dm bio prison: pass cell memory in
[cascardo/linux.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX   "thin"
20
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30                 "A percentage of time allocated for copy on write");
31
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105  * Key building.
106  */
107 static void build_data_key(struct dm_thin_device *td,
108                            dm_block_t b, struct dm_cell_key *key)
109 {
110         key->virtual = 0;
111         key->dev = dm_thin_dev_id(td);
112         key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116                               struct dm_cell_key *key)
117 {
118         key->virtual = 1;
119         key->dev = dm_thin_dev_id(td);
120         key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131
132 /*
133  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136         PM_WRITE,               /* metadata may be changed */
137         PM_READ_ONLY,           /* metadata may not be changed */
138         PM_FAIL,                /* all I/O fails */
139 };
140
141 struct pool_features {
142         enum pool_mode mode;
143
144         bool zero_new_blocks:1;
145         bool discard_enabled:1;
146         bool discard_passdown:1;
147 };
148
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152
153 struct pool {
154         struct list_head list;
155         struct dm_target *ti;   /* Only set if a pool target is bound */
156
157         struct mapped_device *pool_md;
158         struct block_device *md_dev;
159         struct dm_pool_metadata *pmd;
160
161         dm_block_t low_water_blocks;
162         uint32_t sectors_per_block;
163         int sectors_per_block_shift;
164
165         struct pool_features pf;
166         unsigned low_water_triggered:1; /* A dm event has been sent */
167         unsigned no_free_space:1;       /* A -ENOSPC warning has been issued */
168
169         struct dm_bio_prison *prison;
170         struct dm_kcopyd_client *copier;
171
172         struct workqueue_struct *wq;
173         struct work_struct worker;
174         struct delayed_work waker;
175
176         unsigned long last_commit_jiffies;
177         unsigned ref_count;
178
179         spinlock_t lock;
180         struct bio_list deferred_bios;
181         struct bio_list deferred_flush_bios;
182         struct list_head prepared_mappings;
183         struct list_head prepared_discards;
184
185         struct bio_list retry_on_resume_list;
186
187         struct dm_deferred_set *shared_read_ds;
188         struct dm_deferred_set *all_io_ds;
189
190         struct dm_thin_new_mapping *next_mapping;
191         mempool_t *mapping_pool;
192
193         process_bio_fn process_bio;
194         process_bio_fn process_discard;
195
196         process_mapping_fn process_prepared_mapping;
197         process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
202
203 /*
204  * Target context for a pool.
205  */
206 struct pool_c {
207         struct dm_target *ti;
208         struct pool *pool;
209         struct dm_dev *data_dev;
210         struct dm_dev *metadata_dev;
211         struct dm_target_callbacks callbacks;
212
213         dm_block_t low_water_blocks;
214         struct pool_features requested_pf; /* Features requested during table load */
215         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
216 };
217
218 /*
219  * Target context for a thin.
220  */
221 struct thin_c {
222         struct dm_dev *pool_dev;
223         struct dm_dev *origin_dev;
224         dm_thin_id dev_id;
225
226         struct pool *pool;
227         struct dm_thin_device *td;
228 };
229
230 /*----------------------------------------------------------------*/
231
232 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
233                       struct dm_bio_prison_cell **cell_result)
234 {
235         int r;
236         struct dm_bio_prison_cell *cell_prealloc;
237
238         /*
239          * Allocate a cell from the prison's mempool.
240          * This might block but it can't fail.
241          */
242         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
243
244         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
245         if (r)
246                 /*
247                  * We reused an old cell; we can get rid of
248                  * the new one.
249                  */
250                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
251
252         return r;
253 }
254
255 static void cell_release(struct pool *pool,
256                          struct dm_bio_prison_cell *cell,
257                          struct bio_list *bios)
258 {
259         dm_cell_release(pool->prison, cell, bios);
260         dm_bio_prison_free_cell(pool->prison, cell);
261 }
262
263 static void cell_release_no_holder(struct pool *pool,
264                                    struct dm_bio_prison_cell *cell,
265                                    struct bio_list *bios)
266 {
267         dm_cell_release_no_holder(pool->prison, cell, bios);
268         dm_bio_prison_free_cell(pool->prison, cell);
269 }
270
271 static void cell_error(struct pool *pool,
272                        struct dm_bio_prison_cell *cell)
273 {
274         dm_cell_error(pool->prison, cell);
275         dm_bio_prison_free_cell(pool->prison, cell);
276 }
277
278 /*----------------------------------------------------------------*/
279
280 /*
281  * A global list of pools that uses a struct mapped_device as a key.
282  */
283 static struct dm_thin_pool_table {
284         struct mutex mutex;
285         struct list_head pools;
286 } dm_thin_pool_table;
287
288 static void pool_table_init(void)
289 {
290         mutex_init(&dm_thin_pool_table.mutex);
291         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
292 }
293
294 static void __pool_table_insert(struct pool *pool)
295 {
296         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
297         list_add(&pool->list, &dm_thin_pool_table.pools);
298 }
299
300 static void __pool_table_remove(struct pool *pool)
301 {
302         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
303         list_del(&pool->list);
304 }
305
306 static struct pool *__pool_table_lookup(struct mapped_device *md)
307 {
308         struct pool *pool = NULL, *tmp;
309
310         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
311
312         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
313                 if (tmp->pool_md == md) {
314                         pool = tmp;
315                         break;
316                 }
317         }
318
319         return pool;
320 }
321
322 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
323 {
324         struct pool *pool = NULL, *tmp;
325
326         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327
328         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
329                 if (tmp->md_dev == md_dev) {
330                         pool = tmp;
331                         break;
332                 }
333         }
334
335         return pool;
336 }
337
338 /*----------------------------------------------------------------*/
339
340 struct dm_thin_endio_hook {
341         struct thin_c *tc;
342         struct dm_deferred_entry *shared_read_entry;
343         struct dm_deferred_entry *all_io_entry;
344         struct dm_thin_new_mapping *overwrite_mapping;
345 };
346
347 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
348 {
349         struct bio *bio;
350         struct bio_list bios;
351
352         bio_list_init(&bios);
353         bio_list_merge(&bios, master);
354         bio_list_init(master);
355
356         while ((bio = bio_list_pop(&bios))) {
357                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
358
359                 if (h->tc == tc)
360                         bio_endio(bio, DM_ENDIO_REQUEUE);
361                 else
362                         bio_list_add(master, bio);
363         }
364 }
365
366 static void requeue_io(struct thin_c *tc)
367 {
368         struct pool *pool = tc->pool;
369         unsigned long flags;
370
371         spin_lock_irqsave(&pool->lock, flags);
372         __requeue_bio_list(tc, &pool->deferred_bios);
373         __requeue_bio_list(tc, &pool->retry_on_resume_list);
374         spin_unlock_irqrestore(&pool->lock, flags);
375 }
376
377 /*
378  * This section of code contains the logic for processing a thin device's IO.
379  * Much of the code depends on pool object resources (lists, workqueues, etc)
380  * but most is exclusively called from the thin target rather than the thin-pool
381  * target.
382  */
383
384 static bool block_size_is_power_of_two(struct pool *pool)
385 {
386         return pool->sectors_per_block_shift >= 0;
387 }
388
389 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
390 {
391         struct pool *pool = tc->pool;
392         sector_t block_nr = bio->bi_sector;
393
394         if (block_size_is_power_of_two(pool))
395                 block_nr >>= pool->sectors_per_block_shift;
396         else
397                 (void) sector_div(block_nr, pool->sectors_per_block);
398
399         return block_nr;
400 }
401
402 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
403 {
404         struct pool *pool = tc->pool;
405         sector_t bi_sector = bio->bi_sector;
406
407         bio->bi_bdev = tc->pool_dev->bdev;
408         if (block_size_is_power_of_two(pool))
409                 bio->bi_sector = (block << pool->sectors_per_block_shift) |
410                                 (bi_sector & (pool->sectors_per_block - 1));
411         else
412                 bio->bi_sector = (block * pool->sectors_per_block) +
413                                  sector_div(bi_sector, pool->sectors_per_block);
414 }
415
416 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
417 {
418         bio->bi_bdev = tc->origin_dev->bdev;
419 }
420
421 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
422 {
423         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
424                 dm_thin_changed_this_transaction(tc->td);
425 }
426
427 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
428 {
429         struct dm_thin_endio_hook *h;
430
431         if (bio->bi_rw & REQ_DISCARD)
432                 return;
433
434         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
435         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
436 }
437
438 static void issue(struct thin_c *tc, struct bio *bio)
439 {
440         struct pool *pool = tc->pool;
441         unsigned long flags;
442
443         if (!bio_triggers_commit(tc, bio)) {
444                 generic_make_request(bio);
445                 return;
446         }
447
448         /*
449          * Complete bio with an error if earlier I/O caused changes to
450          * the metadata that can't be committed e.g, due to I/O errors
451          * on the metadata device.
452          */
453         if (dm_thin_aborted_changes(tc->td)) {
454                 bio_io_error(bio);
455                 return;
456         }
457
458         /*
459          * Batch together any bios that trigger commits and then issue a
460          * single commit for them in process_deferred_bios().
461          */
462         spin_lock_irqsave(&pool->lock, flags);
463         bio_list_add(&pool->deferred_flush_bios, bio);
464         spin_unlock_irqrestore(&pool->lock, flags);
465 }
466
467 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
468 {
469         remap_to_origin(tc, bio);
470         issue(tc, bio);
471 }
472
473 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
474                             dm_block_t block)
475 {
476         remap(tc, bio, block);
477         issue(tc, bio);
478 }
479
480 /*
481  * wake_worker() is used when new work is queued and when pool_resume is
482  * ready to continue deferred IO processing.
483  */
484 static void wake_worker(struct pool *pool)
485 {
486         queue_work(pool->wq, &pool->worker);
487 }
488
489 /*----------------------------------------------------------------*/
490
491 /*
492  * Bio endio functions.
