fib_trie: Move resize to after inflate/halve
[cascardo/linux.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102                                 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109         struct r10conf *conf = data;
110         int size = offsetof(struct r10bio, devs[conf->copies]);
111
112         /* allocate a r10bio with room for raid_disks entries in the
113          * bios array */
114         return kzalloc(size, gfp_flags);
115 }
116
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119         kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139         struct r10conf *conf = data;
140         struct page *page;
141         struct r10bio *r10_bio;
142         struct bio *bio;
143         int i, j;
144         int nalloc;
145
146         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147         if (!r10_bio)
148                 return NULL;
149
150         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152                 nalloc = conf->copies; /* resync */
153         else
154                 nalloc = 2; /* recovery */
155
156         /*
157          * Allocate bios.
158          */
159         for (j = nalloc ; j-- ; ) {
160                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161                 if (!bio)
162                         goto out_free_bio;
163                 r10_bio->devs[j].bio = bio;
164                 if (!conf->have_replacement)
165                         continue;
166                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167                 if (!bio)
168                         goto out_free_bio;
169                 r10_bio->devs[j].repl_bio = bio;
170         }
171         /*
172          * Allocate RESYNC_PAGES data pages and attach them
173          * where needed.
174          */
175         for (j = 0 ; j < nalloc; j++) {
176                 struct bio *rbio = r10_bio->devs[j].repl_bio;
177                 bio = r10_bio->devs[j].bio;
178                 for (i = 0; i < RESYNC_PAGES; i++) {
179                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180                                                &conf->mddev->recovery)) {
181                                 /* we can share bv_page's during recovery
182                                  * and reshape */
183                                 struct bio *rbio = r10_bio->devs[0].bio;
184                                 page = rbio->bi_io_vec[i].bv_page;
185                                 get_page(page);
186                         } else
187                                 page = alloc_page(gfp_flags);
188                         if (unlikely(!page))
189                                 goto out_free_pages;
190
191                         bio->bi_io_vec[i].bv_page = page;
192                         if (rbio)
193                                 rbio->bi_io_vec[i].bv_page = page;
194                 }
195         }
196
197         return r10_bio;
198
199 out_free_pages:
200         for ( ; i > 0 ; i--)
201                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202         while (j--)
203                 for (i = 0; i < RESYNC_PAGES ; i++)
204                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205         j = 0;
206 out_free_bio:
207         for ( ; j < nalloc; j++) {
208                 if (r10_bio->devs[j].bio)
209                         bio_put(r10_bio->devs[j].bio);
210                 if (r10_bio->devs[j].repl_bio)
211                         bio_put(r10_bio->devs[j].repl_bio);
212         }
213         r10bio_pool_free(r10_bio, conf);
214         return NULL;
215 }
216
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219         int i;
220         struct r10conf *conf = data;
221         struct r10bio *r10bio = __r10_bio;
222         int j;
223
224         for (j=0; j < conf->copies; j++) {
225                 struct bio *bio = r10bio->devs[j].bio;
226                 if (bio) {
227                         for (i = 0; i < RESYNC_PAGES; i++) {
228                                 safe_put_page(bio->bi_io_vec[i].bv_page);
229                                 bio->bi_io_vec[i].bv_page = NULL;
230                         }
231                         bio_put(bio);
232                 }
233                 bio = r10bio->devs[j].repl_bio;
234                 if (bio)
235                         bio_put(bio);
236         }
237         r10bio_pool_free(r10bio, conf);
238 }
239
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242         int i;
243
244         for (i = 0; i < conf->copies; i++) {
245                 struct bio **bio = & r10_bio->devs[i].bio;
246                 if (!BIO_SPECIAL(*bio))
247                         bio_put(*bio);
248                 *bio = NULL;
249                 bio = &r10_bio->devs[i].repl_bio;
250                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251                         bio_put(*bio);
252                 *bio = NULL;
253         }
254 }
255
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258         struct r10conf *conf = r10_bio->mddev->private;
259
260         put_all_bios(conf, r10_bio);
261         mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
264 static void put_buf(struct r10bio *r10_bio)
265 {
266         struct r10conf *conf = r10_bio->mddev->private;
267
268         mempool_free(r10_bio, conf->r10buf_pool);
269
270         lower_barrier(conf);
271 }
272
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275         unsigned long flags;
276         struct mddev *mddev = r10_bio->mddev;
277         struct r10conf *conf = mddev->private;
278
279         spin_lock_irqsave(&conf->device_lock, flags);
280         list_add(&r10_bio->retry_list, &conf->retry_list);
281         conf->nr_queued ++;
282         spin_unlock_irqrestore(&conf->device_lock, flags);
283
284         /* wake up frozen array... */
285         wake_up(&conf->wait_barrier);
286
287         md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297         struct bio *bio = r10_bio->master_bio;
298         int done;
299         struct r10conf *conf = r10_bio->mddev->private;
300
301         if (bio->bi_phys_segments) {
302                 unsigned long flags;
303                 spin_lock_irqsave(&conf->device_lock, flags);
304                 bio->bi_phys_segments--;
305                 done = (bio->bi_phys_segments == 0);
306                 spin_unlock_irqrestore(&conf->device_lock, flags);
307         } else
308                 done = 1;
309         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311         if (done) {
312                 bio_endio(bio, 0);
313                 /*
314                  * Wake up any possible resync thread that waits for the device
315                  * to go idle.
316                  */
317                 allow_barrier(conf);
318         }
319         free_r10bio(r10_bio);
320 }
321
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327         struct r10conf *conf = r10_bio->mddev->private;
328
329         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330                 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337                          struct bio *bio, int *slotp, int *replp)
338 {
339         int slot;
340         int repl = 0;
341
342         for (slot = 0; slot < conf->copies; slot++) {
343                 if (r10_bio->devs[slot].bio == bio)
344                         break;
345                 if (r10_bio->devs[slot].repl_bio == bio) {
346                         repl = 1;
347                         break;
348                 }
349         }
350
351         BUG_ON(slot == conf->copies);
352         update_head_pos(slot, r10_bio);
353
354         if (slotp)
355                 *slotp = slot;
356         if (replp)
357                 *replp = repl;
358         return r10_bio->devs[slot].devnum;
359 }
360
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364         struct r10bio *r10_bio = bio->bi_private;
365         int slot, dev;
366         struct md_rdev *rdev;
367         struct r10conf *conf = r10_bio->mddev->private;
368
369         slot = r10_bio->read_slot;
370         dev = r10_bio->devs[slot].devnum;
371         rdev = r10_bio->devs[slot].rdev;
372         /*
373          * this branch is our 'one mirror IO has finished' event handler:
374          */
375         update_head_pos(slot, r10_bio);
376
377         if (uptodate) {
378                 /*
379                  * Set R10BIO_Uptodate in our master bio, so that
380                  * we will return a good error code to the higher
381                  * levels even if IO on some other mirrored buffer fails.
382                  *
383                  * The 'master' represents the composite IO operation to
384                  * user-side. So if something waits for IO, then it will
385                  * wait for the 'master' bio.
386                  */
387                 set_bit(R10BIO_Uptodate, &r10_bio->state);
388         } else {
389                 /* If all other devices that store this block have
390                  * failed, we want to return the error upwards rather
391                  * than fail the last device.  Here we redefine
392                  * "uptodate" to mean "Don't want to retry"
393                  */
394                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
395                              rdev->raid_disk))
396                         uptodate = 1;
397         }
398         if (uptodate) {
399                 raid_end_bio_io(r10_bio);
400                 rdev_dec_pending(rdev, conf->mddev);
401         } else {
402                 /*
403                  * oops, read error - keep the refcount on the rdev
404                  */
405                 char b[BDEVNAME_SIZE];
406                 printk_ratelimited(KERN_ERR
407                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
408                                    mdname(conf->mddev),
409                                    bdevname(rdev->bdev, b),
410                                    (unsigned long long)r10_bio->sector);
411                 set_bit(R10BIO_ReadError, &r10_bio->state);
412                 reschedule_retry(r10_bio);
413         }
414 }
415
416 static void close_write(struct r10bio *r10_bio)
417 {
418         /* clear the bitmap if all writes complete successfully */
419         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
420                         r10_bio->sectors,
421                         !test_bit(R10BIO_Degraded, &r10_bio->state),
422                         0);
423         md_write_end(r10_bio->mddev);
424 }
425
426 static void one_write_done(struct r10bio *r10_bio)
427 {
428         if (atomic_dec_and_test(&r10_bio->remaining)) {
429                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
430                         reschedule_retry(r10_bio);
431                 else {
432                         close_write(r10_bio);
433                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
434                                 reschedule_retry(r10_bio);
435                         else
436                                 raid_end_bio_io(r10_bio);
437                 }
438         }
439 }
440
441 static void raid10_end_write_request(struct bio *bio, int error)
442 {
443         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
444         struct r10bio *r10_bio = bio->bi_private;
445         int dev;
446         int dec_rdev = 1;
447         struct r10conf *conf = r10_bio->mddev->private;
448         int slot, repl;
449         struct md_rdev *rdev = NULL;
450
451         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
452
453         if (repl)
454                 rdev = conf->mirrors[dev].replacement;
455         if (!rdev) {
456                 smp_rmb();
457                 repl = 0;
458                 rdev = conf->mirrors[dev].rdev;
459         }
460         /*
461          * this branch is our 'one mirror IO has finished' event handler:
462          */
463         if (!uptodate) {
464                 if (repl)
465                         /* Never record new bad blocks to replacement,
466                          * just fail it.
467                          */
468                         md_error(rdev->mddev, rdev);
469                 else {
470                         set_bit(WriteErrorSeen, &rdev->flags);
471                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
472                                 set_bit(MD_RECOVERY_NEEDED,
473                                         &rdev->mddev->recovery);
474                         set_bit(R10BIO_WriteError, &r10_bio->state);
475                         dec_rdev = 0;
476                 }
477         } else {
478                 /*
479                  * Set R10BIO_Uptodate in our master bio, so that
480                  * we will return a good error code for to the higher
481                  * levels even if IO on some other mirrored buffer fails.
482                  *
483                  * The 'master' represents the composite IO operation to
484                  * user-side. So if something waits for IO, then it will
485                  * wait for the 'master' bio.
486                  */
487                 sector_t first_bad;
488                 int bad_sectors;
489
490                 /*
491                  * Do not set R10BIO_Uptodate if the current device is
492                  * rebuilding or Faulty. This is because we cannot use
493                  * such device for properly reading the data back (we could
494                  * potentially use it, if the current write would have felt
495                  * before rdev->recovery_offset, but for simplicity we don't
496                  * check this here.
497                  */
498                 if (test_bit(In_sync, &rdev->flags) &&
499                     !test_bit(Faulty, &rdev->flags))
500                         set_bit(R10BIO_Uptodate, &r10_bio->state);
501
502                 /* Maybe we can clear some bad blocks. */
503                 if (is_badblock(rdev,
504                                 r10_bio->devs[slot].addr,
505                                 r10_bio->sectors,
506                                 &first_bad, &bad_sectors)) {
507                         bio_put(bio);
508                         if (repl)
509                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510                         else
511                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
512                         dec_rdev = 0;
513                         set_bit(R10BIO_MadeGood, &r10_bio->state);
514                 }
515         }
516
517         /*
518          *
519          * Let's see if all mirrored write operations have finished
520          * already.
521          */
522         one_write_done(r10_bio);
523         if (dec_rdev)
524                 rdev_dec_pending(rdev, conf->mddev);
525 }
526
527 /*
528  * RAID10 layout manager
529  * As well as the chunksize and raid_disks count, there are two
530  * parameters: near_copies and far_copies.
531  * near_copies * far_copies must be <= raid_disks.
532  * Normally one of these will be 1.
533  * If both are 1, we get raid0.
534  * If near_copies == raid_disks, we get raid1.
535  *
536  * Chunks are laid out in raid0 style with near_copies copies of the
537  * first chunk, followed by near_copies copies of the next chunk and
538  * so on.
539  * If far_copies > 1, then after 1/far_copies of the array has been assigned
540  * as described above, we start again with a device offset of near_copies.
541  * So we effectively have another copy of the whole array further down all
542  * the drives, but with blocks on different drives.
543  * With this layout, and block is never stored twice on the one device.
544  *
545  * raid10_find_phys finds the sector offset of a given virtual sector
546  * on each device that it is on.
547  *
548  * raid10_find_virt does the reverse mapping, from a device and a
549  * sector offset to a virtual address
550  */
551
552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553 {
554         int n,f;
555         sector_t sector;
556         sector_t chunk;
557         sector_t stripe;
558         int dev;
559         int slot = 0;
560         int last_far_set_start, last_far_set_size;
561
562         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563         last_far_set_start *= geo->far_set_size;
564
565         last_far_set_size = geo->far_set_size;
566         last_far_set_size += (geo->raid_disks % geo->far_set_size);
567
568         /* now calculate first sector/dev */
569         chunk = r10bio->sector >> geo->chunk_shift;
570         sector = r10bio->sector & geo->chunk_mask;
571
572         chunk *= geo->near_copies;
573         stripe = chunk;
574         dev = sector_div(stripe, geo->raid_disks);
575         if (geo->far_offset)
576                 stripe *= geo->far_copies;
577
578         sector += stripe << geo->chunk_shift;
579
580         /* and calculate all the others */
581         for (n = 0; n < geo->near_copies; n++) {
582                 int d = dev;
583                 int set;
584                 sector_t s = sector;
585                 r10bio->devs[slot].devnum = d;
586                 r10bio->devs[slot].addr = s;
587                 slot++;
588
589                 for (f = 1; f < geo->far_copies; f++) {
590                         set = d / geo->far_set_size;
591                         d += geo->near_copies;
592
593                         if ((geo->raid_disks % geo->far_set_size) &&
594                             (d > last_far_set_start)) {
595                                 d -= last_far_set_start;
596                                 d %= last_far_set_size;
597                                 d += last_far_set_start;
598                         } else {
599                                 d %= geo->far_set_size;
600                                 d += geo->far_set_size * set;
601                         }
602                         s += geo->stride;
603                         r10bio->devs[slot].devnum = d;
604                         r10bio->devs[slot].addr = s;
605                         slot++;
606                 }
607                 dev++;
608                 if (dev >= geo->raid_disks) {
609                         dev = 0;
610                         sector += (geo->chunk_mask + 1);
611                 }
612         }
613 }
614
615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616 {
617         struct geom *geo = &conf->geo;
618
619         if (conf->reshape_progress != MaxSector &&
620             ((r10bio->sector >= conf->reshape_progress) !=
621              conf->mddev->reshape_backwards)) {
622                 set_bit(R10BIO_Previous, &r10bio->state);
623                 geo = &conf->prev;
624         } else
625                 clear_bit(R10BIO_Previous, &r10bio->state);
626
627         __raid10_find_phys(geo, r10bio);
628 }
629
630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
631 {
632         sector_t offset, chunk, vchunk;
633         /* Never use conf->prev as this is only called during resync
634          * or recovery, so reshape isn't happening
635          */
636         struct geom *geo = &conf->geo;
637         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638         int far_set_size = geo->far_set_size;
639         int last_far_set_start;
640
641         if (geo->raid_disks % geo->far_set_size) {
642                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643                 last_far_set_start *= geo->far_set_size;
644
645                 if (dev >= last_far_set_start) {
646                         far_set_size = geo->far_set_size;
647                         far_set_size += (geo->raid_disks % geo->far_set_size);
648                         far_set_start = last_far_set_start;
649                 }
650         }
651
652         offset = sector & geo->chunk_mask;
653         if (geo->far_offset) {
654                 int fc;
655                 chunk = sector >> geo->chunk_shift;
656                 fc = sector_div(chunk, geo->far_copies);
657                 dev -= fc * geo->near_copies;
658                 if (dev < far_set_start)
659                         dev += far_set_size;
660         } else {
661                 while (sector >= geo->stride) {
662                         sector -= geo->stride;
663                         if (dev < (geo->near_copies + far_set_start))
664                                 dev += far_set_size - geo->near_copies;
665                         else
666                                 dev -= geo->near_copies;
667                 }
668                 chunk = sector >> geo->chunk_shift;
669         }
670         vchunk = chunk * geo->raid_disks + dev;
671         sector_div(vchunk, geo->near_copies);
672         return (vchunk << geo->chunk_shift) + offset;
673 }
674
675 /**
676  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
677  *      @q: request queue
678  *      @bvm: properties of new bio
679  *      @biovec: the request that could be merged to it.
680  *
681  *      Return amount of bytes we can accept at this offset
682  *      This requires checking for end-of-chunk if near_copies != raid_disks,
683  *      and for subordinate merge_bvec_fns if merge_check_needed.
684  */
685 static int raid10_mergeable_bvec(struct request_queue *q,
686                                  struct bvec_merge_data *bvm,
687                                  struct bio_vec *biovec)
688 {
689         struct mddev *mddev = q->queuedata;
690         struct r10conf *conf = mddev->private;
691         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
692         int max;
693         unsigned int chunk_sectors;
694         unsigned int bio_sectors = bvm->bi_size >> 9;
695         struct geom *geo = &conf->geo;
696
697         chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
698         if (conf->reshape_progress != MaxSector &&
699             ((sector >= conf->reshape_progress) !=
700              conf->mddev->reshape_backwards))
701                 geo = &conf->prev;
702
703         if (geo->near_copies < geo->raid_disks) {
704                 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
705                                         + bio_sectors)) << 9;
706                 if (max < 0)
707                         /* bio_add cannot handle a negative return */
708                         max = 0;
709                 if (max <= biovec->bv_len && bio_sectors == 0)
710                         return biovec->bv_len;
711         } else
712                 max = biovec->bv_len;
713
714         if (mddev->merge_check_needed) {
715                 struct {
716                         struct r10bio r10_bio;
717                         struct r10dev devs[conf->copies];
718                 } on_stack;
719                 struct r10bio *r10_bio = &on_stack.r10_bio;
720                 int s;
721                 if (conf->reshape_progress != MaxSector) {
722                         /* Cannot give any guidance during reshape */
723                         if (max <= biovec->bv_len && bio_sectors == 0)
724                                 return biovec->bv_len;
725                         return 0;
726                 }
727                 r10_bio->sector = sector;
728                 raid10_find_phys(conf, r10_bio);
729                 rcu_read_lock();
730                 for (s = 0; s < conf->copies; s++) {
731                         int disk = r10_bio->devs[s].devnum;
732                         struct md_rdev *rdev = rcu_dereference(
733                                 conf->mirrors[disk].rdev);
734                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
735                                 struct request_queue *q =
736                                         bdev_get_queue(rdev->bdev);
737                                 if (q->merge_bvec_fn) {
738                                         bvm->bi_sector = r10_bio->devs[s].addr
739                                                 + rdev->data_offset;
740                                         bvm->bi_bdev = rdev->bdev;
741                                         max = min(max, q->merge_bvec_fn(
742                                                           q, bvm, biovec));
743                                 }
744                         }
745                         rdev = rcu_dereference(conf->mirrors[disk].replacement);
746                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
747                                 struct request_queue *q =
748                                         bdev_get_queue(rdev->bdev);
749                                 if (q->merge_bvec_fn) {
750                                         bvm->bi_sector = r10_bio->devs[s].addr
751                                                 + rdev->data_offset;
752                                         bvm->bi_bdev = rdev->bdev;
753                                         max = min(max, q->merge_bvec_fn(
754                                                           q, bvm, biovec));
755                                 }
756                         }
757                 }
758                 rcu_read_unlock();
759         }
760         return max;
761 }
762
763 /*
764  * This routine returns the disk from which the requested read should
765  * be done. There is a per-array 'next expected sequential IO' sector
766  * number - if this matches on the next IO then we use the last disk.
