Merge tag 'sound-4.8-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[cascardo/linux.git] / drivers / md / raid5-cache.c
1 /*
2  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  */
14 #include <linux/kernel.h>
15 #include <linux/wait.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/raid/md_p.h>
19 #include <linux/crc32c.h>
20 #include <linux/random.h>
21 #include "md.h"
22 #include "raid5.h"
23
24 /*
25  * metadata/data stored in disk with 4k size unit (a block) regardless
26  * underneath hardware sector size. only works with PAGE_SIZE == 4096
27  */
28 #define BLOCK_SECTORS (8)
29
30 /*
31  * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent
32  * recovery scans a very long log
33  */
34 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
35 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
36
37 /*
38  * We only need 2 bios per I/O unit to make progress, but ensure we
39  * have a few more available to not get too tight.
40  */
41 #define R5L_POOL_SIZE   4
42
43 struct r5l_log {
44         struct md_rdev *rdev;
45
46         u32 uuid_checksum;
47
48         sector_t device_size;           /* log device size, round to
49                                          * BLOCK_SECTORS */
50         sector_t max_free_space;        /* reclaim run if free space is at
51                                          * this size */
52
53         sector_t last_checkpoint;       /* log tail. where recovery scan
54                                          * starts from */
55         u64 last_cp_seq;                /* log tail sequence */
56
57         sector_t log_start;             /* log head. where new data appends */
58         u64 seq;                        /* log head sequence */
59
60         sector_t next_checkpoint;
61         u64 next_cp_seq;
62
63         struct mutex io_mutex;
64         struct r5l_io_unit *current_io; /* current io_unit accepting new data */
65
66         spinlock_t io_list_lock;
67         struct list_head running_ios;   /* io_units which are still running,
68                                          * and have not yet been completely
69                                          * written to the log */
70         struct list_head io_end_ios;    /* io_units which have been completely
71                                          * written to the log but not yet written
72                                          * to the RAID */
73         struct list_head flushing_ios;  /* io_units which are waiting for log
74                                          * cache flush */
75         struct list_head finished_ios;  /* io_units which settle down in log disk */
76         struct bio flush_bio;
77
78         struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
79
80         struct kmem_cache *io_kc;
81         mempool_t *io_pool;
82         struct bio_set *bs;
83         mempool_t *meta_pool;
84
85         struct md_thread *reclaim_thread;
86         unsigned long reclaim_target;   /* number of space that need to be
87                                          * reclaimed.  if it's 0, reclaim spaces
88                                          * used by io_units which are in
89                                          * IO_UNIT_STRIPE_END state (eg, reclaim
90                                          * dones't wait for specific io_unit
91                                          * switching to IO_UNIT_STRIPE_END
92                                          * state) */
93         wait_queue_head_t iounit_wait;
94
95         struct list_head no_space_stripes; /* pending stripes, log has no space */
96         spinlock_t no_space_stripes_lock;
97
98         bool need_cache_flush;
99         bool in_teardown;
100 };
101
102 /*
103  * an IO range starts from a meta data block and end at the next meta data
104  * block. The io unit's the meta data block tracks data/parity followed it. io
105  * unit is written to log disk with normal write, as we always flush log disk
106  * first and then start move data to raid disks, there is no requirement to
107  * write io unit with FLUSH/FUA
108  */
109 struct r5l_io_unit {
110         struct r5l_log *log;
111
112         struct page *meta_page; /* store meta block */
113         int meta_offset;        /* current offset in meta_page */
114
115         struct bio *current_bio;/* current_bio accepting new data */
116
117         atomic_t pending_stripe;/* how many stripes not flushed to raid */
118         u64 seq;                /* seq number of the metablock */
119         sector_t log_start;     /* where the io_unit starts */
120         sector_t log_end;       /* where the io_unit ends */
121         struct list_head log_sibling; /* log->running_ios */
122         struct list_head stripe_list; /* stripes added to the io_unit */
123
124         int state;
125         bool need_split_bio;
126 };
127
128 /* r5l_io_unit state */
129 enum r5l_io_unit_state {
130         IO_UNIT_RUNNING = 0,    /* accepting new IO */
131         IO_UNIT_IO_START = 1,   /* io_unit bio start writing to log,
132                                  * don't accepting new bio */
133         IO_UNIT_IO_END = 2,     /* io_unit bio finish writing to log */
134         IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
135 };
136
137 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
138 {
139         start += inc;
140         if (start >= log->device_size)
141                 start = start - log->device_size;
142         return start;
143 }
144
145 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
146                                   sector_t end)
147 {
148         if (end >= start)
149                 return end - start;
150         else
151                 return end + log->device_size - start;
152 }
153
154 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
155 {
156         sector_t used_size;
157
158         used_size = r5l_ring_distance(log, log->last_checkpoint,
159                                         log->log_start);
160
161         return log->device_size > used_size + size;
162 }
163
164 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
165                                     enum r5l_io_unit_state state)
166 {
167         if (WARN_ON(io->state >= state))
168                 return;
169         io->state = state;
170 }
171
172 static void r5l_io_run_stripes(struct r5l_io_unit *io)
173 {
174         struct stripe_head *sh, *next;
175
176         list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