493  */
494 struct dm_thin_new_mapping {
495         struct list_head list;
496
497         unsigned quiesced:1;
498         unsigned prepared:1;
499         unsigned pass_discard:1;
500
501         struct thin_c *tc;
502         dm_block_t virt_block;
503         dm_block_t data_block;
504         struct dm_bio_prison_cell *cell, *cell2;
505         int err;
506
507         /*
508          * If the bio covers the whole area of a block then we can avoid
509          * zeroing or copying.  Instead this bio is hooked.  The bio will
510          * still be in the cell, so care has to be taken to avoid issuing
511          * the bio twice.
512          */
513         struct bio *bio;
514         bio_end_io_t *saved_bi_end_io;
515 };
516
517 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
518 {
519         struct pool *pool = m->tc->pool;
520
521         if (m->quiesced && m->prepared) {
522                 list_add(&m->list, &pool->prepared_mappings);
523                 wake_worker(pool);
524         }
525 }
526
527 static void copy_complete(int read_err, unsigned long write_err, void *context)
528 {
529         unsigned long flags;
530         struct dm_thin_new_mapping *m = context;
531         struct pool *pool = m->tc->pool;
532
533         m->err = read_err || write_err ? -EIO : 0;
534
535         spin_lock_irqsave(&pool->lock, flags);
536         m->prepared = 1;
537         __maybe_add_mapping(m);
538         spin_unlock_irqrestore(&pool->lock, flags);
539 }
540
541 static void overwrite_endio(struct bio *bio, int err)
542 {
543         unsigned long flags;
544         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
545         struct dm_thin_new_mapping *m = h->overwrite_mapping;
546         struct pool *pool = m->tc->pool;
547
548         m->err = err;
549
550         spin_lock_irqsave(&pool->lock, flags);
551         m->prepared = 1;
552         __maybe_add_mapping(m);
553         spin_unlock_irqrestore(&pool->lock, flags);
554 }
555
556 /*----------------------------------------------------------------*/
557
558 /*
559  * Workqueue.
560  */
561
562 /*
563  * Prepared mapping jobs.
564  */
565
566 /*
567  * This sends the bios in the cell back to the deferred_bios list.
568  */
569 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
570 {
571         struct pool *pool = tc->pool;
572         unsigned long flags;
573
574         spin_lock_irqsave(&pool->lock, flags);
575         cell_release(pool, cell, &pool->deferred_bios);
576         spin_unlock_irqrestore(&tc->pool->lock, flags);
577
578         wake_worker(pool);
579 }
580
581 /*
582  * Same as cell_defer above, except it omits the original holder of the cell.
583  */
584 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
585 {
586         struct pool *pool = tc->pool;
587         unsigned long flags;
588
589         spin_lock_irqsave(&pool->lock, flags);
590         cell_release_no_holder(pool, cell, &pool->deferred_bios);
591         spin_unlock_irqrestore(&pool->lock, flags);
592
593         wake_worker(pool);
594 }
595
596 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
597 {
598         if (m->bio)
599                 m->bio->bi_end_io = m->saved_bi_end_io;
600         cell_error(m->tc->pool, m->cell);
601         list_del(&m->list);
602         mempool_free(m, m->tc->pool->mapping_pool);
603 }
604 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
605 {
606         struct thin_c *tc = m->tc;
607         struct pool *pool = tc->pool;
608         struct bio *bio;
609         int r;
610
611         bio = m->bio;
612         if (bio)
613                 bio->bi_end_io = m->saved_bi_end_io;
614
615         if (m->err) {
616                 cell_error(pool, m->cell);
617                 goto out;
618         }
619
620         /*
621          * Commit the prepared block into the mapping btree.
622          * Any I/O for this block arriving after this point will get
623          * remapped to it directly.
624          */
625         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
626         if (r) {
627                 DMERR_LIMIT("dm_thin_insert_block() failed");
628                 cell_error(pool, m->cell);
629                 goto out;
630         }
631
632         /*
633          * Release any bios held while the block was being provisioned.
634          * If we are processing a write bio that completely covers the block,
635          * we already processed it so can ignore it now when processing
636          * the bios in the cell.
637          */
638         if (bio) {
639                 cell_defer_no_holder(tc, m->cell);
640                 bio_endio(bio, 0);
641         } else
642                 cell_defer(tc, m->cell);
643
644 out:
645         list_del(&m->list);
646         mempool_free(m, pool->mapping_pool);
647 }
648
649 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
650 {
651         struct thin_c *tc = m->tc;
652
653         bio_io_error(m->bio);
654         cell_defer_no_holder(tc, m->cell);
655         cell_defer_no_holder(tc, m->cell2);
656         mempool_free(m, tc->pool->mapping_pool);
657 }
658
659 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
660 {
661         struct thin_c *tc = m->tc;
662
663         inc_all_io_entry(tc->pool, m->bio);
664         cell_defer_no_holder(tc, m->cell);
665         cell_defer_no_holder(tc, m->cell2);
666
667         if (m->pass_discard)
668                 remap_and_issue(tc, m->bio, m->data_block);
669         else
670                 bio_endio(m->bio, 0);
671
672         mempool_free(m, tc->pool->mapping_pool);
673 }
674
675 static void process_prepared_discard(struct dm_thin_new_mapping *m)
676 {
677         int r;
678         struct thin_c *tc = m->tc;
679
680         r = dm_thin_remove_block(tc->td, m->virt_block);
681         if (r)
682                 DMERR_LIMIT("dm_thin_remove_block() failed");
683
684         process_prepared_discard_passdown(m);
685 }
686
687 static void process_prepared(struct pool *pool, struct list_head *head,
688                              process_mapping_fn *fn)
689 {
690         unsigned long flags;
691         struct list_head maps;
692         struct dm_thin_new_mapping *m, *tmp;
693
694         INIT_LIST_HEAD(&maps);
695         spin_lock_irqsave(&pool->lock, flags);
696         list_splice_init(head, &maps);
697         spin_unlock_irqrestore(&pool->lock, flags);
698
699         list_for_each_entry_safe(m, tmp, &maps, list)
700                 (*fn)(m);
701 }
702
703 /*
704  * Deferred bio jobs.
705  */
706 static int io_overlaps_block(struct pool *pool, struct bio *bio)
707 {
708         return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
709 }
710
711 static int io_overwrites_block(struct pool *pool, struct bio *bio)
712 {
713         return (bio_data_dir(bio) == WRITE) &&
714                 io_overlaps_block(pool, bio);
715 }
716
717 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
718                                bio_end_io_t *fn)
719 {
720         *save = bio->bi_end_io;
721         bio->bi_end_io = fn;
722 }
723
724 static int ensure_next_mapping(struct pool *pool)
725 {
726         if (pool->next_mapping)
727                 return 0;
728
729         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
730
731         return pool->next_mapping ? 0 : -ENOMEM;
732 }
733
734 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
735 {
736         struct dm_thin_new_mapping *r = pool->next_mapping;
737
738         BUG_ON(!pool->next_mapping);
739
740         pool->next_mapping = NULL;
741
742         return r;
743 }
744
745 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
746                           struct dm_dev *origin, dm_block_t data_origin,
747                           dm_block_t data_dest,
748                           struct dm_bio_prison_cell *cell, struct bio *bio)
749 {
750         int r;
751         struct pool *pool = tc->pool;
752         struct dm_thin_new_mapping *m = get_next_mapping(pool);
753
754         INIT_LIST_HEAD(&m->list);
755         m->quiesced = 0;
756         m->prepared = 0;
757         m->tc = tc;
758         m->virt_block = virt_block;
759         m->data_block = data_dest;
760         m->cell = cell;
761         m->err = 0;
762         m->bio = NULL;
763
764         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
765                 m->quiesced = 1;
766
767         /*
768          * IO to pool_dev remaps to the pool target's data_dev.
769          *
770          * If the whole block of data is being overwritten, we can issue the
771          * bio immediately. Otherwise we use kcopyd to clone the data first.
772          */
773         if (io_overwrites_block(pool, bio)) {
774                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
775
776                 h->overwrite_mapping = m;
777                 m->bio = bio;
778                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
779                 inc_all_io_entry(pool, bio);
780                 remap_and_issue(tc, bio, data_dest);
781         } else {
782                 struct dm_io_region from, to;
783
784                 from.bdev = origin->bdev;
785                 from.sector = data_origin * pool->sectors_per_block;
786                 from.count = pool->sectors_per_block;
787
788                 to.bdev = tc->pool_dev->bdev;
789                 to.sector = data_dest * pool->sectors_per_block;
790                 to.count = pool->sectors_per_block;
791
792                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
793                                    0, copy_complete, m);
794                 if (r < 0) {
795                         mempool_free(m, pool->mapping_pool);
796                         DMERR_LIMIT("dm_kcopyd_copy() failed");
797                         cell_error(pool, cell);
798                 }
799         }
800 }
801
802 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
803                                    dm_block_t data_origin, dm_block_t data_dest,
804                                    struct dm_bio_prison_cell *cell, struct bio *bio)
805 {
806         schedule_copy(tc, virt_block, tc->pool_dev,
807                       data_origin, data_dest, cell, bio);
808 }
809
810 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
811                                    dm_block_t data_dest,
812                                    struct dm_bio_prison_cell *cell, struct bio *bio)
813 {
814         schedule_copy(tc, virt_block, tc->origin_dev,
815                       virt_block, data_dest, cell, bio);
816 }
817
818 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
819                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
820                           struct bio *bio)
821 {
822         struct pool *pool = tc->pool;
823         struct dm_thin_new_mapping *m = get_next_mapping(pool);
824
825         INIT_LIST_HEAD(&m->list);
826         m->quiesced = 1;
827         m->prepared = 0;
828         m->tc = tc;
829         m->virt_block = virt_block;
830         m->data_block = data_block;
831         m->cell = cell;
832         m->err = 0;
833         m->bio = NULL;
834
835         /*
836          * If the whole block of data is being overwritten or we are not
837          * zeroing pre-existing data, we can issue the bio immediately.
838          * Otherwise we use kcopyd to zero the data first.
