ocell, mg->promote ? 0 : 1);
741                 if (mg->promote)
742                         cell_defer(cache, mg->new_ocell, 1);
743         } else {
744                 DMWARN_LIMIT("promotion failed; couldn't copy block");
745                 policy_remove_mapping(cache->policy, mg->new_oblock);
746                 cell_defer(cache, mg->new_ocell, 1);
747         }
748
749         cleanup_migration(mg);
750 }
751
752 static void migration_success_pre_commit(struct dm_cache_migration *mg)
753 {
754         unsigned long flags;
755         struct cache *cache = mg->cache;
756
757         if (mg->writeback) {
758                 cell_defer(cache, mg->old_ocell, false);
759                 clear_dirty(cache, mg->old_oblock, mg->cblock);
760                 cleanup_migration(mg);
761                 return;
762
763         } else if (mg->demote) {
764                 if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) {
765                         DMWARN_LIMIT("demotion failed; couldn't update on disk metadata");
766                         policy_force_mapping(cache->policy, mg->new_oblock,
767                                              mg->old_oblock);
768                         if (mg->promote)
769                                 cell_defer(cache, mg->new_ocell, true);
770                         cleanup_migration(mg);
771                         return;
772                 }
773         } else {
774                 if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) {
775                         DMWARN_LIMIT("promotion failed; couldn't update on disk metadata");
776                         policy_remove_mapping(cache->policy, mg->new_oblock);
777                         cleanup_migration(mg);
778                         return;
779                 }
780         }
781
782         spin_lock_irqsave(&cache->lock, flags);
783         list_add_tail(&mg->list, &cache->need_commit_migrations);
784         cache->commit_requested = true;
785         spin_unlock_irqrestore(&cache->lock, flags);
786 }
787
788 static void migration_success_post_commit(struct dm_cache_migration *mg)
789 {
790         unsigned long flags;
791         struct cache *cache = mg->cache;
792
793         if (mg->writeback) {
794                 DMWARN("writeback unexpectedly triggered commit");
795                 return;
796
797         } else if (mg->demote) {
798                 cell_defer(cache, mg->old_ocell, mg->promote ? 0 : 1);
799
800                 if (mg->promote) {
801                         mg->demote = false;
802
803                         spin_lock_irqsave(&cache->lock, flags);
804                         list_add_tail(&mg->list, &cache->quiesced_migrations);
805                         spin_unlock_irqrestore(&cache->lock, flags);
806
807                 } else
808                         cleanup_migration(mg);
809
810         } else {
811                 cell_defer(cache, mg->new_ocell, true);
812                 clear_dirty(cache, mg->new_oblock, mg->cblock);
813                 cleanup_migration(mg);
814         }
815 }
816
817 static void copy_complete(int read_err, unsigned long write_err, void *context)
818 {
819         unsigned long flags;
820         struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
821         struct cache *cache = mg->cache;
822
823         if (read_err || write_err)
824                 mg->err = true;
825
826         spin_lock_irqsave(&cache->lock, flags);
827         list_add_tail(&mg->list, &cache->completed_migrations);
828         spin_unlock_irqrestore(&cache->lock, flags);
829
830         wake_worker(cache);
831 }
832
833 static void issue_copy_real(struct dm_cache_migration *mg)
834 {
835         int r;
836         struct dm_io_region o_region, c_region;
837         struct cache *cache = mg->cache;
838
839         o_region.bdev = cache->origin_dev->bdev;
840         o_region.count = cache->sectors_per_block;
841
842         c_region.bdev = cache->cache_dev->bdev;
843         c_region.sector = from_cblock(mg->cblock) * cache->sectors_per_block;
844         c_region.count = cache->sectors_per_block;
845
846         if (mg->writeback || mg->demote) {
847                 /* demote */
848                 o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
849                 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
850         } else {
851                 /* promote */
852                 o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
853                 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
854         }
855
856         if (r < 0)
857                 migration_failure(mg);
858 }
859
860 static void avoid_copy(struct dm_cache_migration *mg)
861 {
862         atomic_inc(&mg->cache->stats.copies_avoided);
863         migration_success_pre_commit(mg);
864 }
865
866 static void issue_copy(struct dm_cache_migration *mg)
867 {
868         bool avoid;
869         struct cache *cache = mg->cache;
870
871         if (mg->writeback || mg->demote)
872                 avoid = !is_dirty(cache, mg->cblock) ||
873                         is_discarded_oblock(cache, mg->old_oblock);
874         else
875                 avoid = is_discarded_oblock(cache, mg->new_oblock);
876
877         avoid ? avoid_copy(mg) : issue_copy_real(mg);
878 }
879
880 static void complete_migration(struct dm_cache_migration *mg)
881 {
882         if (mg->err)
883                 migration_failure(mg);
884         else
885                 migration_success_pre_commit(mg);
886 }
887
888 static void process_migrations(struct cache *cache, struct list_head *head,
889                                void (*fn)(struct dm_cache_migration *))
890 {
891         unsigned long flags;
892         struct list_head list;
893         struct dm_cache_migration *mg, *tmp;
894
895         INIT_LIST_HEAD(&list);
896         spin_lock_irqsave(&cache->lock, flags);
897         list_splice_init(head, &list);
898         spin_unlock_irqrestore(&cache->lock, flags);
899
900         list_for_each_entry_safe(mg, tmp, &list, list)
901                 fn(mg);
902 }
903
904 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
905 {
906         list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
907 }
908
909 static void queue_quiesced_migration(struct dm_cache_migration *mg)
910 {
911         unsigned long flags;
912         struct cache *cache = mg->cache;
913
914         spin_lock_irqsave(&cache->lock, flags);
915         __queue_quiesced_migration(mg);
916         spin_unlock_irqrestore(&cache->lock, flags);
917
918         wake_worker(cache);
919 }
920
921 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
922 {
923         unsigned long flags;
924         struct dm_cache_migration *mg, *tmp;
925
926         spin_lock_irqsave(&cache->lock, flags);
927         list_for_each_entry_safe(mg, tmp, work, list)
928                 __queue_quiesced_migration(mg);
929         spin_unlock_irqrestore(&cache->lock, flags);
930
931         wake_worker(cache);
932 }
933
934 static void check_for_quiesced_migrations(struct cache *cache,
935                                           struct per_bio_data *pb)
936 {
937         struct list_head work;
938
939         if (!pb->all_io_entry)
940                 return;
941
942         INIT_LIST_HEAD(&work);
943         if (pb->all_io_entry)
944                 dm_deferred_entry_dec(pb->all_io_entry, &work);
945
946         if (!list_empty(&work))
947                 queue_quiesced_migrations(cache, &work);
948 }
949
950 static void quiesce_migration(struct dm_cache_migration *mg)
951 {
952         if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
953                 queue_quiesced_migration(mg);
954 }
955
956 static void promote(struct cache *cache, struct prealloc *structs,
957                     dm_oblock_t oblock, dm_cblock_t cblock,
958                     struct dm_bio_prison_cell *cell)
959 {
960         struct dm_cache_migration *mg = prealloc_get_migration(structs);
961
