Merge branch 'work.xattr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[cascardo/linux.git] / drivers / md / persistent-data / dm-btree.c
1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-btree-internal.h"
8 #include "dm-space-map.h"
9 #include "dm-transaction-manager.h"
10
11 #include <linux/export.h>
12 #include <linux/device-mapper.h>
13
14 #define DM_MSG_PREFIX "btree"
15
16 /*----------------------------------------------------------------
17  * Array manipulation
18  *--------------------------------------------------------------*/
19 static void memcpy_disk(void *dest, const void *src, size_t len)
20         __dm_written_to_disk(src)
21 {
22         memcpy(dest, src, len);
23         __dm_unbless_for_disk(src);
24 }
25
26 static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
27                          unsigned index, void *elt)
28         __dm_written_to_disk(elt)
29 {
30         if (index < nr_elts)
31                 memmove(base + (elt_size * (index + 1)),
32                         base + (elt_size * index),
33                         (nr_elts - index) * elt_size);
34
35         memcpy_disk(base + (elt_size * index), elt, elt_size);
36 }
37
38 /*----------------------------------------------------------------*/
39
40 /* makes the assumption that no two keys are the same. */
41 static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
42 {
43         int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
44
45         while (hi - lo > 1) {
46                 int mid = lo + ((hi - lo) / 2);
47                 uint64_t mid_key = le64_to_cpu(n->keys[mid]);
48
49                 if (mid_key == key)
50                         return mid;
51
52                 if (mid_key < key)
53                         lo = mid;
54                 else
55                         hi = mid;
56         }
57
58         return want_hi ? hi : lo;
59 }
60
61 int lower_bound(struct btree_node *n, uint64_t key)
62 {
63         return bsearch(n, key, 0);
64 }
65
66 static int upper_bound(struct btree_node *n, uint64_t key)
67 {
68         return bsearch(n, key, 1);
69 }
70
71 void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
72                   struct dm_btree_value_type *vt)
73 {
74         unsigned i;
75         uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
76
77         if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
78                 for (i = 0; i < nr_entries; i++)
79                         dm_tm_inc(tm, value64(n, i));
80         else if (vt->inc)
81                 for (i = 0; i < nr_entries; i++)
82                         vt->inc(vt->context, value_ptr(n, i));
83 }
84
85 static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
86                       uint64_t key, void *value)
87                       __dm_written_to_disk(value)
88 {
89         uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
90         __le64 key_le = cpu_to_le64(key);
91
92         if (index > nr_entries ||
93             index >= le32_to_cpu(node->header.max_entries)) {
94                 DMERR("too many entries in btree node for insert");
95                 __dm_unbless_for_disk(value);
96                 return -ENOMEM;
97         }
98
99         __dm_bless_for_disk(&key_le);
100
101         array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
102         array_insert(value_base(node), value_size, nr_entries, index, value);
103         node->header.nr_entries = cpu_to_le32(nr_entries + 1);
104
105         return 0;
106 }
107
108 /*----------------------------------------------------------------*/
109
110 /*
111  * We want 3n entries (for some n).  This works more nicely for repeated
112  * insert remove loops than (2n + 1).
113  */
114 static uint32_t calc_max_entries(size_t value_size, size_t block_size)
115 {
116         uint32_t total, n;
117         size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
118
119         block_size -= sizeof(struct node_header);
120         total = block_size / elt_size;
121         n = total / 3;          /* rounds down */
122
123         return 3 * n;
124 }
125
126 int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
127 {
128         int r;
129         struct dm_block *b;
130         struct btree_node *n;
131         size_t block_size;
132         uint32_t max_entries;
133
134         r = new_block(info, &b);
135         if (r < 0)
136                 return r;
137
138         block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
139         max_entries = calc_max_entries(info->value_type.size, block_size);
140
141         n = dm_block_data(b);
142         memset(n, 0, block_size);
143         n->header.flags = cpu_to_le32(LEAF_NODE);
144         n->header.nr_entries = cpu_to_le32(0);
145         n->header.max_entries = cpu_to_le32(max_entries);
146         n->header.value_size = cpu_to_le32(info->value_type.size);
147
148         *root = dm_block_location(b);
149         unlock_block(info, b);
150
151         return 0;
152 }
153 EXPORT_SYMBOL_GPL(dm_btree_empty);
154
155 /*----------------------------------------------------------------*/
156
157 /*
158  * Deletion uses a recursive algorithm, since we have limited stack space
159  * we explicitly manage our own stack on the heap.
