raid5: use flex_array for scribble data
[cascardo/linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio *return_bi)
227 {
228         struct bio *bi = return_bi;
229         while (bi) {
230
231                 return_bi = bi->bi_next;
232                 bi->bi_next = NULL;
233                 bi->bi_iter.bi_size = 0;
234                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235                                          bi, 0);
236                 bio_endio(bi, 0);
237                 bi = return_bi;
238         }
239 }
240
241 static void print_raid5_conf (struct r5conf *conf);
242
243 static int stripe_operations_active(struct stripe_head *sh)
244 {
245         return sh->check_state || sh->reconstruct_state ||
246                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248 }
249
250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 {
252         struct r5conf *conf = sh->raid_conf;
253         struct r5worker_group *group;
254         int thread_cnt;
255         int i, cpu = sh->cpu;
256
257         if (!cpu_online(cpu)) {
258                 cpu = cpumask_any(cpu_online_mask);
259                 sh->cpu = cpu;
260         }
261
262         if (list_empty(&sh->lru)) {
263                 struct r5worker_group *group;
264                 group = conf->worker_groups + cpu_to_group(cpu);
265                 list_add_tail(&sh->lru, &group->handle_list);
266                 group->stripes_cnt++;
267                 sh->group = group;
268         }
269
270         if (conf->worker_cnt_per_group == 0) {
271                 md_wakeup_thread(conf->mddev->thread);
272                 return;
273         }
274
275         group = conf->worker_groups + cpu_to_group(sh->cpu);
276
277         group->workers[0].working = true;
278         /* at least one worker should run to avoid race */
279         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282         /* wakeup more workers */
283         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284                 if (group->workers[i].working == false) {
285                         group->workers[i].working = true;
286                         queue_work_on(sh->cpu, raid5_wq,
287                                       &group->workers[i].work);
288                         thread_cnt--;
289                 }
290         }
291 }
292
293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294                               struct list_head *temp_inactive_list)
295 {
296         BUG_ON(!list_empty(&sh->lru));
297         BUG_ON(atomic_read(&conf->active_stripes)==0);
298         if (test_bit(STRIPE_HANDLE, &sh->state)) {
299                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
300                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301                         list_add_tail(&sh->lru, &conf->delayed_list);
302                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303                            sh->bm_seq - conf->seq_write > 0)
304                         list_add_tail(&sh->lru, &conf->bitmap_list);
305                 else {
306                         clear_bit(STRIPE_DELAYED, &sh->state);
307                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
308                         if (conf->worker_cnt_per_group == 0) {
309                                 list_add_tail(&sh->lru, &conf->handle_list);
310                         } else {
311                                 raid5_wakeup_stripe_thread(sh);
312                                 return;
313                         }
314                 }
315                 md_wakeup_thread(conf->mddev->thread);
316         } else {
317                 BUG_ON(stripe_operations_active(sh));
318                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319                         if (atomic_dec_return(&conf->preread_active_stripes)
320                             < IO_THRESHOLD)
321                                 md_wakeup_thread(conf->mddev->thread);
322                 atomic_dec(&conf->active_stripes);
323                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324                         list_add_tail(&sh->lru, temp_inactive_list);
325         }
326 }
327
328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329                              struct list_head *temp_inactive_list)
330 {
331         if (atomic_dec_and_test(&sh->count))
332                 do_release_stripe(conf, sh, temp_inactive_list);
333 }
334
335 /*
336  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337  *
338  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339  * given time. Adding stripes only takes device lock, while deleting stripes
340  * only takes hash lock.
341  */
342 static void release_inactive_stripe_list(struct r5conf *conf,
343                                          struct list_head *temp_inactive_list,
344                                          int hash)
345 {
346         int size;
347         bool do_wakeup = false;
348         unsigned long flags;
349
350         if (hash == NR_STRIPE_HASH_LOCKS) {
351                 size = NR_STRIPE_HASH_LOCKS;
352                 hash = NR_STRIPE_HASH_LOCKS - 1;
353         } else
354                 size = 1;
355         while (size) {
356                 struct list_head *list = &temp_inactive_list[size - 1];
357
358                 /*
359                  * We don't hold any lock here yet, get_active_stripe() might
360                  * remove stripes from the list
361                  */
362                 if (!list_empty_careful(list)) {
363                         spin_lock_irqsave(conf->hash_locks + hash, flags);
364                         if (list_empty(conf->inactive_list + hash) &&
365                             !list_empty(list))
366                                 atomic_dec(&conf->empty_inactive_list_nr);
367                         list_splice_tail_init(list, conf->inactive_list + hash);
368                         do_wakeup = true;
369                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
370                 }
371                 size--;
372                 hash--;
373         }
374
375         if (do_wakeup) {
376                 wake_up(&conf->wait_for_stripe);
377                 if (conf->retry_read_aligned)
378                         md_wakeup_thread(conf->mddev->thread);
379         }
380 }
381
382 /* should hold conf->device_lock already */
383 static int release_stripe_list(struct r5conf *conf,
384                                struct list_head *temp_inactive_list)
385 {
386         struct stripe_head *sh;
387         int count = 0;
388         struct llist_node *head;
389
390         head = llist_del_all(&conf->released_stripes);
391         head = llist_reverse_order(head);
392         while (head) {
393                 int hash;
394
395                 sh = llist_entry(head, struct stripe_head, release_list);
396                 head = llist_next(head);
397                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
398                 smp_mb();
399                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
400                 /*
401                  * Don't worry the bit is set here, because if the bit is set
402                  * again, the count is always > 1. This is true for
403                  * STRIPE_ON_UNPLUG_LIST bit too.
404                  */
405                 hash = sh->hash_lock_index;
406                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
407                 count++;
408         }
409
410         return count;
411 }
412
413 static void release_stripe(struct stripe_head *sh)
414 {
415         struct r5conf *conf = sh->raid_conf;
416         unsigned long flags;
417         struct list_head list;
418         int hash;
419         bool wakeup;
420
421         /* Avoid release_list until the last reference.
422          */
423         if (atomic_add_unless(&sh->count, -1, 1))
424                 return;
425
426         if (unlikely(!conf->mddev->thread) ||
427                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
428                 goto slow_path;
429         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
430         if (wakeup)
431                 md_wakeup_thread(conf->mddev->thread);
432         return;
433 slow_path:
434         local_irq_save(flags);
435         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
436         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
437                 INIT_LIST_HEAD(&list);
438                 hash = sh->hash_lock_index;
439                 do_release_stripe(conf, sh, &list);
440                 spin_unlock(&conf->device_lock);
441                 release_inactive_stripe_list(conf, &list, hash);
442         }
443         local_irq_restore(flags);
444 }
445
446 static inline void remove_hash(struct stripe_head *sh)
447 {
448         pr_debug("remove_hash(), stripe %llu\n",
449                 (unsigned long long)sh->sector);
450
451         hlist_del_init(&sh->hash);
452 }
453
454 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
455 {
456         struct hlist_head *hp = stripe_hash(conf, sh->sector);
457
458         pr_debug("insert_hash(), stripe %llu\n",
459                 (unsigned long long)sh->sector);
460
461         hlist_add_head(&sh->hash, hp);
462 }
463
464 /* find an idle stripe, make sure it is unhashed, and return it. */
465 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
466 {
467         struct stripe_head *sh = NULL;
468         struct list_head *first;
469
470         if (list_empty(conf->inactive_list + hash))
471                 goto out;
472         first = (conf->inactive_list + hash)->next;
473         sh = list_entry(first, struct stripe_head, lru);
474         list_del_init(first);
475         remove_hash(sh);
476         atomic_inc(&conf->active_stripes);
477         BUG_ON(hash != sh->hash_lock_index);
478         if (list_empty(conf->inactive_list + hash))
479                 atomic_inc(&conf->empty_inactive_list_nr);
480 out:
481         return sh;
482 }
483
484 static void shrink_buffers(struct stripe_head *sh)
485 {
486         struct page *p;
487         int i;
488         int num = sh->raid_conf->pool_size;
489
490         for (i = 0; i < num ; i++) {
491                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
492                 p = sh->dev[i].page;
493                 if (!p)
494                         continue;
495                 sh->dev[i].page = NULL;
496                 put_page(p);
497         }
498 }
499
500 static int grow_buffers(struct stripe_head *sh)
501 {
502         int i;
503         int num = sh->raid_conf->pool_size;
504
505         for (i = 0; i < num; i++) {
506                 struct page *page;
507
508                 if (!(page = alloc_page(GFP_KERNEL))) {
509                         return 1;
510                 }
511                 sh->dev[i].page = page;
512                 sh->dev[i].orig_page = page;
513         }
514         return 0;
515 }
516
517 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
518 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
519                             struct stripe_head *sh);
520
521 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
522 {
523         struct r5conf *conf = sh->raid_conf;
524         int i, seq;
525
526         BUG_ON(atomic_read(&sh->count) != 0);
527         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
528         BUG_ON(stripe_operations_active(sh));
529
530         pr_debug("init_stripe called, stripe %llu\n",
531                 (unsigned long long)sector);
532 retry:
533         seq = read_seqcount_begin(&conf->gen_lock);
534         sh->generation = conf->generation - previous;
535         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
536         sh->sector = sector;
537         stripe_set_idx(sector, conf, previous, sh);
538         sh->state = 0;
539
540         for (i = sh->disks; i--; ) {
541                 struct r5dev *dev = &sh->dev[i];
542
543                 if (dev->toread || dev->read || dev->towrite || dev->written ||
544                     test_bit(R5_LOCKED, &dev->flags)) {
545                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
546                                (unsigned long long)sh->sector, i, dev->toread,
547                                dev->read, dev->towrite, dev->written,
548                                test_bit(R5_LOCKED, &dev->flags));
549                         WARN_ON(1);
550                 }
551                 dev->flags = 0;
552                 raid5_build_block(sh, i, previous);
553         }
554         if (read_seqcount_retry(&conf->gen_lock, seq))
555                 goto retry;
556         insert_hash(conf, sh);
557         sh->cpu = smp_processor_id();
558 }
559
560 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
561                                          short generation)
562 {
563         struct stripe_head *sh;
564
565         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
566         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
567                 if (sh->sector == sector && sh->generation == generation)
568                         return sh;
569         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
570         return NULL;
571 }
572
573 /*
574  * Need to check if array has failed when deciding whether to:
575  *  - start an array
576  *  - remove non-faulty devices
577  *  - add a spare
578  *  - allow a reshape
579  * This determination is simple when no reshape is happening.
580  * However if there is a reshape, we need to carefully check
581  * both the before and after sections.
582  * This is because some failed devices may only affect one
583  * of the two sections, and some non-in_sync devices may
584  * be insync in the section most affected by failed devices.
585  */
586 static int calc_degraded(struct r5conf *conf)
587 {
588         int degraded, degraded2;
589         int i;
590
591         rcu_read_lock();
592         degraded = 0;
593         for (i = 0; i < conf->previous_raid_disks; i++) {
594                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
595                 if (rdev && test_bit(Faulty, &rdev->flags))
596                         rdev = rcu_dereference(conf->disks[i].replacement);
597                 if (!rdev || test_bit(Faulty, &rdev->flags))
598                         degraded++;
599                 else if (test_bit(In_sync, &rdev->flags))
600                         ;
601                 else
602                         /* not in-sync or faulty.
603                          * If the reshape increases the number of devices,
604                          * this is being recovered by the reshape, so
605                          * this 'previous' section is not in_sync.
606                          * If the number of devices is being reduced however,
607                          * the device can only be part of the array if
608                          * we are reverting a reshape, so this section will
609                          * be in-sync.
610                          */
611                         if (conf->raid_disks >= conf->previous_raid_disks)
612                                 degraded++;
613         }
614         rcu_read_unlock();
615         if (conf->raid_disks == conf->previous_raid_disks)
616                 return degraded;
617         rcu_read_lock();
618         degraded2 = 0;
619         for (i = 0; i < conf->raid_disks; i++) {
620                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
621                 if (rdev && test_bit(Faulty, &rdev->flags))
622                         rdev = rcu_dereference(conf->disks[i].replacement);
623                 if (!rdev || test_bit(Faulty, &rdev->flags))
624                         degraded2++;
625                 else if (test_bit(In_sync, &rdev->flags))
626                         ;
627                 else
628                         /* not in-sync or faulty.
629                          * If reshape increases the number of devices, this
630                          * section has already been recovered, else it
631                          * almost certainly hasn't.
632                          */
633                         if (conf->raid_disks <= conf->previous_raid_disks)
634                                 degraded2++;
635         }
636         rcu_read_unlock();
637         if (degraded2 > degraded)
638                 return degraded2;
639         return degraded;
640 }
641
642 static int has_failed(struct r5conf *conf)
643 {
644         int degraded;
645
646         if (conf->mddev->reshape_position == MaxSector)
647                 return conf->mddev->degraded > conf->max_degraded;
648
649         degraded = calc_degraded(conf);
650         if (degraded > conf->max_degraded)
651                 return 1;
652         return 0;
653 }
654
655 static struct stripe_head *
656 get_active_stripe(struct r5conf *conf, sector_t sector,
657                   int previous, int noblock, int noquiesce)
658 {
659         struct stripe_head *sh;
660         int hash = stripe_hash_locks_hash(sector);
661
662         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
663
664         spin_lock_irq(conf->hash_locks + hash);
665
666         do {
667                 wait_event_lock_irq(conf->wait_for_stripe,
668                                     conf->quiesce == 0 || noquiesce,
669                                     *(conf->hash_locks + hash));
670                 sh = __find_stripe(conf, sector, conf->generation - previous);
671                 if (!sh) {
672                         if (!conf->inactive_blocked)
673                                 sh = get_free_stripe(conf, hash);
674                         if (noblock && sh == NULL)
675                                 break;
676                         if (!sh) {
677                                 conf->inactive_blocked = 1;
678                                 wait_event_lock_irq(
679                                         conf->wait_for_stripe,
680                                         !list_empty(conf->inactive_list + hash) &&
681                                         (atomic_read(&conf->active_stripes)
682                                          < (conf->max_nr_stripes * 3 / 4)
683                                          || !conf->inactive_blocked),
684                                         *(conf->hash_locks + hash));
685                                 conf->inactive_blocked = 0;
686                         } else {
687                                 init_stripe(sh, sector, previous);
688                                 atomic_inc(&sh->count);
689                         }
690                 } else if (!atomic_inc_not_zero(&sh->count)) {
691                         spin_lock(&conf->device_lock);
692                         if (!atomic_read(&sh->count)) {
693                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
694                                         atomic_inc(&conf->active_stripes);
695                                 BUG_ON(list_empty(&sh->lru) &&
696                                        !test_bit(STRIPE_EXPANDING, &sh->state));
697                                 list_del_init(&sh->lru);
698                                 if (sh->group) {
699                                         sh->group->stripes_cnt--;
700                                         sh->group = NULL;
701                                 }
702                         }
703                         atomic_inc(&sh->count);
704                         spin_unlock(&conf->device_lock);
705                 }
706         } while (sh == NULL);
707
708         spin_unlock_irq(conf->hash_locks + hash);
709         return sh;
710 }
711
712 /* Determine if 'data_offset' or 'new_data_offset' should be used
713  * in this stripe_head.
714  */
715 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
716 {
717         sector_t progress = conf->reshape_progress;
718         /* Need a memory barrier to make sure we see the value
719          * of conf->generation, or ->data_offset that was set before
720          * reshape_progress was updated.
721          */
722         smp_rmb();
723         if (progress == MaxSector)
724                 return 0;
725         if (sh->generation == conf->generation - 1)
726                 return 0;
727         /* We are in a reshape, and this is a new-generation stripe,
728          * so use new_data_offset.
729          */
730         return 1;
731 }
732
733 static void
734 raid5_end_read_request(struct bio *bi, int error);
735 static void
736 raid5_end_write_request(struct bio *bi, int error);
737
738 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
739 {
740         struct r5conf *conf = sh->raid_conf;
741         int i, disks = sh->disks;
742
743         might_sleep();
744
745         for (i = disks; i--; ) {
746                 int rw;
747                 int replace_only = 0;
748                 struct bio *bi, *rbi;
749                 struct md_rdev *rdev, *rrdev = NULL;
750                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
751                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
752                                 rw = WRITE_FUA;
753                         else
754                                 rw = WRITE;
755                         if (test_bit(R5_Discard, &sh->dev[i].flags))
756                                 rw |= REQ_DISCARD;
757                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
758                         rw = READ;
759                 else if (test_and_clear_bit(R5_WantReplace,
760                                             &sh->dev[i].flags)) {
761                         rw = WRITE;
762                         replace_only = 1;
763                 } else
764                         continue;
765                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
766                         rw |= REQ_SYNC;
767
768                 bi = &sh->dev[i].req;
769                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
770
771                 rcu_read_lock();
772                 rrdev = rcu_dereference(conf->disks[i].replacement);
773                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
774                 rdev = rcu_dereference(conf->disks[i].rdev);
775                 if (!rdev) {
776                         rdev = rrdev;
777                         rrdev = NULL;
778                 }
779                 if (rw & WRITE) {
780                         if (replace_only)
781                                 rdev = NULL;
782                         if (rdev == rrdev)
783                                 /* We raced and saw duplicates */
784                                 rrdev = NULL;
785                 } else {
786                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
787                                 rdev = rrdev;
788                         rrdev = NULL;
789                 }
790
791                 if (rdev && test_bit(Faulty, &rdev->flags))
792                         rdev = NULL;
793                 if (rdev)
794                         atomic_inc(&rdev->nr_pending);
795                 if (rrdev && test_bit(Faulty, &rrdev->flags))
796                         rrdev = NULL;
797                 if (rrdev)
798                         atomic_inc(&rrdev->nr_pending);
799                 rcu_read_unlock();
800
801                 /* We have already checked bad blocks for reads.  Now
802                  * need to check for writes.  We never accept write errors
803                  * on the replacement, so we don't to check rrdev.
804                  */
805                 while ((rw & WRITE) && rdev &&
806                        test_bit(WriteErrorSeen, &rdev->flags)) {
807                         sector_t first_bad;
808                         int bad_sectors;
809                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
810                                               &first_bad, &bad_sectors);
811                         if (!bad)
812                                 break;
813
814                         if (bad < 0) {
815                                 set_bit(BlockedBadBlocks, &rdev->flags);
816                                 if (!conf->mddev->external &&
817                                     conf->mddev->flags) {
818                                         /* It is very unlikely, but we might
819                                          * still need to write out the
820                                          * bad block log - better give it
821                                          * a chance*/
822                                         md_check_recovery(conf->mddev);
823                                 }
824                                 /*
825                                  * Because md_wait_for_blocked_rdev
826                                  * will dec nr_pending, we must
827                                  * increment it first.
828                                  */
829                                 atomic_inc(&rdev->nr_pending);
830                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
831                         } else {
832                                 /* Acknowledged bad block - skip the write */
833                                 rdev_dec_pending(rdev, conf->mddev);
834                                 rdev = NULL;
835                         }
836                 }
837
838                 if (rdev) {
839                         if (s->syncing || s->expanding || s->expanded
840                             || s->replacing)
841                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
842
843                         set_bit(STRIPE_IO_STARTED, &sh->state);
844
845                         bio_reset(bi);
846                         bi->bi_bdev = rdev->bdev;
847                         bi->bi_rw = rw;
848                         bi->bi_end_io = (rw & WRITE)
849                                 ? raid5_end_write_request
850                                 : raid5_end_read_request;
851                         bi->bi_private = sh;
852
853                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
854                                 __func__, (unsigned long long)sh->sector,
855                                 bi->bi_rw, i);
856                         atomic_inc(&sh->count);
857                         if (use_new_offset(conf, sh))
858                                 bi->bi_iter.bi_sector = (sh->sector
859                                                  + rdev->new_data_offset);
860                         else
861                                 bi->bi_iter.bi_sector = (sh->sector
862                                                  + rdev->data_offset);
863                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
864                                 bi->bi_rw |= REQ_NOMERGE;
865
866                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
867                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
868                         sh->dev[i].vec.bv_page = sh->dev[i].page;
869                         bi->bi_vcnt = 1;
870                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
871                         bi->bi_io_vec[0].bv_offset = 0;
872                         bi->bi_iter.bi_size = STRIPE_SIZE;
873                         /*
874                          * If this is discard request, set bi_vcnt 0. We don't
875                          * want to confuse SCSI because SCSI will replace payload
876                          */
877                         if (rw & REQ_DISCARD)
878                                 bi->bi_vcnt = 0;
879                         if (rrdev)
880                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
881
882                         if (conf->mddev->gendisk)
883                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
884                                                       bi, disk_devt(conf->mddev->gendisk),
885                                                       sh->dev[i].sector);
886                         generic_make_request(bi);
887                 }
888                 if (rrdev) {
889                         if (s->syncing || s->expanding || s->expanded
890                             || s->replacing)
891                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
892
893                         set_bit(STRIPE_IO_STARTED, &sh->state);
894
895                         bio_reset(rbi);
896                         rbi->bi_bdev = rrdev->bdev;
897                         rbi->bi_rw = rw;
898                         BUG_ON(!(rw & WRITE));
899                         rbi->bi_end_io = raid5_end_write_request;
900                         rbi->bi_private = sh;
901
902                         pr_debug("%s: for %llu schedule op %ld on "
903                                  "replacement disc %d\n",
904                                 __func__, (unsigned long long)sh->sector,
905                                 rbi->bi_rw, i);
906                         atomic_inc(&sh->count);
907                         if (use_new_offset(conf, sh))
908                                 rbi->bi_iter.bi_sector = (sh->sector
909                                                   + rrdev->new_data_offset);
910                         else
911                                 rbi->bi_iter.bi_sector = (sh->sector
912                                                   + rrdev->data_offset);
913                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
914                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
915                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
916                         rbi->bi_vcnt = 1;
917                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
918                         rbi->bi_io_vec[0].bv_offset = 0;
919                         rbi->bi_iter.bi_size = STRIPE_SIZE;
920                         /*
921                          * If this is discard request, set bi_vcnt 0. We don't
922                          * want to confuse SCSI because SCSI will replace payload
923                          */
924                         if (rw & REQ_DISCARD)
925                                 rbi->bi_vcnt = 0;
926                         if (conf->mddev->gendisk)
927                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
928                                                       rbi, disk_devt(conf->mddev->gendisk),
929                                                       sh->dev[i].sector);
930                         generic_make_request(rbi);
931                 }
932                 if (!rdev && !rrdev) {
933                         if (rw & WRITE)
934                                 set_bit(STRIPE_DEGRADED, &sh->state);
935                         pr_debug("skip op %ld on disc %d for sector %llu\n",
936                                 bi->bi_rw, i, (unsigned long long)sh->sector);
937                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
938                         set_bit(STRIPE_HANDLE, &sh->state);
939                 }
940         }
941 }
942
943 static struct dma_async_tx_descriptor *
944 async_copy_data(int frombio, struct bio *bio, struct page **page,
945         sector_t sector, struct dma_async_tx_descriptor *tx,
946         struct stripe_head *sh)
947 {
948         struct bio_vec bvl;
949         struct bvec_iter iter;
950         struct page *bio_page;
951         int page_offset;
952         struct async_submit_ctl submit;
953         enum async_tx_flags flags = 0;
954
955         if (bio->bi_iter.bi_sector >= sector)
956                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
957         else
958                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
959
960         if (frombio)
961                 flags |= ASYNC_TX_FENCE;
962         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
963
964         bio_for_each_segment(bvl, bio, iter) {
965                 int len = bvl.bv_len;
966                 int clen;
967                 int b_offset = 0;
968
969                 if (page_offset < 0) {
970                         b_offset = -page_offset;
971                         page_offset += b_offset;
972                         len -= b_offset;
973                 }
974
975                 if (len > 0 && page_offset + len > STRIPE_SIZE)
976                         clen = STRIPE_SIZE - page_offset;
977                 else
978                         clen = len;
979
980                 if (clen > 0) {
981                         b_offset += bvl.bv_offset;
982                         bio_page = bvl.bv_page;
983                         if (frombio) {
984                                 if (sh->raid_conf->skip_copy &&
985                                     b_offset == 0 && page_offset == 0 &&
986                                     clen == STRIPE_SIZE)
987                                         *page = bio_page;
988                                 else
989                                         tx = async_memcpy(*page, bio_page, page_offset,
990                                                   b_offset, clen, &submit);
991                         } else
992                                 tx = async_memcpy(bio_page, *page, b_offset,
993                                                   page_offset, clen, &submit);
994                 }
995                 /* chain the operations */
996                 submit.depend_tx = tx;
997
998                 if (clen < len) /* hit end of page */
999                         break;
1000                 page_offset +=  len;
1001         }
1002
1003         return tx;
1004 }
1005
1006 static void ops_complete_biofill(void *stripe_head_ref)
1007 {
1008         struct stripe_head *sh = stripe_head_ref;
1009         struct bio *return_bi = NULL;
1010         int i;
1011
1012         pr_debug("%s: stripe %llu\n", __func__,
1013                 (unsigned long long)sh->sector);
1014
1015         /* clear completed biofills */
1016         for (i = sh->disks; i--; ) {
1017                 struct r5dev *dev = &sh->dev[i];
1018
1019                 /* acknowledge completion of a biofill operation */
1020                 /* and check if we need to reply to a read request,
1021                  * new R5_Wantfill requests are held off until
1022                  * !STRIPE_BIOFILL_RUN
1023                  */
1024                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1025                         struct bio *rbi, *rbi2;
1026
1027                         BUG_ON(!dev->read);
1028                         rbi = dev->read;
1029                         dev->read = NULL;
1030                         while (rbi && rbi->bi_iter.bi_sector <
1031                                 dev->sector + STRIPE_SECTORS) {
1032                                 rbi2 = r5_next_bio(rbi, dev->sector);
1033                                 if (!raid5_dec_bi_active_stripes(rbi)) {
1034                                         rbi->bi_next = return_bi;
1035                                         return_bi = rbi;
1036                                 }
1037                                 rbi = rbi2;
1038                         }
1039                 }
1040         }
1041         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1042
1043         return_io(return_bi);
1044
1045         set_bit(STRIPE_HANDLE, &sh->state);
1046         release_stripe(sh);
1047 }
1048
1049 static void ops_run_biofill(struct stripe_head *sh)
1050 {
1051         struct dma_async_tx_descriptor *tx = NULL;
1052         struct async_submit_ctl submit;
1053         int i;
1054
1055         pr_debug("%s: stripe %llu\n", __func__,
1056                 (unsigned long long)sh->sector);
1057
1058         for (i = sh->disks; i--; ) {
1059                 struct r5dev *dev = &sh->dev[i];
1060                 if (test_bit(R5_Wantfill, &dev->flags)) {
1061                         struct bio *rbi;
1062                         spin_lock_irq(&sh->stripe_lock);
1063                         dev->read = rbi = dev->toread;
1064                         dev->toread = NULL;
1065                         spin_unlock_irq(&sh->stripe_lock);
1066                         while (rbi && rbi->bi_iter.bi_sector <
1067                                 dev->sector + STRIPE_SECTORS) {
1068                                 tx = async_copy_data(0, rbi, &dev->page,
1069                                         dev->sector, tx, sh);
1070                                 rbi = r5_next_bio(rbi, dev->sector);
1071                         }
1072                 }
1073         }
1074
1075         atomic_inc(&sh->count);
1076         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1077         async_trigger_callback(&submit);
1078 }
1079
1080 static void mark_target_uptodate(struct stripe_head *sh, int target)
1081 {
1082         struct r5dev *tgt;
1083
1084         if (target < 0)
1085                 return;
1086
1087         tgt = &sh->dev[target];
1088         set_bit(R5_UPTODATE, &tgt->flags);
1089         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1090         clear_bit(R5_Wantcompute, &tgt->flags);
1091 }
1092
1093 static void ops_complete_compute(void *stripe_head_ref)
1094 {
1095         struct stripe_head *sh = stripe_head_ref;
1096
1097         pr_debug("%s: stripe %llu\n", __func__,
1098                 (unsigned long long)sh->sector);
1099
1100         /* mark the computed target(s) as uptodate */
1101         mark_target_uptodate(sh, sh->ops.target);
1102         mark_target_uptodate(sh, sh->ops.target2);
1103
1104         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1105         if (sh->check_state == check_state_compute_run)
1106                 sh->check_state = check_state_compute_result;
1107         set_bit(STRIPE_HANDLE, &sh->state);
1108         release_stripe(sh);
1109 }
1110
1111 /* return a pointer to the address conversion region of the scribble buffer */
1112 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1113                                  struct raid5_percpu *percpu, int i)
1114 {
1115         void *addr;
1116
1117         addr = flex_array_get(percpu->scribble, i);
1118         return addr + sizeof(struct page *) * (sh->disks + 2);
1119 }
1120
1121 /* return a pointer to the address conversion region of the scribble buffer */
1122 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1123 {
1124         void *addr;
1125
1126         addr = flex_array_get(percpu->scribble, i);
1127         return addr;
1128 }
1129
1130 static struct dma_async_tx_descriptor *
1131 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1132 {
1133         int disks = sh->disks;
1134         struct page **xor_srcs = to_addr_page(percpu, 0);
1135         int target = sh->ops.target;
1136         struct r5dev *tgt = &sh->dev[target];
1137         struct page *xor_dest = tgt->page;
1138         int count = 0;
1139         struct dma_async_tx_descriptor *tx;
1140         struct async_submit_ctl submit;
1141         int i;
1142
1143         pr_debug("%s: stripe %llu block: %d\n",
1144                 __func__, (unsigned long long)sh->sector, target);
1145         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1146
1147         for (i = disks; i--; )
1148                 if (i != target)
1149                         xor_srcs[count++] = sh->dev[i].page;
1150
1151         atomic_inc(&sh->count);
1152
1153         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1154                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1155         if (unlikely(count == 1))
1156                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1157         else
1158                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1159
1160         return tx;
1161 }
1162
1163 /* set_syndrome_sources - populate source buffers for gen_syndrome
1164  * @srcs - (struct page *) array of size sh->disks
1165  * @sh - stripe_head to parse
1166  *
1167  * Populates srcs in proper layout order for the stripe and returns the
1168  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1169  * destination buffer is recorded in srcs[count] and the Q destination
1170  * is recorded in srcs[count+1]].