177                 list_del_init(&sh->log_list);
178                 set_bit(STRIPE_HANDLE, &sh->state);
179                 raid5_release_stripe(sh);
180         }
181 }
182
183 static void r5l_log_run_stripes(struct r5l_log *log)
184 {
185         struct r5l_io_unit *io, *next;
186
187         assert_spin_locked(&log->io_list_lock);
188
189         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
190                 /* don't change list order */
191                 if (io->state < IO_UNIT_IO_END)
192                         break;
193
194                 list_move_tail(&io->log_sibling, &log->finished_ios);
195                 r5l_io_run_stripes(io);
196         }
197 }
198
199 static void r5l_move_to_end_ios(struct r5l_log *log)
200 {
201         struct r5l_io_unit *io, *next;
202
203         assert_spin_locked(&log->io_list_lock);
204
205         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
206                 /* don't change list order */
207                 if (io->state < IO_UNIT_IO_END)
208                         break;
209                 list_move_tail(&io->log_sibling, &log->io_end_ios);
210         }
211 }
212
213 static void r5l_log_endio(struct bio *bio)
214 {
215         struct r5l_io_unit *io = bio->bi_private;
216         struct r5l_log *log = io->log;
217         unsigned long flags;
218
219         if (bio->bi_error)
220                 md_error(log->rdev->mddev, log->rdev);
221
222         bio_put(bio);
223         mempool_free(io->meta_page, log->meta_pool);
224
225         spin_lock_irqsave(&log->io_list_lock, flags);
226         __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
227         if (log->need_cache_flush)
228                 r5l_move_to_end_ios(log);
229         else
230                 r5l_log_run_stripes(log);
231         spin_unlock_irqrestore(&log->io_list_lock, flags);
232
233         if (log->need_cache_flush)
234                 md_wakeup_thread(log->rdev->mddev->thread);
235 }
236
237 static void r5l_submit_current_io(struct r5l_log *log)
238 {
239         struct r5l_io_unit *io = log->current_io;
240         struct r5l_meta_block *block;
241         unsigned long flags;
242         u32 crc;
243
244         if (!io)
245                 return;
246
247         block = page_address(io->meta_page);
248         block->meta_size = cpu_to_le32(io->meta_offset);
249         crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
250         block->checksum = cpu_to_le32(crc);
251
252         log->current_io = NULL;
253         spin_lock_irqsave(&log->io_list_lock, flags);
254         __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
255         spin_unlock_irqrestore(&log->io_list_lock, flags);
256
257         submit_bio(io->current_bio);
258 }
259
260 static struct bio *r5l_bio_alloc(struct r5l_log *log)
261 {
262         struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
263
264         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
265         bio->bi_bdev = log->rdev->bdev;
266         bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
267
268         return bio;
269 }
270
271 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
272 {
273         log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
274
275         /*
276          * If we filled up the log device start from the beginning again,
277          * which will require a new bio.
278          *
279          * Note: for this to work properly the log size needs to me a multiple
280          * of BLOCK_SECTORS.
281          */
282         if (log->log_start == 0)
283                 io->need_split_bio = true;
284
285         io->log_end = log->log_start;
286 }
287
288 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
289 {
290         struct r5l_io_unit *io;
291         struct r5l_meta_block *block;
292
293         io = mempool_alloc(log->io_pool, GFP_ATOMIC);
294         if (!io)
295                 return NULL;
296         memset(io, 0, sizeof(*io));
297
298         io->log = log;
299         INIT_LIST_HEAD(&io->log_sibling);
300         INIT_LIST_HEAD(&io->stripe_list);
301         io->state = IO_UNIT_RUNNING;
302
303         io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
304         block = page_address(io->meta_page);
305         clear_page(block);
306         block->magic = cpu_to_le32(R5LOG_MAGIC);
307         block->version = R5LOG_VERSION;
308         block->seq = cpu_to_le64(log->seq);
309         block->position = cpu_to_le64(log->log_start);
310
311         io->log_start = log->log_start;
312         io->meta_offset = sizeof(struct r5l_meta_block);
313         io->seq = log->seq++;
314
315         io->current_bio = r5l_bio_alloc(log);
316         io->current_bio->bi_end_io = r5l_log_endio;
317         io->current_bio->bi_private = io;
318         bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
319
320         r5_reserve_log_entry(log, io);
321
322         spin_lock_irq(&log->io_list_lock);
323         list_add_tail(&io->log_sibling, &log->running_ios);
324         spin_unlock_irq(&log->io_list_lock);
325
326         return io;
327 }
328
329 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
330 {
331         if (log->current_io &&
332             log->current_io->meta_offset + payload_size > PAGE_SIZE)
333                 r5l_submit_current_io(log);
334
335         if (!log->current_io) {
336                 log->current_io = r5l_new_meta(log);
337                 if (!log->current_io)
338                         return -ENOMEM;
339         }
340
341         return 0;
342 }
343
344 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
345                                     sector_t location,
346                                     u32 checksum1, u32 checksum2,
347                                     bool checksum2_valid)
348 {
349         struct r5l_io_unit *io = log->current_io;
350         struct r5l_payload_data_parity *payload;
351
352         payload = page_address(io->meta_page) + io->meta_offset;
353         payload->header.type = cpu_to_le16(type);
354         payload->header.flags = cpu_to_le16(0);
355         payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
356                                     (PAGE_SHIFT - 9));
357         payload->location = cpu_to_le64(location);
358         payload->checksum[0] = cpu_to_le32(checksum1);
359         if (checksum2_valid)
360                 payload->checksum[1] = cpu_to_le32(checksum2);
361