160  */
161 #define MAX_SPINE_DEPTH 64
162 struct frame {
163         struct dm_block *b;
164         struct btree_node *n;
165         unsigned level;
166         unsigned nr_children;
167         unsigned current_child;
168 };
169
170 struct del_stack {
171         struct dm_btree_info *info;
172         struct dm_transaction_manager *tm;
173         int top;
174         struct frame spine[MAX_SPINE_DEPTH];
175 };
176
177 static int top_frame(struct del_stack *s, struct frame **f)
178 {
179         if (s->top < 0) {
180                 DMERR("btree deletion stack empty");
181                 return -EINVAL;
182         }
183
184         *f = s->spine + s->top;
185
186         return 0;
187 }
188
189 static int unprocessed_frames(struct del_stack *s)
190 {
191         return s->top >= 0;
192 }
193
194 static void prefetch_children(struct del_stack *s, struct frame *f)
195 {
196         unsigned i;
197         struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
198
199         for (i = 0; i < f->nr_children; i++)
200                 dm_bm_prefetch(bm, value64(f->n, i));
201 }
202
203 static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
204 {
205         return f->level < (info->levels - 1);
206 }
207
208 static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
209 {
210         int r;
211         uint32_t ref_count;
212
213         if (s->top >= MAX_SPINE_DEPTH - 1) {
214                 DMERR("btree deletion stack out of memory");
215                 return -ENOMEM;
216         }
217
218         r = dm_tm_ref(s->tm, b, &ref_count);
219         if (r)
220                 return r;
221
222         if (ref_count > 1)
223                 /*
224                  * This is a shared node, so we can just decrement it's
225                  * reference counter and leave the children.
226                  */
227                 dm_tm_dec(s->tm, b);
228
229         else {
230                 uint32_t flags;
231                 struct frame *f = s->spine + ++s->top;
232
233                 r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
234                 if (r) {
235                         s->top--;
236                         return r;
237                 }
238
239                 f->n = dm_block_data(f->b);
240                 f->level = level;
241                 f->nr_children = le32_to_cpu(f->n->header.nr_entries);
242                 f->current_child = 0;
243
244                 flags = le32_to_cpu(f->n->header.flags);
245                 if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
246                         prefetch_children(s, f);
247         }
248
249         return 0;
250 }
251
252 static void pop_frame(struct del_stack *s)
253 {
254         struct frame *f = s->spine + s->top--;
255
256         dm_tm_dec(s->tm, dm_block_location(f->b));
257         dm_tm_unlock(s->tm, f->b);
258 }
259
260 static void unlock_all_frames(struct del_stack *s)
261 {
262         struct frame *f;
263
264         while (unprocessed_frames(s)) {
265                 f = s->spine + s->top--;
266                 dm_tm_unlock(s->tm, f->b);
267         }
268 }
269
270 int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
271 {
272         int r;
273         struct del_stack *s;
274
275         s = kmalloc(sizeof(*s), GFP_NOIO);
276         if (!s)
277                 return -ENOMEM;
278         s->info = info;
279         s->tm = info->tm;
280         s->top = -1;
281
282         r = push_frame(s, root, 0);
283         if (r)
284                 goto out;
285
286         while (unprocessed_frames(s)) {
287                 uint32_t flags;
288                 struct frame *f;
289                 dm_block_t b;
290
291                 r = top_frame(s, &f);
292                 if (r)
293                         goto out;
294
295                 if (f->current_child >= f->nr_children) {
296                         pop_frame(s);
297                         continue;
298                 }
299
300                 flags = le32_to_cpu(f->n->header.flags);
301                 if (flags & INTERNAL_NODE) {
302                         b = value64(f->n, f->current_child);
303                         f->current_child++;
304                         r = push_frame(s, b, f->level);
305                         if (r)
306                                 goto out;
307
308                 } else if (is_internal_level(info, f)) {
309                         b = value64(f->n, f->current_child);