1171  */
1172 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1173 {
1174         int disks = sh->disks;
1175         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1176         int d0_idx = raid6_d0(sh);
1177         int count;
1178         int i;
1179
1180         for (i = 0; i < disks; i++)
1181                 srcs[i] = NULL;
1182
1183         count = 0;
1184         i = d0_idx;
1185         do {
1186                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1187
1188                 srcs[slot] = sh->dev[i].page;
1189                 i = raid6_next_disk(i, disks);
1190         } while (i != d0_idx);
1191
1192         return syndrome_disks;
1193 }
1194
1195 static struct dma_async_tx_descriptor *
1196 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1197 {
1198         int disks = sh->disks;
1199         struct page **blocks = to_addr_page(percpu, 0);
1200         int target;
1201         int qd_idx = sh->qd_idx;
1202         struct dma_async_tx_descriptor *tx;
1203         struct async_submit_ctl submit;
1204         struct r5dev *tgt;
1205         struct page *dest;
1206         int i;
1207         int count;
1208
1209         if (sh->ops.target < 0)
1210                 target = sh->ops.target2;
1211         else if (sh->ops.target2 < 0)
1212                 target = sh->ops.target;
1213         else
1214                 /* we should only have one valid target */
1215                 BUG();
1216         BUG_ON(target < 0);
1217         pr_debug("%s: stripe %llu block: %d\n",
1218                 __func__, (unsigned long long)sh->sector, target);
1219
1220         tgt = &sh->dev[target];
1221         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1222         dest = tgt->page;
1223
1224         atomic_inc(&sh->count);
1225
1226         if (target == qd_idx) {
1227                 count = set_syndrome_sources(blocks, sh);
1228                 blocks[count] = NULL; /* regenerating p is not necessary */
1229                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1230                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1231                                   ops_complete_compute, sh,
1232                                   to_addr_conv(sh, percpu, 0));
1233                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1234         } else {
1235                 /* Compute any data- or p-drive using XOR */
1236                 count = 0;
1237                 for (i = disks; i-- ; ) {
1238                         if (i == target || i == qd_idx)
1239                                 continue;
1240                         blocks[count++] = sh->dev[i].page;
1241                 }
1242
1243                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1244                                   NULL, ops_complete_compute, sh,
1245                                   to_addr_conv(sh, percpu, 0));
1246                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1247         }
1248
1249         return tx;
1250 }
1251
1252 static struct dma_async_tx_descriptor *
1253 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1254 {
1255         int i, count, disks = sh->disks;
1256         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1257         int d0_idx = raid6_d0(sh);
1258         int faila = -1, failb = -1;
1259         int target = sh->ops.target;
1260         int target2 = sh->ops.target2;
1261         struct r5dev *tgt = &sh->dev[target];
1262         struct r5dev *tgt2 = &sh->dev[target2];
1263         struct dma_async_tx_descriptor *tx;
1264         struct page **blocks = to_addr_page(percpu, 0);
1265         struct async_submit_ctl submit;
1266
1267         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1268                  __func__, (unsigned long long)sh->sector, target, target2);
1269         BUG_ON(target < 0 || target2 < 0);
1270         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1271         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1272
1273         /* we need to open-code set_syndrome_sources to handle the
1274          * slot number conversion for 'faila' and 'failb'
1275          */
1276         for (i = 0; i < disks ; i++)
1277                 blocks[i] = NULL;
1278         count = 0;
1279         i = d0_idx;
1280         do {
1281                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1282
1283                 blocks[slot] = sh->dev[i].page;
1284
1285                 if (i == target)
1286                         faila = slot;
1287                 if (i == target2)
1288                         failb = slot;
1289                 i = raid6_next_disk(i, disks);
1290         } while (i != d0_idx);
1291
1292         BUG_ON(faila == failb);
1293         if (failb < faila)
1294                 swap(faila, failb);
1295         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1296                  __func__, (unsigned long long)sh->sector, faila, failb);
1297
1298         atomic_inc(&sh->count);
1299
1300         if (failb == syndrome_disks+1) {
1301                 /* Q disk is one of the missing disks */
1302                 if (faila == syndrome_disks) {
1303                         /* Missing P+Q, just recompute */
1304                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1305                                           ops_complete_compute, sh,
1306                                           to_addr_conv(sh, percpu, 0));
1307                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1308                                                   STRIPE_SIZE, &submit);
1309                 } else {
1310                         struct page *dest;
1311                         int data_target;
1312                         int qd_idx = sh->qd_idx;
1313
1314                         /* Missing D+Q: recompute D from P, then recompute Q */
1315                         if (target == qd_idx)
1316                                 data_target = target2;
1317                         else
1318                                 data_target = target;
1319
1320                         count = 0;
1321                         for (i = disks; i-- ; ) {
1322                                 if (i == data_target || i == qd_idx)
1323                                         continue;
1324                                 blocks[count++] = sh->dev[i].page;
1325                         }
1326                         dest = sh->dev[data_target].page;
1327                         init_async_submit(&submit,
1328                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1329                                           NULL, NULL, NULL,
1330                                           to_addr_conv(sh, percpu, 0));
1331                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1332                                        &submit);
1333
1334                         count = set_syndrome_sources(blocks, sh);
1335                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1336                                           ops_complete_compute, sh,
1337                                           to_addr_conv(sh, percpu, 0));
1338                         return async_gen_syndrome(blocks, 0, count+2,
1339                                                   STRIPE_SIZE, &submit);
1340                 }
1341         } else {
1342                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1343                                   ops_complete_compute, sh,
1344                                   to_addr_conv(sh, percpu, 0));
1345                 if (failb == syndrome_disks) {
1346                         /* We're missing D+P. */
1347                         return async_raid6_datap_recov(syndrome_disks+2,
1348                                                        STRIPE_SIZE, faila,
1349                                                        blocks, &submit);
1350                 } else {
1351                         /* We're missing D+D. */
1352                         return async_raid6_2data_recov(syndrome_disks+2,
1353                                                        STRIPE_SIZE, faila, failb,
1354                                                        blocks, &submit);
1355                 }
1356         }
1357 }
1358
1359 static void ops_complete_prexor(void *stripe_head_ref)
1360 {
1361         struct stripe_head *sh = stripe_head_ref;
1362
1363         pr_debug("%s: stripe %llu\n", __func__,
1364                 (unsigned long long)sh->sector);
1365 }
1366
1367 static struct dma_async_tx_descriptor *
1368 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1369                struct dma_async_tx_descriptor *tx)
1370 {
1371         int disks = sh->disks;
1372         struct page **xor_srcs = to_addr_page(percpu, 0);
1373         int count = 0, pd_idx = sh->pd_idx, i;
1374         struct async_submit_ctl submit;
1375
1376         /* existing parity data subtracted */
1377         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1378
1379         pr_debug("%s: stripe %llu\n", __func__,
1380                 (unsigned long long)sh->sector);
1381
1382         for (i = disks; i--; ) {
1383                 struct r5dev *dev = &sh->dev[i];
1384                 /* Only process blocks that are known to be uptodate */
1385                 if (test_bit(R5_Wantdrain, &dev->flags))
1386                         xor_srcs[count++] = dev->page;
1387         }
1388
1389         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1390                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1391         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1392
1393         return tx;
1394 }
1395
1396 static struct dma_async_tx_descriptor *
1397 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1398 {
1399         int disks = sh->disks;
1400         int i;
1401
1402         pr_debug("%s: stripe %llu\n", __func__,
1403                 (unsigned long long)sh->sector);
1404
1405         for (i = disks; i--; ) {
1406                 struct r5dev *dev = &sh->dev[i];
1407                 struct bio *chosen;
1408
1409                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1410                         struct bio *wbi;
1411
1412                         spin_lock_irq(&sh->stripe_lock);
1413                         chosen = dev->towrite;
1414                         dev->towrite = NULL;
1415                         BUG_ON(dev->written);
1416                         wbi = dev->written = chosen;
1417                         spin_unlock_irq(&sh->stripe_lock);
1418                         WARN_ON(dev->page != dev->orig_page);
1419
1420                         while (wbi && wbi->bi_iter.bi_sector <
1421                                 dev->sector + STRIPE_SECTORS) {
1422                                 if (wbi->bi_rw & REQ_FUA)
1423                                         set_bit(R5_WantFUA, &dev->flags);
1424                                 if (wbi->bi_rw & REQ_SYNC)
1425                                         set_bit(R5_SyncIO, &dev->flags);
1426                                 if (wbi->bi_rw & REQ_DISCARD)
1427                                         set_bit(R5_Discard, &dev->flags);
1428                                 else {
1429                                         tx = async_copy_data(1, wbi, &dev->page,
1430                                                 dev->sector, tx, sh);
1431                                         if (dev->page != dev->orig_page) {
1432                                                 set_bit(R5_SkipCopy, &dev->flags);
1433                                                 clear_bit(R5_UPTODATE, &dev->flags);
1434                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1435                                         }
1436                                 }
1437                                 wbi = r5_next_bio(wbi, dev->sector);
1438                         }
1439                 }
1440         }
1441
1442         return tx;
1443 }
1444
1445 static void ops_complete_reconstruct(void *stripe_head_ref)
1446 {
1447         struct stripe_head *sh = stripe_head_ref;
1448         int disks = sh->disks;
1449         int pd_idx = sh->pd_idx;
1450         int qd_idx = sh->qd_idx;
1451         int i;
1452         bool fua = false, sync = false, discard = false;
1453
1454         pr_debug("%s: stripe %llu\n", __func__,
1455                 (unsigned long long)sh->sector);
1456
1457         for (i = disks; i--; ) {
1458                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1459                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1460                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1461         }
1462
1463         for (i = disks; i--; ) {
1464                 struct r5dev *dev = &sh->dev[i];
1465
1466                 if (dev->written || i == pd_idx || i == qd_idx) {
1467                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1468                                 set_bit(R5_UPTODATE, &dev->flags);
1469                         if (fua)
1470                                 set_bit(R5_WantFUA, &dev->flags);
1471                         if (sync)
1472                                 set_bit(R5_SyncIO, &dev->flags);
1473                 }
1474         }
1475
1476         if (sh->reconstruct_state == reconstruct_state_drain_run)
1477                 sh->reconstruct_state = reconstruct_state_drain_result;
1478         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1479                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1480         else {
1481                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1482                 sh->reconstruct_state = reconstruct_state_result;
1483         }
1484
1485         set_bit(STRIPE_HANDLE, &sh->state);
1486         release_stripe(sh);
1487 }
1488
1489 static void
1490 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1491                      struct dma_async_tx_descriptor *tx)
1492 {
1493         int disks = sh->disks;
1494         struct page **xor_srcs = to_addr_page(percpu, 0);
1495         struct async_submit_ctl submit;
1496         int count = 0, pd_idx = sh->pd_idx, i;
1497         struct page *xor_dest;
1498         int prexor = 0;
1499         unsigned long flags;
1500
1501         pr_debug("%s: stripe %llu\n", __func__,
1502                 (unsigned long long)sh->sector);
1503
1504         for (i = 0; i < sh->disks; i++) {
1505                 if (pd_idx == i)
1506                         continue;
1507                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1508                         break;
1509         }
1510         if (i >= sh->disks) {
1511                 atomic_inc(&sh->count);
1512                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1513                 ops_complete_reconstruct(sh);
1514                 return;
1515         }
1516         /* check if prexor is active which means only process blocks
1517          * that are part of a read-modify-write (written)
1518          */
1519         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1520                 prexor = 1;
1521                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1522                 for (i = disks; i--; ) {
1523                         struct r5dev *dev = &sh->dev[i];
1524                         if (dev->written)
1525                                 xor_srcs[count++] = dev->page;
1526                 }
1527         } else {
1528                 xor_dest = sh->dev[pd_idx].page;
1529                 for (i = disks; i--; ) {
1530                         struct r5dev *dev = &sh->dev[i];
1531                         if (i != pd_idx)
1532                                 xor_srcs[count++] = dev->page;
1533                 }
1534         }
1535
1536         /* 1/ if we prexor'd then the dest is reused as a source
1537          * 2/ if we did not prexor then we are redoing the parity
1538          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1539          * for the synchronous xor case
1540          */
1541         flags = ASYNC_TX_ACK |
1542                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1543
1544         atomic_inc(&sh->count);
1545
1546         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1547                           to_addr_conv(sh, percpu, 0));
1548         if (unlikely(count == 1))
1549                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1550         else
1551                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1552 }
1553
1554 static void
1555 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1556                      struct dma_async_tx_descriptor *tx)
1557 {
1558         struct async_submit_ctl submit;
1559         struct page **blocks = to_addr_page(percpu, 0);
1560         int count, i;
1561
1562         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1563
1564         for (i = 0; i < sh->disks; i++) {
1565                 if (sh->pd_idx == i || sh->qd_idx == i)
1566                         continue;
1567                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1568                         break;
1569         }
1570         if (i >= sh->disks) {
1571                 atomic_inc(&sh->count);
1572                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1573                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1574                 ops_complete_reconstruct(sh);
1575                 return;
1576         }
1577
1578         count = set_syndrome_sources(blocks, sh);
1579
1580         atomic_inc(&sh->count);
1581
1582         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1583                           sh, to_addr_conv(sh, percpu, 0));
1584         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1585 }
1586
1587 static void ops_complete_check(void *stripe_head_ref)
1588 {
1589         struct stripe_head *sh = stripe_head_ref;
1590
1591         pr_debug("%s: stripe %llu\n", __func__,
1592                 (unsigned long long)sh->sector);
1593
1594         sh->check_state = check_state_check_result;
1595         set_bit(STRIPE_HANDLE, &sh->state);
1596         release_stripe(sh);
1597 }
1598
1599 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1600 {
1601         int disks = sh->disks;
1602         int pd_idx = sh->pd_idx;
1603         int qd_idx = sh->qd_idx;
1604         struct page *xor_dest;
1605         struct page **xor_srcs = to_addr_page(percpu, 0);
1606         struct dma_async_tx_descriptor *tx;
1607         struct async_submit_ctl submit;
1608         int count;
1609         int i;
1610
1611         pr_debug("%s: stripe %llu\n", __func__,
1612                 (unsigned long long)sh->sector);
1613
1614         count = 0;
1615         xor_dest = sh->dev[pd_idx].page;
1616         xor_srcs[count++] = xor_dest;
1617         for (i = disks; i--; ) {
1618                 if (i == pd_idx || i == qd_idx)
1619                         continue;
1620                 xor_srcs[count++] = sh->dev[i].page;
1621         }
1622
1623         init_async_submit(&submit, 0, NULL, NULL, NULL,
1624                           to_addr_conv(sh, percpu, 0));
1625         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1626                            &sh->ops.zero_sum_result, &submit);
1627
1628         atomic_inc(&sh->count);
1629         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1630         tx = async_trigger_callback(&submit);
1631 }
1632
1633 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1634 {
1635         struct page **srcs = to_addr_page(percpu, 0);
1636         struct async_submit_ctl submit;
1637         int count;
1638
1639         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1640                 (unsigned long long)sh->sector, checkp);
1641
1642         count = set_syndrome_sources(srcs, sh);
1643         if (!checkp)
1644                 srcs[count] = NULL;
1645
1646         atomic_inc(&sh->count);
1647         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1648                           sh, to_addr_conv(sh, percpu, 0));
1649         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1650                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1651 }
1652
1653 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1654 {
1655         int overlap_clear = 0, i, disks = sh->disks;
1656         struct dma_async_tx_descriptor *tx = NULL;
1657         struct r5conf *conf = sh->raid_conf;
1658         int level = conf->level;
1659         struct raid5_percpu *percpu;
1660         unsigned long cpu;
1661
1662         cpu = get_cpu();
1663         percpu = per_cpu_ptr(conf->percpu, cpu);
1664         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1665                 ops_run_biofill(sh);
1666                 overlap_clear++;
1667         }
1668
1669         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1670                 if (level < 6)
1671                         tx = ops_run_compute5(sh, percpu);
1672                 else {
1673                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1674                                 tx = ops_run_compute6_1(sh, percpu);
1675                         else
1676                                 tx = ops_run_compute6_2(sh, percpu);
1677                 }
1678                 /* terminate the chain if reconstruct is not set to be run */
1679                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1680                         async_tx_ack(tx);
1681         }
1682
1683         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1684                 tx = ops_run_prexor(sh, percpu, tx);
1685
1686         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1687                 tx = ops_run_biodrain(sh, tx);
1688                 overlap_clear++;
1689         }
1690
1691         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1692                 if (level < 6)
1693                         ops_run_reconstruct5(sh, percpu, tx);
1694                 else
1695                         ops_run_reconstruct6(sh, percpu, tx);
1696         }
1697
1698         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1699                 if (sh->check_state == check_state_run)
1700                         ops_run_check_p(sh, percpu);
1701                 else if (sh->check_state == check_state_run_q)
1702                         ops_run_check_pq(sh, percpu, 0);
1703                 else if (sh->check_state == check_state_run_pq)
1704                         ops_run_check_pq(sh, percpu, 1);
1705                 else
1706                         BUG();
1707         }
1708
1709         if (overlap_clear)
1710                 for (i = disks; i--; ) {
1711                         struct r5dev *dev = &sh->dev[i];
1712                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1713                                 wake_up(&sh->raid_conf->wait_for_overlap);
1714                 }
1715         put_cpu();
1716 }
1717
1718 static int grow_one_stripe(struct r5conf *conf, int hash)
1719 {
1720         struct stripe_head *sh;
1721         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1722         if (!sh)
1723                 return 0;
1724
1725         sh->raid_conf = conf;
1726
1727         spin_lock_init(&sh->stripe_lock);
1728
1729         if (grow_buffers(sh)) {
1730                 shrink_buffers(sh);
1731                 kmem_cache_free(conf->slab_cache, sh);
1732                 return 0;
1733         }
1734         sh->hash_lock_index = hash;
1735         /* we just created an active stripe so... */
1736         atomic_set(&sh->count, 1);
1737         atomic_inc(&conf->active_stripes);
1738         INIT_LIST_HEAD(&sh->lru);
1739         release_stripe(sh);
1740         return 1;
1741 }
1742
1743 static int grow_stripes(struct r5conf *conf, int num)
1744 {
1745         struct kmem_cache *sc;
1746         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1747         int hash;
1748
1749         if (conf->mddev->gendisk)
1750                 sprintf(conf->cache_name[0],
1751                         "raid%d-%s", conf->level, mdname(conf->mddev));
1752         else
1753                 sprintf(conf->cache_name[0],
1754                         "raid%d-%p", conf->level, conf->mddev);
1755         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1756
1757         conf->active_name = 0;
1758         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1759                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1760                                0, 0, NULL);
1761         if (!sc)
1762                 return 1;
1763         conf->slab_cache = sc;
1764         conf->pool_size = devs;
1765         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1766         while (num--) {
1767                 if (!grow_one_stripe(conf, hash))
1768                         return 1;
1769                 conf->max_nr_stripes++;
1770                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1771         }
1772         return 0;
1773 }
1774
1775 /**
1776  * scribble_len - return the required size of the scribble region
1777  * @num - total number of disks in the array
1778  *
1779  * The size must be enough to contain:
1780  * 1/ a struct page pointer for each device in the array +2
1781  * 2/ room to convert each entry in (1) to its corresponding dma
1782  *    (dma_map_page()) or page (page_address()) address.