362         io->meta_offset += sizeof(struct r5l_payload_data_parity) +
363                 sizeof(__le32) * (1 + !!checksum2_valid);
364 }
365
366 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
367 {
368         struct r5l_io_unit *io = log->current_io;
369
370         if (io->need_split_bio) {
371                 struct bio *prev = io->current_bio;
372
373                 io->current_bio = r5l_bio_alloc(log);
374                 bio_chain(io->current_bio, prev);
375
376                 submit_bio(prev);
377         }
378
379         if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
380                 BUG();
381
382         r5_reserve_log_entry(log, io);
383 }
384
385 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
386                            int data_pages, int parity_pages)
387 {
388         int i;
389         int meta_size;
390         int ret;
391         struct r5l_io_unit *io;
392
393         meta_size =
394                 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
395                  * data_pages) +
396                 sizeof(struct r5l_payload_data_parity) +
397                 sizeof(__le32) * parity_pages;
398
399         ret = r5l_get_meta(log, meta_size);
400         if (ret)
401                 return ret;
402
403         io = log->current_io;
404
405         for (i = 0; i < sh->disks; i++) {
406                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
407                         continue;
408                 if (i == sh->pd_idx || i == sh->qd_idx)
409                         continue;
410                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
411                                         raid5_compute_blocknr(sh, i, 0),
412                                         sh->dev[i].log_checksum, 0, false);
413                 r5l_append_payload_page(log, sh->dev[i].page);
414         }
415
416         if (sh->qd_idx >= 0) {
417                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
418                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
419                                         sh->dev[sh->qd_idx].log_checksum, true);
420                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
421                 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
422         } else {
423                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
424                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
425                                         0, false);
426                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
427         }
428
429         list_add_tail(&sh->log_list, &io->stripe_list);
430         atomic_inc(&io->pending_stripe);
431         sh->log_io = io;
432
433         return 0;
434 }
435
436 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
437 /*
438  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
439  * data from log to raid disks), so we shouldn't wait for reclaim here
440  */
441 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
442 {
443         int write_disks = 0;
444         int data_pages, parity_pages;
445         int meta_size;
446         int reserve;
447         int i;
448         int ret = 0;
449
450         if (!log)
451                 return -EAGAIN;
452         /* Don't support stripe batch */
453         if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
454             test_bit(STRIPE_SYNCING, &sh->state)) {
455                 /* the stripe is written to log, we start writing it to raid */
456                 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
457                 return -EAGAIN;
458         }
459
460         for (i = 0; i < sh->disks; i++) {
461                 void *addr;
462
463                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
464                         continue;
465                 write_disks++;
466                 /* checksum is already calculated in last run */
467                 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
468                         continue;
469                 addr = kmap_atomic(sh->dev[i].page);
470                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
471                                                     addr, PAGE_SIZE);
472                 kunmap_atomic(addr);
473         }
474         parity_pages = 1 + !!(sh->qd_idx >= 0);
475         data_pages = write_disks - parity_pages;
476
477         meta_size =
478                 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
479                  * data_pages) +
480                 sizeof(struct r5l_payload_data_parity) +
481                 sizeof(__le32) * parity_pages;
482         /* Doesn't work with very big raid array */
483         if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE)
484                 return -EINVAL;
485
486         set_bit(STRIPE_LOG_TRAPPED, &sh->state);
487         /*
488          * The stripe must enter state machine again to finish the write, so
489          * don't delay.
490          */
491         clear_bit(STRIPE_DELAYED, &sh->state);
492         atomic_inc(&sh->count);
493
494         mutex_lock(&log->io_mutex);
495         /* meta + data */
496         reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
497         if (!r5l_has_free_space(log, reserve)) {
498                 spin_lock(&log->no_space_stripes_lock);
499                 list_add_tail(&sh->log_list, &log->no_space_stripes);
500                 spin_unlock(&log->no_space_stripes_lock);
501
502                 r5l_wake_reclaim(log, reserve);
503         } else {
504                 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
505                 if (ret) {
506                         spin_lock_irq(&log->io_list_lock);
507                         list_add_tail(&sh->log_list, &log->no_mem_stripes);
508                         spin_unlock_irq(&log->io_list_lock);
509                 }
510         }
511
512         mutex_unlock(&log->io_mutex);
513         return 0;
514 }
515
516 void r5l_write_stripe_run(struct r5l_log *log)
517 {
518         if (!log)
519                 return;
520         mutex_lock(&log->io_mutex);
521         r5l_submit_current_io(log);
522         mutex_unlock(&log->io_mutex);
523 }
524
525 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
526 {
527         if (!log)
528                 return -ENODEV;
529         /*
530          * we flush log disk cache first, then write stripe data to raid disks.
