Merge git://1984.lsi.us.es/nf-next
[cascardo/linux.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100         return mddev->sync_speed_min ?
101                 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106         return mddev->sync_speed_max ?
107                 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113         {
114                 .procname       = "speed_limit_min",
115                 .data           = &sysctl_speed_limit_min,
116                 .maxlen         = sizeof(int),
117                 .mode           = S_IRUGO|S_IWUSR,
118                 .proc_handler   = proc_dointvec,
119         },
120         {
121                 .procname       = "speed_limit_max",
122                 .data           = &sysctl_speed_limit_max,
123                 .maxlen         = sizeof(int),
124                 .mode           = S_IRUGO|S_IWUSR,
125                 .proc_handler   = proc_dointvec,
126         },
127         { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131         {
132                 .procname       = "raid",
133                 .maxlen         = 0,
134                 .mode           = S_IRUGO|S_IXUGO,
135                 .child          = raid_table,
136         },
137         { }
138 };
139
140 static ctl_table raid_root_table[] = {
141         {
142                 .procname       = "dev",
143                 .maxlen         = 0,
144                 .mode           = 0555,
145                 .child          = raid_dir_table,
146         },
147         {  }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157
158 static void mddev_bio_destructor(struct bio *bio)
159 {
160         struct mddev *mddev, **mddevp;
161
162         mddevp = (void*)bio;
163         mddev = mddevp[-1];
164
165         bio_free(bio, mddev->bio_set);
166 }
167
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169                             struct mddev *mddev)
170 {
171         struct bio *b;
172         struct mddev **mddevp;
173
174         if (!mddev || !mddev->bio_set)
175                 return bio_alloc(gfp_mask, nr_iovecs);
176
177         b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178                              mddev->bio_set);
179         if (!b)
180                 return NULL;
181         mddevp = (void*)b;
182         mddevp[-1] = mddev;
183         b->bi_destructor = mddev_bio_destructor;
184         return b;
185 }
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
187
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189                             struct mddev *mddev)
190 {
191         struct bio *b;
192         struct mddev **mddevp;
193
194         if (!mddev || !mddev->bio_set)
195                 return bio_clone(bio, gfp_mask);
196
197         b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198                              mddev->bio_set);
199         if (!b)
200                 return NULL;
201         mddevp = (void*)b;
202         mddevp[-1] = mddev;
203         b->bi_destructor = mddev_bio_destructor;
204         __bio_clone(b, bio);
205         if (bio_integrity(bio)) {
206                 int ret;
207
208                 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
209
210                 if (ret < 0) {
211                         bio_put(b);
212                         return NULL;
213                 }
214         }
215
216         return b;
217 }
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
219
220 void md_trim_bio(struct bio *bio, int offset, int size)
221 {
222         /* 'bio' is a cloned bio which we need to trim to match
223          * the given offset and size.
224          * This requires adjusting bi_sector, bi_size, and bi_io_vec
225          */
226         int i;
227         struct bio_vec *bvec;
228         int sofar = 0;
229
230         size <<= 9;
231         if (offset == 0 && size == bio->bi_size)
232                 return;
233
234         bio->bi_sector += offset;
235         bio->bi_size = size;
236         offset <<= 9;
237         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
238
239         while (bio->bi_idx < bio->bi_vcnt &&
240                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241                 /* remove this whole bio_vec */
242                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243                 bio->bi_idx++;
244         }
245         if (bio->bi_idx < bio->bi_vcnt) {
246                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
248         }
249         /* avoid any complications with bi_idx being non-zero*/
250         if (bio->bi_idx) {
251                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253                 bio->bi_vcnt -= bio->bi_idx;
254                 bio->bi_idx = 0;
255         }
256         /* Make sure vcnt and last bv are not too big */
257         bio_for_each_segment(bvec, bio, i) {
258                 if (sofar + bvec->bv_len > size)
259                         bvec->bv_len = size - sofar;
260                 if (bvec->bv_len == 0) {
261                         bio->bi_vcnt = i;
262                         break;
263                 }
264                 sofar += bvec->bv_len;
265         }
266 }
267 EXPORT_SYMBOL_GPL(md_trim_bio);
268
269 /*
270  * We have a system wide 'event count' that is incremented
271  * on any 'interesting' event, and readers of /proc/mdstat
272  * can use 'poll' or 'select' to find out when the event
273  * count increases.
274  *
275  * Events are:
276  *  start array, stop array, error, add device, remove device,
277  *  start build, activate spare
278  */
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
282 {
283         atomic_inc(&md_event_count);
284         wake_up(&md_event_waiters);
285 }
286 EXPORT_SYMBOL_GPL(md_new_event);
287
288 /* Alternate version that can be called from interrupts
289  * when calling sysfs_notify isn't needed.
290  */
291 static void md_new_event_inintr(struct mddev *mddev)
292 {
293         atomic_inc(&md_event_count);
294         wake_up(&md_event_waiters);
295 }
296
297 /*
298  * Enables to iterate over all existing md arrays
299  * all_mddevs_lock protects this list.
300  */
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
303
304
305 /*
306  * iterates through all used mddevs in the system.
307  * We take care to grab the all_mddevs_lock whenever navigating
308  * the list, and to always hold a refcount when unlocked.
309  * Any code which breaks out of this loop while own
310  * a reference to the current mddev and must mddev_put it.
311  */
312 #define for_each_mddev(_mddev,_tmp)                                     \
313                                                                         \
314         for (({ spin_lock(&all_mddevs_lock);                            \
315                 _tmp = all_mddevs.next;                                 \
316                 _mddev = NULL;});                                       \
317              ({ if (_tmp != &all_mddevs)                                \
318                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319                 spin_unlock(&all_mddevs_lock);                          \
320                 if (_mddev) mddev_put(_mddev);                          \
321                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
322                 _tmp != &all_mddevs;});                                 \
323              ({ spin_lock(&all_mddevs_lock);                            \
324                 _tmp = _tmp->next;})                                    \
325                 )
326
327
328 /* Rather than calling directly into the personality make_request function,
329  * IO requests come here first so that we can check if the device is
330  * being suspended pending a reconfiguration.
331  * We hold a refcount over the call to ->make_request.  By the time that
332  * call has finished, the bio has been linked into some internal structure
333  * and so is visible to ->quiesce(), so we don't need the refcount any more.
334  */
335 static void md_make_request(struct request_queue *q, struct bio *bio)
336 {
337         const int rw = bio_data_dir(bio);
338         struct mddev *mddev = q->queuedata;
339         int cpu;
340         unsigned int sectors;
341
342         if (mddev == NULL || mddev->pers == NULL
343             || !mddev->ready) {
344                 bio_io_error(bio);
345                 return;
346         }
347         smp_rmb(); /* Ensure implications of  'active' are visible */
348         rcu_read_lock();
349         if (mddev->suspended) {
350                 DEFINE_WAIT(__wait);
351                 for (;;) {
352                         prepare_to_wait(&mddev->sb_wait, &__wait,
353                                         TASK_UNINTERRUPTIBLE);
354                         if (!mddev->suspended)
355                                 break;
356                         rcu_read_unlock();
357                         schedule();
358                         rcu_read_lock();
359                 }
360                 finish_wait(&mddev->sb_wait, &__wait);
361         }
362         atomic_inc(&mddev->active_io);
363         rcu_read_unlock();
364
365         /*
366          * save the sectors now since our bio can
367          * go away inside make_request
368          */
369         sectors = bio_sectors(bio);
370         mddev->pers->make_request(mddev, bio);
371
372         cpu = part_stat_lock();
373         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
375         part_stat_unlock();
376
377         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378                 wake_up(&mddev->sb_wait);
379 }
380
381 /* mddev_suspend makes sure no new requests are submitted
382  * to the device, and that any requests that have been submitted
383  * are completely handled.
384  * Once ->stop is called and completes, the module will be completely
385  * unused.
386  */
387 void mddev_suspend(struct mddev *mddev)
388 {
389         BUG_ON(mddev->suspended);
390         mddev->suspended = 1;
391         synchronize_rcu();
392         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
393         mddev->pers->quiesce(mddev, 1);
394
395         del_timer_sync(&mddev->safemode_timer);
396 }
397 EXPORT_SYMBOL_GPL(mddev_suspend);
398
399 void mddev_resume(struct mddev *mddev)
400 {
401         mddev->suspended = 0;
402         wake_up(&mddev->sb_wait);
403         mddev->pers->quiesce(mddev, 0);
404
405         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
406         md_wakeup_thread(mddev->thread);
407         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
408 }
409 EXPORT_SYMBOL_GPL(mddev_resume);
410
411 int mddev_congested(struct mddev *mddev, int bits)
412 {
413         return mddev->suspended;
414 }
415 EXPORT_SYMBOL(mddev_congested);
416
417 /*
418  * Generic flush handling for md
419  */
420
421 static void md_end_flush(struct bio *bio, int err)
422 {
423         struct md_rdev *rdev = bio->bi_private;
424         struct mddev *mddev = rdev->mddev;
425
426         rdev_dec_pending(rdev, mddev);
427
428         if (atomic_dec_and_test(&mddev->flush_pending)) {
429                 /* The pre-request flush has finished */
430                 queue_work(md_wq, &mddev->flush_work);
431         }
432         bio_put(bio);
433 }
434
435 static void md_submit_flush_data(struct work_struct *ws);
436
437 static void submit_flushes(struct work_struct *ws)
438 {
439         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
440         struct md_rdev *rdev;
441
442         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
443         atomic_set(&mddev->flush_pending, 1);
444         rcu_read_lock();
445         rdev_for_each_rcu(rdev, mddev)
446                 if (rdev->raid_disk >= 0 &&
447                     !test_bit(Faulty, &rdev->flags)) {
448                         /* Take two references, one is dropped
449                          * when request finishes, one after
450                          * we reclaim rcu_read_lock
451                          */
452                         struct bio *bi;
453                         atomic_inc(&rdev->nr_pending);
454                         atomic_inc(&rdev->nr_pending);
455                         rcu_read_unlock();
456                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
457                         bi->bi_end_io = md_end_flush;
458                         bi->bi_private = rdev;
459                         bi->bi_bdev = rdev->bdev;
460                         atomic_inc(&mddev->flush_pending);
461                         submit_bio(WRITE_FLUSH, bi);
462                         rcu_read_lock();
463                         rdev_dec_pending(rdev, mddev);
464                 }
465         rcu_read_unlock();
466         if (atomic_dec_and_test(&mddev->flush_pending))
467                 queue_work(md_wq, &mddev->flush_work);
468 }
469
470 static void md_submit_flush_data(struct work_struct *ws)
471 {
472         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
473         struct bio *bio = mddev->flush_bio;
474
475         if (bio->bi_size == 0)
476                 /* an empty barrier - all done */
477                 bio_endio(bio, 0);
478         else {
479                 bio->bi_rw &= ~REQ_FLUSH;
480                 mddev->pers->make_request(mddev, bio);
481         }
482
483         mddev->flush_bio = NULL;
484         wake_up(&mddev->sb_wait);
485 }
486
487 void md_flush_request(struct mddev *mddev, struct bio *bio)
488 {
489         spin_lock_irq(&mddev->write_lock);
490         wait_event_lock_irq(mddev->sb_wait,
491                             !mddev->flush_bio,
492                             mddev->write_lock, /*nothing*/);
493         mddev->flush_bio = bio;
494         spin_unlock_irq(&mddev->write_lock);
495
496         INIT_WORK(&mddev->flush_work, submit_flushes);
497         queue_work(md_wq, &mddev->flush_work);
498 }
499 EXPORT_SYMBOL(md_flush_request);
500
501 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
502 {
503         struct mddev *mddev = cb->data;
504         md_wakeup_thread(mddev->thread);
505         kfree(cb);
506 }
507 EXPORT_SYMBOL(md_unplug);
508
509 static inline struct mddev *mddev_get(struct mddev *mddev)
510 {
511         atomic_inc(&mddev->active);
512         return mddev;
513 }
514
515 static void mddev_delayed_delete(struct work_struct *ws);
516
517 static void mddev_put(struct mddev *mddev)
518 {
519         struct bio_set *bs = NULL;
520
521         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
522                 return;
523         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
524             mddev->ctime == 0 && !mddev->hold_active) {
525                 /* Array is not configured at all, and not held active,
526                  * so destroy it */
527                 list_del_init(&mddev->all_mddevs);
528                 bs = mddev->bio_set;
529                 mddev->bio_set = NULL;
530                 if (mddev->gendisk) {
531                         /* We did a probe so need to clean up.  Call
532                          * queue_work inside the spinlock so that
533                          * flush_workqueue() after mddev_find will
534                          * succeed in waiting for the work to be done.
535                          */
536                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
537                         queue_work(md_misc_wq, &mddev->del_work);
538                 } else
539                         kfree(mddev);
540         }
541         spin_unlock(&all_mddevs_lock);
542         if (bs)
543                 bioset_free(bs);
544 }
545
546 void mddev_init(struct mddev *mddev)
547 {
548         mutex_init(&mddev->open_mutex);
549         mutex_init(&mddev->reconfig_mutex);
550         mutex_init(&mddev->bitmap_info.mutex);
551         INIT_LIST_HEAD(&mddev->disks);
552         INIT_LIST_HEAD(&mddev->all_mddevs);
553         init_timer(&mddev->safemode_timer);
554         atomic_set(&mddev->active, 1);
555         atomic_set(&mddev->openers, 0);
556         atomic_set(&mddev->active_io, 0);
557         spin_lock_init(&mddev->write_lock);
558         atomic_set(&mddev->flush_pending, 0);
559         init_waitqueue_head(&mddev->sb_wait);
560         init_waitqueue_head(&mddev->recovery_wait);
561         mddev->reshape_position = MaxSector;
562         mddev->reshape_backwards = 0;
563         mddev->resync_min = 0;
564         mddev->resync_max = MaxSector;
565         mddev->level = LEVEL_NONE;
566 }
567 EXPORT_SYMBOL_GPL(mddev_init);
568
569 static struct mddev * mddev_find(dev_t unit)
570 {
571         struct mddev *mddev, *new = NULL;
572
573         if (unit && MAJOR(unit) != MD_MAJOR)
574                 unit &= ~((1<<MdpMinorShift)-1);
575
576  retry:
577         spin_lock(&all_mddevs_lock);
578
579         if (unit) {
580                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
581                         if (mddev->unit == unit) {
582                                 mddev_get(mddev);
583                                 spin_unlock(&all_mddevs_lock);
584                                 kfree(new);
585                                 return mddev;
586                         }
587
588                 if (new) {
589                         list_add(&new->all_mddevs, &all_mddevs);
590                         spin_unlock(&all_mddevs_lock);
591                         new->hold_active = UNTIL_IOCTL;
592                         return new;
593                 }
594         } else if (new) {
595                 /* find an unused unit number */
596                 static int next_minor = 512;
597                 int start = next_minor;
598                 int is_free = 0;
599                 int dev = 0;
600                 while (!is_free) {
601                         dev = MKDEV(MD_MAJOR, next_minor);
602                         next_minor++;
603                         if (next_minor > MINORMASK)
604                                 next_minor = 0;
605                         if (next_minor == start) {
606                                 /* Oh dear, all in use. */
607                                 spin_unlock(&all_mddevs_lock);
608                                 kfree(new);
609                                 return NULL;
610                         }
611                                 
612                         is_free = 1;
613                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
614                                 if (mddev->unit == dev) {
615                                         is_free = 0;
616                                         break;
617                                 }
618                 }
619                 new->unit = dev;
620                 new->md_minor = MINOR(dev);
621                 new->hold_active = UNTIL_STOP;
622                 list_add(&new->all_mddevs, &all_mddevs);
623                 spin_unlock(&all_mddevs_lock);
624                 return new;
625         }
626         spin_unlock(&all_mddevs_lock);
627
628         new = kzalloc(sizeof(*new), GFP_KERNEL);
629         if (!new)
630                 return NULL;
631
632         new->unit = unit;
633         if (MAJOR(unit) == MD_MAJOR)
634                 new->md_minor = MINOR(unit);
635         else
636                 new->md_minor = MINOR(unit) >> MdpMinorShift;
637
638         mddev_init(new);
639
640         goto retry;
641 }
642
643 static inline int mddev_lock(struct mddev * mddev)
644 {
645         return mutex_lock_interruptible(&mddev->reconfig_mutex);
646 }
647
648 static inline int mddev_is_locked(struct mddev *mddev)
649 {
650         return mutex_is_locked(&mddev->reconfig_mutex);
651 }
652
653 static inline int mddev_trylock(struct mddev * mddev)
654 {
655         return mutex_trylock(&mddev->reconfig_mutex);
656 }
657
658 static struct attribute_group md_redundancy_group;
659
660 static void mddev_unlock(struct mddev * mddev)
661 {
662         if (mddev->to_remove) {
663                 /* These cannot be removed under reconfig_mutex as
664                  * an access to the files will try to take reconfig_mutex
665                  * while holding the file unremovable, which leads to
666                  * a deadlock.
667                  * So hold set sysfs_active while the remove in happeing,
668                  * and anything else which might set ->to_remove or my
669                  * otherwise change the sysfs namespace will fail with
670                  * -EBUSY if sysfs_active is still set.
671                  * We set sysfs_active under reconfig_mutex and elsewhere
672                  * test it under the same mutex to ensure its correct value
673                  * is seen.
674                  */
675                 struct attribute_group *to_remove = mddev->to_remove;
676                 mddev->to_remove = NULL;
677                 mddev->sysfs_active = 1;
678                 mutex_unlock(&mddev->reconfig_mutex);
679
680                 if (mddev->kobj.sd) {
681                         if (to_remove != &md_redundancy_group)
682                                 sysfs_remove_group(&mddev->kobj, to_remove);
683                         if (mddev->pers == NULL ||
684                             mddev->pers->sync_request == NULL) {
685                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
686                                 if (mddev->sysfs_action)
687                                         sysfs_put(mddev->sysfs_action);
688                                 mddev->sysfs_action = NULL;
689                         }
690                 }
691                 mddev->sysfs_active = 0;
692         } else
693                 mutex_unlock(&mddev->reconfig_mutex);
694
695         /* As we've dropped the mutex we need a spinlock to
696          * make sure the thread doesn't disappear
697          */
698         spin_lock(&pers_lock);
699         md_wakeup_thread(mddev->thread);
700         spin_unlock(&pers_lock);
701 }
702
703 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
704 {
705         struct md_rdev *rdev;
706
707         rdev_for_each(rdev, mddev)
708                 if (rdev->desc_nr == nr)
709                         return rdev;
710
711         return NULL;
712 }
713
714 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
715 {
716         struct md_rdev *rdev;
717
718         rdev_for_each(rdev, mddev)
719                 if (rdev->bdev->bd_dev == dev)
720                         return rdev;
721
722         return NULL;
723 }
724
725 static struct md_personality *find_pers(int level, char *clevel)
726 {
727         struct md_personality *pers;
728         list_for_each_entry(pers, &pers_list, list) {
729                 if (level != LEVEL_NONE && pers->level == level)
730                         return pers;
731                 if (strcmp(pers->name, clevel)==0)
732                         return pers;
733         }
734         return NULL;
735 }
736
737 /* return the offset of the super block in 512byte sectors */
738 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
739 {
740         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
741         return MD_NEW_SIZE_SECTORS(num_sectors);
742 }
743
744 static int alloc_disk_sb(struct md_rdev * rdev)
745 {
746         if (rdev->sb_page)
747                 MD_BUG();
748
749         rdev->sb_page = alloc_page(GFP_KERNEL);
750         if (!rdev->sb_page) {
751                 printk(KERN_ALERT "md: out of memory.\n");
752                 return -ENOMEM;
753         }
754
755         return 0;
756 }
757
758 void md_rdev_clear(struct md_rdev *rdev)
759 {
760         if (rdev->sb_page) {
761                 put_page(rdev->sb_page);
762                 rdev->sb_loaded = 0;
763                 rdev->sb_page = NULL;
764                 rdev->sb_start = 0;
765                 rdev->sectors = 0;
766         }
767         if (rdev->bb_page) {
768                 put_page(rdev->bb_page);
769                 rdev->bb_page = NULL;
770         }
771         kfree(rdev->badblocks.page);
772         rdev->badblocks.page = NULL;
773 }
774 EXPORT_SYMBOL_GPL(md_rdev_clear);
775
776 static void super_written(struct bio *bio, int error)
777 {
778         struct md_rdev *rdev = bio->bi_private;
779         struct mddev *mddev = rdev->mddev;
780
781         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
782                 printk("md: super_written gets error=%d, uptodate=%d\n",
783                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
784                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
785                 md_error(mddev, rdev);
786         }
787
788         if (atomic_dec_and_test(&mddev->pending_writes))
789                 wake_up(&mddev->sb_wait);
790         bio_put(bio);
791 }
792
793 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
794                    sector_t sector, int size, struct page *page)
795 {
796         /* write first size bytes of page to sector of rdev
797          * Increment mddev->pending_writes before returning
798          * and decrement it on completion, waking up sb_wait
799          * if zero is reached.
800          * If an error occurred, call md_error
801          */
802         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
803
804         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
805         bio->bi_sector = sector;
806         bio_add_page(bio, page, size, 0);
807         bio->bi_private = rdev;
808         bio->bi_end_io = super_written;
809
810         atomic_inc(&mddev->pending_writes);
811         submit_bio(WRITE_FLUSH_FUA, bio);
812 }
813
814 void md_super_wait(struct mddev *mddev)
815 {
816         /* wait for all superblock writes that were scheduled to complete */
817         DEFINE_WAIT(wq);
818         for(;;) {
819                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
820                 if (atomic_read(&mddev->pending_writes)==0)
821                         break;
822                 schedule();
823         }
824         finish_wait(&mddev->sb_wait, &wq);
825 }
826
827 static void bi_complete(struct bio *bio, int error)
828 {
829         complete((struct completion*)bio->bi_private);
830 }
831
832 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
833                  struct page *page, int rw, bool metadata_op)
834 {
835         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
836         struct completion event;
837         int ret;
838
839         rw |= REQ_SYNC;
840
841         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
842                 rdev->meta_bdev : rdev->bdev;
843         if (metadata_op)
844                 bio->bi_sector = sector + rdev->sb_start;
845         else if (rdev->mddev->reshape_position != MaxSector &&
846                  (rdev->mddev->reshape_backwards ==
847                   (sector >= rdev->mddev->reshape_position)))
848                 bio->bi_sector = sector + rdev->new_data_offset;
849         else
850                 bio->bi_sector = sector + rdev->data_offset;
851         bio_add_page(bio, page, size, 0);
852         init_completion(&event);
853         bio->bi_private = &event;
854         bio->bi_end_io = bi_complete;
855         submit_bio(rw, bio);
856         wait_for_completion(&event);
857
858         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
859         bio_put(bio);
860         return ret;
861 }
862 EXPORT_SYMBOL_GPL(sync_page_io);
863
864 static int read_disk_sb(struct md_rdev * rdev, int size)
865 {
866         char b[BDEVNAME_SIZE];
867         if (!rdev->sb_page) {
868                 MD_BUG();
869                 return -EINVAL;
870         }
871         if (rdev->sb_loaded)
872                 return 0;
873
874
875         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
876                 goto fail;
877         rdev->sb_loaded = 1;
878         return 0;
879
880 fail:
881         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
882                 bdevname(rdev->bdev,b));
883         return -EINVAL;
884 }
885
886 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
887 {
888         return  sb1->set_uuid0 == sb2->set_uuid0 &&
889                 sb1->set_uuid1 == sb2->set_uuid1 &&
890                 sb1->set_uuid2 == sb2->set_uuid2 &&
891                 sb1->set_uuid3 == sb2->set_uuid3;
892 }
893
894 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
895 {
896         int ret;
897         mdp_super_t *tmp1, *tmp2;
898
899         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
900         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
901
902         if (!tmp1 || !tmp2) {
903                 ret = 0;
904                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
905                 goto abort;
906         }
907
908         *tmp1 = *sb1;
909         *tmp2 = *sb2;
910
911         /*
912          * nr_disks is not constant
913          */
914         tmp1->nr_disks = 0;
915         tmp2->nr_disks = 0;
916
917         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
918 abort:
919         kfree(tmp1);
920         kfree(tmp2);
921         return ret;
922 }
923
924
925 static u32 md_csum_fold(u32 csum)
926 {
927         csum = (csum & 0xffff) + (csum >> 16);
928         return (csum & 0xffff) + (csum >> 16);
929 }
930
931 static unsigned int calc_sb_csum(mdp_super_t * sb)
932 {
933         u64 newcsum = 0;
934         u32 *sb32 = (u32*)sb;
935         int i;
936         unsigned int disk_csum, csum;
937
938         disk_csum = sb->sb_csum;
939         sb->sb_csum = 0;
940
941         for (i = 0; i < MD_SB_BYTES/4 ; i++)
942                 newcsum += sb32[i];
943         csum = (newcsum & 0xffffffff) + (newcsum>>32);
944
945
946 #ifdef CONFIG_ALPHA
947         /* This used to use csum_partial, which was wrong for several
948          * reasons including that different results are returned on
949          * different architectures.  It isn't critical that we get exactly
950          * the same return value as before (we always csum_fold before
951          * testing, and that removes any differences).  However as we
952          * know that csum_partial always returned a 16bit value on
953          * alphas, do a fold to maximise conformity to previous behaviour.
954          */
955         sb->sb_csum = md_csum_fold(disk_csum);
956 #else
957         sb->sb_csum = disk_csum;
958 #endif
959         return csum;
960 }
961
962
963 /*
964  * Handle superblock details.
965  * We want to be able to handle multiple superblock formats
966  * so we have a common interface to them all, and an array of
967  * different handlers.
968  * We rely on user-space to write the initial superblock, and support
969  * reading and updating of superblocks.
970  * Interface methods are:
971  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
972  *      loads and validates a superblock on dev.
973  *      if refdev != NULL, compare superblocks on both devices
974  *    Return:
975  *      0 - dev has a superblock that is compatible with refdev
976  *      1 - dev has a superblock that is compatible and newer than refdev
977  *          so dev should be used as the refdev in future
978  *     -EINVAL superblock incompatible or invalid
979  *     -othererror e.g. -EIO
980  *
981  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
982  *      Verify that dev is acceptable into mddev.
983  *       The first time, mddev->raid_disks will be 0, and data from
984  *       dev should be merged in.  Subsequent calls check that dev
985  *       is new enough.  Return 0 or -EINVAL
986  *
987  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
988  *     Update the superblock for rdev with data in mddev
989  *     This does not write to disc.
990  *
991  */
992
993 struct super_type  {
994         char                *name;
995         struct module       *owner;
996         int                 (*load_super)(struct md_rdev *rdev,
997                                           struct md_rdev *refdev,
998                                           int minor_version);
999         int                 (*validate_super)(struct mddev *mddev,
1000                                               struct md_rdev *rdev);
1001         void                (*sync_super)(struct mddev *mddev,
1002                                           struct md_rdev *rdev);
1003         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1004                                                 sector_t num_sectors);
1005         int                 (*allow_new_offset)(struct md_rdev *rdev,
1006                                                 unsigned long long new_offset);
1007 };
1008
1009 /*
1010  * Check that the given mddev has no bitmap.
1011  *
1012  * This function is called from the run method of all personalities that do not
1013  * support bitmaps. It prints an error message and returns non-zero if mddev
1014  * has a bitmap. Otherwise, it returns 0.
1015  *
1016  */
1017 int md_check_no_bitmap(struct mddev *mddev)
1018 {
1019         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1020                 return 0;
1021         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1022                 mdname(mddev), mddev->pers->name);
1023         return 1;
1024 }
1025 EXPORT_SYMBOL(md_check_no_bitmap);
1026
1027 /*
1028  * load_super for 0.90.0 
1029  */
1030 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1031 {
1032         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1033         mdp_super_t *sb;
1034         int ret;
1035
1036         /*
1037          * Calculate the position of the superblock (512byte sectors),
1038          * it's at the end of the disk.
1039          *
1040          * It also happens to be a multiple of 4Kb.
1041          */
1042         rdev->sb_start = calc_dev_sboffset(rdev);
1043
1044         ret = read_disk_sb(rdev, MD_SB_BYTES);
1045         if (ret) return ret;
1046
1047         ret = -EINVAL;
1048
1049         bdevname(rdev->bdev, b);
1050         sb = page_address(rdev->sb_page);
1051
1052         if (sb->md_magic != MD_SB_MAGIC) {
1053                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1054                        b);
1055                 goto abort;
1056         }
1057
1058         if (sb->major_version != 0 ||
1059             sb->minor_version < 90 ||
1060             sb->minor_version > 91) {
1061                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1062                         sb->major_version, sb->minor_version,
1063                         b);
1064                 goto abort;
1065         }
1066
1067         if (sb->raid_disks <= 0)
1068                 goto abort;
1069
1070         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1071                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1072                         b);
1073                 goto abort;
1074         }
1075
1076         rdev->preferred_minor = sb->md_minor;
1077         rdev->data_offset = 0;
1078         rdev->new_data_offset = 0;
1079         rdev->sb_size = MD_SB_BYTES;
1080         rdev->badblocks.shift = -1;
1081
1082         if (sb->level == LEVEL_MULTIPATH)
1083                 rdev->desc_nr = -1;
1084         else
1085                 rdev->desc_nr = sb->this_disk.number;
1086
1087         if (!refdev) {
1088                 ret = 1;
1089         } else {
1090                 __u64 ev1, ev2;
1091                 mdp_super_t *refsb = page_address(refdev->sb_page);
1092                 if (!uuid_equal(refsb, sb)) {
1093                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1094                                 b, bdevname(refdev->bdev,b2));
1095                         goto abort;
1096                 }
1097                 if (!sb_equal(refsb, sb)) {
1098                         printk(KERN_WARNING "md: %s has same UUID"
1099                                " but different superblock to %s\n",
1100                                b, bdevname(refdev->bdev, b2));
1101                         goto abort;
1102                 }
1103                 ev1 = md_event(sb);
1104                 ev2 = md_event(refsb);
1105                 if (ev1 > ev2)
1106                         ret = 1;
1107                 else 
1108                         ret = 0;
1109         }
1110         rdev->sectors = rdev->sb_start;
1111         /* Limit to 4TB as metadata cannot record more than that.
1112          * (not needed for Linear and RAID0 as metadata doesn't
1113          * record this size)
1114          */
1115         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1116                 rdev->sectors = (2ULL << 32) - 2;
1117
1118         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1119                 /* "this cannot possibly happen" ... */
1120                 ret = -EINVAL;
1121
1122  abort:
1123         return ret;
1124 }
1125
1126 /*
1127  * validate_super for 0.90.0
1128  */
1129 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1130 {
1131         mdp_disk_t *desc;
1132         mdp_super_t *sb = page_address(rdev->sb_page);
1133         __u64 ev1 = md_event(sb);
1134
1135         rdev->raid_disk = -1;
1136         clear_bit(Faulty, &rdev->flags);
1137         clear_bit(In_sync, &rdev->flags);
1138         clear_bit(WriteMostly, &rdev->flags);
1139
1140         if (mddev->raid_disks == 0) {
1141                 mddev->major_version = 0;
1142                 mddev->minor_version = sb->minor_version;
1143                 mddev->patch_version = sb->patch_version;
1144                 mddev->external = 0;
1145                 mddev->chunk_sectors = sb->chunk_size >> 9;
1146                 mddev->ctime = sb->ctime;
1147                 mddev->utime = sb->utime;
1148                 mddev->level = sb->level;
1149                 mddev->clevel[0] = 0;
1150                 mddev->layout = sb->layout;
1151                 mddev->raid_disks = sb->raid_disks;
1152                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1153                 mddev->events = ev1;
1154                 mddev->bitmap_info.offset = 0;
1155                 mddev->bitmap_info.space = 0;
1156                 /* bitmap can use 60 K after the 4K superblocks */
1157                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1158                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1159                 mddev->reshape_backwards = 0;
1160
1161                 if (mddev->minor_version >= 91) {
1162                         mddev->reshape_position = sb->reshape_position;
1163                         mddev->delta_disks = sb->delta_disks;
1164                         mddev->new_level = sb->new_level;
1165                         mddev->new_layout = sb->new_layout;
1166                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1167                         if (mddev->delta_disks < 0)
1168                                 mddev->reshape_backwards = 1;
1169                 } else {
1170                         mddev->reshape_position = MaxSector;
1171                         mddev->delta_disks = 0;
1172                         mddev->new_level = mddev->level;
1173                         mddev->new_layout = mddev->layout;
1174                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1175                 }
1176
1177                 if (sb->state & (1<<MD_SB_CLEAN))
1178                         mddev->recovery_cp = MaxSector;
1179                 else {
1180                         if (sb->events_hi == sb->cp_events_hi && 
1181                                 sb->events_lo == sb->cp_events_lo) {
1182                                 mddev->recovery_cp = sb->recovery_cp;
1183                         } else
1184                                 mddev->recovery_cp = 0;
1185                 }
1186
1187                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1188                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1189                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1190                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1191
1192                 mddev->max_disks = MD_SB_DISKS;
1193
1194                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1195                     mddev->bitmap_info.file == NULL) {
1196                         mddev->bitmap_info.offset =
1197                                 mddev->bitmap_info.default_offset;
1198                         mddev->bitmap_info.space =
1199                                 mddev->bitmap_info.space;
1200                 }
1201
1202         } else if (mddev->pers == NULL) {
1203                 /* Insist on good event counter while assembling, except
1204                  * for spares (which don't need an event count) */
1205                 ++ev1;
1206                 if (sb->disks[rdev->desc_nr].state & (
1207                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1208                         if (ev1 < mddev->events) 
1209                                 return -EINVAL;
1210         } else if (mddev->bitmap) {
1211                 /* if adding to array with a bitmap, then we can accept an
1212                  * older device ... but not too old.