1783  *
1784  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1785  * calculate over all devices (not just the data blocks), using zeros in place
1786  * of the P and Q blocks.
1787  */
1788 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
1789 {
1790         struct flex_array *ret;
1791         size_t len;
1792
1793         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1794         ret = flex_array_alloc(len, cnt, flags);
1795         if (!ret)
1796                 return NULL;
1797         /* always prealloc all elements, so no locking is required */
1798         if (flex_array_prealloc(ret, 0, cnt, flags)) {
1799                 flex_array_free(ret);
1800                 return NULL;
1801         }
1802         return ret;
1803 }
1804
1805 static int resize_stripes(struct r5conf *conf, int newsize)
1806 {
1807         /* Make all the stripes able to hold 'newsize' devices.
1808          * New slots in each stripe get 'page' set to a new page.
1809          *
1810          * This happens in stages:
1811          * 1/ create a new kmem_cache and allocate the required number of
1812          *    stripe_heads.
1813          * 2/ gather all the old stripe_heads and transfer the pages across
1814          *    to the new stripe_heads.  This will have the side effect of
1815          *    freezing the array as once all stripe_heads have been collected,
1816          *    no IO will be possible.  Old stripe heads are freed once their
1817          *    pages have been transferred over, and the old kmem_cache is
1818          *    freed when all stripes are done.
1819          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1820          *    we simple return a failre status - no need to clean anything up.
1821          * 4/ allocate new pages for the new slots in the new stripe_heads.
1822          *    If this fails, we don't bother trying the shrink the
1823          *    stripe_heads down again, we just leave them as they are.
1824          *    As each stripe_head is processed the new one is released into
1825          *    active service.
1826          *
1827          * Once step2 is started, we cannot afford to wait for a write,
1828          * so we use GFP_NOIO allocations.
1829          */
1830         struct stripe_head *osh, *nsh;
1831         LIST_HEAD(newstripes);
1832         struct disk_info *ndisks;
1833         unsigned long cpu;
1834         int err;
1835         struct kmem_cache *sc;
1836         int i;
1837         int hash, cnt;
1838
1839         if (newsize <= conf->pool_size)
1840                 return 0; /* never bother to shrink */
1841
1842         err = md_allow_write(conf->mddev);
1843         if (err)
1844                 return err;
1845
1846         /* Step 1 */
1847         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1848                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1849                                0, 0, NULL);
1850         if (!sc)
1851                 return -ENOMEM;
1852
1853         for (i = conf->max_nr_stripes; i; i--) {
1854                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1855                 if (!nsh)
1856                         break;
1857
1858                 nsh->raid_conf = conf;
1859                 spin_lock_init(&nsh->stripe_lock);
1860
1861                 list_add(&nsh->lru, &newstripes);
1862         }
1863         if (i) {
1864                 /* didn't get enough, give up */
1865                 while (!list_empty(&newstripes)) {
1866                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1867                         list_del(&nsh->lru);
1868                         kmem_cache_free(sc, nsh);
1869                 }
1870                 kmem_cache_destroy(sc);
1871                 return -ENOMEM;
1872         }
1873         /* Step 2 - Must use GFP_NOIO now.
1874          * OK, we have enough stripes, start collecting inactive
1875          * stripes and copying them over
1876          */
1877         hash = 0;
1878         cnt = 0;
1879         list_for_each_entry(nsh, &newstripes, lru) {
1880                 lock_device_hash_lock(conf, hash);
1881                 wait_event_cmd(conf->wait_for_stripe,
1882                                     !list_empty(conf->inactive_list + hash),
1883                                     unlock_device_hash_lock(conf, hash),
1884                                     lock_device_hash_lock(conf, hash));
1885                 osh = get_free_stripe(conf, hash);
1886                 unlock_device_hash_lock(conf, hash);
1887                 atomic_set(&nsh->count, 1);
1888                 for(i=0; i<conf->pool_size; i++) {
1889                         nsh->dev[i].page = osh->dev[i].page;
1890                         nsh->dev[i].orig_page = osh->dev[i].page;
1891                 }
1892                 for( ; i<newsize; i++)
1893                         nsh->dev[i].page = NULL;
1894                 nsh->hash_lock_index = hash;
1895                 kmem_cache_free(conf->slab_cache, osh);
1896                 cnt++;
1897                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1898                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1899                         hash++;
1900                         cnt = 0;
1901                 }
1902         }
1903         kmem_cache_destroy(conf->slab_cache);
1904
1905         /* Step 3.
1906          * At this point, we are holding all the stripes so the array
1907          * is completely stalled, so now is a good time to resize
1908          * conf->disks and the scribble region
1909          */
1910         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1911         if (ndisks) {
1912                 for (i=0; i<conf->raid_disks; i++)
1913                         ndisks[i] = conf->disks[i];
1914                 kfree(conf->disks);
1915                 conf->disks = ndisks;
1916         } else
1917                 err = -ENOMEM;
1918
1919         get_online_cpus();
1920         for_each_present_cpu(cpu) {
1921                 struct raid5_percpu *percpu;
1922                 struct flex_array *scribble;
1923
1924                 percpu = per_cpu_ptr(conf->percpu, cpu);
1925                 scribble = scribble_alloc(newsize, conf->chunk_sectors /
1926                         STRIPE_SECTORS, GFP_NOIO);
1927
1928                 if (scribble) {
1929                         flex_array_free(percpu->scribble);
1930                         percpu->scribble = scribble;
1931                 } else {
1932                         err = -ENOMEM;
1933                         break;
1934                 }
1935         }
1936         put_online_cpus();
1937
1938         /* Step 4, return new stripes to service */
1939         while(!list_empty(&newstripes)) {
1940                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1941                 list_del_init(&nsh->lru);
1942
1943                 for (i=conf->raid_disks; i < newsize; i++)
1944                         if (nsh->dev[i].page == NULL) {
1945                                 struct page *p = alloc_page(GFP_NOIO);
1946                                 nsh->dev[i].page = p;
1947                                 nsh->dev[i].orig_page = p;
1948                                 if (!p)
1949                                         err = -ENOMEM;
1950                         }
1951                 release_stripe(nsh);
1952         }
1953         /* critical section pass, GFP_NOIO no longer needed */
1954
1955         conf->slab_cache = sc;
1956         conf->active_name = 1-conf->active_name;
1957         conf->pool_size = newsize;
1958         return err;
1959 }
1960
1961 static int drop_one_stripe(struct r5conf *conf, int hash)
1962 {
1963         struct stripe_head *sh;
1964
1965         spin_lock_irq(conf->hash_locks + hash);
1966         sh = get_free_stripe(conf, hash);
1967         spin_unlock_irq(conf->hash_locks + hash);
1968         if (!sh)
1969                 return 0;
1970         BUG_ON(atomic_read(&sh->count));
1971         shrink_buffers(sh);
1972         kmem_cache_free(conf->slab_cache, sh);
1973         atomic_dec(&conf->active_stripes);
1974         return 1;
1975 }
1976
1977 static void shrink_stripes(struct r5conf *conf)
1978 {
1979         int hash;
1980         for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1981                 while (drop_one_stripe(conf, hash))
1982                         ;
1983
1984         if (conf->slab_cache)
1985                 kmem_cache_destroy(conf->slab_cache);
1986         conf->slab_cache = NULL;
1987 }
1988
1989 static void raid5_end_read_request(struct bio * bi, int error)
1990 {
1991         struct stripe_head *sh = bi->bi_private;
1992         struct r5conf *conf = sh->raid_conf;
1993         int disks = sh->disks, i;
1994         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1995         char b[BDEVNAME_SIZE];
1996         struct md_rdev *rdev = NULL;
1997         sector_t s;
1998
1999         for (i=0 ; i<disks; i++)
2000                 if (bi == &sh->dev[i].req)
2001                         break;
2002
2003         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2004                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2005                 uptodate);
2006         if (i == disks) {
2007                 BUG();
2008                 return;
2009         }
2010         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2011                 /* If replacement finished while this request was outstanding,
2012                  * 'replacement' might be NULL already.
2013                  * In that case it moved down to 'rdev'.
2014                  * rdev is not removed until all requests are finished.
2015                  */
2016                 rdev = conf->disks[i].replacement;
2017         if (!rdev)
2018                 rdev = conf->disks[i].rdev;
2019
2020         if (use_new_offset(conf, sh))
2021                 s = sh->sector + rdev->new_data_offset;
2022         else
2023                 s = sh->sector + rdev->data_offset;
2024         if (uptodate) {
2025                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2026                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2027                         /* Note that this cannot happen on a
2028                          * replacement device.  We just fail those on
2029                          * any error
2030                          */
2031                         printk_ratelimited(
2032                                 KERN_INFO
2033                                 "md/raid:%s: read error corrected"
2034                                 " (%lu sectors at %llu on %s)\n",
2035                                 mdname(conf->mddev), STRIPE_SECTORS,
2036                                 (unsigned long long)s,
2037                                 bdevname(rdev->bdev, b));
2038                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2039                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2040                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2041                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2042                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2043
2044                 if (atomic_read(&rdev->read_errors))
2045                         atomic_set(&rdev->read_errors, 0);
2046         } else {
2047                 const char *bdn = bdevname(rdev->bdev, b);
2048                 int retry = 0;
2049                 int set_bad = 0;
2050
2051                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2052                 atomic_inc(&rdev->read_errors);
2053                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2054                         printk_ratelimited(
2055                                 KERN_WARNING
2056                                 "md/raid:%s: read error on replacement device "
2057                                 "(sector %llu on %s).\n",
2058                                 mdname(conf->mddev),
2059                                 (unsigned long long)s,
2060                                 bdn);
2061                 else if (conf->mddev->degraded >= conf->max_degraded) {
2062                         set_bad = 1;
2063                         printk_ratelimited(
2064                                 KERN_WARNING
2065                                 "md/raid:%s: read error not correctable "
2066                                 "(sector %llu on %s).\n",
2067                                 mdname(conf->mddev),
2068                                 (unsigned long long)s,
2069                                 bdn);
2070                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2071                         /* Oh, no!!! */
2072                         set_bad = 1;
2073                         printk_ratelimited(
2074                                 KERN_WARNING
2075                                 "md/raid:%s: read error NOT corrected!! "
2076                                 "(sector %llu on %s).\n",
2077                                 mdname(conf->mddev),
2078                                 (unsigned long long)s,
2079                                 bdn);
2080                 } else if (atomic_read(&rdev->read_errors)
2081                          > conf->max_nr_stripes)
2082                         printk(KERN_WARNING
2083                                "md/raid:%s: Too many read errors, failing device %s.\n",
2084                                mdname(conf->mddev), bdn);
2085                 else
2086                         retry = 1;
2087                 if (set_bad && test_bit(In_sync, &rdev->flags)
2088                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2089                         retry = 1;
2090                 if (retry)
2091                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2092                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2093                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2094                         } else
2095                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2096                 else {
2097                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2098                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2099                         if (!(set_bad
2100                               && test_bit(In_sync, &rdev->flags)
2101                               && rdev_set_badblocks(
2102                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2103                                 md_error(conf->mddev, rdev);
2104                 }
2105         }
2106         rdev_dec_pending(rdev, conf->mddev);
2107         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2108         set_bit(STRIPE_HANDLE, &sh->state);
2109         release_stripe(sh);
2110 }
2111
2112 static void raid5_end_write_request(struct bio *bi, int error)
2113 {
2114         struct stripe_head *sh = bi->bi_private;
2115         struct r5conf *conf = sh->raid_conf;
2116         int disks = sh->disks, i;
2117         struct md_rdev *uninitialized_var(rdev);
2118         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2119         sector_t first_bad;
2120         int bad_sectors;
2121         int replacement = 0;
2122
2123         for (i = 0 ; i < disks; i++) {
2124                 if (bi == &sh->dev[i].req) {
2125                         rdev = conf->disks[i].rdev;
2126                         break;
2127                 }
2128                 if (bi == &sh->dev[i].rreq) {
2129                         rdev = conf->disks[i].replacement;
2130                         if (rdev)
2131                                 replacement = 1;
2132                         else
2133                                 /* rdev was removed and 'replacement'
2134                                  * replaced it.  rdev is not removed
2135                                  * until all requests are finished.
2136                                  */
2137                                 rdev = conf->disks[i].rdev;
2138                         break;
2139                 }
2140         }
2141         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2142                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2143                 uptodate);
2144         if (i == disks) {
2145                 BUG();
2146                 return;
2147         }
2148
2149         if (replacement) {
2150                 if (!uptodate)
2151                         md_error(conf->mddev, rdev);
2152                 else if (is_badblock(rdev, sh->sector,
2153                                      STRIPE_SECTORS,
2154                                      &first_bad, &bad_sectors))
2155                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2156         } else {
2157                 if (!uptodate) {
2158                         set_bit(STRIPE_DEGRADED, &sh->state);
2159                         set_bit(WriteErrorSeen, &rdev->flags);
2160                         set_bit(R5_WriteError, &sh->dev[i].flags);
2161                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2162                                 set_bit(MD_RECOVERY_NEEDED,
2163                                         &rdev->mddev->recovery);
2164                 } else if (is_badblock(rdev, sh->sector,
2165                                        STRIPE_SECTORS,
2166                                        &first_bad, &bad_sectors)) {
2167                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2168                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2169                                 /* That was a successful write so make
2170                                  * sure it looks like we already did
2171                                  * a re-write.
2172                                  */
2173                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2174                 }
2175         }
2176         rdev_dec_pending(rdev, conf->mddev);
2177
2178         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2179                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2180         set_bit(STRIPE_HANDLE, &sh->state);
2181         release_stripe(sh);
2182 }
2183
2184 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2185
2186 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2187 {
2188         struct r5dev *dev = &sh->dev[i];
2189
2190         bio_init(&dev->req);
2191         dev->req.bi_io_vec = &dev->vec;
2192         dev->req.bi_max_vecs = 1;
2193         dev->req.bi_private = sh;
2194
2195         bio_init(&dev->rreq);
2196         dev->rreq.bi_io_vec = &dev->rvec;
2197         dev->rreq.bi_max_vecs = 1;
2198         dev->rreq.bi_private = sh;
2199
2200         dev->flags = 0;
2201         dev->sector = compute_blocknr(sh, i, previous);
2202 }
2203
2204 static void error(struct mddev *mddev, struct md_rdev *rdev)
2205 {
2206         char b[BDEVNAME_SIZE];
2207         struct r5conf *conf = mddev->private;
2208         unsigned long flags;
2209         pr_debug("raid456: error called\n");
2210
2211         spin_lock_irqsave(&conf->device_lock, flags);
2212         clear_bit(In_sync, &rdev->flags);
2213         mddev->degraded = calc_degraded(conf);
2214         spin_unlock_irqrestore(&conf->device_lock, flags);
2215         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2216
2217         set_bit(Blocked, &rdev->flags);
2218         set_bit(Faulty, &rdev->flags);
2219         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2220         printk(KERN_ALERT
2221                "md/raid:%s: Disk failure on %s, disabling device.\n"
2222                "md/raid:%s: Operation continuing on %d devices.\n",
2223                mdname(mddev),
2224                bdevname(rdev->bdev, b),
2225                mdname(mddev),
2226                conf->raid_disks - mddev->degraded);
2227 }
2228
2229 /*
2230  * Input: a 'big' sector number,
2231  * Output: index of the data and parity disk, and the sector # in them.
2232  */
2233 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2234                                      int previous, int *dd_idx,
2235                                      struct stripe_head *sh)
2236 {
2237         sector_t stripe, stripe2;
2238         sector_t chunk_number;
2239         unsigned int chunk_offset;
2240         int pd_idx, qd_idx;
2241         int ddf_layout = 0;
2242         sector_t new_sector;
2243         int algorithm = previous ? conf->prev_algo
2244                                  : conf->algorithm;
2245         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2246                                          : conf->chunk_sectors;
2247         int raid_disks = previous ? conf->previous_raid_disks
2248                                   : conf->raid_disks;
2249         int data_disks = raid_disks - conf->max_degraded;
2250
2251         /* First compute the information on this sector */
2252
2253         /*
2254          * Compute the chunk number and the sector offset inside the chunk
2255          */
2256         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2257         chunk_number = r_sector;
2258
2259         /*
2260          * Compute the stripe number
2261          */
2262         stripe = chunk_number;
2263         *dd_idx = sector_div(stripe, data_disks);
2264         stripe2 = stripe;
2265         /*
2266          * Select the parity disk based on the user selected algorithm.
2267          */
2268         pd_idx = qd_idx = -1;
2269         switch(conf->level) {
2270         case 4:
2271                 pd_idx = data_disks;
2272                 break;
2273         case 5:
2274                 switch (algorithm) {
2275                 case ALGORITHM_LEFT_ASYMMETRIC:
2276                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2277                         if (*dd_idx >= pd_idx)
2278                                 (*dd_idx)++;
2279                         break;
2280                 case ALGORITHM_RIGHT_ASYMMETRIC:
2281                         pd_idx = sector_div(stripe2, raid_disks);
2282                         if (*dd_idx >= pd_idx)
2283                                 (*dd_idx)++;
2284                         break;
2285                 case ALGORITHM_LEFT_SYMMETRIC:
2286                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2287                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2288                         break;
2289                 case ALGORITHM_RIGHT_SYMMETRIC:
2290                         pd_idx = sector_div(stripe2, raid_disks);
2291                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2292                         break;
2293                 case ALGORITHM_PARITY_0:
2294                         pd_idx = 0;
2295                         (*dd_idx)++;
2296                         break;
2297                 case ALGORITHM_PARITY_N:
2298                         pd_idx = data_disks;
2299                         break;
2300                 default:
2301                         BUG();
2302                 }
2303                 break;
2304         case 6:
2305
2306                 switch (algorithm) {
2307                 case ALGORITHM_LEFT_ASYMMETRIC:
2308                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2309                         qd_idx = pd_idx + 1;
2310                         if (pd_idx == raid_disks-1) {
2311                                 (*dd_idx)++;    /* Q D D D P */
2312                                 qd_idx = 0;
2313                         } else if (*dd_idx >= pd_idx)
2314                                 (*dd_idx) += 2; /* D D P Q D */
2315                         break;
2316                 case ALGORITHM_RIGHT_ASYMMETRIC:
2317                         pd_idx = sector_div(stripe2, raid_disks);
2318                         qd_idx = pd_idx + 1;
2319                         if (pd_idx == raid_disks-1) {
2320                                 (*dd_idx)++;    /* Q D D D P */
2321                                 qd_idx = 0;
2322                         } else if (*dd_idx >= pd_idx)
2323                                 (*dd_idx) += 2; /* D D P Q D */
2324                         break;
2325                 case ALGORITHM_LEFT_SYMMETRIC:
2326                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2327                         qd_idx = (pd_idx + 1) % raid_disks;
2328                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2329                         break;
2330                 case ALGORITHM_RIGHT_SYMMETRIC:
2331                         pd_idx = sector_div(stripe2, raid_disks);
2332                         qd_idx = (pd_idx + 1) % raid_disks;
2333                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2334                         break;
2335
2336                 case ALGORITHM_PARITY_0:
2337                         pd_idx = 0;
2338                         qd_idx = 1;
2339                         (*dd_idx) += 2;
2340                         break;
2341                 case ALGORITHM_PARITY_N:
2342                         pd_idx = data_disks;
2343                         qd_idx = data_disks + 1;
2344                         break;
2345
2346                 case ALGORITHM_ROTATING_ZERO_RESTART:
2347                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2348                          * of blocks for computing Q is different.
2349                          */
2350                         pd_idx = sector_div(stripe2, raid_disks);
2351                         qd_idx = pd_idx + 1;
2352                         if (pd_idx == raid_disks-1) {
2353                                 (*dd_idx)++;    /* Q D D D P */
2354                                 qd_idx = 0;
2355                         } else if (*dd_idx >= pd_idx)
2356                                 (*dd_idx) += 2; /* D D P Q D */
2357                         ddf_layout = 1;
2358                         break;
2359
2360                 case ALGORITHM_ROTATING_N_RESTART:
2361                         /* Same a left_asymmetric, by first stripe is
2362                          * D D D P Q  rather than
2363                          * Q D D D P
2364                          */
2365                         stripe2 += 1;
2366                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2367                         qd_idx = pd_idx + 1;
2368                         if (pd_idx == raid_disks-1) {
2369                                 (*dd_idx)++;    /* Q D D D P */
2370                                 qd_idx = 0;
2371                         } else if (*dd_idx >= pd_idx)
2372                                 (*dd_idx) += 2; /* D D P Q D */
2373                         ddf_layout = 1;
2374                         break;
2375
2376                 case ALGORITHM_ROTATING_N_CONTINUE:
2377                         /* Same as left_symmetric but Q is before P */
2378                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2379                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2380                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2381                         ddf_layout = 1;
2382                         break;
2383
2384                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2385                         /* RAID5 left_asymmetric, with Q on last device */
2386                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2387                         if (*dd_idx >= pd_idx)
2388                                 (*dd_idx)++;
2389                         qd_idx = raid_disks - 1;
2390                         break;
2391
2392                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2393                         pd_idx = sector_div(stripe2, raid_disks-1);
2394                         if (*dd_idx >= pd_idx)
2395                                 (*dd_idx)++;
2396                         qd_idx = raid_disks - 1;
2397                         break;
2398
2399                 case ALGORITHM_LEFT_SYMMETRIC_6:
2400                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2401                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2402                         qd_idx = raid_disks - 1;
2403                         break;
2404
2405                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2406                         pd_idx = sector_div(stripe2, raid_disks-1);
2407                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2408                         qd_idx = raid_disks - 1;
2409                         break;
2410
2411                 case ALGORITHM_PARITY_0_6:
2412                         pd_idx = 0;
2413                         (*dd_idx)++;
2414                         qd_idx = raid_disks - 1;
2415                         break;
2416
2417                 default:
2418                         BUG();
2419                 }
2420                 break;
2421         }
2422
2423         if (sh) {
2424                 sh->pd_idx = pd_idx;
2425                 sh->qd_idx = qd_idx;
2426                 sh->ddf_layout = ddf_layout;
2427         }
2428         /*
2429          * Finally, compute the new sector number
2430          */
2431         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2432         return new_sector;
2433 }
2434
2435 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2436 {
2437         struct r5conf *conf = sh->raid_conf;
2438         int raid_disks = sh->disks;
2439         int data_disks = raid_disks - conf->max_degraded;
2440         sector_t new_sector = sh->sector, check;
2441         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2442                                          : conf->chunk_sectors;
2443         int algorithm = previous ? conf->prev_algo
2444                                  : conf->algorithm;
2445         sector_t stripe;
2446         int chunk_offset;
2447         sector_t chunk_number;
2448         int dummy1, dd_idx = i;
2449         sector_t r_sector;
2450         struct stripe_head sh2;
2451
2452         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2453         stripe = new_sector;
2454
2455         if (i == sh->pd_idx)
2456                 return 0;
2457         switch(conf->level) {
2458         case 4: break;
2459         case 5:
2460                 switch (algorithm) {
2461                 case ALGORITHM_LEFT_ASYMMETRIC:
2462                 case ALGORITHM_RIGHT_ASYMMETRIC:
2463                         if (i > sh->pd_idx)
2464                                 i--;
2465                         break;
2466                 case ALGORITHM_LEFT_SYMMETRIC:
2467                 case ALGORITHM_RIGHT_SYMMETRIC:
2468                         if (i < sh->pd_idx)
2469                                 i += raid_disks;
2470                         i -= (sh->pd_idx + 1);
2471                         break;
2472                 case ALGORITHM_PARITY_0:
2473                         i -= 1;
2474                         break;
2475                 case ALGORITHM_PARITY_N:
2476                         break;
2477                 default:
2478                         BUG();
2479                 }
2480                 break;
2481         case 6:
2482                 if (i == sh->qd_idx)
2483                         return 0; /* It is the Q disk */
2484                 switch (algorithm) {
2485                 case ALGORITHM_LEFT_ASYMMETRIC:
2486                 case ALGORITHM_RIGHT_ASYMMETRIC:
2487                 case ALGORITHM_ROTATING_ZERO_RESTART:
2488                 case ALGORITHM_ROTATING_N_RESTART:
2489                         if (sh->pd_idx == raid_disks-1)
2490                                 i--;    /* Q D D D P */
2491                         else if (i > sh->pd_idx)
2492                                 i -= 2; /* D D P Q D */
2493                         break;
2494                 case ALGORITHM_LEFT_SYMMETRIC:
2495                 case ALGORITHM_RIGHT_SYMMETRIC:
2496                         if (sh->pd_idx == raid_disks-1)
2497                                 i--; /* Q D D D P */
2498                         else {
2499                                 /* D D P Q D */
2500                                 if (i < sh->pd_idx)
2501                                         i += raid_disks;
2502                                 i -= (sh->pd_idx + 2);
2503                         }
2504                         break;
2505                 case ALGORITHM_PARITY_0:
2506                         i -= 2;
2507                         break;
2508                 case ALGORITHM_PARITY_N:
2509                         break;
2510                 case ALGORITHM_ROTATING_N_CONTINUE:
2511                         /* Like left_symmetric, but P is before Q */
2512                         if (sh->pd_idx == 0)
2513                                 i--;    /* P D D D Q */
2514                         else {
2515                                 /* D D Q P D */
2516                                 if (i < sh->pd_idx)
2517                                         i += raid_disks;
2518                                 i -= (sh->pd_idx + 1);
2519                         }
2520                         break;
2521                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2522                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2523                         if (i > sh->pd_idx)
2524                                 i--;
2525                         break;
2526                 case ALGORITHM_LEFT_SYMMETRIC_6:
2527                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2528                         if (i < sh->pd_idx)
2529                                 i += data_disks + 1;
2530                         i -= (sh->pd_idx + 1);
2531                         break;
2532                 case ALGORITHM_PARITY_0_6:
2533                         i -= 1;
2534                         break;
2535                 default:
2536                         BUG();
2537                 }
2538                 break;
2539         }
2540
2541         chunk_number = stripe * data_disks + i;
2542         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2543
2544         check = raid5_compute_sector(conf, r_sector,
2545                                      previous, &dummy1, &sh2);
2546         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2547                 || sh2.qd_idx != sh->qd_idx) {
2548                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2549                        mdname(conf->mddev));
2550                 return 0;
2551         }
2552         return r_sector;
2553 }
2554
2555 static void
2556 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2557                          int rcw, int expand)
2558 {
2559         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2560         struct r5conf *conf = sh->raid_conf;
2561         int level = conf->level;
2562
2563         if (rcw) {
2564
2565                 for (i = disks; i--; ) {
2566                         struct r5dev *dev = &sh->dev[i];
2567
2568                         if (dev->towrite) {
2569                                 set_bit(R5_LOCKED, &dev->flags);
2570                                 set_bit(R5_Wantdrain, &dev->flags);
2571                                 if (!expand)
2572                                         clear_bit(R5_UPTODATE, &dev->flags);
2573                                 s->locked++;
2574                         }
2575                 }
2576                 /* if we are not expanding this is a proper write request, and
2577                  * there will be bios with new data to be drained into the
2578                  * stripe cache
2579                  */
2580                 if (!expand) {
2581                         if (!s->locked)
2582                                 /* False alarm, nothing to do */
2583                                 return;
2584                         sh->reconstruct_state = reconstruct_state_drain_run;
2585                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2586                 } else
2587                         sh->reconstruct_state = reconstruct_state_run;
2588
2589                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2590
2591                 if (s->locked + conf->max_degraded == disks)
2592                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2593                                 atomic_inc(&conf->pending_full_writes);
2594         } else {
2595                 BUG_ON(level == 6);
2596                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2597                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2598
2599                 for (i = disks; i--; ) {
2600                         struct r5dev *dev = &sh->dev[i];
2601                         if (i == pd_idx)
2602                                 continue;
2603
2604                         if (dev->towrite &&
2605                             (test_bit(R5_UPTODATE, &dev->flags) ||
2606                              test_bit(R5_Wantcompute, &dev->flags))) {
2607                                 set_bit(R5_Wantdrain, &dev->flags);
2608                                 set_bit(R5_LOCKED, &dev->flags);
2609                                 clear_bit(R5_UPTODATE, &dev->flags);
2610                                 s->locked++;
2611                         }
2612                 }
2613                 if (!s->locked)
2614                         /* False alarm - nothing to do */
2615                         return;
2616                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2617                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2618                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2619                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2620         }
2621
2622         /* keep the parity disk(s) locked while asynchronous operations
2623          * are in flight
2624          */
2625         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2626         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2627         s->locked++;
2628
2629         if (level == 6) {
2630                 int qd_idx = sh->qd_idx;
2631                 struct r5dev *dev = &sh->dev[qd_idx];
2632
2633                 set_bit(R5_LOCKED, &dev->flags);
2634                 clear_bit(R5_UPTODATE, &dev->flags);
2635                 s->locked++;
2636         }
2637
2638         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2639                 __func__, (unsigned long long)sh->sector,
2640                 s->locked, s->ops_request);
2641 }
2642
2643 /*
2644  * Each stripe/dev can have one or more bion attached.