310                         f->current_child++;
311                         r = push_frame(s, b, f->level + 1);
312                         if (r)
313                                 goto out;
314
315                 } else {
316                         if (info->value_type.dec) {
317                                 unsigned i;
318
319                                 for (i = 0; i < f->nr_children; i++)
320                                         info->value_type.dec(info->value_type.context,
321                                                              value_ptr(f->n, i));
322                         }
323                         pop_frame(s);
324                 }
325         }
326 out:
327         if (r) {
328                 /* cleanup all frames of del_stack */
329                 unlock_all_frames(s);
330         }
331         kfree(s);
332
333         return r;
334 }
335 EXPORT_SYMBOL_GPL(dm_btree_del);
336
337 /*----------------------------------------------------------------*/
338
339 static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
340                             int (*search_fn)(struct btree_node *, uint64_t),
341                             uint64_t *result_key, void *v, size_t value_size)
342 {
343         int i, r;
344         uint32_t flags, nr_entries;
345
346         do {
347                 r = ro_step(s, block);
348                 if (r < 0)
349                         return r;
350
351                 i = search_fn(ro_node(s), key);
352
353                 flags = le32_to_cpu(ro_node(s)->header.flags);
354                 nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
355                 if (i < 0 || i >= nr_entries)
356                         return -ENODATA;
357
358                 if (flags & INTERNAL_NODE)
359                         block = value64(ro_node(s), i);
360
361         } while (!(flags & LEAF_NODE));
362
363         *result_key = le64_to_cpu(ro_node(s)->keys[i]);
364         memcpy(v, value_ptr(ro_node(s), i), value_size);
365
366         return 0;
367 }
368
369 int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
370                     uint64_t *keys, void *value_le)
371 {
372         unsigned level, last_level = info->levels - 1;
373         int r = -ENODATA;
374         uint64_t rkey;
375         __le64 internal_value_le;
376         struct ro_spine spine;
377
378         init_ro_spine(&spine, info);
379         for (level = 0; level < info->levels; level++) {
380                 size_t size;
381                 void *value_p;
382
383                 if (level == last_level) {
384                         value_p = value_le;
385                         size = info->value_type.size;
386
387                 } else {
388                         value_p = &internal_value_le;
389                         size = sizeof(uint64_t);
390                 }
391
392                 r = btree_lookup_raw(&spine, root, keys[level],
393                                      lower_bound, &rkey,
394                                      value_p, size);
395
396                 if (!r) {
397                         if (rkey != keys[level]) {
398                                 exit_ro_spine(&spine);
399                                 return -ENODATA;
400                         }
401                 } else {
402                         exit_ro_spine(&spine);
403                         return r;
404                 }
405
406                 root = le64_to_cpu(internal_value_le);
407         }
408         exit_ro_spine(&spine);
409
410         return r;
411 }
412 EXPORT_SYMBOL_GPL(dm_btree_lookup);
413
414 static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
415                                        uint64_t key, uint64_t *rkey, void *value_le)
416 {
417         int r, i;
418         uint32_t flags, nr_entries;
419         struct dm_block *node;
420         struct btree_node *n;
421
422         r = bn_read_lock(info, root, &node);
423         if (r)
424                 return r;
425
426         n = dm_block_data(node);
427         flags = le32_to_cpu(n->header.flags);
428         nr_entries = le32_to_cpu(n->header.nr_entries);
429
430         if (flags & INTERNAL_NODE) {
431                 i = lower_bound(n, key);
432                 if (i < 0) {
433                         /*
434                          * avoid early -ENODATA return when all entries are
435                          * higher than the search @key.