1213                  */
1214                 if (ev1 < mddev->bitmap->events_cleared)
1215                         return 0;
1216         } else {
1217                 if (ev1 < mddev->events)
1218                         /* just a hot-add of a new device, leave raid_disk at -1 */
1219                         return 0;
1220         }
1221
1222         if (mddev->level != LEVEL_MULTIPATH) {
1223                 desc = sb->disks + rdev->desc_nr;
1224
1225                 if (desc->state & (1<<MD_DISK_FAULTY))
1226                         set_bit(Faulty, &rdev->flags);
1227                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1228                             desc->raid_disk < mddev->raid_disks */) {
1229                         set_bit(In_sync, &rdev->flags);
1230                         rdev->raid_disk = desc->raid_disk;
1231                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1232                         /* active but not in sync implies recovery up to
1233                          * reshape position.  We don't know exactly where
1234                          * that is, so set to zero for now */
1235                         if (mddev->minor_version >= 91) {
1236                                 rdev->recovery_offset = 0;
1237                                 rdev->raid_disk = desc->raid_disk;
1238                         }
1239                 }
1240                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1241                         set_bit(WriteMostly, &rdev->flags);
1242         } else /* MULTIPATH are always insync */
1243                 set_bit(In_sync, &rdev->flags);
1244         return 0;
1245 }
1246
1247 /*
1248  * sync_super for 0.90.0
1249  */
1250 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1251 {
1252         mdp_super_t *sb;
1253         struct md_rdev *rdev2;
1254         int next_spare = mddev->raid_disks;
1255
1256
1257         /* make rdev->sb match mddev data..
1258          *
1259          * 1/ zero out disks
1260          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1261          * 3/ any empty disks < next_spare become removed
1262          *
1263          * disks[0] gets initialised to REMOVED because
1264          * we cannot be sure from other fields if it has
1265          * been initialised or not.
1266          */
1267         int i;
1268         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1269
1270         rdev->sb_size = MD_SB_BYTES;
1271
1272         sb = page_address(rdev->sb_page);
1273
1274         memset(sb, 0, sizeof(*sb));
1275
1276         sb->md_magic = MD_SB_MAGIC;
1277         sb->major_version = mddev->major_version;
1278         sb->patch_version = mddev->patch_version;
1279         sb->gvalid_words  = 0; /* ignored */
1280         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1281         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1282         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1283         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1284
1285         sb->ctime = mddev->ctime;
1286         sb->level = mddev->level;
1287         sb->size = mddev->dev_sectors / 2;
1288         sb->raid_disks = mddev->raid_disks;
1289         sb->md_minor = mddev->md_minor;
1290         sb->not_persistent = 0;
1291         sb->utime = mddev->utime;
1292         sb->state = 0;
1293         sb->events_hi = (mddev->events>>32);
1294         sb->events_lo = (u32)mddev->events;
1295
1296         if (mddev->reshape_position == MaxSector)
1297                 sb->minor_version = 90;
1298         else {
1299                 sb->minor_version = 91;
1300                 sb->reshape_position = mddev->reshape_position;
1301                 sb->new_level = mddev->new_level;
1302                 sb->delta_disks = mddev->delta_disks;
1303                 sb->new_layout = mddev->new_layout;
1304                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1305         }
1306         mddev->minor_version = sb->minor_version;
1307         if (mddev->in_sync)
1308         {
1309                 sb->recovery_cp = mddev->recovery_cp;
1310                 sb->cp_events_hi = (mddev->events>>32);
1311                 sb->cp_events_lo = (u32)mddev->events;
1312                 if (mddev->recovery_cp == MaxSector)
1313                         sb->state = (1<< MD_SB_CLEAN);
1314         } else
1315                 sb->recovery_cp = 0;
1316
1317         sb->layout = mddev->layout;
1318         sb->chunk_size = mddev->chunk_sectors << 9;
1319
1320         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1321                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1322
1323         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1324         rdev_for_each(rdev2, mddev) {
1325                 mdp_disk_t *d;
1326                 int desc_nr;
1327                 int is_active = test_bit(In_sync, &rdev2->flags);
1328
1329                 if (rdev2->raid_disk >= 0 &&
1330                     sb->minor_version >= 91)
1331                         /* we have nowhere to store the recovery_offset,
1332                          * but if it is not below the reshape_position,
1333                          * we can piggy-back on that.
1334                          */
1335                         is_active = 1;
1336                 if (rdev2->raid_disk < 0 ||
1337                     test_bit(Faulty, &rdev2->flags))
1338                         is_active = 0;
1339                 if (is_active)
1340                         desc_nr = rdev2->raid_disk;
1341                 else
1342                         desc_nr = next_spare++;
1343                 rdev2->desc_nr = desc_nr;
1344                 d = &sb->disks[rdev2->desc_nr];
1345                 nr_disks++;
1346                 d->number = rdev2->desc_nr;
1347                 d->major = MAJOR(rdev2->bdev->bd_dev);
1348                 d->minor = MINOR(rdev2->bdev->bd_dev);
1349                 if (is_active)
1350                         d->raid_disk = rdev2->raid_disk;
1351                 else
1352                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1353                 if (test_bit(Faulty, &rdev2->flags))
1354                         d->state = (1<<MD_DISK_FAULTY);
1355                 else if (is_active) {
1356                         d->state = (1<<MD_DISK_ACTIVE);
1357                         if (test_bit(In_sync, &rdev2->flags))
1358                                 d->state |= (1<<MD_DISK_SYNC);
1359                         active++;
1360                         working++;
1361                 } else {
1362                         d->state = 0;
1363                         spare++;
1364                         working++;
1365                 }
1366                 if (test_bit(WriteMostly, &rdev2->flags))
1367                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1368         }
1369         /* now set the "removed" and "faulty" bits on any missing devices */
1370         for (i=0 ; i < mddev->raid_disks ; i++) {
1371                 mdp_disk_t *d = &sb->disks[i];
1372                 if (d->state == 0 && d->number == 0) {
1373                         d->number = i;
1374                         d->raid_disk = i;
1375                         d->state = (1<<MD_DISK_REMOVED);
1376                         d->state |= (1<<MD_DISK_FAULTY);
1377                         failed++;
1378                 }
1379         }
1380         sb->nr_disks = nr_disks;
1381         sb->active_disks = active;
1382         sb->working_disks = working;
1383         sb->failed_disks = failed;
1384         sb->spare_disks = spare;
1385
1386         sb->this_disk = sb->disks[rdev->desc_nr];
1387         sb->sb_csum = calc_sb_csum(sb);
1388 }
1389
1390 /*
1391  * rdev_size_change for 0.90.0
1392  */
1393 static unsigned long long
1394 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1395 {
1396         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1397                 return 0; /* component must fit device */
1398         if (rdev->mddev->bitmap_info.offset)
1399                 return 0; /* can't move bitmap */
1400         rdev->sb_start = calc_dev_sboffset(rdev);
1401         if (!num_sectors || num_sectors > rdev->sb_start)
1402                 num_sectors = rdev->sb_start;
1403         /* Limit to 4TB as metadata cannot record more than that.
1404          * 4TB == 2^32 KB, or 2*2^32 sectors.
1405          */
1406         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1407                 num_sectors = (2ULL << 32) - 2;
1408         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1409                        rdev->sb_page);
1410         md_super_wait(rdev->mddev);
1411         return num_sectors;
1412 }
1413
1414 static int
1415 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1416 {
1417         /* non-zero offset changes not possible with v0.90 */
1418         return new_offset == 0;
1419 }
1420
1421 /*
1422  * version 1 superblock
1423  */
1424
1425 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1426 {
1427         __le32 disk_csum;
1428         u32 csum;
1429         unsigned long long newcsum;
1430         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1431         __le32 *isuper = (__le32*)sb;
1432         int i;
1433
1434         disk_csum = sb->sb_csum;
1435         sb->sb_csum = 0;
1436         newcsum = 0;
1437         for (i=0; size>=4; size -= 4 )
1438                 newcsum += le32_to_cpu(*isuper++);
1439
1440         if (size == 2)
1441                 newcsum += le16_to_cpu(*(__le16*) isuper);
1442
1443         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1444         sb->sb_csum = disk_csum;
1445         return cpu_to_le32(csum);
1446 }
1447
1448 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1449                             int acknowledged);
1450 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1451 {
1452         struct mdp_superblock_1 *sb;
1453         int ret;
1454         sector_t sb_start;
1455         sector_t sectors;
1456         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1457         int bmask;
1458
1459         /*
1460          * Calculate the position of the superblock in 512byte sectors.
1461          * It is always aligned to a 4K boundary and
1462          * depeding on minor_version, it can be:
1463          * 0: At least 8K, but less than 12K, from end of device
1464          * 1: At start of device
1465          * 2: 4K from start of device.
1466          */
1467         switch(minor_version) {
1468         case 0:
1469                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1470                 sb_start -= 8*2;
1471                 sb_start &= ~(sector_t)(4*2-1);
1472                 break;
1473         case 1:
1474                 sb_start = 0;
1475                 break;
1476         case 2:
1477                 sb_start = 8;
1478                 break;
1479         default:
1480                 return -EINVAL;
1481         }
1482         rdev->sb_start = sb_start;
1483
1484         /* superblock is rarely larger than 1K, but it can be larger,
1485          * and it is safe to read 4k, so we do that
1486          */
1487         ret = read_disk_sb(rdev, 4096);
1488         if (ret) return ret;
1489
1490
1491         sb = page_address(rdev->sb_page);
1492
1493         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1494             sb->major_version != cpu_to_le32(1) ||
1495             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1496             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1497             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1498                 return -EINVAL;
1499
1500         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1501                 printk("md: invalid superblock checksum on %s\n",
1502                         bdevname(rdev->bdev,b));
1503                 return -EINVAL;
1504         }
1505         if (le64_to_cpu(sb->data_size) < 10) {
1506                 printk("md: data_size too small on %s\n",
1507                        bdevname(rdev->bdev,b));
1508                 return -EINVAL;
1509         }
1510         if (sb->pad0 ||
1511             sb->pad3[0] ||
1512             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1513                 /* Some padding is non-zero, might be a new feature */
1514                 return -EINVAL;
1515
1516         rdev->preferred_minor = 0xffff;
1517         rdev->data_offset = le64_to_cpu(sb->data_offset);
1518         rdev->new_data_offset = rdev->data_offset;
1519         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1520             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1521                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1522         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1523
1524         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1525         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1526         if (rdev->sb_size & bmask)
1527                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1528
1529         if (minor_version
1530             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1531                 return -EINVAL;
1532         if (minor_version
1533             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1534                 return -EINVAL;
1535
1536         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1537                 rdev->desc_nr = -1;
1538         else
1539                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1540
1541         if (!rdev->bb_page) {
1542                 rdev->bb_page = alloc_page(GFP_KERNEL);
1543                 if (!rdev->bb_page)
1544                         return -ENOMEM;
1545         }
1546         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1547             rdev->badblocks.count == 0) {
1548                 /* need to load the bad block list.
1549                  * Currently we limit it to one page.
1550                  */
1551                 s32 offset;
1552                 sector_t bb_sector;
1553                 u64 *bbp;
1554                 int i;
1555                 int sectors = le16_to_cpu(sb->bblog_size);
1556                 if (sectors > (PAGE_SIZE / 512))
1557                         return -EINVAL;
1558                 offset = le32_to_cpu(sb->bblog_offset);
1559                 if (offset == 0)
1560                         return -EINVAL;
1561                 bb_sector = (long long)offset;
1562                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1563                                   rdev->bb_page, READ, true))
1564                         return -EIO;
1565                 bbp = (u64 *)page_address(rdev->bb_page);
1566                 rdev->badblocks.shift = sb->bblog_shift;
1567                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1568                         u64 bb = le64_to_cpu(*bbp);
1569                         int count = bb & (0x3ff);
1570                         u64 sector = bb >> 10;
1571                         sector <<= sb->bblog_shift;
1572                         count <<= sb->bblog_shift;
1573                         if (bb + 1 == 0)
1574                                 break;
1575                         if (md_set_badblocks(&rdev->badblocks,
1576                                              sector, count, 1) == 0)
1577                                 return -EINVAL;
1578                 }
1579         } else if (sb->bblog_offset == 0)
1580                 rdev->badblocks.shift = -1;
1581
1582         if (!refdev) {
1583                 ret = 1;
1584         } else {
1585                 __u64 ev1, ev2;
1586                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1587
1588                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1589                     sb->level != refsb->level ||
1590                     sb->layout != refsb->layout ||
1591                     sb->chunksize != refsb->chunksize) {
1592                         printk(KERN_WARNING "md: %s has strangely different"
1593                                 " superblock to %s\n",
1594                                 bdevname(rdev->bdev,b),
1595                                 bdevname(refdev->bdev,b2));
1596                         return -EINVAL;
1597                 }
1598                 ev1 = le64_to_cpu(sb->events);
1599                 ev2 = le64_to_cpu(refsb->events);
1600
1601                 if (ev1 > ev2)
1602                         ret = 1;
1603                 else
1604                         ret = 0;
1605         }
1606         if (minor_version) {
1607                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1608                 sectors -= rdev->data_offset;
1609         } else
1610                 sectors = rdev->sb_start;
1611         if (sectors < le64_to_cpu(sb->data_size))
1612                 return -EINVAL;
1613         rdev->sectors = le64_to_cpu(sb->data_size);
1614         return ret;
1615 }
1616
1617 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1618 {
1619         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1620         __u64 ev1 = le64_to_cpu(sb->events);
1621
1622         rdev->raid_disk = -1;
1623         clear_bit(Faulty, &rdev->flags);
1624         clear_bit(In_sync, &rdev->flags);
1625         clear_bit(WriteMostly, &rdev->flags);
1626
1627         if (mddev->raid_disks == 0) {
1628                 mddev->major_version = 1;
1629                 mddev->patch_version = 0;
1630                 mddev->external = 0;
1631                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1632                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1633                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1634                 mddev->level = le32_to_cpu(sb->level);
1635                 mddev->clevel[0] = 0;
1636                 mddev->layout = le32_to_cpu(sb->layout);
1637                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1638                 mddev->dev_sectors = le64_to_cpu(sb->size);
1639                 mddev->events = ev1;
1640                 mddev->bitmap_info.offset = 0;
1641                 mddev->bitmap_info.space = 0;
1642                 /* Default location for bitmap is 1K after superblock
1643                  * using 3K - total of 4K
1644                  */
1645                 mddev->bitmap_info.default_offset = 1024 >> 9;
1646                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1647                 mddev->reshape_backwards = 0;
1648
1649                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1650                 memcpy(mddev->uuid, sb->set_uuid, 16);
1651
1652                 mddev->max_disks =  (4096-256)/2;
1653
1654                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1655                     mddev->bitmap_info.file == NULL) {
1656                         mddev->bitmap_info.offset =
1657                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1658                         /* Metadata doesn't record how much space is available.
1659                          * For 1.0, we assume we can use up to the superblock
1660                          * if before, else to 4K beyond superblock.
1661                          * For others, assume no change is possible.
1662                          */
1663                         if (mddev->minor_version > 0)
1664                                 mddev->bitmap_info.space = 0;
1665                         else if (mddev->bitmap_info.offset > 0)
1666                                 mddev->bitmap_info.space =
1667                                         8 - mddev->bitmap_info.offset;
1668                         else
1669                                 mddev->bitmap_info.space =
1670                                         -mddev->bitmap_info.offset;
1671                 }
1672
1673                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1674                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1675                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1676                         mddev->new_level = le32_to_cpu(sb->new_level);
1677                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1678                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1679                         if (mddev->delta_disks < 0 ||
1680                             (mddev->delta_disks == 0 &&
1681                              (le32_to_cpu(sb->feature_map)
1682                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1683                                 mddev->reshape_backwards = 1;
1684                 } else {
1685                         mddev->reshape_position = MaxSector;
1686                         mddev->delta_disks = 0;
1687                         mddev->new_level = mddev->level;
1688                         mddev->new_layout = mddev->layout;
1689                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1690                 }
1691
1692         } else if (mddev->pers == NULL) {
1693                 /* Insist of good event counter while assembling, except for
1694                  * spares (which don't need an event count) */
1695                 ++ev1;
1696                 if (rdev->desc_nr >= 0 &&
1697                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1698                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1699                         if (ev1 < mddev->events)
1700                                 return -EINVAL;
1701         } else if (mddev->bitmap) {
1702                 /* If adding to array with a bitmap, then we can accept an
1703                  * older device, but not too old.
1704                  */
1705                 if (ev1 < mddev->bitmap->events_cleared)
1706                         return 0;
1707         } else {
1708                 if (ev1 < mddev->events)
1709                         /* just a hot-add of a new device, leave raid_disk at -1 */
1710                         return 0;
1711         }
1712         if (mddev->level != LEVEL_MULTIPATH) {
1713                 int role;
1714                 if (rdev->desc_nr < 0 ||
1715                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1716                         role = 0xffff;
1717                         rdev->desc_nr = -1;
1718                 } else
1719                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1720                 switch(role) {
1721                 case 0xffff: /* spare */
1722                         break;
1723                 case 0xfffe: /* faulty */
1724                         set_bit(Faulty, &rdev->flags);
1725                         break;
1726                 default:
1727                         if ((le32_to_cpu(sb->feature_map) &
1728                              MD_FEATURE_RECOVERY_OFFSET))
1729                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1730                         else
1731                                 set_bit(In_sync, &rdev->flags);
1732                         rdev->raid_disk = role;
1733                         break;
1734                 }
1735                 if (sb->devflags & WriteMostly1)
1736                         set_bit(WriteMostly, &rdev->flags);
1737                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1738                         set_bit(Replacement, &rdev->flags);
1739         } else /* MULTIPATH are always insync */
1740                 set_bit(In_sync, &rdev->flags);
1741
1742         return 0;
1743 }
1744
1745 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1746 {
1747         struct mdp_superblock_1 *sb;
1748         struct md_rdev *rdev2;
1749         int max_dev, i;
1750         /* make rdev->sb match mddev and rdev data. */
1751
1752         sb = page_address(rdev->sb_page);
1753
1754         sb->feature_map = 0;
1755         sb->pad0 = 0;
1756         sb->recovery_offset = cpu_to_le64(0);
1757         memset(sb->pad3, 0, sizeof(sb->pad3));
1758
1759         sb->utime = cpu_to_le64((__u64)mddev->utime);
1760         sb->events = cpu_to_le64(mddev->events);
1761         if (mddev->in_sync)
1762                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1763         else
1764                 sb->resync_offset = cpu_to_le64(0);
1765
1766         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1767
1768         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1769         sb->size = cpu_to_le64(mddev->dev_sectors);
1770         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1771         sb->level = cpu_to_le32(mddev->level);
1772         sb->layout = cpu_to_le32(mddev->layout);
1773
1774         if (test_bit(WriteMostly, &rdev->flags))
1775                 sb->devflags |= WriteMostly1;
1776         else
1777                 sb->devflags &= ~WriteMostly1;
1778         sb->data_offset = cpu_to_le64(rdev->data_offset);
1779         sb->data_size = cpu_to_le64(rdev->sectors);
1780
1781         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1782                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1783                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1784         }
1785
1786         if (rdev->raid_disk >= 0 &&
1787             !test_bit(In_sync, &rdev->flags)) {
1788                 sb->feature_map |=
1789                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1790                 sb->recovery_offset =
1791                         cpu_to_le64(rdev->recovery_offset);
1792         }
1793         if (test_bit(Replacement, &rdev->flags))
1794                 sb->feature_map |=
1795                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1796
1797         if (mddev->reshape_position != MaxSector) {
1798                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1799                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1800                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1801                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1802                 sb->new_level = cpu_to_le32(mddev->new_level);
1803                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1804                 if (mddev->delta_disks == 0 &&
1805                     mddev->reshape_backwards)
1806                         sb->feature_map
1807                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1808                 if (rdev->new_data_offset != rdev->data_offset) {
1809                         sb->feature_map
1810                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1811                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1812                                                              - rdev->data_offset));
1813                 }
1814         }
1815
1816         if (rdev->badblocks.count == 0)
1817                 /* Nothing to do for bad blocks*/ ;
1818         else if (sb->bblog_offset == 0)
1819                 /* Cannot record bad blocks on this device */
1820                 md_error(mddev, rdev);
1821         else {
1822                 struct badblocks *bb = &rdev->badblocks;
1823                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1824                 u64 *p = bb->page;
1825                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1826                 if (bb->changed) {
1827                         unsigned seq;
1828
1829 retry:
1830                         seq = read_seqbegin(&bb->lock);
1831
1832                         memset(bbp, 0xff, PAGE_SIZE);
1833
1834                         for (i = 0 ; i < bb->count ; i++) {
1835                                 u64 internal_bb = *p++;
1836                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1837                                                 | BB_LEN(internal_bb));
1838                                 *bbp++ = cpu_to_le64(store_bb);
1839                         }
1840                         bb->changed = 0;
1841                         if (read_seqretry(&bb->lock, seq))
1842                                 goto retry;
1843
1844                         bb->sector = (rdev->sb_start +
1845                                       (int)le32_to_cpu(sb->bblog_offset));
1846                         bb->size = le16_to_cpu(sb->bblog_size);
1847                 }
1848         }
1849
1850         max_dev = 0;
1851         rdev_for_each(rdev2, mddev)
1852                 if (rdev2->desc_nr+1 > max_dev)
1853                         max_dev = rdev2->desc_nr+1;
1854
1855         if (max_dev > le32_to_cpu(sb->max_dev)) {
1856                 int bmask;
1857                 sb->max_dev = cpu_to_le32(max_dev);
1858                 rdev->sb_size = max_dev * 2 + 256;
1859                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1860                 if (rdev->sb_size & bmask)
1861                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1862         } else
1863                 max_dev = le32_to_cpu(sb->max_dev);
1864
1865         for (i=0; i<max_dev;i++)
1866                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1867         
1868         rdev_for_each(rdev2, mddev) {
1869                 i = rdev2->desc_nr;
1870                 if (test_bit(Faulty, &rdev2->flags))
1871                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1872                 else if (test_bit(In_sync, &rdev2->flags))
1873                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1874                 else if (rdev2->raid_disk >= 0)
1875                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1876                 else
1877                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1878         }
1879
1880         sb->sb_csum = calc_sb_1_csum(sb);
1881 }
1882
1883 static unsigned long long
1884 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1885 {
1886         struct mdp_superblock_1 *sb;
1887         sector_t max_sectors;
1888         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1889                 return 0; /* component must fit device */
1890         if (rdev->data_offset != rdev->new_data_offset)
1891                 return 0; /* too confusing */
1892         if (rdev->sb_start < rdev->data_offset) {
1893                 /* minor versions 1 and 2; superblock before data */
1894                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1895                 max_sectors -= rdev->data_offset;
1896                 if (!num_sectors || num_sectors > max_sectors)
1897                         num_sectors = max_sectors;
1898         } else if (rdev->mddev->bitmap_info.offset) {
1899                 /* minor version 0 with bitmap we can't move */
1900                 return 0;
1901         } else {
1902                 /* minor version 0; superblock after data */
1903                 sector_t sb_start;
1904                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1905                 sb_start &= ~(sector_t)(4*2 - 1);
1906                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1907                 if (!num_sectors || num_sectors > max_sectors)
1908                         num_sectors = max_sectors;
1909                 rdev->sb_start = sb_start;
1910         }
1911         sb = page_address(rdev->sb_page);
1912         sb->data_size = cpu_to_le64(num_sectors);
1913         sb->super_offset = rdev->sb_start;
1914         sb->sb_csum = calc_sb_1_csum(sb);
1915         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1916                        rdev->sb_page);
1917         md_super_wait(rdev->mddev);
1918         return num_sectors;
1919
1920 }
1921
1922 static int
1923 super_1_allow_new_offset(struct md_rdev *rdev,
1924                          unsigned long long new_offset)
1925 {
1926         /* All necessary checks on new >= old have been done */
1927         struct bitmap *bitmap;
1928         if (new_offset >= rdev->data_offset)
1929                 return 1;
1930
1931         /* with 1.0 metadata, there is no metadata to tread on
1932          * so we can always move back */
1933         if (rdev->mddev->minor_version == 0)
1934                 return 1;
1935
1936         /* otherwise we must be sure not to step on
1937          * any metadata, so stay:
1938          * 36K beyond start of superblock
1939          * beyond end of badblocks
1940          * beyond write-intent bitmap
1941          */
1942         if (rdev->sb_start + (32+4)*2 > new_offset)
1943                 return 0;
1944         bitmap = rdev->mddev->bitmap;
1945         if (bitmap && !rdev->mddev->bitmap_info.file &&
1946             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1947             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1948                 return 0;
1949         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1950                 return 0;
1951
1952         return 1;
1953 }
1954
1955 static struct super_type super_types[] = {
1956         [0] = {
1957                 .name   = "0.90.0",
1958                 .owner  = THIS_MODULE,
1959                 .load_super         = super_90_load,
1960                 .validate_super     = super_90_validate,
1961                 .sync_super         = super_90_sync,
1962                 .rdev_size_change   = super_90_rdev_size_change,
1963                 .allow_new_offset   = super_90_allow_new_offset,
1964         },
1965         [1] = {
1966                 .name   = "md-1",
1967                 .owner  = THIS_MODULE,
1968                 .load_super         = super_1_load,
1969                 .validate_super     = super_1_validate,
1970                 .sync_super         = super_1_sync,
1971                 .rdev_size_change   = super_1_rdev_size_change,
1972                 .allow_new_offset   = super_1_allow_new_offset,
1973         },
1974 };
1975
1976 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1977 {
1978         if (mddev->sync_super) {
1979                 mddev->sync_super(mddev, rdev);
1980                 return;
1981         }
1982
1983         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1984
1985         super_types[mddev->major_version].sync_super(mddev, rdev);
1986 }
1987
1988 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1989 {
1990         struct md_rdev *rdev, *rdev2;
1991
1992         rcu_read_lock();
1993         rdev_for_each_rcu(rdev, mddev1)
1994                 rdev_for_each_rcu(rdev2, mddev2)
1995                         if (rdev->bdev->bd_contains ==
1996                             rdev2->bdev->bd_contains) {
1997                                 rcu_read_unlock();
1998                                 return 1;
1999                         }
2000         rcu_read_unlock();
2001         return 0;
2002 }
2003
2004 static LIST_HEAD(pending_raid_disks);
2005
2006 /*
2007  * Try to register data integrity profile for an mddev
2008  *
2009  * This is called when an array is started and after a disk has been kicked
2010  * from the array. It only succeeds if all working and active component devices
2011  * are integrity capable with matching profiles.
2012  */
2013 int md_integrity_register(struct mddev *mddev)
2014 {
2015         struct md_rdev *rdev, *reference = NULL;
2016
2017         if (list_empty(&mddev->disks))
2018                 return 0; /* nothing to do */
2019         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2020                 return 0; /* shouldn't register, or already is */
2021         rdev_for_each(rdev, mddev) {
2022                 /* skip spares and non-functional disks */
2023                 if (test_bit(Faulty, &rdev->flags))
2024                         continue;
2025                 if (rdev->raid_disk < 0)
2026                         continue;
2027                 if (!reference) {
2028                         /* Use the first rdev as the reference */
2029                         reference = rdev;
2030                         continue;
2031                 }
2032                 /* does this rdev's profile match the reference profile? */
2033                 if (blk_integrity_compare(reference->bdev->bd_disk,
2034                                 rdev->bdev->bd_disk) < 0)
2035                         return -EINVAL;
2036         }
2037         if (!reference || !bdev_get_integrity(reference->bdev))
2038                 return 0;
2039         /*
2040          * All component devices are integrity capable and have matching
2041          * profiles, register the common profile for the md device.
2042          */
2043         if (blk_integrity_register(mddev->gendisk,
2044                         bdev_get_integrity(reference->bdev)) != 0) {
2045                 printk(KERN_ERR "md: failed to register integrity for %s\n",
2046                         mdname(mddev));
2047                 return -EINVAL;
2048         }
2049         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2050         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2051                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2052                        mdname(mddev));
2053                 return -EINVAL;
2054         }
2055         return 0;
2056 }
2057 EXPORT_SYMBOL(md_integrity_register);
2058
2059 /* Disable data integrity if non-capable/non-matching disk is being added */
2060 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2061 {
2062         struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
2063         struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
2064
2065         if (!bi_mddev) /* nothing to do */
2066                 return;
2067         if (rdev->raid_disk < 0) /* skip spares */
2068                 return;
2069         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2070                                              rdev->bdev->bd_disk) >= 0)
2071                 return;
2072         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2073         blk_integrity_unregister(mddev->gendisk);
2074 }
2075 EXPORT_SYMBOL(md_integrity_add_rdev);
2076
2077 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2078 {
2079         char b[BDEVNAME_SIZE];
2080         struct kobject *ko;
2081         char *s;
2082         int err;
2083
2084         if (rdev->mddev) {
2085                 MD_BUG();
2086                 return -EINVAL;
2087         }
2088
2089         /* prevent duplicates */
2090         if (find_rdev(mddev, rdev->bdev->bd_dev))
2091                 return -EEXIST;
2092
2093         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2094         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2095                         rdev->sectors < mddev->dev_sectors)) {
2096                 if (mddev->pers) {
2097                         /* Cannot change size, so fail
2098                          * If mddev->level <= 0, then we don't care
2099                          * about aligning sizes (e.g. linear)
2100                          */
2101                         if (mddev->level > 0)
2102                                 return -ENOSPC;
2103                 } else
2104                         mddev->dev_sectors = rdev->sectors;
2105         }
2106
2107         /* Verify rdev->desc_nr is unique.
2108          * If it is -1, assign a free number, else
2109          * check number is not in use
2110          */
2111         if (rdev->desc_nr < 0) {
2112                 int choice = 0;
2113                 if (mddev->pers) choice = mddev->raid_disks;
2114                 while (find_rdev_nr(mddev, choice))
2115                         choice++;
2116                 rdev->desc_nr = choice;
2117         } else {
2118                 if (find_rdev_nr(mddev, rdev->desc_nr))
2119                         return -EBUSY;
2120         }
2121         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2122                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2123                        mdname(mddev), mddev->max_disks);
2124                 return -EBUSY;
2125         }
2126         bdevname(rdev->bdev,b);
2127         while ( (s=strchr(b, '/')) != NULL)
2128                 *s = '!';
2129
2130         rdev->mddev = mddev;
2131         printk(KERN_INFO "md: bind<%s>\n", b);
2132
2133         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2134                 goto fail;
2135
2136         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2137         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2138                 /* failure here is OK */;
2139         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2140
2141         list_add_rcu(&rdev->same_set, &mddev->disks);
2142         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2143
2144         /* May as well allow recovery to be retried once */
2145         mddev->recovery_disabled++;
2146
2147         return 0;
2148
2149  fail:
2150         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2151                b, mdname(mddev));
2152         return err;
2153 }
2154
2155 static void md_delayed_delete(struct work_struct *ws)
2156 {
2157         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2158         kobject_del(&rdev->kobj);
2159         kobject_put(&rdev->kobj);
2160 }
2161
2162 static void unbind_rdev_from_array(struct md_rdev * rdev)
2163 {
2164         char b[BDEVNAME_SIZE];
2165         if (!rdev->mddev) {
2166                 MD_BUG();
2167                 return;
2168         }
2169         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2170         list_del_rcu(&rdev->same_set);
2171         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2172         rdev->mddev = NULL;
2173         sysfs_remove_link(&rdev->kobj, "block");
2174         sysfs_put(rdev->sysfs_state);
2175         rdev->sysfs_state = NULL;
2176         rdev->badblocks.count = 0;
2177         /* We need to delay this, otherwise we can deadlock when
2178          * writing to 'remove' to "dev/state".  We also need
2179          * to delay it due to rcu usage.
2180          */
2181         synchronize_rcu();
2182         INIT_WORK(&rdev->del_work, md_delayed_delete);
2183         kobject_get(&rdev->kobj);
2184         queue_work(md_misc_wq, &rdev->del_work);
2185 }
2186
2187 /*
2188  * prevent the device from being mounted, repartitioned or
2189  * otherwise reused by a RAID array (or any other kernel
2190  * subsystem), by bd_claiming the device.