2645  * toread/towrite point to the first in a chain.
2646  * The bi_next chain must be in order.
2647  */
2648 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2649 {
2650         struct bio **bip;
2651         struct r5conf *conf = sh->raid_conf;
2652         int firstwrite=0;
2653
2654         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2655                 (unsigned long long)bi->bi_iter.bi_sector,
2656                 (unsigned long long)sh->sector);
2657
2658         /*
2659          * If several bio share a stripe. The bio bi_phys_segments acts as a
2660          * reference count to avoid race. The reference count should already be
2661          * increased before this function is called (for example, in
2662          * make_request()), so other bio sharing this stripe will not free the
2663          * stripe. If a stripe is owned by one stripe, the stripe lock will
2664          * protect it.
2665          */
2666         spin_lock_irq(&sh->stripe_lock);
2667         if (forwrite) {
2668                 bip = &sh->dev[dd_idx].towrite;
2669                 if (*bip == NULL)
2670                         firstwrite = 1;
2671         } else
2672                 bip = &sh->dev[dd_idx].toread;
2673         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2674                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2675                         goto overlap;
2676                 bip = & (*bip)->bi_next;
2677         }
2678         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2679                 goto overlap;
2680
2681         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2682         if (*bip)
2683                 bi->bi_next = *bip;
2684         *bip = bi;
2685         raid5_inc_bi_active_stripes(bi);
2686
2687         if (forwrite) {
2688                 /* check if page is covered */
2689                 sector_t sector = sh->dev[dd_idx].sector;
2690                 for (bi=sh->dev[dd_idx].towrite;
2691                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2692                              bi && bi->bi_iter.bi_sector <= sector;
2693                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2694                         if (bio_end_sector(bi) >= sector)
2695                                 sector = bio_end_sector(bi);
2696                 }
2697                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2698                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2699         }
2700
2701         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2702                 (unsigned long long)(*bip)->bi_iter.bi_sector,
2703                 (unsigned long long)sh->sector, dd_idx);
2704         spin_unlock_irq(&sh->stripe_lock);
2705
2706         if (conf->mddev->bitmap && firstwrite) {
2707                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2708                                   STRIPE_SECTORS, 0);
2709                 sh->bm_seq = conf->seq_flush+1;
2710                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2711         }
2712         return 1;
2713
2714  overlap:
2715         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2716         spin_unlock_irq(&sh->stripe_lock);
2717         return 0;
2718 }
2719
2720 static void end_reshape(struct r5conf *conf);
2721
2722 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2723                             struct stripe_head *sh)
2724 {
2725         int sectors_per_chunk =
2726                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2727         int dd_idx;
2728         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2729         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2730
2731         raid5_compute_sector(conf,
2732                              stripe * (disks - conf->max_degraded)
2733                              *sectors_per_chunk + chunk_offset,
2734                              previous,
2735                              &dd_idx, sh);
2736 }
2737
2738 static void
2739 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2740                                 struct stripe_head_state *s, int disks,
2741                                 struct bio **return_bi)
2742 {
2743         int i;
2744         for (i = disks; i--; ) {
2745                 struct bio *bi;
2746                 int bitmap_end = 0;
2747
2748                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2749                         struct md_rdev *rdev;
2750                         rcu_read_lock();
2751                         rdev = rcu_dereference(conf->disks[i].rdev);
2752                         if (rdev && test_bit(In_sync, &rdev->flags))
2753                                 atomic_inc(&rdev->nr_pending);
2754                         else
2755                                 rdev = NULL;
2756                         rcu_read_unlock();
2757                         if (rdev) {
2758                                 if (!rdev_set_badblocks(
2759                                             rdev,
2760                                             sh->sector,
2761                                             STRIPE_SECTORS, 0))
2762                                         md_error(conf->mddev, rdev);
2763                                 rdev_dec_pending(rdev, conf->mddev);
2764                         }
2765                 }
2766                 spin_lock_irq(&sh->stripe_lock);
2767                 /* fail all writes first */
2768                 bi = sh->dev[i].towrite;
2769                 sh->dev[i].towrite = NULL;
2770                 spin_unlock_irq(&sh->stripe_lock);
2771                 if (bi)
2772                         bitmap_end = 1;
2773
2774                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2775                         wake_up(&conf->wait_for_overlap);
2776
2777                 while (bi && bi->bi_iter.bi_sector <
2778                         sh->dev[i].sector + STRIPE_SECTORS) {
2779                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2780                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2781                         if (!raid5_dec_bi_active_stripes(bi)) {
2782                                 md_write_end(conf->mddev);
2783                                 bi->bi_next = *return_bi;
2784                                 *return_bi = bi;
2785                         }
2786                         bi = nextbi;
2787                 }
2788                 if (bitmap_end)
2789                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2790                                 STRIPE_SECTORS, 0, 0);
2791                 bitmap_end = 0;
2792                 /* and fail all 'written' */
2793                 bi = sh->dev[i].written;
2794                 sh->dev[i].written = NULL;
2795                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
2796                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
2797                         sh->dev[i].page = sh->dev[i].orig_page;
2798                 }
2799
2800                 if (bi) bitmap_end = 1;
2801                 while (bi && bi->bi_iter.bi_sector <
2802                        sh->dev[i].sector + STRIPE_SECTORS) {
2803                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2804                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2805                         if (!raid5_dec_bi_active_stripes(bi)) {
2806                                 md_write_end(conf->mddev);
2807                                 bi->bi_next = *return_bi;
2808                                 *return_bi = bi;
2809                         }
2810                         bi = bi2;
2811                 }
2812
2813                 /* fail any reads if this device is non-operational and
2814                  * the data has not reached the cache yet.
2815                  */
2816                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2817                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2818                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2819                         spin_lock_irq(&sh->stripe_lock);
2820                         bi = sh->dev[i].toread;
2821                         sh->dev[i].toread = NULL;
2822                         spin_unlock_irq(&sh->stripe_lock);
2823                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2824                                 wake_up(&conf->wait_for_overlap);
2825                         while (bi && bi->bi_iter.bi_sector <
2826                                sh->dev[i].sector + STRIPE_SECTORS) {
2827                                 struct bio *nextbi =
2828                                         r5_next_bio(bi, sh->dev[i].sector);
2829                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2830                                 if (!raid5_dec_bi_active_stripes(bi)) {
2831                                         bi->bi_next = *return_bi;
2832                                         *return_bi = bi;
2833                                 }
2834                                 bi = nextbi;
2835                         }
2836                 }
2837                 if (bitmap_end)
2838                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2839                                         STRIPE_SECTORS, 0, 0);
2840                 /* If we were in the middle of a write the parity block might
2841                  * still be locked - so just clear all R5_LOCKED flags
2842                  */
2843                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2844         }
2845
2846         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2847                 if (atomic_dec_and_test(&conf->pending_full_writes))
2848                         md_wakeup_thread(conf->mddev->thread);
2849 }
2850
2851 static void
2852 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2853                    struct stripe_head_state *s)
2854 {
2855         int abort = 0;
2856         int i;
2857
2858         clear_bit(STRIPE_SYNCING, &sh->state);
2859         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2860                 wake_up(&conf->wait_for_overlap);
2861         s->syncing = 0;
2862         s->replacing = 0;
2863         /* There is nothing more to do for sync/check/repair.
2864          * Don't even need to abort as that is handled elsewhere
2865          * if needed, and not always wanted e.g. if there is a known
2866          * bad block here.
2867          * For recover/replace we need to record a bad block on all
2868          * non-sync devices, or abort the recovery
2869          */
2870         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2871                 /* During recovery devices cannot be removed, so
2872                  * locking and refcounting of rdevs is not needed
2873                  */
2874                 for (i = 0; i < conf->raid_disks; i++) {
2875                         struct md_rdev *rdev = conf->disks[i].rdev;
2876                         if (rdev
2877                             && !test_bit(Faulty, &rdev->flags)
2878                             && !test_bit(In_sync, &rdev->flags)
2879                             && !rdev_set_badblocks(rdev, sh->sector,
2880                                                    STRIPE_SECTORS, 0))
2881                                 abort = 1;
2882                         rdev = conf->disks[i].replacement;
2883                         if (rdev
2884                             && !test_bit(Faulty, &rdev->flags)
2885                             && !test_bit(In_sync, &rdev->flags)
2886                             && !rdev_set_badblocks(rdev, sh->sector,
2887                                                    STRIPE_SECTORS, 0))
2888                                 abort = 1;
2889                 }
2890                 if (abort)
2891                         conf->recovery_disabled =
2892                                 conf->mddev->recovery_disabled;
2893         }
2894         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2895 }
2896
2897 static int want_replace(struct stripe_head *sh, int disk_idx)
2898 {
2899         struct md_rdev *rdev;
2900         int rv = 0;
2901         /* Doing recovery so rcu locking not required */
2902         rdev = sh->raid_conf->disks[disk_idx].replacement;
2903         if (rdev
2904             && !test_bit(Faulty, &rdev->flags)
2905             && !test_bit(In_sync, &rdev->flags)
2906             && (rdev->recovery_offset <= sh->sector
2907                 || rdev->mddev->recovery_cp <= sh->sector))
2908                 rv = 1;
2909
2910         return rv;
2911 }
2912
2913 /* fetch_block - checks the given member device to see if its data needs
2914  * to be read or computed to satisfy a request.
2915  *
2916  * Returns 1 when no more member devices need to be checked, otherwise returns
2917  * 0 to tell the loop in handle_stripe_fill to continue
2918  */
2919
2920 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
2921                            int disk_idx, int disks)
2922 {
2923         struct r5dev *dev = &sh->dev[disk_idx];
2924         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2925                                   &sh->dev[s->failed_num[1]] };
2926         int i;
2927
2928
2929         if (test_bit(R5_LOCKED, &dev->flags) ||
2930             test_bit(R5_UPTODATE, &dev->flags))
2931                 /* No point reading this as we already have it or have
2932                  * decided to get it.
2933                  */
2934                 return 0;
2935
2936         if (dev->toread ||
2937             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
2938                 /* We need this block to directly satisfy a request */
2939                 return 1;
2940
2941         if (s->syncing || s->expanding ||
2942             (s->replacing && want_replace(sh, disk_idx)))
2943                 /* When syncing, or expanding we read everything.
2944                  * When replacing, we need the replaced block.
2945                  */
2946                 return 1;
2947
2948         if ((s->failed >= 1 && fdev[0]->toread) ||
2949             (s->failed >= 2 && fdev[1]->toread))
2950                 /* If we want to read from a failed device, then
2951                  * we need to actually read every other device.
2952                  */
2953                 return 1;
2954
2955         /* Sometimes neither read-modify-write nor reconstruct-write
2956          * cycles can work.  In those cases we read every block we
2957          * can.  Then the parity-update is certain to have enough to
2958          * work with.
2959          * This can only be a problem when we need to write something,
2960          * and some device has failed.  If either of those tests
2961          * fail we need look no further.
2962          */
2963         if (!s->failed || !s->to_write)
2964                 return 0;
2965
2966         if (test_bit(R5_Insync, &dev->flags) &&
2967             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2968                 /* Pre-reads at not permitted until after short delay
2969                  * to gather multiple requests.  However if this
2970                  * device is no Insync, the block could only be be computed
2971                  * and there is no need to delay that.
2972                  */
2973                 return 0;
2974
2975         for (i = 0; i < s->failed; i++) {
2976                 if (fdev[i]->towrite &&
2977                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
2978                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
2979                         /* If we have a partial write to a failed
2980                          * device, then we will need to reconstruct
2981                          * the content of that device, so all other
2982                          * devices must be read.
2983                          */
2984                         return 1;
2985         }
2986
2987         /* If we are forced to do a reconstruct-write, either because
2988          * the current RAID6 implementation only supports that, or
2989          * or because parity cannot be trusted and we are currently
2990          * recovering it, there is extra need to be careful.
2991          * If one of the devices that we would need to read, because
2992          * it is not being overwritten (and maybe not written at all)
2993          * is missing/faulty, then we need to read everything we can.
2994          */
2995         if (sh->raid_conf->level != 6 &&
2996             sh->sector < sh->raid_conf->mddev->recovery_cp)
2997                 /* reconstruct-write isn't being forced */
2998                 return 0;
2999         for (i = 0; i < s->failed; i++) {
3000                 if (!test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3001                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3002                         return 1;
3003         }
3004
3005         return 0;
3006 }
3007
3008 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3009                        int disk_idx, int disks)
3010 {
3011         struct r5dev *dev = &sh->dev[disk_idx];
3012
3013         /* is the data in this block needed, and can we get it? */
3014         if (need_this_block(sh, s, disk_idx, disks)) {
3015                 /* we would like to get this block, possibly by computing it,
3016                  * otherwise read it if the backing disk is insync
3017                  */
3018                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3019                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3020                 if ((s->uptodate == disks - 1) &&
3021                     (s->failed && (disk_idx == s->failed_num[0] ||
3022                                    disk_idx == s->failed_num[1]))) {
3023                         /* have disk failed, and we're requested to fetch it;
3024                          * do compute it
3025                          */
3026                         pr_debug("Computing stripe %llu block %d\n",
3027                                (unsigned long long)sh->sector, disk_idx);
3028                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3029                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3030                         set_bit(R5_Wantcompute, &dev->flags);
3031                         sh->ops.target = disk_idx;
3032                         sh->ops.target2 = -1; /* no 2nd target */
3033                         s->req_compute = 1;
3034                         /* Careful: from this point on 'uptodate' is in the eye
3035                          * of raid_run_ops which services 'compute' operations
3036                          * before writes. R5_Wantcompute flags a block that will
3037                          * be R5_UPTODATE by the time it is needed for a
3038                          * subsequent operation.
3039                          */
3040                         s->uptodate++;
3041                         return 1;
3042                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3043                         /* Computing 2-failure is *very* expensive; only
3044                          * do it if failed >= 2
3045                          */
3046                         int other;
3047                         for (other = disks; other--; ) {
3048                                 if (other == disk_idx)
3049                                         continue;
3050                                 if (!test_bit(R5_UPTODATE,
3051                                       &sh->dev[other].flags))
3052                                         break;
3053                         }
3054                         BUG_ON(other < 0);
3055                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3056                                (unsigned long long)sh->sector,
3057                                disk_idx, other);
3058                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3059                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3060                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3061                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3062                         sh->ops.target = disk_idx;
3063                         sh->ops.target2 = other;
3064                         s->uptodate += 2;
3065                         s->req_compute = 1;
3066                         return 1;
3067                 } else if (test_bit(R5_Insync, &dev->flags)) {
3068                         set_bit(R5_LOCKED, &dev->flags);
3069                         set_bit(R5_Wantread, &dev->flags);
3070                         s->locked++;
3071                         pr_debug("Reading block %d (sync=%d)\n",
3072                                 disk_idx, s->syncing);
3073                 }
3074         }
3075
3076         return 0;
3077 }
3078
3079 /**
3080  * handle_stripe_fill - read or compute data to satisfy pending requests.
3081  */
3082 static void handle_stripe_fill(struct stripe_head *sh,
3083                                struct stripe_head_state *s,
3084                                int disks)
3085 {
3086         int i;
3087
3088         /* look for blocks to read/compute, skip this if a compute
3089          * is already in flight, or if the stripe contents are in the
3090          * midst of changing due to a write
3091          */
3092         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3093             !sh->reconstruct_state)
3094                 for (i = disks; i--; )
3095                         if (fetch_block(sh, s, i, disks))
3096                                 break;
3097         set_bit(STRIPE_HANDLE, &sh->state);
3098 }
3099
3100 /* handle_stripe_clean_event
3101  * any written block on an uptodate or failed drive can be returned.
3102  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3103  * never LOCKED, so we don't need to test 'failed' directly.
3104  */
3105 static void handle_stripe_clean_event(struct r5conf *conf,
3106         struct stripe_head *sh, int disks, struct bio **return_bi)
3107 {
3108         int i;
3109         struct r5dev *dev;
3110         int discard_pending = 0;
3111
3112         for (i = disks; i--; )
3113                 if (sh->dev[i].written) {
3114                         dev = &sh->dev[i];
3115                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3116                             (test_bit(R5_UPTODATE, &dev->flags) ||
3117                              test_bit(R5_Discard, &dev->flags) ||
3118                              test_bit(R5_SkipCopy, &dev->flags))) {
3119                                 /* We can return any write requests */
3120                                 struct bio *wbi, *wbi2;
3121                                 pr_debug("Return write for disc %d\n", i);
3122                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3123                                         clear_bit(R5_UPTODATE, &dev->flags);
3124                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3125                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3126                                         dev->page = dev->orig_page;
3127                                 }
3128                                 wbi = dev->written;
3129                                 dev->written = NULL;
3130                                 while (wbi && wbi->bi_iter.bi_sector <
3131                                         dev->sector + STRIPE_SECTORS) {
3132                                         wbi2 = r5_next_bio(wbi, dev->sector);
3133                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3134                                                 md_write_end(conf->mddev);
3135                                                 wbi->bi_next = *return_bi;
3136                                                 *return_bi = wbi;
3137                                         }
3138                                         wbi = wbi2;
3139                                 }
3140                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3141                                                 STRIPE_SECTORS,
3142                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3143                                                 0);
3144                         } else if (test_bit(R5_Discard, &dev->flags))
3145                                 discard_pending = 1;
3146                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3147                         WARN_ON(dev->page != dev->orig_page);
3148                 }
3149         if (!discard_pending &&
3150             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3151                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3152                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3153                 if (sh->qd_idx >= 0) {
3154                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3155                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3156                 }
3157                 /* now that discard is done we can proceed with any sync */
3158                 clear_bit(STRIPE_DISCARD, &sh->state);
3159                 /*
3160                  * SCSI discard will change some bio fields and the stripe has
3161                  * no updated data, so remove it from hash list and the stripe
3162                  * will be reinitialized
3163                  */
3164                 spin_lock_irq(&conf->device_lock);
3165                 remove_hash(sh);
3166                 spin_unlock_irq(&conf->device_lock);
3167                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3168                         set_bit(STRIPE_HANDLE, &sh->state);
3169
3170         }
3171
3172         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3173                 if (atomic_dec_and_test(&conf->pending_full_writes))
3174                         md_wakeup_thread(conf->mddev->thread);
3175 }
3176
3177 static void handle_stripe_dirtying(struct r5conf *conf,
3178                                    struct stripe_head *sh,
3179                                    struct stripe_head_state *s,
3180                                    int disks)
3181 {
3182         int rmw = 0, rcw = 0, i;
3183         sector_t recovery_cp = conf->mddev->recovery_cp;
3184
3185         /* RAID6 requires 'rcw' in current implementation.
3186          * Otherwise, check whether resync is now happening or should start.
3187          * If yes, then the array is dirty (after unclean shutdown or
3188          * initial creation), so parity in some stripes might be inconsistent.
3189          * In this case, we need to always do reconstruct-write, to ensure
3190          * that in case of drive failure or read-error correction, we
3191          * generate correct data from the parity.