767  * There is also a per-disk 'last know head position' sector that is
768  * maintained from IRQ contexts, both the normal and the resync IO
769  * completion handlers update this position correctly. If there is no
770  * perfect sequential match then we pick the disk whose head is closest.
771  *
772  * If there are 2 mirrors in the same 2 devices, performance degrades
773  * because position is mirror, not device based.
774  *
775  * The rdev for the device selected will have nr_pending incremented.
776  */
777
778 /*
779  * FIXME: possibly should rethink readbalancing and do it differently
780  * depending on near_copies / far_copies geometry.
781  */
782 static struct md_rdev *read_balance(struct r10conf *conf,
783                                     struct r10bio *r10_bio,
784                                     int *max_sectors)
785 {
786         const sector_t this_sector = r10_bio->sector;
787         int disk, slot;
788         int sectors = r10_bio->sectors;
789         int best_good_sectors;
790         sector_t new_distance, best_dist;
791         struct md_rdev *best_rdev, *rdev = NULL;
792         int do_balance;
793         int best_slot;
794         struct geom *geo = &conf->geo;
795
796         raid10_find_phys(conf, r10_bio);
797         rcu_read_lock();
798 retry:
799         sectors = r10_bio->sectors;
800         best_slot = -1;
801         best_rdev = NULL;
802         best_dist = MaxSector;
803         best_good_sectors = 0;
804         do_balance = 1;
805         /*
806          * Check if we can balance. We can balance on the whole
807          * device if no resync is going on (recovery is ok), or below
808          * the resync window. We take the first readable disk when
809          * above the resync window.
810          */
811         if (conf->mddev->recovery_cp < MaxSector
812             && (this_sector + sectors >= conf->next_resync))
813                 do_balance = 0;
814
815         for (slot = 0; slot < conf->copies ; slot++) {
816                 sector_t first_bad;
817                 int bad_sectors;
818                 sector_t dev_sector;
819
820                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
821                         continue;
822                 disk = r10_bio->devs[slot].devnum;
823                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
824                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
825                     test_bit(Unmerged, &rdev->flags) ||
826                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
827                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
828                 if (rdev == NULL ||
829                     test_bit(Faulty, &rdev->flags) ||
830                     test_bit(Unmerged, &rdev->flags))
831                         continue;
832                 if (!test_bit(In_sync, &rdev->flags) &&
833                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
834                         continue;
835
836                 dev_sector = r10_bio->devs[slot].addr;
837                 if (is_badblock(rdev, dev_sector, sectors,
838                                 &first_bad, &bad_sectors)) {
839                         if (best_dist < MaxSector)
840                                 /* Already have a better slot */
841                                 continue;
842                         if (first_bad <= dev_sector) {
843                                 /* Cannot read here.  If this is the
844                                  * 'primary' device, then we must not read
845                                  * beyond 'bad_sectors' from another device.
846                                  */
847                                 bad_sectors -= (dev_sector - first_bad);
848                                 if (!do_balance && sectors > bad_sectors)
849                                         sectors = bad_sectors;
850                                 if (best_good_sectors > sectors)
851                                         best_good_sectors = sectors;
852                         } else {
853                                 sector_t good_sectors =
854                                         first_bad - dev_sector;
855                                 if (good_sectors > best_good_sectors) {
856                                         best_good_sectors = good_sectors;
857                                         best_slot = slot;
858                                         best_rdev = rdev;
859                                 }
860                                 if (!do_balance)
861                                         /* Must read from here */
862                                         break;
863                         }
864                         continue;
865                 } else
866                         best_good_sectors = sectors;
867
868                 if (!do_balance)
869                         break;
870
871                 /* This optimisation is debatable, and completely destroys
872                  * sequential read speed for 'far copies' arrays.  So only
873                  * keep it for 'near' arrays, and review those later.
874                  */
875                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
876                         break;
877
878                 /* for far > 1 always use the lowest address */
879                 if (geo->far_copies > 1)
880                         new_distance = r10_bio->devs[slot].addr;
881                 else
882                         new_distance = abs(r10_bio->devs[slot].addr -
883                                            conf->mirrors[disk].head_position);
884                 if (new_distance < best_dist) {
885                         best_dist = new_distance;
886                         best_slot = slot;
887                         best_rdev = rdev;
888                 }
889         }
890         if (slot >= conf->copies) {
891                 slot = best_slot;
892                 rdev = best_rdev;
893         }
894
895         if (slot >= 0) {
896                 atomic_inc(&rdev->nr_pending);
897                 if (test_bit(Faulty, &rdev->flags)) {
898                         /* Cannot risk returning a device that failed
899                          * before we inc'ed nr_pending
900                          */
901                         rdev_dec_pending(rdev, conf->mddev);
902                         goto retry;
903                 }
904                 r10_bio->read_slot = slot;
905         } else
906                 rdev = NULL;
907         rcu_read_unlock();
908         *max_sectors = best_good_sectors;
909
910         return rdev;
911 }
912
913 int md_raid10_congested(struct mddev *mddev, int bits)
914 {
915         struct r10conf *conf = mddev->private;
916         int i, ret = 0;
917
918         if ((bits & (1 << BDI_async_congested)) &&
919             conf->pending_count >= max_queued_requests)
920                 return 1;
921
922         rcu_read_lock();
923         for (i = 0;
924              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
925                      && ret == 0;
926              i++) {
927                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
928                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
929                         struct request_queue *q = bdev_get_queue(rdev->bdev);
930
931                         ret |= bdi_congested(&q->backing_dev_info, bits);
932                 }
933         }
934         rcu_read_unlock();
935         return ret;
936 }
937 EXPORT_SYMBOL_GPL(md_raid10_congested);
938
939 static int raid10_congested(void *data, int bits)
940 {
941         struct mddev *mddev = data;
942
943         return mddev_congested(mddev, bits) ||
944                 md_raid10_congested(mddev, bits);
945 }
946
947 static void flush_pending_writes(struct r10conf *conf)
948 {
949         /* Any writes that have been queued but are awaiting
950          * bitmap updates get flushed here.
951          */
952         spin_lock_irq(&conf->device_lock);
953
954         if (conf->pending_bio_list.head) {
955                 struct bio *bio;
956                 bio = bio_list_get(&conf->pending_bio_list);
957                 conf->pending_count = 0;
958                 spin_unlock_irq(&conf->device_lock);
959                 /* flush any pending bitmap writes to disk
960                  * before proceeding w/ I/O */
961                 bitmap_unplug(conf->mddev->bitmap);
962                 wake_up(&conf->wait_barrier);
963
964                 while (bio) { /* submit pending writes */
965                         struct bio *next = bio->bi_next;
966                         bio->bi_next = NULL;
967                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
968                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
969                                 /* Just ignore it */
970                                 bio_endio(bio, 0);
971                         else
972                                 generic_make_request(bio);
973                         bio = next;
974                 }
975         } else
976                 spin_unlock_irq(&conf->device_lock);
977 }
978
979 /* Barriers....
980  * Sometimes we need to suspend IO while we do something else,
981  * either some resync/recovery, or reconfigure the array.
982  * To do this we raise a 'barrier'.
983  * The 'barrier' is a counter that can be raised multiple times
984  * to count how many activities are happening which preclude
985  * normal IO.
986  * We can only raise the barrier if there is no pending IO.
987  * i.e. if nr_pending == 0.
988  * We choose only to raise the barrier if no-one is waiting for the
989  * barrier to go down.  This means that as soon as an IO request
990  * is ready, no other operations which require a barrier will start
991  * until the IO request has had a chance.
992  *
993  * So: regular IO calls 'wait_barrier'.  When that returns there
994  *    is no backgroup IO happening,  It must arrange to call
995  *    allow_barrier when it has finished its IO.
996  * backgroup IO calls must call raise_barrier.  Once that returns
997  *    there is no normal IO happeing.  It must arrange to call
998  *    lower_barrier when the particular background IO completes.
999  */
1000
1001 static void raise_barrier(struct r10conf *conf, int force)
1002 {
1003         BUG_ON(force && !conf->barrier);
1004         spin_lock_irq(&conf->resync_lock);
1005
1006         /* Wait until no block IO is waiting (unless 'force') */
1007         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1008                             conf->resync_lock);
1009
1010         /* block any new IO from starting */
1011         conf->barrier++;
1012
1013         /* Now wait for all pending IO to complete */
1014         wait_event_lock_irq(conf->wait_barrier,
1015                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1016                             conf->resync_lock);
1017
1018         spin_unlock_irq(&conf->resync_lock);
1019 }
1020
1021 static void lower_barrier(struct r10conf *conf)
1022 {
1023         unsigned long flags;
1024         spin_lock_irqsave(&conf->resync_lock, flags);
1025         conf->barrier--;
1026         spin_unlock_irqrestore(&conf->resync_lock, flags);
1027         wake_up(&conf->wait_barrier);
1028 }
1029
1030 static void wait_barrier(struct r10conf *conf)
1031 {
1032         spin_lock_irq(&conf->resync_lock);
1033         if (conf->barrier) {
1034                 conf->nr_waiting++;
1035                 /* Wait for the barrier to drop.
1036                  * However if there are already pending
1037                  * requests (preventing the barrier from
1038                  * rising completely), and the
1039                  * pre-process bio queue isn't empty,
1040                  * then don't wait, as we need to empty
1041                  * that queue to get the nr_pending
1042                  * count down.
1043                  */
1044                 wait_event_lock_irq(conf->wait_barrier,
1045                                     !conf->barrier ||
1046                                     (conf->nr_pending &&
1047                                      current->bio_list &&
1048                                      !bio_list_empty(current->bio_list)),
1049                                     conf->resync_lock);
1050                 conf->nr_waiting--;
1051         }
1052         conf->nr_pending++;
1053         spin_unlock_irq(&conf->resync_lock);
1054 }
1055
1056 static void allow_barrier(struct r10conf *conf)
1057 {
1058         unsigned long flags;
1059         spin_lock_irqsave(&conf->resync_lock, flags);
1060         conf->nr_pending--;
1061         spin_unlock_irqrestore(&conf->resync_lock, flags);
1062         wake_up(&conf->wait_barrier);
1063 }
1064
1065 static void freeze_array(struct r10conf *conf, int extra)
1066 {
1067         /* stop syncio and normal IO and wait for everything to
1068          * go quiet.
1069          * We increment barrier and nr_waiting, and then
1070          * wait until nr_pending match nr_queued+extra
1071          * This is called in the context of one normal IO request
1072          * that has failed. Thus any sync request that might be pending
1073          * will be blocked by nr_pending, and we need to wait for
1074          * pending IO requests to complete or be queued for re-try.
1075          * Thus the number queued (nr_queued) plus this request (extra)
1076          * must match the number of pending IOs (nr_pending) before
1077          * we continue.
1078          */
1079         spin_lock_irq(&conf->resync_lock);
1080         conf->barrier++;
1081         conf->nr_waiting++;
1082         wait_event_lock_irq_cmd(conf->wait_barrier,
1083                                 conf->nr_pending == conf->nr_queued+extra,
1084                                 conf->resync_lock,
1085                                 flush_pending_writes(conf));
1086
1087         spin_unlock_irq(&conf->resync_lock);
1088 }
1089
1090 static void unfreeze_array(struct r10conf *conf)
1091 {
1092         /* reverse the effect of the freeze */
1093         spin_lock_irq(&conf->resync_lock);
1094         conf->barrier--;
1095         conf->nr_waiting--;
1096         wake_up(&conf->wait_barrier);
1097         spin_unlock_irq(&conf->resync_lock);
1098 }
1099
1100 static sector_t choose_data_offset(struct r10bio *r10_bio,
1101                                    struct md_rdev *rdev)
1102 {
1103         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1104             test_bit(R10BIO_Previous, &r10_bio->state))
1105                 return rdev->data_offset;
1106         else
1107                 return rdev->new_data_offset;
1108 }
1109
1110 struct raid10_plug_cb {
1111         struct blk_plug_cb      cb;
1112         struct bio_list         pending;
1113         int                     pending_cnt;
1114 };
1115
1116 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1117 {
1118         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1119                                                    cb);
1120         struct mddev *mddev = plug->cb.data;
1121         struct r10conf *conf = mddev->private;
1122         struct bio *bio;
1123
1124         if (from_schedule || current->bio_list) {
1125                 spin_lock_irq(&conf->device_lock);
1126                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1127                 conf->pending_count += plug->pending_cnt;
1128                 spin_unlock_irq(&conf->device_lock);
1129                 wake_up(&conf->wait_barrier);
1130                 md_wakeup_thread(mddev->thread);
1131                 kfree(plug);
1132                 return;
1133         }
1134
1135         /* we aren't scheduling, so we can do the write-out directly. */
1136         bio = bio_list_get(&plug->pending);
1137         bitmap_unplug(mddev->bitmap);
1138         wake_up(&conf->wait_barrier);
1139
1140         while (bio) { /* submit pending writes */
1141                 struct bio *next = bio->bi_next;
1142                 bio->bi_next = NULL;
1143                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1144                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1145                         /* Just ignore it */
1146                         bio_endio(bio, 0);
1147                 else
1148                         generic_make_request(bio);
1149                 bio = next;
1150         }
1151         kfree(plug);
1152 }
1153
1154 static void __make_request(struct mddev *mddev, struct bio *bio)
1155 {
1156         struct r10conf *conf = mddev->private;
1157         struct r10bio *r10_bio;
1158         struct bio *read_bio;
1159         int i;
1160         const int rw = bio_data_dir(bio);
1161         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1162         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1163         const unsigned long do_discard = (bio->bi_rw
1164                                           & (REQ_DISCARD | REQ_SECURE));
1165         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1166         unsigned long flags;
1167         struct md_rdev *blocked_rdev;
1168         struct blk_plug_cb *cb;
1169         struct raid10_plug_cb *plug = NULL;
1170         int sectors_handled;
1171         int max_sectors;
1172         int sectors;
1173
1174         /*
1175          * Register the new request and wait if the reconstruction
1176          * thread has put up a bar for new requests.
1177          * Continue immediately if no resync is active currently.
1178          */
1179         wait_barrier(conf);
1180
1181         sectors = bio_sectors(bio);
1182         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1183             bio->bi_iter.bi_sector < conf->reshape_progress &&
1184             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1185                 /* IO spans the reshape position.  Need to wait for
1186                  * reshape to pass
1187                  */
1188                 allow_barrier(conf);
1189                 wait_event(conf->wait_barrier,
1190                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1191                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1192                            sectors);
1193                 wait_barrier(conf);
1194         }
1195         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1196             bio_data_dir(bio) == WRITE &&
1197             (mddev->reshape_backwards
1198              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1199                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1200              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1201                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1202                 /* Need to update reshape_position in metadata */
1203                 mddev->reshape_position = conf->reshape_progress;
1204                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1205                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1206                 md_wakeup_thread(mddev->thread);
1207                 wait_event(mddev->sb_wait,
1208                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1209
1210                 conf->reshape_safe = mddev->reshape_position;
1211         }
1212
1213         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1214
1215         r10_bio->master_bio = bio;
1216         r10_bio->sectors = sectors;
1217
1218         r10_bio->mddev = mddev;
1219         r10_bio->sector = bio->bi_iter.bi_sector;
1220         r10_bio->state = 0;
1221
1222         /* We might need to issue multiple reads to different
1223          * devices if there are bad blocks around, so we keep
1224          * track of the number of reads in bio->bi_phys_segments.
1225          * If this is 0, there is only one r10_bio and no locking
1226          * will be needed when the request completes.  If it is
1227          * non-zero, then it is the number of not-completed requests.
1228          */
1229         bio->bi_phys_segments = 0;
1230         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1231
1232         if (rw == READ) {
1233                 /*
1234                  * read balancing logic:
1235                  */
1236                 struct md_rdev *rdev;
1237                 int slot;
1238
1239 read_again:
1240                 rdev = read_balance(conf, r10_bio, &max_sectors);
1241                 if (!rdev) {
1242                         raid_end_bio_io(r10_bio);
1243                         return;
1244                 }
1245                 slot = r10_bio->read_slot;
1246
1247                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1248                 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1249                          max_sectors);
1250
1251                 r10_bio->devs[slot].bio = read_bio;
1252                 r10_bio->devs[slot].rdev = rdev;
1253
1254                 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1255                         choose_data_offset(r10_bio, rdev);
1256                 read_bio->bi_bdev = rdev->bdev;
1257                 read_bio->bi_end_io = raid10_end_read_request;
1258                 read_bio->bi_rw = READ | do_sync;
1259                 read_bio->bi_private = r10_bio;
1260
1261                 if (max_sectors < r10_bio->sectors) {
1262                         /* Could not read all from this device, so we will
1263                          * need another r10_bio.
1264                          */
1265                         sectors_handled = (r10_bio->sector + max_sectors
1266                                            - bio->bi_iter.bi_sector);
1267                         r10_bio->sectors = max_sectors;
1268                         spin_lock_irq(&conf->device_lock);
1269                         if (bio->bi_phys_segments == 0)
1270                                 bio->bi_phys_segments = 2;
1271                         else
1272                                 bio->bi_phys_segments++;
1273                         spin_unlock_irq(&conf->device_lock);
1274                         /* Cannot call generic_make_request directly
1275                          * as that will be queued in __generic_make_request
1276                          * and subsequent mempool_alloc might block
1277                          * waiting for it.  so hand bio over to raid10d.
1278                          */
1279                         reschedule_retry(r10_bio);
1280
1281                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1282
1283                         r10_bio->master_bio = bio;
1284                         r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1285                         r10_bio->state = 0;
1286                         r10_bio->mddev = mddev;
1287                         r10_bio->sector = bio->bi_iter.bi_sector +
1288                                 sectors_handled;
1289                         goto read_again;
1290                 } else
1291                         generic_make_request(read_bio);
1292                 return;
1293         }
1294
1295         /*
1296          * WRITE:
1297          */
1298         if (conf->pending_count >= max_queued_requests) {
1299                 md_wakeup_thread(mddev->thread);
1300                 wait_event(conf->wait_barrier,
1301                            conf->pending_count < max_queued_requests);
1302         }
1303         /* first select target devices under rcu_lock and
1304          * inc refcount on their rdev.  Record them by setting
1305          * bios[x] to bio
1306          * If there are known/acknowledged bad blocks on any device
1307          * on which we have seen a write error, we want to avoid
1308          * writing to those blocks.  This potentially requires several
1309          * writes to write around the bad blocks.  Each set of writes
1310          * gets its own r10_bio with a set of bios attached.  The number
1311          * of r10_bios is recored in bio->bi_phys_segments just as with
1312          * the read case.