2191  */
2192 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2193 {
2194         int err = 0;
2195         struct block_device *bdev;
2196         char b[BDEVNAME_SIZE];
2197
2198         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2199                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2200         if (IS_ERR(bdev)) {
2201                 printk(KERN_ERR "md: could not open %s.\n",
2202                         __bdevname(dev, b));
2203                 return PTR_ERR(bdev);
2204         }
2205         rdev->bdev = bdev;
2206         return err;
2207 }
2208
2209 static void unlock_rdev(struct md_rdev *rdev)
2210 {
2211         struct block_device *bdev = rdev->bdev;
2212         rdev->bdev = NULL;
2213         if (!bdev)
2214                 MD_BUG();
2215         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2216 }
2217
2218 void md_autodetect_dev(dev_t dev);
2219
2220 static void export_rdev(struct md_rdev * rdev)
2221 {
2222         char b[BDEVNAME_SIZE];
2223         printk(KERN_INFO "md: export_rdev(%s)\n",
2224                 bdevname(rdev->bdev,b));
2225         if (rdev->mddev)
2226                 MD_BUG();
2227         md_rdev_clear(rdev);
2228 #ifndef MODULE
2229         if (test_bit(AutoDetected, &rdev->flags))
2230                 md_autodetect_dev(rdev->bdev->bd_dev);
2231 #endif
2232         unlock_rdev(rdev);
2233         kobject_put(&rdev->kobj);
2234 }
2235
2236 static void kick_rdev_from_array(struct md_rdev * rdev)
2237 {
2238         unbind_rdev_from_array(rdev);
2239         export_rdev(rdev);
2240 }
2241
2242 static void export_array(struct mddev *mddev)
2243 {
2244         struct md_rdev *rdev, *tmp;
2245
2246         rdev_for_each_safe(rdev, tmp, mddev) {
2247                 if (!rdev->mddev) {
2248                         MD_BUG();
2249                         continue;
2250                 }
2251                 kick_rdev_from_array(rdev);
2252         }
2253         if (!list_empty(&mddev->disks))
2254                 MD_BUG();
2255         mddev->raid_disks = 0;
2256         mddev->major_version = 0;
2257 }
2258
2259 static void print_desc(mdp_disk_t *desc)
2260 {
2261         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2262                 desc->major,desc->minor,desc->raid_disk,desc->state);
2263 }
2264
2265 static void print_sb_90(mdp_super_t *sb)
2266 {
2267         int i;
2268
2269         printk(KERN_INFO 
2270                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2271                 sb->major_version, sb->minor_version, sb->patch_version,
2272                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2273                 sb->ctime);
2274         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2275                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2276                 sb->md_minor, sb->layout, sb->chunk_size);
2277         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2278                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2279                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2280                 sb->failed_disks, sb->spare_disks,
2281                 sb->sb_csum, (unsigned long)sb->events_lo);
2282
2283         printk(KERN_INFO);
2284         for (i = 0; i < MD_SB_DISKS; i++) {
2285                 mdp_disk_t *desc;
2286
2287                 desc = sb->disks + i;
2288                 if (desc->number || desc->major || desc->minor ||
2289                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2290                         printk("     D %2d: ", i);
2291                         print_desc(desc);
2292                 }
2293         }
2294         printk(KERN_INFO "md:     THIS: ");
2295         print_desc(&sb->this_disk);
2296 }
2297
2298 static void print_sb_1(struct mdp_superblock_1 *sb)
2299 {
2300         __u8 *uuid;
2301
2302         uuid = sb->set_uuid;
2303         printk(KERN_INFO
2304                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2305                "md:    Name: \"%s\" CT:%llu\n",
2306                 le32_to_cpu(sb->major_version),
2307                 le32_to_cpu(sb->feature_map),
2308                 uuid,
2309                 sb->set_name,
2310                 (unsigned long long)le64_to_cpu(sb->ctime)
2311                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2312
2313         uuid = sb->device_uuid;
2314         printk(KERN_INFO
2315                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2316                         " RO:%llu\n"
2317                "md:     Dev:%08x UUID: %pU\n"
2318                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2319                "md:         (MaxDev:%u) \n",
2320                 le32_to_cpu(sb->level),
2321                 (unsigned long long)le64_to_cpu(sb->size),
2322                 le32_to_cpu(sb->raid_disks),
2323                 le32_to_cpu(sb->layout),
2324                 le32_to_cpu(sb->chunksize),
2325                 (unsigned long long)le64_to_cpu(sb->data_offset),
2326                 (unsigned long long)le64_to_cpu(sb->data_size),
2327                 (unsigned long long)le64_to_cpu(sb->super_offset),
2328                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2329                 le32_to_cpu(sb->dev_number),
2330                 uuid,
2331                 sb->devflags,
2332                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2333                 (unsigned long long)le64_to_cpu(sb->events),
2334                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2335                 le32_to_cpu(sb->sb_csum),
2336                 le32_to_cpu(sb->max_dev)
2337                 );
2338 }
2339
2340 static void print_rdev(struct md_rdev *rdev, int major_version)
2341 {
2342         char b[BDEVNAME_SIZE];
2343         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2344                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2345                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2346                 rdev->desc_nr);
2347         if (rdev->sb_loaded) {
2348                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2349                 switch (major_version) {
2350                 case 0:
2351                         print_sb_90(page_address(rdev->sb_page));
2352                         break;
2353                 case 1:
2354                         print_sb_1(page_address(rdev->sb_page));
2355                         break;
2356                 }
2357         } else
2358                 printk(KERN_INFO "md: no rdev superblock!\n");
2359 }
2360
2361 static void md_print_devices(void)
2362 {
2363         struct list_head *tmp;
2364         struct md_rdev *rdev;
2365         struct mddev *mddev;
2366         char b[BDEVNAME_SIZE];
2367
2368         printk("\n");
2369         printk("md:     **********************************\n");
2370         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2371         printk("md:     **********************************\n");
2372         for_each_mddev(mddev, tmp) {
2373
2374                 if (mddev->bitmap)
2375                         bitmap_print_sb(mddev->bitmap);
2376                 else
2377                         printk("%s: ", mdname(mddev));
2378                 rdev_for_each(rdev, mddev)
2379                         printk("<%s>", bdevname(rdev->bdev,b));
2380                 printk("\n");
2381
2382                 rdev_for_each(rdev, mddev)
2383                         print_rdev(rdev, mddev->major_version);
2384         }
2385         printk("md:     **********************************\n");
2386         printk("\n");
2387 }
2388
2389
2390 static void sync_sbs(struct mddev * mddev, int nospares)
2391 {
2392         /* Update each superblock (in-memory image), but
2393          * if we are allowed to, skip spares which already
2394          * have the right event counter, or have one earlier
2395          * (which would mean they aren't being marked as dirty
2396          * with the rest of the array)
2397          */
2398         struct md_rdev *rdev;
2399         rdev_for_each(rdev, mddev) {
2400                 if (rdev->sb_events == mddev->events ||
2401                     (nospares &&
2402                      rdev->raid_disk < 0 &&
2403                      rdev->sb_events+1 == mddev->events)) {
2404                         /* Don't update this superblock */
2405                         rdev->sb_loaded = 2;
2406                 } else {
2407                         sync_super(mddev, rdev);
2408                         rdev->sb_loaded = 1;
2409                 }
2410         }
2411 }
2412
2413 static void md_update_sb(struct mddev * mddev, int force_change)
2414 {
2415         struct md_rdev *rdev;
2416         int sync_req;
2417         int nospares = 0;
2418         int any_badblocks_changed = 0;
2419
2420 repeat:
2421         /* First make sure individual recovery_offsets are correct */
2422         rdev_for_each(rdev, mddev) {
2423                 if (rdev->raid_disk >= 0 &&
2424                     mddev->delta_disks >= 0 &&
2425                     !test_bit(In_sync, &rdev->flags) &&
2426                     mddev->curr_resync_completed > rdev->recovery_offset)
2427                                 rdev->recovery_offset = mddev->curr_resync_completed;
2428
2429         }       
2430         if (!mddev->persistent) {
2431                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2432                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2433                 if (!mddev->external) {
2434                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2435                         rdev_for_each(rdev, mddev) {
2436                                 if (rdev->badblocks.changed) {
2437                                         rdev->badblocks.changed = 0;
2438                                         md_ack_all_badblocks(&rdev->badblocks);
2439                                         md_error(mddev, rdev);
2440                                 }
2441                                 clear_bit(Blocked, &rdev->flags);
2442                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2443                                 wake_up(&rdev->blocked_wait);
2444                         }
2445                 }
2446                 wake_up(&mddev->sb_wait);
2447                 return;
2448         }
2449
2450         spin_lock_irq(&mddev->write_lock);
2451
2452         mddev->utime = get_seconds();
2453
2454         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2455                 force_change = 1;
2456         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2457                 /* just a clean<-> dirty transition, possibly leave spares alone,
2458                  * though if events isn't the right even/odd, we will have to do
2459                  * spares after all
2460                  */
2461                 nospares = 1;
2462         if (force_change)
2463                 nospares = 0;
2464         if (mddev->degraded)
2465                 /* If the array is degraded, then skipping spares is both
2466                  * dangerous and fairly pointless.
2467                  * Dangerous because a device that was removed from the array
2468                  * might have a event_count that still looks up-to-date,
2469                  * so it can be re-added without a resync.
2470                  * Pointless because if there are any spares to skip,
2471                  * then a recovery will happen and soon that array won't
2472                  * be degraded any more and the spare can go back to sleep then.
2473                  */
2474                 nospares = 0;
2475
2476         sync_req = mddev->in_sync;
2477
2478         /* If this is just a dirty<->clean transition, and the array is clean
2479          * and 'events' is odd, we can roll back to the previous clean state */
2480         if (nospares
2481             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2482             && mddev->can_decrease_events
2483             && mddev->events != 1) {
2484                 mddev->events--;
2485                 mddev->can_decrease_events = 0;
2486         } else {
2487                 /* otherwise we have to go forward and ... */
2488                 mddev->events ++;
2489                 mddev->can_decrease_events = nospares;
2490         }
2491
2492         if (!mddev->events) {
2493                 /*
2494                  * oops, this 64-bit counter should never wrap.
2495                  * Either we are in around ~1 trillion A.C., assuming
2496                  * 1 reboot per second, or we have a bug:
2497                  */
2498                 MD_BUG();
2499                 mddev->events --;
2500         }
2501
2502         rdev_for_each(rdev, mddev) {
2503                 if (rdev->badblocks.changed)
2504                         any_badblocks_changed++;
2505                 if (test_bit(Faulty, &rdev->flags))
2506                         set_bit(FaultRecorded, &rdev->flags);
2507         }
2508
2509         sync_sbs(mddev, nospares);
2510         spin_unlock_irq(&mddev->write_lock);
2511
2512         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2513                  mdname(mddev), mddev->in_sync);
2514
2515         bitmap_update_sb(mddev->bitmap);
2516         rdev_for_each(rdev, mddev) {
2517                 char b[BDEVNAME_SIZE];
2518
2519                 if (rdev->sb_loaded != 1)
2520                         continue; /* no noise on spare devices */
2521
2522                 if (!test_bit(Faulty, &rdev->flags) &&
2523                     rdev->saved_raid_disk == -1) {
2524                         md_super_write(mddev,rdev,
2525                                        rdev->sb_start, rdev->sb_size,
2526                                        rdev->sb_page);
2527                         pr_debug("md: (write) %s's sb offset: %llu\n",
2528                                  bdevname(rdev->bdev, b),
2529                                  (unsigned long long)rdev->sb_start);
2530                         rdev->sb_events = mddev->events;
2531                         if (rdev->badblocks.size) {
2532                                 md_super_write(mddev, rdev,
2533                                                rdev->badblocks.sector,
2534                                                rdev->badblocks.size << 9,
2535                                                rdev->bb_page);
2536                                 rdev->badblocks.size = 0;
2537                         }
2538
2539                 } else if (test_bit(Faulty, &rdev->flags))
2540                         pr_debug("md: %s (skipping faulty)\n",
2541                                  bdevname(rdev->bdev, b));
2542                 else
2543                         pr_debug("(skipping incremental s/r ");
2544
2545                 if (mddev->level == LEVEL_MULTIPATH)
2546                         /* only need to write one superblock... */
2547                         break;
2548         }
2549         md_super_wait(mddev);
2550         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2551
2552         spin_lock_irq(&mddev->write_lock);
2553         if (mddev->in_sync != sync_req ||
2554             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2555                 /* have to write it out again */
2556                 spin_unlock_irq(&mddev->write_lock);
2557                 goto repeat;
2558         }
2559         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2560         spin_unlock_irq(&mddev->write_lock);
2561         wake_up(&mddev->sb_wait);
2562         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2563                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2564
2565         rdev_for_each(rdev, mddev) {
2566                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2567                         clear_bit(Blocked, &rdev->flags);
2568
2569                 if (any_badblocks_changed)
2570                         md_ack_all_badblocks(&rdev->badblocks);
2571                 clear_bit(BlockedBadBlocks, &rdev->flags);
2572                 wake_up(&rdev->blocked_wait);
2573         }
2574 }
2575
2576 /* words written to sysfs files may, or may not, be \n terminated.
2577  * We want to accept with case. For this we use cmd_match.
2578  */
2579 static int cmd_match(const char *cmd, const char *str)
2580 {
2581         /* See if cmd, written into a sysfs file, matches
2582          * str.  They must either be the same, or cmd can
2583          * have a trailing newline
2584          */
2585         while (*cmd && *str && *cmd == *str) {
2586                 cmd++;
2587                 str++;
2588         }
2589         if (*cmd == '\n')
2590                 cmd++;
2591         if (*str || *cmd)
2592                 return 0;
2593         return 1;
2594 }
2595
2596 struct rdev_sysfs_entry {
2597         struct attribute attr;
2598         ssize_t (*show)(struct md_rdev *, char *);
2599         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2600 };
2601
2602 static ssize_t
2603 state_show(struct md_rdev *rdev, char *page)
2604 {
2605         char *sep = "";
2606         size_t len = 0;
2607
2608         if (test_bit(Faulty, &rdev->flags) ||
2609             rdev->badblocks.unacked_exist) {
2610                 len+= sprintf(page+len, "%sfaulty",sep);
2611                 sep = ",";
2612         }
2613         if (test_bit(In_sync, &rdev->flags)) {
2614                 len += sprintf(page+len, "%sin_sync",sep);
2615                 sep = ",";
2616         }
2617         if (test_bit(WriteMostly, &rdev->flags)) {
2618                 len += sprintf(page+len, "%swrite_mostly",sep);
2619                 sep = ",";
2620         }
2621         if (test_bit(Blocked, &rdev->flags) ||
2622             (rdev->badblocks.unacked_exist
2623              && !test_bit(Faulty, &rdev->flags))) {
2624                 len += sprintf(page+len, "%sblocked", sep);
2625                 sep = ",";
2626         }
2627         if (!test_bit(Faulty, &rdev->flags) &&
2628             !test_bit(In_sync, &rdev->flags)) {
2629                 len += sprintf(page+len, "%sspare", sep);
2630                 sep = ",";
2631         }
2632         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2633                 len += sprintf(page+len, "%swrite_error", sep);
2634                 sep = ",";
2635         }
2636         if (test_bit(WantReplacement, &rdev->flags)) {
2637                 len += sprintf(page+len, "%swant_replacement", sep);
2638                 sep = ",";
2639         }
2640         if (test_bit(Replacement, &rdev->flags)) {
2641                 len += sprintf(page+len, "%sreplacement", sep);
2642                 sep = ",";
2643         }
2644
2645         return len+sprintf(page+len, "\n");
2646 }
2647
2648 static ssize_t
2649 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2650 {
2651         /* can write
2652          *  faulty  - simulates an error
2653          *  remove  - disconnects the device
2654          *  writemostly - sets write_mostly
2655          *  -writemostly - clears write_mostly
2656          *  blocked - sets the Blocked flags
2657          *  -blocked - clears the Blocked and possibly simulates an error
2658          *  insync - sets Insync providing device isn't active
2659          *  write_error - sets WriteErrorSeen
2660          *  -write_error - clears WriteErrorSeen
2661          */
2662         int err = -EINVAL;
2663         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2664                 md_error(rdev->mddev, rdev);
2665                 if (test_bit(Faulty, &rdev->flags))
2666                         err = 0;
2667                 else
2668                         err = -EBUSY;
2669         } else if (cmd_match(buf, "remove")) {
2670                 if (rdev->raid_disk >= 0)
2671                         err = -EBUSY;
2672                 else {
2673                         struct mddev *mddev = rdev->mddev;
2674                         kick_rdev_from_array(rdev);
2675                         if (mddev->pers)
2676                                 md_update_sb(mddev, 1);
2677                         md_new_event(mddev);
2678                         err = 0;
2679                 }
2680         } else if (cmd_match(buf, "writemostly")) {
2681                 set_bit(WriteMostly, &rdev->flags);
2682                 err = 0;
2683         } else if (cmd_match(buf, "-writemostly")) {
2684                 clear_bit(WriteMostly, &rdev->flags);
2685                 err = 0;
2686         } else if (cmd_match(buf, "blocked")) {
2687                 set_bit(Blocked, &rdev->flags);
2688                 err = 0;
2689         } else if (cmd_match(buf, "-blocked")) {
2690                 if (!test_bit(Faulty, &rdev->flags) &&
2691                     rdev->badblocks.unacked_exist) {
2692                         /* metadata handler doesn't understand badblocks,
2693                          * so we need to fail the device
2694                          */
2695                         md_error(rdev->mddev, rdev);
2696                 }
2697                 clear_bit(Blocked, &rdev->flags);
2698                 clear_bit(BlockedBadBlocks, &rdev->flags);
2699                 wake_up(&rdev->blocked_wait);
2700                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2701                 md_wakeup_thread(rdev->mddev->thread);
2702
2703                 err = 0;
2704         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2705                 set_bit(In_sync, &rdev->flags);
2706                 err = 0;
2707         } else if (cmd_match(buf, "write_error")) {
2708                 set_bit(WriteErrorSeen, &rdev->flags);
2709                 err = 0;
2710         } else if (cmd_match(buf, "-write_error")) {
2711                 clear_bit(WriteErrorSeen, &rdev->flags);
2712                 err = 0;
2713         } else if (cmd_match(buf, "want_replacement")) {
2714                 /* Any non-spare device that is not a replacement can
2715                  * become want_replacement at any time, but we then need to
2716                  * check if recovery is needed.
2717                  */
2718                 if (rdev->raid_disk >= 0 &&
2719                     !test_bit(Replacement, &rdev->flags))
2720                         set_bit(WantReplacement, &rdev->flags);
2721                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2722                 md_wakeup_thread(rdev->mddev->thread);
2723                 err = 0;
2724         } else if (cmd_match(buf, "-want_replacement")) {
2725                 /* Clearing 'want_replacement' is always allowed.
2726                  * Once replacements starts it is too late though.
2727                  */
2728                 err = 0;
2729                 clear_bit(WantReplacement, &rdev->flags);
2730         } else if (cmd_match(buf, "replacement")) {
2731                 /* Can only set a device as a replacement when array has not
2732                  * yet been started.  Once running, replacement is automatic
2733                  * from spares, or by assigning 'slot'.
2734                  */
2735                 if (rdev->mddev->pers)
2736                         err = -EBUSY;
2737                 else {
2738                         set_bit(Replacement, &rdev->flags);
2739                         err = 0;
2740                 }
2741         } else if (cmd_match(buf, "-replacement")) {
2742                 /* Similarly, can only clear Replacement before start */
2743                 if (rdev->mddev->pers)
2744                         err = -EBUSY;
2745                 else {
2746                         clear_bit(Replacement, &rdev->flags);
2747                         err = 0;
2748                 }
2749         }
2750         if (!err)
2751                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2752         return err ? err : len;
2753 }
2754 static struct rdev_sysfs_entry rdev_state =
2755 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2756
2757 static ssize_t
2758 errors_show(struct md_rdev *rdev, char *page)
2759 {
2760         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2761 }
2762
2763 static ssize_t
2764 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2765 {
2766         char *e;
2767         unsigned long n = simple_strtoul(buf, &e, 10);
2768         if (*buf && (*e == 0 || *e == '\n')) {
2769                 atomic_set(&rdev->corrected_errors, n);
2770                 return len;
2771         }
2772         return -EINVAL;
2773 }
2774 static struct rdev_sysfs_entry rdev_errors =
2775 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2776
2777 static ssize_t
2778 slot_show(struct md_rdev *rdev, char *page)
2779 {
2780         if (rdev->raid_disk < 0)
2781                 return sprintf(page, "none\n");
2782         else
2783                 return sprintf(page, "%d\n", rdev->raid_disk);
2784 }
2785
2786 static ssize_t
2787 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2788 {
2789         char *e;
2790         int err;
2791         int slot = simple_strtoul(buf, &e, 10);
2792         if (strncmp(buf, "none", 4)==0)
2793                 slot = -1;
2794         else if (e==buf || (*e && *e!= '\n'))
2795                 return -EINVAL;
2796         if (rdev->mddev->pers && slot == -1) {
2797                 /* Setting 'slot' on an active array requires also
2798                  * updating the 'rd%d' link, and communicating
2799                  * with the personality with ->hot_*_disk.
2800                  * For now we only support removing
2801                  * failed/spare devices.  This normally happens automatically,
2802                  * but not when the metadata is externally managed.
2803                  */
2804                 if (rdev->raid_disk == -1)
2805                         return -EEXIST;
2806                 /* personality does all needed checks */
2807                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2808                         return -EINVAL;
2809                 err = rdev->mddev->pers->
2810                         hot_remove_disk(rdev->mddev, rdev);
2811                 if (err)
2812                         return err;
2813                 sysfs_unlink_rdev(rdev->mddev, rdev);
2814                 rdev->raid_disk = -1;
2815                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2816                 md_wakeup_thread(rdev->mddev->thread);
2817         } else if (rdev->mddev->pers) {
2818                 /* Activating a spare .. or possibly reactivating
2819                  * if we ever get bitmaps working here.
2820                  */
2821
2822                 if (rdev->raid_disk != -1)
2823                         return -EBUSY;
2824
2825                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2826                         return -EBUSY;
2827
2828                 if (rdev->mddev->pers->hot_add_disk == NULL)
2829                         return -EINVAL;
2830
2831                 if (slot >= rdev->mddev->raid_disks &&
2832                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2833                         return -ENOSPC;
2834
2835                 rdev->raid_disk = slot;
2836                 if (test_bit(In_sync, &rdev->flags))
2837                         rdev->saved_raid_disk = slot;
2838                 else
2839                         rdev->saved_raid_disk = -1;
2840                 clear_bit(In_sync, &rdev->flags);
2841                 err = rdev->mddev->pers->
2842                         hot_add_disk(rdev->mddev, rdev);
2843                 if (err) {
2844                         rdev->raid_disk = -1;
2845                         return err;
2846                 } else
2847                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2848                 if (sysfs_link_rdev(rdev->mddev, rdev))
2849                         /* failure here is OK */;
2850                 /* don't wakeup anyone, leave that to userspace. */
2851         } else {
2852                 if (slot >= rdev->mddev->raid_disks &&
2853                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2854                         return -ENOSPC;
2855                 rdev->raid_disk = slot;
2856                 /* assume it is working */
2857                 clear_bit(Faulty, &rdev->flags);
2858                 clear_bit(WriteMostly, &rdev->flags);
2859                 set_bit(In_sync, &rdev->flags);
2860                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2861         }
2862         return len;
2863 }
2864
2865
2866 static struct rdev_sysfs_entry rdev_slot =
2867 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2868
2869 static ssize_t
2870 offset_show(struct md_rdev *rdev, char *page)
2871 {
2872         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2873 }
2874
2875 static ssize_t
2876 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2877 {
2878         unsigned long long offset;
2879         if (strict_strtoull(buf, 10, &offset) < 0)
2880                 return -EINVAL;
2881         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2882                 return -EBUSY;
2883         if (rdev->sectors && rdev->mddev->external)
2884                 /* Must set offset before size, so overlap checks
2885                  * can be sane */
2886                 return -EBUSY;
2887         rdev->data_offset = offset;
2888         rdev->new_data_offset = offset;
2889         return len;
2890 }
2891
2892 static struct rdev_sysfs_entry rdev_offset =
2893 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2894
2895 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2896 {
2897         return sprintf(page, "%llu\n",
2898                        (unsigned long long)rdev->new_data_offset);
2899 }
2900
2901 static ssize_t new_offset_store(struct md_rdev *rdev,
2902                                 const char *buf, size_t len)
2903 {
2904         unsigned long long new_offset;
2905         struct mddev *mddev = rdev->mddev;
2906
2907         if (strict_strtoull(buf, 10, &new_offset) < 0)
2908                 return -EINVAL;
2909
2910         if (mddev->sync_thread)
2911                 return -EBUSY;
2912         if (new_offset == rdev->data_offset)
2913                 /* reset is always permitted */
2914                 ;
2915         else if (new_offset > rdev->data_offset) {
2916                 /* must not push array size beyond rdev_sectors */
2917                 if (new_offset - rdev->data_offset
2918                     + mddev->dev_sectors > rdev->sectors)
2919                                 return -E2BIG;
2920         }
2921         /* Metadata worries about other space details. */
2922
2923         /* decreasing the offset is inconsistent with a backwards
2924          * reshape.
2925          */
2926         if (new_offset < rdev->data_offset &&
2927             mddev->reshape_backwards)
2928                 return -EINVAL;
2929         /* Increasing offset is inconsistent with forwards
2930          * reshape.  reshape_direction should be set to
2931          * 'backwards' first.
2932          */
2933         if (new_offset > rdev->data_offset &&
2934             !mddev->reshape_backwards)
2935                 return -EINVAL;
2936
2937         if (mddev->pers && mddev->persistent &&
2938             !super_types[mddev->major_version]
2939             .allow_new_offset(rdev, new_offset))
2940                 return -E2BIG;
2941         rdev->new_data_offset = new_offset;
2942         if (new_offset > rdev->data_offset)
2943                 mddev->reshape_backwards = 1;
2944         else if (new_offset < rdev->data_offset)
2945                 mddev->reshape_backwards = 0;
2946
2947         return len;
2948 }
2949 static struct rdev_sysfs_entry rdev_new_offset =
2950 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2951
2952 static ssize_t
2953 rdev_size_show(struct md_rdev *rdev, char *page)
2954 {
2955         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2956 }
2957
2958 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2959 {
2960         /* check if two start/length pairs overlap */
2961         if (s1+l1 <= s2)
2962                 return 0;
2963         if (s2+l2 <= s1)
2964                 return 0;
2965         return 1;
2966 }
2967
2968 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2969 {
2970         unsigned long long blocks;
2971         sector_t new;
2972
2973         if (strict_strtoull(buf, 10, &blocks) < 0)
2974                 return -EINVAL;
2975
2976         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2977                 return -EINVAL; /* sector conversion overflow */
2978
2979         new = blocks * 2;
2980         if (new != blocks * 2)
2981                 return -EINVAL; /* unsigned long long to sector_t overflow */
2982
2983         *sectors = new;
2984         return 0;
2985 }
2986
2987 static ssize_t
2988 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2989 {
2990         struct mddev *my_mddev = rdev->mddev;
2991         sector_t oldsectors = rdev->sectors;
2992         sector_t sectors;
2993
2994         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2995                 return -EINVAL;
2996         if (rdev->data_offset != rdev->new_data_offset)
2997                 return -EINVAL; /* too confusing */
2998         if (my_mddev->pers && rdev->raid_disk >= 0) {
2999                 if (my_mddev->persistent) {
3000                         sectors = super_types[my_mddev->major_version].
3001                                 rdev_size_change(rdev, sectors);
3002                         if (!sectors)
3003                                 return -EBUSY;
3004                 } else if (!sectors)
3005                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3006                                 rdev->data_offset;
3007         }
3008         if (sectors < my_mddev->dev_sectors)
3009                 return -EINVAL; /* component must fit device */
3010
3011         rdev->sectors = sectors;
3012         if (sectors > oldsectors && my_mddev->external) {
3013                 /* need to check that all other rdevs with the same ->bdev
3014                  * do not overlap.  We need to unlock the mddev to avoid
3015                  * a deadlock.  We have already changed rdev->sectors, and if
3016                  * we have to change it back, we will have the lock again.
3017                  */
3018                 struct mddev *mddev;
3019                 int overlap = 0;
3020                 struct list_head *tmp;
3021
3022                 mddev_unlock(my_mddev);
3023                 for_each_mddev(mddev, tmp) {
3024                         struct md_rdev *rdev2;
3025
3026                         mddev_lock(mddev);
3027                         rdev_for_each(rdev2, mddev)
3028                                 if (rdev->bdev == rdev2->bdev &&
3029                                     rdev != rdev2 &&
3030                                     overlaps(rdev->data_offset, rdev->sectors,
3031                                              rdev2->data_offset,
3032                                              rdev2->sectors)) {
3033                                         overlap = 1;
3034                                         break;
3035                                 }
3036                         mddev_unlock(mddev);
3037                         if (overlap) {
3038                                 mddev_put(mddev);
3039                                 break;
3040                         }
3041                 }
3042                 mddev_lock(my_mddev);
3043                 if (overlap) {
3044                         /* Someone else could have slipped in a size
3045                          * change here, but doing so is just silly.
3046                          * We put oldsectors back because we *know* it is
3047                          * safe, and trust userspace not to race with
3048                          * itself
3049                          */
3050                         rdev->sectors = oldsectors;
3051                         return -EBUSY;
3052                 }
3053         }
3054         return len;
3055 }
3056
3057 static struct rdev_sysfs_entry rdev_size =
3058 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3059
3060
3061 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3062 {
3063         unsigned long long recovery_start = rdev->recovery_offset;
3064
3065         if (test_bit(In_sync, &rdev->flags) ||
3066             recovery_start == MaxSector)
3067                 return sprintf(page, "none\n");
3068
3069         return sprintf(page, "%llu\n", recovery_start);
3070 }
3071
3072 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3073 {
3074         unsigned long long recovery_start;
3075
3076         if (cmd_match(buf, "none"))
3077                 recovery_start = MaxSector;
3078         else if (strict_strtoull(buf, 10, &recovery_start))
3079                 return -EINVAL;
3080
3081         if (rdev->mddev->pers &&
3082             rdev->raid_disk >= 0)
3083                 return -EBUSY;
3084
3085         rdev->recovery_offset = recovery_start;
3086         if (recovery_start == MaxSector)
3087                 set_bit(In_sync, &rdev->flags);
3088         else
3089                 clear_bit(In_sync, &rdev->flags);
3090         return len;
3091 }
3092
3093 static struct rdev_sysfs_entry rdev_recovery_start =
3094 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3095
3096
3097 static ssize_t
3098 badblocks_show(struct badblocks *bb, char *page, int unack);
3099 static ssize_t
3100 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3101
3102 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3103 {
3104         return badblocks_show(&rdev->badblocks, page, 0);
3105 }
3106 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3107 {
3108         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3109         /* Maybe that ack was all we needed */
3110         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3111                 wake_up(&rdev->blocked_wait);
3112         return rv;
3113 }
3114 static struct rdev_sysfs_entry rdev_bad_blocks =
3115 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3116
3117
3118 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3119 {
3120         return badblocks_show(&rdev->badblocks, page, 1);
3121 }
3122 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3123 {
3124         return badblocks_store(&rdev->badblocks, page, len, 1);
3125 }
3126 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3127 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3128
3129 static struct attribute *rdev_default_attrs[] = {
3130         &rdev_state.attr,
3131         &rdev_errors.attr,
3132         &rdev_slot.attr,
3133         &rdev_offset.attr,
3134         &rdev_new_offset.attr,
3135         &rdev_size.attr,
3136         &rdev_recovery_start.attr,
3137         &rdev_bad_blocks.attr,
3138         &rdev_unack_bad_blocks.attr,
3139         NULL,
3140 };
3141 static ssize_t
3142 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3143 {
3144         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3145         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3146         struct mddev *mddev = rdev->mddev;
3147         ssize_t rv;
3148
3149         if (!entry->show)
3150                 return -EIO;
3151
3152         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3153         if (!rv) {
3154                 if (rdev->mddev == NULL)
3155                         rv = -EBUSY;
3156                 else
3157                         rv = entry->show(rdev, page);
3158                 mddev_unlock(mddev);
3159         }
3160         return rv;
3161 }
3162
3163 static ssize_t
3164 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3165               const char *page, size_t length)
3166 {
3167         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3168         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3169         ssize_t rv;
3170         struct mddev *mddev = rdev->mddev;
3171
3172         if (!entry->store)
3173                 return -EIO;
3174         if (!capable(CAP_SYS_ADMIN))
3175                 return -EACCES;
3176         rv = mddev ? mddev_lock(mddev): -EBUSY;
3177         if (!rv) {
3178                 if (rdev->mddev == NULL)
3179                         rv = -EBUSY;
3180                 else
3181                         rv = entry->store(rdev, page, length);
3182                 mddev_unlock(mddev);
3183         }
3184         return rv;
3185 }
3186
3187 static void rdev_free(struct kobject *ko)
3188 {
3189         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3190         kfree(rdev);
3191 }
3192 static const struct sysfs_ops rdev_sysfs_ops = {
3193         .show           = rdev_attr_show,
3194         .store          = rdev_attr_store,
3195 };
3196 static struct kobj_type rdev_ktype = {
3197         .release        = rdev_free,
3198         .sysfs_ops      = &rdev_sysfs_ops,
3199         .default_attrs  = rdev_default_attrs,
3200 };
3201
3202 int md_rdev_init(struct md_rdev *rdev)
3203 {
3204         rdev->desc_nr = -1;
3205         rdev->saved_raid_disk = -1;
3206         rdev->raid_disk = -1;
3207         rdev->flags = 0;
3208         rdev->data_offset = 0;
3209         rdev->new_data_offset = 0;
3210         rdev->sb_events = 0;
3211         rdev->last_read_error.tv_sec  = 0;
3212         rdev->last_read_error.tv_nsec = 0;
3213         rdev->sb_loaded = 0;
3214         rdev->bb_page = NULL;
3215         atomic_set(&rdev->nr_pending, 0);
3216         atomic_set(&rdev->read_errors, 0);
3217         atomic_set(&rdev->corrected_errors, 0);
3218
3219         INIT_LIST_HEAD(&rdev->same_set);
3220         init_waitqueue_head(&rdev->blocked_wait);
3221
3222         /* Add space to store bad block list.
3223          * This reserves the space even on arrays where it cannot
3224          * be used - I wonder if that matters
3225          */
3226         rdev->badblocks.count = 0;
3227         rdev->badblocks.shift = 0;
3228         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3229         seqlock_init(&rdev->badblocks.lock);
3230         if (rdev->badblocks.page == NULL)
3231                 return -ENOMEM;
3232
3233         return 0;
3234 }
3235 EXPORT_SYMBOL_GPL(md_rdev_init);
3236 /*
3237  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3238  *
3239  * mark the device faulty if:
3240  *
3241  *   - the device is nonexistent (zero size)
3242  *   - the device has no valid superblock
3243  *
3244  * a faulty rdev _never_ has rdev->sb set.