3192          */
3193         if (conf->max_degraded == 2 ||
3194             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3195              s->failed == 0)) {
3196                 /* Calculate the real rcw later - for now make it
3197                  * look like rcw is cheaper
3198                  */
3199                 rcw = 1; rmw = 2;
3200                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3201                          conf->max_degraded, (unsigned long long)recovery_cp,
3202                          (unsigned long long)sh->sector);
3203         } else for (i = disks; i--; ) {
3204                 /* would I have to read this buffer for read_modify_write */
3205                 struct r5dev *dev = &sh->dev[i];
3206                 if ((dev->towrite || i == sh->pd_idx) &&
3207                     !test_bit(R5_LOCKED, &dev->flags) &&
3208                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3209                       test_bit(R5_Wantcompute, &dev->flags))) {
3210                         if (test_bit(R5_Insync, &dev->flags))
3211                                 rmw++;
3212                         else
3213                                 rmw += 2*disks;  /* cannot read it */
3214                 }
3215                 /* Would I have to read this buffer for reconstruct_write */
3216                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3217                     !test_bit(R5_LOCKED, &dev->flags) &&
3218                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3219                     test_bit(R5_Wantcompute, &dev->flags))) {
3220                         if (test_bit(R5_Insync, &dev->flags))
3221                                 rcw++;
3222                         else
3223                                 rcw += 2*disks;
3224                 }
3225         }
3226         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3227                 (unsigned long long)sh->sector, rmw, rcw);
3228         set_bit(STRIPE_HANDLE, &sh->state);
3229         if (rmw < rcw && rmw > 0) {
3230                 /* prefer read-modify-write, but need to get some data */
3231                 if (conf->mddev->queue)
3232                         blk_add_trace_msg(conf->mddev->queue,
3233                                           "raid5 rmw %llu %d",
3234                                           (unsigned long long)sh->sector, rmw);
3235                 for (i = disks; i--; ) {
3236                         struct r5dev *dev = &sh->dev[i];
3237                         if ((dev->towrite || i == sh->pd_idx) &&
3238                             !test_bit(R5_LOCKED, &dev->flags) &&
3239                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3240                             test_bit(R5_Wantcompute, &dev->flags)) &&
3241                             test_bit(R5_Insync, &dev->flags)) {
3242                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3243                                              &sh->state)) {
3244                                         pr_debug("Read_old block %d for r-m-w\n",
3245                                                  i);
3246                                         set_bit(R5_LOCKED, &dev->flags);
3247                                         set_bit(R5_Wantread, &dev->flags);
3248                                         s->locked++;
3249                                 } else {
3250                                         set_bit(STRIPE_DELAYED, &sh->state);
3251                                         set_bit(STRIPE_HANDLE, &sh->state);
3252                                 }
3253                         }
3254                 }
3255         }
3256         if (rcw <= rmw && rcw > 0) {
3257                 /* want reconstruct write, but need to get some data */
3258                 int qread =0;
3259                 rcw = 0;
3260                 for (i = disks; i--; ) {
3261                         struct r5dev *dev = &sh->dev[i];
3262                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3263                             i != sh->pd_idx && i != sh->qd_idx &&
3264                             !test_bit(R5_LOCKED, &dev->flags) &&
3265                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3266                               test_bit(R5_Wantcompute, &dev->flags))) {
3267                                 rcw++;
3268                                 if (test_bit(R5_Insync, &dev->flags) &&
3269                                     test_bit(STRIPE_PREREAD_ACTIVE,
3270                                              &sh->state)) {
3271                                         pr_debug("Read_old block "
3272                                                 "%d for Reconstruct\n", i);
3273                                         set_bit(R5_LOCKED, &dev->flags);
3274                                         set_bit(R5_Wantread, &dev->flags);
3275                                         s->locked++;
3276                                         qread++;
3277                                 } else {
3278                                         set_bit(STRIPE_DELAYED, &sh->state);
3279                                         set_bit(STRIPE_HANDLE, &sh->state);
3280                                 }
3281                         }
3282                 }
3283                 if (rcw && conf->mddev->queue)
3284                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3285                                           (unsigned long long)sh->sector,
3286                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3287         }
3288
3289         if (rcw > disks && rmw > disks &&
3290             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3291                 set_bit(STRIPE_DELAYED, &sh->state);
3292
3293         /* now if nothing is locked, and if we have enough data,
3294          * we can start a write request
3295          */
3296         /* since handle_stripe can be called at any time we need to handle the
3297          * case where a compute block operation has been submitted and then a
3298          * subsequent call wants to start a write request.  raid_run_ops only
3299          * handles the case where compute block and reconstruct are requested
3300          * simultaneously.  If this is not the case then new writes need to be
3301          * held off until the compute completes.
3302          */
3303         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3304             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3305             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3306                 schedule_reconstruction(sh, s, rcw == 0, 0);
3307 }
3308
3309 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3310                                 struct stripe_head_state *s, int disks)
3311 {
3312         struct r5dev *dev = NULL;
3313
3314         set_bit(STRIPE_HANDLE, &sh->state);
3315
3316         switch (sh->check_state) {
3317         case check_state_idle:
3318                 /* start a new check operation if there are no failures */
3319                 if (s->failed == 0) {
3320                         BUG_ON(s->uptodate != disks);
3321                         sh->check_state = check_state_run;
3322                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3323                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3324                         s->uptodate--;
3325                         break;
3326                 }
3327                 dev = &sh->dev[s->failed_num[0]];
3328                 /* fall through */
3329         case check_state_compute_result:
3330                 sh->check_state = check_state_idle;
3331                 if (!dev)
3332                         dev = &sh->dev[sh->pd_idx];
3333
3334                 /* check that a write has not made the stripe insync */
3335                 if (test_bit(STRIPE_INSYNC, &sh->state))
3336                         break;
3337
3338                 /* either failed parity check, or recovery is happening */
3339                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3340                 BUG_ON(s->uptodate != disks);
3341
3342                 set_bit(R5_LOCKED, &dev->flags);
3343                 s->locked++;
3344                 set_bit(R5_Wantwrite, &dev->flags);
3345
3346                 clear_bit(STRIPE_DEGRADED, &sh->state);
3347                 set_bit(STRIPE_INSYNC, &sh->state);
3348                 break;
3349         case check_state_run:
3350                 break; /* we will be called again upon completion */
3351         case check_state_check_result:
3352                 sh->check_state = check_state_idle;
3353
3354                 /* if a failure occurred during the check operation, leave
3355                  * STRIPE_INSYNC not set and let the stripe be handled again
3356                  */
3357                 if (s->failed)
3358                         break;
3359
3360                 /* handle a successful check operation, if parity is correct
3361                  * we are done.  Otherwise update the mismatch count and repair
3362                  * parity if !MD_RECOVERY_CHECK
3363                  */
3364                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3365                         /* parity is correct (on disc,
3366                          * not in buffer any more)
3367                          */
3368                         set_bit(STRIPE_INSYNC, &sh->state);
3369                 else {
3370                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3371                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3372                                 /* don't try to repair!! */
3373                                 set_bit(STRIPE_INSYNC, &sh->state);
3374                         else {
3375                                 sh->check_state = check_state_compute_run;
3376                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3377                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3378                                 set_bit(R5_Wantcompute,
3379                                         &sh->dev[sh->pd_idx].flags);
3380                                 sh->ops.target = sh->pd_idx;
3381                                 sh->ops.target2 = -1;
3382                                 s->uptodate++;
3383                         }
3384                 }
3385                 break;
3386         case check_state_compute_run:
3387                 break;
3388         default:
3389                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3390                        __func__, sh->check_state,
3391                        (unsigned long long) sh->sector);
3392                 BUG();
3393         }
3394 }
3395
3396 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3397                                   struct stripe_head_state *s,
3398                                   int disks)
3399 {
3400         int pd_idx = sh->pd_idx;
3401         int qd_idx = sh->qd_idx;
3402         struct r5dev *dev;
3403
3404         set_bit(STRIPE_HANDLE, &sh->state);
3405
3406         BUG_ON(s->failed > 2);
3407
3408         /* Want to check and possibly repair P and Q.
3409          * However there could be one 'failed' device, in which
3410          * case we can only check one of them, possibly using the
3411          * other to generate missing data
3412          */
3413
3414         switch (sh->check_state) {
3415         case check_state_idle:
3416                 /* start a new check operation if there are < 2 failures */
3417                 if (s->failed == s->q_failed) {
3418                         /* The only possible failed device holds Q, so it
3419                          * makes sense to check P (If anything else were failed,
3420                          * we would have used P to recreate it).
3421                          */
3422                         sh->check_state = check_state_run;
3423                 }
3424                 if (!s->q_failed && s->failed < 2) {
3425                         /* Q is not failed, and we didn't use it to generate
3426                          * anything, so it makes sense to check it
3427                          */
3428                         if (sh->check_state == check_state_run)
3429                                 sh->check_state = check_state_run_pq;
3430                         else
3431                                 sh->check_state = check_state_run_q;
3432                 }
3433
3434                 /* discard potentially stale zero_sum_result */
3435                 sh->ops.zero_sum_result = 0;
3436
3437                 if (sh->check_state == check_state_run) {
3438                         /* async_xor_zero_sum destroys the contents of P */
3439                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3440                         s->uptodate--;
3441                 }
3442                 if (sh->check_state >= check_state_run &&
3443                     sh->check_state <= check_state_run_pq) {
3444                         /* async_syndrome_zero_sum preserves P and Q, so
3445                          * no need to mark them !uptodate here
3446                          */
3447                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3448                         break;
3449                 }
3450
3451                 /* we have 2-disk failure */
3452                 BUG_ON(s->failed != 2);
3453                 /* fall through */
3454         case check_state_compute_result:
3455                 sh->check_state = check_state_idle;
3456
3457                 /* check that a write has not made the stripe insync */
3458                 if (test_bit(STRIPE_INSYNC, &sh->state))
3459                         break;
3460
3461                 /* now write out any block on a failed drive,
3462                  * or P or Q if they were recomputed
3463                  */
3464                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3465                 if (s->failed == 2) {
3466                         dev = &sh->dev[s->failed_num[1]];
3467                         s->locked++;
3468                         set_bit(R5_LOCKED, &dev->flags);
3469                         set_bit(R5_Wantwrite, &dev->flags);
3470                 }
3471                 if (s->failed >= 1) {
3472                         dev = &sh->dev[s->failed_num[0]];
3473                         s->locked++;
3474                         set_bit(R5_LOCKED, &dev->flags);
3475                         set_bit(R5_Wantwrite, &dev->flags);
3476                 }
3477                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3478                         dev = &sh->dev[pd_idx];
3479                         s->locked++;
3480                         set_bit(R5_LOCKED, &dev->flags);
3481                         set_bit(R5_Wantwrite, &dev->flags);
3482                 }
3483                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3484                         dev = &sh->dev[qd_idx];
3485                         s->locked++;
3486                         set_bit(R5_LOCKED, &dev->flags);
3487                         set_bit(R5_Wantwrite, &dev->flags);
3488                 }
3489                 clear_bit(STRIPE_DEGRADED, &sh->state);
3490
3491                 set_bit(STRIPE_INSYNC, &sh->state);
3492                 break;
3493         case check_state_run:
3494         case check_state_run_q:
3495         case check_state_run_pq:
3496                 break; /* we will be called again upon completion */
3497         case check_state_check_result:
3498                 sh->check_state = check_state_idle;
3499
3500                 /* handle a successful check operation, if parity is correct
3501                  * we are done.  Otherwise update the mismatch count and repair
3502                  * parity if !MD_RECOVERY_CHECK
3503                  */
3504                 if (sh->ops.zero_sum_result == 0) {
3505                         /* both parities are correct */
3506                         if (!s->failed)
3507                                 set_bit(STRIPE_INSYNC, &sh->state);
3508                         else {
3509                                 /* in contrast to the raid5 case we can validate
3510                                  * parity, but still have a failure to write
3511                                  * back
3512                                  */
3513                                 sh->check_state = check_state_compute_result;
3514                                 /* Returning at this point means that we may go
3515                                  * off and bring p and/or q uptodate again so
3516                                  * we make sure to check zero_sum_result again
3517                                  * to verify if p or q need writeback
3518                                  */
3519                         }
3520                 } else {
3521                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3522                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3523                                 /* don't try to repair!! */
3524                                 set_bit(STRIPE_INSYNC, &sh->state);
3525                         else {
3526                                 int *target = &sh->ops.target;
3527
3528                                 sh->ops.target = -1;
3529                                 sh->ops.target2 = -1;
3530                                 sh->check_state = check_state_compute_run;
3531                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3532                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3533                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3534                                         set_bit(R5_Wantcompute,
3535                                                 &sh->dev[pd_idx].flags);
3536                                         *target = pd_idx;
3537                                         target = &sh->ops.target2;
3538                                         s->uptodate++;
3539                                 }
3540                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3541                                         set_bit(R5_Wantcompute,
3542                                                 &sh->dev[qd_idx].flags);
3543                                         *target = qd_idx;
3544                                         s->uptodate++;
3545                                 }
3546                         }
3547                 }
3548                 break;
3549         case check_state_compute_run:
3550                 break;
3551         default:
3552                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3553                        __func__, sh->check_state,
3554                        (unsigned long long) sh->sector);
3555                 BUG();
3556         }
3557 }
3558
3559 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3560 {
3561         int i;
3562
3563         /* We have read all the blocks in this stripe and now we need to
3564          * copy some of them into a target stripe for expand.
3565          */
3566         struct dma_async_tx_descriptor *tx = NULL;
3567         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3568         for (i = 0; i < sh->disks; i++)
3569                 if (i != sh->pd_idx && i != sh->qd_idx) {
3570                         int dd_idx, j;
3571                         struct stripe_head *sh2;
3572                         struct async_submit_ctl submit;
3573
3574                         sector_t bn = compute_blocknr(sh, i, 1);
3575                         sector_t s = raid5_compute_sector(conf, bn, 0,
3576                                                           &dd_idx, NULL);
3577                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3578                         if (sh2 == NULL)
3579                                 /* so far only the early blocks of this stripe
3580                                  * have been requested.  When later blocks
3581                                  * get requested, we will try again
3582                                  */
3583                                 continue;
3584                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3585                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3586                                 /* must have already done this block */
3587                                 release_stripe(sh2);
3588                                 continue;
3589                         }
3590
3591                         /* place all the copies on one channel */
3592                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3593                         tx = async_memcpy(sh2->dev[dd_idx].page,
3594                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3595                                           &submit);
3596
3597                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3598                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3599                         for (j = 0; j < conf->raid_disks; j++)
3600                                 if (j != sh2->pd_idx &&
3601                                     j != sh2->qd_idx &&
3602                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3603                                         break;
3604                         if (j == conf->raid_disks) {
3605                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3606                                 set_bit(STRIPE_HANDLE, &sh2->state);
3607                         }
3608                         release_stripe(sh2);
3609
3610                 }
3611         /* done submitting copies, wait for them to complete */
3612         async_tx_quiesce(&tx);
3613 }
3614
3615 /*
3616  * handle_stripe - do things to a stripe.
3617  *
3618  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3619  * state of various bits to see what needs to be done.
3620  * Possible results:
3621  *    return some read requests which now have data
3622  *    return some write requests which are safely on storage
3623  *    schedule a read on some buffers
3624  *    schedule a write of some buffers
3625  *    return confirmation of parity correctness
3626  *
3627  */
3628
3629 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3630 {
3631         struct r5conf *conf = sh->raid_conf;
3632         int disks = sh->disks;
3633         struct r5dev *dev;
3634         int i;
3635         int do_recovery = 0;
3636
3637         memset(s, 0, sizeof(*s));
3638
3639         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3640         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3641         s->failed_num[0] = -1;
3642         s->failed_num[1] = -1;
3643
3644         /* Now to look around and see what can be done */
3645         rcu_read_lock();
3646         for (i=disks; i--; ) {
3647                 struct md_rdev *rdev;
3648                 sector_t first_bad;
3649                 int bad_sectors;
3650                 int is_bad = 0;
3651
3652                 dev = &sh->dev[i];
3653
3654                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3655                          i, dev->flags,
3656                          dev->toread, dev->towrite, dev->written);
3657                 /* maybe we can reply to a read
3658                  *
3659                  * new wantfill requests are only permitted while
3660                  * ops_complete_biofill is guaranteed to be inactive
3661                  */
3662                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3663                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3664                         set_bit(R5_Wantfill, &dev->flags);
3665
3666                 /* now count some things */
3667                 if (test_bit(R5_LOCKED, &dev->flags))
3668                         s->locked++;
3669                 if (test_bit(R5_UPTODATE, &dev->flags))
3670                         s->uptodate++;
3671                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3672                         s->compute++;
3673                         BUG_ON(s->compute > 2);
3674                 }
3675
3676                 if (test_bit(R5_Wantfill, &dev->flags))
3677                         s->to_fill++;
3678                 else if (dev->toread)
3679                         s->to_read++;
3680                 if (dev->towrite) {
3681                         s->to_write++;
3682                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3683                                 s->non_overwrite++;
3684                 }
3685                 if (dev->written)
3686                         s->written++;
3687                 /* Prefer to use the replacement for reads, but only
3688                  * if it is recovered enough and has no bad blocks.
3689                  */
3690                 rdev = rcu_dereference(conf->disks[i].replacement);
3691                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3692                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3693                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3694                                  &first_bad, &bad_sectors))
3695                         set_bit(R5_ReadRepl, &dev->flags);
3696                 else {
3697                         if (rdev)
3698                                 set_bit(R5_NeedReplace, &dev->flags);
3699                         rdev = rcu_dereference(conf->disks[i].rdev);
3700                         clear_bit(R5_ReadRepl, &dev->flags);
3701                 }
3702                 if (rdev && test_bit(Faulty, &rdev->flags))
3703                         rdev = NULL;
3704                 if (rdev) {
3705                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3706                                              &first_bad, &bad_sectors);
3707                         if (s->blocked_rdev == NULL
3708                             && (test_bit(Blocked, &rdev->flags)
3709                                 || is_bad < 0)) {
3710                                 if (is_bad < 0)
3711                                         set_bit(BlockedBadBlocks,
3712                                                 &rdev->flags);
3713                                 s->blocked_rdev = rdev;
3714                                 atomic_inc(&rdev->nr_pending);
3715                         }
3716                 }
3717                 clear_bit(R5_Insync, &dev->flags);
3718                 if (!rdev)
3719                         /* Not in-sync */;
3720                 else if (is_bad) {
3721                         /* also not in-sync */
3722                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3723                             test_bit(R5_UPTODATE, &dev->flags)) {
3724                                 /* treat as in-sync, but with a read error
3725                                  * which we can now try to correct
3726                                  */
3727                                 set_bit(R5_Insync, &dev->flags);
3728                                 set_bit(R5_ReadError, &dev->flags);
3729                         }
3730                 } else if (test_bit(In_sync, &rdev->flags))
3731                         set_bit(R5_Insync, &dev->flags);
3732                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3733                         /* in sync if before recovery_offset */
3734                         set_bit(R5_Insync, &dev->flags);
3735                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3736                          test_bit(R5_Expanded, &dev->flags))
3737                         /* If we've reshaped into here, we assume it is Insync.
3738                          * We will shortly update recovery_offset to make
3739                          * it official.
3740                          */
3741                         set_bit(R5_Insync, &dev->flags);
3742
3743                 if (test_bit(R5_WriteError, &dev->flags)) {
3744                         /* This flag does not apply to '.replacement'
3745                          * only to .rdev, so make sure to check that*/
3746                         struct md_rdev *rdev2 = rcu_dereference(
3747                                 conf->disks[i].rdev);
3748                         if (rdev2 == rdev)
3749                                 clear_bit(R5_Insync, &dev->flags);
3750                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3751                                 s->handle_bad_blocks = 1;
3752                                 atomic_inc(&rdev2->nr_pending);
3753                         } else
3754                                 clear_bit(R5_WriteError, &dev->flags);
3755                 }
3756                 if (test_bit(R5_MadeGood, &dev->flags)) {
3757                         /* This flag does not apply to '.replacement'
3758                          * only to .rdev, so make sure to check that*/
3759                         struct md_rdev *rdev2 = rcu_dereference(
3760                                 conf->disks[i].rdev);
3761                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3762                                 s->handle_bad_blocks = 1;
3763                                 atomic_inc(&rdev2->nr_pending);
3764                         } else
3765                                 clear_bit(R5_MadeGood, &dev->flags);
3766                 }
3767                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3768                         struct md_rdev *rdev2 = rcu_dereference(
3769                                 conf->disks[i].replacement);
3770                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3771                                 s->handle_bad_blocks = 1;
3772                                 atomic_inc(&rdev2->nr_pending);
3773                         } else
3774                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3775                 }
3776                 if (!test_bit(R5_Insync, &dev->flags)) {
3777                         /* The ReadError flag will just be confusing now */
3778                         clear_bit(R5_ReadError, &dev->flags);
3779                         clear_bit(R5_ReWrite, &dev->flags);
3780                 }
3781                 if (test_bit(R5_ReadError, &dev->flags))
3782                         clear_bit(R5_Insync, &dev->flags);
3783                 if (!test_bit(R5_Insync, &dev->flags)) {
3784                         if (s->failed < 2)
3785                                 s->failed_num[s->failed] = i;
3786                         s->failed++;
3787                         if (rdev && !test_bit(Faulty, &rdev->flags))
3788                                 do_recovery = 1;
3789                 }
3790         }
3791         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3792                 /* If there is a failed device being replaced,
3793                  *     we must be recovering.
3794                  * else if we are after recovery_cp, we must be syncing
3795                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3796                  * else we can only be replacing
3797                  * sync and recovery both need to read all devices, and so
3798                  * use the same flag.
3799                  */
3800                 if (do_recovery ||
3801                     sh->sector >= conf->mddev->recovery_cp ||
3802                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3803                         s->syncing = 1;
3804                 else
3805                         s->replacing = 1;
3806         }
3807         rcu_read_unlock();
3808 }
3809
3810 static void handle_stripe(struct stripe_head *sh)
3811 {
3812         struct stripe_head_state s;
3813         struct r5conf *conf = sh->raid_conf;
3814         int i;
3815         int prexor;
3816         int disks = sh->disks;
3817         struct r5dev *pdev, *qdev;
3818
3819         clear_bit(STRIPE_HANDLE, &sh->state);
3820         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3821                 /* already being handled, ensure it gets handled
3822                  * again when current action finishes */
3823                 set_bit(STRIPE_HANDLE, &sh->state);
3824                 return;
3825         }
3826
3827         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3828                 spin_lock(&sh->stripe_lock);
3829                 /* Cannot process 'sync' concurrently with 'discard' */
3830                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3831                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3832                         set_bit(STRIPE_SYNCING, &sh->state);
3833                         clear_bit(STRIPE_INSYNC, &sh->state);
3834                         clear_bit(STRIPE_REPLACED, &sh->state);
3835                 }
3836                 spin_unlock(&sh->stripe_lock);
3837         }
3838         clear_bit(STRIPE_DELAYED, &sh->state);
3839
3840         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3841                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3842                (unsigned long long)sh->sector, sh->state,
3843                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3844                sh->check_state, sh->reconstruct_state);
3845
3846         analyse_stripe(sh, &s);
3847
3848         if (s.handle_bad_blocks) {
3849                 set_bit(STRIPE_HANDLE, &sh->state);
3850                 goto finish;
3851         }
3852
3853         if (unlikely(s.blocked_rdev)) {
3854                 if (s.syncing || s.expanding || s.expanded ||
3855                     s.replacing || s.to_write || s.written) {
3856                         set_bit(STRIPE_HANDLE, &sh->state);
3857                         goto finish;
3858                 }
3859                 /* There is nothing for the blocked_rdev to block */
3860                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3861                 s.blocked_rdev = NULL;
3862         }
3863
3864         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3865                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3866                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3867         }
3868
3869         pr_debug("locked=%d uptodate=%d to_read=%d"
3870                " to_write=%d failed=%d failed_num=%d,%d\n",
3871                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3872                s.failed_num[0], s.failed_num[1]);
3873         /* check if the array has lost more than max_degraded devices and,
3874          * if so, some requests might need to be failed.
3875          */
3876         if (s.failed > conf->max_degraded) {
3877                 sh->check_state = 0;
3878                 sh->reconstruct_state = 0;
3879                 if (s.to_read+s.to_write+s.written)
3880                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3881                 if (s.syncing + s.replacing)
3882                         handle_failed_sync(conf, sh, &s);
3883         }
3884
3885         /* Now we check to see if any write operations have recently
3886          * completed
3887          */
3888         prexor = 0;
3889         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3890                 prexor = 1;
3891         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3892             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3893                 sh->reconstruct_state = reconstruct_state_idle;
3894
3895                 /* All the 'written' buffers and the parity block are ready to
3896                  * be written back to disk
3897                  */
3898                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3899                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3900                 BUG_ON(sh->qd_idx >= 0 &&
3901                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3902                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3903                 for (i = disks; i--; ) {
3904                         struct r5dev *dev = &sh->dev[i];
3905                         if (test_bit(R5_LOCKED, &dev->flags) &&
3906                                 (i == sh->pd_idx || i == sh->qd_idx ||
3907                                  dev->written)) {
3908                                 pr_debug("Writing block %d\n", i);
3909                                 set_bit(R5_Wantwrite, &dev->flags);
3910                                 if (prexor)
3911                                         continue;
3912                                 if (s.failed > 1)
3913                                         continue;
3914                                 if (!test_bit(R5_Insync, &dev->flags) ||
3915                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3916                                      s.failed == 0))
3917                                         set_bit(STRIPE_INSYNC, &sh->state);
3918                         }
3919                 }
3920                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3921                         s.dec_preread_active = 1;
3922         }
3923
3924         /*
3925          * might be able to return some write requests if the parity blocks
3926          * are safe, or on a failed drive
3927          */
3928         pdev = &sh->dev[sh->pd_idx];
3929         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3930                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3931         qdev = &sh->dev[sh->qd_idx];
3932         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3933                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3934                 || conf->level < 6;
3935
3936         if (s.written &&
3937             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3938                              && !test_bit(R5_LOCKED, &pdev->flags)
3939                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3940                                  test_bit(R5_Discard, &pdev->flags))))) &&
3941             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3942                              && !test_bit(R5_LOCKED, &qdev->flags)
3943                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3944                                  test_bit(R5_Discard, &qdev->flags))))))
3945                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3946
3947         /* Now we might consider reading some blocks, either to check/generate
3948          * parity, or to satisfy requests
3949          * or to load a block that is being partially written.
