Merge tag 'nios2-v3.20-rc1' of git://git.rocketboards.org/linux-socfpga-next
[cascardo/linux.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70                           sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75         struct pool_info *pi = data;
76         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78         /* allocate a r1bio with room for raid_disks entries in the bios array */
79         return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84         kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97         struct pool_info *pi = data;
98         struct r1bio *r1_bio;
99         struct bio *bio;
100         int need_pages;
101         int i, j;
102
103         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104         if (!r1_bio)
105                 return NULL;
106
107         /*
108          * Allocate bios : 1 for reading, n-1 for writing
109          */
110         for (j = pi->raid_disks ; j-- ; ) {
111                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112                 if (!bio)
113                         goto out_free_bio;
114                 r1_bio->bios[j] = bio;
115         }
116         /*
117          * Allocate RESYNC_PAGES data pages and attach them to
118          * the first bio.
119          * If this is a user-requested check/repair, allocate
120          * RESYNC_PAGES for each bio.
121          */
122         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123                 need_pages = pi->raid_disks;
124         else
125                 need_pages = 1;
126         for (j = 0; j < need_pages; j++) {
127                 bio = r1_bio->bios[j];
128                 bio->bi_vcnt = RESYNC_PAGES;
129
130                 if (bio_alloc_pages(bio, gfp_flags))
131                         goto out_free_pages;
132         }
133         /* If not user-requests, copy the page pointers to all bios */
134         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135                 for (i=0; i<RESYNC_PAGES ; i++)
136                         for (j=1; j<pi->raid_disks; j++)
137                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
139         }
140
141         r1_bio->master_bio = NULL;
142
143         return r1_bio;
144
145 out_free_pages:
146         while (--j >= 0) {
147                 struct bio_vec *bv;
148
149                 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150                         __free_page(bv->bv_page);
151         }
152
153 out_free_bio:
154         while (++j < pi->raid_disks)
155                 bio_put(r1_bio->bios[j]);
156         r1bio_pool_free(r1_bio, data);
157         return NULL;
158 }
159
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162         struct pool_info *pi = data;
163         int i,j;
164         struct r1bio *r1bio = __r1_bio;
165
166         for (i = 0; i < RESYNC_PAGES; i++)
167                 for (j = pi->raid_disks; j-- ;) {
168                         if (j == 0 ||
169                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
170                             r1bio->bios[0]->bi_io_vec[i].bv_page)
171                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172                 }
173         for (i=0 ; i < pi->raid_disks; i++)
174                 bio_put(r1bio->bios[i]);
175
176         r1bio_pool_free(r1bio, data);
177 }
178
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181         int i;
182
183         for (i = 0; i < conf->raid_disks * 2; i++) {
184                 struct bio **bio = r1_bio->bios + i;
185                 if (!BIO_SPECIAL(*bio))
186                         bio_put(*bio);
187                 *bio = NULL;
188         }
189 }
190
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193         struct r1conf *conf = r1_bio->mddev->private;
194
195         put_all_bios(conf, r1_bio);
196         mempool_free(r1_bio, conf->r1bio_pool);
197 }
198
199 static void put_buf(struct r1bio *r1_bio)
200 {
201         struct r1conf *conf = r1_bio->mddev->private;
202         int i;
203
204         for (i = 0; i < conf->raid_disks * 2; i++) {
205                 struct bio *bio = r1_bio->bios[i];
206                 if (bio->bi_end_io)
207                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208         }
209
210         mempool_free(r1_bio, conf->r1buf_pool);
211
212         lower_barrier(conf);
213 }
214
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217         unsigned long flags;
218         struct mddev *mddev = r1_bio->mddev;
219         struct r1conf *conf = mddev->private;
220
221         spin_lock_irqsave(&conf->device_lock, flags);
222         list_add(&r1_bio->retry_list, &conf->retry_list);
223         conf->nr_queued ++;
224         spin_unlock_irqrestore(&conf->device_lock, flags);
225
226         wake_up(&conf->wait_barrier);
227         md_wakeup_thread(mddev->thread);
228 }
229
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237         struct bio *bio = r1_bio->master_bio;
238         int done;
239         struct r1conf *conf = r1_bio->mddev->private;
240         sector_t start_next_window = r1_bio->start_next_window;
241         sector_t bi_sector = bio->bi_iter.bi_sector;
242
243         if (bio->bi_phys_segments) {
244                 unsigned long flags;
245                 spin_lock_irqsave(&conf->device_lock, flags);
246                 bio->bi_phys_segments--;
247                 done = (bio->bi_phys_segments == 0);
248                 spin_unlock_irqrestore(&conf->device_lock, flags);
249                 /*
250                  * make_request() might be waiting for
251                  * bi_phys_segments to decrease
252                  */
253                 wake_up(&conf->wait_barrier);
254         } else
255                 done = 1;
256
257         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
259         if (done) {
260                 bio_endio(bio, 0);
261                 /*
262                  * Wake up any possible resync thread that waits for the device
263                  * to go idle.
264                  */
265                 allow_barrier(conf, start_next_window, bi_sector);
266         }
267 }
268
269 static void raid_end_bio_io(struct r1bio *r1_bio)
270 {
271         struct bio *bio = r1_bio->master_bio;
272
273         /* if nobody has done the final endio yet, do it now */
274         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
277                          (unsigned long long) bio->bi_iter.bi_sector,
278                          (unsigned long long) bio_end_sector(bio) - 1);
279
280                 call_bio_endio(r1_bio);
281         }
282         free_r1bio(r1_bio);
283 }
284
285 /*
286  * Update disk head position estimator based on IRQ completion info.
287  */
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 {
290         struct r1conf *conf = r1_bio->mddev->private;
291
292         conf->mirrors[disk].head_position =
293                 r1_bio->sector + (r1_bio->sectors);
294 }
295
296 /*
297  * Find the disk number which triggered given bio
298  */
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 {
301         int mirror;
302         struct r1conf *conf = r1_bio->mddev->private;
303         int raid_disks = conf->raid_disks;
304
305         for (mirror = 0; mirror < raid_disks * 2; mirror++)
306                 if (r1_bio->bios[mirror] == bio)
307                         break;
308
309         BUG_ON(mirror == raid_disks * 2);
310         update_head_pos(mirror, r1_bio);
311
312         return mirror;
313 }
314
315 static void raid1_end_read_request(struct bio *bio, int error)
316 {
317         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318         struct r1bio *r1_bio = bio->bi_private;
319         int mirror;
320         struct r1conf *conf = r1_bio->mddev->private;
321
322         mirror = r1_bio->read_disk;
323         /*
324          * this branch is our 'one mirror IO has finished' event handler:
325          */
326         update_head_pos(mirror, r1_bio);
327
328         if (uptodate)
329                 set_bit(R1BIO_Uptodate, &r1_bio->state);
330         else {
331                 /* If all other devices have failed, we want to return
332                  * the error upwards rather than fail the last device.
333                  * Here we redefine "uptodate" to mean "Don't want to retry"
334                  */
335                 unsigned long flags;
336                 spin_lock_irqsave(&conf->device_lock, flags);
337                 if (r1_bio->mddev->degraded == conf->raid_disks ||
338                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339                      !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340                         uptodate = 1;
341                 spin_unlock_irqrestore(&conf->device_lock, flags);
342         }
343
344         if (uptodate) {
345                 raid_end_bio_io(r1_bio);
346                 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347         } else {
348                 /*
349                  * oops, read error:
350                  */
351                 char b[BDEVNAME_SIZE];
352                 printk_ratelimited(
353                         KERN_ERR "md/raid1:%s: %s: "
354                         "rescheduling sector %llu\n",
355                         mdname(conf->mddev),
356                         bdevname(conf->mirrors[mirror].rdev->bdev,
357                                  b),
358                         (unsigned long long)r1_bio->sector);
359                 set_bit(R1BIO_ReadError, &r1_bio->state);
360                 reschedule_retry(r1_bio);
361                 /* don't drop the reference on read_disk yet */
362         }
363 }
364
365 static void close_write(struct r1bio *r1_bio)
366 {
367         /* it really is the end of this request */
368         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369                 /* free extra copy of the data pages */
370                 int i = r1_bio->behind_page_count;
371                 while (i--)
372                         safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373                 kfree(r1_bio->behind_bvecs);
374                 r1_bio->behind_bvecs = NULL;
375         }
376         /* clear the bitmap if all writes complete successfully */
377         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378                         r1_bio->sectors,
379                         !test_bit(R1BIO_Degraded, &r1_bio->state),
380                         test_bit(R1BIO_BehindIO, &r1_bio->state));
381         md_write_end(r1_bio->mddev);
382 }
383
384 static void r1_bio_write_done(struct r1bio *r1_bio)
385 {
386         if (!atomic_dec_and_test(&r1_bio->remaining))
387                 return;
388
389         if (test_bit(R1BIO_WriteError, &r1_bio->state))
390                 reschedule_retry(r1_bio);
391         else {
392                 close_write(r1_bio);
393                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394                         reschedule_retry(r1_bio);
395                 else
396                         raid_end_bio_io(r1_bio);
397         }
398 }
399
400 static void raid1_end_write_request(struct bio *bio, int error)
401 {
402         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403         struct r1bio *r1_bio = bio->bi_private;
404         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405         struct r1conf *conf = r1_bio->mddev->private;
406         struct bio *to_put = NULL;
407
408         mirror = find_bio_disk(r1_bio, bio);
409
410         /*
411          * 'one mirror IO has finished' event handler:
412          */
413         if (!uptodate) {
414                 set_bit(WriteErrorSeen,
415                         &conf->mirrors[mirror].rdev->flags);
416                 if (!test_and_set_bit(WantReplacement,
417                                       &conf->mirrors[mirror].rdev->flags))
418                         set_bit(MD_RECOVERY_NEEDED, &
419                                 conf->mddev->recovery);
420
421                 set_bit(R1BIO_WriteError, &r1_bio->state);
422         } else {
423                 /*
424                  * Set R1BIO_Uptodate in our master bio, so that we
425                  * will return a good error code for to the higher
426                  * levels even if IO on some other mirrored buffer
427                  * fails.
428                  *
429                  * The 'master' represents the composite IO operation
430                  * to user-side. So if something waits for IO, then it
431                  * will wait for the 'master' bio.
432                  */
433                 sector_t first_bad;
434                 int bad_sectors;
435
436                 r1_bio->bios[mirror] = NULL;
437                 to_put = bio;
438                 /*
439                  * Do not set R1BIO_Uptodate if the current device is
440                  * rebuilding or Faulty. This is because we cannot use
441                  * such device for properly reading the data back (we could
442                  * potentially use it, if the current write would have felt
443                  * before rdev->recovery_offset, but for simplicity we don't
444                  * check this here.
445                  */
446                 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447                     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448                         set_bit(R1BIO_Uptodate, &r1_bio->state);
449
450                 /* Maybe we can clear some bad blocks. */
451                 if (is_badblock(conf->mirrors[mirror].rdev,
452                                 r1_bio->sector, r1_bio->sectors,
453                                 &first_bad, &bad_sectors)) {
454                         r1_bio->bios[mirror] = IO_MADE_GOOD;
455                         set_bit(R1BIO_MadeGood, &r1_bio->state);
456                 }
457         }
458
459         if (behind) {
460                 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461                         atomic_dec(&r1_bio->behind_remaining);
462
463                 /*
464                  * In behind mode, we ACK the master bio once the I/O
465                  * has safely reached all non-writemostly
466                  * disks. Setting the Returned bit ensures that this
467                  * gets done only once -- we don't ever want to return
468                  * -EIO here, instead we'll wait
469                  */
470                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472                         /* Maybe we can return now */
473                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474                                 struct bio *mbio = r1_bio->master_bio;
475                                 pr_debug("raid1: behind end write sectors"
476                                          " %llu-%llu\n",
477                                          (unsigned long long) mbio->bi_iter.bi_sector,
478                                          (unsigned long long) bio_end_sector(mbio) - 1);
479                                 call_bio_endio(r1_bio);
480                         }
481                 }
482         }
483         if (r1_bio->bios[mirror] == NULL)
484                 rdev_dec_pending(conf->mirrors[mirror].rdev,
485                                  conf->mddev);
486
487         /*
488          * Let's see if all mirrored write operations have finished
489          * already.
490          */
491         r1_bio_write_done(r1_bio);
492
493         if (to_put)
494                 bio_put(to_put);
495 }
496
497 /*
498  * This routine returns the disk from which the requested read should
499  * be done. There is a per-array 'next expected sequential IO' sector
500  * number - if this matches on the next IO then we use the last disk.
501  * There is also a per-disk 'last know head position' sector that is
502  * maintained from IRQ contexts, both the normal and the resync IO
503  * completion handlers update this position correctly. If there is no
504  * perfect sequential match then we pick the disk whose head is closest.
505  *
506  * If there are 2 mirrors in the same 2 devices, performance degrades
507  * because position is mirror, not device based.
508  *
509  * The rdev for the device selected will have nr_pending incremented.