962         mg->err = false;
963         mg->writeback = false;
964         mg->demote = false;
965         mg->promote = true;
966         mg->cache = cache;
967         mg->new_oblock = oblock;
968         mg->cblock = cblock;
969         mg->old_ocell = NULL;
970         mg->new_ocell = cell;
971         mg->start_jiffies = jiffies;
972
973         inc_nr_migrations(cache);
974         quiesce_migration(mg);
975 }
976
977 static void writeback(struct cache *cache, struct prealloc *structs,
978                       dm_oblock_t oblock, dm_cblock_t cblock,
979                       struct dm_bio_prison_cell *cell)
980 {
981         struct dm_cache_migration *mg = prealloc_get_migration(structs);
982
983         mg->err = false;
984         mg->writeback = true;
985         mg->demote = false;
986         mg->promote = false;
987         mg->cache = cache;
988         mg->old_oblock = oblock;
989         mg->cblock = cblock;
990         mg->old_ocell = cell;
991         mg->new_ocell = NULL;
992         mg->start_jiffies = jiffies;
993
994         inc_nr_migrations(cache);
995         quiesce_migration(mg);
996 }
997
998 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
999                                 dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1000                                 dm_cblock_t cblock,
1001                                 struct dm_bio_prison_cell *old_ocell,
1002                                 struct dm_bio_prison_cell *new_ocell)
1003 {
1004         struct dm_cache_migration *mg = prealloc_get_migration(structs);
1005
1006         mg->err = false;
1007         mg->writeback = false;
1008         mg->demote = true;
1009         mg->promote = true;
1010         mg->cache = cache;
1011         mg->old_oblock = old_oblock;
1012         mg->new_oblock = new_oblock;
1013         mg->cblock = cblock;
1014         mg->old_ocell = old_ocell;
1015         mg->new_ocell = new_ocell;
1016         mg->start_jiffies = jiffies;
1017
1018         inc_nr_migrations(cache);
1019         quiesce_migration(mg);
1020 }
1021
1022 /*----------------------------------------------------------------
1023  * bio processing
1024  *--------------------------------------------------------------*/
1025 static void defer_bio(struct cache *cache, struct bio *bio)
1026 {
1027         unsigned long flags;
1028
1029         spin_lock_irqsave(&cache->lock, flags);
1030         bio_list_add(&cache->deferred_bios, bio);
1031         spin_unlock_irqrestore(&cache->lock, flags);
1032
1033         wake_worker(cache);
1034 }
1035
1036 static void process_flush_bio(struct cache *cache, struct bio *bio)
1037 {
1038         struct per_bio_data *pb = get_per_bio_data(bio);
1039
1040         BUG_ON(bio->bi_size);
1041         if (!pb->req_nr)
1042                 remap_to_origin(cache, bio);
1043         else
1044                 remap_to_cache(cache, bio, 0);
1045
1046         issue(cache, bio);
1047 }
1048
1049 /*
1050  * People generally discard large parts of a device, eg, the whole device
1051  * when formatting.  Splitting these large discards up into cache block
1052  * sized ios and then quiescing (always neccessary for discard) takes too
1053  * long.
1054  *
1055  * We keep it simple, and allow any size of discard to come in, and just
1056  * mark off blocks on the discard bitset.  No passdown occurs!
1057  *
1058  * To implement passdown we need to change the bio_prison such that a cell
1059  * can have a key that spans many blocks.
1060  */
1061 static void process_discard_bio(struct cache *cache, struct bio *bio)
1062 {
1063         dm_block_t start_block = dm_sector_div_up(bio->bi_sector,
1064                                                   cache->discard_block_size);
1065         dm_block_t end_block = bio->bi_sector + bio_sectors(bio);
1066         dm_block_t b;
1067
1068         end_block = block_div(end_block, cache->discard_block_size);
1069
1070         for (b = start_block; b < end_block; b++)
1071                 set_discard(cache, to_dblock(b));
1072
1073         bio_endio(bio, 0);
1074 }
1075
1076 static bool spare_migration_bandwidth(struct cache *cache)
1077 {
1078         sector_t current_volume = (atomic_read(&cache->nr_migrations) + 1) *
1079                 cache->sectors_per_block;
1080         return current_volume < cache->migration_threshold;
1081 }
1082
1083 static bool is_writethrough_io(struct cache *cache, struct bio *bio,
1084                                dm_cblock_t cblock)
1085 {
1086         return bio_data_dir(bio) == WRITE &&
1087                 cache->features.write_through && !is_dirty(cache, cblock);
1088 }
1089
1090 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1091 {
1092         atomic_inc(bio_data_dir(bio) == READ ?
1093                    &cache->stats.read_hit : &cache->stats.write_hit);
1094 }
1095
1096 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1097 {
1098         atomic_inc(bio_data_dir(bio) == READ ?
1099                    &cache->stats.read_miss : &cache->stats.write_miss);
1100 }
1101
1102 static void process_bio(struct cache *cache, struct prealloc *structs,
1103                         struct bio *bio)
1104 {
1105         int r;
1106         bool release_cell = true;
1107         dm_oblock_t block = get_bio_block(cache, bio);
1108         struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell;
1109         struct policy_result lookup_result;
1110         struct per_bio_data *pb = get_per_bio_data(bio);
1111         bool discarded_block = is_discarded_oblock(cache, block);
1112         bool can_migrate = discarded_block || spare_migration_bandwidth(cache);
1113
1114         /*
1115          * Check to see if that block is currently migrating.
1116          */
1117         cell_prealloc = prealloc_get_cell(structs);
1118         r = bio_detain(cache, block, bio, cell_prealloc,
1119                        (cell_free_fn) prealloc_put_cell,
1120                        structs, &new_ocell);
1121         if (r > 0)
1122                 return;
1123
1124         r = policy_map(cache->policy, block, true, can_migrate, discarded_block,
1125                        bio, &lookup_result);
1126
1127         if (r == -EWOULDBLOCK)
1128                 /* migration has been denied */
1129                 lookup_result.op = POLICY_MISS;
1130
1131         switch (lookup_result.op) {
1132         case POLICY_HIT:
1133                 inc_hit_counter(cache, bio);
1134                 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1135
1136                 if (is_writethrough_io(cache, bio, lookup_result.cblock))
1137                         remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1138                 else
1139                         remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
1140
1141                 issue(cache, bio);
1142                 break;
1143
1144         case POLICY_MISS:
1145                 inc_miss_counter(cache, bio);
1146                 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1147                 remap_to_origin_clear_discard(cache, bio, block);
1148                 issue(cache, bio);
1149                 break;
1150
1151         case POLICY_NEW:
1152                 atomic_inc(&cache->stats.promotion);
1153                 promote(cache, structs, block, lookup_result.cblock, new_ocell);
1154                 release_cell = false;
1155                 break;
1156
1157         case POLICY_REPLACE:
1158                 cell_prealloc = prealloc_get_cell(structs);
1159                 r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc,
1160                                (cell_free_fn) prealloc_put_cell,
1161                                structs, &old_ocell);
1162                 if (r > 0) {
1163                         /*
1164                          * We have to be careful to avoid lock inversion of
1165                          * the cells.  So we back off, and wait for the
1166                          * old_ocell to become free.