839          */
840         if (!pool->pf.zero_new_blocks)
841                 process_prepared_mapping(m);
842
843         else if (io_overwrites_block(pool, bio)) {
844                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
845
846                 h->overwrite_mapping = m;
847                 m->bio = bio;
848                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
849                 inc_all_io_entry(pool, bio);
850                 remap_and_issue(tc, bio, data_block);
851         } else {
852                 int r;
853                 struct dm_io_region to;
854
855                 to.bdev = tc->pool_dev->bdev;
856                 to.sector = data_block * pool->sectors_per_block;
857                 to.count = pool->sectors_per_block;
858
859                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
860                 if (r < 0) {
861                         mempool_free(m, pool->mapping_pool);
862                         DMERR_LIMIT("dm_kcopyd_zero() failed");
863                         cell_error(pool, cell);
864                 }
865         }
866 }
867
868 static int commit(struct pool *pool)
869 {
870         int r;
871
872         r = dm_pool_commit_metadata(pool->pmd);
873         if (r)
874                 DMERR_LIMIT("commit failed: error = %d", r);
875
876         return r;
877 }
878
879 /*
880  * A non-zero return indicates read_only or fail_io mode.
881  * Many callers don't care about the return value.
882  */
883 static int commit_or_fallback(struct pool *pool)
884 {
885         int r;
886
887         if (get_pool_mode(pool) != PM_WRITE)
888                 return -EINVAL;
889
890         r = commit(pool);
891         if (r)
892                 set_pool_mode(pool, PM_READ_ONLY);
893
894         return r;
895 }
896
897 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
898 {
899         int r;
900         dm_block_t free_blocks;
901         unsigned long flags;
902         struct pool *pool = tc->pool;
903
904         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
905         if (r)
906                 return r;
907
908         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
909                 DMWARN("%s: reached low water mark, sending event.",
910                        dm_device_name(pool->pool_md));
911                 spin_lock_irqsave(&pool->lock, flags);
912                 pool->low_water_triggered = 1;
913                 spin_unlock_irqrestore(&pool->lock, flags);
914                 dm_table_event(pool->ti->table);
915         }
916
917         if (!free_blocks) {
918                 if (pool->no_free_space)
919                         return -ENOSPC;
920                 else {
921                         /*
922                          * Try to commit to see if that will free up some
923                          * more space.
924                          */
925                         (void) commit_or_fallback(pool);
926
927                         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
928                         if (r)
929                                 return r;
930
931                         /*
932                          * If we still have no space we set a flag to avoid
933                          * doing all this checking and return -ENOSPC.
934                          */
935                         if (!free_blocks) {
936                                 DMWARN("%s: no free space available.",
937                                        dm_device_name(pool->pool_md));
938                                 spin_lock_irqsave(&pool->lock, flags);
939                                 pool->no_free_space = 1;
940                                 spin_unlock_irqrestore(&pool->lock, flags);
941                                 return -ENOSPC;
942                         }
943                 }
944         }
945
946         r = dm_pool_alloc_data_block(pool->pmd, result);
947         if (r)
948                 return r;
949
950         return 0;
951 }
952
953 /*
954  * If we have run out of space, queue bios until the device is
955  * resumed, presumably after having been reloaded with more space.
956  */
957 static void retry_on_resume(struct bio *bio)
958 {
959         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
960         struct thin_c *tc = h->tc;
961         struct pool *pool = tc->pool;
962         unsigned long flags;
963
964         spin_lock_irqsave(&pool->lock, flags);
965         bio_list_add(&pool->retry_on_resume_list, bio);
966         spin_unlock_irqrestore(&pool->lock, flags);
967 }
968
969 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
970 {
971         struct bio *bio;
972         struct bio_list bios;
973
974         bio_list_init(&bios);
975         cell_release(pool, cell, &bios);
976
977         while ((bio = bio_list_pop(&bios)))
978                 retry_on_resume(bio);
979 }
980
981 static void process_discard(struct thin_c *tc, struct bio *bio)
982 {
983         int r;
984         unsigned long flags;
985         struct pool *pool = tc->pool;
986         struct dm_bio_prison_cell *cell, *cell2;
987         struct dm_cell_key key, key2;
988         dm_block_t block = get_bio_block(tc, bio);
989         struct dm_thin_lookup_result lookup_result;
990         struct dm_thin_new_mapping *m;
991
992         build_virtual_key(tc->td, block, &key);
993         if (bio_detain(tc->pool, &key, bio, &cell))
994                 return;
995
996         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
997         switch (r) {
998         case 0:
999                 /*
1000                  * Check nobody is fiddling with this pool block.  This can
1001                  * happen if someone's in the process of breaking sharing
1002                  * on this block.
1003                  */
1004                 build_data_key(tc->td, lookup_result.block, &key2);
1005                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1006                         cell_defer_no_holder(tc, cell);
1007                         break;
1008                 }
1009
1010                 if (io_overlaps_block(pool, bio)) {
1011                         /*
1012                          * IO may still be going to the destination block.  We must
1013                          * quiesce before we can do the removal.
1014                          */
1015                         m = get_next_mapping(pool);
1016                         m->tc = tc;
1017                         m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1018                         m->virt_block = block;
1019                         m->data_block = lookup_result.block;
1020                         m->cell = cell;
1021                         m->cell2 = cell2;
1022                         m->err = 0;
1023                         m->bio = bio;
1024
1025                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1026                                 spin_lock_irqsave(&pool->lock, flags);
1027                                 list_add(&m->list, &pool->prepared_discards);
1028                                 spin_unlock_irqrestore(&pool->lock, flags);
1029                                 wake_worker(pool);
1030                         }
1031                 } else {
1032                         inc_all_io_entry(pool, bio);
1033                         cell_defer_no_holder(tc, cell);
1034                         cell_defer_no_holder(tc, cell2);
1035
1036                         /*
1037                          * The DM core makes sure that the discard doesn't span
1038                          * a block boundary.  So we submit the discard of a
1039                          * partial block appropriately.
1040                          */
1041                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1042                                 remap_and_issue(tc, bio, lookup_result.block);
1043                         else
1044                                 bio_endio(bio, 0);
1045                 }
1046                 break;
1047
1048         case -ENODATA:
1049                 /*
1050                  * It isn't provisioned, just forget it.
1051                  */
1052                 cell_defer_no_holder(tc, cell);
1053                 bio_endio(bio, 0);
1054                 break;
1055
1056         default:
1057                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1058                             __func__, r);
1059                 cell_defer_no_holder(tc, cell);
1060                 bio_io_error(bio);
1061                 break;
1062         }
1063 }
1064
1065 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1066                           struct dm_cell_key *key,
1067                           struct dm_thin_lookup_result *lookup_result,
1068                           struct dm_bio_prison_cell *cell)
1069 {
1070         int r;
1071         dm_block_t data_block;
1072
1073         r = alloc_data_block(tc, &data_block);
1074         switch (r) {
1075         case 0:
1076                 schedule_internal_copy(tc, block, lookup_result->block,
1077                                        data_block, cell, bio);
1078                 break;
1079
1080         case -ENOSPC:
1081                 no_space(tc->pool, cell);
1082                 break;
1083
1084         default:
1085                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1086                             __func__, r);
1087                 cell_error(tc->pool, cell);
1088                 break;
1089         }
1090 }
1091
1092 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1093                                dm_block_t block,
1094                                struct dm_thin_lookup_result *lookup_result)
1095 {
1096         struct dm_bio_prison_cell *cell;
1097         struct pool *pool = tc->pool;
1098         struct dm_cell_key key;
1099
1100         /*
1101          * If cell is already occupied, then sharing is already in the process
1102          * of being broken so we have nothing further to do here.
1103          */
1104         build_data_key(tc->td, lookup_result->block, &key);
1105         if (bio_detain(pool, &key, bio, &cell))
1106                 return;
1107
1108         if (bio_data_dir(bio) == WRITE && bio->bi_size)
1109                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1110         else {
1111                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1112
1113                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1114                 inc_all_io_entry(pool, bio);
1115                 cell_defer_no_holder(tc, cell);
1116
1117                 remap_and_issue(tc, bio, lookup_result->block);
1118         }
1119 }
1120
1121 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1122                             struct dm_bio_prison_cell *cell)
1123 {
1124         int r;
1125         dm_block_t data_block;
1126         struct pool *pool = tc->pool;
1127
1128         /*
1129          * Remap empty bios (flushes) immediately, without provisioning.
1130          */
1131         if (!bio->bi_size) {
1132                 inc_all_io_entry(pool, bio);
1133                 cell_defer_no_holder(tc, cell);
1134
1135                 remap_and_issue(tc, bio, 0);
1136                 return;
1137         }
1138
1139         /*
1140          * Fill read bios with zeroes and complete them immediately.
1141          */
1142         if (bio_data_dir(bio) == READ) {
1143                 zero_fill_bio(bio);
1144                 cell_defer_no_holder(tc, cell);
1145                 bio_endio(bio, 0);
1146                 return;
1147         }
1148
1149         r = alloc_data_block(tc, &data_block);
1150         switch (r) {
1151         case 0:
1152                 if (tc->origin_dev)
1153                         schedule_external_copy(tc, block, data_block, cell, bio);
1154                 else
1155                         schedule_zero(tc, block, data_block, cell, bio);
1156                 break;
1157
1158         case -ENOSPC:
1159                 no_space(pool, cell);
1160                 break;
1161
1162         default:
1163                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1164                             __func__, r);
1165                 set_pool_mode(pool, PM_READ_ONLY);
1166                 cell_error(pool, cell);
1167                 break;
1168         }
1169 }
1170
1171 static void process_bio(struct thin_c *tc, struct bio *bio)
1172 {
1173         int r;
1174         struct pool *pool = tc->pool;
1175         dm_block_t block = get_bio_block(tc, bio);
1176         struct dm_bio_prison_cell *cell;
1177         struct dm_cell_key key;
1178         struct dm_thin_lookup_result lookup_result;
1179
1180         /*
1181          * If cell is already occupied, then the block is already
1182          * being provisioned so we have nothing further to do here.