510  */
511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
512 {
513         const sector_t this_sector = r1_bio->sector;
514         int sectors;
515         int best_good_sectors;
516         int best_disk, best_dist_disk, best_pending_disk;
517         int has_nonrot_disk;
518         int disk;
519         sector_t best_dist;
520         unsigned int min_pending;
521         struct md_rdev *rdev;
522         int choose_first;
523         int choose_next_idle;
524
525         rcu_read_lock();
526         /*
527          * Check if we can balance. We can balance on the whole
528          * device if no resync is going on, or below the resync window.
529          * We take the first readable disk when above the resync window.
530          */
531  retry:
532         sectors = r1_bio->sectors;
533         best_disk = -1;
534         best_dist_disk = -1;
535         best_dist = MaxSector;
536         best_pending_disk = -1;
537         min_pending = UINT_MAX;
538         best_good_sectors = 0;
539         has_nonrot_disk = 0;
540         choose_next_idle = 0;
541
542         choose_first = (conf->mddev->recovery_cp < this_sector + sectors);
543
544         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
545                 sector_t dist;
546                 sector_t first_bad;
547                 int bad_sectors;
548                 unsigned int pending;
549                 bool nonrot;
550
551                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
552                 if (r1_bio->bios[disk] == IO_BLOCKED
553                     || rdev == NULL
554                     || test_bit(Unmerged, &rdev->flags)
555                     || test_bit(Faulty, &rdev->flags))
556                         continue;
557                 if (!test_bit(In_sync, &rdev->flags) &&
558                     rdev->recovery_offset < this_sector + sectors)
559                         continue;
560                 if (test_bit(WriteMostly, &rdev->flags)) {
561                         /* Don't balance among write-mostly, just
562                          * use the first as a last resort */
563                         if (best_disk < 0) {
564                                 if (is_badblock(rdev, this_sector, sectors,
565                                                 &first_bad, &bad_sectors)) {
566                                         if (first_bad < this_sector)
567                                                 /* Cannot use this */
568                                                 continue;
569                                         best_good_sectors = first_bad - this_sector;
570                                 } else
571                                         best_good_sectors = sectors;
572                                 best_disk = disk;
573                         }
574                         continue;
575                 }
576                 /* This is a reasonable device to use.  It might
577                  * even be best.
578                  */
579                 if (is_badblock(rdev, this_sector, sectors,
580                                 &first_bad, &bad_sectors)) {
581                         if (best_dist < MaxSector)
582                                 /* already have a better device */
583                                 continue;
584                         if (first_bad <= this_sector) {
585                                 /* cannot read here. If this is the 'primary'
586                                  * device, then we must not read beyond
587                                  * bad_sectors from another device..
588                                  */
589                                 bad_sectors -= (this_sector - first_bad);
590                                 if (choose_first && sectors > bad_sectors)
591                                         sectors = bad_sectors;
592                                 if (best_good_sectors > sectors)
593                                         best_good_sectors = sectors;
594
595                         } else {
596                                 sector_t good_sectors = first_bad - this_sector;
597                                 if (good_sectors > best_good_sectors) {
598                                         best_good_sectors = good_sectors;
599                                         best_disk = disk;
600                                 }
601                                 if (choose_first)
602                                         break;
603                         }
604                         continue;
605                 } else
606                         best_good_sectors = sectors;
607
608                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
609                 has_nonrot_disk |= nonrot;
610                 pending = atomic_read(&rdev->nr_pending);
611                 dist = abs(this_sector - conf->mirrors[disk].head_position);
612                 if (choose_first) {
613                         best_disk = disk;
614                         break;
615                 }
616                 /* Don't change to another disk for sequential reads */
617                 if (conf->mirrors[disk].next_seq_sect == this_sector
618                     || dist == 0) {
619                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
620                         struct raid1_info *mirror = &conf->mirrors[disk];
621
622                         best_disk = disk;
623                         /*
624                          * If buffered sequential IO size exceeds optimal
625                          * iosize, check if there is idle disk. If yes, choose
626                          * the idle disk. read_balance could already choose an
627                          * idle disk before noticing it's a sequential IO in
628                          * this disk. This doesn't matter because this disk
629                          * will idle, next time it will be utilized after the
630                          * first disk has IO size exceeds optimal iosize. In
631                          * this way, iosize of the first disk will be optimal
632                          * iosize at least. iosize of the second disk might be
633                          * small, but not a big deal since when the second disk
634                          * starts IO, the first disk is likely still busy.
635                          */
636                         if (nonrot && opt_iosize > 0 &&
637                             mirror->seq_start != MaxSector &&
638                             mirror->next_seq_sect > opt_iosize &&
639                             mirror->next_seq_sect - opt_iosize >=
640                             mirror->seq_start) {
641                                 choose_next_idle = 1;
642                                 continue;
643                         }
644                         break;
645                 }
646                 /* If device is idle, use it */
647                 if (pending == 0) {
648                         best_disk = disk;
649                         break;
650                 }
651
652                 if (choose_next_idle)
653                         continue;
654
655                 if (min_pending > pending) {
656                         min_pending = pending;
657                         best_pending_disk = disk;
658                 }
659
660                 if (dist < best_dist) {
661                         best_dist = dist;
662                         best_dist_disk = disk;
663                 }
664         }
665
666         /*
667          * If all disks are rotational, choose the closest disk. If any disk is
668          * non-rotational, choose the disk with less pending request even the
669          * disk is rotational, which might/might not be optimal for raids with
670          * mixed ratation/non-rotational disks depending on workload.
671          */
672         if (best_disk == -1) {
673                 if (has_nonrot_disk)
674                         best_disk = best_pending_disk;
675                 else
676                         best_disk = best_dist_disk;
677         }
678
679         if (best_disk >= 0) {
680                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
681                 if (!rdev)
682                         goto retry;
683                 atomic_inc(&rdev->nr_pending);
684                 if (test_bit(Faulty, &rdev->flags)) {
685                         /* cannot risk returning a device that failed
686                          * before we inc'ed nr_pending
687                          */
688                         rdev_dec_pending(rdev, conf->mddev);
689                         goto retry;
690                 }
691                 sectors = best_good_sectors;
692
693                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
694                         conf->mirrors[best_disk].seq_start = this_sector;
695
696                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
697         }
698         rcu_read_unlock();
699         *max_sectors = sectors;
700
701         return best_disk;
702 }
703
704 static int raid1_mergeable_bvec(struct mddev *mddev,
705                                 struct bvec_merge_data *bvm,
706                                 struct bio_vec *biovec)
707 {
708         struct r1conf *conf = mddev->private;
709         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
710         int max = biovec->bv_len;
711
712         if (mddev->merge_check_needed) {
713                 int disk;
714                 rcu_read_lock();
715                 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
716                         struct md_rdev *rdev = rcu_dereference(
717                                 conf->mirrors[disk].rdev);
718                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
719                                 struct request_queue *q =
720                                         bdev_get_queue(rdev->bdev);
721                                 if (q->merge_bvec_fn) {
722                                         bvm->bi_sector = sector +
723                                                 rdev->data_offset;
724                                         bvm->bi_bdev = rdev->bdev;
725                                         max = min(max, q->merge_bvec_fn(
726                                                           q, bvm, biovec));
727                                 }
728                         }
729                 }
730                 rcu_read_unlock();
731         }
732         return max;
733
734 }
735
736 static int raid1_congested(struct mddev *mddev, int bits)
737 {
738         struct r1conf *conf = mddev->private;
739         int i, ret = 0;
740
741         if ((bits & (1 << BDI_async_congested)) &&
742             conf->pending_count >= max_queued_requests)
743                 return 1;
744
745         rcu_read_lock();
746         for (i = 0; i < conf->raid_disks * 2; i++) {
747                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
748                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
749                         struct request_queue *q = bdev_get_queue(rdev->bdev);
750
751                         BUG_ON(!q);
752
753                         /* Note the '|| 1' - when read_balance prefers
754                          * non-congested targets, it can be removed
755                          */
756                         if ((bits & (1<<BDI_async_congested)) || 1)
757                                 ret |= bdi_congested(&q->backing_dev_info, bits);
758                         else
759                                 ret &= bdi_congested(&q->backing_dev_info, bits);
760                 }
761         }
762         rcu_read_unlock();
763         return ret;
764 }
765
766 static void flush_pending_writes(struct r1conf *conf)
767 {
768         /* Any writes that have been queued but are awaiting
769          * bitmap updates get flushed here.
770          */
771         spin_lock_irq(&conf->device_lock);
772
773         if (conf->pending_bio_list.head) {
774                 struct bio *bio;
775                 bio = bio_list_get(&conf->pending_bio_list);
776                 conf->pending_count = 0;
777                 spin_unlock_irq(&conf->device_lock);
778                 /* flush any pending bitmap writes to
779                  * disk before proceeding w/ I/O */
780                 bitmap_unplug(conf->mddev->bitmap);
781                 wake_up(&conf->wait_barrier);
782
783                 while (bio) { /* submit pending writes */
784                         struct bio *next = bio->bi_next;
785                         bio->bi_next = NULL;
786                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
787                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
788                                 /* Just ignore it */
789                                 bio_endio(bio, 0);
790                         else
791                                 generic_make_request(bio);
792                         bio = next;
793                 }
794         } else
795                 spin_unlock_irq(&conf->device_lock);
796 }
797
798 /* Barriers....
799  * Sometimes we need to suspend IO while we do something else,
800  * either some resync/recovery, or reconfigure the array.
801  * To do this we raise a 'barrier'.
802  * The 'barrier' is a counter that can be raised multiple times
803  * to count how many activities are happening which preclude
804  * normal IO.
805  * We can only raise the barrier if there is no pending IO.
806  * i.e. if nr_pending == 0.
807  * We choose only to raise the barrier if no-one is waiting for the
808  * barrier to go down.  This means that as soon as an IO request
809  * is ready, no other operations which require a barrier will start
810  * until the IO request has had a chance.
811  *
812  * So: regular IO calls 'wait_barrier'.  When that returns there
813  *    is no backgroup IO happening,  It must arrange to call
814  *    allow_barrier when it has finished its IO.
815  * backgroup IO calls must call raise_barrier.  Once that returns
816  *    there is no normal IO happeing.  It must arrange to call
817  *    lower_barrier when the particular background IO completes.
818  */
819 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
820 {
821         spin_lock_irq(&conf->resync_lock);
822
823         /* Wait until no block IO is waiting */
824         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
825                             conf->resync_lock);
826
827         /* block any new IO from starting */
828         conf->barrier++;
829         conf->next_resync = sector_nr;
830
831         /* For these conditions we must wait:
832          * A: while the array is in frozen state
833          * B: while barrier >= RESYNC_DEPTH, meaning resync reach
834          *    the max count which allowed.
835          * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
836          *    next resync will reach to the window which normal bios are
837          *    handling.
838          * D: while there are any active requests in the current window.
839          */
840         wait_event_lock_irq(conf->wait_barrier,
841                             !conf->array_frozen &&
842                             conf->barrier < RESYNC_DEPTH &&
843                             conf->current_window_requests == 0 &&
844                             (conf->start_next_window >=
845                              conf->next_resync + RESYNC_SECTORS),
846                             conf->resync_lock);
847
848         conf->nr_pending++;
849         spin_unlock_irq(&conf->resync_lock);
850 }
851
852 static void lower_barrier(struct r1conf *conf)
853 {
854         unsigned long flags;
855         BUG_ON(conf->barrier <= 0);
856         spin_lock_irqsave(&conf->resync_lock, flags);
857         conf->barrier--;
858         conf->nr_pending--;
859         spin_unlock_irqrestore(&conf->resync_lock, flags);
860         wake_up(&conf->wait_barrier);
861 }
862
863 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
864 {
865         bool wait = false;
866
867         if (conf->array_frozen || !bio)
868                 wait = true;
869         else if (conf->barrier && bio_data_dir(bio) == WRITE) {
870                 if ((conf->mddev->curr_resync_completed
871                      >= bio_end_sector(bio)) ||
872                     (conf->next_resync + NEXT_NORMALIO_DISTANCE
873                      <= bio->bi_iter.bi_sector))
874                         wait = false;
875                 else
876                         wait = true;
877         }
878
879         return wait;
880 }
881
882 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
883 {
884         sector_t sector = 0;
885
886         spin_lock_irq(&conf->resync_lock);
887         if (need_to_wait_for_sync(conf, bio)) {
888                 conf->nr_waiting++;
889                 /* Wait for the barrier to drop.
890                  * However if there are already pending
891                  * requests (preventing the barrier from
892                  * rising completely), and the
893                  * per-process bio queue isn't empty,
894                  * then don't wait, as we need to empty
895                  * that queue to allow conf->start_next_window
896                  * to increase.