436                          */
437                         i = 0;
438                 }
439                 if (i >= nr_entries) {
440                         r = -ENODATA;
441                         goto out;
442                 }
443
444                 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
445                 if (r == -ENODATA && i < (nr_entries - 1)) {
446                         i++;
447                         r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
448                 }
449
450         } else {
451                 i = upper_bound(n, key);
452                 if (i < 0 || i >= nr_entries) {
453                         r = -ENODATA;
454                         goto out;
455                 }
456
457                 *rkey = le64_to_cpu(n->keys[i]);
458                 memcpy(value_le, value_ptr(n, i), info->value_type.size);
459         }
460 out:
461         dm_tm_unlock(info->tm, node);
462         return r;
463 }
464
465 int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
466                          uint64_t *keys, uint64_t *rkey, void *value_le)
467 {
468         unsigned level;
469         int r = -ENODATA;
470         __le64 internal_value_le;
471         struct ro_spine spine;
472
473         init_ro_spine(&spine, info);
474         for (level = 0; level < info->levels - 1u; level++) {
475                 r = btree_lookup_raw(&spine, root, keys[level],
476                                      lower_bound, rkey,
477                                      &internal_value_le, sizeof(uint64_t));
478                 if (r)
479                         goto out;
480
481                 if (*rkey != keys[level]) {
482                         r = -ENODATA;
483                         goto out;
484                 }
485
486                 root = le64_to_cpu(internal_value_le);
487         }
488
489         r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
490 out:
491         exit_ro_spine(&spine);
492         return r;
493 }
494
495 EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
496
497 /*
498  * Splits a node by creating a sibling node and shifting half the nodes
499  * contents across.  Assumes there is a parent node, and it has room for
500  * another child.
501  *
502  * Before:
503  *        +--------+
504  *        | Parent |
505  *        +--------+
506  *           |
507  *           v
508  *      +----------+
509  *      | A ++++++ |
510  *      +----------+
511  *
512  *
513  * After:
514  *              +--------+
515  *              | Parent |
516  *              +--------+
517  *                |     |
518  *                v     +------+
519  *          +---------+        |
520  *          | A* +++  |        v
521  *          +---------+   +-------+
522  *                        | B +++ |
523  *                        +-------+
524  *
525  * Where A* is a shadow of A.
526  */
527 static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
528                                uint64_t key)
529 {
530         int r;
531         size_t size;
532         unsigned nr_left, nr_right;
533         struct dm_block *left, *right, *parent;
534         struct btree_node *ln, *rn, *pn;
535         __le64 location;
536
537         left = shadow_current(s);
538
539         r = new_block(s->info, &right);
540         if (r < 0)
541                 return r;
542
543         ln = dm_block_data(left);
544         rn = dm_block_data(right);
545
546         nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
547         nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
548
549         ln->header.nr_entries = cpu_to_le32(nr_left);
550
551         rn->header.flags = ln->header.flags;
552         rn->header.nr_entries = cpu_to_le32(nr_right);
553         rn->header.max_entries = ln->header.max_entries;
554         rn->header.value_size = ln->header.value_size;
555         memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
556
557         size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
558                 sizeof(uint64_t) : s->info->value_type.size;
559         memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
560                size * nr_right);
561
562         /*
563          * Patch up the parent
564          */
565         parent = shadow_parent(s);
566
567         pn = dm_block_data(parent);
568         location = cpu_to_le64(dm_block_location(left));
569         __dm_bless_for_disk(&location);
570         memcpy_disk(value_ptr(pn, parent_index),
571                     &location, sizeof(__le64));
572
573         location = cpu_to_le64(dm_block_location(right));
574         __dm_bless_for_disk(&location);
575
576         r = insert_at(sizeof(__le64), pn, parent_index + 1,
577                       le64_to_cpu(rn->keys[0]), &location);
578         if (r) {
579                 unlock_block(s->info, right);
580                 return r;
581         }
582
583         if (key < le64_to_cpu(rn->keys[0])) {
584                 unlock_block(s->info, right);
585                 s->nodes[1] = left;
586         } else {
587                 unlock_block(s->info, left);
588                 s->nodes[1] = right;
589         }
590
591         return 0;
592 }
593
594 /*
595  * Splits a node by creating two new children beneath the given node.