1183          */
1184         build_virtual_key(tc->td, block, &key);
1185         if (bio_detain(pool, &key, bio, &cell))
1186                 return;
1187
1188         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1189         switch (r) {
1190         case 0:
1191                 if (lookup_result.shared) {
1192                         process_shared_bio(tc, bio, block, &lookup_result);
1193                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1194                 } else {
1195                         inc_all_io_entry(pool, bio);
1196                         cell_defer_no_holder(tc, cell);
1197
1198                         remap_and_issue(tc, bio, lookup_result.block);
1199                 }
1200                 break;
1201
1202         case -ENODATA:
1203                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1204                         inc_all_io_entry(pool, bio);
1205                         cell_defer_no_holder(tc, cell);
1206
1207                         remap_to_origin_and_issue(tc, bio);
1208                 } else
1209                         provision_block(tc, bio, block, cell);
1210                 break;
1211
1212         default:
1213                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1214                             __func__, r);
1215                 cell_defer_no_holder(tc, cell);
1216                 bio_io_error(bio);
1217                 break;
1218         }
1219 }
1220
1221 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1222 {
1223         int r;
1224         int rw = bio_data_dir(bio);
1225         dm_block_t block = get_bio_block(tc, bio);
1226         struct dm_thin_lookup_result lookup_result;
1227
1228         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1229         switch (r) {
1230         case 0:
1231                 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1232                         bio_io_error(bio);
1233                 else {
1234                         inc_all_io_entry(tc->pool, bio);
1235                         remap_and_issue(tc, bio, lookup_result.block);
1236                 }
1237                 break;
1238
1239         case -ENODATA:
1240                 if (rw != READ) {
1241                         bio_io_error(bio);
1242                         break;
1243                 }
1244
1245                 if (tc->origin_dev) {
1246                         inc_all_io_entry(tc->pool, bio);
1247                         remap_to_origin_and_issue(tc, bio);
1248                         break;
1249                 }
1250
1251                 zero_fill_bio(bio);
1252                 bio_endio(bio, 0);
1253                 break;
1254
1255         default:
1256                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1257                             __func__, r);
1258                 bio_io_error(bio);
1259                 break;
1260         }
1261 }
1262
1263 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1264 {
1265         bio_io_error(bio);
1266 }
1267
1268 static int need_commit_due_to_time(struct pool *pool)
1269 {
1270         return jiffies < pool->last_commit_jiffies ||
1271                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1272 }
1273
1274 static void process_deferred_bios(struct pool *pool)
1275 {
1276         unsigned long flags;
1277         struct bio *bio;
1278         struct bio_list bios;
1279
1280         bio_list_init(&bios);
1281
1282         spin_lock_irqsave(&pool->lock, flags);
1283         bio_list_merge(&bios, &pool->deferred_bios);
1284         bio_list_init(&pool->deferred_bios);
1285         spin_unlock_irqrestore(&pool->lock, flags);
1286
1287         while ((bio = bio_list_pop(&bios))) {
1288                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1289                 struct thin_c *tc = h->tc;
1290
1291                 /*
1292                  * If we've got no free new_mapping structs, and processing
1293                  * this bio might require one, we pause until there are some
1294                  * prepared mappings to process.
1295                  */
1296                 if (ensure_next_mapping(pool)) {
1297                         spin_lock_irqsave(&pool->lock, flags);
1298                         bio_list_merge(&pool->deferred_bios, &bios);
1299                         spin_unlock_irqrestore(&pool->lock, flags);
1300
1301                         break;
1302                 }
1303
1304                 if (bio->bi_rw & REQ_DISCARD)
1305                         pool->process_discard(tc, bio);
1306                 else
1307                         pool->process_bio(tc, bio);
1308         }
1309
1310         /*
1311          * If there are any deferred flush bios, we must commit
1312          * the metadata before issuing them.
1313          */
1314         bio_list_init(&bios);
1315         spin_lock_irqsave(&pool->lock, flags);
1316         bio_list_merge(&bios, &pool->deferred_flush_bios);
1317         bio_list_init(&pool->deferred_flush_bios);
1318         spin_unlock_irqrestore(&pool->lock, flags);
1319
1320         if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1321                 return;
1322
1323         if (commit_or_fallback(pool)) {
1324                 while ((bio = bio_list_pop(&bios)))
1325                         bio_io_error(bio);
1326                 return;
1327         }
1328         pool->last_commit_jiffies = jiffies;
1329
1330         while ((bio = bio_list_pop(&bios)))
1331                 generic_make_request(bio);
1332 }
1333
1334 static void do_worker(struct work_struct *ws)
1335 {
1336         struct pool *pool = container_of(ws, struct pool, worker);
1337
1338         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1339         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1340         process_deferred_bios(pool);
1341 }
1342
1343 /*
1344  * We want to commit periodically so that not too much
1345  * unwritten data builds up.
1346  */
1347 static void do_waker(struct work_struct *ws)
1348 {
1349         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1350         wake_worker(pool);
1351         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1352 }
1353
1354 /*----------------------------------------------------------------*/
1355
1356 static enum pool_mode get_pool_mode(struct pool *pool)
1357 {
1358         return pool->pf.mode;
1359 }
1360
1361 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1362 {
1363         int r;
1364
1365         pool->pf.mode = mode;
1366
1367         switch (mode) {
1368         case PM_FAIL:
1369                 DMERR("switching pool to failure mode");
1370                 pool->process_bio = process_bio_fail;
1371                 pool->process_discard = process_bio_fail;
1372                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1373                 pool->process_prepared_discard = process_prepared_discard_fail;
1374                 break;
1375
1376         case PM_READ_ONLY:
1377                 DMERR("switching pool to read-only mode");
1378                 r = dm_pool_abort_metadata(pool->pmd);
1379                 if (r) {
1380                         DMERR("aborting transaction failed");
1381                         set_pool_mode(pool, PM_FAIL);
1382                 } else {
1383                         dm_pool_metadata_read_only(pool->pmd);
1384                         pool->process_bio = process_bio_read_only;
1385                         pool->process_discard = process_discard;
1386                         pool->process_prepared_mapping = process_prepared_mapping_fail;
1387                         pool->process_prepared_discard = process_prepared_discard_passdown;
1388                 }
1389                 break;
1390
1391         case PM_WRITE:
1392                 pool->process_bio = process_bio;
1393                 pool->process_discard = process_discard;
1394                 pool->process_prepared_mapping = process_prepared_mapping;
1395                 pool->process_prepared_discard = process_prepared_discard;
1396                 break;
1397         }
1398 }
1399
1400 /*----------------------------------------------------------------*/
1401
1402 /*
1403  * Mapping functions.
1404  */
1405
1406 /*
1407  * Called only while mapping a thin bio to hand it over to the workqueue.
1408  */
1409 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1410 {
1411         unsigned long flags;
1412         struct pool *pool = tc->pool;
1413
1414         spin_lock_irqsave(&pool->lock, flags);
1415         bio_list_add(&pool->deferred_bios, bio);
1416         spin_unlock_irqrestore(&pool->lock, flags);
1417
1418         wake_worker(pool);
1419 }
1420
1421 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1422 {
1423         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1424
1425         h->tc = tc;
1426         h->shared_read_entry = NULL;
1427         h->all_io_entry = NULL;
1428         h->overwrite_mapping = NULL;
1429 }
1430
1431 /*
1432  * Non-blocking function called from the thin target's map function.
1433  */
1434 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1435 {
1436         int r;
1437         struct thin_c *tc = ti->private;
1438         dm_block_t block = get_bio_block(tc, bio);
1439         struct dm_thin_device *td = tc->td;
1440         struct dm_thin_lookup_result result;
1441         struct dm_bio_prison_cell *cell1, *cell2;
1442         struct dm_cell_key key;
1443
1444         thin_hook_bio(tc, bio);
1445
1446         if (get_pool_mode(tc->pool) == PM_FAIL) {
1447                 bio_io_error(bio);
1448                 return DM_MAPIO_SUBMITTED;
1449         }
1450
1451         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1452                 thin_defer_bio(tc, bio);
1453                 return DM_MAPIO_SUBMITTED;
1454         }
1455
1456         r = dm_thin_find_block(td, block, 0, &result);
1457
1458         /*
1459          * Note that we defer readahead too.
1460          */
1461         switch (r) {
1462         case 0:
1463                 if (unlikely(result.shared)) {
1464                         /*
1465                          * We have a race condition here between the
1466                          * result.shared value returned by the lookup and
1467                          * snapshot creation, which may cause new
1468                          * sharing.
1469                          *
1470                          * To avoid this always quiesce the origin before
1471                          * taking the snap.  You want to do this anyway to
1472                          * ensure a consistent application view
1473                          * (i.e. lockfs).
1474                          *
1475                          * More distant ancestors are irrelevant. The
1476                          * shared flag will be set in their case.
1477                          */
1478                         thin_defer_bio(tc, bio);
1479                         return DM_MAPIO_SUBMITTED;
1480                 }
1481
1482                 build_virtual_key(tc->td, block, &key);
1483                 if (bio_detain(tc->pool, &key, bio, &cell1))
1484                         return DM_MAPIO_SUBMITTED;
1485
1486                 build_data_key(tc->td, result.block, &key);
1487                 if (bio_detain(tc->pool, &key, bio, &cell2)) {
1488                         cell_defer_no_holder(tc, cell1);
1489                         return DM_MAPIO_SUBMITTED;
1490                 }
1491
1492                 inc_all_io_entry(tc->pool, bio);
1493                 cell_defer_no_holder(tc, cell2);
1494                 cell_defer_no_holder(tc, cell1);
1495
1496                 remap(tc, bio, result.block);
1497                 return DM_MAPIO_REMAPPED;
1498
1499         case -ENODATA:
1500                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1501                         /*
1502                          * This block isn't provisioned, and we have no way
1503                          * of doing so.  Just error it.
1504                          */
1505                         bio_io_error(bio);
1506                         return DM_MAPIO_SUBMITTED;
1507                 }
1508                 /* fall through */
1509
1510         case -EWOULDBLOCK:
1511                 /*
1512                  * In future, the failed dm_thin_find_block above could
1513                  * provide the hint to load the metadata into cache.