531          * So if bio is finished, the log disk cache is flushed already. The
532          * recovery guarantees we can recovery the bio from log disk, so we
533          * don't need to flush again
534          */
535         if (bio->bi_iter.bi_size == 0) {
536                 bio_endio(bio);
537                 return 0;
538         }
539         bio->bi_opf &= ~REQ_PREFLUSH;
540         return -EAGAIN;
541 }
542
543 /* This will run after log space is reclaimed */
544 static void r5l_run_no_space_stripes(struct r5l_log *log)
545 {
546         struct stripe_head *sh;
547
548         spin_lock(&log->no_space_stripes_lock);
549         while (!list_empty(&log->no_space_stripes)) {
550                 sh = list_first_entry(&log->no_space_stripes,
551                                       struct stripe_head, log_list);
552                 list_del_init(&sh->log_list);
553                 set_bit(STRIPE_HANDLE, &sh->state);
554                 raid5_release_stripe(sh);
555         }
556         spin_unlock(&log->no_space_stripes_lock);
557 }
558
559 static sector_t r5l_reclaimable_space(struct r5l_log *log)
560 {
561         return r5l_ring_distance(log, log->last_checkpoint,
562                                  log->next_checkpoint);
563 }
564
565 static void r5l_run_no_mem_stripe(struct r5l_log *log)
566 {
567         struct stripe_head *sh;
568
569         assert_spin_locked(&log->io_list_lock);
570
571         if (!list_empty(&log->no_mem_stripes)) {
572                 sh = list_first_entry(&log->no_mem_stripes,
573                                       struct stripe_head, log_list);
574                 list_del_init(&sh->log_list);
575                 set_bit(STRIPE_HANDLE, &sh->state);
576                 raid5_release_stripe(sh);
577         }
578 }
579
580 static bool r5l_complete_finished_ios(struct r5l_log *log)
581 {
582         struct r5l_io_unit *io, *next;
583         bool found = false;
584
585         assert_spin_locked(&log->io_list_lock);
586
587         list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
588                 /* don't change list order */
589                 if (io->state < IO_UNIT_STRIPE_END)
590                         break;
591
592                 log->next_checkpoint = io->log_start;
593                 log->next_cp_seq = io->seq;
594
595                 list_del(&io->log_sibling);
596                 mempool_free(io, log->io_pool);
597                 r5l_run_no_mem_stripe(log);
598
599                 found = true;
600         }
601
602         return found;
603 }
604
605 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
606 {
607         struct r5l_log *log = io->log;
608         unsigned long flags;
609
610         spin_lock_irqsave(&log->io_list_lock, flags);
611         __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
612
613         if (!r5l_complete_finished_ios(log)) {
614                 spin_unlock_irqrestore(&log->io_list_lock, flags);
615                 return;
616         }
617
618         if (r5l_reclaimable_space(log) > log->max_free_space)
619                 r5l_wake_reclaim(log, 0);
620
621         spin_unlock_irqrestore(&log->io_list_lock, flags);
622         wake_up(&log->iounit_wait);
623 }
624
625 void r5l_stripe_write_finished(struct stripe_head *sh)
626 {
627         struct r5l_io_unit *io;
628
629         io = sh->log_io;
630         sh->log_io = NULL;
631
632         if (io && atomic_dec_and_test(&io->pending_stripe))
633                 __r5l_stripe_write_finished(io);
634 }
635
636 static void r5l_log_flush_endio(struct bio *bio)
637 {
638         struct r5l_log *log = container_of(bio, struct r5l_log,
639                 flush_bio);
640         unsigned long flags;
641         struct r5l_io_unit *io;
642
643         if (bio->bi_error)
644                 md_error(log->rdev->mddev, log->rdev);
645
646         spin_lock_irqsave(&log->io_list_lock, flags);
647         list_for_each_entry(io, &log->flushing_ios, log_sibling)
648                 r5l_io_run_stripes(io);
649         list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
650         spin_unlock_irqrestore(&log->io_list_lock, flags);
651 }
652
653 /*
654  * Starting dispatch IO to raid.
655  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
656  * broken meta in the middle of a log causes recovery can't find meta at the
657  * head of log. If operations require meta at the head persistent in log, we
658  * must make sure meta before it persistent in log too. A case is:
659  *
660  * stripe data/parity is in log, we start write stripe to raid disks. stripe
661  * data/parity must be persistent in log before we do the write to raid disks.
662  *
663  * The solution is we restrictly maintain io_unit list order. In this case, we
664  * only write stripes of an io_unit to raid disks till the io_unit is the first
665  * one whose data/parity is in log.