897                  */
898                 wait_event_lock_irq(conf->wait_barrier,
899                                     !conf->array_frozen &&
900                                     (!conf->barrier ||
901                                      ((conf->start_next_window <
902                                        conf->next_resync + RESYNC_SECTORS) &&
903                                       current->bio_list &&
904                                       !bio_list_empty(current->bio_list))),
905                                     conf->resync_lock);
906                 conf->nr_waiting--;
907         }
908
909         if (bio && bio_data_dir(bio) == WRITE) {
910                 if (bio->bi_iter.bi_sector >=
911                     conf->mddev->curr_resync_completed) {
912                         if (conf->start_next_window == MaxSector)
913                                 conf->start_next_window =
914                                         conf->next_resync +
915                                         NEXT_NORMALIO_DISTANCE;
916
917                         if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
918                             <= bio->bi_iter.bi_sector)
919                                 conf->next_window_requests++;
920                         else
921                                 conf->current_window_requests++;
922                         sector = conf->start_next_window;
923                 }
924         }
925
926         conf->nr_pending++;
927         spin_unlock_irq(&conf->resync_lock);
928         return sector;
929 }
930
931 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
932                           sector_t bi_sector)
933 {
934         unsigned long flags;
935
936         spin_lock_irqsave(&conf->resync_lock, flags);
937         conf->nr_pending--;
938         if (start_next_window) {
939                 if (start_next_window == conf->start_next_window) {
940                         if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
941                             <= bi_sector)
942                                 conf->next_window_requests--;
943                         else
944                                 conf->current_window_requests--;
945                 } else
946                         conf->current_window_requests--;
947
948                 if (!conf->current_window_requests) {
949                         if (conf->next_window_requests) {
950                                 conf->current_window_requests =
951                                         conf->next_window_requests;
952                                 conf->next_window_requests = 0;
953                                 conf->start_next_window +=
954                                         NEXT_NORMALIO_DISTANCE;
955                         } else
956                                 conf->start_next_window = MaxSector;
957                 }
958         }
959         spin_unlock_irqrestore(&conf->resync_lock, flags);
960         wake_up(&conf->wait_barrier);
961 }
962
963 static void freeze_array(struct r1conf *conf, int extra)
964 {
965         /* stop syncio and normal IO and wait for everything to
966          * go quite.
967          * We wait until nr_pending match nr_queued+extra
968          * This is called in the context of one normal IO request
969          * that has failed. Thus any sync request that might be pending
970          * will be blocked by nr_pending, and we need to wait for
971          * pending IO requests to complete or be queued for re-try.
972          * Thus the number queued (nr_queued) plus this request (extra)
973          * must match the number of pending IOs (nr_pending) before
974          * we continue.
975          */
976         spin_lock_irq(&conf->resync_lock);
977         conf->array_frozen = 1;
978         wait_event_lock_irq_cmd(conf->wait_barrier,
979                                 conf->nr_pending == conf->nr_queued+extra,
980                                 conf->resync_lock,
981                                 flush_pending_writes(conf));
982         spin_unlock_irq(&conf->resync_lock);
983 }
984 static void unfreeze_array(struct r1conf *conf)
985 {
986         /* reverse the effect of the freeze */
987         spin_lock_irq(&conf->resync_lock);
988         conf->array_frozen = 0;
989         wake_up(&conf->wait_barrier);
990         spin_unlock_irq(&conf->resync_lock);
991 }
992
993 /* duplicate the data pages for behind I/O
994  */
995 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
996 {
997         int i;
998         struct bio_vec *bvec;
999         struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1000                                         GFP_NOIO);
1001         if (unlikely(!bvecs))
1002                 return;
1003
1004         bio_for_each_segment_all(bvec, bio, i) {
1005                 bvecs[i] = *bvec;
1006                 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1007                 if (unlikely(!bvecs[i].bv_page))
1008                         goto do_sync_io;
1009                 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1010                        kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1011                 kunmap(bvecs[i].bv_page);
1012                 kunmap(bvec->bv_page);
1013         }
1014         r1_bio->behind_bvecs = bvecs;
1015         r1_bio->behind_page_count = bio->bi_vcnt;
1016         set_bit(R1BIO_BehindIO, &r1_bio->state);
1017         return;
1018
1019 do_sync_io:
1020         for (i = 0; i < bio->bi_vcnt; i++)
1021                 if (bvecs[i].bv_page)
1022                         put_page(bvecs[i].bv_page);
1023         kfree(bvecs);
1024         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1025                  bio->bi_iter.bi_size);
1026 }
1027
1028 struct raid1_plug_cb {
1029         struct blk_plug_cb      cb;
1030         struct bio_list         pending;
1031         int                     pending_cnt;
1032 };
1033
1034 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1035 {
1036         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1037                                                   cb);
1038         struct mddev *mddev = plug->cb.data;
1039         struct r1conf *conf = mddev->private;
1040         struct bio *bio;
1041
1042         if (from_schedule || current->bio_list) {
1043                 spin_lock_irq(&conf->device_lock);
1044                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1045                 conf->pending_count += plug->pending_cnt;
1046                 spin_unlock_irq(&conf->device_lock);
1047                 wake_up(&conf->wait_barrier);
1048                 md_wakeup_thread(mddev->thread);
1049                 kfree(plug);
1050                 return;
1051         }
1052
1053         /* we aren't scheduling, so we can do the write-out directly. */
1054         bio = bio_list_get(&plug->pending);
1055         bitmap_unplug(mddev->bitmap);
1056         wake_up(&conf->wait_barrier);
1057
1058         while (bio) { /* submit pending writes */
1059                 struct bio *next = bio->bi_next;
1060                 bio->bi_next = NULL;
1061                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1062                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1063                         /* Just ignore it */
1064                         bio_endio(bio, 0);
1065                 else
1066                         generic_make_request(bio);
1067                 bio = next;
1068         }
1069         kfree(plug);
1070 }
1071
1072 static void make_request(struct mddev *mddev, struct bio * bio)
1073 {
1074         struct r1conf *conf = mddev->private;
1075         struct raid1_info *mirror;
1076         struct r1bio *r1_bio;
1077         struct bio *read_bio;
1078         int i, disks;
1079         struct bitmap *bitmap;
1080         unsigned long flags;
1081         const int rw = bio_data_dir(bio);
1082         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1083         const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1084         const unsigned long do_discard = (bio->bi_rw
1085                                           & (REQ_DISCARD | REQ_SECURE));
1086         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1087         struct md_rdev *blocked_rdev;
1088         struct blk_plug_cb *cb;
1089         struct raid1_plug_cb *plug = NULL;
1090         int first_clone;
1091         int sectors_handled;
1092         int max_sectors;
1093         sector_t start_next_window;
1094
1095         /*
1096          * Register the new request and wait if the reconstruction
1097          * thread has put up a bar for new requests.
1098          * Continue immediately if no resync is active currently.
1099          */
1100
1101         md_write_start(mddev, bio); /* wait on superblock update early */
1102
1103         if (bio_data_dir(bio) == WRITE &&
1104             bio_end_sector(bio) > mddev->suspend_lo &&
1105             bio->bi_iter.bi_sector < mddev->suspend_hi) {
1106                 /* As the suspend_* range is controlled by
1107                  * userspace, we want an interruptible
1108                  * wait.
1109                  */
1110                 DEFINE_WAIT(w);
1111                 for (;;) {
1112                         flush_signals(current);
1113                         prepare_to_wait(&conf->wait_barrier,
1114                                         &w, TASK_INTERRUPTIBLE);
1115                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1116                             bio->bi_iter.bi_sector >= mddev->suspend_hi)
1117                                 break;
1118                         schedule();
1119                 }
1120                 finish_wait(&conf->wait_barrier, &w);
1121         }
1122
1123         start_next_window = wait_barrier(conf, bio);
1124
1125         bitmap = mddev->bitmap;
1126
1127         /*
1128          * make_request() can abort the operation when READA is being
1129          * used and no empty request is available.
1130          *
1131          */
1132         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1133
1134         r1_bio->master_bio = bio;
1135         r1_bio->sectors = bio_sectors(bio);
1136         r1_bio->state = 0;
1137         r1_bio->mddev = mddev;
1138         r1_bio->sector = bio->bi_iter.bi_sector;
1139
1140         /* We might need to issue multiple reads to different
1141          * devices if there are bad blocks around, so we keep
1142          * track of the number of reads in bio->bi_phys_segments.
1143          * If this is 0, there is only one r1_bio and no locking
1144          * will be needed when requests complete.  If it is
1145          * non-zero, then it is the number of not-completed requests.
1146          */
1147         bio->bi_phys_segments = 0;
1148         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1149
1150         if (rw == READ) {
1151                 /*
1152                  * read balancing logic:
1153                  */
1154                 int rdisk;
1155
1156 read_again:
1157                 rdisk = read_balance(conf, r1_bio, &max_sectors);
1158
1159                 if (rdisk < 0) {
1160                         /* couldn't find anywhere to read from */
1161                         raid_end_bio_io(r1_bio);
1162                         return;
1163                 }
1164                 mirror = conf->mirrors + rdisk;
1165
1166                 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1167                     bitmap) {
1168                         /* Reading from a write-mostly device must
1169                          * take care not to over-take any writes
1170                          * that are 'behind'
1171                          */
1172                         wait_event(bitmap->behind_wait,
1173                                    atomic_read(&bitmap->behind_writes) == 0);
1174                 }
1175                 r1_bio->read_disk = rdisk;
1176                 r1_bio->start_next_window = 0;
1177
1178                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1179                 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1180                          max_sectors);
1181
1182                 r1_bio->bios[rdisk] = read_bio;
1183
1184                 read_bio->bi_iter.bi_sector = r1_bio->sector +
1185                         mirror->rdev->data_offset;
1186                 read_bio->bi_bdev = mirror->rdev->bdev;
1187                 read_bio->bi_end_io = raid1_end_read_request;
1188                 read_bio->bi_rw = READ | do_sync;
1189                 read_bio->bi_private = r1_bio;
1190
1191                 if (max_sectors < r1_bio->sectors) {
1192                         /* could not read all from this device, so we will
1193                          * need another r1_bio.
1194                          */
1195
1196                         sectors_handled = (r1_bio->sector + max_sectors
1197                                            - bio->bi_iter.bi_sector);
1198                         r1_bio->sectors = max_sectors;
1199                         spin_lock_irq(&conf->device_lock);
1200                         if (bio->bi_phys_segments == 0)
1201                                 bio->bi_phys_segments = 2;
1202                         else
1203                                 bio->bi_phys_segments++;
1204                         spin_unlock_irq(&conf->device_lock);
1205                         /* Cannot call generic_make_request directly
1206                          * as that will be queued in __make_request
1207                          * and subsequent mempool_alloc might block waiting
1208                          * for it.  So hand bio over to raid1d.
1209                          */
1210                         reschedule_retry(r1_bio);
1211
1212                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1213
1214                         r1_bio->master_bio = bio;
1215                         r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1216                         r1_bio->state = 0;
1217                         r1_bio->mddev = mddev;
1218                         r1_bio->sector = bio->bi_iter.bi_sector +
1219                                 sectors_handled;
1220                         goto read_again;
1221                 } else
1222                         generic_make_request(read_bio);
1223                 return;
1224         }
1225
1226         /*
1227          * WRITE:
1228          */
1229         if (conf->pending_count >= max_queued_requests) {
1230                 md_wakeup_thread(mddev->thread);
1231                 wait_event(conf->wait_barrier,
1232                            conf->pending_count < max_queued_requests);
1233         }
1234         /* first select target devices under rcu_lock and
1235          * inc refcount on their rdev.  Record them by setting
1236          * bios[x] to bio
1237          * If there are known/acknowledged bad blocks on any device on
1238          * which we have seen a write error, we want to avoid writing those
1239          * blocks.
1240          * This potentially requires several writes to write around
1241          * the bad blocks.  Each set of writes gets it's own r1bio
1242          * with a set of bios attached.
1243          */
1244
1245         disks = conf->raid_disks * 2;
1246  retry_write:
1247         r1_bio->start_next_window = start_next_window;
1248         blocked_rdev = NULL;
1249         rcu_read_lock();
1250         max_sectors = r1_bio->sectors;
1251         for (i = 0;  i < disks; i++) {
1252                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1253                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1254                         atomic_inc(&rdev->nr_pending);
1255                         blocked_rdev = rdev;
1256                         break;
1257                 }
1258                 r1_bio->bios[i] = NULL;
1259                 if (!rdev || test_bit(Faulty, &rdev->flags)
1260                     || test_bit(Unmerged, &rdev->flags)) {
1261                         if (i < conf->raid_disks)
1262                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1263                         continue;
1264                 }
1265
1266                 atomic_inc(&rdev->nr_pending);
1267                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1268                         sector_t first_bad;
1269                         int bad_sectors;
1270                         int is_bad;
1271
1272                         is_bad = is_badblock(rdev, r1_bio->sector,
1273                                              max_sectors,
1274                                              &first_bad, &bad_sectors);
1275                         if (is_bad < 0) {
1276                                 /* mustn't write here until the bad block is
1277                                  * acknowledged*/
1278                                 set_bit(BlockedBadBlocks, &rdev->flags);
1279                                 blocked_rdev = rdev;
1280                                 break;
1281                         }
1282                         if (is_bad && first_bad <= r1_bio->sector) {
1283                                 /* Cannot write here at all */
1284                                 bad_sectors -= (r1_bio->sector - first_bad);
1285                                 if (bad_sectors < max_sectors)
1286                                         /* mustn't write more than bad_sectors
1287                                          * to other devices yet
1288                                          */
1289                                         max_sectors = bad_sectors;
1290                                 rdev_dec_pending(rdev, mddev);
1291                                 /* We don't set R1BIO_Degraded as that
1292                                  * only applies if the disk is
1293                                  * missing, so it might be re-added,
1294                                  * and we want to know to recover this
1295                                  * chunk.