1514                  */
1515                 thin_defer_bio(tc, bio);
1516                 return DM_MAPIO_SUBMITTED;
1517
1518         default:
1519                 /*
1520                  * Must always call bio_io_error on failure.
1521                  * dm_thin_find_block can fail with -EINVAL if the
1522                  * pool is switched to fail-io mode.
1523                  */
1524                 bio_io_error(bio);
1525                 return DM_MAPIO_SUBMITTED;
1526         }
1527 }
1528
1529 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1530 {
1531         int r;
1532         unsigned long flags;
1533         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1534
1535         spin_lock_irqsave(&pt->pool->lock, flags);
1536         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1537         spin_unlock_irqrestore(&pt->pool->lock, flags);
1538
1539         if (!r) {
1540                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1541                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1542         }
1543
1544         return r;
1545 }
1546
1547 static void __requeue_bios(struct pool *pool)
1548 {
1549         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1550         bio_list_init(&pool->retry_on_resume_list);
1551 }
1552
1553 /*----------------------------------------------------------------
1554  * Binding of control targets to a pool object
1555  *--------------------------------------------------------------*/
1556 static bool data_dev_supports_discard(struct pool_c *pt)
1557 {
1558         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1559
1560         return q && blk_queue_discard(q);
1561 }
1562
1563 /*
1564  * If discard_passdown was enabled verify that the data device
1565  * supports discards.  Disable discard_passdown if not.
1566  */
1567 static void disable_passdown_if_not_supported(struct pool_c *pt)
1568 {
1569         struct pool *pool = pt->pool;
1570         struct block_device *data_bdev = pt->data_dev->bdev;
1571         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1572         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1573         const char *reason = NULL;
1574         char buf[BDEVNAME_SIZE];
1575
1576         if (!pt->adjusted_pf.discard_passdown)
1577                 return;
1578
1579         if (!data_dev_supports_discard(pt))
1580                 reason = "discard unsupported";
1581
1582         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1583                 reason = "max discard sectors smaller than a block";
1584
1585         else if (data_limits->discard_granularity > block_size)
1586                 reason = "discard granularity larger than a block";
1587
1588         else if (block_size & (data_limits->discard_granularity - 1))
1589                 reason = "discard granularity not a factor of block size";
1590
1591         if (reason) {
1592                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1593                 pt->adjusted_pf.discard_passdown = false;
1594         }
1595 }
1596
1597 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1598 {
1599         struct pool_c *pt = ti->private;
1600
1601         /*
1602          * We want to make sure that degraded pools are never upgraded.
1603          */
1604         enum pool_mode old_mode = pool->pf.mode;
1605         enum pool_mode new_mode = pt->adjusted_pf.mode;
1606
1607         if (old_mode > new_mode)
1608                 new_mode = old_mode;
1609
1610         pool->ti = ti;
1611         pool->low_water_blocks = pt->low_water_blocks;
1612         pool->pf = pt->adjusted_pf;
1613
1614         set_pool_mode(pool, new_mode);
1615
1616         return 0;
1617 }
1618
1619 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1620 {
1621         if (pool->ti == ti)
1622                 pool->ti = NULL;
1623 }
1624
1625 /*----------------------------------------------------------------
1626  * Pool creation
1627  *--------------------------------------------------------------*/
1628 /* Initialize pool features. */
1629 static void pool_features_init(struct pool_features *pf)
1630 {
1631         pf->mode = PM_WRITE;
1632         pf->zero_new_blocks = true;
1633         pf->discard_enabled = true;
1634         pf->discard_passdown = true;
1635 }
1636
1637 static void __pool_destroy(struct pool *pool)
1638 {
1639         __pool_table_remove(pool);
1640
1641         if (dm_pool_metadata_close(pool->pmd) < 0)
1642                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1643
1644         dm_bio_prison_destroy(pool->prison);
1645         dm_kcopyd_client_destroy(pool->copier);
1646
1647         if (pool->wq)
1648                 destroy_workqueue(pool->wq);
1649
1650         if (pool->next_mapping)
1651                 mempool_free(pool->next_mapping, pool->mapping_pool);
1652         mempool_destroy(pool->mapping_pool);
1653         dm_deferred_set_destroy(pool->shared_read_ds);
1654         dm_deferred_set_destroy(pool->all_io_ds);
1655         kfree(pool);
1656 }
1657
1658 static struct kmem_cache *_new_mapping_cache;
1659
1660 static struct pool *pool_create(struct mapped_device *pool_md,
1661                                 struct block_device *metadata_dev,
1662                                 unsigned long block_size,
1663                                 int read_only, char **error)
1664 {
1665         int r;
1666         void *err_p;
1667         struct pool *pool;
1668         struct dm_pool_metadata *pmd;
1669         bool format_device = read_only ? false : true;
1670
1671         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1672         if (IS_ERR(pmd)) {
1673                 *error = "Error creating metadata object";
1674                 return (struct pool *)pmd;
1675         }
1676
1677         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1678         if (!pool) {
1679                 *error = "Error allocating memory for pool";
1680                 err_p = ERR_PTR(-ENOMEM);
1681                 goto bad_pool;
1682         }
1683
1684         pool->pmd = pmd;
1685         pool->sectors_per_block = block_size;
1686         if (block_size & (block_size - 1))
1687                 pool->sectors_per_block_shift = -1;
1688         else
1689                 pool->sectors_per_block_shift = __ffs(block_size);
1690         pool->low_water_blocks = 0;
1691         pool_features_init(&pool->pf);
1692         pool->prison = dm_bio_prison_create(PRISON_CELLS);
1693         if (!pool->prison) {
1694                 *error = "Error creating pool's bio prison";
1695                 err_p = ERR_PTR(-ENOMEM);
1696                 goto bad_prison;
1697         }
1698
1699         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1700         if (IS_ERR(pool->copier)) {
1701                 r = PTR_ERR(pool->copier);
1702                 *error = "Error creating pool's kcopyd client";
1703                 err_p = ERR_PTR(r);
1704                 goto bad_kcopyd_client;
1705         }
1706
1707         /*
1708          * Create singlethreaded workqueue that will service all devices
1709          * that use this metadata.
1710          */
1711         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1712         if (!pool->wq) {
1713                 *error = "Error creating pool's workqueue";
1714                 err_p = ERR_PTR(-ENOMEM);
1715                 goto bad_wq;
1716         }
1717
1718         INIT_WORK(&pool->worker, do_worker);
1719         INIT_DELAYED_WORK(&pool->waker, do_waker);
1720         spin_lock_init(&pool->lock);
1721         bio_list_init(&pool->deferred_bios);
1722         bio_list_init(&pool->deferred_flush_bios);
1723         INIT_LIST_HEAD(&pool->prepared_mappings);
1724         INIT_LIST_HEAD(&pool->prepared_discards);
1725         pool->low_water_triggered = 0;
1726         pool->no_free_space = 0;
1727         bio_list_init(&pool->retry_on_resume_list);
1728
1729         pool->shared_read_ds = dm_deferred_set_create();
1730         if (!pool->shared_read_ds) {
1731                 *error = "Error creating pool's shared read deferred set";
1732                 err_p = ERR_PTR(-ENOMEM);
1733                 goto bad_shared_read_ds;
1734         }
1735
1736         pool->all_io_ds = dm_deferred_set_create();
1737         if (!pool->all_io_ds) {
1738                 *error = "Error creating pool's all io deferred set";
1739                 err_p = ERR_PTR(-ENOMEM);
1740                 goto bad_all_io_ds;
1741         }
1742
1743         pool->next_mapping = NULL;
1744         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1745                                                       _new_mapping_cache);
1746         if (!pool->mapping_pool) {
1747                 *error = "Error creating pool's mapping mempool";
1748                 err_p = ERR_PTR(-ENOMEM);
1749                 goto bad_mapping_pool;
1750         }
1751
1752         pool->ref_count = 1;
1753         pool->last_commit_jiffies = jiffies;
1754         pool->pool_md = pool_md;
1755         pool->md_dev = metadata_dev;
1756         __pool_table_insert(pool);
1757
1758         return pool;
1759
1760 bad_mapping_pool:
1761         dm_deferred_set_destroy(pool->all_io_ds);
1762 bad_all_io_ds:
1763         dm_deferred_set_destroy(pool->shared_read_ds);
1764 bad_shared_read_ds:
1765         destroy_workqueue(pool->wq);
1766 bad_wq:
1767         dm_kcopyd_client_destroy(pool->copier);
1768 bad_kcopyd_client:
1769         dm_bio_prison_destroy(pool->prison);
1770 bad_prison:
1771         kfree(pool);
1772 bad_pool:
1773         if (dm_pool_metadata_close(pmd))
1774                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1775
1776         return err_p;
1777 }
1778
1779 static void __pool_inc(struct pool *pool)
1780 {
1781         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1782         pool->ref_count++;
1783 }
1784
1785 static void __pool_dec(struct pool *pool)
1786 {
1787         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1788         BUG_ON(!pool->ref_count);
1789         if (!--pool->ref_count)
1790                 __pool_destroy(pool);
1791 }
1792
1793 static struct pool *__pool_find(struct mapped_device *pool_md,
1794                                 struct block_device *metadata_dev,
1795                                 unsigned long block_size, int read_only,
1796                                 char **error, int *created)
1797 {
1798         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1799
1800         if (pool) {
1801                 if (pool->pool_md != pool_md) {
1802                         *error = "metadata device already in use by a pool";
1803                         return ERR_PTR(-EBUSY);
1804                 }
1805                 __pool_inc(pool);
1806
1807         } else {
1808                 pool = __pool_table_lookup(pool_md);
1809                 if (pool) {
1810                         if (pool->md_dev != metadata_dev) {
1811                                 *error = "different pool cannot replace a pool";
1812                                 return ERR_PTR(-EINVAL);
1813                         }
1814                         __pool_inc(pool);
1815
1816                 } else {
1817                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1818                         *created = 1;
1819                 }
1820         }
1821
1822         return pool;
1823 }
1824
1825 /*----------------------------------------------------------------
1826  * Pool target methods
1827  *--------------------------------------------------------------*/
1828 static void pool_dtr(struct dm_target *ti)
1829 {
1830         struct pool_c *pt = ti->private;
1831
1832         mutex_lock(&dm_thin_pool_table.mutex);
1833
1834         unbind_control_target(pt->pool, ti);
1835         __pool_dec(pt->pool);
1836         dm_put_device(ti, pt->metadata_dev);
1837         dm_put_device(ti, pt->data_dev);
1838         kfree(pt);
1839
1840         mutex_unlock(&dm_thin_pool_table.mutex);
1841 }
1842
1843 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1844                                struct dm_target *ti)
1845 {
1846         int r;
1847         unsigned argc;
1848         const char *arg_name;
1849
1850         static struct dm_arg _args[] = {
1851                 {0, 3, "Invalid number of pool feature arguments"},
1852         };
1853
1854         /*
1855          * No feature arguments supplied.