666  */
667 void r5l_flush_stripe_to_raid(struct r5l_log *log)
668 {
669         bool do_flush;
670
671         if (!log || !log->need_cache_flush)
672                 return;
673
674         spin_lock_irq(&log->io_list_lock);
675         /* flush bio is running */
676         if (!list_empty(&log->flushing_ios)) {
677                 spin_unlock_irq(&log->io_list_lock);
678                 return;
679         }
680         list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
681         do_flush = !list_empty(&log->flushing_ios);
682         spin_unlock_irq(&log->io_list_lock);
683
684         if (!do_flush)
685                 return;
686         bio_reset(&log->flush_bio);
687         log->flush_bio.bi_bdev = log->rdev->bdev;
688         log->flush_bio.bi_end_io = r5l_log_flush_endio;
689         bio_set_op_attrs(&log->flush_bio, REQ_OP_WRITE, WRITE_FLUSH);
690         submit_bio(&log->flush_bio);
691 }
692
693 static void r5l_write_super(struct r5l_log *log, sector_t cp);
694 static void r5l_write_super_and_discard_space(struct r5l_log *log,
695         sector_t end)
696 {
697         struct block_device *bdev = log->rdev->bdev;
698         struct mddev *mddev;
699
700         r5l_write_super(log, end);
701
702         if (!blk_queue_discard(bdev_get_queue(bdev)))
703                 return;
704
705         mddev = log->rdev->mddev;
706         /*
707          * This is to avoid a deadlock. r5l_quiesce holds reconfig_mutex and
708          * wait for this thread to finish. This thread waits for
709          * MD_CHANGE_PENDING clear, which is supposed to be done in
710          * md_check_recovery(). md_check_recovery() tries to get
711          * reconfig_mutex. Since r5l_quiesce already holds the mutex,
712          * md_check_recovery() fails, so the PENDING never get cleared. The
713          * in_teardown check workaround this issue.
714          */
715         if (!log->in_teardown) {
716                 set_mask_bits(&mddev->flags, 0,
717                               BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
718                 md_wakeup_thread(mddev->thread);
719                 wait_event(mddev->sb_wait,
720                         !test_bit(MD_CHANGE_PENDING, &mddev->flags) ||
721                         log->in_teardown);
722                 /*
723                  * r5l_quiesce could run after in_teardown check and hold
724                  * mutex first. Superblock might get updated twice.
725                  */
726                 if (log->in_teardown)
727                         md_update_sb(mddev, 1);
728         } else {
729                 WARN_ON(!mddev_is_locked(mddev));
730                 md_update_sb(mddev, 1);
731         }
732
733         /* discard IO error really doesn't matter, ignore it */
734         if (log->last_checkpoint < end) {
735                 blkdev_issue_discard(bdev,
736                                 log->last_checkpoint + log->rdev->data_offset,
737                                 end - log->last_checkpoint, GFP_NOIO, 0);
738         } else {
739                 blkdev_issue_discard(bdev,
740                                 log->last_checkpoint + log->rdev->data_offset,
741                                 log->device_size - log->last_checkpoint,
742                                 GFP_NOIO, 0);
743                 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
744                                 GFP_NOIO, 0);
745         }
746 }
747
748
749 static void r5l_do_reclaim(struct r5l_log *log)
750 {
751         sector_t reclaim_target = xchg(&log->reclaim_target, 0);
752         sector_t reclaimable;
753         sector_t next_checkpoint;
754         u64 next_cp_seq;
755
756         spin_lock_irq(&log->io_list_lock);
757         /*
758          * move proper io_unit to reclaim list. We should not change the order.
759          * reclaimable/unreclaimable io_unit can be mixed in the list, we
760          * shouldn't reuse space of an unreclaimable io_unit
761          */
762         while (1) {
763                 reclaimable = r5l_reclaimable_space(log);
764                 if (reclaimable >= reclaim_target ||
765                     (list_empty(&log->running_ios) &&
766                      list_empty(&log->io_end_ios) &&
767                      list_empty(&log->flushing_ios) &&
768                      list_empty(&log->finished_ios)))
769                         break;
770
771                 md_wakeup_thread(log->rdev->mddev->thread);
772                 wait_event_lock_irq(log->iounit_wait,
773                                     r5l_reclaimable_space(log) > reclaimable,
774                                     log->io_list_lock);
775         }
776
777         next_checkpoint = log->next_checkpoint;
778         next_cp_seq = log->next_cp_seq;
779         spin_unlock_irq(&log->io_list_lock);
780
781         BUG_ON(reclaimable < 0);
782         if (reclaimable == 0)
783                 return;
784
785         /*
786          * write_super will flush cache of each raid disk. We must write super
787          * here, because the log area might be reused soon and we don't want to
788          * confuse recovery
789          */
790         r5l_write_super_and_discard_space(log, next_checkpoint);
791
792         mutex_lock(&log->io_mutex);
793         log->last_checkpoint = next_checkpoint;
794         log->last_cp_seq = next_cp_seq;
795         mutex_unlock(&log->io_mutex);
796
797         r5l_run_no_space_stripes(log);
798 }
799
800 static void r5l_reclaim_thread(struct md_thread *thread)
801 {
802         struct mddev *mddev = thread->mddev;
803         struct r5conf *conf = mddev->private;
804         struct r5l_log *log = conf->log;
805
806         if (!log)
807                 return;
808         r5l_do_reclaim(log);
809 }
810
811 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
812 {
813         unsigned long target;
814         unsigned long new = (unsigned long)space; /* overflow in theory */
815
816         do {
817                 target = log->reclaim_target;
818                 if (new < target)
819                         return;
820         } while (cmpxchg(&log->reclaim_target, target, new) != target);
821         md_wakeup_thread(log->reclaim_thread);
822 }
823
824 void r5l_quiesce(struct r5l_log *log, int state)
825 {
826         struct mddev *mddev;
827         if (!log || state == 2)
828                 return;
829         if (state == 0) {
830                 log->in_teardown = 0;
831                 /*
832                  * This is a special case for hotadd. In suspend, the array has
833                  * no journal. In resume, journal is initialized as well as the
834                  * reclaim thread.