1167                          */
1168                         policy_force_mapping(cache->policy, block,
1169                                              lookup_result.old_oblock);
1170                         atomic_inc(&cache->stats.cache_cell_clash);
1171                         break;
1172                 }
1173                 atomic_inc(&cache->stats.demotion);
1174                 atomic_inc(&cache->stats.promotion);
1175
1176                 demote_then_promote(cache, structs, lookup_result.old_oblock,
1177                                     block, lookup_result.cblock,
1178                                     old_ocell, new_ocell);
1179                 release_cell = false;
1180                 break;
1181
1182         default:
1183                 DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__,
1184                             (unsigned) lookup_result.op);
1185                 bio_io_error(bio);
1186         }
1187
1188         if (release_cell)
1189                 cell_defer(cache, new_ocell, false);
1190 }
1191
1192 static int need_commit_due_to_time(struct cache *cache)
1193 {
1194         return jiffies < cache->last_commit_jiffies ||
1195                jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1196 }
1197
1198 static int commit_if_needed(struct cache *cache)
1199 {
1200         if (dm_cache_changed_this_transaction(cache->cmd) &&
1201             (cache->commit_requested || need_commit_due_to_time(cache))) {
1202                 atomic_inc(&cache->stats.commit_count);
1203                 cache->last_commit_jiffies = jiffies;
1204                 cache->commit_requested = false;
1205                 return dm_cache_commit(cache->cmd, false);
1206         }
1207
1208         return 0;
1209 }
1210
1211 static void process_deferred_bios(struct cache *cache)
1212 {
1213         unsigned long flags;
1214         struct bio_list bios;
1215         struct bio *bio;
1216         struct prealloc structs;
1217
1218         memset(&structs, 0, sizeof(structs));
1219         bio_list_init(&bios);
1220
1221         spin_lock_irqsave(&cache->lock, flags);
1222         bio_list_merge(&bios, &cache->deferred_bios);
1223         bio_list_init(&cache->deferred_bios);
1224         spin_unlock_irqrestore(&cache->lock, flags);
1225
1226         while (!bio_list_empty(&bios)) {
1227                 /*
1228                  * If we've got no free migration structs, and processing
1229                  * this bio might require one, we pause until there are some
1230                  * prepared mappings to process.
1231                  */
1232                 if (prealloc_data_structs(cache, &structs)) {
1233                         spin_lock_irqsave(&cache->lock, flags);
1234                         bio_list_merge(&cache->deferred_bios, &bios);
1235                         spin_unlock_irqrestore(&cache->lock, flags);
1236                         break;
1237                 }
1238
1239                 bio = bio_list_pop(&bios);
1240
1241                 if (bio->bi_rw & REQ_FLUSH)
1242                         process_flush_bio(cache, bio);
1243                 else if (bio->bi_rw & REQ_DISCARD)
1244                         process_discard_bio(cache, bio);
1245                 else
1246                         process_bio(cache, &structs, bio);
1247         }
1248
1249         prealloc_free_structs(cache, &structs);
1250 }
1251
1252 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
1253 {
1254         unsigned long flags;
1255         struct bio_list bios;
1256         struct bio *bio;
1257
1258         bio_list_init(&bios);
1259
1260         spin_lock_irqsave(&cache->lock, flags);
1261         bio_list_merge(&bios, &cache->deferred_flush_bios);
1262         bio_list_init(&cache->deferred_flush_bios);
1263         spin_unlock_irqrestore(&cache->lock, flags);
1264
1265         while ((bio = bio_list_pop(&bios)))
1266                 submit_bios ? generic_make_request(bio) : bio_io_error(bio);
1267 }
1268
1269 static void process_deferred_writethrough_bios(struct cache *cache)
1270 {
1271         unsigned long flags;
1272         struct bio_list bios;
1273         struct bio *bio;
1274
1275         bio_list_init(&bios);
1276
1277         spin_lock_irqsave(&cache->lock, flags);
1278         bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1279         bio_list_init(&cache->deferred_writethrough_bios);
1280         spin_unlock_irqrestore(&cache->lock, flags);
1281
1282         while ((bio = bio_list_pop(&bios)))
1283                 generic_make_request(bio);
1284 }
1285
1286 static void writeback_some_dirty_blocks(struct cache *cache)
1287 {
1288         int r = 0;
1289         dm_oblock_t oblock;
1290         dm_cblock_t cblock;
1291         struct prealloc structs;
1292         struct dm_bio_prison_cell *old_ocell;
1293
1294         memset(&structs, 0, sizeof(structs));
1295
1296         while (spare_migration_bandwidth(cache)) {
1297                 if (prealloc_data_structs(cache, &structs))
1298                         break;
1299
1300                 r = policy_writeback_work(cache->policy, &oblock, &cblock);
1301                 if (r)
1302                         break;
1303
1304                 r = get_cell(cache, oblock, &structs, &old_ocell);
1305                 if (r) {
1306                         policy_set_dirty(cache->policy, oblock);
1307                         break;
1308                 }
1309
1310                 writeback(cache, &structs, oblock, cblock, old_ocell);
1311         }
1312
1313         prealloc_free_structs(cache, &structs);
1314 }
1315
1316 /*----------------------------------------------------------------
1317  * Main worker loop
1318  *--------------------------------------------------------------*/
1319 static void start_quiescing(struct cache *cache)
1320 {
1321         unsigned long flags;
1322
1323         spin_lock_irqsave(&cache->lock, flags);
1324         cache->quiescing = 1;
1325         spin_unlock_irqrestore(&cache->lock, flags);
1326 }
1327
1328 static void stop_quiescing(struct cache *cache)
1329 {
1330         unsigned long flags;
1331
1332         spin_lock_irqsave(&cache->lock, flags);
1333         cache->quiescing = 0;
1334         spin_unlock_irqrestore(&cache->lock, flags);
1335 }
1336
1337 static bool is_quiescing(struct cache *cache)
1338 {
1339         int r;
1340         unsigned long flags;
1341
1342         spin_lock_irqsave(&cache->lock, flags);
1343         r = cache->quiescing;
1344         spin_unlock_irqrestore(&cache->lock, flags);
1345
1346         return r;
1347 }
1348
1349 static void wait_for_migrations(struct cache *cache)
1350 {
1351         wait_event(cache->migration_wait, !atomic_read(&cache->nr_migrations));
1352 }
1353
1354 static void stop_worker(struct cache *cache)
1355 {
1356         cancel_delayed_work(&cache->waker);
1357         flush_workqueue(cache->wq);
1358 }
1359
1360 static void requeue_deferred_io(struct cache *cache)
1361 {
1362         struct bio *bio;
1363         struct bio_list bios;
1364
1365         bio_list_init(&bios);
1366         bio_list_merge(&bios, &cache->deferred_bios);
1367         bio_list_init(&cache->deferred_bios);
1368
1369         while ((bio = bio_list_pop(&bios)))
1370                 bio_endio(bio, DM_ENDIO_REQUEUE);
1371 }
1372
1373 static int more_work(struct cache *cache)
1374 {
1375         if (is_quiescing(cache))
1376                 return !list_empty(&cache->quiesced_migrations) ||
1377                         !list_empty(&cache->completed_migrations) ||
1378                         !list_empty(&cache->need_commit_migrations);
1379         else
1380                 return !bio_list_empty(&cache->deferred_bios) ||
1381                         !bio_list_empty(&cache->deferred_flush_bios) ||
1382                         !bio_list_empty(&cache->deferred_writethrough_bios) ||
1383                         !list_empty(&cache->quiesced_migrations) ||
1384                         !list_empty(&cache->completed_migrations) ||
1385                         !list_empty(&cache->need_commit_migrations);
1386 }
1387
1388 static void do_worker(struct work_struct *ws)
1389 {
1390         struct cache *cache = container_of(ws, struct cache, worker);
1391
1392         do {
1393                 if (!is_quiescing(cache))
1394                         process_deferred_bios(cache);
1395
1396                 process_migrations(cache, &cache->quiesced_migrations, issue_copy);
1397                 process_migrations(cache, &cache->completed_migrations, complete_migration);
1398
1399                 writeback_some_dirty_blocks(cache);
1400
1401                 process_deferred_writethrough_bios(cache);
1402
1403                 if (commit_if_needed(cache)) {
1404                         process_deferred_flush_bios(cache, false);
1405
1406                         /*
1407                          * FIXME: rollback metadata or just go into a
1408                          * failure mode and error everything
1409                          */
1410                 } else {
1411                         process_deferred_flush_bios(cache, true);
1412                         process_migrations(cache, &cache->need_commit_migrations,
1413                                            migration_success_post_commit);
1414                 }
1415         } while (more_work(cache));
1416 }
1417
1418 /*
1419  * We want to commit periodically so that not too much
1420  * unwritten metadata builds up.