596  *
597  * Before:
598  *        +----------+
599  *        | A ++++++ |
600  *        +----------+
601  *
602  *
603  * After:
604  *      +------------+
605  *      | A (shadow) |
606  *      +------------+
607  *          |   |
608  *   +------+   +----+
609  *   |               |
610  *   v               v
611  * +-------+     +-------+
612  * | B +++ |     | C +++ |
613  * +-------+     +-------+
614  */
615 static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
616 {
617         int r;
618         size_t size;
619         unsigned nr_left, nr_right;
620         struct dm_block *left, *right, *new_parent;
621         struct btree_node *pn, *ln, *rn;
622         __le64 val;
623
624         new_parent = shadow_current(s);
625
626         r = new_block(s->info, &left);
627         if (r < 0)
628                 return r;
629
630         r = new_block(s->info, &right);
631         if (r < 0) {
632                 unlock_block(s->info, left);
633                 return r;
634         }
635
636         pn = dm_block_data(new_parent);
637         ln = dm_block_data(left);
638         rn = dm_block_data(right);
639
640         nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
641         nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
642
643         ln->header.flags = pn->header.flags;
644         ln->header.nr_entries = cpu_to_le32(nr_left);
645         ln->header.max_entries = pn->header.max_entries;
646         ln->header.value_size = pn->header.value_size;
647
648         rn->header.flags = pn->header.flags;
649         rn->header.nr_entries = cpu_to_le32(nr_right);
650         rn->header.max_entries = pn->header.max_entries;
651         rn->header.value_size = pn->header.value_size;
652
653         memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
654         memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
655
656         size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
657                 sizeof(__le64) : s->info->value_type.size;
658         memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
659         memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
660                nr_right * size);
661
662         /* new_parent should just point to l and r now */
663         pn->header.flags = cpu_to_le32(INTERNAL_NODE);
664         pn->header.nr_entries = cpu_to_le32(2);
665         pn->header.max_entries = cpu_to_le32(
666                 calc_max_entries(sizeof(__le64),
667                                  dm_bm_block_size(
668                                          dm_tm_get_bm(s->info->tm))));
669         pn->header.value_size = cpu_to_le32(sizeof(__le64));
670
671         val = cpu_to_le64(dm_block_location(left));
672         __dm_bless_for_disk(&val);
673         pn->keys[0] = ln->keys[0];
674         memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
675
676         val = cpu_to_le64(dm_block_location(right));
677         __dm_bless_for_disk(&val);
678         pn->keys[1] = rn->keys[0];
679         memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
680
681         /*
682          * rejig the spine.  This is ugly, since it knows too
683          * much about the spine
684          */
685         if (s->nodes[0] != new_parent) {
686                 unlock_block(s->info, s->nodes[0]);
687                 s->nodes[0] = new_parent;
688         }
689         if (key < le64_to_cpu(rn->keys[0])) {
690                 unlock_block(s->info, right);
691                 s->nodes[1] = left;
692         } else {
693                 unlock_block(s->info, left);
694                 s->nodes[1] = right;
695         }
696         s->count = 2;
697
698         return 0;
699 }
700
701 static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
702                             struct dm_btree_value_type *vt,
703                             uint64_t key, unsigned *index)
704 {
705         int r, i = *index, top = 1;
706         struct btree_node *node;
707
708         for (;;) {
709                 r = shadow_step(s, root, vt);
710                 if (r < 0)
711                         return r;
712
713                 node = dm_block_data(shadow_current(s));
714
715                 /*
716                  * We have to patch up the parent node, ugly, but I don't
717                  * see a way to do this automatically as part of the spine
718                  * op.