835                  */
836                 if (log->reclaim_thread)
837                         return;
838                 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
839                                         log->rdev->mddev, "reclaim");
840         } else if (state == 1) {
841                 /*
842                  * at this point all stripes are finished, so io_unit is at
843                  * least in STRIPE_END state
844                  */
845                 log->in_teardown = 1;
846                 /* make sure r5l_write_super_and_discard_space exits */
847                 mddev = log->rdev->mddev;
848                 wake_up(&mddev->sb_wait);
849                 r5l_wake_reclaim(log, -1L);
850                 md_unregister_thread(&log->reclaim_thread);
851                 r5l_do_reclaim(log);
852         }
853 }
854
855 bool r5l_log_disk_error(struct r5conf *conf)
856 {
857         struct r5l_log *log;
858         bool ret;
859         /* don't allow write if journal disk is missing */
860         rcu_read_lock();
861         log = rcu_dereference(conf->log);
862
863         if (!log)
864                 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
865         else
866                 ret = test_bit(Faulty, &log->rdev->flags);
867         rcu_read_unlock();
868         return ret;
869 }
870
871 struct r5l_recovery_ctx {
872         struct page *meta_page;         /* current meta */
873         sector_t meta_total_blocks;     /* total size of current meta and data */
874         sector_t pos;                   /* recovery position */
875         u64 seq;                        /* recovery position seq */
876 };
877
878 static int r5l_read_meta_block(struct r5l_log *log,
879                                struct r5l_recovery_ctx *ctx)
880 {
881         struct page *page = ctx->meta_page;
882         struct r5l_meta_block *mb;
883         u32 crc, stored_crc;
884
885         if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, REQ_OP_READ, 0,
886                           false))
887                 return -EIO;
888
889         mb = page_address(page);
890         stored_crc = le32_to_cpu(mb->checksum);
891         mb->checksum = 0;
892
893         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
894             le64_to_cpu(mb->seq) != ctx->seq ||
895             mb->version != R5LOG_VERSION ||
896             le64_to_cpu(mb->position) != ctx->pos)
897                 return -EINVAL;
898
899         crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
900         if (stored_crc != crc)
901                 return -EINVAL;
902
903         if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
904                 return -EINVAL;
905
906         ctx->meta_total_blocks = BLOCK_SECTORS;
907
908         return 0;
909 }
910
911 static int r5l_recovery_flush_one_stripe(struct r5l_log *log,
912                                          struct r5l_recovery_ctx *ctx,
913                                          sector_t stripe_sect,
914                                          int *offset, sector_t *log_offset)
915 {
916         struct r5conf *conf = log->rdev->mddev->private;
917         struct stripe_head *sh;
918         struct r5l_payload_data_parity *payload;
919         int disk_index;
920
921         sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0);
922         while (1) {
923                 payload = page_address(ctx->meta_page) + *offset;
924
925                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
926                         raid5_compute_sector(conf,
927                                              le64_to_cpu(payload->location), 0,
928                                              &disk_index, sh);
929
930                         sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
931                                      sh->dev[disk_index].page, REQ_OP_READ, 0,
932                                      false);
933                         sh->dev[disk_index].log_checksum =
934                                 le32_to_cpu(payload->checksum[0]);
935                         set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
936                         ctx->meta_total_blocks += BLOCK_SECTORS;
937                 } else {
938                         disk_index = sh->pd_idx;
939                         sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
940                                      sh->dev[disk_index].page, REQ_OP_READ, 0,
941                                      false);
942                         sh->dev[disk_index].log_checksum =
943                                 le32_to_cpu(payload->checksum[0]);
944                         set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
945
946                         if (sh->qd_idx >= 0) {
947                                 disk_index = sh->qd_idx;
948                                 sync_page_io(log->rdev,
949                                              r5l_ring_add(log, *log_offset, BLOCK_SECTORS),
950                                              PAGE_SIZE, sh->dev[disk_index].page,
951                                              REQ_OP_READ, 0, false);
952                                 sh->dev[disk_index].log_checksum =
953                                         le32_to_cpu(payload->checksum[1]);
954                                 set_bit(R5_Wantwrite,
955                                         &sh->dev[disk_index].flags);
956                         }
957                         ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
958                 }
959
960                 *log_offset = r5l_ring_add(log, *log_offset,
961                                            le32_to_cpu(payload->size));
962                 *offset += sizeof(struct r5l_payload_data_parity) +