1421  */
1422 static void do_waker(struct work_struct *ws)
1423 {
1424         struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1425         wake_worker(cache);
1426         queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1427 }
1428
1429 /*----------------------------------------------------------------*/
1430
1431 static int is_congested(struct dm_dev *dev, int bdi_bits)
1432 {
1433         struct request_queue *q = bdev_get_queue(dev->bdev);
1434         return bdi_congested(&q->backing_dev_info, bdi_bits);
1435 }
1436
1437 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1438 {
1439         struct cache *cache = container_of(cb, struct cache, callbacks);
1440
1441         return is_congested(cache->origin_dev, bdi_bits) ||
1442                 is_congested(cache->cache_dev, bdi_bits);
1443 }
1444
1445 /*----------------------------------------------------------------
1446  * Target methods
1447  *--------------------------------------------------------------*/
1448
1449 /*
1450  * This function gets called on the error paths of the constructor, so we
1451  * have to cope with a partially initialised struct.
1452  */
1453 static void destroy(struct cache *cache)
1454 {
1455         unsigned i;
1456
1457         if (cache->next_migration)
1458                 mempool_free(cache->next_migration, cache->migration_pool);
1459
1460         if (cache->migration_pool)
1461                 mempool_destroy(cache->migration_pool);
1462
1463         if (cache->all_io_ds)
1464                 dm_deferred_set_destroy(cache->all_io_ds);
1465
1466         if (cache->prison)
1467                 dm_bio_prison_destroy(cache->prison);
1468
1469         if (cache->wq)
1470                 destroy_workqueue(cache->wq);
1471
1472         if (cache->dirty_bitset)
1473                 free_bitset(cache->dirty_bitset);
1474
1475         if (cache->discard_bitset)
1476                 free_bitset(cache->discard_bitset);
1477
1478         if (cache->copier)
1479                 dm_kcopyd_client_destroy(cache->copier);
1480
1481         if (cache->cmd)
1482                 dm_cache_metadata_close(cache->cmd);
1483
1484         if (cache->metadata_dev)
1485                 dm_put_device(cache->ti, cache->metadata_dev);
1486
1487         if (cache->origin_dev)
1488                 dm_put_device(cache->ti, cache->origin_dev);
1489
1490         if (cache->cache_dev)
1491                 dm_put_device(cache->ti, cache->cache_dev);
1492
1493         if (cache->policy)
1494                 dm_cache_policy_destroy(cache->policy);
1495
1496         for (i = 0; i < cache->nr_ctr_args ; i++)
1497                 kfree(cache->ctr_args[i]);
1498         kfree(cache->ctr_args);
1499
1500         kfree(cache);
1501 }
1502
1503 static void cache_dtr(struct dm_target *ti)
1504 {
1505         struct cache *cache = ti->private;
1506
1507         destroy(cache);
1508 }
1509
1510 static sector_t get_dev_size(struct dm_dev *dev)
1511 {
1512         return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1513 }
1514
1515 /*----------------------------------------------------------------*/
1516
1517 /*
1518  * Construct a cache device mapping.
1519  *
1520  * cache <metadata dev> <cache dev> <origin dev> <block size>
1521  *       <#feature args> [<feature arg>]*
1522  *       <policy> <#policy args> [<policy arg>]*
1523  *
1524  * metadata dev    : fast device holding the persistent metadata
1525  * cache dev       : fast device holding cached data blocks
1526  * origin dev      : slow device holding original data blocks
1527  * block size      : cache unit size in sectors
1528  *
1529  * #feature args   : number of feature arguments passed
1530  * feature args    : writethrough.  (The default is writeback.)
1531  *
1532  * policy          : the replacement policy to use
1533  * #policy args    : an even number of policy arguments corresponding
1534  *                   to key/value pairs passed to the policy
1535  * policy args     : key/value pairs passed to the policy
1536  *                   E.g. 'sequential_threshold 1024'
1537  *                   See cache-policies.txt for details.
1538  *
1539  * Optional feature arguments are:
1540  *   writethrough  : write through caching that prohibits cache block
1541  *                   content from being different from origin block content.
1542  *                   Without this argument, the default behaviour is to write
1543  *                   back cache block contents later for performance reasons,
1544  *                   so they may differ from the corresponding origin blocks.
1545  */
1546 struct cache_args {
1547         struct dm_target *ti;
1548
1549         struct dm_dev *metadata_dev;
1550
1551         struct dm_dev *cache_dev;
1552         sector_t cache_sectors;
1553
1554         struct dm_dev *origin_dev;
1555         sector_t origin_sectors;
1556
1557         uint32_t block_size;
1558
1559         const char *policy_name;
1560         int policy_argc;
1561         const char **policy_argv;
1562
1563         struct cache_features features;
1564 };
1565
1566 static void destroy_cache_args(struct cache_args *ca)
1567 {
1568         if (ca->metadata_dev)
1569                 dm_put_device(ca->ti, ca->metadata_dev);
1570
1571         if (ca->cache_dev)
1572                 dm_put_device(ca->ti, ca->cache_dev);
1573
1574         if (ca->origin_dev)
1575                 dm_put_device(ca->ti, ca->origin_dev);
1576
1577         kfree(ca);
1578 }
1579
1580 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
1581 {
1582         if (!as->argc) {
1583                 *error = "Insufficient args";
1584                 return false;
1585         }
1586
1587         return true;
1588 }
1589
1590 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
1591                               char **error)
1592 {
1593         int r;
1594         sector_t metadata_dev_size;
1595         char b[BDEVNAME_SIZE];
1596
1597         if (!at_least_one_arg(as, error))
1598                 return -EINVAL;
1599
1600         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1601                           &ca->metadata_dev);
1602         if (r) {
1603                 *error = "Error opening metadata device";
1604                 return r;
1605         }
1606
1607         metadata_dev_size = get_dev_size(ca->metadata_dev);
1608         if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
1609                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1610                        bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1611
1612         return 0;
1613 }
1614
1615 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
1616                            char **error)
1617 {
1618         int r;
1619
1620         if (!at_least_one_arg(as, error))
1621                 return -EINVAL;
1622
1623         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1624                           &ca->cache_dev);
1625         if (r) {
1626                 *error = "Error opening cache device";
1627                 return r;
1628         }
1629         ca->cache_sectors = get_dev_size(ca->cache_dev);
1630
1631         return 0;
1632 }
1633
1634 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
1635                             char **error)
1636 {
1637         int r;
1638
1639         if (!at_least_one_arg(as, error))
1640                 return -EINVAL;
1641
1642         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1643                           &ca->origin_dev);
1644         if (r) {
1645                 *error = "Error opening origin device";
1646                 return r;
1647         }
1648
1649         ca->origin_sectors = get_dev_size(ca->origin_dev);
1650         if (ca->ti->len > ca->origin_sectors) {
1651                 *error = "Device size larger than cached device";
1652                 return -EINVAL;
1653         }
1654
1655         return 0;
1656 }
1657
1658 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