3245  */
3246 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3247 {
3248         char b[BDEVNAME_SIZE];
3249         int err;
3250         struct md_rdev *rdev;
3251         sector_t size;
3252
3253         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3254         if (!rdev) {
3255                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3256                 return ERR_PTR(-ENOMEM);
3257         }
3258
3259         err = md_rdev_init(rdev);
3260         if (err)
3261                 goto abort_free;
3262         err = alloc_disk_sb(rdev);
3263         if (err)
3264                 goto abort_free;
3265
3266         err = lock_rdev(rdev, newdev, super_format == -2);
3267         if (err)
3268                 goto abort_free;
3269
3270         kobject_init(&rdev->kobj, &rdev_ktype);
3271
3272         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3273         if (!size) {
3274                 printk(KERN_WARNING 
3275                         "md: %s has zero or unknown size, marking faulty!\n",
3276                         bdevname(rdev->bdev,b));
3277                 err = -EINVAL;
3278                 goto abort_free;
3279         }
3280
3281         if (super_format >= 0) {
3282                 err = super_types[super_format].
3283                         load_super(rdev, NULL, super_minor);
3284                 if (err == -EINVAL) {
3285                         printk(KERN_WARNING
3286                                 "md: %s does not have a valid v%d.%d "
3287                                "superblock, not importing!\n",
3288                                 bdevname(rdev->bdev,b),
3289                                super_format, super_minor);
3290                         goto abort_free;
3291                 }
3292                 if (err < 0) {
3293                         printk(KERN_WARNING 
3294                                 "md: could not read %s's sb, not importing!\n",
3295                                 bdevname(rdev->bdev,b));
3296                         goto abort_free;
3297                 }
3298         }
3299         if (super_format == -1)
3300                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3301                 rdev->badblocks.shift = -1;
3302
3303         return rdev;
3304
3305 abort_free:
3306         if (rdev->bdev)
3307                 unlock_rdev(rdev);
3308         md_rdev_clear(rdev);
3309         kfree(rdev);
3310         return ERR_PTR(err);
3311 }
3312
3313 /*
3314  * Check a full RAID array for plausibility
3315  */
3316
3317
3318 static void analyze_sbs(struct mddev * mddev)
3319 {
3320         int i;
3321         struct md_rdev *rdev, *freshest, *tmp;
3322         char b[BDEVNAME_SIZE];
3323
3324         freshest = NULL;
3325         rdev_for_each_safe(rdev, tmp, mddev)
3326                 switch (super_types[mddev->major_version].
3327                         load_super(rdev, freshest, mddev->minor_version)) {
3328                 case 1:
3329                         freshest = rdev;
3330                         break;
3331                 case 0:
3332                         break;
3333                 default:
3334                         printk( KERN_ERR \
3335                                 "md: fatal superblock inconsistency in %s"
3336                                 " -- removing from array\n", 
3337                                 bdevname(rdev->bdev,b));
3338                         kick_rdev_from_array(rdev);
3339                 }
3340
3341
3342         super_types[mddev->major_version].
3343                 validate_super(mddev, freshest);
3344
3345         i = 0;
3346         rdev_for_each_safe(rdev, tmp, mddev) {
3347                 if (mddev->max_disks &&
3348                     (rdev->desc_nr >= mddev->max_disks ||
3349                      i > mddev->max_disks)) {
3350                         printk(KERN_WARNING
3351                                "md: %s: %s: only %d devices permitted\n",
3352                                mdname(mddev), bdevname(rdev->bdev, b),
3353                                mddev->max_disks);
3354                         kick_rdev_from_array(rdev);
3355                         continue;
3356                 }
3357                 if (rdev != freshest)
3358                         if (super_types[mddev->major_version].
3359                             validate_super(mddev, rdev)) {
3360                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3361                                         " from array!\n",
3362                                         bdevname(rdev->bdev,b));
3363                                 kick_rdev_from_array(rdev);
3364                                 continue;
3365                         }
3366                 if (mddev->level == LEVEL_MULTIPATH) {
3367                         rdev->desc_nr = i++;
3368                         rdev->raid_disk = rdev->desc_nr;
3369                         set_bit(In_sync, &rdev->flags);
3370                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3371                         rdev->raid_disk = -1;
3372                         clear_bit(In_sync, &rdev->flags);
3373                 }
3374         }
3375 }
3376
3377 /* Read a fixed-point number.
3378  * Numbers in sysfs attributes should be in "standard" units where
3379  * possible, so time should be in seconds.
3380  * However we internally use a a much smaller unit such as 
3381  * milliseconds or jiffies.
3382  * This function takes a decimal number with a possible fractional
3383  * component, and produces an integer which is the result of
3384  * multiplying that number by 10^'scale'.
3385  * all without any floating-point arithmetic.
3386  */
3387 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3388 {
3389         unsigned long result = 0;
3390         long decimals = -1;
3391         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3392                 if (*cp == '.')
3393                         decimals = 0;
3394                 else if (decimals < scale) {
3395                         unsigned int value;
3396                         value = *cp - '0';
3397                         result = result * 10 + value;
3398                         if (decimals >= 0)
3399                                 decimals++;
3400                 }
3401                 cp++;
3402         }
3403         if (*cp == '\n')
3404                 cp++;
3405         if (*cp)
3406                 return -EINVAL;
3407         if (decimals < 0)
3408                 decimals = 0;
3409         while (decimals < scale) {
3410                 result *= 10;
3411                 decimals ++;
3412         }
3413         *res = result;
3414         return 0;
3415 }
3416
3417
3418 static void md_safemode_timeout(unsigned long data);
3419
3420 static ssize_t
3421 safe_delay_show(struct mddev *mddev, char *page)
3422 {
3423         int msec = (mddev->safemode_delay*1000)/HZ;
3424         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3425 }
3426 static ssize_t
3427 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3428 {
3429         unsigned long msec;
3430
3431         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3432                 return -EINVAL;
3433         if (msec == 0)
3434                 mddev->safemode_delay = 0;
3435         else {
3436                 unsigned long old_delay = mddev->safemode_delay;
3437                 mddev->safemode_delay = (msec*HZ)/1000;
3438                 if (mddev->safemode_delay == 0)
3439                         mddev->safemode_delay = 1;
3440                 if (mddev->safemode_delay < old_delay)
3441                         md_safemode_timeout((unsigned long)mddev);
3442         }
3443         return len;
3444 }
3445 static struct md_sysfs_entry md_safe_delay =
3446 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3447
3448 static ssize_t
3449 level_show(struct mddev *mddev, char *page)
3450 {
3451         struct md_personality *p = mddev->pers;
3452         if (p)
3453                 return sprintf(page, "%s\n", p->name);
3454         else if (mddev->clevel[0])
3455                 return sprintf(page, "%s\n", mddev->clevel);
3456         else if (mddev->level != LEVEL_NONE)
3457                 return sprintf(page, "%d\n", mddev->level);
3458         else
3459                 return 0;
3460 }
3461
3462 static ssize_t
3463 level_store(struct mddev *mddev, const char *buf, size_t len)
3464 {
3465         char clevel[16];
3466         ssize_t rv = len;
3467         struct md_personality *pers;
3468         long level;
3469         void *priv;
3470         struct md_rdev *rdev;
3471
3472         if (mddev->pers == NULL) {
3473                 if (len == 0)
3474                         return 0;
3475                 if (len >= sizeof(mddev->clevel))
3476                         return -ENOSPC;
3477                 strncpy(mddev->clevel, buf, len);
3478                 if (mddev->clevel[len-1] == '\n')
3479                         len--;
3480                 mddev->clevel[len] = 0;
3481                 mddev->level = LEVEL_NONE;
3482                 return rv;
3483         }
3484
3485         /* request to change the personality.  Need to ensure:
3486          *  - array is not engaged in resync/recovery/reshape
3487          *  - old personality can be suspended
3488          *  - new personality will access other array.
3489          */
3490
3491         if (mddev->sync_thread ||
3492             mddev->reshape_position != MaxSector ||
3493             mddev->sysfs_active)
3494                 return -EBUSY;
3495
3496         if (!mddev->pers->quiesce) {
3497                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3498                        mdname(mddev), mddev->pers->name);
3499                 return -EINVAL;
3500         }
3501
3502         /* Now find the new personality */
3503         if (len == 0 || len >= sizeof(clevel))
3504                 return -EINVAL;
3505         strncpy(clevel, buf, len);
3506         if (clevel[len-1] == '\n')
3507                 len--;
3508         clevel[len] = 0;
3509         if (strict_strtol(clevel, 10, &level))
3510                 level = LEVEL_NONE;
3511
3512         if (request_module("md-%s", clevel) != 0)
3513                 request_module("md-level-%s", clevel);
3514         spin_lock(&pers_lock);
3515         pers = find_pers(level, clevel);
3516         if (!pers || !try_module_get(pers->owner)) {
3517                 spin_unlock(&pers_lock);
3518                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3519                 return -EINVAL;
3520         }
3521         spin_unlock(&pers_lock);
3522
3523         if (pers == mddev->pers) {
3524                 /* Nothing to do! */
3525                 module_put(pers->owner);
3526                 return rv;
3527         }
3528         if (!pers->takeover) {
3529                 module_put(pers->owner);
3530                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3531                        mdname(mddev), clevel);
3532                 return -EINVAL;
3533         }
3534
3535         rdev_for_each(rdev, mddev)
3536                 rdev->new_raid_disk = rdev->raid_disk;
3537
3538         /* ->takeover must set new_* and/or delta_disks
3539          * if it succeeds, and may set them when it fails.
3540          */
3541         priv = pers->takeover(mddev);
3542         if (IS_ERR(priv)) {
3543                 mddev->new_level = mddev->level;
3544                 mddev->new_layout = mddev->layout;
3545                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3546                 mddev->raid_disks -= mddev->delta_disks;
3547                 mddev->delta_disks = 0;
3548                 mddev->reshape_backwards = 0;
3549                 module_put(pers->owner);
3550                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3551                        mdname(mddev), clevel);
3552                 return PTR_ERR(priv);
3553         }
3554
3555         /* Looks like we have a winner */
3556         mddev_suspend(mddev);
3557         mddev->pers->stop(mddev);
3558         
3559         if (mddev->pers->sync_request == NULL &&
3560             pers->sync_request != NULL) {
3561                 /* need to add the md_redundancy_group */
3562                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3563                         printk(KERN_WARNING
3564                                "md: cannot register extra attributes for %s\n",
3565                                mdname(mddev));
3566                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3567         }               
3568         if (mddev->pers->sync_request != NULL &&
3569             pers->sync_request == NULL) {
3570                 /* need to remove the md_redundancy_group */
3571                 if (mddev->to_remove == NULL)
3572                         mddev->to_remove = &md_redundancy_group;
3573         }
3574
3575         if (mddev->pers->sync_request == NULL &&
3576             mddev->external) {
3577                 /* We are converting from a no-redundancy array
3578                  * to a redundancy array and metadata is managed
3579                  * externally so we need to be sure that writes
3580                  * won't block due to a need to transition
3581                  *      clean->dirty
3582                  * until external management is started.
3583                  */
3584                 mddev->in_sync = 0;
3585                 mddev->safemode_delay = 0;
3586                 mddev->safemode = 0;
3587         }
3588
3589         rdev_for_each(rdev, mddev) {
3590                 if (rdev->raid_disk < 0)
3591                         continue;
3592                 if (rdev->new_raid_disk >= mddev->raid_disks)
3593                         rdev->new_raid_disk = -1;
3594                 if (rdev->new_raid_disk == rdev->raid_disk)
3595                         continue;
3596                 sysfs_unlink_rdev(mddev, rdev);
3597         }
3598         rdev_for_each(rdev, mddev) {
3599                 if (rdev->raid_disk < 0)
3600                         continue;
3601                 if (rdev->new_raid_disk == rdev->raid_disk)
3602                         continue;
3603                 rdev->raid_disk = rdev->new_raid_disk;
3604                 if (rdev->raid_disk < 0)
3605                         clear_bit(In_sync, &rdev->flags);
3606                 else {
3607                         if (sysfs_link_rdev(mddev, rdev))
3608                                 printk(KERN_WARNING "md: cannot register rd%d"
3609                                        " for %s after level change\n",
3610                                        rdev->raid_disk, mdname(mddev));
3611                 }
3612         }
3613
3614         module_put(mddev->pers->owner);
3615         mddev->pers = pers;
3616         mddev->private = priv;
3617         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3618         mddev->level = mddev->new_level;
3619         mddev->layout = mddev->new_layout;
3620         mddev->chunk_sectors = mddev->new_chunk_sectors;
3621         mddev->delta_disks = 0;
3622         mddev->reshape_backwards = 0;
3623         mddev->degraded = 0;
3624         if (mddev->pers->sync_request == NULL) {
3625                 /* this is now an array without redundancy, so
3626                  * it must always be in_sync
3627                  */
3628                 mddev->in_sync = 1;
3629                 del_timer_sync(&mddev->safemode_timer);
3630         }
3631         pers->run(mddev);
3632         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3633         mddev_resume(mddev);
3634         sysfs_notify(&mddev->kobj, NULL, "level");
3635         md_new_event(mddev);
3636         return rv;
3637 }
3638
3639 static struct md_sysfs_entry md_level =
3640 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3641
3642
3643 static ssize_t
3644 layout_show(struct mddev *mddev, char *page)
3645 {
3646         /* just a number, not meaningful for all levels */
3647         if (mddev->reshape_position != MaxSector &&
3648             mddev->layout != mddev->new_layout)
3649                 return sprintf(page, "%d (%d)\n",
3650                                mddev->new_layout, mddev->layout);
3651         return sprintf(page, "%d\n", mddev->layout);
3652 }
3653
3654 static ssize_t
3655 layout_store(struct mddev *mddev, const char *buf, size_t len)
3656 {
3657         char *e;
3658         unsigned long n = simple_strtoul(buf, &e, 10);
3659
3660         if (!*buf || (*e && *e != '\n'))
3661                 return -EINVAL;
3662
3663         if (mddev->pers) {
3664                 int err;
3665                 if (mddev->pers->check_reshape == NULL)
3666                         return -EBUSY;
3667                 mddev->new_layout = n;
3668                 err = mddev->pers->check_reshape(mddev);
3669                 if (err) {
3670                         mddev->new_layout = mddev->layout;
3671                         return err;
3672                 }
3673         } else {
3674                 mddev->new_layout = n;
3675                 if (mddev->reshape_position == MaxSector)
3676                         mddev->layout = n;
3677         }
3678         return len;
3679 }
3680 static struct md_sysfs_entry md_layout =
3681 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3682
3683
3684 static ssize_t
3685 raid_disks_show(struct mddev *mddev, char *page)
3686 {
3687         if (mddev->raid_disks == 0)
3688                 return 0;
3689         if (mddev->reshape_position != MaxSector &&
3690             mddev->delta_disks != 0)
3691                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3692                                mddev->raid_disks - mddev->delta_disks);
3693         return sprintf(page, "%d\n", mddev->raid_disks);
3694 }
3695
3696 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3697
3698 static ssize_t
3699 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3700 {
3701         char *e;
3702         int rv = 0;
3703         unsigned long n = simple_strtoul(buf, &e, 10);
3704
3705         if (!*buf || (*e && *e != '\n'))
3706                 return -EINVAL;
3707
3708         if (mddev->pers)
3709                 rv = update_raid_disks(mddev, n);
3710         else if (mddev->reshape_position != MaxSector) {
3711                 struct md_rdev *rdev;
3712                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3713
3714                 rdev_for_each(rdev, mddev) {
3715                         if (olddisks < n &&
3716                             rdev->data_offset < rdev->new_data_offset)
3717                                 return -EINVAL;
3718                         if (olddisks > n &&
3719                             rdev->data_offset > rdev->new_data_offset)
3720                                 return -EINVAL;
3721                 }
3722                 mddev->delta_disks = n - olddisks;
3723                 mddev->raid_disks = n;
3724                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3725         } else
3726                 mddev->raid_disks = n;
3727         return rv ? rv : len;
3728 }
3729 static struct md_sysfs_entry md_raid_disks =
3730 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3731
3732 static ssize_t
3733 chunk_size_show(struct mddev *mddev, char *page)
3734 {
3735         if (mddev->reshape_position != MaxSector &&
3736             mddev->chunk_sectors != mddev->new_chunk_sectors)
3737                 return sprintf(page, "%d (%d)\n",
3738                                mddev->new_chunk_sectors << 9,
3739                                mddev->chunk_sectors << 9);
3740         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3741 }
3742
3743 static ssize_t
3744 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3745 {
3746         char *e;
3747         unsigned long n = simple_strtoul(buf, &e, 10);
3748
3749         if (!*buf || (*e && *e != '\n'))
3750                 return -EINVAL;
3751
3752         if (mddev->pers) {
3753                 int err;
3754                 if (mddev->pers->check_reshape == NULL)
3755                         return -EBUSY;
3756                 mddev->new_chunk_sectors = n >> 9;
3757                 err = mddev->pers->check_reshape(mddev);
3758                 if (err) {
3759                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3760                         return err;
3761                 }
3762         } else {
3763                 mddev->new_chunk_sectors = n >> 9;
3764                 if (mddev->reshape_position == MaxSector)
3765                         mddev->chunk_sectors = n >> 9;
3766         }
3767         return len;
3768 }
3769 static struct md_sysfs_entry md_chunk_size =
3770 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3771
3772 static ssize_t
3773 resync_start_show(struct mddev *mddev, char *page)
3774 {
3775         if (mddev->recovery_cp == MaxSector)
3776                 return sprintf(page, "none\n");
3777         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3778 }
3779
3780 static ssize_t
3781 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3782 {
3783         char *e;
3784         unsigned long long n = simple_strtoull(buf, &e, 10);
3785
3786         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3787                 return -EBUSY;
3788         if (cmd_match(buf, "none"))
3789                 n = MaxSector;
3790         else if (!*buf || (*e && *e != '\n'))
3791                 return -EINVAL;
3792
3793         mddev->recovery_cp = n;
3794         return len;
3795 }
3796 static struct md_sysfs_entry md_resync_start =
3797 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3798
3799 /*
3800  * The array state can be:
3801  *
3802  * clear
3803  *     No devices, no size, no level
3804  *     Equivalent to STOP_ARRAY ioctl
3805  * inactive
3806  *     May have some settings, but array is not active
3807  *        all IO results in error
3808  *     When written, doesn't tear down array, but just stops it
3809  * suspended (not supported yet)
3810  *     All IO requests will block. The array can be reconfigured.
3811  *     Writing this, if accepted, will block until array is quiescent
3812  * readonly
3813  *     no resync can happen.  no superblocks get written.
3814  *     write requests fail
3815  * read-auto
3816  *     like readonly, but behaves like 'clean' on a write request.
3817  *
3818  * clean - no pending writes, but otherwise active.
3819  *     When written to inactive array, starts without resync
3820  *     If a write request arrives then
3821  *       if metadata is known, mark 'dirty' and switch to 'active'.
3822  *       if not known, block and switch to write-pending
3823  *     If written to an active array that has pending writes, then fails.
3824  * active
3825  *     fully active: IO and resync can be happening.
3826  *     When written to inactive array, starts with resync
3827  *
3828  * write-pending
3829  *     clean, but writes are blocked waiting for 'active' to be written.
3830  *
3831  * active-idle
3832  *     like active, but no writes have been seen for a while (100msec).
3833  *
3834  */
3835 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3836                    write_pending, active_idle, bad_word};
3837 static char *array_states[] = {
3838         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3839         "write-pending", "active-idle", NULL };
3840
3841 static int match_word(const char *word, char **list)
3842 {
3843         int n;
3844         for (n=0; list[n]; n++)
3845                 if (cmd_match(word, list[n]))
3846                         break;
3847         return n;
3848 }
3849
3850 static ssize_t
3851 array_state_show(struct mddev *mddev, char *page)
3852 {
3853         enum array_state st = inactive;
3854
3855         if (mddev->pers)
3856                 switch(mddev->ro) {
3857                 case 1:
3858                         st = readonly;
3859                         break;
3860                 case 2:
3861                         st = read_auto;
3862                         break;
3863                 case 0:
3864                         if (mddev->in_sync)
3865                                 st = clean;
3866                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3867                                 st = write_pending;
3868                         else if (mddev->safemode)
3869                                 st = active_idle;
3870                         else
3871                                 st = active;
3872                 }
3873         else {
3874                 if (list_empty(&mddev->disks) &&
3875                     mddev->raid_disks == 0 &&
3876                     mddev->dev_sectors == 0)
3877                         st = clear;
3878                 else
3879                         st = inactive;
3880         }
3881         return sprintf(page, "%s\n", array_states[st]);
3882 }
3883
3884 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3885 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3886 static int do_md_run(struct mddev * mddev);
3887 static int restart_array(struct mddev *mddev);
3888
3889 static ssize_t
3890 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3891 {
3892         int err = -EINVAL;
3893         enum array_state st = match_word(buf, array_states);
3894         switch(st) {
3895         case bad_word:
3896                 break;
3897         case clear:
3898                 /* stopping an active array */
3899                 err = do_md_stop(mddev, 0, NULL);
3900                 break;
3901         case inactive:
3902                 /* stopping an active array */
3903                 if (mddev->pers)
3904                         err = do_md_stop(mddev, 2, NULL);
3905                 else
3906                         err = 0; /* already inactive */
3907                 break;
3908         case suspended:
3909                 break; /* not supported yet */
3910         case readonly:
3911                 if (mddev->pers)
3912                         err = md_set_readonly(mddev, NULL);
3913                 else {
3914                         mddev->ro = 1;
3915                         set_disk_ro(mddev->gendisk, 1);
3916                         err = do_md_run(mddev);
3917                 }
3918                 break;
3919         case read_auto:
3920                 if (mddev->pers) {
3921                         if (mddev->ro == 0)
3922                                 err = md_set_readonly(mddev, NULL);
3923                         else if (mddev->ro == 1)
3924                                 err = restart_array(mddev);
3925                         if (err == 0) {
3926                                 mddev->ro = 2;
3927                                 set_disk_ro(mddev->gendisk, 0);
3928                         }
3929                 } else {
3930                         mddev->ro = 2;
3931                         err = do_md_run(mddev);
3932                 }
3933                 break;
3934         case clean:
3935                 if (mddev->pers) {
3936                         restart_array(mddev);
3937                         spin_lock_irq(&mddev->write_lock);
3938                         if (atomic_read(&mddev->writes_pending) == 0) {
3939                                 if (mddev->in_sync == 0) {
3940                                         mddev->in_sync = 1;
3941                                         if (mddev->safemode == 1)
3942                                                 mddev->safemode = 0;
3943                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3944                                 }
3945                                 err = 0;
3946                         } else
3947                                 err = -EBUSY;
3948                         spin_unlock_irq(&mddev->write_lock);
3949                 } else
3950                         err = -EINVAL;
3951                 break;
3952         case active:
3953                 if (mddev->pers) {
3954                         restart_array(mddev);
3955                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3956                         wake_up(&mddev->sb_wait);
3957                         err = 0;
3958                 } else {
3959                         mddev->ro = 0;
3960                         set_disk_ro(mddev->gendisk, 0);
3961                         err = do_md_run(mddev);
3962                 }
3963                 break;
3964         case write_pending:
3965         case active_idle:
3966                 /* these cannot be set */
3967                 break;
3968         }
3969         if (err)
3970                 return err;
3971         else {
3972                 if (mddev->hold_active == UNTIL_IOCTL)
3973                         mddev->hold_active = 0;
3974                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3975                 return len;
3976         }
3977 }
3978 static struct md_sysfs_entry md_array_state =
3979 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3980
3981 static ssize_t
3982 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3983         return sprintf(page, "%d\n",
3984                        atomic_read(&mddev->max_corr_read_errors));
3985 }
3986
3987 static ssize_t
3988 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3989 {
3990         char *e;
3991         unsigned long n = simple_strtoul(buf, &e, 10);
3992
3993         if (*buf && (*e == 0 || *e == '\n')) {
3994                 atomic_set(&mddev->max_corr_read_errors, n);
3995                 return len;
3996         }
3997         return -EINVAL;
3998 }
3999
4000 static struct md_sysfs_entry max_corr_read_errors =
4001 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4002         max_corrected_read_errors_store);
4003
4004 static ssize_t
4005 null_show(struct mddev *mddev, char *page)
4006 {
4007         return -EINVAL;
4008 }
4009
4010 static ssize_t
4011 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4012 {
4013         /* buf must be %d:%d\n? giving major and minor numbers */
4014         /* The new device is added to the array.
4015          * If the array has a persistent superblock, we read the
4016          * superblock to initialise info and check validity.
4017          * Otherwise, only checking done is that in bind_rdev_to_array,
4018          * which mainly checks size.
4019          */
4020         char *e;
4021         int major = simple_strtoul(buf, &e, 10);
4022         int minor;
4023         dev_t dev;
4024         struct md_rdev *rdev;
4025         int err;
4026
4027         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4028                 return -EINVAL;
4029         minor = simple_strtoul(e+1, &e, 10);
4030         if (*e && *e != '\n')
4031                 return -EINVAL;
4032         dev = MKDEV(major, minor);
4033         if (major != MAJOR(dev) ||
4034             minor != MINOR(dev))
4035                 return -EOVERFLOW;
4036
4037
4038         if (mddev->persistent) {
4039                 rdev = md_import_device(dev, mddev->major_version,
4040                                         mddev->minor_version);
4041                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4042                         struct md_rdev *rdev0
4043                                 = list_entry(mddev->disks.next,
4044                                              struct md_rdev, same_set);
4045                         err = super_types[mddev->major_version]
4046                                 .load_super(rdev, rdev0, mddev->minor_version);
4047                         if (err < 0)
4048                                 goto out;
4049                 }
4050         } else if (mddev->external)
4051                 rdev = md_import_device(dev, -2, -1);
4052         else
4053                 rdev = md_import_device(dev, -1, -1);
4054
4055         if (IS_ERR(rdev))
4056                 return PTR_ERR(rdev);
4057         err = bind_rdev_to_array(rdev, mddev);
4058  out:
4059         if (err)
4060                 export_rdev(rdev);
4061         return err ? err : len;
4062 }
4063
4064 static struct md_sysfs_entry md_new_device =
4065 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4066
4067 static ssize_t
4068 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4069 {
4070         char *end;
4071         unsigned long chunk, end_chunk;
4072
4073         if (!mddev->bitmap)
4074                 goto out;
4075         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4076         while (*buf) {
4077                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4078                 if (buf == end) break;
4079                 if (*end == '-') { /* range */
4080                         buf = end + 1;
4081                         end_chunk = simple_strtoul(buf, &end, 0);
4082                         if (buf == end) break;
4083                 }
4084                 if (*end && !isspace(*end)) break;
4085                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4086                 buf = skip_spaces(end);
4087         }
4088         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4089 out:
4090         return len;
4091 }
4092
4093 static struct md_sysfs_entry md_bitmap =
4094 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4095
4096 static ssize_t
4097 size_show(struct mddev *mddev, char *page)
4098 {
4099         return sprintf(page, "%llu\n",
4100                 (unsigned long long)mddev->dev_sectors / 2);
4101 }
4102
4103 static int update_size(struct mddev *mddev, sector_t num_sectors);
4104
4105 static ssize_t
4106 size_store(struct mddev *mddev, const char *buf, size_t len)
4107 {
4108         /* If array is inactive, we can reduce the component size, but
4109          * not increase it (except from 0).
4110          * If array is active, we can try an on-line resize
4111          */
4112         sector_t sectors;
4113         int err = strict_blocks_to_sectors(buf, &sectors);
4114
4115         if (err < 0)
4116                 return err;
4117         if (mddev->pers) {
4118                 err = update_size(mddev, sectors);
4119                 md_update_sb(mddev, 1);
4120         } else {
4121                 if (mddev->dev_sectors == 0 ||
4122                     mddev->dev_sectors > sectors)
4123                         mddev->dev_sectors = sectors;
4124                 else
4125                         err = -ENOSPC;
4126         }
4127         return err ? err : len;
4128 }
4129
4130 static struct md_sysfs_entry md_size =
4131 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4132
4133
4134 /* Metdata version.
4135  * This is one of
4136  *   'none' for arrays with no metadata (good luck...)
4137  *   'external' for arrays with externally managed metadata,
4138  * or N.M for internally known formats
4139  */
4140 static ssize_t
4141 metadata_show(struct mddev *mddev, char *page)
4142 {
4143         if (mddev->persistent)
4144                 return sprintf(page, "%d.%d\n",
4145                                mddev->major_version, mddev->minor_version);
4146         else if (mddev->external)
4147                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4148         else
4149                 return sprintf(page, "none\n");
4150 }
4151
4152 static ssize_t
4153 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4154 {
4155         int major, minor;
4156         char *e;
4157         /* Changing the details of 'external' metadata is
4158          * always permitted.  Otherwise there must be
4159          * no devices attached to the array.
4160          */
4161         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4162                 ;
4163         else if (!list_empty(&mddev->disks))
4164                 return -EBUSY;
4165
4166         if (cmd_match(buf, "none")) {
4167                 mddev->persistent = 0;
4168                 mddev->external = 0;
4169                 mddev->major_version = 0;
4170                 mddev->minor_version = 90;
4171                 return len;
4172         }
4173         if (strncmp(buf, "external:", 9) == 0) {
4174                 size_t namelen = len-9;
4175                 if (namelen >= sizeof(mddev->metadata_type))
4176                         namelen = sizeof(mddev->metadata_type)-1;
4177                 strncpy(mddev->metadata_type, buf+9, namelen);
4178                 mddev->metadata_type[namelen] = 0;
4179                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4180                         mddev->metadata_type[--namelen] = 0;
4181                 mddev->persistent = 0;
4182                 mddev->external = 1;
4183                 mddev->major_version = 0;
4184                 mddev->minor_version = 90;
4185                 return len;
4186         }
4187         major = simple_strtoul(buf, &e, 10);
4188         if (e==buf || *e != '.')