963                         sizeof(__le32) *
964                         (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
965                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
966                         break;
967         }
968
969         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
970                 void *addr;
971                 u32 checksum;
972
973                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
974                         continue;
975                 addr = kmap_atomic(sh->dev[disk_index].page);
976                 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
977                 kunmap_atomic(addr);
978                 if (checksum != sh->dev[disk_index].log_checksum)
979                         goto error;
980         }
981
982         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
983                 struct md_rdev *rdev, *rrdev;
984
985                 if (!test_and_clear_bit(R5_Wantwrite,
986                                         &sh->dev[disk_index].flags))
987                         continue;
988
989                 /* in case device is broken */
990                 rdev = rcu_dereference(conf->disks[disk_index].rdev);
991                 if (rdev)
992                         sync_page_io(rdev, stripe_sect, PAGE_SIZE,
993                                      sh->dev[disk_index].page, REQ_OP_WRITE, 0,
994                                      false);
995                 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
996                 if (rrdev)
997                         sync_page_io(rrdev, stripe_sect, PAGE_SIZE,
998                                      sh->dev[disk_index].page, REQ_OP_WRITE, 0,
999                                      false);
1000         }
1001         raid5_release_stripe(sh);
1002         return 0;
1003
1004 error:
1005         for (disk_index = 0; disk_index < sh->disks; disk_index++)
1006                 sh->dev[disk_index].flags = 0;
1007         raid5_release_stripe(sh);
1008         return -EINVAL;
1009 }
1010
1011 static int r5l_recovery_flush_one_meta(struct r5l_log *log,
1012                                        struct r5l_recovery_ctx *ctx)
1013 {
1014         struct r5conf *conf = log->rdev->mddev->private;
1015         struct r5l_payload_data_parity *payload;
1016         struct r5l_meta_block *mb;
1017         int offset;
1018         sector_t log_offset;
1019         sector_t stripe_sector;
1020
1021         mb = page_address(ctx->meta_page);
1022         offset = sizeof(struct r5l_meta_block);
1023         log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1024
1025         while (offset < le32_to_cpu(mb->meta_size)) {
1026                 int dd;
1027
1028                 payload = (void *)mb + offset;
1029                 stripe_sector = raid5_compute_sector(conf,
1030                                                      le64_to_cpu(payload->location), 0, &dd, NULL);
1031                 if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector,
1032                                                   &offset, &log_offset))
1033                         return -EINVAL;
1034         }
1035         return 0;
1036 }
1037
1038 /* copy data/parity from log to raid disks */
1039 static void r5l_recovery_flush_log(struct r5l_log *log,
1040                                    struct r5l_recovery_ctx *ctx)
1041 {
1042         while (1) {
1043                 if (r5l_read_meta_block(log, ctx))
1044                         return;
1045                 if (r5l_recovery_flush_one_meta(log, ctx))
1046                         return;
1047                 ctx->seq++;
1048                 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
1049         }
1050 }
1051
1052 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1053                                           u64 seq)
1054 {
1055         struct page *page;
1056         struct r5l_meta_block *mb;
1057         u32 crc;
1058
1059         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1060         if (!page)
1061                 return -ENOMEM;
1062         mb = page_address(page);
1063         mb->magic = cpu_to_le32(R5LOG_MAGIC);
1064         mb->version = R5LOG_VERSION;
1065         mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1066         mb->seq = cpu_to_le64(seq);
1067         mb->position = cpu_to_le64(pos);
1068         crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1069         mb->checksum = cpu_to_le32(crc);
1070
1071         if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1072                           WRITE_FUA, false)) {
1073                 __free_page(page);
1074                 return -EIO;
1075         }
1076         __free_page(page);
1077         return 0;
1078 }
1079
1080 static int r5l_recovery_log(struct r5l_log *log)
1081 {
1082         struct r5l_recovery_ctx ctx;
1083
1084         ctx.pos = log->last_checkpoint;
1085         ctx.seq = log->last_cp_seq;
1086         ctx.meta_page = alloc_page(GFP_KERNEL);
1087         if (!ctx.meta_page)
1088                 return -ENOMEM;
1089
1090         r5l_recovery_flush_log(log, &ctx);
1091         __free_page(ctx.meta_page);
1092
1093         /*
1094          * we did a recovery. Now ctx.pos points to an invalid meta block. New
1095          * log will start here. but we can't let superblock point to last valid
1096          * meta block. The log might looks like:
1097          * | meta 1| meta 2| meta 3|
1098          * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
1099          * superblock points to meta 1, we write a new valid meta 2n.  if crash
1100          * happens again, new recovery will start from meta 1. Since meta 2n is
1101          * valid now, recovery will think meta 3 is valid, which is wrong.