1659                             char **error)
1660 {
1661         unsigned long tmp;
1662
1663         if (!at_least_one_arg(as, error))
1664                 return -EINVAL;
1665
1666         if (kstrtoul(dm_shift_arg(as), 10, &tmp) || !tmp ||
1667             tmp < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1668             tmp & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1669                 *error = "Invalid data block size";
1670                 return -EINVAL;
1671         }
1672
1673         if (tmp > ca->cache_sectors) {
1674                 *error = "Data block size is larger than the cache device";
1675                 return -EINVAL;
1676         }
1677
1678         ca->block_size = tmp;
1679
1680         return 0;
1681 }
1682
1683 static void init_features(struct cache_features *cf)
1684 {
1685         cf->mode = CM_WRITE;
1686         cf->write_through = false;
1687 }
1688
1689 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
1690                           char **error)
1691 {
1692         static struct dm_arg _args[] = {
1693                 {0, 1, "Invalid number of cache feature arguments"},
1694         };
1695
1696         int r;
1697         unsigned argc;
1698         const char *arg;
1699         struct cache_features *cf = &ca->features;
1700
1701         init_features(cf);
1702
1703         r = dm_read_arg_group(_args, as, &argc, error);
1704         if (r)
1705                 return -EINVAL;
1706
1707         while (argc--) {
1708                 arg = dm_shift_arg(as);
1709
1710                 if (!strcasecmp(arg, "writeback"))
1711                         cf->write_through = false;
1712
1713                 else if (!strcasecmp(arg, "writethrough"))
1714                         cf->write_through = true;
1715
1716                 else {
1717                         *error = "Unrecognised cache feature requested";
1718                         return -EINVAL;
1719                 }
1720         }
1721
1722         return 0;
1723 }
1724
1725 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
1726                         char **error)
1727 {
1728         static struct dm_arg _args[] = {
1729                 {0, 1024, "Invalid number of policy arguments"},
1730         };
1731
1732         int r;
1733
1734         if (!at_least_one_arg(as, error))
1735                 return -EINVAL;
1736
1737         ca->policy_name = dm_shift_arg(as);
1738
1739         r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
1740         if (r)
1741                 return -EINVAL;
1742
1743         ca->policy_argv = (const char **)as->argv;
1744         dm_consume_args(as, ca->policy_argc);
1745
1746         return 0;
1747 }
1748
1749 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
1750                             char **error)
1751 {
1752         int r;
1753         struct dm_arg_set as;
1754
1755         as.argc = argc;
1756         as.argv = argv;
1757
1758         r = parse_metadata_dev(ca, &as, error);
1759         if (r)
1760                 return r;
1761
1762         r = parse_cache_dev(ca, &as, error);
1763         if (r)
1764                 return r;
1765
1766         r = parse_origin_dev(ca, &as, error);
1767         if (r)
1768                 return r;
1769
1770         r = parse_block_size(ca, &as, error);
1771         if (r)
1772                 return r;
1773
1774         r = parse_features(ca, &as, error);
1775         if (r)
1776                 return r;
1777
1778         r = parse_policy(ca, &as, error);
1779         if (r)
1780                 return r;
1781
1782         return 0;
1783 }
1784
1785 /*----------------------------------------------------------------*/
1786
1787 static struct kmem_cache *migration_cache;
1788
1789 static int set_config_values(struct dm_cache_policy *p, int argc, const char **argv)
1790 {
1791         int r = 0;
1792
1793         if (argc & 1) {
1794                 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
1795                 return -EINVAL;
1796         }
1797
1798         while (argc) {
1799                 r = policy_set_config_value(p, argv[0], argv[1]);
1800                 if (r) {
1801                         DMWARN("policy_set_config_value failed: key = '%s', value = '%s'",
1802                                argv[0], argv[1]);
1803                         return r;
1804                 }
1805
1806                 argc -= 2;
1807                 argv += 2;
1808         }
1809
1810         return r;
1811 }
1812
1813 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
1814                                char **error)
1815 {
1816         int r;
1817
1818         cache->policy = dm_cache_policy_create(ca->policy_name,
1819                                                cache->cache_size,
1820                                                cache->origin_sectors,
1821                                                cache->sectors_per_block);
1822         if (!cache->policy) {
1823                 *error = "Error creating cache's policy";
1824                 return -ENOMEM;
1825         }
1826
1827         r = set_config_values(cache->policy, ca->policy_argc, ca->policy_argv);
1828         if (r) {
1829                 *error = "Error setting cache policy's config values";
1830                 dm_cache_policy_destroy(cache->policy);
1831                 cache->policy = NULL;
1832         }
1833
1834         return r;
1835 }
1836
1837 /*
1838  * We want the discard block size to be a power of two, at least the size
1839  * of the cache block size, and have no more than 2^14 discard blocks
1840  * across the origin.
1841  */
1842 #define MAX_DISCARD_BLOCKS (1 << 14)
1843
1844 static bool too_many_discard_blocks(sector_t discard_block_size,
1845                                     sector_t origin_size)
1846 {
1847         (void) sector_div(origin_size, discard_block_size);
1848
1849         return origin_size > MAX_DISCARD_BLOCKS;
1850 }
1851
1852 static sector_t calculate_discard_block_size(sector_t cache_block_size,
1853                                              sector_t origin_size)
1854 {
1855         sector_t discard_block_size;
1856
1857         discard_block_size = roundup_pow_of_two(cache_block_size);
1858
1859         if (origin_size)
1860                 while (too_many_discard_blocks(discard_block_size, origin_size))
1861                         discard_block_size *= 2;
1862
1863         return discard_block_size;
1864 }
1865
1866 #define DEFAULT_MIGRATION_THRESHOLD (2048 * 100)
1867
1868 static int cache_create(struct cache_args *ca, struct cache **result)
1869 {
1870         int r = 0;
1871         char **error = &ca->ti->error;
1872         struct cache *cache;
1873         struct dm_target *ti = ca->ti;
1874         dm_block_t origin_blocks;
1875         struct dm_cache_metadata *cmd;
1876         bool may_format = ca->features.mode == CM_WRITE;
1877
1878         cache = kzalloc(sizeof(*cache), GFP_KERNEL);
1879         if (!cache)
1880                 return -ENOMEM;
1881
1882         cache->ti = ca->ti;
1883         ti->private = cache;
1884         ti->per_bio_data_size = sizeof(struct per_bio_data);
1885         ti->num_flush_bios = 2;
1886         ti->flush_supported = true;
1887
1888         ti->num_discard_bios = 1;
1889         ti->discards_supported = true;
1890         ti->discard_zeroes_data_unsupported = true;
1891
1892         memcpy(&cache->features, &ca->features, sizeof(cache->features));
1893
1894         cache->callbacks.congested_fn = cache_is_congested;
1895         dm_table_add_target_callbacks(ti->table, &cache->callbacks);
1896
1897         cache->metadata_dev = ca->metadata_dev;
1898         cache->origin_dev = ca->origin_dev;
1899         cache->cache_dev = ca->cache_dev;
1900
1901         ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
1902
1903         /* FIXME: factor out this whole section */
1904         origin_blocks = cache->origin_sectors = ca->origin_sectors;
1905         origin_blocks = block_div(origin_blocks, ca->block_size);