1313          */
1314
1315         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1316         raid10_find_phys(conf, r10_bio);
1317 retry_write:
1318         blocked_rdev = NULL;
1319         rcu_read_lock();
1320         max_sectors = r10_bio->sectors;
1321
1322         for (i = 0;  i < conf->copies; i++) {
1323                 int d = r10_bio->devs[i].devnum;
1324                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1325                 struct md_rdev *rrdev = rcu_dereference(
1326                         conf->mirrors[d].replacement);
1327                 if (rdev == rrdev)
1328                         rrdev = NULL;
1329                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1330                         atomic_inc(&rdev->nr_pending);
1331                         blocked_rdev = rdev;
1332                         break;
1333                 }
1334                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1335                         atomic_inc(&rrdev->nr_pending);
1336                         blocked_rdev = rrdev;
1337                         break;
1338                 }
1339                 if (rdev && (test_bit(Faulty, &rdev->flags)
1340                              || test_bit(Unmerged, &rdev->flags)))
1341                         rdev = NULL;
1342                 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1343                               || test_bit(Unmerged, &rrdev->flags)))
1344                         rrdev = NULL;
1345
1346                 r10_bio->devs[i].bio = NULL;
1347                 r10_bio->devs[i].repl_bio = NULL;
1348
1349                 if (!rdev && !rrdev) {
1350                         set_bit(R10BIO_Degraded, &r10_bio->state);
1351                         continue;
1352                 }
1353                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1354                         sector_t first_bad;
1355                         sector_t dev_sector = r10_bio->devs[i].addr;
1356                         int bad_sectors;
1357                         int is_bad;
1358
1359                         is_bad = is_badblock(rdev, dev_sector,
1360                                              max_sectors,
1361                                              &first_bad, &bad_sectors);
1362                         if (is_bad < 0) {
1363                                 /* Mustn't write here until the bad block
1364                                  * is acknowledged
1365                                  */
1366                                 atomic_inc(&rdev->nr_pending);
1367                                 set_bit(BlockedBadBlocks, &rdev->flags);
1368                                 blocked_rdev = rdev;
1369                                 break;
1370                         }
1371                         if (is_bad && first_bad <= dev_sector) {
1372                                 /* Cannot write here at all */
1373                                 bad_sectors -= (dev_sector - first_bad);
1374                                 if (bad_sectors < max_sectors)
1375                                         /* Mustn't write more than bad_sectors
1376                                          * to other devices yet
1377                                          */
1378                                         max_sectors = bad_sectors;
1379                                 /* We don't set R10BIO_Degraded as that
1380                                  * only applies if the disk is missing,
1381                                  * so it might be re-added, and we want to
1382                                  * know to recover this chunk.
1383                                  * In this case the device is here, and the
1384                                  * fact that this chunk is not in-sync is
1385                                  * recorded in the bad block log.
1386                                  */
1387                                 continue;
1388                         }
1389                         if (is_bad) {
1390                                 int good_sectors = first_bad - dev_sector;
1391                                 if (good_sectors < max_sectors)
1392                                         max_sectors = good_sectors;
1393                         }
1394                 }
1395                 if (rdev) {
1396                         r10_bio->devs[i].bio = bio;
1397                         atomic_inc(&rdev->nr_pending);
1398                 }
1399                 if (rrdev) {
1400                         r10_bio->devs[i].repl_bio = bio;
1401                         atomic_inc(&rrdev->nr_pending);
1402                 }
1403         }
1404         rcu_read_unlock();
1405
1406         if (unlikely(blocked_rdev)) {
1407                 /* Have to wait for this device to get unblocked, then retry */
1408                 int j;
1409                 int d;
1410
1411                 for (j = 0; j < i; j++) {
1412                         if (r10_bio->devs[j].bio) {
1413                                 d = r10_bio->devs[j].devnum;
1414                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1415                         }
1416                         if (r10_bio->devs[j].repl_bio) {
1417                                 struct md_rdev *rdev;
1418                                 d = r10_bio->devs[j].devnum;
1419                                 rdev = conf->mirrors[d].replacement;
1420                                 if (!rdev) {
1421                                         /* Race with remove_disk */
1422                                         smp_mb();
1423                                         rdev = conf->mirrors[d].rdev;
1424                                 }
1425                                 rdev_dec_pending(rdev, mddev);
1426                         }
1427                 }
1428                 allow_barrier(conf);
1429                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1430                 wait_barrier(conf);
1431                 goto retry_write;
1432         }
1433
1434         if (max_sectors < r10_bio->sectors) {
1435                 /* We are splitting this into multiple parts, so
1436                  * we need to prepare for allocating another r10_bio.
1437                  */
1438                 r10_bio->sectors = max_sectors;
1439                 spin_lock_irq(&conf->device_lock);
1440                 if (bio->bi_phys_segments == 0)
1441                         bio->bi_phys_segments = 2;
1442                 else
1443                         bio->bi_phys_segments++;
1444                 spin_unlock_irq(&conf->device_lock);
1445         }
1446         sectors_handled = r10_bio->sector + max_sectors -
1447                 bio->bi_iter.bi_sector;
1448
1449         atomic_set(&r10_bio->remaining, 1);
1450         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1451
1452         for (i = 0; i < conf->copies; i++) {
1453                 struct bio *mbio;
1454                 int d = r10_bio->devs[i].devnum;
1455                 if (r10_bio->devs[i].bio) {
1456                         struct md_rdev *rdev = conf->mirrors[d].rdev;
1457                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1458                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1459                                  max_sectors);
1460                         r10_bio->devs[i].bio = mbio;
1461
1462                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1463                                            choose_data_offset(r10_bio,
1464                                                               rdev));
1465                         mbio->bi_bdev = rdev->bdev;
1466                         mbio->bi_end_io = raid10_end_write_request;
1467                         mbio->bi_rw =
1468                                 WRITE | do_sync | do_fua | do_discard | do_same;
1469                         mbio->bi_private = r10_bio;
1470
1471                         atomic_inc(&r10_bio->remaining);
1472
1473                         cb = blk_check_plugged(raid10_unplug, mddev,
1474                                                sizeof(*plug));
1475                         if (cb)
1476                                 plug = container_of(cb, struct raid10_plug_cb,
1477                                                     cb);
1478                         else
1479                                 plug = NULL;
1480                         spin_lock_irqsave(&conf->device_lock, flags);
1481                         if (plug) {
1482                                 bio_list_add(&plug->pending, mbio);
1483                                 plug->pending_cnt++;
1484                         } else {
1485                                 bio_list_add(&conf->pending_bio_list, mbio);
1486                                 conf->pending_count++;
1487                         }
1488                         spin_unlock_irqrestore(&conf->device_lock, flags);
1489                         if (!plug)
1490                                 md_wakeup_thread(mddev->thread);
1491                 }
1492
1493                 if (r10_bio->devs[i].repl_bio) {
1494                         struct md_rdev *rdev = conf->mirrors[d].replacement;
1495                         if (rdev == NULL) {
1496                                 /* Replacement just got moved to main 'rdev' */
1497                                 smp_mb();
1498                                 rdev = conf->mirrors[d].rdev;
1499                         }
1500                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1501                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1502                                  max_sectors);
1503                         r10_bio->devs[i].repl_bio = mbio;
1504
1505                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1506                                            choose_data_offset(
1507                                                    r10_bio, rdev));
1508                         mbio->bi_bdev = rdev->bdev;
1509                         mbio->bi_end_io = raid10_end_write_request;
1510                         mbio->bi_rw =
1511                                 WRITE | do_sync | do_fua | do_discard | do_same;
1512                         mbio->bi_private = r10_bio;
1513
1514                         atomic_inc(&r10_bio->remaining);
1515                         spin_lock_irqsave(&conf->device_lock, flags);
1516                         bio_list_add(&conf->pending_bio_list, mbio);
1517                         conf->pending_count++;
1518                         spin_unlock_irqrestore(&conf->device_lock, flags);
1519                         if (!mddev_check_plugged(mddev))
1520                                 md_wakeup_thread(mddev->thread);
1521                 }
1522         }
1523
1524         /* Don't remove the bias on 'remaining' (one_write_done) until
1525          * after checking if we need to go around again.
1526          */
1527
1528         if (sectors_handled < bio_sectors(bio)) {
1529                 one_write_done(r10_bio);
1530                 /* We need another r10_bio.  It has already been counted
1531                  * in bio->bi_phys_segments.
1532                  */
1533                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1534
1535                 r10_bio->master_bio = bio;
1536                 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1537
1538                 r10_bio->mddev = mddev;
1539                 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1540                 r10_bio->state = 0;
1541                 goto retry_write;
1542         }
1543         one_write_done(r10_bio);
1544 }
1545
1546 static void make_request(struct mddev *mddev, struct bio *bio)
1547 {
1548         struct r10conf *conf = mddev->private;
1549         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1550         int chunk_sects = chunk_mask + 1;
1551
1552         struct bio *split;
1553
1554         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1555                 md_flush_request(mddev, bio);
1556                 return;
1557         }
1558
1559         md_write_start(mddev, bio);
1560
1561         do {
1562
1563                 /*
1564                  * If this request crosses a chunk boundary, we need to split
1565                  * it.
1566                  */
1567                 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1568                              bio_sectors(bio) > chunk_sects
1569                              && (conf->geo.near_copies < conf->geo.raid_disks
1570                                  || conf->prev.near_copies <
1571                                  conf->prev.raid_disks))) {
1572                         split = bio_split(bio, chunk_sects -
1573                                           (bio->bi_iter.bi_sector &
1574                                            (chunk_sects - 1)),
1575                                           GFP_NOIO, fs_bio_set);
1576                         bio_chain(split, bio);
1577                 } else {
1578                         split = bio;
1579                 }
1580
1581                 __make_request(mddev, split);
1582         } while (split != bio);
1583
1584         /* In case raid10d snuck in to freeze_array */
1585         wake_up(&conf->wait_barrier);
1586 }
1587
1588 static void status(struct seq_file *seq, struct mddev *mddev)
1589 {
1590         struct r10conf *conf = mddev->private;
1591         int i;
1592
1593         if (conf->geo.near_copies < conf->geo.raid_disks)
1594                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1595         if (conf->geo.near_copies > 1)
1596                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1597         if (conf->geo.far_copies > 1) {
1598                 if (conf->geo.far_offset)
1599                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1600                 else
1601                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1602         }
1603         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1604                                         conf->geo.raid_disks - mddev->degraded);
1605         for (i = 0; i < conf->geo.raid_disks; i++)
1606                 seq_printf(seq, "%s",
1607                               conf->mirrors[i].rdev &&
1608                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1609         seq_printf(seq, "]");
1610 }
1611
1612 /* check if there are enough drives for
1613  * every block to appear on atleast one.
1614  * Don't consider the device numbered 'ignore'
1615  * as we might be about to remove it.
1616  */
1617 static int _enough(struct r10conf *conf, int previous, int ignore)
1618 {
1619         int first = 0;
1620         int has_enough = 0;
1621         int disks, ncopies;
1622         if (previous) {
1623                 disks = conf->prev.raid_disks;
1624                 ncopies = conf->prev.near_copies;
1625         } else {
1626                 disks = conf->geo.raid_disks;
1627                 ncopies = conf->geo.near_copies;
1628         }
1629
1630         rcu_read_lock();
1631         do {
1632                 int n = conf->copies;
1633                 int cnt = 0;
1634                 int this = first;
1635                 while (n--) {
1636                         struct md_rdev *rdev;
1637                         if (this != ignore &&
1638                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1639                             test_bit(In_sync, &rdev->flags))
1640                                 cnt++;
1641                         this = (this+1) % disks;
1642                 }
1643                 if (cnt == 0)
1644                         goto out;
1645                 first = (first + ncopies) % disks;
1646         } while (first != 0);
1647         has_enough = 1;
1648 out:
1649         rcu_read_unlock();
1650         return has_enough;
1651 }
1652
1653 static int enough(struct r10conf *conf, int ignore)
1654 {
1655         /* when calling 'enough', both 'prev' and 'geo' must
1656          * be stable.
1657          * This is ensured if ->reconfig_mutex or ->device_lock
1658          * is held.
1659          */
1660         return _enough(conf, 0, ignore) &&
1661                 _enough(conf, 1, ignore);
1662 }
1663
1664 static void error(struct mddev *mddev, struct md_rdev *rdev)
1665 {
1666         char b[BDEVNAME_SIZE];
1667         struct r10conf *conf = mddev->private;
1668         unsigned long flags;
1669
1670         /*
1671          * If it is not operational, then we have already marked it as dead
1672          * else if it is the last working disks, ignore the error, let the
1673          * next level up know.
1674          * else mark the drive as failed
1675          */
1676         spin_lock_irqsave(&conf->device_lock, flags);
1677         if (test_bit(In_sync, &rdev->flags)
1678             && !enough(conf, rdev->raid_disk)) {
1679                 /*
1680                  * Don't fail the drive, just return an IO error.
1681                  */
1682                 spin_unlock_irqrestore(&conf->device_lock, flags);
1683                 return;
1684         }
1685         if (test_and_clear_bit(In_sync, &rdev->flags))
1686                 mddev->degraded++;
1687         /*
1688          * If recovery is running, make sure it aborts.
1689          */
1690         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1691         set_bit(Blocked, &rdev->flags);
1692         set_bit(Faulty, &rdev->flags);
1693         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1694         spin_unlock_irqrestore(&conf->device_lock, flags);
1695         printk(KERN_ALERT
1696                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1697                "md/raid10:%s: Operation continuing on %d devices.\n",
1698                mdname(mddev), bdevname(rdev->bdev, b),
1699                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1700 }
1701
1702 static void print_conf(struct r10conf *conf)
1703 {
1704         int i;
1705         struct raid10_info *tmp;
1706
1707         printk(KERN_DEBUG "RAID10 conf printout:\n");
1708         if (!conf) {
1709                 printk(KERN_DEBUG "(!conf)\n");
1710                 return;
1711         }
1712         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1713                 conf->geo.raid_disks);
1714
1715         for (i = 0; i < conf->geo.raid_disks; i++) {
1716                 char b[BDEVNAME_SIZE];
1717                 tmp = conf->mirrors + i;
1718                 if (tmp->rdev)
1719                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1720                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1721                                 !test_bit(Faulty, &tmp->rdev->flags),
1722                                 bdevname(tmp->rdev->bdev,b));
1723         }
1724 }
1725
1726 static void close_sync(struct r10conf *conf)
1727 {
1728         wait_barrier(conf);
1729         allow_barrier(conf);
1730
1731         mempool_destroy(conf->r10buf_pool);
1732         conf->r10buf_pool = NULL;
1733 }
1734
1735 static int raid10_spare_active(struct mddev *mddev)
1736 {
1737         int i;
1738         struct r10conf *conf = mddev->private;
1739         struct raid10_info *tmp;
1740         int count = 0;
1741         unsigned long flags;
1742
1743         /*
1744          * Find all non-in_sync disks within the RAID10 configuration
1745          * and mark them in_sync
1746          */
1747         for (i = 0; i < conf->geo.raid_disks; i++) {
1748                 tmp = conf->mirrors + i;
1749                 if (tmp->replacement
1750                     && tmp->replacement->recovery_offset == MaxSector
1751                     && !test_bit(Faulty, &tmp->replacement->flags)
1752                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1753                         /* Replacement has just become active */
1754                         if (!tmp->rdev
1755                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1756                                 count++;
1757                         if (tmp->rdev) {
1758                                 /* Replaced device not technically faulty,
1759                                  * but we need to be sure it gets removed
1760                                  * and never re-added.
1761                                  */
1762                                 set_bit(Faulty, &tmp->rdev->flags);
1763                                 sysfs_notify_dirent_safe(
1764                                         tmp->rdev->sysfs_state);
1765                         }
1766                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1767                 } else if (tmp->rdev
1768                            && tmp->rdev->recovery_offset == MaxSector
1769                            && !test_bit(Faulty, &tmp->rdev->flags)
1770                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1771                         count++;
1772                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1773                 }
1774         }
1775         spin_lock_irqsave(&conf->device_lock, flags);
1776         mddev->degraded -= count;
1777         spin_unlock_irqrestore(&conf->device_lock, flags);
1778
1779         print_conf(conf);
1780         return count;
1781 }
1782
1783 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1784 {
1785         struct r10conf *conf = mddev->private;
1786         int err = -EEXIST;
1787         int mirror;
1788         int first = 0;
1789         int last = conf->geo.raid_disks - 1;
1790         struct request_queue *q = bdev_get_queue(rdev->bdev);
1791
1792         if (mddev->recovery_cp < MaxSector)
1793                 /* only hot-add to in-sync arrays, as recovery is
1794                  * very different from resync
1795                  */
1796                 return -EBUSY;
1797         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1798                 return -EINVAL;
1799
1800         if (rdev->raid_disk >= 0)
1801                 first = last = rdev->raid_disk;
1802
1803         if (q->merge_bvec_fn) {
1804                 set_bit(Unmerged, &rdev->flags);
1805                 mddev->merge_check_needed = 1;
1806         }
1807
1808         if (rdev->saved_raid_disk >= first &&
1809             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1810                 mirror = rdev->saved_raid_disk;
1811         else
1812                 mirror = first;
1813         for ( ; mirror <= last ; mirror++) {
1814                 struct raid10_info *p = &conf->mirrors[mirror];
1815                 if (p->recovery_disabled == mddev->recovery_disabled)
1816                         continue;
1817                 if (p->rdev) {
1818                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1819                             p->replacement != NULL)
1820                                 continue;
1821                         clear_bit(In_sync, &rdev->flags);
1822                         set_bit(Replacement, &rdev->flags);
1823                         rdev->raid_disk = mirror;
1824                         err = 0;
1825                         if (mddev->gendisk)
1826                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1827                                                   rdev->data_offset << 9);
1828                         conf->fullsync = 1;
1829                         rcu_assign_pointer(p->replacement, rdev);
1830                         break;
1831                 }
1832
1833                 if (mddev->gendisk)
1834                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1835                                           rdev->data_offset << 9);
1836
1837                 p->head_position = 0;
1838                 p->recovery_disabled = mddev->recovery_disabled - 1;
1839                 rdev->raid_disk = mirror;
1840                 err = 0;
1841                 if (rdev->saved_raid_disk != mirror)
1842                         conf->fullsync = 1;
1843                 rcu_assign_pointer(p->rdev, rdev);
1844                 break;
1845         }
1846         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1847                 /* Some requests might not have seen this new
1848                  * merge_bvec_fn.  We must wait for them to complete
1849                  * before merging the device fully.
1850                  * First we make sure any code which has tested
1851                  * our function has submitted the request, then
1852                  * we wait for all outstanding requests to complete.
1853                  */
1854                 synchronize_sched();
1855                 freeze_array(conf, 0);
1856                 unfreeze_array(conf);
1857                 clear_bit(Unmerged, &rdev->flags);
1858         }
1859         md_integrity_add_rdev(rdev, mddev);
1860         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1861                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1862
1863         print_conf(conf);
1864         return err;
1865 }
1866
1867 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1868 {
1869         struct r10conf *conf = mddev->private;
1870         int err = 0;
1871         int number = rdev->raid_disk;
1872         struct md_rdev **rdevp;
1873         struct raid10_info *p = conf->mirrors + number;
1874
1875         print_conf(conf);
1876         if (rdev == p->rdev)
1877                 rdevp = &p->rdev;
1878         else if (rdev == p->replacement)
1879                 rdevp = &p->replacement;
1880         else
1881                 return 0;
1882
1883         if (test_bit(In_sync, &rdev->flags) ||
1884             atomic_read(&rdev->nr_pending)) {
1885                 err = -EBUSY;
1886                 goto abort;
1887         }
1888         /* Only remove faulty devices if recovery
1889          * is not possible.
1890          */
1891         if (!test_bit(Faulty, &rdev->flags) &&
1892             mddev->recovery_disabled != p->recovery_disabled &&
1893             (!p->replacement || p->replacement == rdev) &&
1894             number < conf->geo.raid_disks &&
1895             enough(conf, -1)) {
1896                 err = -EBUSY;
1897                 goto abort;
1898         }
1899         *rdevp = NULL;
1900         synchronize_rcu();
1901         if (atomic_read(&rdev->nr_pending)) {
1902                 /* lost the race, try later */
1903                 err = -EBUSY;
1904                 *rdevp = rdev;
1905                 goto abort;
1906         } else if (p->replacement) {
1907                 /* We must have just cleared 'rdev' */
1908                 p->rdev = p->replacement;
1909                 clear_bit(Replacement, &p->replacement->flags);
1910                 smp_mb(); /* Make sure other CPUs may see both as identical
1911                            * but will never see neither -- if they are careful.