3950          */
3951         if (s.to_read || s.non_overwrite
3952             || (conf->level == 6 && s.to_write && s.failed)
3953             || (s.syncing && (s.uptodate + s.compute < disks))
3954             || s.replacing
3955             || s.expanding)
3956                 handle_stripe_fill(sh, &s, disks);
3957
3958         /* Now to consider new write requests and what else, if anything
3959          * should be read.  We do not handle new writes when:
3960          * 1/ A 'write' operation (copy+xor) is already in flight.
3961          * 2/ A 'check' operation is in flight, as it may clobber the parity
3962          *    block.
3963          */
3964         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3965                 handle_stripe_dirtying(conf, sh, &s, disks);
3966
3967         /* maybe we need to check and possibly fix the parity for this stripe
3968          * Any reads will already have been scheduled, so we just see if enough
3969          * data is available.  The parity check is held off while parity
3970          * dependent operations are in flight.
3971          */
3972         if (sh->check_state ||
3973             (s.syncing && s.locked == 0 &&
3974              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3975              !test_bit(STRIPE_INSYNC, &sh->state))) {
3976                 if (conf->level == 6)
3977                         handle_parity_checks6(conf, sh, &s, disks);
3978                 else
3979                         handle_parity_checks5(conf, sh, &s, disks);
3980         }
3981
3982         if ((s.replacing || s.syncing) && s.locked == 0
3983             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3984             && !test_bit(STRIPE_REPLACED, &sh->state)) {
3985                 /* Write out to replacement devices where possible */
3986                 for (i = 0; i < conf->raid_disks; i++)
3987                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3988                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3989                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3990                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3991                                 s.locked++;
3992                         }
3993                 if (s.replacing)
3994                         set_bit(STRIPE_INSYNC, &sh->state);
3995                 set_bit(STRIPE_REPLACED, &sh->state);
3996         }
3997         if ((s.syncing || s.replacing) && s.locked == 0 &&
3998             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3999             test_bit(STRIPE_INSYNC, &sh->state)) {
4000                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4001                 clear_bit(STRIPE_SYNCING, &sh->state);
4002                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4003                         wake_up(&conf->wait_for_overlap);
4004         }
4005
4006         /* If the failed drives are just a ReadError, then we might need
4007          * to progress the repair/check process
4008          */
4009         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4010                 for (i = 0; i < s.failed; i++) {
4011                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4012                         if (test_bit(R5_ReadError, &dev->flags)
4013                             && !test_bit(R5_LOCKED, &dev->flags)
4014                             && test_bit(R5_UPTODATE, &dev->flags)
4015                                 ) {
4016                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4017                                         set_bit(R5_Wantwrite, &dev->flags);
4018                                         set_bit(R5_ReWrite, &dev->flags);
4019                                         set_bit(R5_LOCKED, &dev->flags);
4020                                         s.locked++;
4021                                 } else {
4022                                         /* let's read it back */
4023                                         set_bit(R5_Wantread, &dev->flags);
4024                                         set_bit(R5_LOCKED, &dev->flags);
4025                                         s.locked++;
4026                                 }
4027                         }
4028                 }
4029
4030         /* Finish reconstruct operations initiated by the expansion process */
4031         if (sh->reconstruct_state == reconstruct_state_result) {
4032                 struct stripe_head *sh_src
4033                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
4034                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4035                         /* sh cannot be written until sh_src has been read.
4036                          * so arrange for sh to be delayed a little
4037                          */
4038                         set_bit(STRIPE_DELAYED, &sh->state);
4039                         set_bit(STRIPE_HANDLE, &sh->state);
4040                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4041                                               &sh_src->state))
4042                                 atomic_inc(&conf->preread_active_stripes);
4043                         release_stripe(sh_src);
4044                         goto finish;
4045                 }
4046                 if (sh_src)
4047                         release_stripe(sh_src);
4048
4049                 sh->reconstruct_state = reconstruct_state_idle;
4050                 clear_bit(STRIPE_EXPANDING, &sh->state);
4051                 for (i = conf->raid_disks; i--; ) {
4052                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4053                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4054                         s.locked++;
4055                 }
4056         }
4057
4058         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4059             !sh->reconstruct_state) {
4060                 /* Need to write out all blocks after computing parity */
4061                 sh->disks = conf->raid_disks;
4062                 stripe_set_idx(sh->sector, conf, 0, sh);
4063                 schedule_reconstruction(sh, &s, 1, 1);
4064         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4065                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4066                 atomic_dec(&conf->reshape_stripes);
4067                 wake_up(&conf->wait_for_overlap);
4068                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4069         }
4070
4071         if (s.expanding && s.locked == 0 &&
4072             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4073                 handle_stripe_expansion(conf, sh);
4074
4075 finish:
4076         /* wait for this device to become unblocked */
4077         if (unlikely(s.blocked_rdev)) {
4078                 if (conf->mddev->external)
4079                         md_wait_for_blocked_rdev(s.blocked_rdev,
4080                                                  conf->mddev);
4081                 else
4082                         /* Internal metadata will immediately
4083                          * be written by raid5d, so we don't
4084                          * need to wait here.
4085                          */
4086                         rdev_dec_pending(s.blocked_rdev,
4087                                          conf->mddev);
4088         }
4089
4090         if (s.handle_bad_blocks)
4091                 for (i = disks; i--; ) {
4092                         struct md_rdev *rdev;
4093                         struct r5dev *dev = &sh->dev[i];
4094                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4095                                 /* We own a safe reference to the rdev */
4096                                 rdev = conf->disks[i].rdev;
4097                                 if (!rdev_set_badblocks(rdev, sh->sector,
4098                                                         STRIPE_SECTORS, 0))
4099                                         md_error(conf->mddev, rdev);
4100                                 rdev_dec_pending(rdev, conf->mddev);
4101                         }
4102                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4103                                 rdev = conf->disks[i].rdev;
4104                                 rdev_clear_badblocks(rdev, sh->sector,
4105                                                      STRIPE_SECTORS, 0);
4106                                 rdev_dec_pending(rdev, conf->mddev);
4107                         }
4108                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4109                                 rdev = conf->disks[i].replacement;
4110                                 if (!rdev)
4111                                         /* rdev have been moved down */
4112                                         rdev = conf->disks[i].rdev;
4113                                 rdev_clear_badblocks(rdev, sh->sector,
4114                                                      STRIPE_SECTORS, 0);
4115                                 rdev_dec_pending(rdev, conf->mddev);
4116                         }
4117                 }
4118
4119         if (s.ops_request)
4120                 raid_run_ops(sh, s.ops_request);
4121
4122         ops_run_io(sh, &s);
4123
4124         if (s.dec_preread_active) {
4125                 /* We delay this until after ops_run_io so that if make_request
4126                  * is waiting on a flush, it won't continue until the writes
4127                  * have actually been submitted.
4128                  */
4129                 atomic_dec(&conf->preread_active_stripes);
4130                 if (atomic_read(&conf->preread_active_stripes) <
4131                     IO_THRESHOLD)
4132                         md_wakeup_thread(conf->mddev->thread);
4133         }
4134
4135         return_io(s.return_bi);
4136
4137         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4138 }
4139
4140 static void raid5_activate_delayed(struct r5conf *conf)
4141 {
4142         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4143                 while (!list_empty(&conf->delayed_list)) {
4144                         struct list_head *l = conf->delayed_list.next;
4145                         struct stripe_head *sh;
4146                         sh = list_entry(l, struct stripe_head, lru);
4147                         list_del_init(l);
4148                         clear_bit(STRIPE_DELAYED, &sh->state);
4149                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4150                                 atomic_inc(&conf->preread_active_stripes);
4151                         list_add_tail(&sh->lru, &conf->hold_list);
4152                         raid5_wakeup_stripe_thread(sh);
4153                 }
4154         }
4155 }
4156
4157 static void activate_bit_delay(struct r5conf *conf,
4158         struct list_head *temp_inactive_list)
4159 {
4160         /* device_lock is held */
4161         struct list_head head;
4162         list_add(&head, &conf->bitmap_list);
4163         list_del_init(&conf->bitmap_list);
4164         while (!list_empty(&head)) {
4165                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4166                 int hash;
4167                 list_del_init(&sh->lru);
4168                 atomic_inc(&sh->count);
4169                 hash = sh->hash_lock_index;
4170                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4171         }
4172 }
4173
4174 static int raid5_congested(struct mddev *mddev, int bits)
4175 {
4176         struct r5conf *conf = mddev->private;
4177
4178         /* No difference between reads and writes.  Just check
4179          * how busy the stripe_cache is
4180          */
4181
4182         if (conf->inactive_blocked)
4183                 return 1;
4184         if (conf->quiesce)
4185                 return 1;
4186         if (atomic_read(&conf->empty_inactive_list_nr))
4187                 return 1;
4188
4189         return 0;
4190 }
4191
4192 /* We want read requests to align with chunks where possible,
4193  * but write requests don't need to.
4194  */
4195 static int raid5_mergeable_bvec(struct mddev *mddev,
4196                                 struct bvec_merge_data *bvm,
4197                                 struct bio_vec *biovec)
4198 {
4199         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4200         int max;
4201         unsigned int chunk_sectors = mddev->chunk_sectors;
4202         unsigned int bio_sectors = bvm->bi_size >> 9;
4203
4204         if ((bvm->bi_rw & 1) == WRITE)
4205                 return biovec->bv_len; /* always allow writes to be mergeable */
4206
4207         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4208                 chunk_sectors = mddev->new_chunk_sectors;
4209         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4210         if (max < 0) max = 0;
4211         if (max <= biovec->bv_len && bio_sectors == 0)
4212                 return biovec->bv_len;
4213         else
4214                 return max;
4215 }
4216
4217 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4218 {
4219         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4220         unsigned int chunk_sectors = mddev->chunk_sectors;
4221         unsigned int bio_sectors = bio_sectors(bio);
4222
4223         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4224                 chunk_sectors = mddev->new_chunk_sectors;
4225         return  chunk_sectors >=
4226                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4227 }
4228
4229 /*
4230  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4231  *  later sampled by raid5d.
4232  */
4233 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4234 {
4235         unsigned long flags;
4236
4237         spin_lock_irqsave(&conf->device_lock, flags);
4238
4239         bi->bi_next = conf->retry_read_aligned_list;
4240         conf->retry_read_aligned_list = bi;
4241
4242         spin_unlock_irqrestore(&conf->device_lock, flags);
4243         md_wakeup_thread(conf->mddev->thread);
4244 }
4245
4246 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4247 {
4248         struct bio *bi;
4249
4250         bi = conf->retry_read_aligned;
4251         if (bi) {
4252                 conf->retry_read_aligned = NULL;
4253                 return bi;
4254         }
4255         bi = conf->retry_read_aligned_list;
4256         if(bi) {
4257                 conf->retry_read_aligned_list = bi->bi_next;
4258                 bi->bi_next = NULL;
4259                 /*
4260                  * this sets the active strip count to 1 and the processed
4261                  * strip count to zero (upper 8 bits)
4262                  */
4263                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4264         }
4265
4266         return bi;
4267 }
4268
4269 /*
4270  *  The "raid5_align_endio" should check if the read succeeded and if it
4271  *  did, call bio_endio on the original bio (having bio_put the new bio
4272  *  first).
4273  *  If the read failed..
4274  */
4275 static void raid5_align_endio(struct bio *bi, int error)
4276 {
4277         struct bio* raid_bi  = bi->bi_private;
4278         struct mddev *mddev;
4279         struct r5conf *conf;
4280         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4281         struct md_rdev *rdev;
4282
4283         bio_put(bi);
4284
4285         rdev = (void*)raid_bi->bi_next;
4286         raid_bi->bi_next = NULL;
4287         mddev = rdev->mddev;
4288         conf = mddev->private;
4289
4290         rdev_dec_pending(rdev, conf->mddev);
4291
4292         if (!error && uptodate) {
4293                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4294                                          raid_bi, 0);
4295                 bio_endio(raid_bi, 0);
4296                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4297                         wake_up(&conf->wait_for_stripe);
4298                 return;
4299         }
4300
4301         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4302
4303         add_bio_to_retry(raid_bi, conf);
4304 }
4305
4306 static int bio_fits_rdev(struct bio *bi)
4307 {
4308         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4309
4310         if (bio_sectors(bi) > queue_max_sectors(q))
4311                 return 0;
4312         blk_recount_segments(q, bi);
4313         if (bi->bi_phys_segments > queue_max_segments(q))
4314                 return 0;
4315
4316         if (q->merge_bvec_fn)
4317                 /* it's too hard to apply the merge_bvec_fn at this stage,
4318                  * just just give up
4319                  */
4320                 return 0;
4321
4322         return 1;
4323 }
4324
4325 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4326 {
4327         struct r5conf *conf = mddev->private;
4328         int dd_idx;
4329         struct bio* align_bi;
4330         struct md_rdev *rdev;
4331         sector_t end_sector;
4332
4333         if (!in_chunk_boundary(mddev, raid_bio)) {
4334                 pr_debug("chunk_aligned_read : non aligned\n");
4335                 return 0;
4336         }
4337         /*
4338          * use bio_clone_mddev to make a copy of the bio
4339          */
4340         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4341         if (!align_bi)
4342                 return 0;
4343         /*
4344          *   set bi_end_io to a new function, and set bi_private to the
4345          *     original bio.
4346          */
4347         align_bi->bi_end_io  = raid5_align_endio;
4348         align_bi->bi_private = raid_bio;
4349         /*
4350          *      compute position
4351          */
4352         align_bi->bi_iter.bi_sector =
4353                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4354                                      0, &dd_idx, NULL);
4355
4356         end_sector = bio_end_sector(align_bi);
4357         rcu_read_lock();
4358         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4359         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4360             rdev->recovery_offset < end_sector) {
4361                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4362                 if (rdev &&
4363                     (test_bit(Faulty, &rdev->flags) ||
4364                     !(test_bit(In_sync, &rdev->flags) ||
4365                       rdev->recovery_offset >= end_sector)))
4366                         rdev = NULL;
4367         }
4368         if (rdev) {
4369                 sector_t first_bad;
4370                 int bad_sectors;
4371
4372                 atomic_inc(&rdev->nr_pending);
4373                 rcu_read_unlock();
4374                 raid_bio->bi_next = (void*)rdev;
4375                 align_bi->bi_bdev =  rdev->bdev;
4376                 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4377
4378                 if (!bio_fits_rdev(align_bi) ||
4379                     is_badblock(rdev, align_bi->bi_iter.bi_sector,
4380                                 bio_sectors(align_bi),
4381                                 &first_bad, &bad_sectors)) {
4382                         /* too big in some way, or has a known bad block */
4383                         bio_put(align_bi);
4384                         rdev_dec_pending(rdev, mddev);
4385                         return 0;
4386                 }
4387
4388                 /* No reshape active, so we can trust rdev->data_offset */
4389                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4390
4391                 spin_lock_irq(&conf->device_lock);
4392                 wait_event_lock_irq(conf->wait_for_stripe,
4393                                     conf->quiesce == 0,
4394                                     conf->device_lock);
4395                 atomic_inc(&conf->active_aligned_reads);
4396                 spin_unlock_irq(&conf->device_lock);
4397
4398                 if (mddev->gendisk)
4399                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4400                                               align_bi, disk_devt(mddev->gendisk),
4401                                               raid_bio->bi_iter.bi_sector);
4402                 generic_make_request(align_bi);
4403                 return 1;
4404         } else {
4405                 rcu_read_unlock();
4406                 bio_put(align_bi);
4407                 return 0;
4408         }
4409 }
4410
4411 /* __get_priority_stripe - get the next stripe to process
4412  *
4413  * Full stripe writes are allowed to pass preread active stripes up until
4414  * the bypass_threshold is exceeded.  In general the bypass_count
4415  * increments when the handle_list is handled before the hold_list; however, it
4416  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4417  * stripe with in flight i/o.  The bypass_count will be reset when the
4418  * head of the hold_list has changed, i.e. the head was promoted to the
4419  * handle_list.
4420  */
4421 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4422 {
4423         struct stripe_head *sh = NULL, *tmp;
4424         struct list_head *handle_list = NULL;
4425         struct r5worker_group *wg = NULL;
4426
4427         if (conf->worker_cnt_per_group == 0) {
4428                 handle_list = &conf->handle_list;
4429         } else if (group != ANY_GROUP) {
4430                 handle_list = &conf->worker_groups[group].handle_list;
4431                 wg = &conf->worker_groups[group];
4432         } else {
4433                 int i;
4434                 for (i = 0; i < conf->group_cnt; i++) {
4435                         handle_list = &conf->worker_groups[i].handle_list;
4436                         wg = &conf->worker_groups[i];
4437                         if (!list_empty(handle_list))
4438                                 break;
4439                 }
4440         }
4441
4442         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4443                   __func__,
4444                   list_empty(handle_list) ? "empty" : "busy",
4445                   list_empty(&conf->hold_list) ? "empty" : "busy",
4446                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4447
4448         if (!list_empty(handle_list)) {
4449                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4450
4451                 if (list_empty(&conf->hold_list))
4452                         conf->bypass_count = 0;
4453                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4454                         if (conf->hold_list.next == conf->last_hold)
4455                                 conf->bypass_count++;
4456                         else {
4457                                 conf->last_hold = conf->hold_list.next;
4458                                 conf->bypass_count -= conf->bypass_threshold;
4459                                 if (conf->bypass_count < 0)
4460                                         conf->bypass_count = 0;
4461                         }
4462                 }
4463         } else if (!list_empty(&conf->hold_list) &&
4464                    ((conf->bypass_threshold &&
4465                      conf->bypass_count > conf->bypass_threshold) ||
4466                     atomic_read(&conf->pending_full_writes) == 0)) {
4467
4468                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4469                         if (conf->worker_cnt_per_group == 0 ||
4470                             group == ANY_GROUP ||
4471                             !cpu_online(tmp->cpu) ||
4472                             cpu_to_group(tmp->cpu) == group) {
4473                                 sh = tmp;
4474                                 break;
4475                         }
4476                 }
4477
4478                 if (sh) {
4479                         conf->bypass_count -= conf->bypass_threshold;
4480                         if (conf->bypass_count < 0)
4481                                 conf->bypass_count = 0;
4482                 }
4483                 wg = NULL;
4484         }
4485
4486         if (!sh)
4487                 return NULL;
4488
4489         if (wg) {
4490                 wg->stripes_cnt--;
4491                 sh->group = NULL;
4492         }
4493         list_del_init(&sh->lru);
4494         BUG_ON(atomic_inc_return(&sh->count) != 1);
4495         return sh;
4496 }
4497
4498 struct raid5_plug_cb {
4499         struct blk_plug_cb      cb;
4500         struct list_head        list;
4501         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4502 };
4503
4504 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4505 {
4506         struct raid5_plug_cb *cb = container_of(
4507                 blk_cb, struct raid5_plug_cb, cb);
4508         struct stripe_head *sh;
4509         struct mddev *mddev = cb->cb.data;
4510         struct r5conf *conf = mddev->private;
4511         int cnt = 0;
4512         int hash;
4513
4514         if (cb->list.next && !list_empty(&cb->list)) {
4515                 spin_lock_irq(&conf->device_lock);
4516                 while (!list_empty(&cb->list)) {
4517                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4518                         list_del_init(&sh->lru);
4519                         /*
4520                          * avoid race release_stripe_plug() sees
4521                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4522                          * is still in our list
4523                          */
4524                         smp_mb__before_atomic();
4525                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4526                         /*
4527                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4528                          * case, the count is always > 1 here
4529                          */
4530                         hash = sh->hash_lock_index;
4531                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4532                         cnt++;
4533                 }
4534                 spin_unlock_irq(&conf->device_lock);
4535         }
4536         release_inactive_stripe_list(conf, cb->temp_inactive_list,
4537                                      NR_STRIPE_HASH_LOCKS);
4538         if (mddev->queue)
4539                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4540         kfree(cb);
4541 }
4542
4543 static void release_stripe_plug(struct mddev *mddev,
4544                                 struct stripe_head *sh)
4545 {
4546         struct blk_plug_cb *blk_cb = blk_check_plugged(
4547                 raid5_unplug, mddev,
4548                 sizeof(struct raid5_plug_cb));
4549         struct raid5_plug_cb *cb;
4550
4551         if (!blk_cb) {
4552                 release_stripe(sh);
4553                 return;
4554         }
4555
4556         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4557
4558         if (cb->list.next == NULL) {
4559                 int i;
4560                 INIT_LIST_HEAD(&cb->list);
4561                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4562                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
4563         }
4564
4565         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4566                 list_add_tail(&sh->lru, &cb->list);
4567         else
4568                 release_stripe(sh);
4569 }
4570
4571 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4572 {
4573         struct r5conf *conf = mddev->private;
4574         sector_t logical_sector, last_sector;
4575         struct stripe_head *sh;
4576         int remaining;
4577         int stripe_sectors;
4578
4579         if (mddev->reshape_position != MaxSector)
4580                 /* Skip discard while reshape is happening */
4581                 return;
4582
4583         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4584         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4585
4586         bi->bi_next = NULL;
4587         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4588
4589         stripe_sectors = conf->chunk_sectors *
4590                 (conf->raid_disks - conf->max_degraded);
4591         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4592                                                stripe_sectors);
4593         sector_div(last_sector, stripe_sectors);
4594
4595         logical_sector *= conf->chunk_sectors;
4596         last_sector *= conf->chunk_sectors;
4597
4598         for (; logical_sector < last_sector;
4599              logical_sector += STRIPE_SECTORS) {
4600                 DEFINE_WAIT(w);
4601                 int d;
4602         again:
4603                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4604                 prepare_to_wait(&conf->wait_for_overlap, &w,
4605                                 TASK_UNINTERRUPTIBLE);
4606                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4607                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4608                         release_stripe(sh);
4609                         schedule();
4610                         goto again;
4611                 }
4612                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4613                 spin_lock_irq(&sh->stripe_lock);
4614                 for (d = 0; d < conf->raid_disks; d++) {
4615                         if (d == sh->pd_idx || d == sh->qd_idx)
4616                                 continue;
4617                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4618                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4619                                 spin_unlock_irq(&sh->stripe_lock);
4620                                 release_stripe(sh);
4621                                 schedule();
4622                                 goto again;
4623                         }
4624                 }
4625                 set_bit(STRIPE_DISCARD, &sh->state);
4626                 finish_wait(&conf->wait_for_overlap, &w);
4627                 for (d = 0; d < conf->raid_disks; d++) {
4628                         if (d == sh->pd_idx || d == sh->qd_idx)
4629                                 continue;
4630                         sh->dev[d].towrite = bi;
4631                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4632                         raid5_inc_bi_active_stripes(bi);
4633                 }
4634                 spin_unlock_irq(&sh->stripe_lock);
4635                 if (conf->mddev->bitmap) {
4636                         for (d = 0;
4637                              d < conf->raid_disks - conf->max_degraded;
4638                              d++)
4639                                 bitmap_startwrite(mddev->bitmap,
4640                                                   sh->sector,
4641                                                   STRIPE_SECTORS,
4642                                                   0);
4643                         sh->bm_seq = conf->seq_flush + 1;
4644                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4645                 }
4646
4647                 set_bit(STRIPE_HANDLE, &sh->state);
4648                 clear_bit(STRIPE_DELAYED, &sh->state);
4649                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4650                         atomic_inc(&conf->preread_active_stripes);
4651                 release_stripe_plug(mddev, sh);
4652         }
4653
4654         remaining = raid5_dec_bi_active_stripes(bi);
4655         if (remaining == 0) {
4656                 md_write_end(mddev);
4657                 bio_endio(bi, 0);
4658         }
4659 }
4660
4661 static void make_request(struct mddev *mddev, struct bio * bi)
4662 {
4663         struct r5conf *conf = mddev->private;
4664         int dd_idx;
4665         sector_t new_sector;
4666         sector_t logical_sector, last_sector;
4667         struct stripe_head *sh;
4668         const int rw = bio_data_dir(bi);
4669         int remaining;
4670         DEFINE_WAIT(w);
4671         bool do_prepare;
4672
4673         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4674                 md_flush_request(mddev, bi);
4675                 return;
4676         }
4677
4678         md_write_start(mddev, bi);
4679
4680         if (rw == READ &&
4681              mddev->reshape_position == MaxSector &&
4682              chunk_aligned_read(mddev,bi))
4683                 return;
4684
4685         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4686                 make_discard_request(mddev, bi);
4687                 return;
4688         }
4689
4690         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4691         last_sector = bio_end_sector(bi);
4692         bi->bi_next = NULL;
4693         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4694
4695         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4696         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4697                 int previous;
4698                 int seq;
4699
4700                 do_prepare = false;
4701         retry:
4702                 seq = read_seqcount_begin(&conf->gen_lock);
4703                 previous = 0;
4704                 if (do_prepare)
4705                         prepare_to_wait(&conf->wait_for_overlap, &w,
4706                                 TASK_UNINTERRUPTIBLE);
4707                 if (unlikely(conf->reshape_progress != MaxSector)) {
4708                         /* spinlock is needed as reshape_progress may be
4709                          * 64bit on a 32bit platform, and so it might be
4710                          * possible to see a half-updated value
4711                          * Of course reshape_progress could change after
4712                          * the lock is dropped, so once we get a reference
4713                          * to the stripe that we think it is, we will have
4714                          * to check again.