1906         cache->origin_blocks = to_oblock(origin_blocks);
1907
1908         cache->sectors_per_block = ca->block_size;
1909         if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
1910                 r = -EINVAL;
1911                 goto bad;
1912         }
1913
1914         if (ca->block_size & (ca->block_size - 1)) {
1915                 dm_block_t cache_size = ca->cache_sectors;
1916
1917                 cache->sectors_per_block_shift = -1;
1918                 cache_size = block_div(cache_size, ca->block_size);
1919                 cache->cache_size = to_cblock(cache_size);
1920         } else {
1921                 cache->sectors_per_block_shift = __ffs(ca->block_size);
1922                 cache->cache_size = to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift);
1923         }
1924
1925         r = create_cache_policy(cache, ca, error);
1926         if (r)
1927                 goto bad;
1928         cache->policy_nr_args = ca->policy_argc;
1929
1930         cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
1931                                      ca->block_size, may_format,
1932                                      dm_cache_policy_get_hint_size(cache->policy));
1933         if (IS_ERR(cmd)) {
1934                 *error = "Error creating metadata object";
1935                 r = PTR_ERR(cmd);
1936                 goto bad;
1937         }
1938         cache->cmd = cmd;
1939
1940         spin_lock_init(&cache->lock);
1941         bio_list_init(&cache->deferred_bios);
1942         bio_list_init(&cache->deferred_flush_bios);
1943         bio_list_init(&cache->deferred_writethrough_bios);
1944         INIT_LIST_HEAD(&cache->quiesced_migrations);
1945         INIT_LIST_HEAD(&cache->completed_migrations);
1946         INIT_LIST_HEAD(&cache->need_commit_migrations);
1947         cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
1948         atomic_set(&cache->nr_migrations, 0);
1949         init_waitqueue_head(&cache->migration_wait);
1950
1951         cache->nr_dirty = 0;
1952         cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
1953         if (!cache->dirty_bitset) {
1954                 *error = "could not allocate dirty bitset";
1955                 goto bad;
1956         }
1957         clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
1958
1959         cache->discard_block_size =
1960                 calculate_discard_block_size(cache->sectors_per_block,
1961                                              cache->origin_sectors);
1962         cache->discard_nr_blocks = oblock_to_dblock(cache, cache->origin_blocks);
1963         cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
1964         if (!cache->discard_bitset) {
1965                 *error = "could not allocate discard bitset";
1966                 goto bad;
1967         }
1968         clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
1969
1970         cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1971         if (IS_ERR(cache->copier)) {
1972                 *error = "could not create kcopyd client";
1973                 r = PTR_ERR(cache->copier);
1974                 goto bad;
1975         }
1976
1977         cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1978         if (!cache->wq) {
1979                 *error = "could not create workqueue for metadata object";
1980                 goto bad;
1981         }
1982         INIT_WORK(&cache->worker, do_worker);
1983         INIT_DELAYED_WORK(&cache->waker, do_waker);
1984         cache->last_commit_jiffies = jiffies;
1985
1986         cache->prison = dm_bio_prison_create(PRISON_CELLS);
1987         if (!cache->prison) {
1988                 *error = "could not create bio prison";
1989                 goto bad;
1990         }
1991
1992         cache->all_io_ds = dm_deferred_set_create();
1993         if (!cache->all_io_ds) {
1994                 *error = "could not create all_io deferred set";
1995                 goto bad;
1996         }
1997
1998         cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
1999                                                          migration_cache);
2000         if (!cache->migration_pool) {
2001                 *error = "Error creating cache's migration mempool";
2002                 goto bad;
2003         }
2004
2005         cache->next_migration = NULL;
2006
2007         cache->need_tick_bio = true;
2008         cache->sized = false;
2009         cache->quiescing = false;
2010         cache->commit_requested = false;
2011         cache->loaded_mappings = false;
2012         cache->loaded_discards = false;
2013
2014         load_stats(cache);
2015
2016         atomic_set(&cache->stats.demotion, 0);
2017         atomic_set(&cache->stats.promotion, 0);
2018         atomic_set(&cache->stats.copies_avoided, 0);
2019         atomic_set(&cache->stats.cache_cell_clash, 0);
2020         atomic_set(&cache->stats.commit_count, 0);
2021         atomic_set(&cache->stats.discard_count, 0);
2022
2023         *result = cache;
2024         return 0;
2025
2026 bad:
2027         destroy(cache);
2028         return r;
2029 }
2030
2031 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2032 {
2033         unsigned i;
2034         const char **copy;
2035
2036         copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2037         if (!copy)
2038                 return -ENOMEM;
2039         for (i = 0; i < argc; i++) {
2040                 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2041                 if (!copy[i]) {
2042                         while (i--)
2043                                 kfree(copy[i]);
2044                         kfree(copy);
2045                         return -ENOMEM;
2046                 }
2047         }
2048
2049         cache->nr_ctr_args = argc;
2050         cache->ctr_args = copy;
2051
2052         return 0;
2053 }
2054
2055 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2056 {
2057         int r = -EINVAL;
2058         struct cache_args *ca;
2059         struct cache *cache = NULL;
2060
2061         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2062         if (!ca) {
2063                 ti->error = "Error allocating memory for cache";
2064                 return -ENOMEM;
2065         }
2066         ca->ti = ti;
2067
2068         r = parse_cache_args(ca, argc, argv, &ti->error);
2069         if (r)
2070                 goto out;
2071
2072         r = cache_create(ca, &cache);
2073         if (r)
2074                 goto out;
2075
2076         r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2077         if (r) {
2078                 destroy(cache);
2079                 goto out;
2080         }
2081
2082         ti->private = cache;
2083
2084 out:
2085         destroy_cache_args(ca);
2086         return r;
2087 }
2088
2089 static int cache_map(struct dm_target *ti, struct bio *bio)
2090 {
2091         struct cache *cache = ti->private;
2092
2093         int r;
2094         dm_oblock_t block = get_bio_block(cache, bio);
2095         bool can_migrate = false;
2096         bool discarded_block;
2097         struct dm_bio_prison_cell *cell;
2098         struct policy_result lookup_result;
2099         struct per_bio_data *pb;
2100
2101         if (from_oblock(block) > from_oblock(cache->origin_blocks)) {
2102                 /*
2103                  * This can only occur if the io goes to a partial block at
2104                  * the end of the origin device.  We don't cache these.
2105                  * Just remap to the origin and carry on.
2106                  */
2107                 remap_to_origin_clear_discard(cache, bio, block);
2108                 return DM_MAPIO_REMAPPED;
2109         }
2110
2111         pb = init_per_bio_data(bio);
2112
2113         if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) {
2114                 defer_bio(cache, bio);
2115                 return DM_MAPIO_SUBMITTED;
2116         }
2117
2118         /*
2119          * Check to see if that block is currently migrating.