719                  */
720                 if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
721                         __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
722
723                         __dm_bless_for_disk(&location);
724                         memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
725                                     &location, sizeof(__le64));
726                 }
727
728                 node = dm_block_data(shadow_current(s));
729
730                 if (node->header.nr_entries == node->header.max_entries) {
731                         if (top)
732                                 r = btree_split_beneath(s, key);
733                         else
734                                 r = btree_split_sibling(s, i, key);
735
736                         if (r < 0)
737                                 return r;
738                 }
739
740                 node = dm_block_data(shadow_current(s));
741
742                 i = lower_bound(node, key);
743
744                 if (le32_to_cpu(node->header.flags) & LEAF_NODE)
745                         break;
746
747                 if (i < 0) {
748                         /* change the bounds on the lowest key */
749                         node->keys[0] = cpu_to_le64(key);
750                         i = 0;
751                 }
752
753                 root = value64(node, i);
754                 top = 0;
755         }
756
757         if (i < 0 || le64_to_cpu(node->keys[i]) != key)
758                 i++;
759
760         *index = i;
761         return 0;
762 }
763
764 static bool need_insert(struct btree_node *node, uint64_t *keys,
765                         unsigned level, unsigned index)
766 {
767         return ((index >= le32_to_cpu(node->header.nr_entries)) ||
768                 (le64_to_cpu(node->keys[index]) != keys[level]));
769 }
770
771 static int insert(struct dm_btree_info *info, dm_block_t root,
772                   uint64_t *keys, void *value, dm_block_t *new_root,
773                   int *inserted)
774                   __dm_written_to_disk(value)
775 {
776         int r;
777         unsigned level, index = -1, last_level = info->levels - 1;
778         dm_block_t block = root;
779         struct shadow_spine spine;
780         struct btree_node *n;
781         struct dm_btree_value_type le64_type;
782
783         init_le64_type(info->tm, &le64_type);
784         init_shadow_spine(&spine, info);
785
786         for (level = 0; level < (info->levels - 1); level++) {
787                 r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
788                 if (r < 0)
789                         goto bad;
790
791                 n = dm_block_data(shadow_current(&spine));
792
793                 if (need_insert(n, keys, level, index)) {
794                         dm_block_t new_tree;
795                         __le64 new_le;
796
797                         r = dm_btree_empty(info, &new_tree);
798                         if (r < 0)
799                                 goto bad;
800
801                         new_le = cpu_to_le64(new_tree);
802                         __dm_bless_for_disk(&new_le);
803
804                         r = insert_at(sizeof(uint64_t), n, index,
805                                       keys[level], &new_le);
806                         if (r)
807                                 goto bad;
808                 }
809
810                 if (level < last_level)
811                         block = value64(n, index);
812         }
813
814         r = btree_insert_raw(&spine, block, &info->value_type,
815                              keys[level], &index);
816         if (r < 0)
817                 goto bad;
818
819         n = dm_block_data(shadow_current(&spine));
820
821         if (need_insert(n, keys, level, index)) {
822                 if (inserted)
823                         *inserted = 1;
824
825                 r = insert_at(info->value_type.size, n, index,
826                               keys[level], value);
827                 if (r)
828                         goto bad_unblessed;
829         } else {
830                 if (inserted)
831                         *inserted = 0;
832
833                 if (info->value_type.dec &&
834                     (!info->value_type.equal ||
835                      !info->value_type.equal(
836                              info->value_type.context,
837                              value_ptr(n, index),
838                              value))) {
839                         info->value_type.dec(info->value_type.context,
840                                              value_ptr(n, index));
841                 }
842                 memcpy_disk(value_ptr(n, index),
843                             value, info->value_type.size);
844         }
845
846         *new_root = shadow_root(&spine);
847         exit_shadow_spine(&spine);
848
849         return 0;
850
851 bad:
852         __dm_unbless_for_disk(value);
853 bad_unblessed:
854         exit_shadow_spine(&spine);
855         return r;
856 }
857
858 int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
859                     uint64_t *keys, void *value, dm_block_t *new_root)
860                     __dm_written_to_disk(value)
861 {
862         return insert(info, root, keys, value, new_root, NULL);
863 }
864 EXPORT_SYMBOL_GPL(dm_btree_insert);
865
866 int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
867                            uint64_t *keys, void *value, dm_block_t *new_root,
868                            int *inserted)
869                            __dm_written_to_disk(value)
870 {
871         return insert(info, root, keys, value, new_root, inserted);
872 }
873 EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
874
875 /*----------------------------------------------------------------*/
876
877 static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
878                     uint64_t *result_key, dm_block_t *next_block)
879 {
880         int i, r;
881         uint32_t flags;
882
883         do {
884                 r = ro_step(s, block);
885                 if (r < 0)
886                         return r;
887
888                 flags = le32_to_cpu(ro_node(s)->header.flags);
889                 i = le32_to_cpu(ro_node(s)->header.nr_entries);
890                 if (!i)
891                         return -ENODATA;
892                 else
893                         i--;
894
895                 if (find_highest)
896                         *result_key = le64_to_cpu(ro_node(s)->keys[i]);
897                 else
898                         *result_key = le64_to_cpu(ro_node(s)->keys[0]);
899
900                 if (next_block || flags & INTERNAL_NODE)
901                         block = value64(ro_node(s), i);
902
903         } while (flags & INTERNAL_NODE);
904
905         if (next_block)
906                 *next_block = block;
907         return 0;
908 }
909
910 static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
911                              bool find_highest, uint64_t *result_keys)
912 {
913         int r = 0, count = 0, level;
914         struct ro_spine spine;
915
916         init_ro_spine(&spine, info);
917         for (level = 0; level < info->levels; level++) {
918                 r = find_key(&spine, root, find_highest, result_keys + level,
919                              level == info->levels - 1 ? NULL : &root);
920                 if (r == -ENODATA) {
921                         r = 0;
922                         break;
923
924                 } else if (r)
925                         break;
926
927                 count++;
928         }
929         exit_ro_spine(&spine);
930
931         return r ? r : count;
932 }
933
934 int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
935                               uint64_t *result_keys)
936 {
937         return dm_btree_find_key(info, root, true, result_keys);
938 }
939 EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
940
941 int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
942                              uint64_t *result_keys)
943 {
944         return dm_btree_find_key(info, root, false, result_keys);
945 }
946 EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
947
948 /*----------------------------------------------------------------*/
949
950 /*
951  * FIXME: We shouldn't use a recursive algorithm when we have limited stack
952  * space.  Also this only works for single level trees.
953  */
954 static int walk_node(struct dm_btree_info *info, dm_block_t block,
955                      int (*fn)(void *context, uint64_t *keys, void *leaf),
956                      void *context)
957 {
958         int r;
959         unsigned i, nr;
960         struct dm_block *node;
961         struct btree_node *n;
962         uint64_t keys;
963
964         r = bn_read_lock(info, block, &node);
965         if (r)
966                 return r;
967
968         n = dm_block_data(node);
969
970         nr = le32_to_cpu(n->header.nr_entries);
971         for (i = 0; i < nr; i++) {
972                 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
973                         r = walk_node(info, value64(n, i), fn, context);
974                         if (r)
975                                 goto out;
976                 } else {
977                         keys = le64_to_cpu(*key_ptr(n, i));
978                         r = fn(context, &keys, value_ptr(n, i));
979                         if (r)
980                                 goto out;
981                 }
982         }
983
984 out:
985         dm_tm_unlock(info->tm, node);
986         return r;
987 }
988
989 int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
990                   int (*fn)(void *context, uint64_t *keys, void *leaf),
991                   void *context)
992 {
993         BUG_ON(info->levels > 1);
994         return walk_node(info, root, fn, context);
995 }
996 EXPORT_SYMBOL_GPL(dm_btree_walk);
997