1296                                  * In this case the device is here,
1297                                  * and the fact that this chunk is not
1298                                  * in-sync is recorded in the bad
1299                                  * block log
1300                                  */
1301                                 continue;
1302                         }
1303                         if (is_bad) {
1304                                 int good_sectors = first_bad - r1_bio->sector;
1305                                 if (good_sectors < max_sectors)
1306                                         max_sectors = good_sectors;
1307                         }
1308                 }
1309                 r1_bio->bios[i] = bio;
1310         }
1311         rcu_read_unlock();
1312
1313         if (unlikely(blocked_rdev)) {
1314                 /* Wait for this device to become unblocked */
1315                 int j;
1316                 sector_t old = start_next_window;
1317
1318                 for (j = 0; j < i; j++)
1319                         if (r1_bio->bios[j])
1320                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1321                 r1_bio->state = 0;
1322                 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1323                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1324                 start_next_window = wait_barrier(conf, bio);
1325                 /*
1326                  * We must make sure the multi r1bios of bio have
1327                  * the same value of bi_phys_segments
1328                  */
1329                 if (bio->bi_phys_segments && old &&
1330                     old != start_next_window)
1331                         /* Wait for the former r1bio(s) to complete */
1332                         wait_event(conf->wait_barrier,
1333                                    bio->bi_phys_segments == 1);
1334                 goto retry_write;
1335         }
1336
1337         if (max_sectors < r1_bio->sectors) {
1338                 /* We are splitting this write into multiple parts, so
1339                  * we need to prepare for allocating another r1_bio.
1340                  */
1341                 r1_bio->sectors = max_sectors;
1342                 spin_lock_irq(&conf->device_lock);
1343                 if (bio->bi_phys_segments == 0)
1344                         bio->bi_phys_segments = 2;
1345                 else
1346                         bio->bi_phys_segments++;
1347                 spin_unlock_irq(&conf->device_lock);
1348         }
1349         sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1350
1351         atomic_set(&r1_bio->remaining, 1);
1352         atomic_set(&r1_bio->behind_remaining, 0);
1353
1354         first_clone = 1;
1355         for (i = 0; i < disks; i++) {
1356                 struct bio *mbio;
1357                 if (!r1_bio->bios[i])
1358                         continue;
1359
1360                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1361                 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1362
1363                 if (first_clone) {
1364                         /* do behind I/O ?
1365                          * Not if there are too many, or cannot
1366                          * allocate memory, or a reader on WriteMostly
1367                          * is waiting for behind writes to flush */
1368                         if (bitmap &&
1369                             (atomic_read(&bitmap->behind_writes)
1370                              < mddev->bitmap_info.max_write_behind) &&
1371                             !waitqueue_active(&bitmap->behind_wait))
1372                                 alloc_behind_pages(mbio, r1_bio);
1373
1374                         bitmap_startwrite(bitmap, r1_bio->sector,
1375                                           r1_bio->sectors,
1376                                           test_bit(R1BIO_BehindIO,
1377                                                    &r1_bio->state));
1378                         first_clone = 0;
1379                 }
1380                 if (r1_bio->behind_bvecs) {
1381                         struct bio_vec *bvec;
1382                         int j;
1383
1384                         /*
1385                          * We trimmed the bio, so _all is legit
1386                          */
1387                         bio_for_each_segment_all(bvec, mbio, j)
1388                                 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1389                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1390                                 atomic_inc(&r1_bio->behind_remaining);
1391                 }
1392
1393                 r1_bio->bios[i] = mbio;
1394
1395                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1396                                    conf->mirrors[i].rdev->data_offset);
1397                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1398                 mbio->bi_end_io = raid1_end_write_request;
1399                 mbio->bi_rw =
1400                         WRITE | do_flush_fua | do_sync | do_discard | do_same;
1401                 mbio->bi_private = r1_bio;
1402
1403                 atomic_inc(&r1_bio->remaining);
1404
1405                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1406                 if (cb)
1407                         plug = container_of(cb, struct raid1_plug_cb, cb);
1408                 else
1409                         plug = NULL;
1410                 spin_lock_irqsave(&conf->device_lock, flags);
1411                 if (plug) {
1412                         bio_list_add(&plug->pending, mbio);
1413                         plug->pending_cnt++;
1414                 } else {
1415                         bio_list_add(&conf->pending_bio_list, mbio);
1416                         conf->pending_count++;
1417                 }
1418                 spin_unlock_irqrestore(&conf->device_lock, flags);
1419                 if (!plug)
1420                         md_wakeup_thread(mddev->thread);
1421         }
1422         /* Mustn't call r1_bio_write_done before this next test,
1423          * as it could result in the bio being freed.
1424          */
1425         if (sectors_handled < bio_sectors(bio)) {
1426                 r1_bio_write_done(r1_bio);
1427                 /* We need another r1_bio.  It has already been counted
1428                  * in bio->bi_phys_segments
1429                  */
1430                 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1431                 r1_bio->master_bio = bio;
1432                 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1433                 r1_bio->state = 0;
1434                 r1_bio->mddev = mddev;
1435                 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1436                 goto retry_write;
1437         }
1438
1439         r1_bio_write_done(r1_bio);
1440
1441         /* In case raid1d snuck in to freeze_array */
1442         wake_up(&conf->wait_barrier);
1443 }
1444
1445 static void status(struct seq_file *seq, struct mddev *mddev)
1446 {
1447         struct r1conf *conf = mddev->private;
1448         int i;
1449
1450         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1451                    conf->raid_disks - mddev->degraded);
1452         rcu_read_lock();
1453         for (i = 0; i < conf->raid_disks; i++) {
1454                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1455                 seq_printf(seq, "%s",
1456                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1457         }
1458         rcu_read_unlock();
1459         seq_printf(seq, "]");
1460 }
1461
1462 static void error(struct mddev *mddev, struct md_rdev *rdev)
1463 {
1464         char b[BDEVNAME_SIZE];
1465         struct r1conf *conf = mddev->private;
1466
1467         /*
1468          * If it is not operational, then we have already marked it as dead
1469          * else if it is the last working disks, ignore the error, let the
1470          * next level up know.
1471          * else mark the drive as failed
1472          */
1473         if (test_bit(In_sync, &rdev->flags)
1474             && (conf->raid_disks - mddev->degraded) == 1) {
1475                 /*
1476                  * Don't fail the drive, act as though we were just a
1477                  * normal single drive.
1478                  * However don't try a recovery from this drive as
1479                  * it is very likely to fail.
1480                  */
1481                 conf->recovery_disabled = mddev->recovery_disabled;
1482                 return;
1483         }
1484         set_bit(Blocked, &rdev->flags);
1485         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1486                 unsigned long flags;
1487                 spin_lock_irqsave(&conf->device_lock, flags);
1488                 mddev->degraded++;
1489                 set_bit(Faulty, &rdev->flags);
1490                 spin_unlock_irqrestore(&conf->device_lock, flags);
1491         } else
1492                 set_bit(Faulty, &rdev->flags);
1493         /*
1494          * if recovery is running, make sure it aborts.
1495          */
1496         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1497         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1498         printk(KERN_ALERT
1499                "md/raid1:%s: Disk failure on %s, disabling device.\n"
1500                "md/raid1:%s: Operation continuing on %d devices.\n",
1501                mdname(mddev), bdevname(rdev->bdev, b),
1502                mdname(mddev), conf->raid_disks - mddev->degraded);
1503 }
1504
1505 static void print_conf(struct r1conf *conf)
1506 {
1507         int i;
1508
1509         printk(KERN_DEBUG "RAID1 conf printout:\n");
1510         if (!conf) {
1511                 printk(KERN_DEBUG "(!conf)\n");
1512                 return;
1513         }
1514         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1515                 conf->raid_disks);
1516
1517         rcu_read_lock();
1518         for (i = 0; i < conf->raid_disks; i++) {
1519                 char b[BDEVNAME_SIZE];
1520                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1521                 if (rdev)
1522                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1523                                i, !test_bit(In_sync, &rdev->flags),
1524                                !test_bit(Faulty, &rdev->flags),
1525                                bdevname(rdev->bdev,b));
1526         }
1527         rcu_read_unlock();
1528 }
1529
1530 static void close_sync(struct r1conf *conf)
1531 {
1532         wait_barrier(conf, NULL);
1533         allow_barrier(conf, 0, 0);
1534
1535         mempool_destroy(conf->r1buf_pool);
1536         conf->r1buf_pool = NULL;
1537
1538         spin_lock_irq(&conf->resync_lock);
1539         conf->next_resync = 0;
1540         conf->start_next_window = MaxSector;
1541         conf->current_window_requests +=
1542                 conf->next_window_requests;
1543         conf->next_window_requests = 0;
1544         spin_unlock_irq(&conf->resync_lock);
1545 }
1546
1547 static int raid1_spare_active(struct mddev *mddev)
1548 {
1549         int i;
1550         struct r1conf *conf = mddev->private;
1551         int count = 0;
1552         unsigned long flags;
1553
1554         /*
1555          * Find all failed disks within the RAID1 configuration
1556          * and mark them readable.
1557          * Called under mddev lock, so rcu protection not needed.
1558          */
1559         for (i = 0; i < conf->raid_disks; i++) {
1560                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1561                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1562                 if (repl
1563                     && repl->recovery_offset == MaxSector
1564                     && !test_bit(Faulty, &repl->flags)
1565                     && !test_and_set_bit(In_sync, &repl->flags)) {
1566                         /* replacement has just become active */
1567                         if (!rdev ||
1568                             !test_and_clear_bit(In_sync, &rdev->flags))
1569                                 count++;
1570                         if (rdev) {
1571                                 /* Replaced device not technically
1572                                  * faulty, but we need to be sure
1573                                  * it gets removed and never re-added
1574                                  */
1575                                 set_bit(Faulty, &rdev->flags);
1576                                 sysfs_notify_dirent_safe(
1577                                         rdev->sysfs_state);
1578                         }
1579                 }
1580                 if (rdev
1581                     && rdev->recovery_offset == MaxSector
1582                     && !test_bit(Faulty, &rdev->flags)
1583                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1584                         count++;
1585                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1586                 }
1587         }
1588         spin_lock_irqsave(&conf->device_lock, flags);
1589         mddev->degraded -= count;
1590         spin_unlock_irqrestore(&conf->device_lock, flags);
1591
1592         print_conf(conf);
1593         return count;
1594 }
1595
1596 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1597 {
1598         struct r1conf *conf = mddev->private;
1599         int err = -EEXIST;
1600         int mirror = 0;
1601         struct raid1_info *p;
1602         int first = 0;
1603         int last = conf->raid_disks - 1;
1604         struct request_queue *q = bdev_get_queue(rdev->bdev);
1605
1606         if (mddev->recovery_disabled == conf->recovery_disabled)
1607                 return -EBUSY;
1608
1609         if (rdev->raid_disk >= 0)
1610                 first = last = rdev->raid_disk;
1611
1612         if (q->merge_bvec_fn) {
1613                 set_bit(Unmerged, &rdev->flags);
1614                 mddev->merge_check_needed = 1;
1615         }
1616
1617         for (mirror = first; mirror <= last; mirror++) {
1618                 p = conf->mirrors+mirror;
1619                 if (!p->rdev) {
1620
1621                         if (mddev->gendisk)
1622                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1623                                                   rdev->data_offset << 9);
1624
1625                         p->head_position = 0;
1626                         rdev->raid_disk = mirror;
1627                         err = 0;
1628                         /* As all devices are equivalent, we don't need a full recovery
1629                          * if this was recently any drive of the array
1630                          */
1631                         if (rdev->saved_raid_disk < 0)
1632                                 conf->fullsync = 1;
1633                         rcu_assign_pointer(p->rdev, rdev);
1634                         break;
1635                 }
1636                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1637                     p[conf->raid_disks].rdev == NULL) {
1638                         /* Add this device as a replacement */
1639                         clear_bit(In_sync, &rdev->flags);
1640                         set_bit(Replacement, &rdev->flags);
1641                         rdev->raid_disk = mirror;
1642                         err = 0;
1643                         conf->fullsync = 1;
1644                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1645                         break;
1646                 }
1647         }
1648         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1649                 /* Some requests might not have seen this new
1650                  * merge_bvec_fn.  We must wait for them to complete
1651                  * before merging the device fully.
1652                  * First we make sure any code which has tested
1653                  * our function has submitted the request, then
1654                  * we wait for all outstanding requests to complete.