2120          */
2121         cell = alloc_prison_cell(cache);
2122         if (!cell) {
2123                 defer_bio(cache, bio);
2124                 return DM_MAPIO_SUBMITTED;
2125         }
2126
2127         r = bio_detain(cache, block, bio, cell,
2128                        (cell_free_fn) free_prison_cell,
2129                        cache, &cell);
2130         if (r) {
2131                 if (r < 0)
2132                         defer_bio(cache, bio);
2133
2134                 return DM_MAPIO_SUBMITTED;
2135         }
2136
2137         discarded_block = is_discarded_oblock(cache, block);
2138
2139         r = policy_map(cache->policy, block, false, can_migrate, discarded_block,
2140                        bio, &lookup_result);
2141         if (r == -EWOULDBLOCK) {
2142                 cell_defer(cache, cell, true);
2143                 return DM_MAPIO_SUBMITTED;
2144
2145         } else if (r) {
2146                 DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r);
2147                 bio_io_error(bio);
2148                 return DM_MAPIO_SUBMITTED;
2149         }
2150
2151         switch (lookup_result.op) {
2152         case POLICY_HIT:
2153                 inc_hit_counter(cache, bio);
2154                 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2155
2156                 if (is_writethrough_io(cache, bio, lookup_result.cblock))
2157                         remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
2158                 else
2159                         remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
2160
2161                 cell_defer(cache, cell, false);
2162                 break;
2163
2164         case POLICY_MISS:
2165                 inc_miss_counter(cache, bio);
2166                 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2167
2168                 if (pb->req_nr != 0) {
2169                         /*
2170                          * This is a duplicate writethrough io that is no
2171                          * longer needed because the block has been demoted.
2172                          */
2173                         bio_endio(bio, 0);
2174                         cell_defer(cache, cell, false);
2175                         return DM_MAPIO_SUBMITTED;
2176                 } else {
2177                         remap_to_origin_clear_discard(cache, bio, block);
2178                         cell_defer(cache, cell, false);
2179                 }
2180                 break;
2181
2182         default:
2183                 DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__,
2184                             (unsigned) lookup_result.op);
2185                 bio_io_error(bio);
2186                 return DM_MAPIO_SUBMITTED;
2187         }
2188
2189         return DM_MAPIO_REMAPPED;
2190 }
2191
2192 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2193 {
2194         struct cache *cache = ti->private;
2195         unsigned long flags;
2196         struct per_bio_data *pb = get_per_bio_data(bio);
2197
2198         if (pb->tick) {
2199                 policy_tick(cache->policy);
2200
2201                 spin_lock_irqsave(&cache->lock, flags);
2202                 cache->need_tick_bio = true;
2203                 spin_unlock_irqrestore(&cache->lock, flags);
2204         }
2205
2206         check_for_quiesced_migrations(cache, pb);
2207
2208         return 0;
2209 }
2210
2211 static int write_dirty_bitset(struct cache *cache)
2212 {
2213         unsigned i, r;
2214
2215         for (i = 0; i < from_cblock(cache->cache_size); i++) {
2216                 r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
2217                                        is_dirty(cache, to_cblock(i)));
2218                 if (r)
2219                         return r;
2220         }
2221
2222         return 0;
2223 }
2224
2225 static int write_discard_bitset(struct cache *cache)
2226 {
2227         unsigned i, r;
2228
2229         r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2230                                            cache->discard_nr_blocks);
2231         if (r) {
2232                 DMERR("could not resize on-disk discard bitset");
2233                 return r;
2234         }
2235
2236         for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2237                 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2238                                          is_discarded(cache, to_dblock(i)));
2239                 if (r)
2240                         return r;
2241         }
2242
2243         return 0;
2244 }
2245
2246 static int save_hint(void *context, dm_cblock_t cblock, dm_oblock_t oblock,
2247                      uint32_t hint)
2248 {
2249         struct cache *cache = context;
2250         return dm_cache_save_hint(cache->cmd, cblock, hint);
2251 }
2252
2253 static int write_hints(struct cache *cache)
2254 {
2255         int r;
2256
2257         r = dm_cache_begin_hints(cache->cmd, cache->policy);
2258         if (r) {
2259                 DMERR("dm_cache_begin_hints failed");
2260                 return r;
2261         }
2262
2263         r = policy_walk_mappings(cache->policy, save_hint, cache);
2264         if (r)
2265                 DMERR("policy_walk_mappings failed");
2266
2267         return r;
2268 }
2269
2270 /*
2271  * returns true on success
2272  */
2273 static bool sync_metadata(struct cache *cache)
2274 {
2275         int r1, r2, r3, r4;
2276
2277         r1 = write_dirty_bitset(cache);
2278         if (r1)
2279                 DMERR("could not write dirty bitset");
2280
2281         r2 = write_discard_bitset(cache);
2282         if (r2)
2283                 DMERR("could not write discard bitset");
2284
2285         save_stats(cache);
2286
2287         r3 = write_hints(cache);
2288         if (r3)
2289                 DMERR("could not write hints");
2290
2291         /*
2292          * If writing the above metadata failed, we still commit, but don't
2293          * set the clean shutdown flag.  This will effectively force every
2294          * dirty bit to be set on reload.
2295          */
2296         r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3);
2297         if (r4)
2298                 DMERR("could not write cache metadata.  Data loss may occur.");
2299
2300         return !r1 && !r2 && !r3 && !r4;
2301 }
2302
2303 static void cache_postsuspend(struct dm_target *ti)
2304 {
2305         struct cache *cache = ti->private;
2306
2307         start_quiescing(cache);
2308         wait_for_migrations(cache);
2309         stop_worker(cache);
2310         requeue_deferred_io(cache);
2311         stop_quiescing(cache);
2312
2313         (void) sync_metadata(cache);
2314 }
2315
2316 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2317                         bool dirty, uint32_t hint, bool hint_valid)
2318 {
2319         int r;
2320         struct cache *cache = context;
2321
2322         r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
2323         if (r)
2324                 return r;
2325
2326         if (dirty)
2327                 set_dirty(cache, oblock, cblock);
2328         else
2329                 clear_dirty(cache, oblock, cblock);
2330
2331         return 0;
2332 }
2333
2334 static int load_discard(void *context, sector_t discard_block_size,
2335                         dm_dblock_t dblock, bool discard)
2336 {
2337         struct cache *cache = context;
2338
2339         /* FIXME: handle mis-matched block size */
2340
2341         if (discard)
2342                 set_discard(cache, dblock);
2343         else
2344                 clear_discard(cache, dblock);
2345
2346         return 0;
2347 }
2348
2349 static int cache_preresume(struct dm_target *ti)
2350 {
2351         int r = 0;
2352         struct cache *cache = ti->private;
2353         sector_t actual_cache_size = get_dev_size(cache->cache_dev);
2354         (void) sector_div(actual_cache_size, cache->sectors_per_block);
2355
2356         /*
2357          * Check to see if the cache has resized.