4189                 return -EINVAL;
4190         buf = e+1;
4191         minor = simple_strtoul(buf, &e, 10);
4192         if (e==buf || (*e && *e != '\n') )
4193                 return -EINVAL;
4194         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4195                 return -ENOENT;
4196         mddev->major_version = major;
4197         mddev->minor_version = minor;
4198         mddev->persistent = 1;
4199         mddev->external = 0;
4200         return len;
4201 }
4202
4203 static struct md_sysfs_entry md_metadata =
4204 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4205
4206 static ssize_t
4207 action_show(struct mddev *mddev, char *page)
4208 {
4209         char *type = "idle";
4210         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4211                 type = "frozen";
4212         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4213             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4214                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4215                         type = "reshape";
4216                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4217                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4218                                 type = "resync";
4219                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4220                                 type = "check";
4221                         else
4222                                 type = "repair";
4223                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4224                         type = "recover";
4225         }
4226         return sprintf(page, "%s\n", type);
4227 }
4228
4229 static void reap_sync_thread(struct mddev *mddev);
4230
4231 static ssize_t
4232 action_store(struct mddev *mddev, const char *page, size_t len)
4233 {
4234         if (!mddev->pers || !mddev->pers->sync_request)
4235                 return -EINVAL;
4236
4237         if (cmd_match(page, "frozen"))
4238                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4239         else
4240                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4241
4242         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4243                 if (mddev->sync_thread) {
4244                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4245                         reap_sync_thread(mddev);
4246                 }
4247         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4248                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4249                 return -EBUSY;
4250         else if (cmd_match(page, "resync"))
4251                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4252         else if (cmd_match(page, "recover")) {
4253                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4254                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4255         } else if (cmd_match(page, "reshape")) {
4256                 int err;
4257                 if (mddev->pers->start_reshape == NULL)
4258                         return -EINVAL;
4259                 err = mddev->pers->start_reshape(mddev);
4260                 if (err)
4261                         return err;
4262                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4263         } else {
4264                 if (cmd_match(page, "check"))
4265                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4266                 else if (!cmd_match(page, "repair"))
4267                         return -EINVAL;
4268                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4269                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4270         }
4271         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4272         md_wakeup_thread(mddev->thread);
4273         sysfs_notify_dirent_safe(mddev->sysfs_action);
4274         return len;
4275 }
4276
4277 static ssize_t
4278 mismatch_cnt_show(struct mddev *mddev, char *page)
4279 {
4280         return sprintf(page, "%llu\n",
4281                        (unsigned long long) mddev->resync_mismatches);
4282 }
4283
4284 static struct md_sysfs_entry md_scan_mode =
4285 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4286
4287
4288 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4289
4290 static ssize_t
4291 sync_min_show(struct mddev *mddev, char *page)
4292 {
4293         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4294                        mddev->sync_speed_min ? "local": "system");
4295 }
4296
4297 static ssize_t
4298 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4299 {
4300         int min;
4301         char *e;
4302         if (strncmp(buf, "system", 6)==0) {
4303                 mddev->sync_speed_min = 0;
4304                 return len;
4305         }
4306         min = simple_strtoul(buf, &e, 10);
4307         if (buf == e || (*e && *e != '\n') || min <= 0)
4308                 return -EINVAL;
4309         mddev->sync_speed_min = min;
4310         return len;
4311 }
4312
4313 static struct md_sysfs_entry md_sync_min =
4314 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4315
4316 static ssize_t
4317 sync_max_show(struct mddev *mddev, char *page)
4318 {
4319         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4320                        mddev->sync_speed_max ? "local": "system");
4321 }
4322
4323 static ssize_t
4324 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4325 {
4326         int max;
4327         char *e;
4328         if (strncmp(buf, "system", 6)==0) {
4329                 mddev->sync_speed_max = 0;
4330                 return len;
4331         }
4332         max = simple_strtoul(buf, &e, 10);
4333         if (buf == e || (*e && *e != '\n') || max <= 0)
4334                 return -EINVAL;
4335         mddev->sync_speed_max = max;
4336         return len;
4337 }
4338
4339 static struct md_sysfs_entry md_sync_max =
4340 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4341
4342 static ssize_t
4343 degraded_show(struct mddev *mddev, char *page)
4344 {
4345         return sprintf(page, "%d\n", mddev->degraded);
4346 }
4347 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4348
4349 static ssize_t
4350 sync_force_parallel_show(struct mddev *mddev, char *page)
4351 {
4352         return sprintf(page, "%d\n", mddev->parallel_resync);
4353 }
4354
4355 static ssize_t
4356 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4357 {
4358         long n;
4359
4360         if (strict_strtol(buf, 10, &n))
4361                 return -EINVAL;
4362
4363         if (n != 0 && n != 1)
4364                 return -EINVAL;
4365
4366         mddev->parallel_resync = n;
4367
4368         if (mddev->sync_thread)
4369                 wake_up(&resync_wait);
4370
4371         return len;
4372 }
4373
4374 /* force parallel resync, even with shared block devices */
4375 static struct md_sysfs_entry md_sync_force_parallel =
4376 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4377        sync_force_parallel_show, sync_force_parallel_store);
4378
4379 static ssize_t
4380 sync_speed_show(struct mddev *mddev, char *page)
4381 {
4382         unsigned long resync, dt, db;
4383         if (mddev->curr_resync == 0)
4384                 return sprintf(page, "none\n");
4385         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4386         dt = (jiffies - mddev->resync_mark) / HZ;
4387         if (!dt) dt++;
4388         db = resync - mddev->resync_mark_cnt;
4389         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4390 }
4391
4392 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4393
4394 static ssize_t
4395 sync_completed_show(struct mddev *mddev, char *page)
4396 {
4397         unsigned long long max_sectors, resync;
4398
4399         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4400                 return sprintf(page, "none\n");
4401
4402         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4403             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4404                 max_sectors = mddev->resync_max_sectors;
4405         else
4406                 max_sectors = mddev->dev_sectors;
4407
4408         resync = mddev->curr_resync_completed;
4409         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4410 }
4411
4412 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4413
4414 static ssize_t
4415 min_sync_show(struct mddev *mddev, char *page)
4416 {
4417         return sprintf(page, "%llu\n",
4418                        (unsigned long long)mddev->resync_min);
4419 }
4420 static ssize_t
4421 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4422 {
4423         unsigned long long min;
4424         if (strict_strtoull(buf, 10, &min))
4425                 return -EINVAL;
4426         if (min > mddev->resync_max)
4427                 return -EINVAL;
4428         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4429                 return -EBUSY;
4430
4431         /* Must be a multiple of chunk_size */
4432         if (mddev->chunk_sectors) {
4433                 sector_t temp = min;
4434                 if (sector_div(temp, mddev->chunk_sectors))
4435                         return -EINVAL;
4436         }
4437         mddev->resync_min = min;
4438
4439         return len;
4440 }
4441
4442 static struct md_sysfs_entry md_min_sync =
4443 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4444
4445 static ssize_t
4446 max_sync_show(struct mddev *mddev, char *page)
4447 {
4448         if (mddev->resync_max == MaxSector)
4449                 return sprintf(page, "max\n");
4450         else
4451                 return sprintf(page, "%llu\n",
4452                                (unsigned long long)mddev->resync_max);
4453 }
4454 static ssize_t
4455 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4456 {
4457         if (strncmp(buf, "max", 3) == 0)
4458                 mddev->resync_max = MaxSector;
4459         else {
4460                 unsigned long long max;
4461                 if (strict_strtoull(buf, 10, &max))
4462                         return -EINVAL;
4463                 if (max < mddev->resync_min)
4464                         return -EINVAL;
4465                 if (max < mddev->resync_max &&
4466                     mddev->ro == 0 &&
4467                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4468                         return -EBUSY;
4469
4470                 /* Must be a multiple of chunk_size */
4471                 if (mddev->chunk_sectors) {
4472                         sector_t temp = max;
4473                         if (sector_div(temp, mddev->chunk_sectors))
4474                                 return -EINVAL;
4475                 }
4476                 mddev->resync_max = max;
4477         }
4478         wake_up(&mddev->recovery_wait);
4479         return len;
4480 }
4481
4482 static struct md_sysfs_entry md_max_sync =
4483 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4484
4485 static ssize_t
4486 suspend_lo_show(struct mddev *mddev, char *page)
4487 {
4488         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4489 }
4490
4491 static ssize_t
4492 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4493 {
4494         char *e;
4495         unsigned long long new = simple_strtoull(buf, &e, 10);
4496         unsigned long long old = mddev->suspend_lo;
4497
4498         if (mddev->pers == NULL || 
4499             mddev->pers->quiesce == NULL)
4500                 return -EINVAL;
4501         if (buf == e || (*e && *e != '\n'))
4502                 return -EINVAL;
4503
4504         mddev->suspend_lo = new;
4505         if (new >= old)
4506                 /* Shrinking suspended region */
4507                 mddev->pers->quiesce(mddev, 2);
4508         else {
4509                 /* Expanding suspended region - need to wait */
4510                 mddev->pers->quiesce(mddev, 1);
4511                 mddev->pers->quiesce(mddev, 0);
4512         }
4513         return len;
4514 }
4515 static struct md_sysfs_entry md_suspend_lo =
4516 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4517
4518
4519 static ssize_t
4520 suspend_hi_show(struct mddev *mddev, char *page)
4521 {
4522         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4523 }
4524
4525 static ssize_t
4526 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4527 {
4528         char *e;
4529         unsigned long long new = simple_strtoull(buf, &e, 10);
4530         unsigned long long old = mddev->suspend_hi;
4531
4532         if (mddev->pers == NULL ||
4533             mddev->pers->quiesce == NULL)
4534                 return -EINVAL;
4535         if (buf == e || (*e && *e != '\n'))
4536                 return -EINVAL;
4537
4538         mddev->suspend_hi = new;
4539         if (new <= old)
4540                 /* Shrinking suspended region */
4541                 mddev->pers->quiesce(mddev, 2);
4542         else {
4543                 /* Expanding suspended region - need to wait */
4544                 mddev->pers->quiesce(mddev, 1);
4545                 mddev->pers->quiesce(mddev, 0);
4546         }
4547         return len;
4548 }
4549 static struct md_sysfs_entry md_suspend_hi =
4550 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4551
4552 static ssize_t
4553 reshape_position_show(struct mddev *mddev, char *page)
4554 {
4555         if (mddev->reshape_position != MaxSector)
4556                 return sprintf(page, "%llu\n",
4557                                (unsigned long long)mddev->reshape_position);
4558         strcpy(page, "none\n");
4559         return 5;
4560 }
4561
4562 static ssize_t
4563 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4564 {
4565         struct md_rdev *rdev;
4566         char *e;
4567         unsigned long long new = simple_strtoull(buf, &e, 10);
4568         if (mddev->pers)
4569                 return -EBUSY;
4570         if (buf == e || (*e && *e != '\n'))
4571                 return -EINVAL;
4572         mddev->reshape_position = new;
4573         mddev->delta_disks = 0;
4574         mddev->reshape_backwards = 0;
4575         mddev->new_level = mddev->level;
4576         mddev->new_layout = mddev->layout;
4577         mddev->new_chunk_sectors = mddev->chunk_sectors;
4578         rdev_for_each(rdev, mddev)
4579                 rdev->new_data_offset = rdev->data_offset;
4580         return len;
4581 }
4582
4583 static struct md_sysfs_entry md_reshape_position =
4584 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4585        reshape_position_store);
4586
4587 static ssize_t
4588 reshape_direction_show(struct mddev *mddev, char *page)
4589 {
4590         return sprintf(page, "%s\n",
4591                        mddev->reshape_backwards ? "backwards" : "forwards");
4592 }
4593
4594 static ssize_t
4595 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4596 {
4597         int backwards = 0;
4598         if (cmd_match(buf, "forwards"))
4599                 backwards = 0;
4600         else if (cmd_match(buf, "backwards"))
4601                 backwards = 1;
4602         else
4603                 return -EINVAL;
4604         if (mddev->reshape_backwards == backwards)
4605                 return len;
4606
4607         /* check if we are allowed to change */
4608         if (mddev->delta_disks)
4609                 return -EBUSY;
4610
4611         if (mddev->persistent &&
4612             mddev->major_version == 0)
4613                 return -EINVAL;
4614
4615         mddev->reshape_backwards = backwards;
4616         return len;
4617 }
4618
4619 static struct md_sysfs_entry md_reshape_direction =
4620 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4621        reshape_direction_store);
4622
4623 static ssize_t
4624 array_size_show(struct mddev *mddev, char *page)
4625 {
4626         if (mddev->external_size)
4627                 return sprintf(page, "%llu\n",
4628                                (unsigned long long)mddev->array_sectors/2);
4629         else
4630                 return sprintf(page, "default\n");
4631 }
4632
4633 static ssize_t
4634 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4635 {
4636         sector_t sectors;
4637
4638         if (strncmp(buf, "default", 7) == 0) {
4639                 if (mddev->pers)
4640                         sectors = mddev->pers->size(mddev, 0, 0);
4641                 else
4642                         sectors = mddev->array_sectors;
4643
4644                 mddev->external_size = 0;
4645         } else {
4646                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4647                         return -EINVAL;
4648                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4649                         return -E2BIG;
4650
4651                 mddev->external_size = 1;
4652         }
4653
4654         mddev->array_sectors = sectors;
4655         if (mddev->pers) {
4656                 set_capacity(mddev->gendisk, mddev->array_sectors);
4657                 revalidate_disk(mddev->gendisk);
4658         }
4659         return len;
4660 }
4661
4662 static struct md_sysfs_entry md_array_size =
4663 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4664        array_size_store);
4665
4666 static struct attribute *md_default_attrs[] = {
4667         &md_level.attr,
4668         &md_layout.attr,
4669         &md_raid_disks.attr,
4670         &md_chunk_size.attr,
4671         &md_size.attr,
4672         &md_resync_start.attr,
4673         &md_metadata.attr,
4674         &md_new_device.attr,
4675         &md_safe_delay.attr,
4676         &md_array_state.attr,
4677         &md_reshape_position.attr,
4678         &md_reshape_direction.attr,
4679         &md_array_size.attr,
4680         &max_corr_read_errors.attr,
4681         NULL,
4682 };
4683
4684 static struct attribute *md_redundancy_attrs[] = {
4685         &md_scan_mode.attr,
4686         &md_mismatches.attr,
4687         &md_sync_min.attr,
4688         &md_sync_max.attr,
4689         &md_sync_speed.attr,
4690         &md_sync_force_parallel.attr,
4691         &md_sync_completed.attr,
4692         &md_min_sync.attr,
4693         &md_max_sync.attr,
4694         &md_suspend_lo.attr,
4695         &md_suspend_hi.attr,
4696         &md_bitmap.attr,
4697         &md_degraded.attr,
4698         NULL,
4699 };
4700 static struct attribute_group md_redundancy_group = {
4701         .name = NULL,
4702         .attrs = md_redundancy_attrs,
4703 };
4704
4705
4706 static ssize_t
4707 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4708 {
4709         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4710         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4711         ssize_t rv;
4712
4713         if (!entry->show)
4714                 return -EIO;
4715         spin_lock(&all_mddevs_lock);
4716         if (list_empty(&mddev->all_mddevs)) {
4717                 spin_unlock(&all_mddevs_lock);
4718                 return -EBUSY;
4719         }
4720         mddev_get(mddev);
4721         spin_unlock(&all_mddevs_lock);
4722
4723         rv = mddev_lock(mddev);
4724         if (!rv) {
4725                 rv = entry->show(mddev, page);
4726                 mddev_unlock(mddev);
4727         }
4728         mddev_put(mddev);
4729         return rv;
4730 }
4731
4732 static ssize_t
4733 md_attr_store(struct kobject *kobj, struct attribute *attr,
4734               const char *page, size_t length)
4735 {
4736         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4737         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4738         ssize_t rv;
4739
4740         if (!entry->store)
4741                 return -EIO;
4742         if (!capable(CAP_SYS_ADMIN))
4743                 return -EACCES;
4744         spin_lock(&all_mddevs_lock);
4745         if (list_empty(&mddev->all_mddevs)) {
4746                 spin_unlock(&all_mddevs_lock);
4747                 return -EBUSY;
4748         }
4749         mddev_get(mddev);
4750         spin_unlock(&all_mddevs_lock);
4751         rv = mddev_lock(mddev);
4752         if (!rv) {
4753                 rv = entry->store(mddev, page, length);
4754                 mddev_unlock(mddev);
4755         }
4756         mddev_put(mddev);
4757         return rv;
4758 }
4759
4760 static void md_free(struct kobject *ko)
4761 {
4762         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4763
4764         if (mddev->sysfs_state)
4765                 sysfs_put(mddev->sysfs_state);
4766
4767         if (mddev->gendisk) {
4768                 del_gendisk(mddev->gendisk);
4769                 put_disk(mddev->gendisk);
4770         }
4771         if (mddev->queue)
4772                 blk_cleanup_queue(mddev->queue);
4773
4774         kfree(mddev);
4775 }
4776
4777 static const struct sysfs_ops md_sysfs_ops = {
4778         .show   = md_attr_show,
4779         .store  = md_attr_store,
4780 };
4781 static struct kobj_type md_ktype = {
4782         .release        = md_free,
4783         .sysfs_ops      = &md_sysfs_ops,
4784         .default_attrs  = md_default_attrs,
4785 };
4786
4787 int mdp_major = 0;
4788
4789 static void mddev_delayed_delete(struct work_struct *ws)
4790 {
4791         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4792
4793         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4794         kobject_del(&mddev->kobj);
4795         kobject_put(&mddev->kobj);
4796 }
4797
4798 static int md_alloc(dev_t dev, char *name)
4799 {
4800         static DEFINE_MUTEX(disks_mutex);
4801         struct mddev *mddev = mddev_find(dev);
4802         struct gendisk *disk;
4803         int partitioned;
4804         int shift;
4805         int unit;
4806         int error;
4807
4808         if (!mddev)
4809                 return -ENODEV;
4810
4811         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4812         shift = partitioned ? MdpMinorShift : 0;
4813         unit = MINOR(mddev->unit) >> shift;
4814
4815         /* wait for any previous instance of this device to be
4816          * completely removed (mddev_delayed_delete).
4817          */
4818         flush_workqueue(md_misc_wq);
4819
4820         mutex_lock(&disks_mutex);
4821         error = -EEXIST;
4822         if (mddev->gendisk)
4823                 goto abort;
4824
4825         if (name) {
4826                 /* Need to ensure that 'name' is not a duplicate.
4827                  */
4828                 struct mddev *mddev2;
4829                 spin_lock(&all_mddevs_lock);
4830
4831                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4832                         if (mddev2->gendisk &&
4833                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4834                                 spin_unlock(&all_mddevs_lock);
4835                                 goto abort;
4836                         }
4837                 spin_unlock(&all_mddevs_lock);
4838         }
4839
4840         error = -ENOMEM;
4841         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4842         if (!mddev->queue)
4843                 goto abort;
4844         mddev->queue->queuedata = mddev;
4845
4846         blk_queue_make_request(mddev->queue, md_make_request);
4847         blk_set_stacking_limits(&mddev->queue->limits);
4848
4849         disk = alloc_disk(1 << shift);
4850         if (!disk) {
4851                 blk_cleanup_queue(mddev->queue);
4852                 mddev->queue = NULL;
4853                 goto abort;
4854         }
4855         disk->major = MAJOR(mddev->unit);
4856         disk->first_minor = unit << shift;
4857         if (name)
4858                 strcpy(disk->disk_name, name);
4859         else if (partitioned)
4860                 sprintf(disk->disk_name, "md_d%d", unit);
4861         else
4862                 sprintf(disk->disk_name, "md%d", unit);
4863         disk->fops = &md_fops;
4864         disk->private_data = mddev;
4865         disk->queue = mddev->queue;
4866         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4867         /* Allow extended partitions.  This makes the
4868          * 'mdp' device redundant, but we can't really
4869          * remove it now.
4870          */
4871         disk->flags |= GENHD_FL_EXT_DEVT;
4872         mddev->gendisk = disk;
4873         /* As soon as we call add_disk(), another thread could get
4874          * through to md_open, so make sure it doesn't get too far
4875          */
4876         mutex_lock(&mddev->open_mutex);
4877         add_disk(disk);
4878
4879         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4880                                      &disk_to_dev(disk)->kobj, "%s", "md");
4881         if (error) {
4882                 /* This isn't possible, but as kobject_init_and_add is marked
4883                  * __must_check, we must do something with the result
4884                  */
4885                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4886                        disk->disk_name);
4887                 error = 0;
4888         }
4889         if (mddev->kobj.sd &&
4890             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4891                 printk(KERN_DEBUG "pointless warning\n");
4892         mutex_unlock(&mddev->open_mutex);
4893  abort:
4894         mutex_unlock(&disks_mutex);
4895         if (!error && mddev->kobj.sd) {
4896                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4897                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4898         }
4899         mddev_put(mddev);
4900         return error;
4901 }
4902
4903 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4904 {
4905         md_alloc(dev, NULL);
4906         return NULL;
4907 }
4908
4909 static int add_named_array(const char *val, struct kernel_param *kp)
4910 {
4911         /* val must be "md_*" where * is not all digits.
4912          * We allocate an array with a large free minor number, and
4913          * set the name to val.  val must not already be an active name.
4914          */
4915         int len = strlen(val);
4916         char buf[DISK_NAME_LEN];
4917
4918         while (len && val[len-1] == '\n')
4919                 len--;
4920         if (len >= DISK_NAME_LEN)
4921                 return -E2BIG;
4922         strlcpy(buf, val, len+1);
4923         if (strncmp(buf, "md_", 3) != 0)
4924                 return -EINVAL;
4925         return md_alloc(0, buf);
4926 }
4927
4928 static void md_safemode_timeout(unsigned long data)
4929 {
4930         struct mddev *mddev = (struct mddev *) data;
4931
4932         if (!atomic_read(&mddev->writes_pending)) {
4933                 mddev->safemode = 1;
4934                 if (mddev->external)
4935                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4936         }
4937         md_wakeup_thread(mddev->thread);
4938 }
4939
4940 static int start_dirty_degraded;
4941
4942 int md_run(struct mddev *mddev)
4943 {
4944         int err;
4945         struct md_rdev *rdev;
4946         struct md_personality *pers;
4947
4948         if (list_empty(&mddev->disks))
4949                 /* cannot run an array with no devices.. */
4950                 return -EINVAL;
4951
4952         if (mddev->pers)
4953                 return -EBUSY;
4954         /* Cannot run until previous stop completes properly */
4955         if (mddev->sysfs_active)
4956                 return -EBUSY;
4957
4958         /*
4959          * Analyze all RAID superblock(s)
4960          */
4961         if (!mddev->raid_disks) {
4962                 if (!mddev->persistent)
4963                         return -EINVAL;
4964                 analyze_sbs(mddev);
4965         }
4966
4967         if (mddev->level != LEVEL_NONE)
4968                 request_module("md-level-%d", mddev->level);
4969         else if (mddev->clevel[0])
4970                 request_module("md-%s", mddev->clevel);
4971
4972         /*
4973          * Drop all container device buffers, from now on
4974          * the only valid external interface is through the md
4975          * device.
4976          */
4977         rdev_for_each(rdev, mddev) {
4978                 if (test_bit(Faulty, &rdev->flags))
4979                         continue;
4980                 sync_blockdev(rdev->bdev);
4981                 invalidate_bdev(rdev->bdev);
4982
4983                 /* perform some consistency tests on the device.
4984                  * We don't want the data to overlap the metadata,
4985                  * Internal Bitmap issues have been handled elsewhere.
4986                  */
4987                 if (rdev->meta_bdev) {
4988                         /* Nothing to check */;
4989                 } else if (rdev->data_offset < rdev->sb_start) {
4990                         if (mddev->dev_sectors &&
4991                             rdev->data_offset + mddev->dev_sectors
4992                             > rdev->sb_start) {
4993                                 printk("md: %s: data overlaps metadata\n",
4994                                        mdname(mddev));
4995                                 return -EINVAL;
4996                         }
4997                 } else {
4998                         if (rdev->sb_start + rdev->sb_size/512
4999                             > rdev->data_offset) {
5000                                 printk("md: %s: metadata overlaps data\n",
5001                                        mdname(mddev));
5002                                 return -EINVAL;
5003                         }
5004                 }
5005                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5006         }
5007
5008         if (mddev->bio_set == NULL)
5009                 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
5010                                                sizeof(struct mddev *));
5011
5012         spin_lock(&pers_lock);
5013         pers = find_pers(mddev->level, mddev->clevel);
5014         if (!pers || !try_module_get(pers->owner)) {
5015                 spin_unlock(&pers_lock);
5016                 if (mddev->level != LEVEL_NONE)
5017                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5018                                mddev->level);
5019                 else
5020                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5021                                mddev->clevel);
5022                 return -EINVAL;
5023         }
5024         mddev->pers = pers;
5025         spin_unlock(&pers_lock);
5026         if (mddev->level != pers->level) {
5027                 mddev->level = pers->level;
5028                 mddev->new_level = pers->level;
5029         }
5030         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5031
5032         if (mddev->reshape_position != MaxSector &&
5033             pers->start_reshape == NULL) {
5034                 /* This personality cannot handle reshaping... */
5035                 mddev->pers = NULL;
5036                 module_put(pers->owner);
5037                 return -EINVAL;
5038         }
5039
5040         if (pers->sync_request) {
5041                 /* Warn if this is a potentially silly
5042                  * configuration.
5043                  */
5044                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5045                 struct md_rdev *rdev2;
5046                 int warned = 0;
5047
5048                 rdev_for_each(rdev, mddev)
5049                         rdev_for_each(rdev2, mddev) {
5050                                 if (rdev < rdev2 &&
5051                                     rdev->bdev->bd_contains ==
5052                                     rdev2->bdev->bd_contains) {
5053                                         printk(KERN_WARNING
5054                                                "%s: WARNING: %s appears to be"
5055                                                " on the same physical disk as"
5056                                                " %s.\n",
5057                                                mdname(mddev),
5058                                                bdevname(rdev->bdev,b),
5059                                                bdevname(rdev2->bdev,b2));
5060                                         warned = 1;
5061                                 }
5062                         }
5063
5064                 if (warned)
5065                         printk(KERN_WARNING
5066                                "True protection against single-disk"
5067                                " failure might be compromised.\n");
5068         }
5069
5070         mddev->recovery = 0;
5071         /* may be over-ridden by personality */
5072         mddev->resync_max_sectors = mddev->dev_sectors;
5073
5074         mddev->ok_start_degraded = start_dirty_degraded;
5075
5076         if (start_readonly && mddev->ro == 0)
5077                 mddev->ro = 2; /* read-only, but switch on first write */
5078
5079         err = mddev->pers->run(mddev);
5080         if (err)
5081                 printk(KERN_ERR "md: pers->run() failed ...\n");
5082         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5083                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5084                           " but 'external_size' not in effect?\n", __func__);
5085                 printk(KERN_ERR
5086                        "md: invalid array_size %llu > default size %llu\n",
5087                        (unsigned long long)mddev->array_sectors / 2,
5088                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5089                 err = -EINVAL;
5090                 mddev->pers->stop(mddev);
5091         }
5092         if (err == 0 && mddev->pers->sync_request &&
5093             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5094                 err = bitmap_create(mddev);
5095                 if (err) {
5096                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5097                                mdname(mddev), err);
5098                         mddev->pers->stop(mddev);
5099                 }
5100         }
5101         if (err) {
5102                 module_put(mddev->pers->owner);
5103                 mddev->pers = NULL;
5104                 bitmap_destroy(mddev);
5105                 return err;
5106         }
5107         if (mddev->pers->sync_request) {
5108                 if (mddev->kobj.sd &&
5109                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5110                         printk(KERN_WARNING
5111                                "md: cannot register extra attributes for %s\n",
5112                                mdname(mddev));
5113                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5114         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5115                 mddev->ro = 0;
5116
5117         atomic_set(&mddev->writes_pending,0);
5118         atomic_set(&mddev->max_corr_read_errors,
5119                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5120         mddev->safemode = 0;
5121         mddev->safemode_timer.function = md_safemode_timeout;
5122         mddev->safemode_timer.data = (unsigned long) mddev;
5123         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5124         mddev->in_sync = 1;
5125         smp_wmb();
5126         mddev->ready = 1;
5127         rdev_for_each(rdev, mddev)
5128                 if (rdev->raid_disk >= 0)
5129                         if (sysfs_link_rdev(mddev, rdev))
5130                                 /* failure here is OK */;
5131         
5132         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5133         
5134         if (mddev->flags)
5135                 md_update_sb(mddev, 0);
5136
5137         md_new_event(mddev);
5138         sysfs_notify_dirent_safe(mddev->sysfs_state);
5139         sysfs_notify_dirent_safe(mddev->sysfs_action);
5140         sysfs_notify(&mddev->kobj, NULL, "degraded");
5141         return 0;
5142 }
5143 EXPORT_SYMBOL_GPL(md_run);
5144
5145 static int do_md_run(struct mddev *mddev)
5146 {
5147         int err;
5148
5149         err = md_run(mddev);
5150         if (err)
5151                 goto out;
5152         err = bitmap_load(mddev);
5153         if (err) {
5154                 bitmap_destroy(mddev);
5155                 goto out;
5156         }
5157
5158         md_wakeup_thread(mddev->thread);
5159         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5160
5161         set_capacity(mddev->gendisk, mddev->array_sectors);
5162         revalidate_disk(mddev->gendisk);
5163         mddev->changed = 1;
5164         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5165 out:
5166         return err;
5167 }
5168
5169 static int restart_array(struct mddev *mddev)
5170 {
5171         struct gendisk *disk = mddev->gendisk;
5172
5173         /* Complain if it has no devices */
5174         if (list_empty(&mddev->disks))
5175                 return -ENXIO;
5176         if (!mddev->pers)
5177                 return -EINVAL;
5178         if (!mddev->ro)
5179                 return -EBUSY;
5180         mddev->safemode = 0;
5181         mddev->ro = 0;
5182         set_disk_ro(disk, 0);
5183         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5184                 mdname(mddev));
5185         /* Kick recovery or resync if necessary */
5186         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5187         md_wakeup_thread(mddev->thread);
5188         md_wakeup_thread(mddev->sync_thread);
5189         sysfs_notify_dirent_safe(mddev->sysfs_state);
5190         return 0;
5191 }
5192
5193 /* similar to deny_write_access, but accounts for our holding a reference
5194  * to the file ourselves */
5195 static int deny_bitmap_write_access(struct file * file)
5196 {
5197         struct inode *inode = file->f_mapping->host;
5198
5199         spin_lock(&inode->i_lock);
5200         if (atomic_read(&inode->i_writecount) > 1) {
5201                 spin_unlock(&inode->i_lock);
5202                 return -ETXTBSY;
5203         }
5204         atomic_set(&inode->i_writecount, -1);
5205         spin_unlock(&inode->i_lock);
5206
5207         return 0;
5208 }
5209
5210 void restore_bitmap_write_access(struct file *file)
5211 {
5212         struct inode *inode = file->f_mapping->host;
5213
5214         spin_lock(&inode->i_lock);
5215         atomic_set(&inode->i_writecount, 1);
5216         spin_unlock(&inode->i_lock);
5217 }
5218
5219 static void md_clean(struct mddev *mddev)
5220 {
5221         mddev->array_sectors = 0;
5222         mddev->external_size = 0;
5223         mddev->dev_sectors = 0;
5224         mddev->raid_disks = 0;
5225         mddev->recovery_cp = 0;
5226         mddev->resync_min = 0;
5227         mddev->resync_max = MaxSector;
5228         mddev->reshape_position = MaxSector;
5229         mddev->external = 0;
5230         mddev->persistent = 0;
5231         mddev->level = LEVEL_NONE;
5232         mddev->clevel[0] = 0;
5233         mddev->flags = 0;
5234         mddev->ro = 0;
5235         mddev->metadata_type[0] = 0;
5236         mddev->chunk_sectors = 0;
5237         mddev->ctime = mddev->utime = 0;
5238         mddev->layout = 0;
5239         mddev->max_disks = 0;
5240         mddev->events = 0;
5241         mddev->can_decrease_events = 0;
5242         mddev->delta_disks = 0;
5243         mddev->reshape_backwards = 0;
5244         mddev->new_level = LEVEL_NONE;
5245         mddev->new_layout = 0;
5246         mddev->new_chunk_sectors = 0;
5247         mddev->curr_resync = 0;
5248         mddev->resync_mismatches = 0;
5249         mddev->suspend_lo = mddev->suspend_hi = 0;
5250         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5251         mddev->recovery = 0;
5252         mddev->in_sync = 0;
5253         mddev->changed = 0;
5254         mddev->degraded = 0;
5255         mddev->safemode = 0;
5256         mddev->merge_check_needed = 0;
5257         mddev->bitmap_info.offset = 0;
5258         mddev->bitmap_info.default_offset = 0;
5259         mddev->bitmap_info.default_space = 0;
5260         mddev->bitmap_info.chunksize = 0;
5261         mddev->bitmap_info.daemon_sleep = 0;
5262         mddev->bitmap_info.max_write_behind = 0;
5263 }
5264
5265 static void __md_stop_writes(struct mddev *mddev)
5266 {
5267         if (mddev->sync_thread) {
5268                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5269                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5270                 reap_sync_thread(mddev);
5271         }
5272
5273         del_timer_sync(&mddev->safemode_timer);
5274
5275         bitmap_flush(mddev);
5276         md_super_wait(mddev);
5277
5278         if (!mddev->in_sync || mddev->flags) {
5279                 /* mark array as shutdown cleanly */
5280                 mddev->in_sync = 1;
5281                 md_update_sb(mddev, 1);
5282         }
5283 }
5284
5285 void md_stop_writes(struct mddev *mddev)
5286 {
5287         mddev_lock(mddev);
5288         __md_stop_writes(mddev);
5289         mddev_unlock(mddev);
5290 }
5291 EXPORT_SYMBOL_GPL(md_stop_writes);
5292
5293 void md_stop(struct mddev *mddev)
5294 {
5295         mddev->ready = 0;
5296         mddev->pers->stop(mddev);
5297         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5298                 mddev->to_remove = &md_redundancy_group;
5299         module_put(mddev->pers->owner);
5300         mddev->pers = NULL;
5301         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5302 }
5303 EXPORT_SYMBOL_GPL(md_stop);
5304
5305 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5306 {
5307         int err = 0;
5308         mutex_lock(&mddev->open_mutex);
5309         if (atomic_read(&mddev->openers) > !!bdev) {
5310                 printk("md: %s still in use.\n",mdname(mddev));
5311                 err = -EBUSY;
5312                 goto out;
5313         }
5314         if (bdev)
5315                 sync_blockdev(bdev);
5316         if (mddev->pers) {
5317                 __md_stop_writes(mddev);
5318
5319                 err  = -ENXIO;
5320                 if (mddev->ro==1)
5321                         goto out;
5322                 mddev->ro = 1;
5323                 set_disk_ro(mddev->gendisk, 1);
5324                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5325                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5326                 err = 0;        
5327         }
5328 out:
5329         mutex_unlock(&mddev->open_mutex);
5330         return err;
5331 }
5332
5333 /* mode:
5334  *   0 - completely stop and dis-assemble array
5335  *   2 - stop but do not disassemble array
5336  */
5337 static int do_md_stop(struct mddev * mddev, int mode,
5338                       struct block_device *bdev)
5339 {
5340         struct gendisk *disk = mddev->gendisk;
5341         struct md_rdev *rdev;
5342
5343         mutex_lock(&mddev->open_mutex);
5344         if (atomic_read(&mddev->openers) > !!bdev ||
5345             mddev->sysfs_active) {
5346                 printk("md: %s still in use.\n",mdname(mddev));
5347                 mutex_unlock(&mddev->open_mutex);
5348                 return -EBUSY;
5349         }
5350         if (bdev)
5351                 /* It is possible IO was issued on some other
5352                  * open file which was closed before we took ->open_mutex.
5353                  * As that was not the last close __blkdev_put will not
5354                  * have called sync_blockdev, so we must.
5355                  */
5356                 sync_blockdev(bdev);
5357
5358         if (mddev->pers) {
5359                 if (mddev->ro)
5360                         set_disk_ro(disk, 0);
5361
5362                 __md_stop_writes(mddev);
5363                 md_stop(mddev);
5364                 mddev->queue->merge_bvec_fn = NULL;
5365                 mddev->queue->backing_dev_info.congested_fn = NULL;
5366
5367                 /* tell userspace to handle 'inactive' */
5368                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5369
5370                 rdev_for_each(rdev, mddev)
5371                         if (rdev->raid_disk >= 0)
5372                                 sysfs_unlink_rdev(mddev, rdev);
5373
5374                 set_capacity(disk, 0);
5375                 mutex_unlock(&mddev->open_mutex);
5376                 mddev->changed = 1;
5377                 revalidate_disk(disk);
5378
5379                 if (mddev->ro)
5380                         mddev->ro = 0;
5381         } else
5382                 mutex_unlock(&mddev->open_mutex);
5383         /*
5384          * Free resources if final stop
5385          */
5386         if (mode == 0) {
5387                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5388
5389                 bitmap_destroy(mddev);
5390                 if (mddev->bitmap_info.file) {
5391                         restore_bitmap_write_access(mddev->bitmap_info.file);
5392                         fput(mddev->bitmap_info.file);
5393                         mddev->bitmap_info.file = NULL;
5394                 }
5395                 mddev->bitmap_info.offset = 0;
5396
5397                 export_array(mddev);
5398
5399                 md_clean(mddev);
5400                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5401                 if (mddev->hold_active == UNTIL_STOP)
5402                         mddev->hold_active = 0;
5403         }
5404         blk_integrity_unregister(disk);
5405         md_new_event(mddev);
5406         sysfs_notify_dirent_safe(mddev->sysfs_state);
5407         return 0;
5408 }
5409
5410 #ifndef MODULE
5411 static void autorun_array(struct mddev *mddev)
5412 {
5413         struct md_rdev *rdev;
5414         int err;
5415
5416         if (list_empty(&mddev->disks))
5417                 return;
5418
5419         printk(KERN_INFO "md: running: ");
5420
5421         rdev_for_each(rdev, mddev) {
5422                 char b[BDEVNAME_SIZE];
5423                 printk("<%s>", bdevname(rdev->bdev,b));
5424         }
5425         printk("\n");
5426
5427         err = do_md_run(mddev);
5428         if (err) {
5429                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5430                 do_md_stop(mddev, 0, NULL);
5431         }
5432 }
5433
5434 /*
5435  * lets try to run arrays based on all disks that have arrived
5436  * until now. (those are in pending_raid_disks)
5437  *
5438  * the method: pick the first pending disk, collect all disks with
5439  * the same UUID, remove all from the pending list and put them into
5440  * the 'same_array' list. Then order this list based on superblock
5441  * update time (freshest comes first), kick out 'old' disks and
5442  * compare superblocks. If everything's fine then run it.