1912                            */
1913                 p->replacement = NULL;
1914                 clear_bit(WantReplacement, &rdev->flags);
1915         } else
1916                 /* We might have just remove the Replacement as faulty
1917                  * Clear the flag just in case
1918                  */
1919                 clear_bit(WantReplacement, &rdev->flags);
1920
1921         err = md_integrity_register(mddev);
1922
1923 abort:
1924
1925         print_conf(conf);
1926         return err;
1927 }
1928
1929 static void end_sync_read(struct bio *bio, int error)
1930 {
1931         struct r10bio *r10_bio = bio->bi_private;
1932         struct r10conf *conf = r10_bio->mddev->private;
1933         int d;
1934
1935         if (bio == r10_bio->master_bio) {
1936                 /* this is a reshape read */
1937                 d = r10_bio->read_slot; /* really the read dev */
1938         } else
1939                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1940
1941         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1942                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1943         else
1944                 /* The write handler will notice the lack of
1945                  * R10BIO_Uptodate and record any errors etc
1946                  */
1947                 atomic_add(r10_bio->sectors,
1948                            &conf->mirrors[d].rdev->corrected_errors);
1949
1950         /* for reconstruct, we always reschedule after a read.
1951          * for resync, only after all reads
1952          */
1953         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1954         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1955             atomic_dec_and_test(&r10_bio->remaining)) {
1956                 /* we have read all the blocks,
1957                  * do the comparison in process context in raid10d
1958                  */
1959                 reschedule_retry(r10_bio);
1960         }
1961 }
1962
1963 static void end_sync_request(struct r10bio *r10_bio)
1964 {
1965         struct mddev *mddev = r10_bio->mddev;
1966
1967         while (atomic_dec_and_test(&r10_bio->remaining)) {
1968                 if (r10_bio->master_bio == NULL) {
1969                         /* the primary of several recovery bios */
1970                         sector_t s = r10_bio->sectors;
1971                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1972                             test_bit(R10BIO_WriteError, &r10_bio->state))
1973                                 reschedule_retry(r10_bio);
1974                         else
1975                                 put_buf(r10_bio);
1976                         md_done_sync(mddev, s, 1);
1977                         break;
1978                 } else {
1979                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1980                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1981                             test_bit(R10BIO_WriteError, &r10_bio->state))
1982                                 reschedule_retry(r10_bio);
1983                         else
1984                                 put_buf(r10_bio);
1985                         r10_bio = r10_bio2;
1986                 }
1987         }
1988 }
1989
1990 static void end_sync_write(struct bio *bio, int error)
1991 {
1992         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1993         struct r10bio *r10_bio = bio->bi_private;
1994         struct mddev *mddev = r10_bio->mddev;
1995         struct r10conf *conf = mddev->private;
1996         int d;
1997         sector_t first_bad;
1998         int bad_sectors;
1999         int slot;
2000         int repl;
2001         struct md_rdev *rdev = NULL;
2002
2003         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2004         if (repl)
2005                 rdev = conf->mirrors[d].replacement;
2006         else
2007                 rdev = conf->mirrors[d].rdev;
2008
2009         if (!uptodate) {
2010                 if (repl)
2011                         md_error(mddev, rdev);
2012                 else {
2013                         set_bit(WriteErrorSeen, &rdev->flags);
2014                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2015                                 set_bit(MD_RECOVERY_NEEDED,
2016                                         &rdev->mddev->recovery);
2017                         set_bit(R10BIO_WriteError, &r10_bio->state);
2018                 }
2019         } else if (is_badblock(rdev,
2020                              r10_bio->devs[slot].addr,
2021                              r10_bio->sectors,
2022                              &first_bad, &bad_sectors))
2023                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2024
2025         rdev_dec_pending(rdev, mddev);
2026
2027         end_sync_request(r10_bio);
2028 }
2029
2030 /*
2031  * Note: sync and recover and handled very differently for raid10
2032  * This code is for resync.
2033  * For resync, we read through virtual addresses and read all blocks.
2034  * If there is any error, we schedule a write.  The lowest numbered
2035  * drive is authoritative.
2036  * However requests come for physical address, so we need to map.
2037  * For every physical address there are raid_disks/copies virtual addresses,
2038  * which is always are least one, but is not necessarly an integer.
2039  * This means that a physical address can span multiple chunks, so we may
2040  * have to submit multiple io requests for a single sync request.
2041  */
2042 /*
2043  * We check if all blocks are in-sync and only write to blocks that
2044  * aren't in sync
2045  */
2046 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2047 {
2048         struct r10conf *conf = mddev->private;
2049         int i, first;
2050         struct bio *tbio, *fbio;
2051         int vcnt;
2052
2053         atomic_set(&r10_bio->remaining, 1);
2054
2055         /* find the first device with a block */
2056         for (i=0; i<conf->copies; i++)
2057                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2058                         break;
2059
2060         if (i == conf->copies)
2061                 goto done;
2062
2063         first = i;
2064         fbio = r10_bio->devs[i].bio;
2065
2066         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2067         /* now find blocks with errors */
2068         for (i=0 ; i < conf->copies ; i++) {
2069                 int  j, d;
2070
2071                 tbio = r10_bio->devs[i].bio;
2072
2073                 if (tbio->bi_end_io != end_sync_read)
2074                         continue;
2075                 if (i == first)
2076                         continue;
2077                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2078                         /* We know that the bi_io_vec layout is the same for
2079                          * both 'first' and 'i', so we just compare them.
2080                          * All vec entries are PAGE_SIZE;
2081                          */
2082                         int sectors = r10_bio->sectors;
2083                         for (j = 0; j < vcnt; j++) {
2084                                 int len = PAGE_SIZE;
2085                                 if (sectors < (len / 512))
2086                                         len = sectors * 512;
2087                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2088                                            page_address(tbio->bi_io_vec[j].bv_page),
2089                                            len))
2090                                         break;
2091                                 sectors -= len/512;
2092                         }
2093                         if (j == vcnt)
2094                                 continue;
2095                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2096                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2097                                 /* Don't fix anything. */
2098                                 continue;
2099                 }
2100                 /* Ok, we need to write this bio, either to correct an
2101                  * inconsistency or to correct an unreadable block.
2102                  * First we need to fixup bv_offset, bv_len and
2103                  * bi_vecs, as the read request might have corrupted these
2104                  */
2105                 bio_reset(tbio);
2106
2107                 tbio->bi_vcnt = vcnt;
2108                 tbio->bi_iter.bi_size = r10_bio->sectors << 9;
2109                 tbio->bi_rw = WRITE;
2110                 tbio->bi_private = r10_bio;
2111                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2112
2113                 for (j=0; j < vcnt ; j++) {
2114                         tbio->bi_io_vec[j].bv_offset = 0;
2115                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2116
2117                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2118                                page_address(fbio->bi_io_vec[j].bv_page),
2119                                PAGE_SIZE);
2120                 }
2121                 tbio->bi_end_io = end_sync_write;
2122
2123                 d = r10_bio->devs[i].devnum;
2124                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2125                 atomic_inc(&r10_bio->remaining);
2126                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2127
2128                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2129                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2130                 generic_make_request(tbio);
2131         }
2132
2133         /* Now write out to any replacement devices
2134          * that are active
2135          */
2136         for (i = 0; i < conf->copies; i++) {
2137                 int j, d;
2138
2139                 tbio = r10_bio->devs[i].repl_bio;
2140                 if (!tbio || !tbio->bi_end_io)
2141                         continue;
2142                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2143                     && r10_bio->devs[i].bio != fbio)
2144                         for (j = 0; j < vcnt; j++)
2145                                 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2146                                        page_address(fbio->bi_io_vec[j].bv_page),
2147                                        PAGE_SIZE);
2148                 d = r10_bio->devs[i].devnum;
2149                 atomic_inc(&r10_bio->remaining);
2150                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2151                              bio_sectors(tbio));
2152                 generic_make_request(tbio);
2153         }
2154
2155 done:
2156         if (atomic_dec_and_test(&r10_bio->remaining)) {
2157                 md_done_sync(mddev, r10_bio->sectors, 1);
2158                 put_buf(r10_bio);
2159         }
2160 }
2161
2162 /*
2163  * Now for the recovery code.
2164  * Recovery happens across physical sectors.
2165  * We recover all non-is_sync drives by finding the virtual address of
2166  * each, and then choose a working drive that also has that virt address.
2167  * There is a separate r10_bio for each non-in_sync drive.
2168  * Only the first two slots are in use. The first for reading,
2169  * The second for writing.
2170  *
2171  */
2172 static void fix_recovery_read_error(struct r10bio *r10_bio)
2173 {
2174         /* We got a read error during recovery.
2175          * We repeat the read in smaller page-sized sections.
2176          * If a read succeeds, write it to the new device or record
2177          * a bad block if we cannot.
2178          * If a read fails, record a bad block on both old and
2179          * new devices.
2180          */
2181         struct mddev *mddev = r10_bio->mddev;
2182         struct r10conf *conf = mddev->private;
2183         struct bio *bio = r10_bio->devs[0].bio;
2184         sector_t sect = 0;
2185         int sectors = r10_bio->sectors;
2186         int idx = 0;
2187         int dr = r10_bio->devs[0].devnum;
2188         int dw = r10_bio->devs[1].devnum;
2189
2190         while (sectors) {
2191                 int s = sectors;
2192                 struct md_rdev *rdev;
2193                 sector_t addr;
2194                 int ok;
2195
2196                 if (s > (PAGE_SIZE>>9))
2197                         s = PAGE_SIZE >> 9;
2198
2199                 rdev = conf->mirrors[dr].rdev;
2200                 addr = r10_bio->devs[0].addr + sect,
2201                 ok = sync_page_io(rdev,
2202                                   addr,
2203                                   s << 9,
2204                                   bio->bi_io_vec[idx].bv_page,
2205                                   READ, false);
2206                 if (ok) {
2207                         rdev = conf->mirrors[dw].rdev;
2208                         addr = r10_bio->devs[1].addr + sect;
2209                         ok = sync_page_io(rdev,
2210                                           addr,
2211                                           s << 9,
2212                                           bio->bi_io_vec[idx].bv_page,
2213                                           WRITE, false);
2214                         if (!ok) {
2215                                 set_bit(WriteErrorSeen, &rdev->flags);
2216                                 if (!test_and_set_bit(WantReplacement,
2217                                                       &rdev->flags))
2218                                         set_bit(MD_RECOVERY_NEEDED,
2219                                                 &rdev->mddev->recovery);
2220                         }
2221                 }
2222                 if (!ok) {
2223                         /* We don't worry if we cannot set a bad block -
2224                          * it really is bad so there is no loss in not
2225                          * recording it yet
2226                          */
2227                         rdev_set_badblocks(rdev, addr, s, 0);
2228
2229                         if (rdev != conf->mirrors[dw].rdev) {
2230                                 /* need bad block on destination too */
2231                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2232                                 addr = r10_bio->devs[1].addr + sect;
2233                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2234                                 if (!ok) {
2235                                         /* just abort the recovery */
2236                                         printk(KERN_NOTICE
2237                                                "md/raid10:%s: recovery aborted"
2238                                                " due to read error\n",
2239                                                mdname(mddev));
2240
2241                                         conf->mirrors[dw].recovery_disabled
2242                                                 = mddev->recovery_disabled;
2243                                         set_bit(MD_RECOVERY_INTR,
2244                                                 &mddev->recovery);
2245                                         break;
2246                                 }
2247                         }
2248                 }
2249
2250                 sectors -= s;
2251                 sect += s;
2252                 idx++;
2253         }
2254 }
2255
2256 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2257 {
2258         struct r10conf *conf = mddev->private;
2259         int d;
2260         struct bio *wbio, *wbio2;
2261
2262         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2263                 fix_recovery_read_error(r10_bio);
2264                 end_sync_request(r10_bio);
2265                 return;
2266         }
2267
2268         /*
2269          * share the pages with the first bio
2270          * and submit the write request
2271          */
2272         d = r10_bio->devs[1].devnum;
2273         wbio = r10_bio->devs[1].bio;
2274         wbio2 = r10_bio->devs[1].repl_bio;
2275         /* Need to test wbio2->bi_end_io before we call
2276          * generic_make_request as if the former is NULL,
2277          * the latter is free to free wbio2.
2278          */
2279         if (wbio2 && !wbio2->bi_end_io)
2280                 wbio2 = NULL;
2281         if (wbio->bi_end_io) {
2282                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2283                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2284                 generic_make_request(wbio);
2285         }
2286         if (wbio2) {
2287                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2288                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2289                              bio_sectors(wbio2));
2290                 generic_make_request(wbio2);
2291         }
2292 }
2293
2294 /*
2295  * Used by fix_read_error() to decay the per rdev read_errors.
2296  * We halve the read error count for every hour that has elapsed
2297  * since the last recorded read error.
2298  *
2299  */
2300 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2301 {
2302         struct timespec cur_time_mon;
2303         unsigned long hours_since_last;
2304         unsigned int read_errors = atomic_read(&rdev->read_errors);
2305
2306         ktime_get_ts(&cur_time_mon);
2307
2308         if (rdev->last_read_error.tv_sec == 0 &&
2309             rdev->last_read_error.tv_nsec == 0) {
2310                 /* first time we've seen a read error */
2311                 rdev->last_read_error = cur_time_mon;
2312                 return;
2313         }
2314
2315         hours_since_last = (cur_time_mon.tv_sec -
2316                             rdev->last_read_error.tv_sec) / 3600;
2317
2318         rdev->last_read_error = cur_time_mon;
2319
2320         /*
2321          * if hours_since_last is > the number of bits in read_errors
2322          * just set read errors to 0. We do this to avoid
2323          * overflowing the shift of read_errors by hours_since_last.
2324          */
2325         if (hours_since_last >= 8 * sizeof(read_errors))
2326                 atomic_set(&rdev->read_errors, 0);
2327         else
2328                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2329 }
2330
2331 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2332                             int sectors, struct page *page, int rw)
2333 {
2334         sector_t first_bad;
2335         int bad_sectors;
2336
2337         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2338             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2339                 return -1;
2340         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2341                 /* success */
2342                 return 1;
2343         if (rw == WRITE) {
2344                 set_bit(WriteErrorSeen, &rdev->flags);
2345                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2346                         set_bit(MD_RECOVERY_NEEDED,
2347                                 &rdev->mddev->recovery);
2348         }
2349         /* need to record an error - either for the block or the device */
2350         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2351                 md_error(rdev->mddev, rdev);
2352         return 0;
2353 }
2354
2355 /*
2356  * This is a kernel thread which:
2357  *
2358  *      1.      Retries failed read operations on working mirrors.
2359  *      2.      Updates the raid superblock when problems encounter.
2360  *      3.      Performs writes following reads for array synchronising.
2361  */
2362
2363 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2364 {
2365         int sect = 0; /* Offset from r10_bio->sector */
2366         int sectors = r10_bio->sectors;
2367         struct md_rdev*rdev;
2368         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2369         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2370
2371         /* still own a reference to this rdev, so it cannot
2372          * have been cleared recently.
2373          */
2374         rdev = conf->mirrors[d].rdev;
2375
2376         if (test_bit(Faulty, &rdev->flags))
2377                 /* drive has already been failed, just ignore any
2378                    more fix_read_error() attempts */
2379                 return;
2380
2381         check_decay_read_errors(mddev, rdev);
2382         atomic_inc(&rdev->read_errors);
2383         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2384                 char b[BDEVNAME_SIZE];
2385                 bdevname(rdev->bdev, b);
2386
2387                 printk(KERN_NOTICE
2388                        "md/raid10:%s: %s: Raid device exceeded "
2389                        "read_error threshold [cur %d:max %d]\n",
2390                        mdname(mddev), b,
2391                        atomic_read(&rdev->read_errors), max_read_errors);
2392                 printk(KERN_NOTICE
2393                        "md/raid10:%s: %s: Failing raid device\n",
2394                        mdname(mddev), b);
2395                 md_error(mddev, conf->mirrors[d].rdev);
2396                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2397                 return;
2398         }
2399
2400         while(sectors) {
2401                 int s = sectors;
2402                 int sl = r10_bio->read_slot;
2403                 int success = 0;
2404                 int start;
2405
2406                 if (s > (PAGE_SIZE>>9))
2407                         s = PAGE_SIZE >> 9;
2408
2409                 rcu_read_lock();
2410                 do {
2411                         sector_t first_bad;
2412                         int bad_sectors;
2413
2414                         d = r10_bio->devs[sl].devnum;
2415                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2416                         if (rdev &&
2417                             !test_bit(Unmerged, &rdev->flags) &&
2418                             test_bit(In_sync, &rdev->flags) &&
2419                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2420                                         &first_bad, &bad_sectors) == 0) {
2421                                 atomic_inc(&rdev->nr_pending);
2422                                 rcu_read_unlock();
2423                                 success = sync_page_io(rdev,
2424                                                        r10_bio->devs[sl].addr +
2425                                                        sect,
2426                                                        s<<9,
2427                                                        conf->tmppage, READ, false);
2428                                 rdev_dec_pending(rdev, mddev);
2429                                 rcu_read_lock();
2430                                 if (success)
2431                                         break;
2432                         }
2433                         sl++;
2434                         if (sl == conf->copies)
2435                                 sl = 0;
2436                 } while (!success && sl != r10_bio->read_slot);
2437                 rcu_read_unlock();
2438
2439                 if (!success) {
2440                         /* Cannot read from anywhere, just mark the block
2441                          * as bad on the first device to discourage future
2442                          * reads.