1655                  */
1656                 synchronize_sched();
1657                 freeze_array(conf, 0);
1658                 unfreeze_array(conf);
1659                 clear_bit(Unmerged, &rdev->flags);
1660         }
1661         md_integrity_add_rdev(rdev, mddev);
1662         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1663                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1664         print_conf(conf);
1665         return err;
1666 }
1667
1668 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1669 {
1670         struct r1conf *conf = mddev->private;
1671         int err = 0;
1672         int number = rdev->raid_disk;
1673         struct raid1_info *p = conf->mirrors + number;
1674
1675         if (rdev != p->rdev)
1676                 p = conf->mirrors + conf->raid_disks + number;
1677
1678         print_conf(conf);
1679         if (rdev == p->rdev) {
1680                 if (test_bit(In_sync, &rdev->flags) ||
1681                     atomic_read(&rdev->nr_pending)) {
1682                         err = -EBUSY;
1683                         goto abort;
1684                 }
1685                 /* Only remove non-faulty devices if recovery
1686                  * is not possible.
1687                  */
1688                 if (!test_bit(Faulty, &rdev->flags) &&
1689                     mddev->recovery_disabled != conf->recovery_disabled &&
1690                     mddev->degraded < conf->raid_disks) {
1691                         err = -EBUSY;
1692                         goto abort;
1693                 }
1694                 p->rdev = NULL;
1695                 synchronize_rcu();
1696                 if (atomic_read(&rdev->nr_pending)) {
1697                         /* lost the race, try later */
1698                         err = -EBUSY;
1699                         p->rdev = rdev;
1700                         goto abort;
1701                 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1702                         /* We just removed a device that is being replaced.
1703                          * Move down the replacement.  We drain all IO before
1704                          * doing this to avoid confusion.
1705                          */
1706                         struct md_rdev *repl =
1707                                 conf->mirrors[conf->raid_disks + number].rdev;
1708                         freeze_array(conf, 0);
1709                         clear_bit(Replacement, &repl->flags);
1710                         p->rdev = repl;
1711                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1712                         unfreeze_array(conf);
1713                         clear_bit(WantReplacement, &rdev->flags);
1714                 } else
1715                         clear_bit(WantReplacement, &rdev->flags);
1716                 err = md_integrity_register(mddev);
1717         }
1718 abort:
1719
1720         print_conf(conf);
1721         return err;
1722 }
1723
1724 static void end_sync_read(struct bio *bio, int error)
1725 {
1726         struct r1bio *r1_bio = bio->bi_private;
1727
1728         update_head_pos(r1_bio->read_disk, r1_bio);
1729
1730         /*
1731          * we have read a block, now it needs to be re-written,
1732          * or re-read if the read failed.
1733          * We don't do much here, just schedule handling by raid1d
1734          */
1735         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1736                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1737
1738         if (atomic_dec_and_test(&r1_bio->remaining))
1739                 reschedule_retry(r1_bio);
1740 }
1741
1742 static void end_sync_write(struct bio *bio, int error)
1743 {
1744         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1745         struct r1bio *r1_bio = bio->bi_private;
1746         struct mddev *mddev = r1_bio->mddev;
1747         struct r1conf *conf = mddev->private;
1748         int mirror=0;
1749         sector_t first_bad;
1750         int bad_sectors;
1751
1752         mirror = find_bio_disk(r1_bio, bio);
1753
1754         if (!uptodate) {
1755                 sector_t sync_blocks = 0;
1756                 sector_t s = r1_bio->sector;
1757                 long sectors_to_go = r1_bio->sectors;
1758                 /* make sure these bits doesn't get cleared. */
1759                 do {
1760                         bitmap_end_sync(mddev->bitmap, s,
1761                                         &sync_blocks, 1);
1762                         s += sync_blocks;
1763                         sectors_to_go -= sync_blocks;
1764                 } while (sectors_to_go > 0);
1765                 set_bit(WriteErrorSeen,
1766                         &conf->mirrors[mirror].rdev->flags);
1767                 if (!test_and_set_bit(WantReplacement,
1768                                       &conf->mirrors[mirror].rdev->flags))
1769                         set_bit(MD_RECOVERY_NEEDED, &
1770                                 mddev->recovery);
1771                 set_bit(R1BIO_WriteError, &r1_bio->state);
1772         } else if (is_badblock(conf->mirrors[mirror].rdev,
1773                                r1_bio->sector,
1774                                r1_bio->sectors,
1775                                &first_bad, &bad_sectors) &&
1776                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1777                                 r1_bio->sector,
1778                                 r1_bio->sectors,
1779                                 &first_bad, &bad_sectors)
1780                 )
1781                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1782
1783         if (atomic_dec_and_test(&r1_bio->remaining)) {
1784                 int s = r1_bio->sectors;
1785                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1786                     test_bit(R1BIO_WriteError, &r1_bio->state))
1787                         reschedule_retry(r1_bio);
1788                 else {
1789                         put_buf(r1_bio);
1790                         md_done_sync(mddev, s, uptodate);
1791                 }
1792         }
1793 }
1794
1795 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1796                             int sectors, struct page *page, int rw)
1797 {
1798         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1799                 /* success */
1800                 return 1;
1801         if (rw == WRITE) {
1802                 set_bit(WriteErrorSeen, &rdev->flags);
1803                 if (!test_and_set_bit(WantReplacement,
1804                                       &rdev->flags))
1805                         set_bit(MD_RECOVERY_NEEDED, &
1806                                 rdev->mddev->recovery);
1807         }
1808         /* need to record an error - either for the block or the device */
1809         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1810                 md_error(rdev->mddev, rdev);
1811         return 0;
1812 }
1813
1814 static int fix_sync_read_error(struct r1bio *r1_bio)
1815 {
1816         /* Try some synchronous reads of other devices to get
1817          * good data, much like with normal read errors.  Only
1818          * read into the pages we already have so we don't
1819          * need to re-issue the read request.
1820          * We don't need to freeze the array, because being in an
1821          * active sync request, there is no normal IO, and
1822          * no overlapping syncs.
1823          * We don't need to check is_badblock() again as we
1824          * made sure that anything with a bad block in range
1825          * will have bi_end_io clear.
1826          */
1827         struct mddev *mddev = r1_bio->mddev;
1828         struct r1conf *conf = mddev->private;
1829         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1830         sector_t sect = r1_bio->sector;
1831         int sectors = r1_bio->sectors;
1832         int idx = 0;
1833
1834         while(sectors) {
1835                 int s = sectors;
1836                 int d = r1_bio->read_disk;
1837                 int success = 0;
1838                 struct md_rdev *rdev;
1839                 int start;
1840
1841                 if (s > (PAGE_SIZE>>9))
1842                         s = PAGE_SIZE >> 9;
1843                 do {
1844                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1845                                 /* No rcu protection needed here devices
1846                                  * can only be removed when no resync is
1847                                  * active, and resync is currently active
1848                                  */
1849                                 rdev = conf->mirrors[d].rdev;
1850                                 if (sync_page_io(rdev, sect, s<<9,
1851                                                  bio->bi_io_vec[idx].bv_page,
1852                                                  READ, false)) {
1853                                         success = 1;
1854                                         break;
1855                                 }
1856                         }
1857                         d++;
1858                         if (d == conf->raid_disks * 2)
1859                                 d = 0;
1860                 } while (!success && d != r1_bio->read_disk);
1861
1862                 if (!success) {
1863                         char b[BDEVNAME_SIZE];
1864                         int abort = 0;
1865                         /* Cannot read from anywhere, this block is lost.
1866                          * Record a bad block on each device.  If that doesn't
1867                          * work just disable and interrupt the recovery.
1868                          * Don't fail devices as that won't really help.
1869                          */
1870                         printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1871                                " for block %llu\n",
1872                                mdname(mddev),
1873                                bdevname(bio->bi_bdev, b),
1874                                (unsigned long long)r1_bio->sector);
1875                         for (d = 0; d < conf->raid_disks * 2; d++) {
1876                                 rdev = conf->mirrors[d].rdev;
1877                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1878                                         continue;
1879                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
1880                                         abort = 1;
1881                         }
1882                         if (abort) {
1883                                 conf->recovery_disabled =
1884                                         mddev->recovery_disabled;
1885                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1886                                 md_done_sync(mddev, r1_bio->sectors, 0);
1887                                 put_buf(r1_bio);
1888                                 return 0;
1889                         }
1890                         /* Try next page */
1891                         sectors -= s;
1892                         sect += s;
1893                         idx++;
1894                         continue;
1895                 }
1896
1897                 start = d;
1898                 /* write it back and re-read */
1899                 while (d != r1_bio->read_disk) {
1900                         if (d == 0)
1901                                 d = conf->raid_disks * 2;
1902                         d--;
1903                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1904                                 continue;
1905                         rdev = conf->mirrors[d].rdev;
1906                         if (r1_sync_page_io(rdev, sect, s,
1907                                             bio->bi_io_vec[idx].bv_page,
1908                                             WRITE) == 0) {
1909                                 r1_bio->bios[d]->bi_end_io = NULL;
1910                                 rdev_dec_pending(rdev, mddev);
1911                         }
1912                 }
1913                 d = start;
1914                 while (d != r1_bio->read_disk) {
1915                         if (d == 0)
1916                                 d = conf->raid_disks * 2;
1917                         d--;
1918                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1919                                 continue;
1920                         rdev = conf->mirrors[d].rdev;
1921                         if (r1_sync_page_io(rdev, sect, s,
1922                                             bio->bi_io_vec[idx].bv_page,
1923                                             READ) != 0)
1924                                 atomic_add(s, &rdev->corrected_errors);
1925                 }
1926                 sectors -= s;
1927                 sect += s;
1928                 idx ++;
1929         }
1930         set_bit(R1BIO_Uptodate, &r1_bio->state);
1931         set_bit(BIO_UPTODATE, &bio->bi_flags);
1932         return 1;
1933 }
1934
1935 static void process_checks(struct r1bio *r1_bio)
1936 {
1937         /* We have read all readable devices.  If we haven't
1938          * got the block, then there is no hope left.
1939          * If we have, then we want to do a comparison
1940          * and skip the write if everything is the same.
1941          * If any blocks failed to read, then we need to
1942          * attempt an over-write
1943          */
1944         struct mddev *mddev = r1_bio->mddev;
1945         struct r1conf *conf = mddev->private;
1946         int primary;
1947         int i;
1948         int vcnt;
1949
1950         /* Fix variable parts of all bios */
1951         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1952         for (i = 0; i < conf->raid_disks * 2; i++) {
1953                 int j;
1954                 int size;
1955                 int uptodate;
1956                 struct bio *b = r1_bio->bios[i];
1957                 if (b->bi_end_io != end_sync_read)
1958                         continue;
1959                 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1960                 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1961                 bio_reset(b);
1962                 if (!uptodate)
1963                         clear_bit(BIO_UPTODATE, &b->bi_flags);
1964                 b->bi_vcnt = vcnt;
1965                 b->bi_iter.bi_size = r1_bio->sectors << 9;
1966                 b->bi_iter.bi_sector = r1_bio->sector +
1967                         conf->mirrors[i].rdev->data_offset;
1968                 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1969                 b->bi_end_io = end_sync_read;
1970                 b->bi_private = r1_bio;
1971
1972                 size = b->bi_iter.bi_size;
1973                 for (j = 0; j < vcnt ; j++) {
1974                         struct bio_vec *bi;
1975                         bi = &b->bi_io_vec[j];
1976                         bi->bv_offset = 0;
1977                         if (size > PAGE_SIZE)
1978                                 bi->bv_len = PAGE_SIZE;
1979                         else
1980                                 bi->bv_len = size;
1981                         size -= PAGE_SIZE;
1982                 }
1983         }
1984         for (primary = 0; primary < conf->raid_disks * 2; primary++)
1985                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1986                     test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1987                         r1_bio->bios[primary]->bi_end_io = NULL;
1988                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1989                         break;
1990                 }
1991         r1_bio->read_disk = primary;
1992         for (i = 0; i < conf->raid_disks * 2; i++) {
1993                 int j;
1994                 struct bio *pbio = r1_bio->bios[primary];
1995                 struct bio *sbio = r1_bio->bios[i];
1996                 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
1997
1998                 if (sbio->bi_end_io != end_sync_read)
1999                         continue;
2000                 /* Now we can 'fixup' the BIO_UPTODATE flag */
2001                 set_bit(BIO_UPTODATE, &sbio->bi_flags);
2002
2003                 if (uptodate) {
2004                         for (j = vcnt; j-- ; ) {
2005                                 struct page *p, *s;
2006                                 p = pbio->bi_io_vec[j].bv_page;
2007                                 s = sbio->bi_io_vec[j].bv_page;
2008                                 if (memcmp(page_address(p),
2009                                            page_address(s),
2010                                            sbio->bi_io_vec[j].bv_len))
2011                                         break;
2012                         }
2013                 } else
2014                         j = 0;
2015                 if (j >= 0)
2016                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2017                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2018                               && uptodate)) {
2019                         /* No need to write to this device. */
2020                         sbio->bi_end_io = NULL;
2021                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2022                         continue;
2023                 }
2024
2025                 bio_copy_data(sbio, pbio);
2026         }
2027 }
2028
2029 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2030 {
2031         struct r1conf *conf = mddev->private;
2032         int i;
2033         int disks = conf->raid_disks * 2;
2034         struct bio *bio, *wbio;
2035
2036         bio = r1_bio->bios[r1_bio->read_disk];
2037
2038         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2039                 /* ouch - failed to read all of that. */
2040                 if (!fix_sync_read_error(r1_bio))
2041                         return;
2042
2043         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2044                 process_checks(r1_bio);
2045
2046         /*
2047          * schedule writes
2048          */
2049         atomic_set(&r1_bio->remaining, 1);
2050         for (i = 0; i < disks ; i++) {
2051                 wbio = r1_bio->bios[i];
2052                 if (wbio->bi_end_io == NULL ||
2053                     (wbio->bi_end_io == end_sync_read &&
2054                      (i == r1_bio->read_disk ||
2055                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2056                         continue;
2057
2058                 wbio->bi_rw = WRITE;
2059                 wbio->bi_end_io = end_sync_write;
2060                 atomic_inc(&r1_bio->remaining);
2061                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2062
2063                 generic_make_request(wbio);
2064         }
2065
2066         if (atomic_dec_and_test(&r1_bio->remaining)) {
2067                 /* if we're here, all write(s) have completed, so clean up */
2068                 int s = r1_bio->sectors;
2069                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2070                     test_bit(R1BIO_WriteError, &r1_bio->state))
2071                         reschedule_retry(r1_bio);
2072                 else {
2073                         put_buf(r1_bio);
2074                         md_done_sync(mddev, s, 1);
2075                 }
2076         }
2077 }
2078
2079 /*
2080  * This is a kernel thread which:
2081  *
2082  *      1.      Retries failed read operations on working mirrors.