5443  *
5444  * If "unit" is allocated, then bump its reference count
5445  */
5446 static void autorun_devices(int part)
5447 {
5448         struct md_rdev *rdev0, *rdev, *tmp;
5449         struct mddev *mddev;
5450         char b[BDEVNAME_SIZE];
5451
5452         printk(KERN_INFO "md: autorun ...\n");
5453         while (!list_empty(&pending_raid_disks)) {
5454                 int unit;
5455                 dev_t dev;
5456                 LIST_HEAD(candidates);
5457                 rdev0 = list_entry(pending_raid_disks.next,
5458                                          struct md_rdev, same_set);
5459
5460                 printk(KERN_INFO "md: considering %s ...\n",
5461                         bdevname(rdev0->bdev,b));
5462                 INIT_LIST_HEAD(&candidates);
5463                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5464                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5465                                 printk(KERN_INFO "md:  adding %s ...\n",
5466                                         bdevname(rdev->bdev,b));
5467                                 list_move(&rdev->same_set, &candidates);
5468                         }
5469                 /*
5470                  * now we have a set of devices, with all of them having
5471                  * mostly sane superblocks. It's time to allocate the
5472                  * mddev.
5473                  */
5474                 if (part) {
5475                         dev = MKDEV(mdp_major,
5476                                     rdev0->preferred_minor << MdpMinorShift);
5477                         unit = MINOR(dev) >> MdpMinorShift;
5478                 } else {
5479                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5480                         unit = MINOR(dev);
5481                 }
5482                 if (rdev0->preferred_minor != unit) {
5483                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5484                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5485                         break;
5486                 }
5487
5488                 md_probe(dev, NULL, NULL);
5489                 mddev = mddev_find(dev);
5490                 if (!mddev || !mddev->gendisk) {
5491                         if (mddev)
5492                                 mddev_put(mddev);
5493                         printk(KERN_ERR
5494                                 "md: cannot allocate memory for md drive.\n");
5495                         break;
5496                 }
5497                 if (mddev_lock(mddev)) 
5498                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5499                                mdname(mddev));
5500                 else if (mddev->raid_disks || mddev->major_version
5501                          || !list_empty(&mddev->disks)) {
5502                         printk(KERN_WARNING 
5503                                 "md: %s already running, cannot run %s\n",
5504                                 mdname(mddev), bdevname(rdev0->bdev,b));
5505                         mddev_unlock(mddev);
5506                 } else {
5507                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5508                         mddev->persistent = 1;
5509                         rdev_for_each_list(rdev, tmp, &candidates) {
5510                                 list_del_init(&rdev->same_set);
5511                                 if (bind_rdev_to_array(rdev, mddev))
5512                                         export_rdev(rdev);
5513                         }
5514                         autorun_array(mddev);
5515                         mddev_unlock(mddev);
5516                 }
5517                 /* on success, candidates will be empty, on error
5518                  * it won't...
5519                  */
5520                 rdev_for_each_list(rdev, tmp, &candidates) {
5521                         list_del_init(&rdev->same_set);
5522                         export_rdev(rdev);
5523                 }
5524                 mddev_put(mddev);
5525         }
5526         printk(KERN_INFO "md: ... autorun DONE.\n");
5527 }
5528 #endif /* !MODULE */
5529
5530 static int get_version(void __user * arg)
5531 {
5532         mdu_version_t ver;
5533
5534         ver.major = MD_MAJOR_VERSION;
5535         ver.minor = MD_MINOR_VERSION;
5536         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5537
5538         if (copy_to_user(arg, &ver, sizeof(ver)))
5539                 return -EFAULT;
5540
5541         return 0;
5542 }
5543
5544 static int get_array_info(struct mddev * mddev, void __user * arg)
5545 {
5546         mdu_array_info_t info;
5547         int nr,working,insync,failed,spare;
5548         struct md_rdev *rdev;
5549
5550         nr=working=insync=failed=spare=0;
5551         rdev_for_each(rdev, mddev) {
5552                 nr++;
5553                 if (test_bit(Faulty, &rdev->flags))
5554                         failed++;
5555                 else {
5556                         working++;
5557                         if (test_bit(In_sync, &rdev->flags))
5558                                 insync++;       
5559                         else
5560                                 spare++;
5561                 }
5562         }
5563
5564         info.major_version = mddev->major_version;
5565         info.minor_version = mddev->minor_version;
5566         info.patch_version = MD_PATCHLEVEL_VERSION;
5567         info.ctime         = mddev->ctime;
5568         info.level         = mddev->level;
5569         info.size          = mddev->dev_sectors / 2;
5570         if (info.size != mddev->dev_sectors / 2) /* overflow */
5571                 info.size = -1;
5572         info.nr_disks      = nr;
5573         info.raid_disks    = mddev->raid_disks;
5574         info.md_minor      = mddev->md_minor;
5575         info.not_persistent= !mddev->persistent;
5576
5577         info.utime         = mddev->utime;
5578         info.state         = 0;
5579         if (mddev->in_sync)
5580                 info.state = (1<<MD_SB_CLEAN);
5581         if (mddev->bitmap && mddev->bitmap_info.offset)
5582                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5583         info.active_disks  = insync;
5584         info.working_disks = working;
5585         info.failed_disks  = failed;
5586         info.spare_disks   = spare;
5587
5588         info.layout        = mddev->layout;
5589         info.chunk_size    = mddev->chunk_sectors << 9;
5590
5591         if (copy_to_user(arg, &info, sizeof(info)))
5592                 return -EFAULT;
5593
5594         return 0;
5595 }
5596
5597 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5598 {
5599         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5600         char *ptr, *buf = NULL;
5601         int err = -ENOMEM;
5602
5603         if (md_allow_write(mddev))
5604                 file = kmalloc(sizeof(*file), GFP_NOIO);
5605         else
5606                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5607
5608         if (!file)
5609                 goto out;
5610
5611         /* bitmap disabled, zero the first byte and copy out */
5612         if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5613                 file->pathname[0] = '\0';
5614                 goto copy_out;
5615         }
5616
5617         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5618         if (!buf)
5619                 goto out;
5620
5621         ptr = d_path(&mddev->bitmap->storage.file->f_path,
5622                      buf, sizeof(file->pathname));
5623         if (IS_ERR(ptr))
5624                 goto out;
5625
5626         strcpy(file->pathname, ptr);
5627
5628 copy_out:
5629         err = 0;
5630         if (copy_to_user(arg, file, sizeof(*file)))
5631                 err = -EFAULT;
5632 out:
5633         kfree(buf);
5634         kfree(file);
5635         return err;
5636 }
5637
5638 static int get_disk_info(struct mddev * mddev, void __user * arg)
5639 {
5640         mdu_disk_info_t info;
5641         struct md_rdev *rdev;
5642
5643         if (copy_from_user(&info, arg, sizeof(info)))
5644                 return -EFAULT;
5645
5646         rdev = find_rdev_nr(mddev, info.number);
5647         if (rdev) {
5648                 info.major = MAJOR(rdev->bdev->bd_dev);
5649                 info.minor = MINOR(rdev->bdev->bd_dev);
5650                 info.raid_disk = rdev->raid_disk;
5651                 info.state = 0;
5652                 if (test_bit(Faulty, &rdev->flags))
5653                         info.state |= (1<<MD_DISK_FAULTY);
5654                 else if (test_bit(In_sync, &rdev->flags)) {
5655                         info.state |= (1<<MD_DISK_ACTIVE);
5656                         info.state |= (1<<MD_DISK_SYNC);
5657                 }
5658                 if (test_bit(WriteMostly, &rdev->flags))
5659                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5660         } else {
5661                 info.major = info.minor = 0;
5662                 info.raid_disk = -1;
5663                 info.state = (1<<MD_DISK_REMOVED);
5664         }
5665
5666         if (copy_to_user(arg, &info, sizeof(info)))
5667                 return -EFAULT;
5668
5669         return 0;
5670 }
5671
5672 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5673 {
5674         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5675         struct md_rdev *rdev;
5676         dev_t dev = MKDEV(info->major,info->minor);
5677
5678         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5679                 return -EOVERFLOW;
5680
5681         if (!mddev->raid_disks) {
5682                 int err;
5683                 /* expecting a device which has a superblock */
5684                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5685                 if (IS_ERR(rdev)) {
5686                         printk(KERN_WARNING 
5687                                 "md: md_import_device returned %ld\n",
5688                                 PTR_ERR(rdev));
5689                         return PTR_ERR(rdev);
5690                 }
5691                 if (!list_empty(&mddev->disks)) {
5692                         struct md_rdev *rdev0
5693                                 = list_entry(mddev->disks.next,
5694                                              struct md_rdev, same_set);
5695                         err = super_types[mddev->major_version]
5696                                 .load_super(rdev, rdev0, mddev->minor_version);
5697                         if (err < 0) {
5698                                 printk(KERN_WARNING 
5699                                         "md: %s has different UUID to %s\n",
5700                                         bdevname(rdev->bdev,b), 
5701                                         bdevname(rdev0->bdev,b2));
5702                                 export_rdev(rdev);
5703                                 return -EINVAL;
5704                         }
5705                 }
5706                 err = bind_rdev_to_array(rdev, mddev);
5707                 if (err)
5708                         export_rdev(rdev);
5709                 return err;
5710         }
5711
5712         /*
5713          * add_new_disk can be used once the array is assembled
5714          * to add "hot spares".  They must already have a superblock
5715          * written
5716          */
5717         if (mddev->pers) {
5718                 int err;
5719                 if (!mddev->pers->hot_add_disk) {
5720                         printk(KERN_WARNING 
5721                                 "%s: personality does not support diskops!\n",
5722                                mdname(mddev));
5723                         return -EINVAL;
5724                 }
5725                 if (mddev->persistent)
5726                         rdev = md_import_device(dev, mddev->major_version,
5727                                                 mddev->minor_version);
5728                 else
5729                         rdev = md_import_device(dev, -1, -1);
5730                 if (IS_ERR(rdev)) {
5731                         printk(KERN_WARNING 
5732                                 "md: md_import_device returned %ld\n",
5733                                 PTR_ERR(rdev));
5734                         return PTR_ERR(rdev);
5735                 }
5736                 /* set saved_raid_disk if appropriate */
5737                 if (!mddev->persistent) {
5738                         if (info->state & (1<<MD_DISK_SYNC)  &&
5739                             info->raid_disk < mddev->raid_disks) {
5740                                 rdev->raid_disk = info->raid_disk;
5741                                 set_bit(In_sync, &rdev->flags);
5742                         } else
5743                                 rdev->raid_disk = -1;
5744                 } else
5745                         super_types[mddev->major_version].
5746                                 validate_super(mddev, rdev);
5747                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5748                      rdev->raid_disk != info->raid_disk) {
5749                         /* This was a hot-add request, but events doesn't
5750                          * match, so reject it.
5751                          */
5752                         export_rdev(rdev);
5753                         return -EINVAL;
5754                 }
5755
5756                 if (test_bit(In_sync, &rdev->flags))
5757                         rdev->saved_raid_disk = rdev->raid_disk;
5758                 else
5759                         rdev->saved_raid_disk = -1;
5760
5761                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5762                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5763                         set_bit(WriteMostly, &rdev->flags);
5764                 else
5765                         clear_bit(WriteMostly, &rdev->flags);
5766
5767                 rdev->raid_disk = -1;
5768                 err = bind_rdev_to_array(rdev, mddev);
5769                 if (!err && !mddev->pers->hot_remove_disk) {
5770                         /* If there is hot_add_disk but no hot_remove_disk
5771                          * then added disks for geometry changes,
5772                          * and should be added immediately.
5773                          */
5774                         super_types[mddev->major_version].
5775                                 validate_super(mddev, rdev);
5776                         err = mddev->pers->hot_add_disk(mddev, rdev);
5777                         if (err)
5778                                 unbind_rdev_from_array(rdev);
5779                 }
5780                 if (err)
5781                         export_rdev(rdev);
5782                 else
5783                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5784
5785                 md_update_sb(mddev, 1);
5786                 if (mddev->degraded)
5787                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5788                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5789                 if (!err)
5790                         md_new_event(mddev);
5791                 md_wakeup_thread(mddev->thread);
5792                 return err;
5793         }
5794
5795         /* otherwise, add_new_disk is only allowed
5796          * for major_version==0 superblocks
5797          */
5798         if (mddev->major_version != 0) {
5799                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5800                        mdname(mddev));
5801                 return -EINVAL;
5802         }
5803
5804         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5805                 int err;
5806                 rdev = md_import_device(dev, -1, 0);
5807                 if (IS_ERR(rdev)) {
5808                         printk(KERN_WARNING 
5809                                 "md: error, md_import_device() returned %ld\n",
5810                                 PTR_ERR(rdev));
5811                         return PTR_ERR(rdev);
5812                 }
5813                 rdev->desc_nr = info->number;
5814                 if (info->raid_disk < mddev->raid_disks)
5815                         rdev->raid_disk = info->raid_disk;
5816                 else
5817                         rdev->raid_disk = -1;
5818
5819                 if (rdev->raid_disk < mddev->raid_disks)
5820                         if (info->state & (1<<MD_DISK_SYNC))
5821                                 set_bit(In_sync, &rdev->flags);
5822
5823                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5824                         set_bit(WriteMostly, &rdev->flags);
5825
5826                 if (!mddev->persistent) {
5827                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5828                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5829                 } else
5830                         rdev->sb_start = calc_dev_sboffset(rdev);
5831                 rdev->sectors = rdev->sb_start;
5832
5833                 err = bind_rdev_to_array(rdev, mddev);
5834                 if (err) {
5835                         export_rdev(rdev);
5836                         return err;
5837                 }
5838         }
5839
5840         return 0;
5841 }
5842
5843 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5844 {
5845         char b[BDEVNAME_SIZE];
5846         struct md_rdev *rdev;
5847
5848         rdev = find_rdev(mddev, dev);
5849         if (!rdev)
5850                 return -ENXIO;
5851
5852         if (rdev->raid_disk >= 0)
5853                 goto busy;
5854
5855         kick_rdev_from_array(rdev);
5856         md_update_sb(mddev, 1);
5857         md_new_event(mddev);
5858
5859         return 0;
5860 busy:
5861         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5862                 bdevname(rdev->bdev,b), mdname(mddev));
5863         return -EBUSY;
5864 }
5865
5866 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5867 {
5868         char b[BDEVNAME_SIZE];
5869         int err;
5870         struct md_rdev *rdev;
5871
5872         if (!mddev->pers)
5873                 return -ENODEV;
5874
5875         if (mddev->major_version != 0) {
5876                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5877                         " version-0 superblocks.\n",
5878                         mdname(mddev));
5879                 return -EINVAL;
5880         }
5881         if (!mddev->pers->hot_add_disk) {
5882                 printk(KERN_WARNING 
5883                         "%s: personality does not support diskops!\n",
5884                         mdname(mddev));
5885                 return -EINVAL;
5886         }
5887
5888         rdev = md_import_device(dev, -1, 0);
5889         if (IS_ERR(rdev)) {
5890                 printk(KERN_WARNING 
5891                         "md: error, md_import_device() returned %ld\n",
5892                         PTR_ERR(rdev));
5893                 return -EINVAL;
5894         }
5895
5896         if (mddev->persistent)
5897                 rdev->sb_start = calc_dev_sboffset(rdev);
5898         else
5899                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5900
5901         rdev->sectors = rdev->sb_start;
5902
5903         if (test_bit(Faulty, &rdev->flags)) {
5904                 printk(KERN_WARNING 
5905                         "md: can not hot-add faulty %s disk to %s!\n",
5906                         bdevname(rdev->bdev,b), mdname(mddev));
5907                 err = -EINVAL;
5908                 goto abort_export;
5909         }
5910         clear_bit(In_sync, &rdev->flags);
5911         rdev->desc_nr = -1;
5912         rdev->saved_raid_disk = -1;
5913         err = bind_rdev_to_array(rdev, mddev);
5914         if (err)
5915                 goto abort_export;
5916
5917         /*
5918          * The rest should better be atomic, we can have disk failures
5919          * noticed in interrupt contexts ...
5920          */
5921
5922         rdev->raid_disk = -1;
5923
5924         md_update_sb(mddev, 1);
5925
5926         /*
5927          * Kick recovery, maybe this spare has to be added to the
5928          * array immediately.
5929          */
5930         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5931         md_wakeup_thread(mddev->thread);
5932         md_new_event(mddev);
5933         return 0;
5934
5935 abort_export:
5936         export_rdev(rdev);
5937         return err;
5938 }
5939
5940 static int set_bitmap_file(struct mddev *mddev, int fd)
5941 {
5942         int err;
5943
5944         if (mddev->pers) {
5945                 if (!mddev->pers->quiesce)
5946                         return -EBUSY;
5947                 if (mddev->recovery || mddev->sync_thread)
5948                         return -EBUSY;
5949                 /* we should be able to change the bitmap.. */
5950         }
5951
5952
5953         if (fd >= 0) {
5954                 if (mddev->bitmap)
5955                         return -EEXIST; /* cannot add when bitmap is present */
5956                 mddev->bitmap_info.file = fget(fd);
5957
5958                 if (mddev->bitmap_info.file == NULL) {
5959                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5960                                mdname(mddev));
5961                         return -EBADF;
5962                 }
5963
5964                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5965                 if (err) {
5966                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5967                                mdname(mddev));
5968                         fput(mddev->bitmap_info.file);
5969                         mddev->bitmap_info.file = NULL;
5970                         return err;
5971                 }
5972                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5973         } else if (mddev->bitmap == NULL)
5974                 return -ENOENT; /* cannot remove what isn't there */
5975         err = 0;
5976         if (mddev->pers) {
5977                 mddev->pers->quiesce(mddev, 1);
5978                 if (fd >= 0) {
5979                         err = bitmap_create(mddev);
5980                         if (!err)
5981                                 err = bitmap_load(mddev);
5982                 }
5983                 if (fd < 0 || err) {
5984                         bitmap_destroy(mddev);
5985                         fd = -1; /* make sure to put the file */
5986                 }
5987                 mddev->pers->quiesce(mddev, 0);
5988         }
5989         if (fd < 0) {
5990                 if (mddev->bitmap_info.file) {
5991                         restore_bitmap_write_access(mddev->bitmap_info.file);
5992                         fput(mddev->bitmap_info.file);
5993                 }
5994                 mddev->bitmap_info.file = NULL;
5995         }
5996
5997         return err;
5998 }
5999
6000 /*
6001  * set_array_info is used two different ways
6002  * The original usage is when creating a new array.
6003  * In this usage, raid_disks is > 0 and it together with
6004  *  level, size, not_persistent,layout,chunksize determine the
6005  *  shape of the array.
6006  *  This will always create an array with a type-0.90.0 superblock.
6007  * The newer usage is when assembling an array.
6008  *  In this case raid_disks will be 0, and the major_version field is
6009  *  use to determine which style super-blocks are to be found on the devices.
6010  *  The minor and patch _version numbers are also kept incase the
6011  *  super_block handler wishes to interpret them.
6012  */
6013 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6014 {
6015
6016         if (info->raid_disks == 0) {
6017                 /* just setting version number for superblock loading */
6018                 if (info->major_version < 0 ||
6019                     info->major_version >= ARRAY_SIZE(super_types) ||
6020                     super_types[info->major_version].name == NULL) {
6021                         /* maybe try to auto-load a module? */
6022                         printk(KERN_INFO 
6023                                 "md: superblock version %d not known\n",
6024                                 info->major_version);
6025                         return -EINVAL;
6026                 }
6027                 mddev->major_version = info->major_version;
6028                 mddev->minor_version = info->minor_version;
6029                 mddev->patch_version = info->patch_version;
6030                 mddev->persistent = !info->not_persistent;
6031                 /* ensure mddev_put doesn't delete this now that there
6032                  * is some minimal configuration.
6033                  */
6034                 mddev->ctime         = get_seconds();
6035                 return 0;
6036         }
6037         mddev->major_version = MD_MAJOR_VERSION;
6038         mddev->minor_version = MD_MINOR_VERSION;
6039         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6040         mddev->ctime         = get_seconds();
6041
6042         mddev->level         = info->level;
6043         mddev->clevel[0]     = 0;
6044         mddev->dev_sectors   = 2 * (sector_t)info->size;
6045         mddev->raid_disks    = info->raid_disks;
6046         /* don't set md_minor, it is determined by which /dev/md* was
6047          * openned
6048          */
6049         if (info->state & (1<<MD_SB_CLEAN))
6050                 mddev->recovery_cp = MaxSector;
6051         else
6052                 mddev->recovery_cp = 0;
6053         mddev->persistent    = ! info->not_persistent;
6054         mddev->external      = 0;
6055
6056         mddev->layout        = info->layout;
6057         mddev->chunk_sectors = info->chunk_size >> 9;
6058
6059         mddev->max_disks     = MD_SB_DISKS;
6060
6061         if (mddev->persistent)
6062                 mddev->flags         = 0;
6063         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6064
6065         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6066         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6067         mddev->bitmap_info.offset = 0;
6068
6069         mddev->reshape_position = MaxSector;
6070
6071         /*
6072          * Generate a 128 bit UUID
6073          */
6074         get_random_bytes(mddev->uuid, 16);
6075
6076         mddev->new_level = mddev->level;
6077         mddev->new_chunk_sectors = mddev->chunk_sectors;
6078         mddev->new_layout = mddev->layout;
6079         mddev->delta_disks = 0;
6080         mddev->reshape_backwards = 0;
6081
6082         return 0;
6083 }
6084
6085 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6086 {
6087         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6088
6089         if (mddev->external_size)
6090                 return;
6091
6092         mddev->array_sectors = array_sectors;
6093 }
6094 EXPORT_SYMBOL(md_set_array_sectors);
6095
6096 static int update_size(struct mddev *mddev, sector_t num_sectors)
6097 {
6098         struct md_rdev *rdev;
6099         int rv;
6100         int fit = (num_sectors == 0);
6101
6102         if (mddev->pers->resize == NULL)
6103                 return -EINVAL;
6104         /* The "num_sectors" is the number of sectors of each device that
6105          * is used.  This can only make sense for arrays with redundancy.
6106          * linear and raid0 always use whatever space is available. We can only
6107          * consider changing this number if no resync or reconstruction is
6108          * happening, and if the new size is acceptable. It must fit before the
6109          * sb_start or, if that is <data_offset, it must fit before the size
6110          * of each device.  If num_sectors is zero, we find the largest size
6111          * that fits.
6112          */
6113         if (mddev->sync_thread)
6114                 return -EBUSY;
6115
6116         rdev_for_each(rdev, mddev) {
6117                 sector_t avail = rdev->sectors;
6118
6119                 if (fit && (num_sectors == 0 || num_sectors > avail))
6120                         num_sectors = avail;
6121                 if (avail < num_sectors)
6122                         return -ENOSPC;
6123         }
6124         rv = mddev->pers->resize(mddev, num_sectors);
6125         if (!rv)
6126                 revalidate_disk(mddev->gendisk);
6127         return rv;
6128 }
6129
6130 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6131 {
6132         int rv;
6133         struct md_rdev *rdev;
6134         /* change the number of raid disks */
6135         if (mddev->pers->check_reshape == NULL)
6136                 return -EINVAL;
6137         if (raid_disks <= 0 ||
6138             (mddev->max_disks && raid_disks >= mddev->max_disks))
6139                 return -EINVAL;
6140         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6141                 return -EBUSY;
6142
6143         rdev_for_each(rdev, mddev) {
6144                 if (mddev->raid_disks < raid_disks &&
6145                     rdev->data_offset < rdev->new_data_offset)
6146                         return -EINVAL;
6147                 if (mddev->raid_disks > raid_disks &&
6148                     rdev->data_offset > rdev->new_data_offset)
6149                         return -EINVAL;
6150         }
6151
6152         mddev->delta_disks = raid_disks - mddev->raid_disks;
6153         if (mddev->delta_disks < 0)
6154                 mddev->reshape_backwards = 1;
6155         else if (mddev->delta_disks > 0)
6156                 mddev->reshape_backwards = 0;
6157
6158         rv = mddev->pers->check_reshape(mddev);
6159         if (rv < 0) {
6160                 mddev->delta_disks = 0;
6161                 mddev->reshape_backwards = 0;
6162         }
6163         return rv;
6164 }
6165
6166
6167 /*
6168  * update_array_info is used to change the configuration of an
6169  * on-line array.
6170  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6171  * fields in the info are checked against the array.
6172  * Any differences that cannot be handled will cause an error.
6173  * Normally, only one change can be managed at a time.
6174  */
6175 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6176 {
6177         int rv = 0;
6178         int cnt = 0;
6179         int state = 0;
6180
6181         /* calculate expected state,ignoring low bits */
6182         if (mddev->bitmap && mddev->bitmap_info.offset)
6183                 state |= (1 << MD_SB_BITMAP_PRESENT);
6184
6185         if (mddev->major_version != info->major_version ||
6186             mddev->minor_version != info->minor_version ||
6187 /*          mddev->patch_version != info->patch_version || */
6188             mddev->ctime         != info->ctime         ||
6189             mddev->level         != info->level         ||
6190 /*          mddev->layout        != info->layout        || */
6191             !mddev->persistent   != info->not_persistent||
6192             mddev->chunk_sectors != info->chunk_size >> 9 ||
6193             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6194             ((state^info->state) & 0xfffffe00)
6195                 )
6196                 return -EINVAL;
6197         /* Check there is only one change */
6198         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6199                 cnt++;
6200         if (mddev->raid_disks != info->raid_disks)
6201                 cnt++;
6202         if (mddev->layout != info->layout)
6203                 cnt++;
6204         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6205                 cnt++;
6206         if (cnt == 0)
6207                 return 0;
6208         if (cnt > 1)
6209                 return -EINVAL;
6210
6211         if (mddev->layout != info->layout) {
6212                 /* Change layout
6213                  * we don't need to do anything at the md level, the
6214                  * personality will take care of it all.
6215                  */
6216                 if (mddev->pers->check_reshape == NULL)
6217                         return -EINVAL;
6218                 else {
6219                         mddev->new_layout = info->layout;
6220                         rv = mddev->pers->check_reshape(mddev);
6221                         if (rv)
6222                                 mddev->new_layout = mddev->layout;
6223                         return rv;
6224                 }
6225         }
6226         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6227                 rv = update_size(mddev, (sector_t)info->size * 2);
6228
6229         if (mddev->raid_disks    != info->raid_disks)
6230                 rv = update_raid_disks(mddev, info->raid_disks);
6231
6232         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6233                 if (mddev->pers->quiesce == NULL)
6234                         return -EINVAL;
6235                 if (mddev->recovery || mddev->sync_thread)
6236                         return -EBUSY;
6237                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6238                         /* add the bitmap */
6239                         if (mddev->bitmap)
6240                                 return -EEXIST;
6241                         if (mddev->bitmap_info.default_offset == 0)
6242                                 return -EINVAL;
6243                         mddev->bitmap_info.offset =
6244                                 mddev->bitmap_info.default_offset;
6245                         mddev->bitmap_info.space =
6246                                 mddev->bitmap_info.default_space;
6247                         mddev->pers->quiesce(mddev, 1);
6248                         rv = bitmap_create(mddev);
6249                         if (!rv)
6250                                 rv = bitmap_load(mddev);
6251                         if (rv)
6252                                 bitmap_destroy(mddev);
6253                         mddev->pers->quiesce(mddev, 0);
6254                 } else {
6255                         /* remove the bitmap */
6256                         if (!mddev->bitmap)
6257                                 return -ENOENT;
6258                         if (mddev->bitmap->storage.file)
6259                                 return -EINVAL;
6260                         mddev->pers->quiesce(mddev, 1);
6261                         bitmap_destroy(mddev);
6262                         mddev->pers->quiesce(mddev, 0);
6263                         mddev->bitmap_info.offset = 0;
6264                 }
6265         }
6266         md_update_sb(mddev, 1);
6267         return rv;
6268 }
6269
6270 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6271 {
6272         struct md_rdev *rdev;
6273
6274         if (mddev->pers == NULL)
6275                 return -ENODEV;
6276
6277         rdev = find_rdev(mddev, dev);
6278         if (!rdev)
6279                 return -ENODEV;
6280
6281         md_error(mddev, rdev);
6282         if (!test_bit(Faulty, &rdev->flags))
6283                 return -EBUSY;
6284         return 0;
6285 }
6286
6287 /*
6288  * We have a problem here : there is no easy way to give a CHS
6289  * virtual geometry. We currently pretend that we have a 2 heads
6290  * 4 sectors (with a BIG number of cylinders...). This drives
6291  * dosfs just mad... ;-)
6292  */
6293 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6294 {
6295         struct mddev *mddev = bdev->bd_disk->private_data;
6296
6297         geo->heads = 2;
6298         geo->sectors = 4;
6299         geo->cylinders = mddev->array_sectors / 8;
6300         return 0;
6301 }
6302
6303 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6304                         unsigned int cmd, unsigned long arg)
6305 {
6306         int err = 0;
6307         void __user *argp = (void __user *)arg;
6308         struct mddev *mddev = NULL;
6309         int ro;
6310
6311         switch (cmd) {
6312         case RAID_VERSION:
6313         case GET_ARRAY_INFO:
6314         case GET_DISK_INFO:
6315                 break;
6316         default:
6317                 if (!capable(CAP_SYS_ADMIN))
6318                         return -EACCES;
6319         }
6320
6321         /*
6322          * Commands dealing with the RAID driver but not any
6323          * particular array:
6324          */
6325         switch (cmd)
6326         {
6327                 case RAID_VERSION:
6328                         err = get_version(argp);
6329                         goto done;
6330
6331                 case PRINT_RAID_DEBUG:
6332                         err = 0;
6333                         md_print_devices();
6334                         goto done;
6335
6336 #ifndef MODULE
6337                 case RAID_AUTORUN:
6338                         err = 0;
6339                         autostart_arrays(arg);
6340                         goto done;
6341 #endif
6342                 default:;
6343         }
6344
6345         /*
6346          * Commands creating/starting a new array:
6347          */
6348
6349         mddev = bdev->bd_disk->private_data;
6350
6351         if (!mddev) {
6352                 BUG();
6353                 goto abort;
6354         }
6355
6356         err = mddev_lock(mddev);
6357         if (err) {
6358                 printk(KERN_INFO 
6359                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6360                         err, cmd);
6361                 goto abort;
6362         }
6363
6364         switch (cmd)
6365         {
6366                 case SET_ARRAY_INFO:
6367                         {
6368                                 mdu_array_info_t info;
6369                                 if (!arg)
6370                                         memset(&info, 0, sizeof(info));
6371                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6372                                         err = -EFAULT;
6373                                         goto abort_unlock;
6374                                 }
6375                                 if (mddev->pers) {
6376                                         err = update_array_info(mddev, &info);
6377                                         if (err) {
6378                                                 printk(KERN_WARNING "md: couldn't update"
6379                                                        " array info. %d\n", err);
6380                                                 goto abort_unlock;
6381                                         }
6382                                         goto done_unlock;
6383                                 }
6384                                 if (!list_empty(&mddev->disks)) {
6385                                         printk(KERN_WARNING
6386                                                "md: array %s already has disks!\n",
6387                                                mdname(mddev));
6388                                         err = -EBUSY;
6389                                         goto abort_unlock;
6390                                 }
6391                                 if (mddev->raid_disks) {
6392                                         printk(KERN_WARNING
6393                                                "md: array %s already initialised!\n",
6394                                                mdname(mddev));
6395                                         err = -EBUSY;
6396                                         goto abort_unlock;
6397                                 }
6398                                 err = set_array_info(mddev, &info);
6399                                 if (err) {
6400                                         printk(KERN_WARNING "md: couldn't set"
6401                                                " array info. %d\n", err);
6402                                         goto abort_unlock;
6403                                 }
6404                         }
6405                         goto done_unlock;
6406
6407                 default:;
6408         }
6409
6410         /*
6411          * Commands querying/configuring an existing array:
6412          */
6413         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6414          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6415         if ((!mddev->raid_disks && !mddev->external)
6416             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6417             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6418             && cmd != GET_BITMAP_FILE) {
6419                 err = -ENODEV;
6420                 goto abort_unlock;
6421         }
6422
6423         /*
6424          * Commands even a read-only array can execute:
6425          */
6426         switch (cmd)
6427         {
6428                 case GET_ARRAY_INFO:
6429                         err = get_array_info(mddev, argp);
6430                         goto done_unlock;
6431
6432                 case GET_BITMAP_FILE:
6433                         err = get_bitmap_file(mddev, argp);
6434                         goto done_unlock;
6435
6436                 case GET_DISK_INFO:
6437                         err = get_disk_info(mddev, argp);
6438                         goto done_unlock;
6439
6440                 case RESTART_ARRAY_RW:
6441                         err = restart_array(mddev);
6442                         goto done_unlock;
6443
6444                 case STOP_ARRAY:
6445                         err = do_md_stop(mddev, 0, bdev);
6446                         goto done_unlock;
6447
6448                 case STOP_ARRAY_RO:
6449                         err = md_set_readonly(mddev, bdev);
6450                         goto done_unlock;
6451
6452                 case BLKROSET:
6453                         if (get_user(ro, (int __user *)(arg))) {
6454                                 err = -EFAULT;
6455                                 goto done_unlock;
6456                         }
6457                         err = -EINVAL;
6458
6459                         /* if the bdev is going readonly the value of mddev->ro
6460                          * does not matter, no writes are coming
6461                          */
6462                         if (ro)
6463                                 goto done_unlock;
6464
6465                         /* are we are already prepared for writes? */
6466                         if (mddev->ro != 1)
6467                                 goto done_unlock;
6468
6469                         /* transitioning to readauto need only happen for
6470                          * arrays that call md_write_start
6471                          */
6472                         if (mddev->pers) {
6473                                 err = restart_array(mddev);
6474                                 if (err == 0) {
6475                                         mddev->ro = 2;
6476                                         set_disk_ro(mddev->gendisk, 0);
6477                                 }
6478                         }
6479                         goto done_unlock;
6480         }
6481
6482         /*
6483          * The remaining ioctls are changing the state of the
6484          * superblock, so we do not allow them on read-only arrays.