2443                          */
2444                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2445                         rdev = conf->mirrors[dn].rdev;
2446
2447                         if (!rdev_set_badblocks(
2448                                     rdev,
2449                                     r10_bio->devs[r10_bio->read_slot].addr
2450                                     + sect,
2451                                     s, 0)) {
2452                                 md_error(mddev, rdev);
2453                                 r10_bio->devs[r10_bio->read_slot].bio
2454                                         = IO_BLOCKED;
2455                         }
2456                         break;
2457                 }
2458
2459                 start = sl;
2460                 /* write it back and re-read */
2461                 rcu_read_lock();
2462                 while (sl != r10_bio->read_slot) {
2463                         char b[BDEVNAME_SIZE];
2464
2465                         if (sl==0)
2466                                 sl = conf->copies;
2467                         sl--;
2468                         d = r10_bio->devs[sl].devnum;
2469                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2470                         if (!rdev ||
2471                             test_bit(Unmerged, &rdev->flags) ||
2472                             !test_bit(In_sync, &rdev->flags))
2473                                 continue;
2474
2475                         atomic_inc(&rdev->nr_pending);
2476                         rcu_read_unlock();
2477                         if (r10_sync_page_io(rdev,
2478                                              r10_bio->devs[sl].addr +
2479                                              sect,
2480                                              s, conf->tmppage, WRITE)
2481                             == 0) {
2482                                 /* Well, this device is dead */
2483                                 printk(KERN_NOTICE
2484                                        "md/raid10:%s: read correction "
2485                                        "write failed"
2486                                        " (%d sectors at %llu on %s)\n",
2487                                        mdname(mddev), s,
2488                                        (unsigned long long)(
2489                                                sect +
2490                                                choose_data_offset(r10_bio,
2491                                                                   rdev)),
2492                                        bdevname(rdev->bdev, b));
2493                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2494                                        "drive\n",
2495                                        mdname(mddev),
2496                                        bdevname(rdev->bdev, b));
2497                         }
2498                         rdev_dec_pending(rdev, mddev);
2499                         rcu_read_lock();
2500                 }
2501                 sl = start;
2502                 while (sl != r10_bio->read_slot) {
2503                         char b[BDEVNAME_SIZE];
2504
2505                         if (sl==0)
2506                                 sl = conf->copies;
2507                         sl--;
2508                         d = r10_bio->devs[sl].devnum;
2509                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2510                         if (!rdev ||
2511                             !test_bit(In_sync, &rdev->flags))
2512                                 continue;
2513
2514                         atomic_inc(&rdev->nr_pending);
2515                         rcu_read_unlock();
2516                         switch (r10_sync_page_io(rdev,
2517                                              r10_bio->devs[sl].addr +
2518                                              sect,
2519                                              s, conf->tmppage,
2520                                                  READ)) {
2521                         case 0:
2522                                 /* Well, this device is dead */
2523                                 printk(KERN_NOTICE
2524                                        "md/raid10:%s: unable to read back "
2525                                        "corrected sectors"
2526                                        " (%d sectors at %llu on %s)\n",
2527                                        mdname(mddev), s,
2528                                        (unsigned long long)(
2529                                                sect +
2530                                                choose_data_offset(r10_bio, rdev)),
2531                                        bdevname(rdev->bdev, b));
2532                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2533                                        "drive\n",
2534                                        mdname(mddev),
2535                                        bdevname(rdev->bdev, b));
2536                                 break;
2537                         case 1:
2538                                 printk(KERN_INFO
2539                                        "md/raid10:%s: read error corrected"
2540                                        " (%d sectors at %llu on %s)\n",
2541                                        mdname(mddev), s,
2542                                        (unsigned long long)(
2543                                                sect +
2544                                                choose_data_offset(r10_bio, rdev)),
2545                                        bdevname(rdev->bdev, b));
2546                                 atomic_add(s, &rdev->corrected_errors);
2547                         }
2548
2549                         rdev_dec_pending(rdev, mddev);
2550                         rcu_read_lock();
2551                 }
2552                 rcu_read_unlock();
2553
2554                 sectors -= s;
2555                 sect += s;
2556         }
2557 }
2558
2559 static int narrow_write_error(struct r10bio *r10_bio, int i)
2560 {
2561         struct bio *bio = r10_bio->master_bio;
2562         struct mddev *mddev = r10_bio->mddev;
2563         struct r10conf *conf = mddev->private;
2564         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2565         /* bio has the data to be written to slot 'i' where
2566          * we just recently had a write error.
2567          * We repeatedly clone the bio and trim down to one block,
2568          * then try the write.  Where the write fails we record
2569          * a bad block.
2570          * It is conceivable that the bio doesn't exactly align with
2571          * blocks.  We must handle this.
2572          *
2573          * We currently own a reference to the rdev.
2574          */
2575
2576         int block_sectors;
2577         sector_t sector;
2578         int sectors;
2579         int sect_to_write = r10_bio->sectors;
2580         int ok = 1;
2581
2582         if (rdev->badblocks.shift < 0)
2583                 return 0;
2584
2585         block_sectors = 1 << rdev->badblocks.shift;
2586         sector = r10_bio->sector;
2587         sectors = ((r10_bio->sector + block_sectors)
2588                    & ~(sector_t)(block_sectors - 1))
2589                 - sector;
2590
2591         while (sect_to_write) {
2592                 struct bio *wbio;
2593                 if (sectors > sect_to_write)
2594                         sectors = sect_to_write;
2595                 /* Write at 'sector' for 'sectors' */
2596                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2597                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2598                 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2599                                    choose_data_offset(r10_bio, rdev) +
2600                                    (sector - r10_bio->sector));
2601                 wbio->bi_bdev = rdev->bdev;
2602                 if (submit_bio_wait(WRITE, wbio) == 0)
2603                         /* Failure! */
2604                         ok = rdev_set_badblocks(rdev, sector,
2605                                                 sectors, 0)
2606                                 && ok;
2607
2608                 bio_put(wbio);
2609                 sect_to_write -= sectors;
2610                 sector += sectors;
2611                 sectors = block_sectors;
2612         }
2613         return ok;
2614 }
2615
2616 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2617 {
2618         int slot = r10_bio->read_slot;
2619         struct bio *bio;
2620         struct r10conf *conf = mddev->private;
2621         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2622         char b[BDEVNAME_SIZE];
2623         unsigned long do_sync;
2624         int max_sectors;
2625
2626         /* we got a read error. Maybe the drive is bad.  Maybe just
2627          * the block and we can fix it.
2628          * We freeze all other IO, and try reading the block from
2629          * other devices.  When we find one, we re-write
2630          * and check it that fixes the read error.
2631          * This is all done synchronously while the array is
2632          * frozen.
2633          */
2634         bio = r10_bio->devs[slot].bio;
2635         bdevname(bio->bi_bdev, b);
2636         bio_put(bio);
2637         r10_bio->devs[slot].bio = NULL;
2638
2639         if (mddev->ro == 0) {
2640                 freeze_array(conf, 1);
2641                 fix_read_error(conf, mddev, r10_bio);
2642                 unfreeze_array(conf);
2643         } else
2644                 r10_bio->devs[slot].bio = IO_BLOCKED;
2645
2646         rdev_dec_pending(rdev, mddev);
2647
2648 read_more:
2649         rdev = read_balance(conf, r10_bio, &max_sectors);
2650         if (rdev == NULL) {
2651                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2652                        " read error for block %llu\n",
2653                        mdname(mddev), b,
2654                        (unsigned long long)r10_bio->sector);
2655                 raid_end_bio_io(r10_bio);
2656                 return;
2657         }
2658
2659         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2660         slot = r10_bio->read_slot;
2661         printk_ratelimited(
2662                 KERN_ERR
2663                 "md/raid10:%s: %s: redirecting "
2664                 "sector %llu to another mirror\n",
2665                 mdname(mddev),
2666                 bdevname(rdev->bdev, b),
2667                 (unsigned long long)r10_bio->sector);
2668         bio = bio_clone_mddev(r10_bio->master_bio,
2669                               GFP_NOIO, mddev);
2670         bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2671         r10_bio->devs[slot].bio = bio;
2672         r10_bio->devs[slot].rdev = rdev;
2673         bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2674                 + choose_data_offset(r10_bio, rdev);
2675         bio->bi_bdev = rdev->bdev;
2676         bio->bi_rw = READ | do_sync;
2677         bio->bi_private = r10_bio;
2678         bio->bi_end_io = raid10_end_read_request;
2679         if (max_sectors < r10_bio->sectors) {
2680                 /* Drat - have to split this up more */
2681                 struct bio *mbio = r10_bio->master_bio;
2682                 int sectors_handled =
2683                         r10_bio->sector + max_sectors
2684                         - mbio->bi_iter.bi_sector;
2685                 r10_bio->sectors = max_sectors;
2686                 spin_lock_irq(&conf->device_lock);
2687                 if (mbio->bi_phys_segments == 0)
2688                         mbio->bi_phys_segments = 2;
2689                 else
2690                         mbio->bi_phys_segments++;
2691                 spin_unlock_irq(&conf->device_lock);
2692                 generic_make_request(bio);
2693
2694                 r10_bio = mempool_alloc(conf->r10bio_pool,
2695                                         GFP_NOIO);
2696                 r10_bio->master_bio = mbio;
2697                 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2698                 r10_bio->state = 0;
2699                 set_bit(R10BIO_ReadError,
2700                         &r10_bio->state);
2701                 r10_bio->mddev = mddev;
2702                 r10_bio->sector = mbio->bi_iter.bi_sector
2703                         + sectors_handled;
2704
2705                 goto read_more;
2706         } else
2707                 generic_make_request(bio);
2708 }
2709
2710 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2711 {
2712         /* Some sort of write request has finished and it
2713          * succeeded in writing where we thought there was a
2714          * bad block.  So forget the bad block.
2715          * Or possibly if failed and we need to record
2716          * a bad block.
2717          */
2718         int m;
2719         struct md_rdev *rdev;
2720
2721         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2722             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2723                 for (m = 0; m < conf->copies; m++) {
2724                         int dev = r10_bio->devs[m].devnum;
2725                         rdev = conf->mirrors[dev].rdev;
2726                         if (r10_bio->devs[m].bio == NULL)
2727                                 continue;
2728                         if (test_bit(BIO_UPTODATE,
2729                                      &r10_bio->devs[m].bio->bi_flags)) {
2730                                 rdev_clear_badblocks(
2731                                         rdev,
2732                                         r10_bio->devs[m].addr,
2733                                         r10_bio->sectors, 0);
2734                         } else {
2735                                 if (!rdev_set_badblocks(
2736                                             rdev,
2737                                             r10_bio->devs[m].addr,
2738                                             r10_bio->sectors, 0))
2739                                         md_error(conf->mddev, rdev);
2740                         }
2741                         rdev = conf->mirrors[dev].replacement;
2742                         if (r10_bio->devs[m].repl_bio == NULL)
2743                                 continue;
2744                         if (test_bit(BIO_UPTODATE,
2745                                      &r10_bio->devs[m].repl_bio->bi_flags)) {
2746                                 rdev_clear_badblocks(
2747                                         rdev,
2748                                         r10_bio->devs[m].addr,
2749                                         r10_bio->sectors, 0);
2750                         } else {
2751                                 if (!rdev_set_badblocks(
2752                                             rdev,
2753                                             r10_bio->devs[m].addr,
2754                                             r10_bio->sectors, 0))
2755                                         md_error(conf->mddev, rdev);
2756                         }
2757                 }
2758                 put_buf(r10_bio);
2759         } else {
2760                 for (m = 0; m < conf->copies; m++) {
2761                         int dev = r10_bio->devs[m].devnum;
2762                         struct bio *bio = r10_bio->devs[m].bio;
2763                         rdev = conf->mirrors[dev].rdev;
2764                         if (bio == IO_MADE_GOOD) {
2765                                 rdev_clear_badblocks(
2766                                         rdev,
2767                                         r10_bio->devs[m].addr,
2768                                         r10_bio->sectors, 0);
2769                                 rdev_dec_pending(rdev, conf->mddev);
2770                         } else if (bio != NULL &&
2771                                    !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2772                                 if (!narrow_write_error(r10_bio, m)) {
2773                                         md_error(conf->mddev, rdev);
2774                                         set_bit(R10BIO_Degraded,
2775                                                 &r10_bio->state);
2776                                 }
2777                                 rdev_dec_pending(rdev, conf->mddev);
2778                         }
2779                         bio = r10_bio->devs[m].repl_bio;
2780                         rdev = conf->mirrors[dev].replacement;
2781                         if (rdev && bio == IO_MADE_GOOD) {
2782                                 rdev_clear_badblocks(
2783                                         rdev,
2784                                         r10_bio->devs[m].addr,
2785                                         r10_bio->sectors, 0);
2786                                 rdev_dec_pending(rdev, conf->mddev);
2787                         }
2788                 }
2789                 if (test_bit(R10BIO_WriteError,
2790                              &r10_bio->state))
2791                         close_write(r10_bio);
2792                 raid_end_bio_io(r10_bio);
2793         }
2794 }
2795
2796 static void raid10d(struct md_thread *thread)
2797 {
2798         struct mddev *mddev = thread->mddev;
2799         struct r10bio *r10_bio;
2800         unsigned long flags;
2801         struct r10conf *conf = mddev->private;
2802         struct list_head *head = &conf->retry_list;
2803         struct blk_plug plug;
2804
2805         md_check_recovery(mddev);
2806
2807         blk_start_plug(&plug);
2808         for (;;) {
2809
2810                 flush_pending_writes(conf);
2811
2812                 spin_lock_irqsave(&conf->device_lock, flags);
2813                 if (list_empty(head)) {
2814                         spin_unlock_irqrestore(&conf->device_lock, flags);
2815                         break;
2816                 }
2817                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2818                 list_del(head->prev);
2819                 conf->nr_queued--;
2820                 spin_unlock_irqrestore(&conf->device_lock, flags);
2821
2822                 mddev = r10_bio->mddev;
2823                 conf = mddev->private;
2824                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2825                     test_bit(R10BIO_WriteError, &r10_bio->state))
2826                         handle_write_completed(conf, r10_bio);
2827                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2828                         reshape_request_write(mddev, r10_bio);
2829                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2830                         sync_request_write(mddev, r10_bio);
2831                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2832                         recovery_request_write(mddev, r10_bio);
2833                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2834                         handle_read_error(mddev, r10_bio);
2835                 else {
2836                         /* just a partial read to be scheduled from a
2837                          * separate context
2838                          */
2839                         int slot = r10_bio->read_slot;
2840                         generic_make_request(r10_bio->devs[slot].bio);
2841                 }
2842
2843                 cond_resched();
2844                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2845                         md_check_recovery(mddev);
2846         }
2847         blk_finish_plug(&plug);
2848 }
2849
2850 static int init_resync(struct r10conf *conf)
2851 {
2852         int buffs;
2853         int i;
2854
2855         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2856         BUG_ON(conf->r10buf_pool);
2857         conf->have_replacement = 0;
2858         for (i = 0; i < conf->geo.raid_disks; i++)
2859                 if (conf->mirrors[i].replacement)
2860                         conf->have_replacement = 1;
2861         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2862         if (!conf->r10buf_pool)
2863                 return -ENOMEM;
2864         conf->next_resync = 0;
2865         return 0;
2866 }
2867
2868 /*
2869  * perform a "sync" on one "block"
2870  *
2871  * We need to make sure that no normal I/O request - particularly write
2872  * requests - conflict with active sync requests.
2873  *
2874  * This is achieved by tracking pending requests and a 'barrier' concept
2875  * that can be installed to exclude normal IO requests.
2876  *
2877  * Resync and recovery are handled very differently.
2878  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2879  *
2880  * For resync, we iterate over virtual addresses, read all copies,
2881  * and update if there are differences.  If only one copy is live,
2882  * skip it.
2883  * For recovery, we iterate over physical addresses, read a good
2884  * value for each non-in_sync drive, and over-write.
2885  *
2886  * So, for recovery we may have several outstanding complex requests for a
2887  * given address, one for each out-of-sync device.  We model this by allocating
2888  * a number of r10_bio structures, one for each out-of-sync device.
2889  * As we setup these structures, we collect all bio's together into a list
2890  * which we then process collectively to add pages, and then process again
2891  * to pass to generic_make_request.
2892  *
2893  * The r10_bio structures are linked using a borrowed master_bio pointer.
2894  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2895  * has its remaining count decremented to 0, the whole complex operation
2896  * is complete.
2897  *
2898  */
2899
2900 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2901                              int *skipped, int go_faster)
2902 {
2903         struct r10conf *conf = mddev->private;
2904         struct r10bio *r10_bio;
2905         struct bio *biolist = NULL, *bio;
2906         sector_t max_sector, nr_sectors;
2907         int i;
2908         int max_sync;
2909         sector_t sync_blocks;
2910         sector_t sectors_skipped = 0;
2911         int chunks_skipped = 0;
2912         sector_t chunk_mask = conf->geo.chunk_mask;
2913
2914         if (!conf->r10buf_pool)
2915                 if (init_resync(conf))
2916                         return 0;
2917
2918         /*
2919          * Allow skipping a full rebuild for incremental assembly
2920          * of a clean array, like RAID1 does.
2921          */
2922         if (mddev->bitmap == NULL &&
2923             mddev->recovery_cp == MaxSector &&
2924             mddev->reshape_position == MaxSector &&
2925             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2926             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2927             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2928             conf->fullsync == 0) {
2929                 *skipped = 1;
2930                 return mddev->dev_sectors - sector_nr;
2931         }
2932
2933  skipped:
2934         max_sector = mddev->dev_sectors;
2935         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2936             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2937                 max_sector = mddev->resync_max_sectors;
2938         if (sector_nr >= max_sector) {
2939                 /* If we aborted, we need to abort the
2940                  * sync on the 'current' bitmap chucks (there can
2941                  * be several when recovering multiple devices).
2942                  * as we may have started syncing it but not finished.
2943                  * We can find the current address in
2944                  * mddev->curr_resync, but for recovery,
2945                  * we need to convert that to several
2946                  * virtual addresses.
2947                  */
2948                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2949                         end_reshape(conf);
2950                         close_sync(conf);
2951                         return 0;
2952                 }
2953
2954                 if (mddev->curr_resync < max_sector) { /* aborted */
2955                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2956                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2957                                                 &sync_blocks, 1);
2958                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2959                                 sector_t sect =
2960                                         raid10_find_virt(conf, mddev->curr_resync, i);
2961                                 bitmap_end_sync(mddev->bitmap, sect,
2962                                                 &sync_blocks, 1);
2963                         }
2964                 } else {
2965                         /* completed sync */
2966                         if ((!mddev->bitmap || conf->fullsync)
2967                             && conf->have_replacement
2968                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2969                                 /* Completed a full sync so the replacements
2970                                  * are now fully recovered.
2971                                  */
2972                                 for (i = 0; i < conf->geo.raid_disks; i++)
2973                                         if (conf->mirrors[i].replacement)
2974                                                 conf->mirrors[i].replacement
2975                                                         ->recovery_offset
2976                                                         = MaxSector;
2977                         }
2978                         conf->fullsync = 0;
2979                 }
2980                 bitmap_close_sync(mddev->bitmap);
2981                 close_sync(conf);
2982                 *skipped = 1;
2983                 return sectors_skipped;
2984         }
2985
2986         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2987                 return reshape_request(mddev, sector_nr, skipped);
2988
2989         if (chunks_skipped >= conf->geo.raid_disks) {
2990                 /* if there has been nothing to do on any drive,
2991                  * then there is nothing to do at all..
2992                  */
2993                 *skipped = 1;
2994                 return (max_sector - sector_nr) + sectors_skipped;
2995         }
2996
2997         if (max_sector > mddev->resync_max)
2998                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2999
3000         /* make sure whole request will fit in a chunk - if chunks
3001          * are meaningful
3002          */
3003         if (conf->geo.near_copies < conf->geo.raid_disks &&
3004             max_sector > (sector_nr | chunk_mask))
3005                 max_sector = (sector_nr | chunk_mask) + 1;
3006         /*
3007          * If there is non-resync activity waiting for us then
3008          * put in a delay to throttle resync.
3009          */
3010         if (!go_faster && conf->nr_waiting)
3011                 msleep_interruptible(1000);
3012
3013         /* Again, very different code for resync and recovery.
3014          * Both must result in an r10bio with a list of bios that
3015          * have bi_end_io, bi_sector, bi_bdev set,
3016          * and bi_private set to the r10bio.
3017          * For recovery, we may actually create several r10bios
3018          * with 2 bios in each, that correspond to the bios in the main one.
3019          * In this case, the subordinate r10bios link back through a
3020          * borrowed master_bio pointer, and the counter in the master
3021          * includes a ref from each subordinate.
3022          */
3023         /* First, we decide what to do and set ->bi_end_io
3024          * To end_sync_read if we want to read, and
3025          * end_sync_write if we will want to write.
3026          */
3027
3028         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3029         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3030                 /* recovery... the complicated one */
3031                 int j;
3032                 r10_bio = NULL;
3033
3034                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3035                         int still_degraded;
3036                         struct r10bio *rb2;
3037                         sector_t sect;
3038                         int must_sync;
3039                         int any_working;
3040                         struct raid10_info *mirror = &conf->mirrors[i];
3041
3042                         if ((mirror->rdev == NULL ||
3043                              test_bit(In_sync, &mirror->rdev->flags))
3044                             &&
3045                             (mirror->replacement == NULL ||
3046                              test_bit(Faulty,
3047                                       &mirror->replacement->flags)))
3048                                 continue;
3049
3050                         still_degraded = 0;
3051                         /* want to reconstruct this device */
3052                         rb2 = r10_bio;
3053                         sect = raid10_find_virt(conf, sector_nr, i);
3054                         if (sect >= mddev->resync_max_sectors) {
3055                                 /* last stripe is not complete - don't
3056                                  * try to recover this sector.