4715                          */
4716                         spin_lock_irq(&conf->device_lock);
4717                         if (mddev->reshape_backwards
4718                             ? logical_sector < conf->reshape_progress
4719                             : logical_sector >= conf->reshape_progress) {
4720                                 previous = 1;
4721                         } else {
4722                                 if (mddev->reshape_backwards
4723                                     ? logical_sector < conf->reshape_safe
4724                                     : logical_sector >= conf->reshape_safe) {
4725                                         spin_unlock_irq(&conf->device_lock);
4726                                         schedule();
4727                                         do_prepare = true;
4728                                         goto retry;
4729                                 }
4730                         }
4731                         spin_unlock_irq(&conf->device_lock);
4732                 }
4733
4734                 new_sector = raid5_compute_sector(conf, logical_sector,
4735                                                   previous,
4736                                                   &dd_idx, NULL);
4737                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4738                         (unsigned long long)new_sector,
4739                         (unsigned long long)logical_sector);
4740
4741                 sh = get_active_stripe(conf, new_sector, previous,
4742                                        (bi->bi_rw&RWA_MASK), 0);
4743                 if (sh) {
4744                         if (unlikely(previous)) {
4745                                 /* expansion might have moved on while waiting for a
4746                                  * stripe, so we must do the range check again.
4747                                  * Expansion could still move past after this
4748                                  * test, but as we are holding a reference to
4749                                  * 'sh', we know that if that happens,
4750                                  *  STRIPE_EXPANDING will get set and the expansion
4751                                  * won't proceed until we finish with the stripe.
4752                                  */
4753                                 int must_retry = 0;
4754                                 spin_lock_irq(&conf->device_lock);
4755                                 if (mddev->reshape_backwards
4756                                     ? logical_sector >= conf->reshape_progress
4757                                     : logical_sector < conf->reshape_progress)
4758                                         /* mismatch, need to try again */
4759                                         must_retry = 1;
4760                                 spin_unlock_irq(&conf->device_lock);
4761                                 if (must_retry) {
4762                                         release_stripe(sh);
4763                                         schedule();
4764                                         do_prepare = true;
4765                                         goto retry;
4766                                 }
4767                         }
4768                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
4769                                 /* Might have got the wrong stripe_head
4770                                  * by accident
4771                                  */
4772                                 release_stripe(sh);
4773                                 goto retry;
4774                         }
4775
4776                         if (rw == WRITE &&
4777                             logical_sector >= mddev->suspend_lo &&
4778                             logical_sector < mddev->suspend_hi) {
4779                                 release_stripe(sh);
4780                                 /* As the suspend_* range is controlled by
4781                                  * userspace, we want an interruptible
4782                                  * wait.
4783                                  */
4784                                 flush_signals(current);
4785                                 prepare_to_wait(&conf->wait_for_overlap,
4786                                                 &w, TASK_INTERRUPTIBLE);
4787                                 if (logical_sector >= mddev->suspend_lo &&
4788                                     logical_sector < mddev->suspend_hi) {
4789                                         schedule();
4790                                         do_prepare = true;
4791                                 }
4792                                 goto retry;
4793                         }
4794
4795                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4796                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4797                                 /* Stripe is busy expanding or
4798                                  * add failed due to overlap.  Flush everything
4799                                  * and wait a while
4800                                  */
4801                                 md_wakeup_thread(mddev->thread);
4802                                 release_stripe(sh);
4803                                 schedule();
4804                                 do_prepare = true;
4805                                 goto retry;
4806                         }
4807                         set_bit(STRIPE_HANDLE, &sh->state);
4808                         clear_bit(STRIPE_DELAYED, &sh->state);
4809                         if ((bi->bi_rw & REQ_SYNC) &&
4810                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4811                                 atomic_inc(&conf->preread_active_stripes);
4812                         release_stripe_plug(mddev, sh);
4813                 } else {
4814                         /* cannot get stripe for read-ahead, just give-up */
4815                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4816                         break;
4817                 }
4818         }
4819         finish_wait(&conf->wait_for_overlap, &w);
4820
4821         remaining = raid5_dec_bi_active_stripes(bi);
4822         if (remaining == 0) {
4823
4824                 if ( rw == WRITE )
4825                         md_write_end(mddev);
4826
4827                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4828                                          bi, 0);
4829                 bio_endio(bi, 0);
4830         }
4831 }
4832
4833 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4834
4835 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4836 {
4837         /* reshaping is quite different to recovery/resync so it is
4838          * handled quite separately ... here.
4839          *
4840          * On each call to sync_request, we gather one chunk worth of
4841          * destination stripes and flag them as expanding.
4842          * Then we find all the source stripes and request reads.
4843          * As the reads complete, handle_stripe will copy the data
4844          * into the destination stripe and release that stripe.
4845          */
4846         struct r5conf *conf = mddev->private;
4847         struct stripe_head *sh;
4848         sector_t first_sector, last_sector;
4849         int raid_disks = conf->previous_raid_disks;
4850         int data_disks = raid_disks - conf->max_degraded;
4851         int new_data_disks = conf->raid_disks - conf->max_degraded;
4852         int i;
4853         int dd_idx;
4854         sector_t writepos, readpos, safepos;
4855         sector_t stripe_addr;
4856         int reshape_sectors;
4857         struct list_head stripes;
4858
4859         if (sector_nr == 0) {
4860                 /* If restarting in the middle, skip the initial sectors */
4861                 if (mddev->reshape_backwards &&
4862                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4863                         sector_nr = raid5_size(mddev, 0, 0)
4864                                 - conf->reshape_progress;
4865                 } else if (!mddev->reshape_backwards &&
4866                            conf->reshape_progress > 0)
4867                         sector_nr = conf->reshape_progress;
4868                 sector_div(sector_nr, new_data_disks);
4869                 if (sector_nr) {
4870                         mddev->curr_resync_completed = sector_nr;
4871                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4872                         *skipped = 1;
4873                         return sector_nr;
4874                 }
4875         }
4876
4877         /* We need to process a full chunk at a time.
4878          * If old and new chunk sizes differ, we need to process the
4879          * largest of these
4880          */
4881         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4882                 reshape_sectors = mddev->new_chunk_sectors;
4883         else
4884                 reshape_sectors = mddev->chunk_sectors;
4885
4886         /* We update the metadata at least every 10 seconds, or when
4887          * the data about to be copied would over-write the source of
4888          * the data at the front of the range.  i.e. one new_stripe
4889          * along from reshape_progress new_maps to after where
4890          * reshape_safe old_maps to
4891          */
4892         writepos = conf->reshape_progress;
4893         sector_div(writepos, new_data_disks);
4894         readpos = conf->reshape_progress;
4895         sector_div(readpos, data_disks);
4896         safepos = conf->reshape_safe;
4897         sector_div(safepos, data_disks);
4898         if (mddev->reshape_backwards) {
4899                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4900                 readpos += reshape_sectors;
4901                 safepos += reshape_sectors;
4902         } else {
4903                 writepos += reshape_sectors;
4904                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4905                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4906         }
4907
4908         /* Having calculated the 'writepos' possibly use it
4909          * to set 'stripe_addr' which is where we will write to.
4910          */
4911         if (mddev->reshape_backwards) {
4912                 BUG_ON(conf->reshape_progress == 0);
4913                 stripe_addr = writepos;
4914                 BUG_ON((mddev->dev_sectors &
4915                         ~((sector_t)reshape_sectors - 1))
4916                        - reshape_sectors - stripe_addr
4917                        != sector_nr);
4918         } else {
4919                 BUG_ON(writepos != sector_nr + reshape_sectors);
4920                 stripe_addr = sector_nr;
4921         }
4922
4923         /* 'writepos' is the most advanced device address we might write.
4924          * 'readpos' is the least advanced device address we might read.
4925          * 'safepos' is the least address recorded in the metadata as having
4926          *     been reshaped.
4927          * If there is a min_offset_diff, these are adjusted either by
4928          * increasing the safepos/readpos if diff is negative, or
4929          * increasing writepos if diff is positive.
4930          * If 'readpos' is then behind 'writepos', there is no way that we can
4931          * ensure safety in the face of a crash - that must be done by userspace
4932          * making a backup of the data.  So in that case there is no particular
4933          * rush to update metadata.
4934          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4935          * update the metadata to advance 'safepos' to match 'readpos' so that
4936          * we can be safe in the event of a crash.
4937          * So we insist on updating metadata if safepos is behind writepos and
4938          * readpos is beyond writepos.
4939          * In any case, update the metadata every 10 seconds.
4940          * Maybe that number should be configurable, but I'm not sure it is
4941          * worth it.... maybe it could be a multiple of safemode_delay???
4942          */
4943         if (conf->min_offset_diff < 0) {
4944                 safepos += -conf->min_offset_diff;
4945                 readpos += -conf->min_offset_diff;
4946         } else
4947                 writepos += conf->min_offset_diff;
4948
4949         if ((mddev->reshape_backwards
4950              ? (safepos > writepos && readpos < writepos)
4951              : (safepos < writepos && readpos > writepos)) ||
4952             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4953                 /* Cannot proceed until we've updated the superblock... */
4954                 wait_event(conf->wait_for_overlap,
4955                            atomic_read(&conf->reshape_stripes)==0
4956                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4957                 if (atomic_read(&conf->reshape_stripes) != 0)
4958                         return 0;
4959                 mddev->reshape_position = conf->reshape_progress;
4960                 mddev->curr_resync_completed = sector_nr;
4961                 conf->reshape_checkpoint = jiffies;
4962                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4963                 md_wakeup_thread(mddev->thread);
4964                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4965                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4966                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4967                         return 0;
4968                 spin_lock_irq(&conf->device_lock);
4969                 conf->reshape_safe = mddev->reshape_position;
4970                 spin_unlock_irq(&conf->device_lock);
4971                 wake_up(&conf->wait_for_overlap);
4972                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4973         }
4974
4975         INIT_LIST_HEAD(&stripes);
4976         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4977                 int j;
4978                 int skipped_disk = 0;
4979                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4980                 set_bit(STRIPE_EXPANDING, &sh->state);
4981                 atomic_inc(&conf->reshape_stripes);
4982                 /* If any of this stripe is beyond the end of the old
4983                  * array, then we need to zero those blocks
4984                  */
4985                 for (j=sh->disks; j--;) {
4986                         sector_t s;
4987                         if (j == sh->pd_idx)
4988                                 continue;
4989                         if (conf->level == 6 &&
4990                             j == sh->qd_idx)
4991                                 continue;
4992                         s = compute_blocknr(sh, j, 0);
4993                         if (s < raid5_size(mddev, 0, 0)) {
4994                                 skipped_disk = 1;
4995                                 continue;
4996                         }
4997                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4998                         set_bit(R5_Expanded, &sh->dev[j].flags);
4999                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5000                 }
5001                 if (!skipped_disk) {
5002                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5003                         set_bit(STRIPE_HANDLE, &sh->state);
5004                 }
5005                 list_add(&sh->lru, &stripes);
5006         }
5007         spin_lock_irq(&conf->device_lock);
5008         if (mddev->reshape_backwards)
5009                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5010         else
5011                 conf->reshape_progress += reshape_sectors * new_data_disks;
5012         spin_unlock_irq(&conf->device_lock);
5013         /* Ok, those stripe are ready. We can start scheduling
5014          * reads on the source stripes.
5015          * The source stripes are determined by mapping the first and last
5016          * block on the destination stripes.
5017          */
5018         first_sector =
5019                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5020                                      1, &dd_idx, NULL);
5021         last_sector =
5022                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5023                                             * new_data_disks - 1),
5024                                      1, &dd_idx, NULL);
5025         if (last_sector >= mddev->dev_sectors)
5026                 last_sector = mddev->dev_sectors - 1;
5027         while (first_sector <= last_sector) {
5028                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5029                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5030                 set_bit(STRIPE_HANDLE, &sh->state);
5031                 release_stripe(sh);
5032                 first_sector += STRIPE_SECTORS;
5033         }
5034         /* Now that the sources are clearly marked, we can release
5035          * the destination stripes
5036          */
5037         while (!list_empty(&stripes)) {
5038                 sh = list_entry(stripes.next, struct stripe_head, lru);
5039                 list_del_init(&sh->lru);
5040                 release_stripe(sh);
5041         }
5042         /* If this takes us to the resync_max point where we have to pause,
5043          * then we need to write out the superblock.
5044          */
5045         sector_nr += reshape_sectors;
5046         if ((sector_nr - mddev->curr_resync_completed) * 2
5047             >= mddev->resync_max - mddev->curr_resync_completed) {
5048                 /* Cannot proceed until we've updated the superblock... */
5049                 wait_event(conf->wait_for_overlap,
5050                            atomic_read(&conf->reshape_stripes) == 0
5051                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5052                 if (atomic_read(&conf->reshape_stripes) != 0)
5053                         goto ret;
5054                 mddev->reshape_position = conf->reshape_progress;
5055                 mddev->curr_resync_completed = sector_nr;
5056                 conf->reshape_checkpoint = jiffies;
5057                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5058                 md_wakeup_thread(mddev->thread);
5059                 wait_event(mddev->sb_wait,
5060                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5061                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5062                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5063                         goto ret;
5064                 spin_lock_irq(&conf->device_lock);
5065                 conf->reshape_safe = mddev->reshape_position;
5066                 spin_unlock_irq(&conf->device_lock);
5067                 wake_up(&conf->wait_for_overlap);
5068                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5069         }
5070 ret:
5071         return reshape_sectors;
5072 }
5073
5074 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5075 {
5076         struct r5conf *conf = mddev->private;
5077         struct stripe_head *sh;
5078         sector_t max_sector = mddev->dev_sectors;
5079         sector_t sync_blocks;
5080         int still_degraded = 0;
5081         int i;
5082
5083         if (sector_nr >= max_sector) {
5084                 /* just being told to finish up .. nothing much to do */
5085
5086                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5087                         end_reshape(conf);
5088                         return 0;
5089                 }
5090
5091                 if (mddev->curr_resync < max_sector) /* aborted */
5092                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5093                                         &sync_blocks, 1);
5094                 else /* completed sync */
5095                         conf->fullsync = 0;
5096                 bitmap_close_sync(mddev->bitmap);
5097
5098                 return 0;
5099         }
5100
5101         /* Allow raid5_quiesce to complete */
5102         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5103
5104         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5105                 return reshape_request(mddev, sector_nr, skipped);
5106
5107         /* No need to check resync_max as we never do more than one
5108          * stripe, and as resync_max will always be on a chunk boundary,
5109          * if the check in md_do_sync didn't fire, there is no chance
5110          * of overstepping resync_max here
5111          */
5112
5113         /* if there is too many failed drives and we are trying
5114          * to resync, then assert that we are finished, because there is
5115          * nothing we can do.
5116          */
5117         if (mddev->degraded >= conf->max_degraded &&
5118             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5119                 sector_t rv = mddev->dev_sectors - sector_nr;
5120                 *skipped = 1;
5121                 return rv;
5122         }
5123         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5124             !conf->fullsync &&
5125             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5126             sync_blocks >= STRIPE_SECTORS) {
5127                 /* we can skip this block, and probably more */
5128                 sync_blocks /= STRIPE_SECTORS;
5129                 *skipped = 1;
5130                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5131         }
5132
5133         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5134
5135         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5136         if (sh == NULL) {
5137                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5138                 /* make sure we don't swamp the stripe cache if someone else
5139                  * is trying to get access
5140                  */
5141                 schedule_timeout_uninterruptible(1);
5142         }
5143         /* Need to check if array will still be degraded after recovery/resync
5144          * Note in case of > 1 drive failures it's possible we're rebuilding
5145          * one drive while leaving another faulty drive in array.
5146          */
5147         rcu_read_lock();
5148         for (i = 0; i < conf->raid_disks; i++) {
5149                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5150
5151                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5152                         still_degraded = 1;
5153         }
5154         rcu_read_unlock();
5155
5156         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5157
5158         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5159         set_bit(STRIPE_HANDLE, &sh->state);
5160
5161         release_stripe(sh);
5162
5163         return STRIPE_SECTORS;
5164 }
5165
5166 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5167 {
5168         /* We may not be able to submit a whole bio at once as there
5169          * may not be enough stripe_heads available.
5170          * We cannot pre-allocate enough stripe_heads as we may need
5171          * more than exist in the cache (if we allow ever large chunks).
5172          * So we do one stripe head at a time and record in
5173          * ->bi_hw_segments how many have been done.
5174          *
5175          * We *know* that this entire raid_bio is in one chunk, so
5176          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5177          */
5178         struct stripe_head *sh;
5179         int dd_idx;
5180         sector_t sector, logical_sector, last_sector;
5181         int scnt = 0;
5182         int remaining;
5183         int handled = 0;
5184
5185         logical_sector = raid_bio->bi_iter.bi_sector &
5186                 ~((sector_t)STRIPE_SECTORS-1);
5187         sector = raid5_compute_sector(conf, logical_sector,
5188                                       0, &dd_idx, NULL);
5189         last_sector = bio_end_sector(raid_bio);
5190
5191         for (; logical_sector < last_sector;
5192              logical_sector += STRIPE_SECTORS,
5193                      sector += STRIPE_SECTORS,
5194                      scnt++) {
5195
5196                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5197                         /* already done this stripe */
5198                         continue;
5199
5200                 sh = get_active_stripe(conf, sector, 0, 1, 1);
5201
5202                 if (!sh) {
5203                         /* failed to get a stripe - must wait */
5204                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5205                         conf->retry_read_aligned = raid_bio;
5206                         return handled;
5207                 }
5208
5209                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5210                         release_stripe(sh);
5211                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5212                         conf->retry_read_aligned = raid_bio;
5213                         return handled;
5214                 }
5215
5216                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5217                 handle_stripe(sh);
5218                 release_stripe(sh);
5219                 handled++;
5220         }
5221         remaining = raid5_dec_bi_active_stripes(raid_bio);
5222         if (remaining == 0) {
5223                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5224                                          raid_bio, 0);
5225                 bio_endio(raid_bio, 0);
5226         }
5227         if (atomic_dec_and_test(&conf->active_aligned_reads))
5228                 wake_up(&conf->wait_for_stripe);
5229         return handled;
5230 }
5231
5232 static int handle_active_stripes(struct r5conf *conf, int group,
5233                                  struct r5worker *worker,
5234                                  struct list_head *temp_inactive_list)
5235 {
5236         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5237         int i, batch_size = 0, hash;
5238         bool release_inactive = false;
5239
5240         while (batch_size < MAX_STRIPE_BATCH &&
5241                         (sh = __get_priority_stripe(conf, group)) != NULL)
5242                 batch[batch_size++] = sh;
5243
5244         if (batch_size == 0) {
5245                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5246                         if (!list_empty(temp_inactive_list + i))
5247                                 break;
5248                 if (i == NR_STRIPE_HASH_LOCKS)
5249                         return batch_size;
5250                 release_inactive = true;
5251         }
5252         spin_unlock_irq(&conf->device_lock);
5253
5254         release_inactive_stripe_list(conf, temp_inactive_list,
5255                                      NR_STRIPE_HASH_LOCKS);
5256
5257         if (release_inactive) {
5258                 spin_lock_irq(&conf->device_lock);
5259                 return 0;
5260         }
5261
5262         for (i = 0; i < batch_size; i++)
5263                 handle_stripe(batch[i]);
5264
5265         cond_resched();
5266
5267         spin_lock_irq(&conf->device_lock);
5268         for (i = 0; i < batch_size; i++) {
5269                 hash = batch[i]->hash_lock_index;
5270                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5271         }
5272         return batch_size;
5273 }
5274
5275 static void raid5_do_work(struct work_struct *work)
5276 {
5277         struct r5worker *worker = container_of(work, struct r5worker, work);
5278         struct r5worker_group *group = worker->group;
5279         struct r5conf *conf = group->conf;
5280         int group_id = group - conf->worker_groups;
5281         int handled;
5282         struct blk_plug plug;
5283
5284         pr_debug("+++ raid5worker active\n");
5285
5286         blk_start_plug(&plug);
5287         handled = 0;
5288         spin_lock_irq(&conf->device_lock);
5289         while (1) {
5290                 int batch_size, released;
5291
5292                 released = release_stripe_list(conf, worker->temp_inactive_list);
5293
5294                 batch_size = handle_active_stripes(conf, group_id, worker,
5295                                                    worker->temp_inactive_list);
5296                 worker->working = false;
5297                 if (!batch_size && !released)
5298                         break;
5299                 handled += batch_size;
5300         }
5301         pr_debug("%d stripes handled\n", handled);
5302
5303         spin_unlock_irq(&conf->device_lock);
5304         blk_finish_plug(&plug);
5305
5306         pr_debug("--- raid5worker inactive\n");
5307 }
5308
5309 /*
5310  * This is our raid5 kernel thread.
5311  *
5312  * We scan the hash table for stripes which can be handled now.
5313  * During the scan, completed stripes are saved for us by the interrupt
5314  * handler, so that they will not have to wait for our next wakeup.