1856          */
1857         if (!as->argc)
1858                 return 0;
1859
1860         r = dm_read_arg_group(_args, as, &argc, &ti->error);
1861         if (r)
1862                 return -EINVAL;
1863
1864         while (argc && !r) {
1865                 arg_name = dm_shift_arg(as);
1866                 argc--;
1867
1868                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1869                         pf->zero_new_blocks = false;
1870
1871                 else if (!strcasecmp(arg_name, "ignore_discard"))
1872                         pf->discard_enabled = false;
1873
1874                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1875                         pf->discard_passdown = false;
1876
1877                 else if (!strcasecmp(arg_name, "read_only"))
1878                         pf->mode = PM_READ_ONLY;
1879
1880                 else {
1881                         ti->error = "Unrecognised pool feature requested";
1882                         r = -EINVAL;
1883                         break;
1884                 }
1885         }
1886
1887         return r;
1888 }
1889
1890 /*
1891  * thin-pool <metadata dev> <data dev>
1892  *           <data block size (sectors)>
1893  *           <low water mark (blocks)>
1894  *           [<#feature args> [<arg>]*]
1895  *
1896  * Optional feature arguments are:
1897  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1898  *           ignore_discard: disable discard
1899  *           no_discard_passdown: don't pass discards down to the data device
1900  */
1901 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1902 {
1903         int r, pool_created = 0;
1904         struct pool_c *pt;
1905         struct pool *pool;
1906         struct pool_features pf;
1907         struct dm_arg_set as;
1908         struct dm_dev *data_dev;
1909         unsigned long block_size;
1910         dm_block_t low_water_blocks;
1911         struct dm_dev *metadata_dev;
1912         sector_t metadata_dev_size;
1913         char b[BDEVNAME_SIZE];
1914
1915         /*
1916          * FIXME Remove validation from scope of lock.
1917          */
1918         mutex_lock(&dm_thin_pool_table.mutex);
1919
1920         if (argc < 4) {
1921                 ti->error = "Invalid argument count";
1922                 r = -EINVAL;
1923                 goto out_unlock;
1924         }
1925         as.argc = argc;
1926         as.argv = argv;
1927
1928         r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1929         if (r) {
1930                 ti->error = "Error opening metadata block device";
1931                 goto out_unlock;
1932         }
1933
1934         metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1935         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1936                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1937                        bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1938
1939         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1940         if (r) {
1941                 ti->error = "Error getting data device";
1942                 goto out_metadata;
1943         }
1944
1945         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1946             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1947             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1948             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1949                 ti->error = "Invalid block size";
1950                 r = -EINVAL;
1951                 goto out;
1952         }
1953
1954         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1955                 ti->error = "Invalid low water mark";
1956                 r = -EINVAL;
1957                 goto out;
1958         }
1959
1960         /*
1961          * Set default pool features.
1962          */
1963         pool_features_init(&pf);
1964
1965         dm_consume_args(&as, 4);
1966         r = parse_pool_features(&as, &pf, ti);
1967         if (r)
1968                 goto out;
1969
1970         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1971         if (!pt) {
1972                 r = -ENOMEM;
1973                 goto out;
1974         }
1975
1976         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
1977                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
1978         if (IS_ERR(pool)) {
1979                 r = PTR_ERR(pool);
1980                 goto out_free_pt;
1981         }
1982
1983         /*
1984          * 'pool_created' reflects whether this is the first table load.
1985          * Top level discard support is not allowed to be changed after
1986          * initial load.  This would require a pool reload to trigger thin
1987          * device changes.
1988          */
1989         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
1990                 ti->error = "Discard support cannot be disabled once enabled";
1991                 r = -EINVAL;
1992                 goto out_flags_changed;
1993         }
1994
1995         pt->pool = pool;
1996         pt->ti = ti;
1997         pt->metadata_dev = metadata_dev;
1998         pt->data_dev = data_dev;
1999         pt->low_water_blocks = low_water_blocks;
2000         pt->adjusted_pf = pt->requested_pf = pf;
2001         ti->num_flush_bios = 1;
2002
2003         /*
2004          * Only need to enable discards if the pool should pass
2005          * them down to the data device.  The thin device's discard
2006          * processing will cause mappings to be removed from the btree.
2007          */
2008         if (pf.discard_enabled && pf.discard_passdown) {
2009                 ti->num_discard_bios = 1;
2010
2011                 /*
2012                  * Setting 'discards_supported' circumvents the normal
2013                  * stacking of discard limits (this keeps the pool and
2014                  * thin devices' discard limits consistent).
2015                  */
2016                 ti->discards_supported = true;
2017                 ti->discard_zeroes_data_unsupported = true;
2018         }
2019         ti->private = pt;
2020
2021         pt->callbacks.congested_fn = pool_is_congested;
2022         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2023
2024         mutex_unlock(&dm_thin_pool_table.mutex);
2025
2026         return 0;
2027
2028 out_flags_changed:
2029         __pool_dec(pool);
2030 out_free_pt:
2031         kfree(pt);
2032 out:
2033         dm_put_device(ti, data_dev);
2034 out_metadata:
2035         dm_put_device(ti, metadata_dev);
2036 out_unlock:
2037         mutex_unlock(&dm_thin_pool_table.mutex);
2038
2039         return r;
2040 }
2041
2042 static int pool_map(struct dm_target *ti, struct bio *bio)
2043 {
2044         int r;
2045         struct pool_c *pt = ti->private;
2046         struct pool *pool = pt->pool;
2047         unsigned long flags;
2048
2049         /*
2050          * As this is a singleton target, ti->begin is always zero.
2051          */
2052         spin_lock_irqsave(&pool->lock, flags);
2053         bio->bi_bdev = pt->data_dev->bdev;
2054         r = DM_MAPIO_REMAPPED;
2055         spin_unlock_irqrestore(&pool->lock, flags);
2056
2057         return r;
2058 }
2059
2060 /*
2061  * Retrieves the number of blocks of the data device from
2062  * the superblock and compares it to the actual device size,
2063  * thus resizing the data device in case it has grown.
2064  *
2065  * This both copes with opening preallocated data devices in the ctr
2066  * being followed by a resume
2067  * -and-
2068  * calling the resume method individually after userspace has
2069  * grown the data device in reaction to a table event.
2070  */
2071 static int pool_preresume(struct dm_target *ti)
2072 {
2073         int r;
2074         struct pool_c *pt = ti->private;
2075         struct pool *pool = pt->pool;
2076         sector_t data_size = ti->len;
2077         dm_block_t sb_data_size;
2078
2079         /*
2080          * Take control of the pool object.