998 /*----------------------------------------------------------------*/
999
1000 static void prefetch_values(struct dm_btree_cursor *c)
1001 {
1002         unsigned i, nr;
1003         __le64 value_le;
1004         struct cursor_node *n = c->nodes + c->depth - 1;
1005         struct btree_node *bn = dm_block_data(n->b);
1006         struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
1007
1008         BUG_ON(c->info->value_type.size != sizeof(value_le));
1009
1010         nr = le32_to_cpu(bn->header.nr_entries);
1011         for (i = 0; i < nr; i++) {
1012                 memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1013                 dm_bm_prefetch(bm, le64_to_cpu(value_le));
1014         }
1015 }
1016
1017 static bool leaf_node(struct dm_btree_cursor *c)
1018 {
1019         struct cursor_node *n = c->nodes + c->depth - 1;
1020         struct btree_node *bn = dm_block_data(n->b);
1021
1022         return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1023 }
1024
1025 static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1026 {
1027         int r;
1028         struct cursor_node *n = c->nodes + c->depth;
1029
1030         if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1031                 DMERR("couldn't push cursor node, stack depth too high");
1032                 return -EINVAL;
1033         }
1034
1035         r = bn_read_lock(c->info, b, &n->b);
1036         if (r)
1037                 return r;
1038
1039         n->index = 0;
1040         c->depth++;
1041
1042         if (c->prefetch_leaves || !leaf_node(c))
1043                 prefetch_values(c);
1044
1045         return 0;
1046 }
1047
1048 static void pop_node(struct dm_btree_cursor *c)
1049 {
1050         c->depth--;
1051         unlock_block(c->info, c->nodes[c->depth].b);
1052 }
1053
1054 static int inc_or_backtrack(struct dm_btree_cursor *c)
1055 {
1056         struct cursor_node *n;
1057         struct btree_node *bn;
1058
1059         for (;;) {
1060                 if (!c->depth)
1061                         return -ENODATA;
1062
1063                 n = c->nodes + c->depth - 1;
1064                 bn = dm_block_data(n->b);
1065
1066                 n->index++;
1067                 if (n->index < le32_to_cpu(bn->header.nr_entries))
1068                         break;
1069
1070                 pop_node(c);
1071         }
1072
1073         return 0;
1074 }
1075
1076 static int find_leaf(struct dm_btree_cursor *c)
1077 {
1078         int r = 0;
1079         struct cursor_node *n;
1080         struct btree_node *bn;
1081         __le64 value_le;
1082
1083         for (;;) {
1084                 n = c->nodes + c->depth - 1;
1085                 bn = dm_block_data(n->b);
1086
1087                 if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1088                         break;
1089
1090                 memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1091                 r = push_node(c, le64_to_cpu(value_le));
1092                 if (r) {
1093                         DMERR("push_node failed");
1094                         break;
1095                 }
1096         }
1097
1098         if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1099                 return -ENODATA;
1100
1101         return r;
1102 }
1103
1104 int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1105                           bool prefetch_leaves, struct dm_btree_cursor *c)
1106 {
1107         int r;
1108
1109         c->info = info;
1110         c->root = root;
1111         c->depth = 0;
1112         c->prefetch_leaves = prefetch_leaves;
1113
1114         r = push_node(c, root);
1115         if (r)
1116                 return r;
1117
1118         return find_leaf(c);
1119 }
1120 EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1121
1122 void dm_btree_cursor_end(struct dm_btree_cursor *c)
1123 {
1124         while (c->depth)
1125                 pop_node(c);
1126 }
1127 EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1128
1129 int dm_btree_cursor_next(struct dm_btree_cursor *c)
1130 {
1131         int r = inc_or_backtrack(c);
1132         if (!r) {
1133                 r = find_leaf(c);
1134                 if (r)
1135                         DMERR("find_leaf failed");
1136         }
1137
1138         return r;
1139 }
1140 EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1141
1142 int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1143 {
1144         if (c->depth) {
1145                 struct cursor_node *n = c->nodes + c->depth - 1;
1146                 struct btree_node *bn = dm_block_data(n->b);
1147
1148                 if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1149                         return -EINVAL;
1150
1151                 *key = le64_to_cpu(*key_ptr(bn, n->index));
1152                 memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1153                 return 0;
1154
1155         } else
1156                 return -ENODATA;
1157 }
1158 EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);