6485          * However non-MD ioctls (e.g. get-size) will still come through
6486          * here and hit the 'default' below, so only disallow
6487          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6488          */
6489         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6490                 if (mddev->ro == 2) {
6491                         mddev->ro = 0;
6492                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6493                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6494                         md_wakeup_thread(mddev->thread);
6495                 } else {
6496                         err = -EROFS;
6497                         goto abort_unlock;
6498                 }
6499         }
6500
6501         switch (cmd)
6502         {
6503                 case ADD_NEW_DISK:
6504                 {
6505                         mdu_disk_info_t info;
6506                         if (copy_from_user(&info, argp, sizeof(info)))
6507                                 err = -EFAULT;
6508                         else
6509                                 err = add_new_disk(mddev, &info);
6510                         goto done_unlock;
6511                 }
6512
6513                 case HOT_REMOVE_DISK:
6514                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6515                         goto done_unlock;
6516
6517                 case HOT_ADD_DISK:
6518                         err = hot_add_disk(mddev, new_decode_dev(arg));
6519                         goto done_unlock;
6520
6521                 case SET_DISK_FAULTY:
6522                         err = set_disk_faulty(mddev, new_decode_dev(arg));
6523                         goto done_unlock;
6524
6525                 case RUN_ARRAY:
6526                         err = do_md_run(mddev);
6527                         goto done_unlock;
6528
6529                 case SET_BITMAP_FILE:
6530                         err = set_bitmap_file(mddev, (int)arg);
6531                         goto done_unlock;
6532
6533                 default:
6534                         err = -EINVAL;
6535                         goto abort_unlock;
6536         }
6537
6538 done_unlock:
6539 abort_unlock:
6540         if (mddev->hold_active == UNTIL_IOCTL &&
6541             err != -EINVAL)
6542                 mddev->hold_active = 0;
6543         mddev_unlock(mddev);
6544
6545         return err;
6546 done:
6547         if (err)
6548                 MD_BUG();
6549 abort:
6550         return err;
6551 }
6552 #ifdef CONFIG_COMPAT
6553 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6554                     unsigned int cmd, unsigned long arg)
6555 {
6556         switch (cmd) {
6557         case HOT_REMOVE_DISK:
6558         case HOT_ADD_DISK:
6559         case SET_DISK_FAULTY:
6560         case SET_BITMAP_FILE:
6561                 /* These take in integer arg, do not convert */
6562                 break;
6563         default:
6564                 arg = (unsigned long)compat_ptr(arg);
6565                 break;
6566         }
6567
6568         return md_ioctl(bdev, mode, cmd, arg);
6569 }
6570 #endif /* CONFIG_COMPAT */
6571
6572 static int md_open(struct block_device *bdev, fmode_t mode)
6573 {
6574         /*
6575          * Succeed if we can lock the mddev, which confirms that
6576          * it isn't being stopped right now.
6577          */
6578         struct mddev *mddev = mddev_find(bdev->bd_dev);
6579         int err;
6580
6581         if (!mddev)
6582                 return -ENODEV;
6583
6584         if (mddev->gendisk != bdev->bd_disk) {
6585                 /* we are racing with mddev_put which is discarding this
6586                  * bd_disk.
6587                  */
6588                 mddev_put(mddev);
6589                 /* Wait until bdev->bd_disk is definitely gone */
6590                 flush_workqueue(md_misc_wq);
6591                 /* Then retry the open from the top */
6592                 return -ERESTARTSYS;
6593         }
6594         BUG_ON(mddev != bdev->bd_disk->private_data);
6595
6596         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6597                 goto out;
6598
6599         err = 0;
6600         atomic_inc(&mddev->openers);
6601         mutex_unlock(&mddev->open_mutex);
6602
6603         check_disk_change(bdev);
6604  out:
6605         return err;
6606 }
6607
6608 static int md_release(struct gendisk *disk, fmode_t mode)
6609 {
6610         struct mddev *mddev = disk->private_data;
6611
6612         BUG_ON(!mddev);
6613         atomic_dec(&mddev->openers);
6614         mddev_put(mddev);
6615
6616         return 0;
6617 }
6618
6619 static int md_media_changed(struct gendisk *disk)
6620 {
6621         struct mddev *mddev = disk->private_data;
6622
6623         return mddev->changed;
6624 }
6625
6626 static int md_revalidate(struct gendisk *disk)
6627 {
6628         struct mddev *mddev = disk->private_data;
6629
6630         mddev->changed = 0;
6631         return 0;
6632 }
6633 static const struct block_device_operations md_fops =
6634 {
6635         .owner          = THIS_MODULE,
6636         .open           = md_open,
6637         .release        = md_release,
6638         .ioctl          = md_ioctl,
6639 #ifdef CONFIG_COMPAT
6640         .compat_ioctl   = md_compat_ioctl,
6641 #endif
6642         .getgeo         = md_getgeo,
6643         .media_changed  = md_media_changed,
6644         .revalidate_disk= md_revalidate,
6645 };
6646
6647 static int md_thread(void * arg)
6648 {
6649         struct md_thread *thread = arg;
6650
6651         /*
6652          * md_thread is a 'system-thread', it's priority should be very
6653          * high. We avoid resource deadlocks individually in each
6654          * raid personality. (RAID5 does preallocation) We also use RR and
6655          * the very same RT priority as kswapd, thus we will never get
6656          * into a priority inversion deadlock.
6657          *
6658          * we definitely have to have equal or higher priority than
6659          * bdflush, otherwise bdflush will deadlock if there are too
6660          * many dirty RAID5 blocks.
6661          */
6662
6663         allow_signal(SIGKILL);
6664         while (!kthread_should_stop()) {
6665
6666                 /* We need to wait INTERRUPTIBLE so that
6667                  * we don't add to the load-average.
6668                  * That means we need to be sure no signals are
6669                  * pending
6670                  */
6671                 if (signal_pending(current))
6672                         flush_signals(current);
6673
6674                 wait_event_interruptible_timeout
6675                         (thread->wqueue,
6676                          test_bit(THREAD_WAKEUP, &thread->flags)
6677                          || kthread_should_stop(),
6678                          thread->timeout);
6679
6680                 clear_bit(THREAD_WAKEUP, &thread->flags);
6681                 if (!kthread_should_stop())
6682                         thread->run(thread->mddev);
6683         }
6684
6685         return 0;
6686 }
6687
6688 void md_wakeup_thread(struct md_thread *thread)
6689 {
6690         if (thread) {
6691                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6692                 set_bit(THREAD_WAKEUP, &thread->flags);
6693                 wake_up(&thread->wqueue);
6694         }
6695 }
6696
6697 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6698                                  const char *name)
6699 {
6700         struct md_thread *thread;
6701
6702         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6703         if (!thread)
6704                 return NULL;
6705
6706         init_waitqueue_head(&thread->wqueue);
6707
6708         thread->run = run;
6709         thread->mddev = mddev;
6710         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6711         thread->tsk = kthread_run(md_thread, thread,
6712                                   "%s_%s",
6713                                   mdname(thread->mddev),
6714                                   name);
6715         if (IS_ERR(thread->tsk)) {
6716                 kfree(thread);
6717                 return NULL;
6718         }
6719         return thread;
6720 }
6721
6722 void md_unregister_thread(struct md_thread **threadp)
6723 {
6724         struct md_thread *thread = *threadp;
6725         if (!thread)
6726                 return;
6727         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6728         /* Locking ensures that mddev_unlock does not wake_up a
6729          * non-existent thread
6730          */
6731         spin_lock(&pers_lock);
6732         *threadp = NULL;
6733         spin_unlock(&pers_lock);
6734
6735         kthread_stop(thread->tsk);
6736         kfree(thread);
6737 }
6738
6739 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6740 {
6741         if (!mddev) {
6742                 MD_BUG();
6743                 return;
6744         }
6745
6746         if (!rdev || test_bit(Faulty, &rdev->flags))
6747                 return;
6748
6749         if (!mddev->pers || !mddev->pers->error_handler)
6750                 return;
6751         mddev->pers->error_handler(mddev,rdev);
6752         if (mddev->degraded)
6753                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6754         sysfs_notify_dirent_safe(rdev->sysfs_state);
6755         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6756         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6757         md_wakeup_thread(mddev->thread);
6758         if (mddev->event_work.func)
6759                 queue_work(md_misc_wq, &mddev->event_work);
6760         md_new_event_inintr(mddev);
6761 }
6762
6763 /* seq_file implementation /proc/mdstat */
6764
6765 static void status_unused(struct seq_file *seq)
6766 {
6767         int i = 0;
6768         struct md_rdev *rdev;
6769
6770         seq_printf(seq, "unused devices: ");
6771
6772         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6773                 char b[BDEVNAME_SIZE];
6774                 i++;
6775                 seq_printf(seq, "%s ",
6776                               bdevname(rdev->bdev,b));
6777         }
6778         if (!i)
6779                 seq_printf(seq, "<none>");
6780
6781         seq_printf(seq, "\n");
6782 }
6783
6784
6785 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6786 {
6787         sector_t max_sectors, resync, res;
6788         unsigned long dt, db;
6789         sector_t rt;
6790         int scale;
6791         unsigned int per_milli;
6792
6793         resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6794
6795         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6796             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6797                 max_sectors = mddev->resync_max_sectors;
6798         else
6799                 max_sectors = mddev->dev_sectors;
6800
6801         /*
6802          * Should not happen.
6803          */
6804         if (!max_sectors) {
6805                 MD_BUG();
6806                 return;
6807         }
6808         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6809          * in a sector_t, and (max_sectors>>scale) will fit in a
6810          * u32, as those are the requirements for sector_div.
6811          * Thus 'scale' must be at least 10
6812          */
6813         scale = 10;
6814         if (sizeof(sector_t) > sizeof(unsigned long)) {
6815                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6816                         scale++;
6817         }
6818         res = (resync>>scale)*1000;
6819         sector_div(res, (u32)((max_sectors>>scale)+1));
6820
6821         per_milli = res;
6822         {
6823                 int i, x = per_milli/50, y = 20-x;
6824                 seq_printf(seq, "[");
6825                 for (i = 0; i < x; i++)
6826                         seq_printf(seq, "=");
6827                 seq_printf(seq, ">");
6828                 for (i = 0; i < y; i++)
6829                         seq_printf(seq, ".");
6830                 seq_printf(seq, "] ");
6831         }
6832         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6833                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6834                     "reshape" :
6835                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6836                      "check" :
6837                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6838                       "resync" : "recovery"))),
6839                    per_milli/10, per_milli % 10,
6840                    (unsigned long long) resync/2,
6841                    (unsigned long long) max_sectors/2);
6842
6843         /*
6844          * dt: time from mark until now
6845          * db: blocks written from mark until now
6846          * rt: remaining time
6847          *
6848          * rt is a sector_t, so could be 32bit or 64bit.
6849          * So we divide before multiply in case it is 32bit and close
6850          * to the limit.
6851          * We scale the divisor (db) by 32 to avoid losing precision
6852          * near the end of resync when the number of remaining sectors
6853          * is close to 'db'.
6854          * We then divide rt by 32 after multiplying by db to compensate.
6855          * The '+1' avoids division by zero if db is very small.
6856          */
6857         dt = ((jiffies - mddev->resync_mark) / HZ);
6858         if (!dt) dt++;
6859         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6860                 - mddev->resync_mark_cnt;
6861
6862         rt = max_sectors - resync;    /* number of remaining sectors */
6863         sector_div(rt, db/32+1);
6864         rt *= dt;
6865         rt >>= 5;
6866
6867         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6868                    ((unsigned long)rt % 60)/6);
6869
6870         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6871 }
6872
6873 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6874 {
6875         struct list_head *tmp;
6876         loff_t l = *pos;
6877         struct mddev *mddev;
6878
6879         if (l >= 0x10000)
6880                 return NULL;
6881         if (!l--)
6882                 /* header */
6883                 return (void*)1;
6884
6885         spin_lock(&all_mddevs_lock);
6886         list_for_each(tmp,&all_mddevs)
6887                 if (!l--) {
6888                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6889                         mddev_get(mddev);
6890                         spin_unlock(&all_mddevs_lock);
6891                         return mddev;
6892                 }
6893         spin_unlock(&all_mddevs_lock);
6894         if (!l--)
6895                 return (void*)2;/* tail */
6896         return NULL;
6897 }
6898
6899 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6900 {
6901         struct list_head *tmp;
6902         struct mddev *next_mddev, *mddev = v;
6903         
6904         ++*pos;
6905         if (v == (void*)2)
6906                 return NULL;
6907
6908         spin_lock(&all_mddevs_lock);
6909         if (v == (void*)1)
6910                 tmp = all_mddevs.next;
6911         else
6912                 tmp = mddev->all_mddevs.next;
6913         if (tmp != &all_mddevs)
6914                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6915         else {
6916                 next_mddev = (void*)2;
6917                 *pos = 0x10000;
6918         }               
6919         spin_unlock(&all_mddevs_lock);
6920
6921         if (v != (void*)1)
6922                 mddev_put(mddev);
6923         return next_mddev;
6924
6925 }
6926
6927 static void md_seq_stop(struct seq_file *seq, void *v)
6928 {
6929         struct mddev *mddev = v;
6930
6931         if (mddev && v != (void*)1 && v != (void*)2)
6932                 mddev_put(mddev);
6933 }
6934
6935 static int md_seq_show(struct seq_file *seq, void *v)
6936 {
6937         struct mddev *mddev = v;
6938         sector_t sectors;
6939         struct md_rdev *rdev;
6940
6941         if (v == (void*)1) {
6942                 struct md_personality *pers;
6943                 seq_printf(seq, "Personalities : ");
6944                 spin_lock(&pers_lock);
6945                 list_for_each_entry(pers, &pers_list, list)
6946                         seq_printf(seq, "[%s] ", pers->name);
6947
6948                 spin_unlock(&pers_lock);
6949                 seq_printf(seq, "\n");
6950                 seq->poll_event = atomic_read(&md_event_count);
6951                 return 0;
6952         }
6953         if (v == (void*)2) {
6954                 status_unused(seq);
6955                 return 0;
6956         }
6957
6958         if (mddev_lock(mddev) < 0)
6959                 return -EINTR;
6960
6961         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6962                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6963                                                 mddev->pers ? "" : "in");
6964                 if (mddev->pers) {
6965                         if (mddev->ro==1)
6966                                 seq_printf(seq, " (read-only)");
6967                         if (mddev->ro==2)
6968                                 seq_printf(seq, " (auto-read-only)");
6969                         seq_printf(seq, " %s", mddev->pers->name);
6970                 }
6971
6972                 sectors = 0;
6973                 rdev_for_each(rdev, mddev) {
6974                         char b[BDEVNAME_SIZE];
6975                         seq_printf(seq, " %s[%d]",
6976                                 bdevname(rdev->bdev,b), rdev->desc_nr);
6977                         if (test_bit(WriteMostly, &rdev->flags))
6978                                 seq_printf(seq, "(W)");
6979                         if (test_bit(Faulty, &rdev->flags)) {
6980                                 seq_printf(seq, "(F)");
6981                                 continue;
6982                         }
6983                         if (rdev->raid_disk < 0)
6984                                 seq_printf(seq, "(S)"); /* spare */
6985                         if (test_bit(Replacement, &rdev->flags))
6986                                 seq_printf(seq, "(R)");
6987                         sectors += rdev->sectors;
6988                 }
6989
6990                 if (!list_empty(&mddev->disks)) {
6991                         if (mddev->pers)
6992                                 seq_printf(seq, "\n      %llu blocks",
6993                                            (unsigned long long)
6994                                            mddev->array_sectors / 2);
6995                         else
6996                                 seq_printf(seq, "\n      %llu blocks",
6997                                            (unsigned long long)sectors / 2);
6998                 }
6999                 if (mddev->persistent) {
7000                         if (mddev->major_version != 0 ||
7001                             mddev->minor_version != 90) {
7002                                 seq_printf(seq," super %d.%d",
7003                                            mddev->major_version,
7004                                            mddev->minor_version);
7005                         }
7006                 } else if (mddev->external)
7007                         seq_printf(seq, " super external:%s",
7008                                    mddev->metadata_type);
7009                 else
7010                         seq_printf(seq, " super non-persistent");
7011
7012                 if (mddev->pers) {
7013                         mddev->pers->status(seq, mddev);
7014                         seq_printf(seq, "\n      ");
7015                         if (mddev->pers->sync_request) {
7016                                 if (mddev->curr_resync > 2) {
7017                                         status_resync(seq, mddev);
7018                                         seq_printf(seq, "\n      ");
7019                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
7020                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7021                                 else if (mddev->recovery_cp < MaxSector)
7022                                         seq_printf(seq, "\tresync=PENDING\n      ");
7023                         }
7024                 } else
7025                         seq_printf(seq, "\n       ");
7026
7027                 bitmap_status(seq, mddev->bitmap);
7028
7029                 seq_printf(seq, "\n");
7030         }
7031         mddev_unlock(mddev);
7032         
7033         return 0;
7034 }
7035
7036 static const struct seq_operations md_seq_ops = {
7037         .start  = md_seq_start,
7038         .next   = md_seq_next,
7039         .stop   = md_seq_stop,
7040         .show   = md_seq_show,
7041 };
7042
7043 static int md_seq_open(struct inode *inode, struct file *file)
7044 {
7045         struct seq_file *seq;
7046         int error;
7047
7048         error = seq_open(file, &md_seq_ops);
7049         if (error)
7050                 return error;
7051
7052         seq = file->private_data;
7053         seq->poll_event = atomic_read(&md_event_count);
7054         return error;
7055 }
7056
7057 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7058 {
7059         struct seq_file *seq = filp->private_data;
7060         int mask;
7061
7062         poll_wait(filp, &md_event_waiters, wait);
7063
7064         /* always allow read */
7065         mask = POLLIN | POLLRDNORM;
7066
7067         if (seq->poll_event != atomic_read(&md_event_count))
7068                 mask |= POLLERR | POLLPRI;
7069         return mask;
7070 }
7071
7072 static const struct file_operations md_seq_fops = {
7073         .owner          = THIS_MODULE,
7074         .open           = md_seq_open,
7075         .read           = seq_read,
7076         .llseek         = seq_lseek,
7077         .release        = seq_release_private,
7078         .poll           = mdstat_poll,
7079 };
7080
7081 int register_md_personality(struct md_personality *p)
7082 {
7083         spin_lock(&pers_lock);
7084         list_add_tail(&p->list, &pers_list);
7085         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7086         spin_unlock(&pers_lock);
7087         return 0;
7088 }
7089
7090 int unregister_md_personality(struct md_personality *p)
7091 {
7092         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7093         spin_lock(&pers_lock);
7094         list_del_init(&p->list);
7095         spin_unlock(&pers_lock);
7096         return 0;
7097 }
7098
7099 static int is_mddev_idle(struct mddev *mddev, int init)
7100 {
7101         struct md_rdev * rdev;
7102         int idle;
7103         int curr_events;
7104
7105         idle = 1;
7106         rcu_read_lock();
7107         rdev_for_each_rcu(rdev, mddev) {
7108                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7109                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7110                               (int)part_stat_read(&disk->part0, sectors[1]) -
7111                               atomic_read(&disk->sync_io);
7112                 /* sync IO will cause sync_io to increase before the disk_stats
7113                  * as sync_io is counted when a request starts, and
7114                  * disk_stats is counted when it completes.
7115                  * So resync activity will cause curr_events to be smaller than
7116                  * when there was no such activity.
7117                  * non-sync IO will cause disk_stat to increase without
7118                  * increasing sync_io so curr_events will (eventually)
7119                  * be larger than it was before.  Once it becomes
7120                  * substantially larger, the test below will cause
7121                  * the array to appear non-idle, and resync will slow
7122                  * down.
7123                  * If there is a lot of outstanding resync activity when
7124                  * we set last_event to curr_events, then all that activity
7125                  * completing might cause the array to appear non-idle
7126                  * and resync will be slowed down even though there might
7127                  * not have been non-resync activity.  This will only
7128                  * happen once though.  'last_events' will soon reflect
7129                  * the state where there is little or no outstanding
7130                  * resync requests, and further resync activity will
7131                  * always make curr_events less than last_events.
7132                  *
7133                  */
7134                 if (init || curr_events - rdev->last_events > 64) {
7135                         rdev->last_events = curr_events;
7136                         idle = 0;
7137                 }
7138         }
7139         rcu_read_unlock();
7140         return idle;
7141 }
7142
7143 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7144 {
7145         /* another "blocks" (512byte) blocks have been synced */
7146         atomic_sub(blocks, &mddev->recovery_active);
7147         wake_up(&mddev->recovery_wait);
7148         if (!ok) {
7149                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7150                 md_wakeup_thread(mddev->thread);
7151                 // stop recovery, signal do_sync ....
7152         }
7153 }
7154
7155
7156 /* md_write_start(mddev, bi)
7157  * If we need to update some array metadata (e.g. 'active' flag
7158  * in superblock) before writing, schedule a superblock update
7159  * and wait for it to complete.
7160  */
7161 void md_write_start(struct mddev *mddev, struct bio *bi)
7162 {
7163         int did_change = 0;
7164         if (bio_data_dir(bi) != WRITE)
7165                 return;
7166
7167         BUG_ON(mddev->ro == 1);
7168         if (mddev->ro == 2) {
7169                 /* need to switch to read/write */
7170                 mddev->ro = 0;
7171                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7172                 md_wakeup_thread(mddev->thread);
7173                 md_wakeup_thread(mddev->sync_thread);
7174                 did_change = 1;
7175         }
7176         atomic_inc(&mddev->writes_pending);
7177         if (mddev->safemode == 1)
7178                 mddev->safemode = 0;
7179         if (mddev->in_sync) {
7180                 spin_lock_irq(&mddev->write_lock);
7181                 if (mddev->in_sync) {
7182                         mddev->in_sync = 0;
7183                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7184                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7185                         md_wakeup_thread(mddev->thread);
7186                         did_change = 1;
7187                 }
7188                 spin_unlock_irq(&mddev->write_lock);
7189         }
7190         if (did_change)
7191                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7192         wait_event(mddev->sb_wait,
7193                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7194 }
7195
7196 void md_write_end(struct mddev *mddev)
7197 {
7198         if (atomic_dec_and_test(&mddev->writes_pending)) {
7199                 if (mddev->safemode == 2)
7200                         md_wakeup_thread(mddev->thread);
7201                 else if (mddev->safemode_delay)
7202                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7203         }
7204 }
7205
7206 /* md_allow_write(mddev)
7207  * Calling this ensures that the array is marked 'active' so that writes
7208  * may proceed without blocking.  It is important to call this before
7209  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7210  * Must be called with mddev_lock held.
7211  *
7212  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7213  * is dropped, so return -EAGAIN after notifying userspace.
7214  */
7215 int md_allow_write(struct mddev *mddev)
7216 {
7217         if (!mddev->pers)
7218                 return 0;
7219         if (mddev->ro)
7220                 return 0;
7221         if (!mddev->pers->sync_request)
7222                 return 0;
7223
7224         spin_lock_irq(&mddev->write_lock);
7225         if (mddev->in_sync) {
7226                 mddev->in_sync = 0;
7227                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7228                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7229                 if (mddev->safemode_delay &&
7230                     mddev->safemode == 0)
7231                         mddev->safemode = 1;
7232                 spin_unlock_irq(&mddev->write_lock);
7233                 md_update_sb(mddev, 0);
7234                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7235         } else
7236                 spin_unlock_irq(&mddev->write_lock);
7237
7238         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7239                 return -EAGAIN;
7240         else
7241                 return 0;
7242 }
7243 EXPORT_SYMBOL_GPL(md_allow_write);
7244
7245 #define SYNC_MARKS      10
7246 #define SYNC_MARK_STEP  (3*HZ)
7247 void md_do_sync(struct mddev *mddev)
7248 {
7249         struct mddev *mddev2;
7250         unsigned int currspeed = 0,
7251                  window;
7252         sector_t max_sectors,j, io_sectors;
7253         unsigned long mark[SYNC_MARKS];
7254         sector_t mark_cnt[SYNC_MARKS];
7255         int last_mark,m;
7256         struct list_head *tmp;
7257         sector_t last_check;
7258         int skipped = 0;
7259         struct md_rdev *rdev;
7260         char *desc;
7261         struct blk_plug plug;
7262
7263         /* just incase thread restarts... */
7264         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7265                 return;
7266         if (mddev->ro) /* never try to sync a read-only array */
7267                 return;
7268
7269         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7270                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7271                         desc = "data-check";
7272                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7273                         desc = "requested-resync";
7274                 else
7275                         desc = "resync";
7276         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7277                 desc = "reshape";
7278         else
7279                 desc = "recovery";
7280
7281         /* we overload curr_resync somewhat here.
7282          * 0 == not engaged in resync at all
7283          * 2 == checking that there is no conflict with another sync
7284          * 1 == like 2, but have yielded to allow conflicting resync to
7285          *              commense
7286          * other == active in resync - this many blocks
7287          *
7288          * Before starting a resync we must have set curr_resync to
7289          * 2, and then checked that every "conflicting" array has curr_resync
7290          * less than ours.  When we find one that is the same or higher
7291          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7292          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7293          * This will mean we have to start checking from the beginning again.
7294          *
7295          */
7296
7297         do {
7298                 mddev->curr_resync = 2;
7299
7300         try_again:
7301                 if (kthread_should_stop())
7302                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7303
7304                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7305                         goto skip;
7306                 for_each_mddev(mddev2, tmp) {
7307                         if (mddev2 == mddev)
7308                                 continue;
7309                         if (!mddev->parallel_resync
7310                         &&  mddev2->curr_resync
7311                         &&  match_mddev_units(mddev, mddev2)) {
7312                                 DEFINE_WAIT(wq);
7313                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7314                                         /* arbitrarily yield */
7315                                         mddev->curr_resync = 1;
7316                                         wake_up(&resync_wait);
7317                                 }
7318                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7319                                         /* no need to wait here, we can wait the next
7320                                          * time 'round when curr_resync == 2
7321                                          */
7322                                         continue;
7323                                 /* We need to wait 'interruptible' so as not to
7324                                  * contribute to the load average, and not to
7325                                  * be caught by 'softlockup'
7326                                  */
7327                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7328                                 if (!kthread_should_stop() &&
7329                                     mddev2->curr_resync >= mddev->curr_resync) {
7330                                         printk(KERN_INFO "md: delaying %s of %s"
7331                                                " until %s has finished (they"
7332                                                " share one or more physical units)\n",
7333                                                desc, mdname(mddev), mdname(mddev2));
7334                                         mddev_put(mddev2);
7335                                         if (signal_pending(current))
7336                                                 flush_signals(current);
7337                                         schedule();
7338                                         finish_wait(&resync_wait, &wq);
7339                                         goto try_again;
7340                                 }
7341                                 finish_wait(&resync_wait, &wq);
7342                         }
7343                 }
7344         } while (mddev->curr_resync < 2);
7345
7346         j = 0;
7347         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7348                 /* resync follows the size requested by the personality,
7349                  * which defaults to physical size, but can be virtual size
7350                  */
7351                 max_sectors = mddev->resync_max_sectors;
7352                 mddev->resync_mismatches = 0;
7353                 /* we don't use the checkpoint if there's a bitmap */
7354                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7355                         j = mddev->resync_min;
7356                 else if (!mddev->bitmap)
7357                         j = mddev->recovery_cp;
7358
7359         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7360                 max_sectors = mddev->resync_max_sectors;
7361         else {
7362                 /* recovery follows the physical size of devices */
7363                 max_sectors = mddev->dev_sectors;
7364                 j = MaxSector;
7365                 rcu_read_lock();
7366                 rdev_for_each_rcu(rdev, mddev)
7367                         if (rdev->raid_disk >= 0 &&
7368                             !test_bit(Faulty, &rdev->flags) &&
7369                             !test_bit(In_sync, &rdev->flags) &&
7370                             rdev->recovery_offset < j)
7371                                 j = rdev->recovery_offset;
7372                 rcu_read_unlock();
7373         }
7374
7375         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7376         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7377                 " %d KB/sec/disk.\n", speed_min(mddev));
7378         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7379                "(but not more than %d KB/sec) for %s.\n",
7380                speed_max(mddev), desc);
7381
7382         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7383
7384         io_sectors = 0;
7385         for (m = 0; m < SYNC_MARKS; m++) {
7386                 mark[m] = jiffies;
7387                 mark_cnt[m] = io_sectors;
7388         }
7389         last_mark = 0;
7390         mddev->resync_mark = mark[last_mark];
7391         mddev->resync_mark_cnt = mark_cnt[last_mark];
7392
7393         /*
7394          * Tune reconstruction:
7395          */
7396         window = 32*(PAGE_SIZE/512);
7397         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7398                 window/2, (unsigned long long)max_sectors/2);
7399
7400         atomic_set(&mddev->recovery_active, 0);
7401         last_check = 0;
7402
7403         if (j>2) {
7404                 printk(KERN_INFO 
7405                        "md: resuming %s of %s from checkpoint.\n",
7406                        desc, mdname(mddev));
7407                 mddev->curr_resync = j;
7408         }
7409         mddev->curr_resync_completed = j;
7410
7411         blk_start_plug(&plug);
7412         while (j < max_sectors) {
7413                 sector_t sectors;
7414
7415                 skipped = 0;
7416
7417                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7418                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7419                       (mddev->curr_resync - mddev->curr_resync_completed)
7420                       > (max_sectors >> 4)) ||
7421                      (j - mddev->curr_resync_completed)*2
7422                      >= mddev->resync_max - mddev->curr_resync_completed
7423                             )) {
7424                         /* time to update curr_resync_completed */
7425                         wait_event(mddev->recovery_wait,
7426                                    atomic_read(&mddev->recovery_active) == 0);
7427                         mddev->curr_resync_completed = j;
7428                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7429                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7430                 }
7431
7432                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7433                         /* As this condition is controlled by user-space,
7434                          * we can block indefinitely, so use '_interruptible'
7435                          * to avoid triggering warnings.
7436                          */
7437                         flush_signals(current); /* just in case */
7438                         wait_event_interruptible(mddev->recovery_wait,
7439                                                  mddev->resync_max > j
7440                                                  || kthread_should_stop());
7441                 }
7442
7443                 if (kthread_should_stop())
7444                         goto interrupted;
7445
7446                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7447                                                   currspeed < speed_min(mddev));
7448                 if (sectors == 0) {
7449                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7450                         goto out;
7451                 }
7452
7453                 if (!skipped) { /* actual IO requested */
7454                         io_sectors += sectors;
7455                         atomic_add(sectors, &mddev->recovery_active);
7456                 }
7457
7458                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7459                         break;
7460
7461                 j += sectors;
7462                 if (j>1) mddev->curr_resync = j;
7463                 mddev->curr_mark_cnt = io_sectors;
7464                 if (last_check == 0)
7465                         /* this is the earliest that rebuild will be
7466                          * visible in /proc/mdstat
7467                          */
7468                         md_new_event(mddev);
7469
7470                 if (last_check + window > io_sectors || j == max_sectors)
7471                         continue;
7472
7473                 last_check = io_sectors;
7474         repeat:
7475                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7476                         /* step marks */
7477                         int next = (last_mark+1) % SYNC_MARKS;
7478
7479                         mddev->resync_mark = mark[next];
7480                         mddev->resync_mark_cnt = mark_cnt[next];
7481                         mark[next] = jiffies;
7482                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7483                         last_mark = next;
7484                 }
7485
7486
7487                 if (kthread_should_stop())
7488                         goto interrupted;
7489
7490
7491                 /*
7492                  * this loop exits only if either when we are slower than
7493                  * the 'hard' speed limit, or the system was IO-idle for
7494                  * a jiffy.