1102          * The solution is we create a new meta in meta2 with its seq == meta
1103          * 1's seq + 10 and let superblock points to meta2. The same recovery will
1104          * not think meta 3 is a valid meta, because its seq doesn't match
1105          */
1106         if (ctx.seq > log->last_cp_seq + 1) {
1107                 int ret;
1108
1109                 ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10);
1110                 if (ret)
1111                         return ret;
1112                 log->seq = ctx.seq + 11;
1113                 log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
1114                 r5l_write_super(log, ctx.pos);
1115         } else {
1116                 log->log_start = ctx.pos;
1117                 log->seq = ctx.seq;
1118         }
1119         return 0;
1120 }
1121
1122 static void r5l_write_super(struct r5l_log *log, sector_t cp)
1123 {
1124         struct mddev *mddev = log->rdev->mddev;
1125
1126         log->rdev->journal_tail = cp;
1127         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1128 }
1129
1130 static int r5l_load_log(struct r5l_log *log)
1131 {
1132         struct md_rdev *rdev = log->rdev;
1133         struct page *page;
1134         struct r5l_meta_block *mb;
1135         sector_t cp = log->rdev->journal_tail;
1136         u32 stored_crc, expected_crc;
1137         bool create_super = false;
1138         int ret;
1139
1140         /* Make sure it's valid */
1141         if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
1142                 cp = 0;
1143         page = alloc_page(GFP_KERNEL);
1144         if (!page)
1145                 return -ENOMEM;
1146
1147         if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
1148                 ret = -EIO;
1149                 goto ioerr;
1150         }
1151         mb = page_address(page);
1152
1153         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1154             mb->version != R5LOG_VERSION) {
1155                 create_super = true;
1156                 goto create;
1157         }
1158         stored_crc = le32_to_cpu(mb->checksum);
1159         mb->checksum = 0;
1160         expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1161         if (stored_crc != expected_crc) {
1162                 create_super = true;
1163                 goto create;
1164         }
1165         if (le64_to_cpu(mb->position) != cp) {
1166                 create_super = true;
1167                 goto create;
1168         }
1169 create:
1170         if (create_super) {
1171                 log->last_cp_seq = prandom_u32();
1172                 cp = 0;
1173                 /*
1174                  * Make sure super points to correct address. Log might have
1175                  * data very soon. If super hasn't correct log tail address,
1176                  * recovery can't find the log
1177                  */
1178                 r5l_write_super(log, cp);
1179         } else
1180                 log->last_cp_seq = le64_to_cpu(mb->seq);
1181
1182         log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
1183         log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
1184         if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
1185                 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
1186         log->last_checkpoint = cp;
1187
1188         __free_page(page);
1189
1190         return r5l_recovery_log(log);
1191 ioerr:
1192         __free_page(page);
1193         return ret;
1194 }
1195
1196 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
1197 {
1198         struct request_queue *q = bdev_get_queue(rdev->bdev);
1199         struct r5l_log *log;
1200
1201         if (PAGE_SIZE != 4096)
1202                 return -EINVAL;
1203         log = kzalloc(sizeof(*log), GFP_KERNEL);
1204         if (!log)
1205                 return -ENOMEM;
1206         log->rdev = rdev;
1207
1208         log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
1209
1210         log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
1211                                        sizeof(rdev->mddev->uuid));
1212
1213         mutex_init(&log->io_mutex);
1214
1215         spin_lock_init(&log->io_list_lock);
1216         INIT_LIST_HEAD(&log->running_ios);
1217         INIT_LIST_HEAD(&log->io_end_ios);
1218         INIT_LIST_HEAD(&log->flushing_ios);
1219         INIT_LIST_HEAD(&log->finished_ios);
1220         bio_init(&log->flush_bio);
1221
1222         log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
1223         if (!log->io_kc)
1224                 goto io_kc;
1225
1226         log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
1227         if (!log->io_pool)
1228                 goto io_pool;
1229
1230         log->bs = bioset_create(R5L_POOL_SIZE, 0);
1231         if (!log->bs)
1232                 goto io_bs;
1233
1234         log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
1235         if (!log->meta_pool)
1236                 goto out_mempool;
1237
1238         log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
1239                                                  log->rdev->mddev, "reclaim");
1240         if (!log->reclaim_thread)
1241                 goto reclaim_thread;
1242         init_waitqueue_head(&log->iounit_wait);
1243
1244         INIT_LIST_HEAD(&log->no_mem_stripes);
1245
1246         INIT_LIST_HEAD(&log->no_space_stripes);
1247         spin_lock_init(&log->no_space_stripes_lock);
1248
1249         if (r5l_load_log(log))
1250                 goto error;
1251
1252         rcu_assign_pointer(conf->log, log);
1253         set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1254         return 0;
1255
1256 error:
1257         md_unregister_thread(&log->reclaim_thread);
1258 reclaim_thread:
1259         mempool_destroy(log->meta_pool);
1260 out_mempool:
1261         bioset_free(log->bs);
1262 io_bs:
1263         mempool_destroy(log->io_pool);
1264 io_pool:
1265         kmem_cache_destroy(log->io_kc);
1266 io_kc:
1267         kfree(log);
1268         return -EINVAL;
1269 }
1270
1271 void r5l_exit_log(struct r5l_log *log)
1272 {
1273         md_unregister_thread(&log->reclaim_thread);
1274         mempool_destroy(log->meta_pool);
1275         bioset_free(log->bs);
1276         mempool_destroy(log->io_pool);
1277         kmem_cache_destroy(log->io_kc);
1278         kfree(log);
1279 }