3057                                  */
3058                                 continue;
3059                         }
3060                         /* Unless we are doing a full sync, or a replacement
3061                          * we only need to recover the block if it is set in
3062                          * the bitmap
3063                          */
3064                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3065                                                       &sync_blocks, 1);
3066                         if (sync_blocks < max_sync)
3067                                 max_sync = sync_blocks;
3068                         if (!must_sync &&
3069                             mirror->replacement == NULL &&
3070                             !conf->fullsync) {
3071                                 /* yep, skip the sync_blocks here, but don't assume
3072                                  * that there will never be anything to do here
3073                                  */
3074                                 chunks_skipped = -1;
3075                                 continue;
3076                         }
3077
3078                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3079                         r10_bio->state = 0;
3080                         raise_barrier(conf, rb2 != NULL);
3081                         atomic_set(&r10_bio->remaining, 0);
3082
3083                         r10_bio->master_bio = (struct bio*)rb2;
3084                         if (rb2)
3085                                 atomic_inc(&rb2->remaining);
3086                         r10_bio->mddev = mddev;
3087                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3088                         r10_bio->sector = sect;
3089
3090                         raid10_find_phys(conf, r10_bio);
3091
3092                         /* Need to check if the array will still be
3093                          * degraded
3094                          */
3095                         for (j = 0; j < conf->geo.raid_disks; j++)
3096                                 if (conf->mirrors[j].rdev == NULL ||
3097                                     test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3098                                         still_degraded = 1;
3099                                         break;
3100                                 }
3101
3102                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3103                                                       &sync_blocks, still_degraded);
3104
3105                         any_working = 0;
3106                         for (j=0; j<conf->copies;j++) {
3107                                 int k;
3108                                 int d = r10_bio->devs[j].devnum;
3109                                 sector_t from_addr, to_addr;
3110                                 struct md_rdev *rdev;
3111                                 sector_t sector, first_bad;
3112                                 int bad_sectors;
3113                                 if (!conf->mirrors[d].rdev ||
3114                                     !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3115                                         continue;
3116                                 /* This is where we read from */
3117                                 any_working = 1;
3118                                 rdev = conf->mirrors[d].rdev;
3119                                 sector = r10_bio->devs[j].addr;
3120
3121                                 if (is_badblock(rdev, sector, max_sync,
3122                                                 &first_bad, &bad_sectors)) {
3123                                         if (first_bad > sector)
3124                                                 max_sync = first_bad - sector;
3125                                         else {
3126                                                 bad_sectors -= (sector
3127                                                                 - first_bad);
3128                                                 if (max_sync > bad_sectors)
3129                                                         max_sync = bad_sectors;
3130                                                 continue;
3131                                         }
3132                                 }
3133                                 bio = r10_bio->devs[0].bio;
3134                                 bio_reset(bio);
3135                                 bio->bi_next = biolist;
3136                                 biolist = bio;
3137                                 bio->bi_private = r10_bio;
3138                                 bio->bi_end_io = end_sync_read;
3139                                 bio->bi_rw = READ;
3140                                 from_addr = r10_bio->devs[j].addr;
3141                                 bio->bi_iter.bi_sector = from_addr +
3142                                         rdev->data_offset;
3143                                 bio->bi_bdev = rdev->bdev;
3144                                 atomic_inc(&rdev->nr_pending);
3145                                 /* and we write to 'i' (if not in_sync) */
3146
3147                                 for (k=0; k<conf->copies; k++)
3148                                         if (r10_bio->devs[k].devnum == i)
3149                                                 break;
3150                                 BUG_ON(k == conf->copies);
3151                                 to_addr = r10_bio->devs[k].addr;
3152                                 r10_bio->devs[0].devnum = d;
3153                                 r10_bio->devs[0].addr = from_addr;
3154                                 r10_bio->devs[1].devnum = i;
3155                                 r10_bio->devs[1].addr = to_addr;
3156
3157                                 rdev = mirror->rdev;
3158                                 if (!test_bit(In_sync, &rdev->flags)) {
3159                                         bio = r10_bio->devs[1].bio;
3160                                         bio_reset(bio);
3161                                         bio->bi_next = biolist;
3162                                         biolist = bio;
3163                                         bio->bi_private = r10_bio;
3164                                         bio->bi_end_io = end_sync_write;
3165                                         bio->bi_rw = WRITE;
3166                                         bio->bi_iter.bi_sector = to_addr
3167                                                 + rdev->data_offset;
3168                                         bio->bi_bdev = rdev->bdev;
3169                                         atomic_inc(&r10_bio->remaining);
3170                                 } else
3171                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3172
3173                                 /* and maybe write to replacement */
3174                                 bio = r10_bio->devs[1].repl_bio;
3175                                 if (bio)
3176                                         bio->bi_end_io = NULL;
3177                                 rdev = mirror->replacement;
3178                                 /* Note: if rdev != NULL, then bio
3179                                  * cannot be NULL as r10buf_pool_alloc will
3180                                  * have allocated it.
3181                                  * So the second test here is pointless.
3182                                  * But it keeps semantic-checkers happy, and
3183                                  * this comment keeps human reviewers
3184                                  * happy.
3185                                  */
3186                                 if (rdev == NULL || bio == NULL ||
3187                                     test_bit(Faulty, &rdev->flags))
3188                                         break;
3189                                 bio_reset(bio);
3190                                 bio->bi_next = biolist;
3191                                 biolist = bio;
3192                                 bio->bi_private = r10_bio;
3193                                 bio->bi_end_io = end_sync_write;
3194                                 bio->bi_rw = WRITE;
3195                                 bio->bi_iter.bi_sector = to_addr +
3196                                         rdev->data_offset;
3197                                 bio->bi_bdev = rdev->bdev;
3198                                 atomic_inc(&r10_bio->remaining);
3199                                 break;
3200                         }
3201                         if (j == conf->copies) {
3202                                 /* Cannot recover, so abort the recovery or
3203                                  * record a bad block */
3204                                 if (any_working) {
3205                                         /* problem is that there are bad blocks
3206                                          * on other device(s)
3207                                          */
3208                                         int k;
3209                                         for (k = 0; k < conf->copies; k++)
3210                                                 if (r10_bio->devs[k].devnum == i)
3211                                                         break;
3212                                         if (!test_bit(In_sync,
3213                                                       &mirror->rdev->flags)
3214                                             && !rdev_set_badblocks(
3215                                                     mirror->rdev,
3216                                                     r10_bio->devs[k].addr,
3217                                                     max_sync, 0))
3218                                                 any_working = 0;
3219                                         if (mirror->replacement &&
3220                                             !rdev_set_badblocks(
3221                                                     mirror->replacement,
3222                                                     r10_bio->devs[k].addr,
3223                                                     max_sync, 0))
3224                                                 any_working = 0;
3225                                 }
3226                                 if (!any_working)  {
3227                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3228                                                               &mddev->recovery))
3229                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
3230                                                        "working devices for recovery.\n",
3231                                                        mdname(mddev));
3232                                         mirror->recovery_disabled
3233                                                 = mddev->recovery_disabled;
3234                                 }
3235                                 put_buf(r10_bio);
3236                                 if (rb2)
3237                                         atomic_dec(&rb2->remaining);
3238                                 r10_bio = rb2;
3239                                 break;
3240                         }
3241                 }
3242                 if (biolist == NULL) {
3243                         while (r10_bio) {
3244                                 struct r10bio *rb2 = r10_bio;
3245                                 r10_bio = (struct r10bio*) rb2->master_bio;
3246                                 rb2->master_bio = NULL;
3247                                 put_buf(rb2);
3248                         }
3249                         goto giveup;
3250                 }
3251         } else {
3252                 /* resync. Schedule a read for every block at this virt offset */
3253                 int count = 0;
3254
3255                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3256
3257                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3258                                        &sync_blocks, mddev->degraded) &&
3259                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3260                                                  &mddev->recovery)) {
3261                         /* We can skip this block */
3262                         *skipped = 1;
3263                         return sync_blocks + sectors_skipped;
3264                 }
3265                 if (sync_blocks < max_sync)
3266                         max_sync = sync_blocks;
3267                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3268                 r10_bio->state = 0;
3269
3270                 r10_bio->mddev = mddev;
3271                 atomic_set(&r10_bio->remaining, 0);
3272                 raise_barrier(conf, 0);
3273                 conf->next_resync = sector_nr;
3274
3275                 r10_bio->master_bio = NULL;
3276                 r10_bio->sector = sector_nr;
3277                 set_bit(R10BIO_IsSync, &r10_bio->state);
3278                 raid10_find_phys(conf, r10_bio);
3279                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3280
3281                 for (i = 0; i < conf->copies; i++) {
3282                         int d = r10_bio->devs[i].devnum;
3283                         sector_t first_bad, sector;
3284                         int bad_sectors;
3285
3286                         if (r10_bio->devs[i].repl_bio)
3287                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3288
3289                         bio = r10_bio->devs[i].bio;
3290                         bio_reset(bio);
3291                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3292                         if (conf->mirrors[d].rdev == NULL ||
3293                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3294                                 continue;
3295                         sector = r10_bio->devs[i].addr;
3296                         if (is_badblock(conf->mirrors[d].rdev,
3297                                         sector, max_sync,
3298                                         &first_bad, &bad_sectors)) {
3299                                 if (first_bad > sector)
3300                                         max_sync = first_bad - sector;
3301                                 else {
3302                                         bad_sectors -= (sector - first_bad);
3303                                         if (max_sync > bad_sectors)
3304                                                 max_sync = bad_sectors;
3305                                         continue;
3306                                 }
3307                         }
3308                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3309                         atomic_inc(&r10_bio->remaining);
3310                         bio->bi_next = biolist;
3311                         biolist = bio;
3312                         bio->bi_private = r10_bio;
3313                         bio->bi_end_io = end_sync_read;
3314                         bio->bi_rw = READ;
3315                         bio->bi_iter.bi_sector = sector +
3316                                 conf->mirrors[d].rdev->data_offset;
3317                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3318                         count++;
3319
3320                         if (conf->mirrors[d].replacement == NULL ||
3321                             test_bit(Faulty,
3322                                      &conf->mirrors[d].replacement->flags))
3323                                 continue;
3324
3325                         /* Need to set up for writing to the replacement */
3326                         bio = r10_bio->devs[i].repl_bio;
3327                         bio_reset(bio);
3328                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3329
3330                         sector = r10_bio->devs[i].addr;
3331                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3332                         bio->bi_next = biolist;
3333                         biolist = bio;
3334                         bio->bi_private = r10_bio;
3335                         bio->bi_end_io = end_sync_write;
3336                         bio->bi_rw = WRITE;
3337                         bio->bi_iter.bi_sector = sector +
3338                                 conf->mirrors[d].replacement->data_offset;
3339                         bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3340                         count++;
3341                 }
3342
3343                 if (count < 2) {
3344                         for (i=0; i<conf->copies; i++) {
3345                                 int d = r10_bio->devs[i].devnum;
3346                                 if (r10_bio->devs[i].bio->bi_end_io)
3347                                         rdev_dec_pending(conf->mirrors[d].rdev,
3348                                                          mddev);
3349                                 if (r10_bio->devs[i].repl_bio &&
3350                                     r10_bio->devs[i].repl_bio->bi_end_io)
3351                                         rdev_dec_pending(
3352                                                 conf->mirrors[d].replacement,
3353                                                 mddev);
3354                         }
3355                         put_buf(r10_bio);
3356                         biolist = NULL;
3357                         goto giveup;
3358                 }
3359         }
3360
3361         nr_sectors = 0;
3362         if (sector_nr + max_sync < max_sector)
3363                 max_sector = sector_nr + max_sync;
3364         do {
3365                 struct page *page;
3366                 int len = PAGE_SIZE;
3367                 if (sector_nr + (len>>9) > max_sector)
3368                         len = (max_sector - sector_nr) << 9;
3369                 if (len == 0)
3370                         break;
3371                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3372                         struct bio *bio2;
3373                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3374                         if (bio_add_page(bio, page, len, 0))
3375                                 continue;
3376
3377                         /* stop here */
3378                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3379                         for (bio2 = biolist;
3380                              bio2 && bio2 != bio;
3381                              bio2 = bio2->bi_next) {
3382                                 /* remove last page from this bio */
3383                                 bio2->bi_vcnt--;
3384                                 bio2->bi_iter.bi_size -= len;
3385                                 __clear_bit(BIO_SEG_VALID, &bio2->bi_flags);
3386                         }
3387                         goto bio_full;
3388                 }
3389                 nr_sectors += len>>9;
3390                 sector_nr += len>>9;
3391         } while (biolist->bi_vcnt < RESYNC_PAGES);
3392  bio_full:
3393         r10_bio->sectors = nr_sectors;
3394
3395         while (biolist) {
3396                 bio = biolist;
3397                 biolist = biolist->bi_next;
3398
3399                 bio->bi_next = NULL;
3400                 r10_bio = bio->bi_private;
3401                 r10_bio->sectors = nr_sectors;
3402
3403                 if (bio->bi_end_io == end_sync_read) {
3404                         md_sync_acct(bio->bi_bdev, nr_sectors);
3405                         set_bit(BIO_UPTODATE, &bio->bi_flags);
3406                         generic_make_request(bio);
3407                 }
3408         }
3409
3410         if (sectors_skipped)
3411                 /* pretend they weren't skipped, it makes
3412                  * no important difference in this case
3413                  */
3414                 md_done_sync(mddev, sectors_skipped, 1);
3415
3416         return sectors_skipped + nr_sectors;
3417  giveup:
3418         /* There is nowhere to write, so all non-sync
3419          * drives must be failed or in resync, all drives
3420          * have a bad block, so try the next chunk...
3421          */
3422         if (sector_nr + max_sync < max_sector)
3423                 max_sector = sector_nr + max_sync;
3424
3425         sectors_skipped += (max_sector - sector_nr);
3426         chunks_skipped ++;
3427         sector_nr = max_sector;
3428         goto skipped;
3429 }
3430
3431 static sector_t
3432 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3433 {
3434         sector_t size;
3435         struct r10conf *conf = mddev->private;
3436
3437         if (!raid_disks)
3438                 raid_disks = min(conf->geo.raid_disks,
3439                                  conf->prev.raid_disks);
3440         if (!sectors)
3441                 sectors = conf->dev_sectors;
3442
3443         size = sectors >> conf->geo.chunk_shift;
3444         sector_div(size, conf->geo.far_copies);
3445         size = size * raid_disks;
3446         sector_div(size, conf->geo.near_copies);
3447
3448         return size << conf->geo.chunk_shift;
3449 }
3450
3451 static void calc_sectors(struct r10conf *conf, sector_t size)
3452 {
3453         /* Calculate the number of sectors-per-device that will
3454          * actually be used, and set conf->dev_sectors and
3455          * conf->stride
3456          */
3457
3458         size = size >> conf->geo.chunk_shift;
3459         sector_div(size, conf->geo.far_copies);
3460         size = size * conf->geo.raid_disks;
3461         sector_div(size, conf->geo.near_copies);
3462         /* 'size' is now the number of chunks in the array */
3463         /* calculate "used chunks per device" */
3464         size = size * conf->copies;
3465
3466         /* We need to round up when dividing by raid_disks to
3467          * get the stride size.