2081          */
2082         r = bind_control_target(pool, ti);
2083         if (r)
2084                 return r;
2085
2086         (void) sector_div(data_size, pool->sectors_per_block);
2087
2088         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2089         if (r) {
2090                 DMERR("failed to retrieve data device size");
2091                 return r;
2092         }
2093
2094         if (data_size < sb_data_size) {
2095                 DMERR("pool target too small, is %llu blocks (expected %llu)",
2096                       (unsigned long long)data_size, sb_data_size);
2097                 return -EINVAL;
2098
2099         } else if (data_size > sb_data_size) {
2100                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2101                 if (r) {
2102                         DMERR("failed to resize data device");
2103                         /* FIXME Stricter than necessary: Rollback transaction instead here */
2104                         set_pool_mode(pool, PM_READ_ONLY);
2105                         return r;
2106                 }
2107
2108                 (void) commit_or_fallback(pool);
2109         }
2110
2111         return 0;
2112 }
2113
2114 static void pool_resume(struct dm_target *ti)
2115 {
2116         struct pool_c *pt = ti->private;
2117         struct pool *pool = pt->pool;
2118         unsigned long flags;
2119
2120         spin_lock_irqsave(&pool->lock, flags);
2121         pool->low_water_triggered = 0;
2122         pool->no_free_space = 0;
2123         __requeue_bios(pool);
2124         spin_unlock_irqrestore(&pool->lock, flags);
2125
2126         do_waker(&pool->waker.work);
2127 }
2128
2129 static void pool_postsuspend(struct dm_target *ti)
2130 {
2131         struct pool_c *pt = ti->private;
2132         struct pool *pool = pt->pool;
2133
2134         cancel_delayed_work(&pool->waker);
2135         flush_workqueue(pool->wq);
2136         (void) commit_or_fallback(pool);
2137 }
2138
2139 static int check_arg_count(unsigned argc, unsigned args_required)
2140 {
2141         if (argc != args_required) {
2142                 DMWARN("Message received with %u arguments instead of %u.",
2143                        argc, args_required);
2144                 return -EINVAL;
2145         }
2146
2147         return 0;
2148 }
2149
2150 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2151 {
2152         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2153             *dev_id <= MAX_DEV_ID)
2154                 return 0;
2155
2156         if (warning)
2157                 DMWARN("Message received with invalid device id: %s", arg);
2158
2159         return -EINVAL;
2160 }
2161
2162 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2163 {
2164         dm_thin_id dev_id;
2165         int r;
2166
2167         r = check_arg_count(argc, 2);
2168         if (r)
2169                 return r;
2170
2171         r = read_dev_id(argv[1], &dev_id, 1);
2172         if (r)
2173                 return r;
2174
2175         r = dm_pool_create_thin(pool->pmd, dev_id);
2176         if (r) {
2177                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2178                        argv[1]);
2179                 return r;
2180         }
2181
2182         return 0;
2183 }
2184
2185 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2186 {
2187         dm_thin_id dev_id;
2188         dm_thin_id origin_dev_id;
2189         int r;
2190
2191         r = check_arg_count(argc, 3);
2192         if (r)
2193                 return r;
2194
2195         r = read_dev_id(argv[1], &dev_id, 1);
2196         if (r)
2197                 return r;
2198
2199         r = read_dev_id(argv[2], &origin_dev_id, 1);
2200         if (r)
2201                 return r;
2202
2203         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2204         if (r) {
2205                 DMWARN("Creation of new snapshot %s of device %s failed.",
2206                        argv[1], argv[2]);
2207                 return r;
2208         }
2209
2210         return 0;
2211 }
2212
2213 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2214 {
2215         dm_thin_id dev_id;
2216         int r;
2217
2218         r = check_arg_count(argc, 2);
2219         if (r)
2220                 return r;
2221
2222         r = read_dev_id(argv[1], &dev_id, 1);
2223         if (r)
2224                 return r;
2225
2226         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2227         if (r)
2228                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2229
2230         return r;
2231 }
2232
2233 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2234 {
2235         dm_thin_id old_id, new_id;
2236         int r;
2237
2238         r = check_arg_count(argc, 3);
2239         if (r)
2240                 return r;
2241
2242         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2243                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2244                 return -EINVAL;
2245         }
2246
2247         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2248                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2249                 return -EINVAL;
2250         }
2251
2252         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2253         if (r) {
2254                 DMWARN("Failed to change transaction id from %s to %s.",
2255                        argv[1], argv[2]);
2256                 return r;
2257         }
2258
2259         return 0;
2260 }
2261
2262 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2263 {
2264         int r;
2265
2266         r = check_arg_count(argc, 1);
2267         if (r)
2268                 return r;
2269
2270         (void) commit_or_fallback(pool);
2271
2272         r = dm_pool_reserve_metadata_snap(pool->pmd);
2273         if (r)
2274                 DMWARN("reserve_metadata_snap message failed.");
2275
2276         return r;
2277 }
2278
2279 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2280 {
2281         int r;
2282
2283         r = check_arg_count(argc, 1);
2284         if (r)
2285                 return r;
2286
2287         r = dm_pool_release_metadata_snap(pool->pmd);
2288         if (r)
2289                 DMWARN("release_metadata_snap message failed.");
2290
2291         return r;
2292 }
2293
2294 /*
2295  * Messages supported:
2296  *   create_thin        <dev_id>
2297  *   create_snap        <dev_id> <origin_id>
2298  *   delete             <dev_id>
2299  *   trim               <dev_id> <new_size_in_sectors>
2300  *   set_transaction_id <current_trans_id> <new_trans_id>
2301  *   reserve_metadata_snap
2302  *   release_metadata_snap
2303  */
2304 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2305 {
2306         int r = -EINVAL;
2307         struct pool_c *pt = ti->private;
2308         struct pool *pool = pt->pool;
2309
2310         if (!strcasecmp(argv[0], "create_thin"))
2311                 r = process_create_thin_mesg(argc, argv, pool);
2312
2313         else if (!strcasecmp(argv[0], "create_snap"))
2314                 r = process_create_snap_mesg(argc, argv, pool);
2315
2316         else if (!strcasecmp(argv[0], "delete"))
2317                 r = process_delete_mesg(argc, argv, pool);
2318
2319         else if (!strcasecmp(argv[0], "set_transaction_id"))
2320                 r = process_set_transaction_id_mesg(argc, argv, pool);
2321
2322         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2323                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2324
2325         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2326                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2327
2328         else
2329                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2330
2331         if (!r)
2332                 (void) commit_or_fallback(pool);
2333
2334         return r;
2335 }
2336
2337 static void emit_flags(struct pool_features *pf, char *result,
2338                        unsigned sz, unsigned maxlen)
2339 {
2340         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2341                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2342         DMEMIT("%u ", count);
2343
2344         if (!pf->zero_new_blocks)
2345                 DMEMIT("skip_block_zeroing ");
2346
2347         if (!pf->discard_enabled)
2348                 DMEMIT("ignore_discard ");
2349
2350         if (!pf->discard_passdown)
2351                 DMEMIT("no_discard_passdown ");
2352
2353         if (pf->mode == PM_READ_ONLY)
2354                 DMEMIT("read_only ");
2355 }
2356
2357 /*
2358  * Status line is:
2359  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2360  *    <used data sectors>/<total data sectors> <held metadata root>
2361  */
2362 static void pool_status(struct dm_target *ti, status_type_t type,
2363                         unsigned status_flags, char *result, unsigned maxlen)
2364 {
2365         int r;
2366         unsigned sz = 0;
2367         uint64_t transaction_id;
2368         dm_block_t nr_free_blocks_data;
2369         dm_block_t nr_free_blocks_metadata;
2370         dm_block_t nr_blocks_data;
2371         dm_block_t nr_blocks_metadata;
2372         dm_block_t held_root;
2373         char buf[BDEVNAME_SIZE];
2374         char buf2[BDEVNAME_SIZE];
2375         struct pool_c *pt = ti->private;
2376         struct pool *pool = pt->pool;
2377
2378         switch (type) {
2379         case STATUSTYPE_INFO:
2380                 if (get_pool_mode(pool) == PM_FAIL) {
2381                         DMEMIT("Fail");
2382                         break;
2383                 }
2384
2385                 /* Commit to ensure statistics aren't out-of-date */
2386                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2387                         (void) commit_or_fallback(pool);
2388
2389                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2390                 if (r) {
2391                         DMERR("dm_pool_get_metadata_transaction_id returned %d", r);
2392                         goto err;
2393                 }
2394
2395                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2396                 if (r) {
2397                         DMERR("dm_pool_get_free_metadata_block_count returned %d", r);
2398                         goto err;
2399                 }
2400
2401                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2402                 if (r) {
2403                         DMERR("dm_pool_get_metadata_dev_size returned %d", r);
2404                         goto err;
2405                 }
2406
2407                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2408                 if (r) {
2409                         DMERR("dm_pool_get_free_block_count returned %d", r);
2410                         goto err;
2411                 }
2412
2413                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2414                 if (r) {
2415                         DMERR("dm_pool_get_data_dev_size returned %d", r);
2416                         goto err;
2417                 }
2418
2419                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2420                 if (r) {
2421                         DMERR("dm_pool_get_metadata_snap returned %d", r);
2422                         goto err;
2423                 }
2424
2425                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2426                        (unsigned long long)transaction_id,
2427                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2428                        (unsigned long long)nr_blocks_metadata,
2429                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2430                        (unsigned long long)nr_blocks_data);
2431
2432                 if (held_root)
2433                         DMEMIT("%llu ", held_root);
2434                 else
2435                         DMEMIT("- ");
2436
2437                 if (pool->pf.mode == PM_READ_ONLY)
2438                         DMEMIT("ro ");
2439                 else
2440                         DMEMIT("rw ");
2441
2442                 if (!pool->pf.discard_enabled)
2443                         DMEMIT("ignore_discard");
2444                 else if (pool->pf.discard_passdown)
2445                         DMEMIT("discard_passdown");
2446                 else
2447                         DMEMIT("no_discard_passdown");
2448
2449                 break;
2450
2451         case STATUSTYPE_TABLE:
2452                 DMEMIT("%s %s %lu %llu ",
2453                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2454                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2455                        (unsigned long)pool->sectors_per_block,
2456                        (unsigned long long)pt->low_water_blocks);
2457                 emit_flags(&pt->requested_pf, result, sz, maxlen);
2458                 break;
2459         }
2460         return;
2461
2462 err:
2463         DMEMIT("Error");
2464 }
2465
2466 static int pool_iterate_devices(struct dm_target *ti,
2467                                 iterate_devices_callout_fn fn, void *data)
2468 {
2469         struct pool_c *pt = ti->private;
2470
2471         return fn(ti, pt->data_dev, 0, ti->len, data);
2472 }
2473
2474 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2475                       struct bio_vec *biovec, int max_size)
2476 {
2477         struct pool_c *pt = ti->private;
2478         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2479
2480         if (!q->merge_bvec_fn)
2481                 return max_size;
2482
2483         bvm->bi_bdev = pt->data_dev->bdev;
2484
2485         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2486 }
2487
2488 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2489 {
2490         struct pool *pool = pt->pool;
2491         struct queue_limits *data_limits;
2492
2493         limits->max_discard_sectors = pool->sectors_per_block;
2494
2495         /*
2496          * discard_granularity is just a hint, and not enforced.
2497          */
2498         if (pt->adjusted_pf.discard_passdown) {
2499                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2500                 limits->discard_granularity = data_limits->discard_granularity;
2501         } else
2502                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2503 }
2504
2505 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2506 {
2507         struct pool_c *pt = ti->private;
2508         struct pool *pool = pt->pool;
2509
2510         blk_limits_io_min(limits, 0);
2511         blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2512
2513         /*
2514          * pt->adjusted_pf is a staging area for the actual features to use.
2515          * They get transferred to the live pool in bind_control_target()
2516          * called from pool_preresume().