7495                  * the system might be non-idle CPU-wise, but we only care
7496                  * about not overloading the IO subsystem. (things like an
7497                  * e2fsck being done on the RAID array should execute fast)
7498                  */
7499                 cond_resched();
7500
7501                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7502                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7503
7504                 if (currspeed > speed_min(mddev)) {
7505                         if ((currspeed > speed_max(mddev)) ||
7506                                         !is_mddev_idle(mddev, 0)) {
7507                                 msleep(500);
7508                                 goto repeat;
7509                         }
7510                 }
7511         }
7512         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7513         /*
7514          * this also signals 'finished resyncing' to md_stop
7515          */
7516  out:
7517         blk_finish_plug(&plug);
7518         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7519
7520         /* tell personality that we are finished */
7521         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7522
7523         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7524             mddev->curr_resync > 2) {
7525                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7526                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7527                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7528                                         printk(KERN_INFO
7529                                                "md: checkpointing %s of %s.\n",
7530                                                desc, mdname(mddev));
7531                                         mddev->recovery_cp =
7532                                                 mddev->curr_resync_completed;
7533                                 }
7534                         } else
7535                                 mddev->recovery_cp = MaxSector;
7536                 } else {
7537                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7538                                 mddev->curr_resync = MaxSector;
7539                         rcu_read_lock();
7540                         rdev_for_each_rcu(rdev, mddev)
7541                                 if (rdev->raid_disk >= 0 &&
7542                                     mddev->delta_disks >= 0 &&
7543                                     !test_bit(Faulty, &rdev->flags) &&
7544                                     !test_bit(In_sync, &rdev->flags) &&
7545                                     rdev->recovery_offset < mddev->curr_resync)
7546                                         rdev->recovery_offset = mddev->curr_resync;
7547                         rcu_read_unlock();
7548                 }
7549         }
7550  skip:
7551         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7552
7553         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7554                 /* We completed so min/max setting can be forgotten if used. */
7555                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7556                         mddev->resync_min = 0;
7557                 mddev->resync_max = MaxSector;
7558         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7559                 mddev->resync_min = mddev->curr_resync_completed;
7560         mddev->curr_resync = 0;
7561         wake_up(&resync_wait);
7562         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7563         md_wakeup_thread(mddev->thread);
7564         return;
7565
7566  interrupted:
7567         /*
7568          * got a signal, exit.
7569          */
7570         printk(KERN_INFO
7571                "md: md_do_sync() got signal ... exiting\n");
7572         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7573         goto out;
7574
7575 }
7576 EXPORT_SYMBOL_GPL(md_do_sync);
7577
7578 static int remove_and_add_spares(struct mddev *mddev)
7579 {
7580         struct md_rdev *rdev;
7581         int spares = 0;
7582         int removed = 0;
7583
7584         mddev->curr_resync_completed = 0;
7585
7586         rdev_for_each(rdev, mddev)
7587                 if (rdev->raid_disk >= 0 &&
7588                     !test_bit(Blocked, &rdev->flags) &&
7589                     (test_bit(Faulty, &rdev->flags) ||
7590                      ! test_bit(In_sync, &rdev->flags)) &&
7591                     atomic_read(&rdev->nr_pending)==0) {
7592                         if (mddev->pers->hot_remove_disk(
7593                                     mddev, rdev) == 0) {
7594                                 sysfs_unlink_rdev(mddev, rdev);
7595                                 rdev->raid_disk = -1;
7596                                 removed++;
7597                         }
7598                 }
7599         if (removed)
7600                 sysfs_notify(&mddev->kobj, NULL,
7601                              "degraded");
7602
7603
7604         rdev_for_each(rdev, mddev) {
7605                 if (rdev->raid_disk >= 0 &&
7606                     !test_bit(In_sync, &rdev->flags) &&
7607                     !test_bit(Faulty, &rdev->flags))
7608                         spares++;
7609                 if (rdev->raid_disk < 0
7610                     && !test_bit(Faulty, &rdev->flags)) {
7611                         rdev->recovery_offset = 0;
7612                         if (mddev->pers->
7613                             hot_add_disk(mddev, rdev) == 0) {
7614                                 if (sysfs_link_rdev(mddev, rdev))
7615                                         /* failure here is OK */;
7616                                 spares++;
7617                                 md_new_event(mddev);
7618                                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7619                         }
7620                 }
7621         }
7622         return spares;
7623 }
7624
7625 static void reap_sync_thread(struct mddev *mddev)
7626 {
7627         struct md_rdev *rdev;
7628
7629         /* resync has finished, collect result */
7630         md_unregister_thread(&mddev->sync_thread);
7631         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7632             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7633                 /* success...*/
7634                 /* activate any spares */
7635                 if (mddev->pers->spare_active(mddev))
7636                         sysfs_notify(&mddev->kobj, NULL,
7637                                      "degraded");
7638         }
7639         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7640             mddev->pers->finish_reshape)
7641                 mddev->pers->finish_reshape(mddev);
7642
7643         /* If array is no-longer degraded, then any saved_raid_disk
7644          * information must be scrapped.  Also if any device is now
7645          * In_sync we must scrape the saved_raid_disk for that device
7646          * do the superblock for an incrementally recovered device
7647          * written out.
7648          */
7649         rdev_for_each(rdev, mddev)
7650                 if (!mddev->degraded ||
7651                     test_bit(In_sync, &rdev->flags))
7652                         rdev->saved_raid_disk = -1;
7653
7654         md_update_sb(mddev, 1);
7655         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7656         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7657         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7658         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7659         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7660         /* flag recovery needed just to double check */
7661         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7662         sysfs_notify_dirent_safe(mddev->sysfs_action);
7663         md_new_event(mddev);
7664         if (mddev->event_work.func)
7665                 queue_work(md_misc_wq, &mddev->event_work);
7666 }
7667
7668 /*
7669  * This routine is regularly called by all per-raid-array threads to
7670  * deal with generic issues like resync and super-block update.
7671  * Raid personalities that don't have a thread (linear/raid0) do not
7672  * need this as they never do any recovery or update the superblock.
7673  *
7674  * It does not do any resync itself, but rather "forks" off other threads
7675  * to do that as needed.
7676  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7677  * "->recovery" and create a thread at ->sync_thread.
7678  * When the thread finishes it sets MD_RECOVERY_DONE
7679  * and wakeups up this thread which will reap the thread and finish up.
7680  * This thread also removes any faulty devices (with nr_pending == 0).
7681  *
7682  * The overall approach is:
7683  *  1/ if the superblock needs updating, update it.
7684  *  2/ If a recovery thread is running, don't do anything else.
7685  *  3/ If recovery has finished, clean up, possibly marking spares active.
7686  *  4/ If there are any faulty devices, remove them.
7687  *  5/ If array is degraded, try to add spares devices
7688  *  6/ If array has spares or is not in-sync, start a resync thread.
7689  */
7690 void md_check_recovery(struct mddev *mddev)
7691 {
7692         if (mddev->suspended)
7693                 return;
7694
7695         if (mddev->bitmap)
7696                 bitmap_daemon_work(mddev);
7697
7698         if (signal_pending(current)) {
7699                 if (mddev->pers->sync_request && !mddev->external) {
7700                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7701                                mdname(mddev));
7702                         mddev->safemode = 2;
7703                 }
7704                 flush_signals(current);
7705         }
7706
7707         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7708                 return;
7709         if ( ! (
7710                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7711                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7712                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7713                 (mddev->external == 0 && mddev->safemode == 1) ||
7714                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7715                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7716                 ))
7717                 return;
7718
7719         if (mddev_trylock(mddev)) {
7720                 int spares = 0;
7721
7722                 if (mddev->ro) {
7723                         /* Only thing we do on a ro array is remove
7724                          * failed devices.
7725                          */
7726                         struct md_rdev *rdev;
7727                         rdev_for_each(rdev, mddev)
7728                                 if (rdev->raid_disk >= 0 &&
7729                                     !test_bit(Blocked, &rdev->flags) &&
7730                                     test_bit(Faulty, &rdev->flags) &&
7731                                     atomic_read(&rdev->nr_pending)==0) {
7732                                         if (mddev->pers->hot_remove_disk(
7733                                                     mddev, rdev) == 0) {
7734                                                 sysfs_unlink_rdev(mddev, rdev);
7735                                                 rdev->raid_disk = -1;
7736                                         }
7737                                 }
7738                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7739                         goto unlock;
7740                 }
7741
7742                 if (!mddev->external) {
7743                         int did_change = 0;
7744                         spin_lock_irq(&mddev->write_lock);
7745                         if (mddev->safemode &&
7746                             !atomic_read(&mddev->writes_pending) &&
7747                             !mddev->in_sync &&
7748                             mddev->recovery_cp == MaxSector) {
7749                                 mddev->in_sync = 1;
7750                                 did_change = 1;
7751                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7752                         }
7753                         if (mddev->safemode == 1)
7754                                 mddev->safemode = 0;
7755                         spin_unlock_irq(&mddev->write_lock);
7756                         if (did_change)
7757                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7758                 }
7759
7760                 if (mddev->flags)
7761                         md_update_sb(mddev, 0);
7762
7763                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7764                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7765                         /* resync/recovery still happening */
7766                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7767                         goto unlock;
7768                 }
7769                 if (mddev->sync_thread) {
7770                         reap_sync_thread(mddev);
7771                         goto unlock;
7772                 }
7773                 /* Set RUNNING before clearing NEEDED to avoid
7774                  * any transients in the value of "sync_action".
7775                  */
7776                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7777                 /* Clear some bits that don't mean anything, but
7778                  * might be left set
7779                  */
7780                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7781                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7782
7783                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7784                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7785                         goto unlock;
7786                 /* no recovery is running.
7787                  * remove any failed drives, then
7788                  * add spares if possible.
7789                  * Spare are also removed and re-added, to allow
7790                  * the personality to fail the re-add.
7791                  */
7792
7793                 if (mddev->reshape_position != MaxSector) {
7794                         if (mddev->pers->check_reshape == NULL ||
7795                             mddev->pers->check_reshape(mddev) != 0)
7796                                 /* Cannot proceed */
7797                                 goto unlock;
7798                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7799                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7800                 } else if ((spares = remove_and_add_spares(mddev))) {
7801                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7802                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7803                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7804                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7805                 } else if (mddev->recovery_cp < MaxSector) {
7806                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7807                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7808                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7809                         /* nothing to be done ... */
7810                         goto unlock;
7811
7812                 if (mddev->pers->sync_request) {
7813                         if (spares) {
7814                                 /* We are adding a device or devices to an array
7815                                  * which has the bitmap stored on all devices.
7816                                  * So make sure all bitmap pages get written
7817                                  */
7818                                 bitmap_write_all(mddev->bitmap);
7819                         }
7820                         mddev->sync_thread = md_register_thread(md_do_sync,
7821                                                                 mddev,
7822                                                                 "resync");
7823                         if (!mddev->sync_thread) {
7824                                 printk(KERN_ERR "%s: could not start resync"
7825                                         " thread...\n", 
7826                                         mdname(mddev));
7827                                 /* leave the spares where they are, it shouldn't hurt */
7828                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7829                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7830                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7831                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7832                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7833                         } else
7834                                 md_wakeup_thread(mddev->sync_thread);
7835                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7836                         md_new_event(mddev);
7837                 }
7838         unlock:
7839                 if (!mddev->sync_thread) {
7840                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7841                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7842                                                &mddev->recovery))
7843                                 if (mddev->sysfs_action)
7844                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7845                 }
7846                 mddev_unlock(mddev);
7847         }
7848 }
7849
7850 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7851 {
7852         sysfs_notify_dirent_safe(rdev->sysfs_state);
7853         wait_event_timeout(rdev->blocked_wait,
7854                            !test_bit(Blocked, &rdev->flags) &&
7855                            !test_bit(BlockedBadBlocks, &rdev->flags),
7856                            msecs_to_jiffies(5000));
7857         rdev_dec_pending(rdev, mddev);
7858 }
7859 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7860
7861 void md_finish_reshape(struct mddev *mddev)
7862 {
7863         /* called be personality module when reshape completes. */
7864         struct md_rdev *rdev;
7865
7866         rdev_for_each(rdev, mddev) {
7867                 if (rdev->data_offset > rdev->new_data_offset)
7868                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7869                 else
7870                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7871                 rdev->data_offset = rdev->new_data_offset;
7872         }
7873 }
7874 EXPORT_SYMBOL(md_finish_reshape);
7875
7876 /* Bad block management.
7877  * We can record which blocks on each device are 'bad' and so just
7878  * fail those blocks, or that stripe, rather than the whole device.
7879  * Entries in the bad-block table are 64bits wide.  This comprises:
7880  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7881  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7882  *  A 'shift' can be set so that larger blocks are tracked and
7883  *  consequently larger devices can be covered.
7884  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7885  *
7886  * Locking of the bad-block table uses a seqlock so md_is_badblock
7887  * might need to retry if it is very unlucky.
7888  * We will sometimes want to check for bad blocks in a bi_end_io function,
7889  * so we use the write_seqlock_irq variant.
7890  *
7891  * When looking for a bad block we specify a range and want to
7892  * know if any block in the range is bad.  So we binary-search
7893  * to the last range that starts at-or-before the given endpoint,
7894  * (or "before the sector after the target range")
7895  * then see if it ends after the given start.
7896  * We return
7897  *  0 if there are no known bad blocks in the range
7898  *  1 if there are known bad block which are all acknowledged
7899  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7900  * plus the start/length of the first bad section we overlap.
7901  */
7902 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7903                    sector_t *first_bad, int *bad_sectors)
7904 {
7905         int hi;
7906         int lo = 0;
7907         u64 *p = bb->page;
7908         int rv = 0;
7909         sector_t target = s + sectors;
7910         unsigned seq;
7911
7912         if (bb->shift > 0) {
7913                 /* round the start down, and the end up */
7914                 s >>= bb->shift;
7915                 target += (1<<bb->shift) - 1;
7916                 target >>= bb->shift;
7917                 sectors = target - s;
7918         }
7919         /* 'target' is now the first block after the bad range */
7920
7921 retry:
7922         seq = read_seqbegin(&bb->lock);
7923
7924         hi = bb->count;
7925
7926         /* Binary search between lo and hi for 'target'
7927          * i.e. for the last range that starts before 'target'
7928          */
7929         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7930          * are known not to be the last range before target.
7931          * VARIANT: hi-lo is the number of possible
7932          * ranges, and decreases until it reaches 1
7933          */
7934         while (hi - lo > 1) {
7935                 int mid = (lo + hi) / 2;
7936                 sector_t a = BB_OFFSET(p[mid]);
7937                 if (a < target)
7938                         /* This could still be the one, earlier ranges
7939                          * could not. */
7940                         lo = mid;
7941                 else
7942                         /* This and later ranges are definitely out. */
7943                         hi = mid;
7944         }
7945         /* 'lo' might be the last that started before target, but 'hi' isn't */
7946         if (hi > lo) {
7947                 /* need to check all range that end after 's' to see if
7948                  * any are unacknowledged.
7949                  */
7950                 while (lo >= 0 &&
7951                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7952                         if (BB_OFFSET(p[lo]) < target) {
7953                                 /* starts before the end, and finishes after
7954                                  * the start, so they must overlap
7955                                  */
7956                                 if (rv != -1 && BB_ACK(p[lo]))
7957                                         rv = 1;
7958                                 else
7959                                         rv = -1;
7960                                 *first_bad = BB_OFFSET(p[lo]);
7961                                 *bad_sectors = BB_LEN(p[lo]);
7962                         }
7963                         lo--;
7964                 }
7965         }
7966
7967         if (read_seqretry(&bb->lock, seq))
7968                 goto retry;
7969
7970         return rv;
7971 }
7972 EXPORT_SYMBOL_GPL(md_is_badblock);
7973
7974 /*
7975  * Add a range of bad blocks to the table.
7976  * This might extend the table, or might contract it
7977  * if two adjacent ranges can be merged.
7978  * We binary-search to find the 'insertion' point, then
7979  * decide how best to handle it.
7980  */
7981 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7982                             int acknowledged)
7983 {
7984         u64 *p;
7985         int lo, hi;
7986         int rv = 1;
7987
7988         if (bb->shift < 0)
7989                 /* badblocks are disabled */
7990                 return 0;
7991
7992         if (bb->shift) {
7993                 /* round the start down, and the end up */
7994                 sector_t next = s + sectors;
7995                 s >>= bb->shift;
7996                 next += (1<<bb->shift) - 1;
7997                 next >>= bb->shift;
7998                 sectors = next - s;
7999         }
8000
8001         write_seqlock_irq(&bb->lock);
8002
8003         p = bb->page;
8004         lo = 0;
8005         hi = bb->count;
8006         /* Find the last range that starts at-or-before 's' */
8007         while (hi - lo > 1) {
8008                 int mid = (lo + hi) / 2;
8009                 sector_t a = BB_OFFSET(p[mid]);
8010                 if (a <= s)
8011                         lo = mid;
8012                 else
8013                         hi = mid;
8014         }
8015         if (hi > lo && BB_OFFSET(p[lo]) > s)
8016                 hi = lo;
8017
8018         if (hi > lo) {
8019                 /* we found a range that might merge with the start
8020                  * of our new range
8021                  */
8022                 sector_t a = BB_OFFSET(p[lo]);
8023                 sector_t e = a + BB_LEN(p[lo]);
8024                 int ack = BB_ACK(p[lo]);
8025                 if (e >= s) {
8026                         /* Yes, we can merge with a previous range */
8027                         if (s == a && s + sectors >= e)
8028                                 /* new range covers old */
8029                                 ack = acknowledged;
8030                         else
8031                                 ack = ack && acknowledged;
8032
8033                         if (e < s + sectors)
8034                                 e = s + sectors;
8035                         if (e - a <= BB_MAX_LEN) {
8036                                 p[lo] = BB_MAKE(a, e-a, ack);
8037                                 s = e;
8038                         } else {
8039                                 /* does not all fit in one range,
8040                                  * make p[lo] maximal
8041                                  */
8042                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8043                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8044                                 s = a + BB_MAX_LEN;
8045                         }
8046                         sectors = e - s;
8047                 }
8048         }
8049         if (sectors && hi < bb->count) {
8050                 /* 'hi' points to the first range that starts after 's'.
8051                  * Maybe we can merge with the start of that range */
8052                 sector_t a = BB_OFFSET(p[hi]);
8053                 sector_t e = a + BB_LEN(p[hi]);
8054                 int ack = BB_ACK(p[hi]);
8055                 if (a <= s + sectors) {
8056                         /* merging is possible */
8057                         if (e <= s + sectors) {
8058                                 /* full overlap */
8059                                 e = s + sectors;
8060                                 ack = acknowledged;
8061                         } else
8062                                 ack = ack && acknowledged;
8063
8064                         a = s;
8065                         if (e - a <= BB_MAX_LEN) {
8066                                 p[hi] = BB_MAKE(a, e-a, ack);
8067                                 s = e;
8068                         } else {
8069                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8070                                 s = a + BB_MAX_LEN;
8071                         }
8072                         sectors = e - s;
8073                         lo = hi;
8074                         hi++;
8075                 }
8076         }
8077         if (sectors == 0 && hi < bb->count) {
8078                 /* we might be able to combine lo and hi */
8079                 /* Note: 's' is at the end of 'lo' */
8080                 sector_t a = BB_OFFSET(p[hi]);
8081                 int lolen = BB_LEN(p[lo]);
8082                 int hilen = BB_LEN(p[hi]);
8083                 int newlen = lolen + hilen - (s - a);
8084                 if (s >= a && newlen < BB_MAX_LEN) {
8085                         /* yes, we can combine them */
8086                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8087                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8088                         memmove(p + hi, p + hi + 1,
8089                                 (bb->count - hi - 1) * 8);
8090                         bb->count--;
8091                 }
8092         }
8093         while (sectors) {
8094                 /* didn't merge (it all).
8095                  * Need to add a range just before 'hi' */
8096                 if (bb->count >= MD_MAX_BADBLOCKS) {
8097                         /* No room for more */
8098                         rv = 0;
8099                         break;
8100                 } else {
8101                         int this_sectors = sectors;
8102                         memmove(p + hi + 1, p + hi,
8103                                 (bb->count - hi) * 8);
8104                         bb->count++;
8105
8106                         if (this_sectors > BB_MAX_LEN)
8107                                 this_sectors = BB_MAX_LEN;
8108                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8109                         sectors -= this_sectors;
8110                         s += this_sectors;
8111                 }
8112         }
8113
8114         bb->changed = 1;
8115         if (!acknowledged)
8116                 bb->unacked_exist = 1;
8117         write_sequnlock_irq(&bb->lock);
8118
8119         return rv;
8120 }
8121
8122 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8123                        int is_new)
8124 {
8125         int rv;
8126         if (is_new)
8127                 s += rdev->new_data_offset;
8128         else
8129                 s += rdev->data_offset;
8130         rv = md_set_badblocks(&rdev->badblocks,
8131                               s, sectors, 0);
8132         if (rv) {
8133                 /* Make sure they get written out promptly */
8134                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8135                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8136                 md_wakeup_thread(rdev->mddev->thread);
8137         }
8138         return rv;
8139 }
8140 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8141
8142 /*
8143  * Remove a range of bad blocks from the table.
8144  * This may involve extending the table if we spilt a region,
8145  * but it must not fail.  So if the table becomes full, we just
8146  * drop the remove request.
8147  */
8148 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8149 {
8150         u64 *p;
8151         int lo, hi;
8152         sector_t target = s + sectors;
8153         int rv = 0;
8154
8155         if (bb->shift > 0) {
8156                 /* When clearing we round the start up and the end down.
8157                  * This should not matter as the shift should align with
8158                  * the block size and no rounding should ever be needed.
8159                  * However it is better the think a block is bad when it
8160                  * isn't than to think a block is not bad when it is.
8161                  */
8162                 s += (1<<bb->shift) - 1;
8163                 s >>= bb->shift;
8164                 target >>= bb->shift;
8165                 sectors = target - s;
8166         }
8167
8168         write_seqlock_irq(&bb->lock);
8169
8170         p = bb->page;
8171         lo = 0;
8172         hi = bb->count;
8173         /* Find the last range that starts before 'target' */
8174         while (hi - lo > 1) {
8175                 int mid = (lo + hi) / 2;
8176                 sector_t a = BB_OFFSET(p[mid]);
8177                 if (a < target)
8178                         lo = mid;
8179                 else
8180                         hi = mid;
8181         }
8182         if (hi > lo) {
8183                 /* p[lo] is the last range that could overlap the
8184                  * current range.  Earlier ranges could also overlap,
8185                  * but only this one can overlap the end of the range.
8186                  */
8187                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8188                         /* Partial overlap, leave the tail of this range */
8189                         int ack = BB_ACK(p[lo]);
8190                         sector_t a = BB_OFFSET(p[lo]);
8191                         sector_t end = a + BB_LEN(p[lo]);
8192
8193                         if (a < s) {
8194                                 /* we need to split this range */
8195                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8196                                         rv = 0;
8197                                         goto out;
8198                                 }
8199                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8200                                 bb->count++;
8201                                 p[lo] = BB_MAKE(a, s-a, ack);
8202                                 lo++;
8203                         }
8204                         p[lo] = BB_MAKE(target, end - target, ack);
8205                         /* there is no longer an overlap */
8206                         hi = lo;
8207                         lo--;
8208                 }
8209                 while (lo >= 0 &&
8210                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8211                         /* This range does overlap */
8212                         if (BB_OFFSET(p[lo]) < s) {
8213                                 /* Keep the early parts of this range. */
8214                                 int ack = BB_ACK(p[lo]);
8215                                 sector_t start = BB_OFFSET(p[lo]);
8216                                 p[lo] = BB_MAKE(start, s - start, ack);
8217                                 /* now low doesn't overlap, so.. */
8218                                 break;
8219                         }
8220                         lo--;
8221                 }
8222                 /* 'lo' is strictly before, 'hi' is strictly after,
8223                  * anything between needs to be discarded
8224                  */
8225                 if (hi - lo > 1) {
8226                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8227                         bb->count -= (hi - lo - 1);
8228                 }
8229         }
8230
8231         bb->changed = 1;
8232 out:
8233         write_sequnlock_irq(&bb->lock);
8234         return rv;
8235 }
8236
8237 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8238                          int is_new)
8239 {
8240         if (is_new)
8241                 s += rdev->new_data_offset;
8242         else
8243                 s += rdev->data_offset;
8244         return md_clear_badblocks(&rdev->badblocks,
8245                                   s, sectors);
8246 }
8247 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8248
8249 /*
8250  * Acknowledge all bad blocks in a list.
8251  * This only succeeds if ->changed is clear.  It is used by
8252  * in-kernel metadata updates
8253  */
8254 void md_ack_all_badblocks(struct badblocks *bb)
8255 {
8256         if (bb->page == NULL || bb->changed)
8257                 /* no point even trying */
8258                 return;
8259         write_seqlock_irq(&bb->lock);
8260
8261         if (bb->changed == 0 && bb->unacked_exist) {
8262                 u64 *p = bb->page;
8263                 int i;
8264                 for (i = 0; i < bb->count ; i++) {
8265                         if (!BB_ACK(p[i])) {
8266                                 sector_t start = BB_OFFSET(p[i]);
8267                                 int len = BB_LEN(p[i]);
8268                                 p[i] = BB_MAKE(start, len, 1);
8269                         }
8270                 }
8271                 bb->unacked_exist = 0;
8272         }
8273         write_sequnlock_irq(&bb->lock);
8274 }
8275 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8276
8277 /* sysfs access to bad-blocks list.
8278  * We present two files.
8279  * 'bad-blocks' lists sector numbers and lengths of ranges that
8280  *    are recorded as bad.  The list is truncated to fit within
8281  *    the one-page limit of sysfs.
8282  *    Writing "sector length" to this file adds an acknowledged
8283  *    bad block list.
8284  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8285  *    been acknowledged.  Writing to this file adds bad blocks
8286  *    without acknowledging them.  This is largely for testing.
8287  */
8288
8289 static ssize_t
8290 badblocks_show(struct badblocks *bb, char *page, int unack)
8291 {
8292         size_t len;
8293         int i;
8294         u64 *p = bb->page;
8295         unsigned seq;
8296
8297         if (bb->shift < 0)
8298                 return 0;
8299
8300 retry:
8301         seq = read_seqbegin(&bb->lock);
8302
8303         len = 0;
8304         i = 0;
8305
8306         while (len < PAGE_SIZE && i < bb->count) {
8307                 sector_t s = BB_OFFSET(p[i]);
8308                 unsigned int length = BB_LEN(p[i]);
8309                 int ack = BB_ACK(p[i]);
8310                 i++;
8311
8312                 if (unack && ack)
8313                         continue;
8314
8315                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8316                                 (unsigned long long)s << bb->shift,
8317                                 length << bb->shift);
8318         }
8319         if (unack && len == 0)
8320                 bb->unacked_exist = 0;
8321
8322         if (read_seqretry(&bb->lock, seq))
8323                 goto retry;
8324
8325         return len;
8326 }
8327
8328 #define DO_DEBUG 1
8329
8330 static ssize_t
8331 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8332 {
8333         unsigned long long sector;
8334         int length;
8335         char newline;
8336 #ifdef DO_DEBUG
8337         /* Allow clearing via sysfs *only* for testing/debugging.
8338          * Normally only a successful write may clear a badblock
8339          */
8340         int clear = 0;
8341         if (page[0] == '-') {
8342                 clear = 1;
8343                 page++;
8344         }
8345 #endif /* DO_DEBUG */
8346
8347         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8348         case 3:
8349                 if (newline != '\n')
8350                         return -EINVAL;
8351         case 2:
8352                 if (length <= 0)
8353                         return -EINVAL;
8354                 break;
8355         default:
8356                 return -EINVAL;
8357         }
8358
8359 #ifdef DO_DEBUG
8360         if (clear) {
8361                 md_clear_badblocks(bb, sector, length);
8362                 return len;
8363         }
8364 #endif /* DO_DEBUG */
8365         if (md_set_badblocks(bb, sector, length, !unack))
8366                 return len;
8367         else
8368                 return -ENOSPC;
8369 }
8370
8371 static int md_notify_reboot(struct notifier_block *this,
8372                             unsigned long code, void *x)
8373 {
8374         struct list_head *tmp;
8375         struct mddev *mddev;
8376         int need_delay = 0;
8377
8378         for_each_mddev(mddev, tmp) {
8379                 if (mddev_trylock(mddev)) {
8380                         if (mddev->pers)
8381                                 __md_stop_writes(mddev);
8382                         mddev->safemode = 2;
8383                         mddev_unlock(mddev);
8384                 }
8385                 need_delay = 1;
8386         }
8387         /*
8388          * certain more exotic SCSI devices are known to be
8389          * volatile wrt too early system reboots. While the
8390          * right place to handle this issue is the given
8391          * driver, we do want to have a safe RAID driver ...
8392          */
8393         if (need_delay)
8394                 mdelay(1000*1);
8395
8396         return NOTIFY_DONE;
8397 }
8398
8399 static struct notifier_block md_notifier = {
8400         .notifier_call  = md_notify_reboot,
8401         .next           = NULL,
8402         .priority       = INT_MAX, /* before any real devices */
8403 };
8404
8405 static void md_geninit(void)
8406 {
8407         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8408
8409         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8410 }
8411
8412 static int __init md_init(void)
8413 {
8414         int ret = -ENOMEM;
8415
8416         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8417         if (!md_wq)
8418                 goto err_wq;
8419
8420         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8421         if (!md_misc_wq)
8422                 goto err_misc_wq;
8423
8424         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8425                 goto err_md;
8426
8427         if ((ret = register_blkdev(0, "mdp")) < 0)
8428                 goto err_mdp;
8429         mdp_major = ret;
8430
8431         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8432                             md_probe, NULL, NULL);
8433         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8434                             md_probe, NULL, NULL);
8435
8436         register_reboot_notifier(&md_notifier);
8437         raid_table_header = register_sysctl_table(raid_root_table);
8438
8439         md_geninit();
8440         return 0;
8441
8442 err_mdp:
8443         unregister_blkdev(MD_MAJOR, "md");
8444 err_md:
8445         destroy_workqueue(md_misc_wq);
8446 err_misc_wq:
8447         destroy_workqueue(md_wq);
8448 err_wq:
8449         return ret;
8450 }
8451
8452 #ifndef MODULE
8453
8454 /*
8455  * Searches all registered partitions for autorun RAID arrays
8456  * at boot time.
8457  */
8458
8459 static LIST_HEAD(all_detected_devices);
8460 struct detected_devices_node {
8461         struct list_head list;
8462         dev_t dev;
8463 };
8464
8465 void md_autodetect_dev(dev_t dev)
8466 {
8467         struct detected_devices_node *node_detected_dev;
8468
8469         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8470         if (node_detected_dev) {
8471                 node_detected_dev->dev = dev;
8472                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8473         } else {
8474                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8475                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8476         }
8477 }
8478
8479
8480 static void autostart_arrays(int part)
8481 {
8482         struct md_rdev *rdev;
8483         struct detected_devices_node *node_detected_dev;
8484         dev_t dev;
8485         int i_scanned, i_passed;
8486
8487         i_scanned = 0;
8488         i_passed = 0;
8489
8490         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8491
8492         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8493                 i_scanned++;
8494                 node_detected_dev = list_entry(all_detected_devices.next,
8495                                         struct detected_devices_node, list);
8496                 list_del(&node_detected_dev->list);
8497                 dev = node_detected_dev->dev;
8498                 kfree(node_detected_dev);
8499                 rdev = md_import_device(dev,0, 90);
8500                 if (IS_ERR(rdev))
8501                         continue;
8502
8503                 if (test_bit(Faulty, &rdev->flags)) {
8504                         MD_BUG();
8505                         continue;
8506                 }
8507                 set_bit(AutoDetected, &rdev->flags);
8508                 list_add(&rdev->same_set, &pending_raid_disks);
8509                 i_passed++;
8510         }
8511
8512         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8513                                                 i_scanned, i_passed);
8514
8515         autorun_devices(part);
8516 }
8517
8518 #endif /* !MODULE */
8519
8520 static __exit void md_exit(void)
8521 {
8522         struct mddev *mddev;
8523         struct list_head *tmp;
8524
8525         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8526         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8527
8528         unregister_blkdev(MD_MAJOR,"md");
8529         unregister_blkdev(mdp_major, "mdp");
8530         unregister_reboot_notifier(&md_notifier);
8531         unregister_sysctl_table(raid_table_header);
8532         remove_proc_entry("mdstat", NULL);
8533         for_each_mddev(mddev, tmp) {
8534                 export_array(mddev);
8535                 mddev->hold_active = 0;
8536         }
8537         destroy_workqueue(md_misc_wq);
8538         destroy_workqueue(md_wq);
8539 }
8540
8541 subsys_initcall(md_init);
8542 module_exit(md_exit)
8543
8544 static int get_ro(char *buffer, struct kernel_param *kp)
8545 {
8546         return sprintf(buffer, "%d", start_readonly);
8547 }
8548 static int set_ro(const char *val, struct kernel_param *kp)
8549 {
8550         char *e;
8551         int num = simple_strtoul(val, &e, 10);
8552         if (*val && (*e == '\0' || *e == '\n')) {
8553                 start_readonly = num;
8554                 return 0;
8555         }
8556         return -EINVAL;
8557 }
8558
8559 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8560 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8561
8562 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8563
8564 EXPORT_SYMBOL(register_md_personality);
8565 EXPORT_SYMBOL(unregister_md_personality);
8566 EXPORT_SYMBOL(md_error);
8567 EXPORT_SYMBOL(md_done_sync);
8568 EXPORT_SYMBOL(md_write_start);
8569 EXPORT_SYMBOL(md_write_end);
8570 EXPORT_SYMBOL(md_register_thread);
8571 EXPORT_SYMBOL(md_unregister_thread);
8572 EXPORT_SYMBOL(md_wakeup_thread);
8573 EXPORT_SYMBOL(md_check_recovery);
8574 MODULE_LICENSE("GPL");
8575 MODULE_DESCRIPTION("MD RAID framework");
8576 MODULE_ALIAS("md");
8577 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);