2358          */
2359         if (from_cblock(cache->cache_size) != actual_cache_size || !cache->sized) {
2360                 cache->cache_size = to_cblock(actual_cache_size);
2361
2362                 r = dm_cache_resize(cache->cmd, cache->cache_size);
2363                 if (r) {
2364                         DMERR("could not resize cache metadata");
2365                         return r;
2366                 }
2367
2368                 cache->sized = true;
2369         }
2370
2371         if (!cache->loaded_mappings) {
2372                 r = dm_cache_load_mappings(cache->cmd, cache->policy,
2373                                            load_mapping, cache);
2374                 if (r) {
2375                         DMERR("could not load cache mappings");
2376                         return r;
2377                 }
2378
2379                 cache->loaded_mappings = true;
2380         }
2381
2382         if (!cache->loaded_discards) {
2383                 r = dm_cache_load_discards(cache->cmd, load_discard, cache);
2384                 if (r) {
2385                         DMERR("could not load origin discards");
2386                         return r;
2387                 }
2388
2389                 cache->loaded_discards = true;
2390         }
2391
2392         return r;
2393 }
2394
2395 static void cache_resume(struct dm_target *ti)
2396 {
2397         struct cache *cache = ti->private;
2398
2399         cache->need_tick_bio = true;
2400         do_waker(&cache->waker.work);
2401 }
2402
2403 /*
2404  * Status format:
2405  *
2406  * <#used metadata blocks>/<#total metadata blocks>
2407  * <#read hits> <#read misses> <#write hits> <#write misses>
2408  * <#demotions> <#promotions> <#blocks in cache> <#dirty>
2409  * <#features> <features>*
2410  * <#core args> <core args>
2411  * <#policy args> <policy args>*
2412  */
2413 static void cache_status(struct dm_target *ti, status_type_t type,
2414                          unsigned status_flags, char *result, unsigned maxlen)
2415 {
2416         int r = 0;
2417         unsigned i;
2418         ssize_t sz = 0;
2419         dm_block_t nr_free_blocks_metadata = 0;
2420         dm_block_t nr_blocks_metadata = 0;
2421         char buf[BDEVNAME_SIZE];
2422         struct cache *cache = ti->private;
2423         dm_cblock_t residency;
2424
2425         switch (type) {
2426         case STATUSTYPE_INFO:
2427                 /* Commit to ensure statistics aren't out-of-date */
2428                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) {
2429                         r = dm_cache_commit(cache->cmd, false);
2430                         if (r)
2431                                 DMERR("could not commit metadata for accurate status");
2432                 }
2433
2434                 r = dm_cache_get_free_metadata_block_count(cache->cmd,
2435                                                            &nr_free_blocks_metadata);
2436                 if (r) {
2437                         DMERR("could not get metadata free block count");
2438                         goto err;
2439                 }
2440
2441                 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
2442                 if (r) {
2443                         DMERR("could not get metadata device size");
2444                         goto err;
2445                 }
2446
2447                 residency = policy_residency(cache->policy);
2448
2449                 DMEMIT("%llu/%llu %u %u %u %u %u %u %llu %u ",
2450                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2451                        (unsigned long long)nr_blocks_metadata,
2452                        (unsigned) atomic_read(&cache->stats.read_hit),
2453                        (unsigned) atomic_read(&cache->stats.read_miss),
2454                        (unsigned) atomic_read(&cache->stats.write_hit),
2455                        (unsigned) atomic_read(&cache->stats.write_miss),
2456                        (unsigned) atomic_read(&cache->stats.demotion),
2457                        (unsigned) atomic_read(&cache->stats.promotion),
2458                        (unsigned long long) from_cblock(residency),
2459                        cache->nr_dirty);
2460
2461                 if (cache->features.write_through)
2462                         DMEMIT("1 writethrough ");
2463                 else
2464                         DMEMIT("0 ");
2465
2466                 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
2467                 if (sz < maxlen) {
2468                         r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz);
2469                         if (r)
2470                                 DMERR("policy_emit_config_values returned %d", r);
2471                 }
2472
2473                 break;
2474
2475         case STATUSTYPE_TABLE:
2476                 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
2477                 DMEMIT("%s ", buf);
2478                 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
2479                 DMEMIT("%s ", buf);
2480                 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
2481                 DMEMIT("%s", buf);
2482
2483                 for (i = 0; i < cache->nr_ctr_args - 1; i++)
2484                         DMEMIT(" %s", cache->ctr_args[i]);
2485                 if (cache->nr_ctr_args)
2486                         DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
2487         }
2488
2489         return;
2490
2491 err:
2492         DMEMIT("Error");
2493 }
2494
2495 #define NOT_CORE_OPTION 1
2496
2497 static int process_config_option(struct cache *cache, char **argv)
2498 {
2499         unsigned long tmp;
2500
2501         if (!strcasecmp(argv[0], "migration_threshold")) {
2502                 if (kstrtoul(argv[1], 10, &tmp))
2503                         return -EINVAL;
2504
2505                 cache->migration_threshold = tmp;
2506                 return 0;
2507         }
2508
2509         return NOT_CORE_OPTION;
2510 }
2511
2512 /*
2513  * Supports <key> <value>.
2514  *
2515  * The key migration_threshold is supported by the cache target core.
2516  */
2517 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
2518 {
2519         int r;
2520         struct cache *cache = ti->private;
2521
2522         if (argc != 2)
2523                 return -EINVAL;
2524
2525         r = process_config_option(cache, argv);
2526         if (r == NOT_CORE_OPTION)
2527                 return policy_set_config_value(cache->policy, argv[0], argv[1]);
2528
2529         return r;
2530 }
2531
2532 static int cache_iterate_devices(struct dm_target *ti,
2533                                  iterate_devices_callout_fn fn, void *data)
2534 {
2535         int r = 0;
2536         struct cache *cache = ti->private;
2537
2538         r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
2539         if (!r)
2540                 r = fn(ti, cache->origin_dev, 0, ti->len, data);
2541
2542         return r;
2543 }
2544
2545 /*
2546  * We assume I/O is going to the origin (which is the volume
2547  * more likely to have restrictions e.g. by being striped).
2548  * (Looking up the exact location of the data would be expensive
2549  * and could always be out of date by the time the bio is submitted.)
2550  */
2551 static int cache_bvec_merge(struct dm_target *ti,
2552                             struct bvec_merge_data *bvm,
2553                             struct bio_vec *biovec, int max_size)
2554 {
2555         struct cache *cache = ti->private;
2556         struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
2557
2558         if (!q->merge_bvec_fn)
2559                 return max_size;
2560
2561         bvm->bi_bdev = cache->origin_dev->bdev;
2562         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2563 }
2564
2565 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
2566 {
2567         /*
2568          * FIXME: these limits may be incompatible with the cache device
2569          */
2570         limits->max_discard_sectors = cache->discard_block_size * 1024;
2571         limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
2572 }
2573
2574 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
2575 {
2576         struct cache *cache = ti->private;
2577
2578         blk_limits_io_min(limits, 0);
2579         blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
2580         set_discard_limits(cache, limits);
2581 }
2582
2583 /*----------------------------------------------------------------*/
2584
2585 static struct target_type cache_target = {
2586         .name = "cache",
2587         .version = {1, 1, 0},
2588         .module = THIS_MODULE,
2589         .ctr = cache_ctr,
2590         .dtr = cache_dtr,
2591         .map = cache_map,
2592         .end_io = cache_end_io,
2593         .postsuspend = cache_postsuspend,
2594         .preresume = cache_preresume,
2595         .resume = cache_resume,
2596         .status = cache_status,
2597         .message = cache_message,
2598         .iterate_devices = cache_iterate_devices,
2599         .merge = cache_bvec_merge,
2600         .io_hints = cache_io_hints,
2601 };
2602
2603 static int __init dm_cache_init(void)
2604 {
2605         int r;
2606
2607         r = dm_register_target(&cache_target);
2608         if (r) {
2609                 DMERR("cache target registration failed: %d", r);
2610                 return r;
2611         }
2612
2613         migration_cache = KMEM_CACHE(dm_cache_migration, 0);
2614         if (!migration_cache) {
2615                 dm_unregister_target(&cache_target);
2616                 return -ENOMEM;
2617         }
2618
2619         return 0;
2620 }
2621
2622 static void __exit dm_cache_exit(void)
2623 {
2624         dm_unregister_target(&cache_target);
2625         kmem_cache_destroy(migration_cache);
2626 }
2627
2628 module_init(dm_cache_init);
2629 module_exit(dm_cache_exit);
2630
2631 MODULE_DESCRIPTION(DM_NAME " cache target");
2632 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
2633 MODULE_LICENSE("GPL");