2517          */
2518         if (!pt->adjusted_pf.discard_enabled)
2519                 return;
2520
2521         disable_passdown_if_not_supported(pt);
2522
2523         set_discard_limits(pt, limits);
2524 }
2525
2526 static struct target_type pool_target = {
2527         .name = "thin-pool",
2528         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2529                     DM_TARGET_IMMUTABLE,
2530         .version = {1, 6, 1},
2531         .module = THIS_MODULE,
2532         .ctr = pool_ctr,
2533         .dtr = pool_dtr,
2534         .map = pool_map,
2535         .postsuspend = pool_postsuspend,
2536         .preresume = pool_preresume,
2537         .resume = pool_resume,
2538         .message = pool_message,
2539         .status = pool_status,
2540         .merge = pool_merge,
2541         .iterate_devices = pool_iterate_devices,
2542         .io_hints = pool_io_hints,
2543 };
2544
2545 /*----------------------------------------------------------------
2546  * Thin target methods
2547  *--------------------------------------------------------------*/
2548 static void thin_dtr(struct dm_target *ti)
2549 {
2550         struct thin_c *tc = ti->private;
2551
2552         mutex_lock(&dm_thin_pool_table.mutex);
2553
2554         __pool_dec(tc->pool);
2555         dm_pool_close_thin_device(tc->td);
2556         dm_put_device(ti, tc->pool_dev);
2557         if (tc->origin_dev)
2558                 dm_put_device(ti, tc->origin_dev);
2559         kfree(tc);
2560
2561         mutex_unlock(&dm_thin_pool_table.mutex);
2562 }
2563
2564 /*
2565  * Thin target parameters:
2566  *
2567  * <pool_dev> <dev_id> [origin_dev]
2568  *
2569  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2570  * dev_id: the internal device identifier
2571  * origin_dev: a device external to the pool that should act as the origin
2572  *
2573  * If the pool device has discards disabled, they get disabled for the thin
2574  * device as well.
2575  */
2576 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2577 {
2578         int r;
2579         struct thin_c *tc;
2580         struct dm_dev *pool_dev, *origin_dev;
2581         struct mapped_device *pool_md;
2582
2583         mutex_lock(&dm_thin_pool_table.mutex);
2584
2585         if (argc != 2 && argc != 3) {
2586                 ti->error = "Invalid argument count";
2587                 r = -EINVAL;
2588                 goto out_unlock;
2589         }
2590
2591         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2592         if (!tc) {
2593                 ti->error = "Out of memory";
2594                 r = -ENOMEM;
2595                 goto out_unlock;
2596         }
2597
2598         if (argc == 3) {
2599                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2600                 if (r) {
2601                         ti->error = "Error opening origin device";
2602                         goto bad_origin_dev;
2603                 }
2604                 tc->origin_dev = origin_dev;
2605         }
2606
2607         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2608         if (r) {
2609                 ti->error = "Error opening pool device";
2610                 goto bad_pool_dev;
2611         }
2612         tc->pool_dev = pool_dev;
2613
2614         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2615                 ti->error = "Invalid device id";
2616                 r = -EINVAL;
2617                 goto bad_common;
2618         }
2619
2620         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2621         if (!pool_md) {
2622                 ti->error = "Couldn't get pool mapped device";
2623                 r = -EINVAL;
2624                 goto bad_common;
2625         }
2626
2627         tc->pool = __pool_table_lookup(pool_md);
2628         if (!tc->pool) {
2629                 ti->error = "Couldn't find pool object";
2630                 r = -EINVAL;
2631                 goto bad_pool_lookup;
2632         }
2633         __pool_inc(tc->pool);
2634
2635         if (get_pool_mode(tc->pool) == PM_FAIL) {
2636                 ti->error = "Couldn't open thin device, Pool is in fail mode";
2637                 goto bad_thin_open;
2638         }
2639
2640         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2641         if (r) {
2642                 ti->error = "Couldn't open thin internal device";
2643                 goto bad_thin_open;
2644         }
2645
2646         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2647         if (r)
2648                 goto bad_thin_open;
2649
2650         ti->num_flush_bios = 1;
2651         ti->flush_supported = true;
2652         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2653
2654         /* In case the pool supports discards, pass them on. */
2655         if (tc->pool->pf.discard_enabled) {
2656                 ti->discards_supported = true;
2657                 ti->num_discard_bios = 1;
2658                 ti->discard_zeroes_data_unsupported = true;
2659                 /* Discard bios must be split on a block boundary */
2660                 ti->split_discard_bios = true;
2661         }
2662
2663         dm_put(pool_md);
2664
2665         mutex_unlock(&dm_thin_pool_table.mutex);
2666
2667         return 0;
2668
2669 bad_thin_open:
2670         __pool_dec(tc->pool);
2671 bad_pool_lookup:
2672         dm_put(pool_md);
2673 bad_common:
2674         dm_put_device(ti, tc->pool_dev);
2675 bad_pool_dev:
2676         if (tc->origin_dev)
2677                 dm_put_device(ti, tc->origin_dev);
2678 bad_origin_dev:
2679         kfree(tc);
2680 out_unlock:
2681         mutex_unlock(&dm_thin_pool_table.mutex);
2682
2683         return r;
2684 }
2685
2686 static int thin_map(struct dm_target *ti, struct bio *bio)
2687 {
2688         bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2689
2690         return thin_bio_map(ti, bio);
2691 }
2692
2693 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2694 {
2695         unsigned long flags;
2696         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2697         struct list_head work;
2698         struct dm_thin_new_mapping *m, *tmp;
2699         struct pool *pool = h->tc->pool;
2700
2701         if (h->shared_read_entry) {
2702                 INIT_LIST_HEAD(&work);
2703                 dm_deferred_entry_dec(h->shared_read_entry, &work);
2704
2705                 spin_lock_irqsave(&pool->lock, flags);
2706                 list_for_each_entry_safe(m, tmp, &work, list) {
2707                         list_del(&m->list);
2708                         m->quiesced = 1;
2709                         __maybe_add_mapping(m);
2710                 }
2711                 spin_unlock_irqrestore(&pool->lock, flags);
2712         }
2713
2714         if (h->all_io_entry) {
2715                 INIT_LIST_HEAD(&work);
2716                 dm_deferred_entry_dec(h->all_io_entry, &work);
2717                 if (!list_empty(&work)) {
2718                         spin_lock_irqsave(&pool->lock, flags);
2719                         list_for_each_entry_safe(m, tmp, &work, list)
2720                                 list_add(&m->list, &pool->prepared_discards);
2721                         spin_unlock_irqrestore(&pool->lock, flags);
2722                         wake_worker(pool);
2723                 }
2724         }
2725
2726         return 0;
2727 }
2728
2729 static void thin_postsuspend(struct dm_target *ti)
2730 {
2731         if (dm_noflush_suspending(ti))
2732                 requeue_io((struct thin_c *)ti->private);
2733 }
2734
2735 /*
2736  * <nr mapped sectors> <highest mapped sector>
2737  */
2738 static void thin_status(struct dm_target *ti, status_type_t type,
2739                         unsigned status_flags, char *result, unsigned maxlen)
2740 {
2741         int r;
2742         ssize_t sz = 0;
2743         dm_block_t mapped, highest;
2744         char buf[BDEVNAME_SIZE];
2745         struct thin_c *tc = ti->private;
2746
2747         if (get_pool_mode(tc->pool) == PM_FAIL) {
2748                 DMEMIT("Fail");
2749                 return;
2750         }
2751
2752         if (!tc->td)
2753                 DMEMIT("-");
2754         else {
2755                 switch (type) {
2756                 case STATUSTYPE_INFO:
2757                         r = dm_thin_get_mapped_count(tc->td, &mapped);
2758                         if (r) {
2759                                 DMERR("dm_thin_get_mapped_count returned %d", r);
2760                                 goto err;
2761                         }
2762
2763                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2764                         if (r < 0) {
2765                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2766                                 goto err;
2767                         }
2768
2769                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2770                         if (r)
2771                                 DMEMIT("%llu", ((highest + 1) *
2772                                                 tc->pool->sectors_per_block) - 1);
2773                         else
2774                                 DMEMIT("-");
2775                         break;
2776
2777                 case STATUSTYPE_TABLE:
2778                         DMEMIT("%s %lu",
2779                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2780                                (unsigned long) tc->dev_id);
2781                         if (tc->origin_dev)
2782                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2783                         break;
2784                 }
2785         }
2786
2787         return;
2788
2789 err:
2790         DMEMIT("Error");
2791 }
2792
2793 static int thin_iterate_devices(struct dm_target *ti,
2794                                 iterate_devices_callout_fn fn, void *data)
2795 {
2796         sector_t blocks;
2797         struct thin_c *tc = ti->private;
2798         struct pool *pool = tc->pool;
2799
2800         /*
2801          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2802          * we follow a more convoluted path through to the pool's target.
2803          */
2804         if (!pool->ti)
2805                 return 0;       /* nothing is bound */
2806
2807         blocks = pool->ti->len;
2808         (void) sector_div(blocks, pool->sectors_per_block);
2809         if (blocks)
2810                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
2811
2812         return 0;
2813 }
2814
2815 static struct target_type thin_target = {
2816         .name = "thin",
2817         .version = {1, 7, 1},
2818         .module = THIS_MODULE,
2819         .ctr = thin_ctr,
2820         .dtr = thin_dtr,
2821         .map = thin_map,
2822         .end_io = thin_endio,
2823         .postsuspend = thin_postsuspend,
2824         .status = thin_status,
2825         .iterate_devices = thin_iterate_devices,
2826 };
2827
2828 /*----------------------------------------------------------------*/
2829
2830 static int __init dm_thin_init(void)
2831 {
2832         int r;
2833
2834         pool_table_init();
2835
2836         r = dm_register_target(&thin_target);
2837         if (r)
2838                 return r;
2839
2840         r = dm_register_target(&pool_target);
2841         if (r)
2842                 goto bad_pool_target;
2843
2844         r = -ENOMEM;
2845
2846         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2847         if (!_new_mapping_cache)
2848                 goto bad_new_mapping_cache;
2849
2850         return 0;
2851
2852 bad_new_mapping_cache:
2853         dm_unregister_target(&pool_target);
2854 bad_pool_target:
2855         dm_unregister_target(&thin_target);
2856
2857         return r;
2858 }
2859
2860 static void dm_thin_exit(void)
2861 {
2862         dm_unregister_target(&thin_target);
2863         dm_unregister_target(&pool_target);
2864
2865         kmem_cache_destroy(_new_mapping_cache);
2866 }
2867
2868 module_init(dm_thin_init);
2869 module_exit(dm_thin_exit);
2870
2871 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
2872 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2873 MODULE_LICENSE("GPL");