2083  *      2.      Updates the raid superblock when problems encounter.
2084  *      3.      Performs writes following reads for array synchronising.
2085  */
2086
2087 static void fix_read_error(struct r1conf *conf, int read_disk,
2088                            sector_t sect, int sectors)
2089 {
2090         struct mddev *mddev = conf->mddev;
2091         while(sectors) {
2092                 int s = sectors;
2093                 int d = read_disk;
2094                 int success = 0;
2095                 int start;
2096                 struct md_rdev *rdev;
2097
2098                 if (s > (PAGE_SIZE>>9))
2099                         s = PAGE_SIZE >> 9;
2100
2101                 do {
2102                         /* Note: no rcu protection needed here
2103                          * as this is synchronous in the raid1d thread
2104                          * which is the thread that might remove
2105                          * a device.  If raid1d ever becomes multi-threaded....
2106                          */
2107                         sector_t first_bad;
2108                         int bad_sectors;
2109
2110                         rdev = conf->mirrors[d].rdev;
2111                         if (rdev &&
2112                             (test_bit(In_sync, &rdev->flags) ||
2113                              (!test_bit(Faulty, &rdev->flags) &&
2114                               rdev->recovery_offset >= sect + s)) &&
2115                             is_badblock(rdev, sect, s,
2116                                         &first_bad, &bad_sectors) == 0 &&
2117                             sync_page_io(rdev, sect, s<<9,
2118                                          conf->tmppage, READ, false))
2119                                 success = 1;
2120                         else {
2121                                 d++;
2122                                 if (d == conf->raid_disks * 2)
2123                                         d = 0;
2124                         }
2125                 } while (!success && d != read_disk);
2126
2127                 if (!success) {
2128                         /* Cannot read from anywhere - mark it bad */
2129                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2130                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2131                                 md_error(mddev, rdev);
2132                         break;
2133                 }
2134                 /* write it back and re-read */
2135                 start = d;
2136                 while (d != read_disk) {
2137                         if (d==0)
2138                                 d = conf->raid_disks * 2;
2139                         d--;
2140                         rdev = conf->mirrors[d].rdev;
2141                         if (rdev &&
2142                             !test_bit(Faulty, &rdev->flags))
2143                                 r1_sync_page_io(rdev, sect, s,
2144                                                 conf->tmppage, WRITE);
2145                 }
2146                 d = start;
2147                 while (d != read_disk) {
2148                         char b[BDEVNAME_SIZE];
2149                         if (d==0)
2150                                 d = conf->raid_disks * 2;
2151                         d--;
2152                         rdev = conf->mirrors[d].rdev;
2153                         if (rdev &&
2154                             !test_bit(Faulty, &rdev->flags)) {
2155                                 if (r1_sync_page_io(rdev, sect, s,
2156                                                     conf->tmppage, READ)) {
2157                                         atomic_add(s, &rdev->corrected_errors);
2158                                         printk(KERN_INFO
2159                                                "md/raid1:%s: read error corrected "
2160                                                "(%d sectors at %llu on %s)\n",
2161                                                mdname(mddev), s,
2162                                                (unsigned long long)(sect +
2163                                                    rdev->data_offset),
2164                                                bdevname(rdev->bdev, b));
2165                                 }
2166                         }
2167                 }
2168                 sectors -= s;
2169                 sect += s;
2170         }
2171 }
2172
2173 static int narrow_write_error(struct r1bio *r1_bio, int i)
2174 {
2175         struct mddev *mddev = r1_bio->mddev;
2176         struct r1conf *conf = mddev->private;
2177         struct md_rdev *rdev = conf->mirrors[i].rdev;
2178
2179         /* bio has the data to be written to device 'i' where
2180          * we just recently had a write error.
2181          * We repeatedly clone the bio and trim down to one block,
2182          * then try the write.  Where the write fails we record
2183          * a bad block.
2184          * It is conceivable that the bio doesn't exactly align with
2185          * blocks.  We must handle this somehow.
2186          *
2187          * We currently own a reference on the rdev.
2188          */
2189
2190         int block_sectors;
2191         sector_t sector;
2192         int sectors;
2193         int sect_to_write = r1_bio->sectors;
2194         int ok = 1;
2195
2196         if (rdev->badblocks.shift < 0)
2197                 return 0;
2198
2199         block_sectors = 1 << rdev->badblocks.shift;
2200         sector = r1_bio->sector;
2201         sectors = ((sector + block_sectors)
2202                    & ~(sector_t)(block_sectors - 1))
2203                 - sector;
2204
2205         while (sect_to_write) {
2206                 struct bio *wbio;
2207                 if (sectors > sect_to_write)
2208                         sectors = sect_to_write;
2209                 /* Write at 'sector' for 'sectors'*/
2210
2211                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2212                         unsigned vcnt = r1_bio->behind_page_count;
2213                         struct bio_vec *vec = r1_bio->behind_bvecs;
2214
2215                         while (!vec->bv_page) {
2216                                 vec++;
2217                                 vcnt--;
2218                         }
2219
2220                         wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2221                         memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2222
2223                         wbio->bi_vcnt = vcnt;
2224                 } else {
2225                         wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2226                 }
2227
2228                 wbio->bi_rw = WRITE;
2229                 wbio->bi_iter.bi_sector = r1_bio->sector;
2230                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2231
2232                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2233                 wbio->bi_iter.bi_sector += rdev->data_offset;
2234                 wbio->bi_bdev = rdev->bdev;
2235                 if (submit_bio_wait(WRITE, wbio) == 0)
2236                         /* failure! */
2237                         ok = rdev_set_badblocks(rdev, sector,
2238                                                 sectors, 0)
2239                                 && ok;
2240
2241                 bio_put(wbio);
2242                 sect_to_write -= sectors;
2243                 sector += sectors;
2244                 sectors = block_sectors;
2245         }
2246         return ok;
2247 }
2248
2249 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2250 {
2251         int m;
2252         int s = r1_bio->sectors;
2253         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2254                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2255                 struct bio *bio = r1_bio->bios[m];
2256                 if (bio->bi_end_io == NULL)
2257                         continue;
2258                 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2259                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2260                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2261                 }
2262                 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2263                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2264                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2265                                 md_error(conf->mddev, rdev);
2266                 }
2267         }
2268         put_buf(r1_bio);
2269         md_done_sync(conf->mddev, s, 1);
2270 }
2271
2272 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2273 {
2274         int m;
2275         for (m = 0; m < conf->raid_disks * 2 ; m++)
2276                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2277                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2278                         rdev_clear_badblocks(rdev,
2279                                              r1_bio->sector,
2280                                              r1_bio->sectors, 0);
2281                         rdev_dec_pending(rdev, conf->mddev);
2282                 } else if (r1_bio->bios[m] != NULL) {
2283                         /* This drive got a write error.  We need to
2284                          * narrow down and record precise write
2285                          * errors.
2286                          */
2287                         if (!narrow_write_error(r1_bio, m)) {
2288                                 md_error(conf->mddev,
2289                                          conf->mirrors[m].rdev);
2290                                 /* an I/O failed, we can't clear the bitmap */
2291                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2292                         }
2293                         rdev_dec_pending(conf->mirrors[m].rdev,
2294                                          conf->mddev);
2295                 }
2296         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2297                 close_write(r1_bio);
2298         raid_end_bio_io(r1_bio);
2299 }
2300
2301 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2302 {
2303         int disk;
2304         int max_sectors;
2305         struct mddev *mddev = conf->mddev;
2306         struct bio *bio;
2307         char b[BDEVNAME_SIZE];
2308         struct md_rdev *rdev;
2309
2310         clear_bit(R1BIO_ReadError, &r1_bio->state);
2311         /* we got a read error. Maybe the drive is bad.  Maybe just
2312          * the block and we can fix it.
2313          * We freeze all other IO, and try reading the block from
2314          * other devices.  When we find one, we re-write
2315          * and check it that fixes the read error.
2316          * This is all done synchronously while the array is
2317          * frozen
2318          */
2319         if (mddev->ro == 0) {
2320                 freeze_array(conf, 1);
2321                 fix_read_error(conf, r1_bio->read_disk,
2322                                r1_bio->sector, r1_bio->sectors);
2323                 unfreeze_array(conf);
2324         } else
2325                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2326         rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2327
2328         bio = r1_bio->bios[r1_bio->read_disk];
2329         bdevname(bio->bi_bdev, b);
2330 read_more:
2331         disk = read_balance(conf, r1_bio, &max_sectors);
2332         if (disk == -1) {
2333                 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2334                        " read error for block %llu\n",
2335                        mdname(mddev), b, (unsigned long long)r1_bio->sector);
2336                 raid_end_bio_io(r1_bio);
2337         } else {
2338                 const unsigned long do_sync
2339                         = r1_bio->master_bio->bi_rw & REQ_SYNC;
2340                 if (bio) {
2341                         r1_bio->bios[r1_bio->read_disk] =
2342                                 mddev->ro ? IO_BLOCKED : NULL;
2343                         bio_put(bio);
2344                 }
2345                 r1_bio->read_disk = disk;
2346                 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2347                 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2348                          max_sectors);
2349                 r1_bio->bios[r1_bio->read_disk] = bio;
2350                 rdev = conf->mirrors[disk].rdev;
2351                 printk_ratelimited(KERN_ERR
2352                                    "md/raid1:%s: redirecting sector %llu"
2353                                    " to other mirror: %s\n",
2354                                    mdname(mddev),
2355                                    (unsigned long long)r1_bio->sector,
2356                                    bdevname(rdev->bdev, b));
2357                 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2358                 bio->bi_bdev = rdev->bdev;
2359                 bio->bi_end_io = raid1_end_read_request;
2360                 bio->bi_rw = READ | do_sync;
2361                 bio->bi_private = r1_bio;
2362                 if (max_sectors < r1_bio->sectors) {
2363                         /* Drat - have to split this up more */
2364                         struct bio *mbio = r1_bio->master_bio;
2365                         int sectors_handled = (r1_bio->sector + max_sectors
2366                                                - mbio->bi_iter.bi_sector);
2367                         r1_bio->sectors = max_sectors;
2368                         spin_lock_irq(&conf->device_lock);
2369                         if (mbio->bi_phys_segments == 0)
2370                                 mbio->bi_phys_segments = 2;
2371                         else
2372                                 mbio->bi_phys_segments++;
2373                         spin_unlock_irq(&conf->device_lock);
2374                         generic_make_request(bio);
2375                         bio = NULL;
2376
2377                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2378
2379                         r1_bio->master_bio = mbio;
2380                         r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2381                         r1_bio->state = 0;
2382                         set_bit(R1BIO_ReadError, &r1_bio->state);
2383                         r1_bio->mddev = mddev;
2384                         r1_bio->sector = mbio->bi_iter.bi_sector +
2385                                 sectors_handled;
2386
2387                         goto read_more;
2388                 } else
2389                         generic_make_request(bio);
2390         }
2391 }
2392
2393 static void raid1d(struct md_thread *thread)
2394 {
2395         struct mddev *mddev = thread->mddev;
2396         struct r1bio *r1_bio;
2397         unsigned long flags;
2398         struct r1conf *conf = mddev->private;
2399         struct list_head *head = &conf->retry_list;
2400         struct blk_plug plug;
2401
2402         md_check_recovery(mddev);
2403
2404         blk_start_plug(&plug);
2405         for (;;) {
2406
2407                 flush_pending_writes(conf);
2408
2409                 spin_lock_irqsave(&conf->device_lock, flags);
2410                 if (list_empty(head)) {
2411                         spin_unlock_irqrestore(&conf->device_lock, flags);
2412                         break;
2413                 }
2414                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2415                 list_del(head->prev);
2416                 conf->nr_queued--;
2417                 spin_unlock_irqrestore(&conf->device_lock, flags);
2418
2419                 mddev = r1_bio->mddev;
2420                 conf = mddev->private;
2421                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2422                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2423                             test_bit(R1BIO_WriteError, &r1_bio->state))
2424                                 handle_sync_write_finished(conf, r1_bio);
2425                         else
2426                                 sync_request_write(mddev, r1_bio);
2427                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2428                            test_bit(R1BIO_WriteError, &r1_bio->state))
2429                         handle_write_finished(conf, r1_bio);
2430                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2431                         handle_read_error(conf, r1_bio);
2432                 else
2433                         /* just a partial read to be scheduled from separate
2434                          * context
2435                          */
2436                         generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2437
2438                 cond_resched();
2439                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2440                         md_check_recovery(mddev);
2441         }
2442         blk_finish_plug(&plug);
2443 }
2444
2445 static int init_resync(struct r1conf *conf)
2446 {
2447         int buffs;
2448
2449         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2450         BUG_ON(conf->r1buf_pool);
2451         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2452                                           conf->poolinfo);
2453         if (!conf->r1buf_pool)
2454                 return -ENOMEM;
2455         conf->next_resync = 0;
2456         return 0;
2457 }
2458
2459 /*
2460  * perform a "sync" on one "block"
2461  *
2462  * We need to make sure that no normal I/O request - particularly write
2463  * requests - conflict with active sync requests.