3468          */
3469         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3470
3471         conf->dev_sectors = size << conf->geo.chunk_shift;
3472
3473         if (conf->geo.far_offset)
3474                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3475         else {
3476                 sector_div(size, conf->geo.far_copies);
3477                 conf->geo.stride = size << conf->geo.chunk_shift;
3478         }
3479 }
3480
3481 enum geo_type {geo_new, geo_old, geo_start};
3482 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3483 {
3484         int nc, fc, fo;
3485         int layout, chunk, disks;
3486         switch (new) {
3487         case geo_old:
3488                 layout = mddev->layout;
3489                 chunk = mddev->chunk_sectors;
3490                 disks = mddev->raid_disks - mddev->delta_disks;
3491                 break;
3492         case geo_new:
3493                 layout = mddev->new_layout;
3494                 chunk = mddev->new_chunk_sectors;
3495                 disks = mddev->raid_disks;
3496                 break;
3497         default: /* avoid 'may be unused' warnings */
3498         case geo_start: /* new when starting reshape - raid_disks not
3499                          * updated yet. */
3500                 layout = mddev->new_layout;
3501                 chunk = mddev->new_chunk_sectors;
3502                 disks = mddev->raid_disks + mddev->delta_disks;
3503                 break;
3504         }
3505         if (layout >> 18)
3506                 return -1;
3507         if (chunk < (PAGE_SIZE >> 9) ||
3508             !is_power_of_2(chunk))
3509                 return -2;
3510         nc = layout & 255;
3511         fc = (layout >> 8) & 255;
3512         fo = layout & (1<<16);
3513         geo->raid_disks = disks;
3514         geo->near_copies = nc;
3515         geo->far_copies = fc;
3516         geo->far_offset = fo;
3517         geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3518         geo->chunk_mask = chunk - 1;
3519         geo->chunk_shift = ffz(~chunk);
3520         return nc*fc;
3521 }
3522
3523 static struct r10conf *setup_conf(struct mddev *mddev)
3524 {
3525         struct r10conf *conf = NULL;
3526         int err = -EINVAL;
3527         struct geom geo;
3528         int copies;
3529
3530         copies = setup_geo(&geo, mddev, geo_new);
3531
3532         if (copies == -2) {
3533                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3534                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3535                        mdname(mddev), PAGE_SIZE);
3536                 goto out;
3537         }
3538
3539         if (copies < 2 || copies > mddev->raid_disks) {
3540                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3541                        mdname(mddev), mddev->new_layout);
3542                 goto out;
3543         }
3544
3545         err = -ENOMEM;
3546         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3547         if (!conf)
3548                 goto out;
3549
3550         /* FIXME calc properly */
3551         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3552                                                             max(0,-mddev->delta_disks)),
3553                                 GFP_KERNEL);
3554         if (!conf->mirrors)
3555                 goto out;
3556
3557         conf->tmppage = alloc_page(GFP_KERNEL);
3558         if (!conf->tmppage)
3559                 goto out;
3560
3561         conf->geo = geo;
3562         conf->copies = copies;
3563         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3564                                            r10bio_pool_free, conf);
3565         if (!conf->r10bio_pool)
3566                 goto out;
3567
3568         calc_sectors(conf, mddev->dev_sectors);
3569         if (mddev->reshape_position == MaxSector) {
3570                 conf->prev = conf->geo;
3571                 conf->reshape_progress = MaxSector;
3572         } else {
3573                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3574                         err = -EINVAL;
3575                         goto out;
3576                 }
3577                 conf->reshape_progress = mddev->reshape_position;
3578                 if (conf->prev.far_offset)
3579                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3580                 else
3581                         /* far_copies must be 1 */
3582                         conf->prev.stride = conf->dev_sectors;
3583         }
3584         spin_lock_init(&conf->device_lock);
3585         INIT_LIST_HEAD(&conf->retry_list);
3586
3587         spin_lock_init(&conf->resync_lock);
3588         init_waitqueue_head(&conf->wait_barrier);
3589
3590         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3591         if (!conf->thread)
3592                 goto out;
3593
3594         conf->mddev = mddev;
3595         return conf;
3596
3597  out:
3598         if (err == -ENOMEM)
3599                 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3600                        mdname(mddev));
3601         if (conf) {
3602                 if (conf->r10bio_pool)
3603                         mempool_destroy(conf->r10bio_pool);
3604                 kfree(conf->mirrors);
3605                 safe_put_page(conf->tmppage);
3606                 kfree(conf);
3607         }
3608         return ERR_PTR(err);
3609 }
3610
3611 static int run(struct mddev *mddev)
3612 {
3613         struct r10conf *conf;
3614         int i, disk_idx, chunk_size;
3615         struct raid10_info *disk;
3616         struct md_rdev *rdev;
3617         sector_t size;
3618         sector_t min_offset_diff = 0;
3619         int first = 1;
3620         bool discard_supported = false;
3621
3622         if (mddev->private == NULL) {
3623                 conf = setup_conf(mddev);
3624                 if (IS_ERR(conf))
3625                         return PTR_ERR(conf);
3626                 mddev->private = conf;
3627         }
3628         conf = mddev->private;
3629         if (!conf)
3630                 goto out;
3631
3632         mddev->thread = conf->thread;
3633         conf->thread = NULL;
3634
3635         chunk_size = mddev->chunk_sectors << 9;
3636         if (mddev->queue) {
3637                 blk_queue_max_discard_sectors(mddev->queue,
3638                                               mddev->chunk_sectors);
3639                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3640                 blk_queue_io_min(mddev->queue, chunk_size);
3641                 if (conf->geo.raid_disks % conf->geo.near_copies)
3642                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3643                 else
3644                         blk_queue_io_opt(mddev->queue, chunk_size *
3645                                          (conf->geo.raid_disks / conf->geo.near_copies));
3646         }
3647
3648         rdev_for_each(rdev, mddev) {
3649                 long long diff;
3650                 struct request_queue *q;
3651
3652                 disk_idx = rdev->raid_disk;
3653                 if (disk_idx < 0)
3654                         continue;
3655                 if (disk_idx >= conf->geo.raid_disks &&
3656                     disk_idx >= conf->prev.raid_disks)
3657                         continue;
3658                 disk = conf->mirrors + disk_idx;
3659
3660                 if (test_bit(Replacement, &rdev->flags)) {
3661                         if (disk->replacement)
3662                                 goto out_free_conf;
3663                         disk->replacement = rdev;
3664                 } else {
3665                         if (disk->rdev)
3666                                 goto out_free_conf;
3667                         disk->rdev = rdev;
3668                 }
3669                 q = bdev_get_queue(rdev->bdev);
3670                 if (q->merge_bvec_fn)
3671                         mddev->merge_check_needed = 1;
3672                 diff = (rdev->new_data_offset - rdev->data_offset);
3673                 if (!mddev->reshape_backwards)
3674                         diff = -diff;
3675                 if (diff < 0)
3676                         diff = 0;
3677                 if (first || diff < min_offset_diff)
3678                         min_offset_diff = diff;
3679
3680                 if (mddev->gendisk)
3681                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3682                                           rdev->data_offset << 9);
3683
3684                 disk->head_position = 0;
3685
3686                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3687                         discard_supported = true;
3688         }
3689
3690         if (mddev->queue) {
3691                 if (discard_supported)
3692                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3693                                                 mddev->queue);
3694                 else
3695                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3696                                                   mddev->queue);
3697         }
3698         /* need to check that every block has at least one working mirror */
3699         if (!enough(conf, -1)) {
3700                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3701                        mdname(mddev));
3702                 goto out_free_conf;
3703         }
3704
3705         if (conf->reshape_progress != MaxSector) {
3706                 /* must ensure that shape change is supported */
3707                 if (conf->geo.far_copies != 1 &&
3708                     conf->geo.far_offset == 0)
3709                         goto out_free_conf;
3710                 if (conf->prev.far_copies != 1 &&
3711                     conf->prev.far_offset == 0)
3712                         goto out_free_conf;
3713         }
3714
3715         mddev->degraded = 0;
3716         for (i = 0;
3717              i < conf->geo.raid_disks
3718                      || i < conf->prev.raid_disks;
3719              i++) {
3720
3721                 disk = conf->mirrors + i;
3722
3723                 if (!disk->rdev && disk->replacement) {
3724                         /* The replacement is all we have - use it */
3725                         disk->rdev = disk->replacement;
3726                         disk->replacement = NULL;
3727                         clear_bit(Replacement, &disk->rdev->flags);
3728                 }
3729
3730                 if (!disk->rdev ||
3731                     !test_bit(In_sync, &disk->rdev->flags)) {
3732                         disk->head_position = 0;
3733                         mddev->degraded++;
3734                         if (disk->rdev &&
3735                             disk->rdev->saved_raid_disk < 0)
3736                                 conf->fullsync = 1;
3737                 }
3738                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3739         }
3740
3741         if (mddev->recovery_cp != MaxSector)
3742                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3743                        " -- starting background reconstruction\n",
3744                        mdname(mddev));
3745         printk(KERN_INFO
3746                 "md/raid10:%s: active with %d out of %d devices\n",
3747                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3748                 conf->geo.raid_disks);
3749         /*
3750          * Ok, everything is just fine now
3751          */
3752         mddev->dev_sectors = conf->dev_sectors;
3753         size = raid10_size(mddev, 0, 0);
3754         md_set_array_sectors(mddev, size);
3755         mddev->resync_max_sectors = size;
3756
3757         if (mddev->queue) {
3758                 int stripe = conf->geo.raid_disks *
3759                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3760                 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3761                 mddev->queue->backing_dev_info.congested_data = mddev;
3762
3763                 /* Calculate max read-ahead size.
3764                  * We need to readahead at least twice a whole stripe....
3765                  * maybe...
3766                  */
3767                 stripe /= conf->geo.near_copies;
3768                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3769                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3770                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3771         }
3772
3773         if (md_integrity_register(mddev))
3774                 goto out_free_conf;
3775
3776         if (conf->reshape_progress != MaxSector) {
3777                 unsigned long before_length, after_length;
3778
3779                 before_length = ((1 << conf->prev.chunk_shift) *
3780                                  conf->prev.far_copies);
3781                 after_length = ((1 << conf->geo.chunk_shift) *
3782                                 conf->geo.far_copies);
3783
3784                 if (max(before_length, after_length) > min_offset_diff) {
3785                         /* This cannot work */
3786                         printk("md/raid10: offset difference not enough to continue reshape\n");
3787                         goto out_free_conf;
3788                 }
3789                 conf->offset_diff = min_offset_diff;
3790
3791                 conf->reshape_safe = conf->reshape_progress;
3792                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3793                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3794                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3795                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3796                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3797                                                         "reshape");
3798         }
3799
3800         return 0;
3801
3802 out_free_conf:
3803         md_unregister_thread(&mddev->thread);
3804         if (conf->r10bio_pool)
3805                 mempool_destroy(conf->r10bio_pool);
3806         safe_put_page(conf->tmppage);
3807         kfree(conf->mirrors);
3808         kfree(conf);
3809         mddev->private = NULL;
3810 out:
3811         return -EIO;
3812 }
3813
3814 static int stop(struct mddev *mddev)
3815 {
3816         struct r10conf *conf = mddev->private;
3817
3818         raise_barrier(conf, 0);
3819         lower_barrier(conf);
3820
3821         md_unregister_thread(&mddev->thread);
3822         if (mddev->queue)
3823                 /* the unplug fn references 'conf'*/
3824                 blk_sync_queue(mddev->queue);
3825
3826         if (conf->r10bio_pool)
3827                 mempool_destroy(conf->r10bio_pool);
3828         safe_put_page(conf->tmppage);
3829         kfree(conf->mirrors);
3830         kfree(conf->mirrors_old);
3831         kfree(conf->mirrors_new);
3832         kfree(conf);
3833         mddev->private = NULL;
3834         return 0;
3835 }
3836
3837 static void raid10_quiesce(struct mddev *mddev, int state)
3838 {
3839         struct r10conf *conf = mddev->private;
3840
3841         switch(state) {
3842         case 1:
3843                 raise_barrier(conf, 0);
3844                 break;
3845         case 0:
3846                 lower_barrier(conf);
3847                 break;
3848         }
3849 }
3850
3851 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3852 {
3853         /* Resize of 'far' arrays is not supported.
3854          * For 'near' and 'offset' arrays we can set the
3855          * number of sectors used to be an appropriate multiple
3856          * of the chunk size.
3857          * For 'offset', this is far_copies*chunksize.
3858          * For 'near' the multiplier is the LCM of
3859          * near_copies and raid_disks.
3860          * So if far_copies > 1 && !far_offset, fail.
3861          * Else find LCM(raid_disks, near_copy)*far_copies and
3862          * multiply by chunk_size.  Then round to this number.
3863          * This is mostly done by raid10_size()
3864          */
3865         struct r10conf *conf = mddev->private;
3866         sector_t oldsize, size;
3867
3868         if (mddev->reshape_position != MaxSector)
3869                 return -EBUSY;
3870
3871         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3872                 return -EINVAL;
3873
3874         oldsize = raid10_size(mddev, 0, 0);
3875         size = raid10_size(mddev, sectors, 0);
3876         if (mddev->external_size &&
3877             mddev->array_sectors > size)
3878                 return -EINVAL;
3879         if (mddev->bitmap) {
3880                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3881                 if (ret)
3882                         return ret;
3883         }
3884         md_set_array_sectors(mddev, size);
3885         set_capacity(mddev->gendisk, mddev->array_sectors);
3886         revalidate_disk(mddev->gendisk);
3887         if (sectors > mddev->dev_sectors &&
3888             mddev->recovery_cp > oldsize) {
3889                 mddev->recovery_cp = oldsize;
3890                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3891         }
3892         calc_sectors(conf, sectors);
3893         mddev->dev_sectors = conf->dev_sectors;
3894         mddev->resync_max_sectors = size;
3895         return 0;
3896 }
3897
3898 static void *raid10_takeover_raid0(struct mddev *mddev)
3899 {
3900         struct md_rdev *rdev;
3901         struct r10conf *conf;
3902
3903         if (mddev->degraded > 0) {
3904                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3905                        mdname(mddev));
3906                 return ERR_PTR(-EINVAL);
3907         }
3908
3909         /* Set new parameters */
3910         mddev->new_level = 10;
3911         /* new layout: far_copies = 1, near_copies = 2 */
3912         mddev->new_layout = (1<<8) + 2;
3913         mddev->new_chunk_sectors = mddev->chunk_sectors;
3914         mddev->delta_disks = mddev->raid_disks;
3915         mddev->raid_disks *= 2;
3916         /* make sure it will be not marked as dirty */
3917         mddev->recovery_cp = MaxSector;
3918
3919         conf = setup_conf(mddev);
3920         if (!IS_ERR(conf)) {
3921                 rdev_for_each(rdev, mddev)
3922                         if (rdev->raid_disk >= 0)
3923                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3924                 conf->barrier = 1;
3925         }
3926
3927         return conf;
3928 }
3929
3930 static void *raid10_takeover(struct mddev *mddev)
3931 {
3932         struct r0conf *raid0_conf;
3933
3934         /* raid10 can take over:
3935          *  raid0 - providing it has only two drives
3936          */
3937         if (mddev->level == 0) {
3938                 /* for raid0 takeover only one zone is supported */
3939                 raid0_conf = mddev->private;
3940                 if (raid0_conf->nr_strip_zones > 1) {
3941                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3942                                " with more than one zone.\n",
3943                                mdname(mddev));
3944                         return ERR_PTR(-EINVAL);
3945                 }
3946                 return raid10_takeover_raid0(mddev);
3947         }
3948         return ERR_PTR(-EINVAL);
3949 }
3950
3951 static int raid10_check_reshape(struct mddev *mddev)
3952 {
3953         /* Called when there is a request to change
3954          * - layout (to ->new_layout)
3955          * - chunk size (to ->new_chunk_sectors)
3956          * - raid_disks (by delta_disks)
3957          * or when trying to restart a reshape that was ongoing.
3958          *
3959          * We need to validate the request and possibly allocate
3960          * space if that might be an issue later.
3961          *
3962          * Currently we reject any reshape of a 'far' mode array,
3963          * allow chunk size to change if new is generally acceptable,
3964          * allow raid_disks to increase, and allow
3965          * a switch between 'near' mode and 'offset' mode.
3966          */
3967         struct r10conf *conf = mddev->private;
3968         struct geom geo;
3969
3970         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3971                 return -EINVAL;
3972
3973         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3974                 /* mustn't change number of copies */
3975                 return -EINVAL;
3976         if (geo.far_copies > 1 && !geo.far_offset)
3977                 /* Cannot switch to 'far' mode */
3978                 return -EINVAL;
3979
3980         if (mddev->array_sectors & geo.chunk_mask)
3981                         /* not factor of array size */
3982                         return -EINVAL;
3983
3984         if (!enough(conf, -1))
3985                 return -EINVAL;
3986
3987         kfree(conf->mirrors_new);
3988         conf->mirrors_new = NULL;
3989         if (mddev->delta_disks > 0) {
3990                 /* allocate new 'mirrors' list */
3991                 conf->mirrors_new = kzalloc(
3992                         sizeof(struct raid10_info)
3993                         *(mddev->raid_disks +
3994                           mddev->delta_disks),
3995                         GFP_KERNEL);
3996                 if (!conf->mirrors_new)
3997                         return -ENOMEM;
3998         }
3999         return 0;
4000 }
4001
4002 /*
4003  * Need to check if array has failed when deciding whether to:
4004  *  - start an array
4005  *  - remove non-faulty devices
4006  *  - add a spare
4007  *  - allow a reshape
4008  * This determination is simple when no reshape is happening.
4009  * However if there is a reshape, we need to carefully check
4010  * both the before and after sections.
4011  * This is because some failed devices may only affect one
4012  * of the two sections, and some non-in_sync devices may
4013  * be insync in the section most affected by failed devices.
4014  */
4015 static int calc_degraded(struct r10conf *conf)
4016 {
4017         int degraded, degraded2;
4018         int i;
4019
4020         rcu_read_lock();
4021         degraded = 0;
4022         /* 'prev' section first */
4023         for (i = 0; i < conf->prev.raid_disks; i++) {
4024                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4025                 if (!rdev || test_bit(Faulty, &rdev->flags))
4026                         degraded++;
4027                 else if (!test_bit(In_sync, &rdev->flags))
4028                         /* When we can reduce the number of devices in
4029                          * an array, this might not contribute to
4030                          * 'degraded'.  It does now.
4031                          */
4032                         degraded++;
4033         }
4034         rcu_read_unlock();
4035         if (conf->geo.raid_disks == conf->prev.raid_disks)
4036                 return degraded;
4037         rcu_read_lock();
4038         degraded2 = 0;
4039         for (i = 0; i < conf->geo.raid_disks; i++) {
4040                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4041                 if (!rdev || test_bit(Faulty, &rdev->flags))
4042                         degraded2++;
4043                 else if (!test_bit(In_sync, &rdev->flags)) {
4044                         /* If reshape is increasing the number of devices,
4045                          * this section has already been recovered, so
4046                          * it doesn't contribute to degraded.
4047                          * else it does.
4048                          */
4049                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4050                                 degraded2++;
4051                 }
4052         }
4053         rcu_read_unlock();
4054         if (degraded2 > degraded)
4055                 return degraded2;
4056         return degraded;
4057 }
4058
4059 static int raid10_start_reshape(struct mddev *mddev)
4060 {
4061         /* A 'reshape' has been requested. This commits
4062          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4063          * This also checks if there are enough spares and adds them
4064          * to the array.
4065          * We currently require enough spares to make the final
4066          * array non-degraded.  We also require that the difference
4067          * between old and new data_offset - on each device - is
4068          * enough that we never risk over-writing.
4069          */
4070
4071         unsigned long before_length, after_length;
4072         sector_t min_offset_diff = 0;
4073         int first = 1;
4074         struct geom new;
4075         struct r10conf *conf = mddev->private;
4076         struct md_rdev *rdev;
4077         int spares = 0;
4078         int ret;
4079
4080         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4081                 return -EBUSY;
4082
4083         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4084                 return -EINVAL;
4085
4086         before_length = ((1 << conf->prev.chunk_shift) *
4087                          conf->prev.far_copies);
4088         after_length = ((1 << conf->geo.chunk_shift) *
4089                         conf->geo.far_copies);
4090
4091         rdev_for_each(rdev, mddev) {
4092                 if (!test_bit(In_sync, &rdev->flags)
4093                     && !test_bit(Faulty, &rdev->flags))
4094                         spares++;
4095                 if (rdev->raid_disk >= 0) {
4096                         long long diff = (rdev->new_data_offset
4097                                           - rdev->data_offset);
4098                         if (!mddev->reshape_backwards)
4099                                 diff = -diff;
4100                         if (diff < 0)
4101                                 diff = 0;
4102                         if (first || diff < min_offset_diff)
4103                                 min_offset_diff = diff;
4104                 }
4105         }
4106
4107         if (max(before_length, after_length) > min_offset_diff)
4108                 return -EINVAL;
4109
4110         if (spares < mddev->delta_disks)
4111                 return -EINVAL;
4112
4113         conf->offset_diff = min_offset_diff;
4114         spin_lock_irq(&conf->device_lock);
4115         if (conf->mirrors_new) {
4116                 memcpy(conf->mirrors_new, conf->mirrors,
4117                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4118                 smp_mb();
4119                 kfree(conf->mirrors_old);
4120                 conf->mirrors_old = conf->mirrors;
4121                 conf->mirrors = conf->mirrors_new;
4122                 conf->mirrors_new = NULL;
4123         }
4124         setup_geo(&conf->geo, mddev, geo_start);
4125         smp_mb();
4126         if (mddev->reshape_backwards) {
4127                 sector_t size = raid10_size(mddev, 0, 0);
4128                 if (size < mddev->array_sectors) {
4129                         spin_unlock_irq(&conf->device_lock);
4130                         printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4131                                mdname(mddev));
4132                         return -EINVAL;
4133                 }
4134                 mddev->resync_max_sectors = size;
4135                 conf->reshape_progress = size;
4136         } else
4137                 conf->reshape_progress = 0;
4138         spin_unlock_irq(&conf->device_lock);
4139
4140         if (mddev->delta_disks && mddev->bitmap) {
4141                 ret = bitmap_resize(mddev->bitmap,
4142                                     raid10_size(mddev, 0,
4143                                                 conf->geo.raid_disks),
4144                                     0, 0);
4145                 if (ret)
4146                         goto abort;
4147         }
4148         if (mddev->delta_disks > 0) {
4149                 rdev_for_each(rdev, mddev)
4150                         if (rdev->raid_disk < 0 &&
4151                             !test_bit(Faulty, &rdev->flags)) {
4152                                 if (raid10_add_disk(mddev, rdev) == 0) {
4153                                         if (rdev->raid_disk >=
4154                                             conf->prev.raid_disks)
4155                                                 set_bit(In_sync, &rdev->flags);
4156                                         else
4157                                                 rdev->recovery_offset = 0;
4158
4159                                         if (sysfs_link_rdev(mddev, rdev))
4160                                                 /* Failure here  is OK */;
4161                                 }
4162                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4163                                    && !test_bit(Faulty, &rdev->flags)) {
4164                                 /* This is a spare that was manually added */
4165                                 set_bit(In_sync, &rdev->flags);
4166                         }
4167         }
4168         /* When a reshape changes the number of devices,
4169          * ->degraded is measured against the larger of the
4170          * pre and  post numbers.
4171          */
4172         spin_lock_irq(&conf->device_lock);
4173         mddev->degraded = calc_degraded(conf);
4174         spin_unlock_irq(&conf->device_lock);
4175         mddev->raid_disks = conf->geo.raid_disks;
4176         mddev->reshape_position = conf->reshape_progress;
4177         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4178
4179         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4180         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4181         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4182         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4183
4184         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4185                                                 "reshape");
4186         if (!mddev->sync_thread) {
4187                 ret = -EAGAIN;
4188                 goto abort;
4189         }
4190         conf->reshape_checkpoint = jiffies;
4191         md_wakeup_thread(mddev->sync_thread);
4192         md_new_event(mddev);
4193         return 0;
4194
4195 abort:
4196         mddev->recovery = 0;
4197         spin_lock_irq(&conf->device_lock);
4198         conf->geo = conf->prev;
4199         mddev->raid_disks = conf->geo.raid_disks;
4200         rdev_for_each(rdev, mddev)
4201                 rdev->new_data_offset = rdev->data_offset;
4202         smp_wmb();
4203         conf->reshape_progress = MaxSector;
4204         mddev->reshape_position = MaxSector;
4205         spin_unlock_irq(&conf->device_lock);
4206         return ret;
4207 }
4208
4209 /* Calculate the last device-address that could contain
4210  * any block from the chunk that includes the array-address 's'
4211  * and report the next address.
4212  * i.e. the address returned will be chunk-aligned and after
4213  * any data that is in the chunk containing 's'.
4214  */
4215 static sector_t last_dev_address(sector_t s, struct geom *geo)
4216 {
4217         s = (s | geo->chunk_mask) + 1;
4218         s >>= geo->chunk_shift;
4219         s *= geo->near_copies;
4220         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4221         s *= geo->far_copies;
4222         s <<= geo->chunk_shift;
4223         return s;
4224 }
4225
4226 /* Calculate the first device-address that could contain
4227  * any block from the chunk that includes the array-address 's'.
4228  * This too will be the start of a chunk
4229  */
4230 static sector_t first_dev_address(sector_t s, struct geom *geo)
4231 {
4232         s >>= geo->chunk_shift;
4233         s *= geo->near_copies;
4234         sector_div(s, geo->raid_disks);
4235         s *= geo->far_copies;
4236         s <<= geo->chunk_shift;
4237         return s;
4238 }
4239
4240 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4241                                 int *skipped)
4242 {
4243         /* We simply copy at most one chunk (smallest of old and new)
4244          * at a time, possibly less if that exceeds RESYNC_PAGES,
4245          * or we hit a bad block or something.
4246          * This might mean we pause for normal IO in the middle of
4247          * a chunk, but that is not a problem was mddev->reshape_position
4248          * can record any location.
4249          *
4250          * If we will want to write to a location that isn't
4251          * yet recorded as 'safe' (i.e. in metadata on disk) then
4252          * we need to flush all reshape requests and update the metadata.
4253          *
4254          * When reshaping forwards (e.g. to more devices), we interpret
4255          * 'safe' as the earliest block which might not have been copied
4256          * down yet.  We divide this by previous stripe size and multiply
4257          * by previous stripe length to get lowest device offset that we
4258          * cannot write to yet.
4259          * We interpret 'sector_nr' as an address that we want to write to.
4260          * From this we use last_device_address() to find where we might
4261          * write to, and first_device_address on the  'safe' position.
4262          * If this 'next' write position is after the 'safe' position,
4263          * we must update the metadata to increase the 'safe' position.
4264          *
4265          * When reshaping backwards, we round in the opposite direction
4266          * and perform the reverse test:  next write position must not be
4267          * less than current safe position.
4268          *
4269          * In all this the minimum difference in data offsets
4270          * (conf->offset_diff - always positive) allows a bit of slack,
4271          * so next can be after 'safe', but not by more than offset_disk
4272          *
4273          * We need to prepare all the bios here before we start any IO
4274          * to ensure the size we choose is acceptable to all devices.
4275          * The means one for each copy for write-out and an extra one for
4276          * read-in.
4277          * We store the read-in bio in ->master_bio and the others in
4278          * ->devs[x].bio and ->devs[x].repl_bio.
4279          */
4280         struct r10conf *conf = mddev->private;
4281         struct r10bio *r10_bio;
4282         sector_t next, safe, last;
4283         int max_sectors;
4284         int nr_sectors;
4285         int s;
4286         struct md_rdev *rdev;
4287         int need_flush = 0;
4288         struct bio *blist;
4289         struct bio *bio, *read_bio;
4290         int sectors_done = 0;
4291
4292         if (sector_nr == 0) {
4293                 /* If restarting in the middle, skip the initial sectors */
4294                 if (mddev->reshape_backwards &&
4295                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4296                         sector_nr = (raid10_size(mddev, 0, 0)
4297                                      - conf->reshape_progress);
4298                 } else if (!mddev->reshape_backwards &&
4299                            conf->reshape_progress > 0)
4300                         sector_nr = conf->reshape_progress;
4301                 if (sector_nr) {
4302                         mddev->curr_resync_completed = sector_nr;
4303                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4304                         *skipped = 1;
4305                         return sector_nr;
4306                 }
4307         }
4308
4309         /* We don't use sector_nr to track where we are up to
4310          * as that doesn't work well for ->reshape_backwards.
4311          * So just use ->reshape_progress.
4312          */
4313         if (mddev->reshape_backwards) {
4314                 /* 'next' is the earliest device address that we might
4315                  * write to for this chunk in the new layout
4316                  */
4317                 next = first_dev_address(conf->reshape_progress - 1,
4318                                          &conf->geo);
4319
4320                 /* 'safe' is the last device address that we might read from
4321                  * in the old layout after a restart
4322                  */
4323                 safe = last_dev_address(conf->reshape_safe - 1,
4324                                         &conf->prev);
4325
4326                 if (next + conf->offset_diff < safe)
4327                         need_flush = 1;
4328
4329                 last = conf->reshape_progress - 1;
4330                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4331                                                & conf->prev.chunk_mask);
4332                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4333                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4334         } else {
4335                 /* 'next' is after the last device address that we
4336                  * might write to for this chunk in the new layout
4337                  */
4338                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4339
4340                 /* 'safe' is the earliest device address that we might
4341                  * read from in the old layout after a restart
4342                  */
4343                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4344
4345                 /* Need to update metadata if 'next' might be beyond 'safe'
4346                  * as that would possibly corrupt data
4347                  */
4348                 if (next > safe + conf->offset_diff)
4349                         need_flush = 1;
4350
4351                 sector_nr = conf->reshape_progress;
4352                 last  = sector_nr | (conf->geo.chunk_mask
4353                                      & conf->prev.chunk_mask);
4354
4355                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4356                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4357         }
4358
4359         if (need_flush ||
4360             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4361                 /* Need to update reshape_position in metadata */
4362                 wait_barrier(conf);
4363                 mddev->reshape_position = conf->reshape_progress;
4364                 if (mddev->reshape_backwards)
4365                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4366                                 - conf->reshape_progress;
4367                 else
4368                         mddev->curr_resync_completed = conf->reshape_progress;
4369                 conf->reshape_checkpoint = jiffies;
4370                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4371                 md_wakeup_thread(mddev->thread);
4372                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4373                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4374                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4375                         allow_barrier(conf);
4376                         return sectors_done;
4377                 }
4378                 conf->reshape_safe = mddev->reshape_position;
4379                 allow_barrier(conf);
4380         }
4381
4382 read_more:
4383         /* Now schedule reads for blocks from sector_nr to last */
4384         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4385         r10_bio->state = 0;
4386         raise_barrier(conf, sectors_done != 0);
4387         atomic_set(&r10_bio->remaining, 0);
4388         r10_bio->mddev = mddev;
4389         r10_bio->sector = sector_nr;
4390         set_bit(R10BIO_IsReshape, &r10_bio->state);
4391         r10_bio->sectors = last - sector_nr + 1;
4392         rdev = read_balance(conf, r10_bio, &max_sectors);
4393         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4394
4395         if (!rdev) {
4396                 /* Cannot read from here, so need to record bad blocks
4397                  * on all the target devices.
4398                  */
4399                 // FIXME
4400                 mempool_free(r10_bio, conf->r10buf_pool);
4401                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4402                 return sectors_done;
4403         }
4404
4405         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4406
4407         read_bio->bi_bdev = rdev->bdev;
4408         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4409                                + rdev->data_offset);
4410         read_bio->bi_private = r10_bio;
4411         read_bio->bi_end_io = end_sync_read;
4412         read_bio->bi_rw = READ;
4413         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4414         __set_bit(BIO_UPTODATE, &read_bio->bi_flags);
4415         read_bio->bi_vcnt = 0;
4416         read_bio->bi_iter.bi_size = 0;
4417         r10_bio->master_bio = read_bio;
4418         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4419
4420         /* Now find the locations in the new layout */
4421         __raid10_find_phys(&conf->geo, r10_bio);
4422
4423         blist = read_bio;
4424         read_bio->bi_next = NULL;
4425
4426         for (s = 0; s < conf->copies*2; s++) {
4427                 struct bio *b;
4428                 int d = r10_bio->devs[s/2].devnum;
4429                 struct md_rdev *rdev2;
4430                 if (s&1) {
4431                         rdev2 = conf->mirrors[d].replacement;
4432                         b = r10_bio->devs[s/2].repl_bio;
4433                 } else {
4434                         rdev2 = conf->mirrors[d].rdev;
4435                         b = r10_bio->devs[s/2].bio;
4436                 }
4437                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4438                         continue;
4439
4440                 bio_reset(b);
4441                 b->bi_bdev = rdev2->bdev;
4442                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4443                         rdev2->new_data_offset;
4444                 b->bi_private = r10_bio;
4445                 b->bi_end_io = end_reshape_write;
4446                 b->bi_rw = WRITE;
4447                 b->bi_next = blist;
4448                 blist = b;
4449         }
4450
4451         /* Now add as many pages as possible to all of these bios. */
4452
4453         nr_sectors = 0;
4454         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4455                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4456                 int len = (max_sectors - s) << 9;
4457                 if (len > PAGE_SIZE)
4458                         len = PAGE_SIZE;
4459                 for (bio = blist; bio ; bio = bio->bi_next) {
4460                         struct bio *bio2;
4461                         if (bio_add_page(bio, page, len, 0))
4462                                 continue;
4463
4464                         /* Didn't fit, must stop */
4465                         for (bio2 = blist;
4466                              bio2 && bio2 != bio;
4467                              bio2 = bio2->bi_next) {
4468                                 /* Remove last page from this bio */
4469                                 bio2->bi_vcnt--;
4470                                 bio2->bi_iter.bi_size -= len;
4471                                 __clear_bit(BIO_SEG_VALID, &bio2->bi_flags);
4472                         }
4473                         goto bio_full;
4474                 }
4475                 sector_nr += len >> 9;
4476                 nr_sectors += len >> 9;
4477         }
4478 bio_full:
4479         r10_bio->sectors = nr_sectors;
4480
4481         /* Now submit the read */
4482         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4483         atomic_inc(&r10_bio->remaining);
4484         read_bio->bi_next = NULL;
4485         generic_make_request(read_bio);
4486         sector_nr += nr_sectors;
4487         sectors_done += nr_sectors;
4488         if (sector_nr <= last)
4489                 goto read_more;
4490
4491         /* Now that we have done the whole section we can
4492          * update reshape_progress
4493          */
4494         if (mddev->reshape_backwards)
4495                 conf->reshape_progress -= sectors_done;
4496         else
4497                 conf->reshape_progress += sectors_done;
4498
4499         return sectors_done;
4500 }
4501
4502 static void end_reshape_request(struct r10bio *r10_bio);
4503 static int handle_reshape_read_error(struct mddev *mddev,
4504                                      struct r10bio *r10_bio);
4505 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4506 {
4507         /* Reshape read completed.  Hopefully we have a block
4508          * to write out.
4509          * If we got a read error then we do sync 1-page reads from
4510          * elsewhere until we find the data - or give up.
4511          */
4512         struct r10conf *conf = mddev->private;
4513         int s;
4514
4515         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4516                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4517                         /* Reshape has been aborted */
4518                         md_done_sync(mddev, r10_bio->sectors, 0);
4519                         return;
4520                 }
4521
4522         /* We definitely have the data in the pages, schedule the
4523          * writes.
4524          */
4525         atomic_set(&r10_bio->remaining, 1);
4526         for (s = 0; s < conf->copies*2; s++) {
4527                 struct bio *b;
4528                 int d = r10_bio->devs[s/2].devnum;
4529                 struct md_rdev *rdev;
4530                 if (s&1) {
4531                         rdev = conf->mirrors[d].replacement;
4532                         b = r10_bio->devs[s/2].repl_bio;
4533                 } else {
4534                         rdev = conf->mirrors[d].rdev;
4535                         b = r10_bio->devs[s/2].bio;
4536                 }
4537                 if (!rdev || test_bit(Faulty, &rdev->flags))
4538                         continue;
4539                 atomic_inc(&rdev->nr_pending);
4540                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4541                 atomic_inc(&r10_bio->remaining);
4542                 b->bi_next = NULL;
4543                 generic_make_request(b);
4544         }
4545         end_reshape_request(r10_bio);
4546 }
4547
4548 static void end_reshape(struct r10conf *conf)
4549 {
4550         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4551                 return;
4552
4553         spin_lock_irq(&conf->device_lock);
4554         conf->prev = conf->geo;
4555         md_finish_reshape(conf->mddev);
4556         smp_wmb();
4557         conf->reshape_progress = MaxSector;
4558         spin_unlock_irq(&conf->device_lock);
4559
4560         /* read-ahead size must cover two whole stripes, which is
4561          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4562          */
4563         if (conf->mddev->queue) {
4564                 int stripe = conf->geo.raid_disks *
4565                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4566                 stripe /= conf->geo.near_copies;
4567                 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4568                         conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4569         }
4570         conf->fullsync = 0;
4571 }
4572
4573 static int handle_reshape_read_error(struct mddev *mddev,
4574                                      struct r10bio *r10_bio)
4575 {
4576         /* Use sync reads to get the blocks from somewhere else */
4577         int sectors = r10_bio->sectors;
4578         struct r10conf *conf = mddev->private;
4579         struct {
4580                 struct r10bio r10_bio;
4581                 struct r10dev devs[conf->copies];
4582         } on_stack;
4583         struct r10bio *r10b = &on_stack.r10_bio;
4584         int slot = 0;
4585         int idx = 0;
4586         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4587
4588         r10b->sector = r10_bio->sector;
4589         __raid10_find_phys(&conf->prev, r10b);
4590
4591         while (sectors) {
4592                 int s = sectors;
4593                 int success = 0;
4594                 int first_slot = slot;
4595
4596                 if (s > (PAGE_SIZE >> 9))
4597                         s = PAGE_SIZE >> 9;
4598
4599                 while (!success) {
4600                         int d = r10b->devs[slot].devnum;
4601                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4602                         sector_t addr;
4603                         if (rdev == NULL ||
4604                             test_bit(Faulty, &rdev->flags) ||
4605                             !test_bit(In_sync, &rdev->flags))
4606                                 goto failed;
4607
4608                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4609                         success = sync_page_io(rdev,
4610                                                addr,
4611                                                s << 9,
4612                                                bvec[idx].bv_page,
4613                                                READ, false);
4614                         if (success)
4615                                 break;
4616                 failed:
4617                         slot++;
4618                         if (slot >= conf->copies)
4619                                 slot = 0;
4620                         if (slot == first_slot)
4621                                 break;
4622                 }
4623                 if (!success) {
4624                         /* couldn't read this block, must give up */
4625                         set_bit(MD_RECOVERY_INTR,
4626                                 &mddev->recovery);
4627                         return -EIO;
4628                 }
4629                 sectors -= s;
4630                 idx++;
4631         }
4632         return 0;
4633 }
4634
4635 static void end_reshape_write(struct bio *bio, int error)
4636 {
4637         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4638         struct r10bio *r10_bio = bio->bi_private;
4639         struct mddev *mddev = r10_bio->mddev;
4640         struct r10conf *conf = mddev->private;
4641         int d;
4642         int slot;
4643         int repl;
4644         struct md_rdev *rdev = NULL;
4645
4646         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4647         if (repl)
4648                 rdev = conf->mirrors[d].replacement;
4649         if (!rdev) {
4650                 smp_mb();
4651                 rdev = conf->mirrors[d].rdev;
4652         }
4653
4654         if (!uptodate) {
4655                 /* FIXME should record badblock */
4656                 md_error(mddev, rdev);
4657         }
4658
4659         rdev_dec_pending(rdev, mddev);
4660         end_reshape_request(r10_bio);
4661 }
4662
4663 static void end_reshape_request(struct r10bio *r10_bio)
4664 {
4665         if (!atomic_dec_and_test(&r10_bio->remaining))
4666                 return;
4667         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4668         bio_put(r10_bio->master_bio);
4669         put_buf(r10_bio);
4670 }
4671
4672 static void raid10_finish_reshape(struct mddev *mddev)
4673 {
4674         struct r10conf *conf = mddev->private;
4675
4676         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4677                 return;
4678
4679         if (mddev->delta_disks > 0) {
4680                 sector_t size = raid10_size(mddev, 0, 0);
4681                 md_set_array_sectors(mddev, size);
4682                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4683                         mddev->recovery_cp = mddev->resync_max_sectors;
4684                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4685                 }
4686                 mddev->resync_max_sectors = size;
4687                 set_capacity(mddev->gendisk, mddev->array_sectors);
4688                 revalidate_disk(mddev->gendisk);
4689         } else {
4690                 int d;
4691                 for (d = conf->geo.raid_disks ;
4692                      d < conf->geo.raid_disks - mddev->delta_disks;
4693                      d++) {
4694                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4695                         if (rdev)
4696                                 clear_bit(In_sync, &rdev->flags);
4697                         rdev = conf->mirrors[d].replacement;
4698                         if (rdev)
4699                                 clear_bit(In_sync, &rdev->flags);
4700                 }
4701         }
4702         mddev->layout = mddev->new_layout;
4703         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4704         mddev->reshape_position = MaxSector;
4705         mddev->delta_disks = 0;
4706         mddev->reshape_backwards = 0;
4707 }
4708
4709 static struct md_personality raid10_personality =
4710 {
4711         .name           = "raid10",
4712         .level          = 10,
4713         .owner          = THIS_MODULE,
4714         .make_request   = make_request,
4715         .run            = run,
4716         .stop           = stop,
4717         .status         = status,
4718         .error_handler  = error,
4719         .hot_add_disk   = raid10_add_disk,
4720         .hot_remove_disk= raid10_remove_disk,
4721         .spare_active   = raid10_spare_active,
4722         .sync_request   = sync_request,
4723         .quiesce        = raid10_quiesce,
4724         .size           = raid10_size,
4725         .resize         = raid10_resize,
4726         .takeover       = raid10_takeover,
4727         .check_reshape  = raid10_check_reshape,
4728         .start_reshape  = raid10_start_reshape,
4729         .finish_reshape = raid10_finish_reshape,
4730 };
4731
4732 static int __init raid_init(void)
4733 {
4734         return register_md_personality(&raid10_personality);
4735 }
4736
4737 static void raid_exit(void)
4738 {
4739         unregister_md_personality(&raid10_personality);
4740 }
4741
4742 module_init(raid_init);
4743 module_exit(raid_exit);
4744 MODULE_LICENSE("GPL");
4745 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4746 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4747 MODULE_ALIAS("md-raid10");
4748 MODULE_ALIAS("md-level-10");
4749
4750 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);