2464  *
2465  * This is achieved by tracking pending requests and a 'barrier' concept
2466  * that can be installed to exclude normal IO requests.
2467  */
2468
2469 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2470 {
2471         struct r1conf *conf = mddev->private;
2472         struct r1bio *r1_bio;
2473         struct bio *bio;
2474         sector_t max_sector, nr_sectors;
2475         int disk = -1;
2476         int i;
2477         int wonly = -1;
2478         int write_targets = 0, read_targets = 0;
2479         sector_t sync_blocks;
2480         int still_degraded = 0;
2481         int good_sectors = RESYNC_SECTORS;
2482         int min_bad = 0; /* number of sectors that are bad in all devices */
2483
2484         if (!conf->r1buf_pool)
2485                 if (init_resync(conf))
2486                         return 0;
2487
2488         max_sector = mddev->dev_sectors;
2489         if (sector_nr >= max_sector) {
2490                 /* If we aborted, we need to abort the
2491                  * sync on the 'current' bitmap chunk (there will
2492                  * only be one in raid1 resync.
2493                  * We can find the current addess in mddev->curr_resync
2494                  */
2495                 if (mddev->curr_resync < max_sector) /* aborted */
2496                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2497                                                 &sync_blocks, 1);
2498                 else /* completed sync */
2499                         conf->fullsync = 0;
2500
2501                 bitmap_close_sync(mddev->bitmap);
2502                 close_sync(conf);
2503                 return 0;
2504         }
2505
2506         if (mddev->bitmap == NULL &&
2507             mddev->recovery_cp == MaxSector &&
2508             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2509             conf->fullsync == 0) {
2510                 *skipped = 1;
2511                 return max_sector - sector_nr;
2512         }
2513         /* before building a request, check if we can skip these blocks..
2514          * This call the bitmap_start_sync doesn't actually record anything
2515          */
2516         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2517             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2518                 /* We can skip this block, and probably several more */
2519                 *skipped = 1;
2520                 return sync_blocks;
2521         }
2522         /*
2523          * If there is non-resync activity waiting for a turn,
2524          * and resync is going fast enough,
2525          * then let it though before starting on this new sync request.
2526          */
2527         if (!go_faster && conf->nr_waiting)
2528                 msleep_interruptible(1000);
2529
2530         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2531         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2532
2533         raise_barrier(conf, sector_nr);
2534
2535         rcu_read_lock();
2536         /*
2537          * If we get a correctably read error during resync or recovery,
2538          * we might want to read from a different device.  So we
2539          * flag all drives that could conceivably be read from for READ,
2540          * and any others (which will be non-In_sync devices) for WRITE.
2541          * If a read fails, we try reading from something else for which READ
2542          * is OK.
2543          */
2544
2545         r1_bio->mddev = mddev;
2546         r1_bio->sector = sector_nr;
2547         r1_bio->state = 0;
2548         set_bit(R1BIO_IsSync, &r1_bio->state);
2549
2550         for (i = 0; i < conf->raid_disks * 2; i++) {
2551                 struct md_rdev *rdev;
2552                 bio = r1_bio->bios[i];
2553                 bio_reset(bio);
2554
2555                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2556                 if (rdev == NULL ||
2557                     test_bit(Faulty, &rdev->flags)) {
2558                         if (i < conf->raid_disks)
2559                                 still_degraded = 1;
2560                 } else if (!test_bit(In_sync, &rdev->flags)) {
2561                         bio->bi_rw = WRITE;
2562                         bio->bi_end_io = end_sync_write;
2563                         write_targets ++;
2564                 } else {
2565                         /* may need to read from here */
2566                         sector_t first_bad = MaxSector;
2567                         int bad_sectors;
2568
2569                         if (is_badblock(rdev, sector_nr, good_sectors,
2570                                         &first_bad, &bad_sectors)) {
2571                                 if (first_bad > sector_nr)
2572                                         good_sectors = first_bad - sector_nr;
2573                                 else {
2574                                         bad_sectors -= (sector_nr - first_bad);
2575                                         if (min_bad == 0 ||
2576                                             min_bad > bad_sectors)
2577                                                 min_bad = bad_sectors;
2578                                 }
2579                         }
2580                         if (sector_nr < first_bad) {
2581                                 if (test_bit(WriteMostly, &rdev->flags)) {
2582                                         if (wonly < 0)
2583                                                 wonly = i;
2584                                 } else {
2585                                         if (disk < 0)
2586                                                 disk = i;
2587                                 }
2588                                 bio->bi_rw = READ;
2589                                 bio->bi_end_io = end_sync_read;
2590                                 read_targets++;
2591                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2592                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2593                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2594                                 /*
2595                                  * The device is suitable for reading (InSync),
2596                                  * but has bad block(s) here. Let's try to correct them,
2597                                  * if we are doing resync or repair. Otherwise, leave
2598                                  * this device alone for this sync request.
2599                                  */
2600                                 bio->bi_rw = WRITE;
2601                                 bio->bi_end_io = end_sync_write;
2602                                 write_targets++;
2603                         }
2604                 }
2605                 if (bio->bi_end_io) {
2606                         atomic_inc(&rdev->nr_pending);
2607                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2608                         bio->bi_bdev = rdev->bdev;
2609                         bio->bi_private = r1_bio;
2610                 }
2611         }
2612         rcu_read_unlock();
2613         if (disk < 0)
2614                 disk = wonly;
2615         r1_bio->read_disk = disk;
2616
2617         if (read_targets == 0 && min_bad > 0) {
2618                 /* These sectors are bad on all InSync devices, so we
2619                  * need to mark them bad on all write targets
2620                  */
2621                 int ok = 1;
2622                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2623                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2624                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2625                                 ok = rdev_set_badblocks(rdev, sector_nr,
2626                                                         min_bad, 0
2627                                         ) && ok;
2628                         }
2629                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2630                 *skipped = 1;
2631                 put_buf(r1_bio);
2632
2633                 if (!ok) {
2634                         /* Cannot record the badblocks, so need to
2635                          * abort the resync.
2636                          * If there are multiple read targets, could just
2637                          * fail the really bad ones ???
2638                          */
2639                         conf->recovery_disabled = mddev->recovery_disabled;
2640                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2641                         return 0;
2642                 } else
2643                         return min_bad;
2644
2645         }
2646         if (min_bad > 0 && min_bad < good_sectors) {
2647                 /* only resync enough to reach the next bad->good
2648                  * transition */
2649                 good_sectors = min_bad;
2650         }
2651
2652         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2653                 /* extra read targets are also write targets */
2654                 write_targets += read_targets-1;
2655
2656         if (write_targets == 0 || read_targets == 0) {
2657                 /* There is nowhere to write, so all non-sync
2658                  * drives must be failed - so we are finished
2659                  */
2660                 sector_t rv;
2661                 if (min_bad > 0)
2662                         max_sector = sector_nr + min_bad;
2663                 rv = max_sector - sector_nr;
2664                 *skipped = 1;
2665                 put_buf(r1_bio);
2666                 return rv;
2667         }
2668
2669         if (max_sector > mddev->resync_max)
2670                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2671         if (max_sector > sector_nr + good_sectors)
2672                 max_sector = sector_nr + good_sectors;
2673         nr_sectors = 0;
2674         sync_blocks = 0;
2675         do {
2676                 struct page *page;
2677                 int len = PAGE_SIZE;
2678                 if (sector_nr + (len>>9) > max_sector)
2679                         len = (max_sector - sector_nr) << 9;
2680                 if (len == 0)
2681                         break;
2682                 if (sync_blocks == 0) {
2683                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2684                                                &sync_blocks, still_degraded) &&
2685                             !conf->fullsync &&
2686                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2687                                 break;
2688                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2689                         if ((len >> 9) > sync_blocks)
2690                                 len = sync_blocks<<9;
2691                 }
2692
2693                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2694                         bio = r1_bio->bios[i];
2695                         if (bio->bi_end_io) {
2696                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2697                                 if (bio_add_page(bio, page, len, 0) == 0) {
2698                                         /* stop here */
2699                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2700                                         while (i > 0) {
2701                                                 i--;
2702                                                 bio = r1_bio->bios[i];
2703                                                 if (bio->bi_end_io==NULL)
2704                                                         continue;
2705                                                 /* remove last page from this bio */
2706                                                 bio->bi_vcnt--;
2707                                                 bio->bi_iter.bi_size -= len;
2708                                                 __clear_bit(BIO_SEG_VALID, &bio->bi_flags);
2709                                         }
2710                                         goto bio_full;
2711                                 }
2712                         }
2713                 }
2714                 nr_sectors += len>>9;
2715                 sector_nr += len>>9;
2716                 sync_blocks -= (len>>9);
2717         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2718  bio_full:
2719         r1_bio->sectors = nr_sectors;
2720
2721         /* For a user-requested sync, we read all readable devices and do a
2722          * compare
2723          */
2724         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2725                 atomic_set(&r1_bio->remaining, read_targets);
2726                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2727                         bio = r1_bio->bios[i];
2728                         if (bio->bi_end_io == end_sync_read) {
2729                                 read_targets--;
2730                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2731                                 generic_make_request(bio);
2732                         }
2733                 }
2734         } else {
2735                 atomic_set(&r1_bio->remaining, 1);
2736                 bio = r1_bio->bios[r1_bio->read_disk];
2737                 md_sync_acct(bio->bi_bdev, nr_sectors);
2738                 generic_make_request(bio);
2739
2740         }
2741         return nr_sectors;
2742 }
2743
2744 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2745 {
2746         if (sectors)
2747                 return sectors;
2748
2749         return mddev->dev_sectors;
2750 }
2751
2752 static struct r1conf *setup_conf(struct mddev *mddev)
2753 {
2754         struct r1conf *conf;
2755         int i;
2756         struct raid1_info *disk;
2757         struct md_rdev *rdev;
2758         int err = -ENOMEM;
2759
2760         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2761         if (!conf)
2762                 goto abort;
2763
2764         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2765                                 * mddev->raid_disks * 2,
2766                                  GFP_KERNEL);
2767         if (!conf->mirrors)
2768                 goto abort;
2769
2770         conf->tmppage = alloc_page(GFP_KERNEL);
2771         if (!conf->tmppage)
2772                 goto abort;
2773
2774         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2775         if (!conf->poolinfo)
2776                 goto abort;
2777         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2778         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2779                                           r1bio_pool_free,
2780                                           conf->poolinfo);
2781         if (!conf->r1bio_pool)
2782                 goto abort;
2783
2784         conf->poolinfo->mddev = mddev;
2785
2786         err = -EINVAL;
2787         spin_lock_init(&conf->device_lock);
2788         rdev_for_each(rdev, mddev) {
2789                 struct request_queue *q;
2790                 int disk_idx = rdev->raid_disk;
2791                 if (disk_idx >= mddev->raid_disks
2792                     || disk_idx < 0)
2793                         continue;
2794                 if (test_bit(Replacement, &rdev->flags))
2795                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2796                 else
2797                         disk = conf->mirrors + disk_idx;
2798
2799                 if (disk->rdev)
2800                         goto abort;
2801                 disk->rdev = rdev;
2802                 q = bdev_get_queue(rdev->bdev);
2803                 if (q->merge_bvec_fn)
2804                         mddev->merge_check_needed = 1;
2805
2806                 disk->head_position = 0;
2807                 disk->seq_start = MaxSector;
2808         }
2809         conf->raid_disks = mddev->raid_disks;
2810         conf->mddev = mddev;
2811         INIT_LIST_HEAD(&conf->retry_list);
2812
2813         spin_lock_init(&conf->resync_lock);
2814         init_waitqueue_head(&conf->wait_barrier);
2815
2816         bio_list_init(&conf->pending_bio_list);
2817         conf->pending_count = 0;
2818         conf->recovery_disabled = mddev->recovery_disabled - 1;
2819
2820         conf->start_next_window = MaxSector;
2821         conf->current_window_requests = conf->next_window_requests = 0;
2822
2823         err = -EIO;
2824         for (i = 0; i < conf->raid_disks * 2; i++) {
2825
2826                 disk = conf->mirrors + i;
2827
2828                 if (i < conf->raid_disks &&
2829                     disk[conf->raid_disks].rdev) {
2830                         /* This slot has a replacement. */
2831                         if (!disk->rdev) {
2832                                 /* No original, just make the replacement
2833                                  * a recovering spare
2834                                  */
2835                                 disk->rdev =
2836                                         disk[conf->raid_disks].rdev;
2837                                 disk[conf->raid_disks].rdev = NULL;
2838                         } else if (!test_bit(In_sync, &disk->rdev->flags))
2839                                 /* Original is not in_sync - bad */
2840                                 goto abort;
2841                 }
2842
2843                 if (!disk->rdev ||
2844                     !test_bit(In_sync, &disk->rdev->flags)) {
2845                         disk->head_position = 0;
2846                         if (disk->rdev &&
2847                             (disk->rdev->saved_raid_disk < 0))
2848                                 conf->fullsync = 1;
2849                 }
2850         }
2851
2852         err = -ENOMEM;
2853         conf->thread = md_register_thread(raid1d, mddev, "raid1");
2854         if (!conf->thread) {
2855                 printk(KERN_ERR
2856                        "md/raid1:%s: couldn't allocate thread\n",
2857                        mdname(mddev));
2858                 goto abort;
2859         }
2860
2861         return conf;
2862
2863  abort:
2864         if (conf) {
2865                 if (conf->r1bio_pool)
2866                         mempool_destroy(conf->r1bio_pool);
2867                 kfree(conf->mirrors);
2868                 safe_put_page(conf->tmppage);
2869                 kfree(conf->poolinfo);
2870                 kfree(conf);
2871         }
2872         return ERR_PTR(err);
2873 }
2874
2875 static void raid1_free(struct mddev *mddev, void *priv);
2876 static int run(struct mddev *mddev)
2877 {
2878         struct r1conf *conf;
2879         int i;
2880         struct md_rdev *rdev;
2881         int ret;
2882         bool discard_supported = false;
2883
2884         if (mddev->level != 1) {
2885                 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2886                        mdname(mddev), mddev->level);
2887                 return -EIO;
2888         }
2889         if (mddev->reshape_position != MaxSector) {
2890                 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2891                        mdname(mddev));
2892                 return -EIO;
2893         }
2894         /*
2895          * copy the already verified devices into our private RAID1
2896          * bookkeeping area. [whatever we allocate in run(),
2897          * should be freed in raid1_free()]
2898          */
2899         if (mddev->private == NULL)
2900                 conf = setup_conf(mddev);
2901         else
2902                 conf = mddev->private;
2903
2904         if (IS_ERR(conf))
2905                 return PTR_ERR(conf);
2906
2907         if (mddev->queue)
2908                 blk_queue_max_write_same_sectors(mddev->queue, 0);
2909
2910         rdev_for_each(rdev, mddev) {
2911                 if (!mddev->gendisk)
2912                         continue;
2913                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2914                                   rdev->data_offset << 9);
2915                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2916                         discard_supported = true;
2917         }
2918
2919         mddev->degraded = 0;
2920         for (i=0; i < conf->raid_disks; i++)
2921                 if (conf->mirrors[i].rdev == NULL ||
2922                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2923                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2924                         mddev->degraded++;
2925
2926         if (conf->raid_disks - mddev->degraded == 1)
2927                 mddev->recovery_cp = MaxSector;
2928
2929         if (mddev->recovery_cp != MaxSector)
2930                 printk(KERN_NOTICE "md/raid1:%s: not clean"
2931                        " -- starting background reconstruction\n",
2932                        mdname(mddev));
2933         printk(KERN_INFO
2934                 "md/raid1:%s: active with %d out of %d mirrors\n",
2935                 mdname(mddev), mddev->raid_disks - mddev->degraded,
2936                 mddev->raid_disks);
2937
2938         /*
2939          * Ok, everything is just fine now
2940          */
2941         mddev->thread = conf->thread;
2942         conf->thread = NULL;
2943         mddev->private = conf;
2944
2945         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2946
2947         if (mddev->queue) {
2948                 if (discard_supported)
2949                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2950                                                 mddev->queue);
2951                 else
2952                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2953                                                   mddev->queue);
2954         }
2955
2956         ret =  md_integrity_register(mddev);
2957         if (ret) {
2958                 md_unregister_thread(&mddev->thread);
2959                 raid1_free(mddev, conf);
2960         }
2961         return ret;
2962 }
2963
2964 static void raid1_free(struct mddev *mddev, void *priv)
2965 {
2966         struct r1conf *conf = priv;
2967
2968         if (conf->r1bio_pool)
2969                 mempool_destroy(conf->r1bio_pool);
2970         kfree(conf->mirrors);
2971         safe_put_page(conf->tmppage);
2972         kfree(conf->poolinfo);
2973         kfree(conf);
2974 }
2975
2976 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2977 {
2978         /* no resync is happening, and there is enough space
2979          * on all devices, so we can resize.
2980          * We need to make sure resync covers any new space.
2981          * If the array is shrinking we should possibly wait until
2982          * any io in the removed space completes, but it hardly seems
2983          * worth it.
2984          */
2985         sector_t newsize = raid1_size(mddev, sectors, 0);
2986         if (mddev->external_size &&
2987             mddev->array_sectors > newsize)
2988                 return -EINVAL;
2989         if (mddev->bitmap) {
2990                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2991                 if (ret)
2992                         return ret;
2993         }
2994         md_set_array_sectors(mddev, newsize);
2995         set_capacity(mddev->gendisk, mddev->array_sectors);
2996         revalidate_disk(mddev->gendisk);
2997         if (sectors > mddev->dev_sectors &&
2998             mddev->recovery_cp > mddev->dev_sectors) {
2999                 mddev->recovery_cp = mddev->dev_sectors;
3000                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3001         }
3002         mddev->dev_sectors = sectors;
3003         mddev->resync_max_sectors = sectors;
3004         return 0;
3005 }
3006
3007 static int raid1_reshape(struct mddev *mddev)
3008 {
3009         /* We need to:
3010          * 1/ resize the r1bio_pool
3011          * 2/ resize conf->mirrors
3012          *
3013          * We allocate a new r1bio_pool if we can.
3014          * Then raise a device barrier and wait until all IO stops.
3015          * Then resize conf->mirrors and swap in the new r1bio pool.
3016          *
3017          * At the same time, we "pack" the devices so that all the missing
3018          * devices have the higher raid_disk numbers.
3019          */
3020         mempool_t *newpool, *oldpool;
3021         struct pool_info *newpoolinfo;
3022         struct raid1_info *newmirrors;
3023         struct r1conf *conf = mddev->private;
3024         int cnt, raid_disks;
3025         unsigned long flags;
3026         int d, d2, err;
3027
3028         /* Cannot change chunk_size, layout, or level */
3029         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3030             mddev->layout != mddev->new_layout ||
3031             mddev->level != mddev->new_level) {
3032                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3033                 mddev->new_layout = mddev->layout;
3034                 mddev->new_level = mddev->level;
3035                 return -EINVAL;
3036         }
3037
3038         err = md_allow_write(mddev);
3039         if (err)
3040                 return err;
3041
3042         raid_disks = mddev->raid_disks + mddev->delta_disks;
3043
3044         if (raid_disks < conf->raid_disks) {
3045                 cnt=0;
3046                 for (d= 0; d < conf->raid_disks; d++)
3047                         if (conf->mirrors[d].rdev)
3048                                 cnt++;
3049                 if (cnt > raid_disks)
3050                         return -EBUSY;
3051         }
3052
3053         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3054         if (!newpoolinfo)
3055                 return -ENOMEM;
3056         newpoolinfo->mddev = mddev;
3057         newpoolinfo->raid_disks = raid_disks * 2;
3058
3059         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3060                                  r1bio_pool_free, newpoolinfo);
3061         if (!newpool) {
3062                 kfree(newpoolinfo);
3063                 return -ENOMEM;
3064         }
3065         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3066                              GFP_KERNEL);
3067         if (!newmirrors) {
3068                 kfree(newpoolinfo);
3069                 mempool_destroy(newpool);
3070                 return -ENOMEM;
3071         }
3072
3073         freeze_array(conf, 0);
3074
3075         /* ok, everything is stopped */
3076         oldpool = conf->r1bio_pool;
3077         conf->r1bio_pool = newpool;
3078
3079         for (d = d2 = 0; d < conf->raid_disks; d++) {
3080                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3081                 if (rdev && rdev->raid_disk != d2) {
3082                         sysfs_unlink_rdev(mddev, rdev);
3083                         rdev->raid_disk = d2;
3084                         sysfs_unlink_rdev(mddev, rdev);
3085                         if (sysfs_link_rdev(mddev, rdev))
3086                                 printk(KERN_WARNING
3087                                        "md/raid1:%s: cannot register rd%d\n",
3088                                        mdname(mddev), rdev->raid_disk);
3089                 }
3090                 if (rdev)
3091                         newmirrors[d2++].rdev = rdev;
3092         }
3093         kfree(conf->mirrors);
3094         conf->mirrors = newmirrors;
3095         kfree(conf->poolinfo);
3096         conf->poolinfo = newpoolinfo;
3097
3098         spin_lock_irqsave(&conf->device_lock, flags);
3099         mddev->degraded += (raid_disks - conf->raid_disks);
3100         spin_unlock_irqrestore(&conf->device_lock, flags);
3101         conf->raid_disks = mddev->raid_disks = raid_disks;
3102         mddev->delta_disks = 0;
3103
3104         unfreeze_array(conf);
3105
3106         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3107         md_wakeup_thread(mddev->thread);
3108
3109         mempool_destroy(oldpool);
3110         return 0;
3111 }
3112
3113 static void raid1_quiesce(struct mddev *mddev, int state)
3114 {
3115         struct r1conf *conf = mddev->private;
3116
3117         switch(state) {
3118         case 2: /* wake for suspend */
3119                 wake_up(&conf->wait_barrier);
3120                 break;
3121         case 1:
3122                 freeze_array(conf, 0);
3123                 break;
3124         case 0:
3125                 unfreeze_array(conf);
3126                 break;
3127         }
3128 }
3129
3130 static void *raid1_takeover(struct mddev *mddev)
3131 {
3132         /* raid1 can take over:
3133          *  raid5 with 2 devices, any layout or chunk size
3134          */
3135         if (mddev->level == 5 && mddev->raid_disks == 2) {
3136                 struct r1conf *conf;
3137                 mddev->new_level = 1;
3138                 mddev->new_layout = 0;
3139                 mddev->new_chunk_sectors = 0;
3140                 conf = setup_conf(mddev);
3141                 if (!IS_ERR(conf))
3142                         /* Array must appear to be quiesced */
3143                         conf->array_frozen = 1;
3144                 return conf;
3145         }
3146         return ERR_PTR(-EINVAL);
3147 }
3148
3149 static struct md_personality raid1_personality =
3150 {
3151         .name           = "raid1",
3152         .level          = 1,
3153         .owner          = THIS_MODULE,
3154         .make_request   = make_request,
3155         .run            = run,
3156         .free           = raid1_free,
3157         .status         = status,
3158         .error_handler  = error,
3159         .hot_add_disk   = raid1_add_disk,
3160         .hot_remove_disk= raid1_remove_disk,
3161         .spare_active   = raid1_spare_active,
3162         .sync_request   = sync_request,
3163         .resize         = raid1_resize,
3164         .size           = raid1_size,
3165         .check_reshape  = raid1_reshape,
3166         .quiesce        = raid1_quiesce,
3167         .takeover       = raid1_takeover,
3168         .congested      = raid1_congested,
3169         .mergeable_bvec = raid1_mergeable_bvec,
3170 };
3171
3172 static int __init raid_init(void)
3173 {
3174         return register_md_personality(&raid1_personality);
3175 }
3176
3177 static void raid_exit(void)
3178 {
3179         unregister_md_personality(&raid1_personality);
3180 }
3181
3182 module_init(raid_init);
3183 module_exit(raid_exit);
3184 MODULE_LICENSE("GPL");
3185 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3186 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3187 MODULE_ALIAS("md-raid1");
3188 MODULE_ALIAS("md-level-1");
3189
3190 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);