5315  */
5316 static void raid5d(struct md_thread *thread)
5317 {
5318         struct mddev *mddev = thread->mddev;
5319         struct r5conf *conf = mddev->private;
5320         int handled;
5321         struct blk_plug plug;
5322
5323         pr_debug("+++ raid5d active\n");
5324
5325         md_check_recovery(mddev);
5326
5327         blk_start_plug(&plug);
5328         handled = 0;
5329         spin_lock_irq(&conf->device_lock);
5330         while (1) {
5331                 struct bio *bio;
5332                 int batch_size, released;
5333
5334                 released = release_stripe_list(conf, conf->temp_inactive_list);
5335
5336                 if (
5337                     !list_empty(&conf->bitmap_list)) {
5338                         /* Now is a good time to flush some bitmap updates */
5339                         conf->seq_flush++;
5340                         spin_unlock_irq(&conf->device_lock);
5341                         bitmap_unplug(mddev->bitmap);
5342                         spin_lock_irq(&conf->device_lock);
5343                         conf->seq_write = conf->seq_flush;
5344                         activate_bit_delay(conf, conf->temp_inactive_list);
5345                 }
5346                 raid5_activate_delayed(conf);
5347
5348                 while ((bio = remove_bio_from_retry(conf))) {
5349                         int ok;
5350                         spin_unlock_irq(&conf->device_lock);
5351                         ok = retry_aligned_read(conf, bio);
5352                         spin_lock_irq(&conf->device_lock);
5353                         if (!ok)
5354                                 break;
5355                         handled++;
5356                 }
5357
5358                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5359                                                    conf->temp_inactive_list);
5360                 if (!batch_size && !released)
5361                         break;
5362                 handled += batch_size;
5363
5364                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5365                         spin_unlock_irq(&conf->device_lock);
5366                         md_check_recovery(mddev);
5367                         spin_lock_irq(&conf->device_lock);
5368                 }
5369         }
5370         pr_debug("%d stripes handled\n", handled);
5371
5372         spin_unlock_irq(&conf->device_lock);
5373
5374         async_tx_issue_pending_all();
5375         blk_finish_plug(&plug);
5376
5377         pr_debug("--- raid5d inactive\n");
5378 }
5379
5380 static ssize_t
5381 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5382 {
5383         struct r5conf *conf;
5384         int ret = 0;
5385         spin_lock(&mddev->lock);
5386         conf = mddev->private;
5387         if (conf)
5388                 ret = sprintf(page, "%d\n", conf->max_nr_stripes);
5389         spin_unlock(&mddev->lock);
5390         return ret;
5391 }
5392
5393 int
5394 raid5_set_cache_size(struct mddev *mddev, int size)
5395 {
5396         struct r5conf *conf = mddev->private;
5397         int err;
5398         int hash;
5399
5400         if (size <= 16 || size > 32768)
5401                 return -EINVAL;
5402         hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5403         while (size < conf->max_nr_stripes) {
5404                 if (drop_one_stripe(conf, hash))
5405                         conf->max_nr_stripes--;
5406                 else
5407                         break;
5408                 hash--;
5409                 if (hash < 0)
5410                         hash = NR_STRIPE_HASH_LOCKS - 1;
5411         }
5412         err = md_allow_write(mddev);
5413         if (err)
5414                 return err;
5415         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5416         while (size > conf->max_nr_stripes) {
5417                 if (grow_one_stripe(conf, hash))
5418                         conf->max_nr_stripes++;
5419                 else break;
5420                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5421         }
5422         return 0;
5423 }
5424 EXPORT_SYMBOL(raid5_set_cache_size);
5425
5426 static ssize_t
5427 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5428 {
5429         struct r5conf *conf;
5430         unsigned long new;
5431         int err;
5432
5433         if (len >= PAGE_SIZE)
5434                 return -EINVAL;
5435         if (kstrtoul(page, 10, &new))
5436                 return -EINVAL;
5437         err = mddev_lock(mddev);
5438         if (err)
5439                 return err;
5440         conf = mddev->private;
5441         if (!conf)
5442                 err = -ENODEV;
5443         else
5444                 err = raid5_set_cache_size(mddev, new);
5445         mddev_unlock(mddev);
5446
5447         return err ?: len;
5448 }
5449
5450 static struct md_sysfs_entry
5451 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5452                                 raid5_show_stripe_cache_size,
5453                                 raid5_store_stripe_cache_size);
5454
5455 static ssize_t
5456 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5457 {
5458         struct r5conf *conf;
5459         int ret = 0;
5460         spin_lock(&mddev->lock);
5461         conf = mddev->private;
5462         if (conf)
5463                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5464         spin_unlock(&mddev->lock);
5465         return ret;
5466 }
5467
5468 static ssize_t
5469 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5470 {
5471         struct r5conf *conf;
5472         unsigned long new;
5473         int err;
5474
5475         if (len >= PAGE_SIZE)
5476                 return -EINVAL;
5477         if (kstrtoul(page, 10, &new))
5478                 return -EINVAL;
5479
5480         err = mddev_lock(mddev);
5481         if (err)
5482                 return err;
5483         conf = mddev->private;
5484         if (!conf)
5485                 err = -ENODEV;
5486         else if (new > conf->max_nr_stripes)
5487                 err = -EINVAL;
5488         else
5489                 conf->bypass_threshold = new;
5490         mddev_unlock(mddev);
5491         return err ?: len;
5492 }
5493
5494 static struct md_sysfs_entry
5495 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5496                                         S_IRUGO | S_IWUSR,
5497                                         raid5_show_preread_threshold,
5498                                         raid5_store_preread_threshold);
5499
5500 static ssize_t
5501 raid5_show_skip_copy(struct mddev *mddev, char *page)
5502 {
5503         struct r5conf *conf;
5504         int ret = 0;
5505         spin_lock(&mddev->lock);
5506         conf = mddev->private;
5507         if (conf)
5508                 ret = sprintf(page, "%d\n", conf->skip_copy);
5509         spin_unlock(&mddev->lock);
5510         return ret;
5511 }
5512
5513 static ssize_t
5514 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5515 {
5516         struct r5conf *conf;
5517         unsigned long new;
5518         int err;
5519
5520         if (len >= PAGE_SIZE)
5521                 return -EINVAL;
5522         if (kstrtoul(page, 10, &new))
5523                 return -EINVAL;
5524         new = !!new;
5525
5526         err = mddev_lock(mddev);
5527         if (err)
5528                 return err;
5529         conf = mddev->private;
5530         if (!conf)
5531                 err = -ENODEV;
5532         else if (new != conf->skip_copy) {
5533                 mddev_suspend(mddev);
5534                 conf->skip_copy = new;
5535                 if (new)
5536                         mddev->queue->backing_dev_info.capabilities |=
5537                                 BDI_CAP_STABLE_WRITES;
5538                 else
5539                         mddev->queue->backing_dev_info.capabilities &=
5540                                 ~BDI_CAP_STABLE_WRITES;
5541                 mddev_resume(mddev);
5542         }
5543         mddev_unlock(mddev);
5544         return err ?: len;
5545 }
5546
5547 static struct md_sysfs_entry
5548 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
5549                                         raid5_show_skip_copy,
5550                                         raid5_store_skip_copy);
5551
5552 static ssize_t
5553 stripe_cache_active_show(struct mddev *mddev, char *page)
5554 {
5555         struct r5conf *conf = mddev->private;
5556         if (conf)
5557                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5558         else
5559                 return 0;
5560 }
5561
5562 static struct md_sysfs_entry
5563 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5564
5565 static ssize_t
5566 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5567 {
5568         struct r5conf *conf;
5569         int ret = 0;
5570         spin_lock(&mddev->lock);
5571         conf = mddev->private;
5572         if (conf)
5573                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
5574         spin_unlock(&mddev->lock);
5575         return ret;
5576 }
5577
5578 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5579                                int *group_cnt,
5580                                int *worker_cnt_per_group,
5581                                struct r5worker_group **worker_groups);
5582 static ssize_t
5583 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5584 {
5585         struct r5conf *conf;
5586         unsigned long new;
5587         int err;
5588         struct r5worker_group *new_groups, *old_groups;
5589         int group_cnt, worker_cnt_per_group;
5590
5591         if (len >= PAGE_SIZE)
5592                 return -EINVAL;
5593         if (kstrtoul(page, 10, &new))
5594                 return -EINVAL;
5595
5596         err = mddev_lock(mddev);
5597         if (err)
5598                 return err;
5599         conf = mddev->private;
5600         if (!conf)
5601                 err = -ENODEV;
5602         else if (new != conf->worker_cnt_per_group) {
5603                 mddev_suspend(mddev);
5604
5605                 old_groups = conf->worker_groups;
5606                 if (old_groups)
5607                         flush_workqueue(raid5_wq);
5608
5609                 err = alloc_thread_groups(conf, new,
5610                                           &group_cnt, &worker_cnt_per_group,
5611                                           &new_groups);
5612                 if (!err) {
5613                         spin_lock_irq(&conf->device_lock);
5614                         conf->group_cnt = group_cnt;
5615                         conf->worker_cnt_per_group = worker_cnt_per_group;
5616                         conf->worker_groups = new_groups;
5617                         spin_unlock_irq(&conf->device_lock);
5618
5619                         if (old_groups)
5620                                 kfree(old_groups[0].workers);
5621                         kfree(old_groups);
5622                 }
5623                 mddev_resume(mddev);
5624         }
5625         mddev_unlock(mddev);
5626
5627         return err ?: len;
5628 }
5629
5630 static struct md_sysfs_entry
5631 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5632                                 raid5_show_group_thread_cnt,
5633                                 raid5_store_group_thread_cnt);
5634
5635 static struct attribute *raid5_attrs[] =  {
5636         &raid5_stripecache_size.attr,
5637         &raid5_stripecache_active.attr,
5638         &raid5_preread_bypass_threshold.attr,
5639         &raid5_group_thread_cnt.attr,
5640         &raid5_skip_copy.attr,
5641         NULL,
5642 };
5643 static struct attribute_group raid5_attrs_group = {
5644         .name = NULL,
5645         .attrs = raid5_attrs,
5646 };
5647
5648 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5649                                int *group_cnt,
5650                                int *worker_cnt_per_group,
5651                                struct r5worker_group **worker_groups)
5652 {
5653         int i, j, k;
5654         ssize_t size;
5655         struct r5worker *workers;
5656
5657         *worker_cnt_per_group = cnt;
5658         if (cnt == 0) {
5659                 *group_cnt = 0;
5660                 *worker_groups = NULL;
5661                 return 0;
5662         }
5663         *group_cnt = num_possible_nodes();
5664         size = sizeof(struct r5worker) * cnt;
5665         workers = kzalloc(size * *group_cnt, GFP_NOIO);
5666         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5667                                 *group_cnt, GFP_NOIO);
5668         if (!*worker_groups || !workers) {
5669                 kfree(workers);
5670                 kfree(*worker_groups);
5671                 return -ENOMEM;
5672         }
5673
5674         for (i = 0; i < *group_cnt; i++) {
5675                 struct r5worker_group *group;
5676
5677                 group = &(*worker_groups)[i];
5678                 INIT_LIST_HEAD(&group->handle_list);
5679                 group->conf = conf;
5680                 group->workers = workers + i * cnt;
5681
5682                 for (j = 0; j < cnt; j++) {
5683                         struct r5worker *worker = group->workers + j;
5684                         worker->group = group;
5685                         INIT_WORK(&worker->work, raid5_do_work);
5686
5687                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5688                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
5689                 }
5690         }
5691
5692         return 0;
5693 }
5694
5695 static void free_thread_groups(struct r5conf *conf)
5696 {
5697         if (conf->worker_groups)
5698                 kfree(conf->worker_groups[0].workers);
5699         kfree(conf->worker_groups);
5700         conf->worker_groups = NULL;
5701 }
5702
5703 static sector_t
5704 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5705 {
5706         struct r5conf *conf = mddev->private;
5707
5708         if (!sectors)
5709                 sectors = mddev->dev_sectors;
5710         if (!raid_disks)
5711                 /* size is defined by the smallest of previous and new size */
5712                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5713
5714         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5715         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5716         return sectors * (raid_disks - conf->max_degraded);
5717 }
5718
5719 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5720 {
5721         safe_put_page(percpu->spare_page);
5722         if (percpu->scribble)
5723                 flex_array_free(percpu->scribble);
5724         percpu->spare_page = NULL;
5725         percpu->scribble = NULL;
5726 }
5727
5728 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5729 {
5730         if (conf->level == 6 && !percpu->spare_page)
5731                 percpu->spare_page = alloc_page(GFP_KERNEL);
5732         if (!percpu->scribble)
5733                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
5734                         conf->previous_raid_disks), conf->chunk_sectors /
5735                         STRIPE_SECTORS, GFP_KERNEL);
5736
5737         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5738                 free_scratch_buffer(conf, percpu);
5739                 return -ENOMEM;
5740         }
5741
5742         return 0;
5743 }
5744
5745 static void raid5_free_percpu(struct r5conf *conf)
5746 {
5747         unsigned long cpu;
5748
5749         if (!conf->percpu)
5750                 return;
5751
5752 #ifdef CONFIG_HOTPLUG_CPU
5753         unregister_cpu_notifier(&conf->cpu_notify);
5754 #endif
5755
5756         get_online_cpus();
5757         for_each_possible_cpu(cpu)
5758                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5759         put_online_cpus();
5760
5761         free_percpu(conf->percpu);
5762 }
5763
5764 static void free_conf(struct r5conf *conf)
5765 {
5766         free_thread_groups(conf);
5767         shrink_stripes(conf);
5768         raid5_free_percpu(conf);
5769         kfree(conf->disks);
5770         kfree(conf->stripe_hashtbl);
5771         kfree(conf);
5772 }
5773
5774 #ifdef CONFIG_HOTPLUG_CPU
5775 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5776                               void *hcpu)
5777 {
5778         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5779         long cpu = (long)hcpu;
5780         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5781
5782         switch (action) {
5783         case CPU_UP_PREPARE:
5784         case CPU_UP_PREPARE_FROZEN:
5785                 if (alloc_scratch_buffer(conf, percpu)) {
5786                         pr_err("%s: failed memory allocation for cpu%ld\n",
5787                                __func__, cpu);
5788                         return notifier_from_errno(-ENOMEM);
5789                 }
5790                 break;
5791         case CPU_DEAD:
5792         case CPU_DEAD_FROZEN:
5793                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5794                 break;
5795         default:
5796                 break;
5797         }
5798         return NOTIFY_OK;
5799 }
5800 #endif
5801
5802 static int raid5_alloc_percpu(struct r5conf *conf)
5803 {
5804         unsigned long cpu;
5805         int err = 0;
5806
5807         conf->percpu = alloc_percpu(struct raid5_percpu);
5808         if (!conf->percpu)
5809                 return -ENOMEM;
5810
5811 #ifdef CONFIG_HOTPLUG_CPU
5812         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5813         conf->cpu_notify.priority = 0;
5814         err = register_cpu_notifier(&conf->cpu_notify);
5815         if (err)
5816                 return err;
5817 #endif
5818
5819         get_online_cpus();
5820         for_each_present_cpu(cpu) {
5821                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5822                 if (err) {
5823                         pr_err("%s: failed memory allocation for cpu%ld\n",
5824                                __func__, cpu);
5825                         break;
5826                 }
5827         }
5828         put_online_cpus();
5829
5830         return err;
5831 }
5832
5833 static struct r5conf *setup_conf(struct mddev *mddev)
5834 {
5835         struct r5conf *conf;
5836         int raid_disk, memory, max_disks;
5837         struct md_rdev *rdev;
5838         struct disk_info *disk;
5839         char pers_name[6];
5840         int i;
5841         int group_cnt, worker_cnt_per_group;
5842         struct r5worker_group *new_group;
5843
5844         if (mddev->new_level != 5
5845             && mddev->new_level != 4
5846             && mddev->new_level != 6) {
5847                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5848                        mdname(mddev), mddev->new_level);
5849                 return ERR_PTR(-EIO);
5850         }
5851         if ((mddev->new_level == 5
5852              && !algorithm_valid_raid5(mddev->new_layout)) ||
5853             (mddev->new_level == 6
5854              && !algorithm_valid_raid6(mddev->new_layout))) {
5855                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5856                        mdname(mddev), mddev->new_layout);
5857                 return ERR_PTR(-EIO);
5858         }
5859         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5860                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5861                        mdname(mddev), mddev->raid_disks);
5862                 return ERR_PTR(-EINVAL);
5863         }
5864
5865         if (!mddev->new_chunk_sectors ||
5866             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5867             !is_power_of_2(mddev->new_chunk_sectors)) {
5868                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5869                        mdname(mddev), mddev->new_chunk_sectors << 9);
5870                 return ERR_PTR(-EINVAL);
5871         }
5872
5873         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5874         if (conf == NULL)
5875                 goto abort;
5876         /* Don't enable multi-threading by default*/
5877         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5878                                  &new_group)) {
5879                 conf->group_cnt = group_cnt;
5880                 conf->worker_cnt_per_group = worker_cnt_per_group;
5881                 conf->worker_groups = new_group;
5882         } else
5883                 goto abort;
5884         spin_lock_init(&conf->device_lock);
5885         seqcount_init(&conf->gen_lock);
5886         init_waitqueue_head(&conf->wait_for_stripe);
5887         init_waitqueue_head(&conf->wait_for_overlap);
5888         INIT_LIST_HEAD(&conf->handle_list);
5889         INIT_LIST_HEAD(&conf->hold_list);
5890         INIT_LIST_HEAD(&conf->delayed_list);
5891         INIT_LIST_HEAD(&conf->bitmap_list);
5892         init_llist_head(&conf->released_stripes);
5893         atomic_set(&conf->active_stripes, 0);
5894         atomic_set(&conf->preread_active_stripes, 0);
5895         atomic_set(&conf->active_aligned_reads, 0);
5896         conf->bypass_threshold = BYPASS_THRESHOLD;
5897         conf->recovery_disabled = mddev->recovery_disabled - 1;
5898
5899         conf->raid_disks = mddev->raid_disks;
5900         if (mddev->reshape_position == MaxSector)
5901                 conf->previous_raid_disks = mddev->raid_disks;
5902         else
5903                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5904         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5905
5906         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5907                               GFP_KERNEL);
5908         if (!conf->disks)
5909                 goto abort;
5910
5911         conf->mddev = mddev;
5912
5913         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5914                 goto abort;
5915
5916         /* We init hash_locks[0] separately to that it can be used
5917          * as the reference lock in the spin_lock_nest_lock() call
5918          * in lock_all_device_hash_locks_irq in order to convince
5919          * lockdep that we know what we are doing.
5920          */
5921         spin_lock_init(conf->hash_locks);
5922         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5923                 spin_lock_init(conf->hash_locks + i);
5924
5925         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5926                 INIT_LIST_HEAD(conf->inactive_list + i);
5927
5928         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5929                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
5930
5931         conf->level = mddev->new_level;
5932         conf->chunk_sectors = mddev->new_chunk_sectors;
5933         if (raid5_alloc_percpu(conf) != 0)
5934                 goto abort;
5935
5936         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5937
5938         rdev_for_each(rdev, mddev) {
5939                 raid_disk = rdev->raid_disk;
5940                 if (raid_disk >= max_disks
5941                     || raid_disk < 0)
5942                         continue;
5943                 disk = conf->disks + raid_disk;
5944
5945                 if (test_bit(Replacement, &rdev->flags)) {
5946                         if (disk->replacement)
5947                                 goto abort;
5948                         disk->replacement = rdev;
5949                 } else {
5950                         if (disk->rdev)
5951                                 goto abort;
5952                         disk->rdev = rdev;
5953                 }
5954
5955                 if (test_bit(In_sync, &rdev->flags)) {
5956                         char b[BDEVNAME_SIZE];
5957                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5958                                " disk %d\n",
5959                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5960                 } else if (rdev->saved_raid_disk != raid_disk)
5961                         /* Cannot rely on bitmap to complete recovery */
5962                         conf->fullsync = 1;
5963         }
5964
5965         conf->level = mddev->new_level;
5966         if (conf->level == 6)
5967                 conf->max_degraded = 2;
5968         else
5969                 conf->max_degraded = 1;
5970         conf->algorithm = mddev->new_layout;
5971         conf->reshape_progress = mddev->reshape_position;
5972         if (conf->reshape_progress != MaxSector) {
5973                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5974                 conf->prev_algo = mddev->layout;
5975         }
5976
5977         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5978                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5979         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5980         if (grow_stripes(conf, NR_STRIPES)) {
5981                 printk(KERN_ERR
5982                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5983                        mdname(mddev), memory);
5984                 goto abort;
5985         } else
5986                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5987                        mdname(mddev), memory);
5988
5989         sprintf(pers_name, "raid%d", mddev->new_level);
5990         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5991         if (!conf->thread) {
5992                 printk(KERN_ERR
5993                        "md/raid:%s: couldn't allocate thread.\n",
5994                        mdname(mddev));
5995                 goto abort;
5996         }
5997
5998         return conf;
5999
6000  abort:
6001         if (conf) {
6002                 free_conf(conf);
6003                 return ERR_PTR(-EIO);
6004         } else
6005                 return ERR_PTR(-ENOMEM);
6006 }
6007
6008 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6009 {
6010         switch (algo) {
6011         case ALGORITHM_PARITY_0:
6012                 if (raid_disk < max_degraded)
6013                         return 1;
6014                 break;
6015         case ALGORITHM_PARITY_N:
6016                 if (raid_disk >= raid_disks - max_degraded)
6017                         return 1;
6018                 break;
6019         case ALGORITHM_PARITY_0_6:
6020                 if (raid_disk == 0 ||
6021                     raid_disk == raid_disks - 1)
6022                         return 1;
6023                 break;
6024         case ALGORITHM_LEFT_ASYMMETRIC_6:
6025         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6026         case ALGORITHM_LEFT_SYMMETRIC_6:
6027         case ALGORITHM_RIGHT_SYMMETRIC_6:
6028                 if (raid_disk == raid_disks - 1)
6029                         return 1;
6030         }
6031         return 0;
6032 }
6033
6034 static int run(struct mddev *mddev)
6035 {
6036         struct r5conf *conf;
6037         int working_disks = 0;
6038         int dirty_parity_disks = 0;
6039         struct md_rdev *rdev;
6040         sector_t reshape_offset = 0;
6041         int i;
6042         long long min_offset_diff = 0;
6043         int first = 1;
6044
6045         if (mddev->recovery_cp != MaxSector)
6046                 printk(KERN_NOTICE "md/raid:%s: not clean"
6047                        " -- starting background reconstruction\n",
6048                        mdname(mddev));
6049
6050         rdev_for_each(rdev, mddev) {
6051                 long long diff;
6052                 if (rdev->raid_disk < 0)
6053                         continue;
6054                 diff = (rdev->new_data_offset - rdev->data_offset);
6055                 if (first) {
6056                         min_offset_diff = diff;
6057                         first = 0;
6058                 } else if (mddev->reshape_backwards &&
6059                          diff < min_offset_diff)
6060                         min_offset_diff = diff;
6061                 else if (!mddev->reshape_backwards &&
6062                          diff > min_offset_diff)
6063                         min_offset_diff = diff;
6064         }
6065
6066         if (mddev->reshape_position != MaxSector) {
6067                 /* Check that we can continue the reshape.
6068                  * Difficulties arise if the stripe we would write to
6069                  * next is at or after the stripe we would read from next.
6070                  * For a reshape that changes the number of devices, this
6071                  * is only possible for a very short time, and mdadm makes
6072                  * sure that time appears to have past before assembling
6073                  * the array.  So we fail if that time hasn't passed.
6074                  * For a reshape that keeps the number of devices the same
6075                  * mdadm must be monitoring the reshape can keeping the
6076                  * critical areas read-only and backed up.  It will start
6077                  * the array in read-only mode, so we check for that.
6078                  */
6079                 sector_t here_new, here_old;
6080                 int old_disks;
6081                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6082
6083                 if (mddev->new_level != mddev->level) {
6084                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6085                                "required - aborting.\n",
6086                                mdname(mddev));
6087                         return -EINVAL;
6088                 }
6089                 old_disks = mddev->raid_disks - mddev->delta_disks;
6090                 /* reshape_position must be on a new-stripe boundary, and one
6091                  * further up in new geometry must map after here in old
6092                  * geometry.
6093                  */
6094                 here_new = mddev->reshape_position;
6095                 if (sector_div(here_new, mddev->new_chunk_sectors *
6096                                (mddev->raid_disks - max_degraded))) {
6097                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6098                                "on a stripe boundary\n", mdname(mddev));
6099                         return -EINVAL;
6100                 }
6101                 reshape_offset = here_new * mddev->new_chunk_sectors;
6102                 /* here_new is the stripe we will write to */
6103                 here_old = mddev->reshape_position;
6104                 sector_div(here_old, mddev->chunk_sectors *
6105                            (old_disks-max_degraded));
6106                 /* here_old is the first stripe that we might need to read
6107                  * from */
6108                 if (mddev->delta_disks == 0) {
6109                         if ((here_new * mddev->new_chunk_sectors !=
6110                              here_old * mddev->chunk_sectors)) {
6111                                 printk(KERN_ERR "md/raid:%s: reshape position is"
6112                                        " confused - aborting\n", mdname(mddev));
6113                                 return -EINVAL;
6114                         }
6115                         /* We cannot be sure it is safe to start an in-place
6116                          * reshape.  It is only safe if user-space is monitoring
6117                          * and taking constant backups.
6118                          * mdadm always starts a situation like this in
6119                          * readonly mode so it can take control before
6120                          * allowing any writes.  So just check for that.
6121                          */
6122                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6123                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6124                                 /* not really in-place - so OK */;
6125                         else if (mddev->ro == 0) {
6126                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6127                                        "must be started in read-only mode "
6128                                        "- aborting\n",
6129                                        mdname(mddev));
6130                                 return -EINVAL;
6131                         }
6132                 } else if (mddev->reshape_backwards
6133                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6134                        here_old * mddev->chunk_sectors)
6135                     : (here_new * mddev->new_chunk_sectors >=
6136                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6137                         /* Reading from the same stripe as writing to - bad */
6138                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6139                                "auto-recovery - aborting.\n",
6140                                mdname(mddev));
6141                         return -EINVAL;
6142                 }
6143                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6144                        mdname(mddev));
6145                 /* OK, we should be able to continue; */
6146         } else {
6147                 BUG_ON(mddev->level != mddev->new_level);
6148                 BUG_ON(mddev->layout != mddev->new_layout);
6149                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6150                 BUG_ON(mddev->delta_disks != 0);
6151         }
6152
6153         if (mddev->private == NULL)
6154                 conf = setup_conf(mddev);
6155         else
6156                 conf = mddev->private;
6157
6158         if (IS_ERR(conf))
6159                 return PTR_ERR(conf);
6160
6161         conf->min_offset_diff = min_offset_diff;
6162         mddev->thread = conf->thread;
6163         conf->thread = NULL;
6164         mddev->private = conf;
6165
6166         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6167              i++) {
6168                 rdev = conf->disks[i].rdev;
6169                 if (!rdev && conf->disks[i].replacement) {
6170                         /* The replacement is all we have yet */
6171                         rdev = conf->disks[i].replacement;
6172                         conf->disks[i].replacement = NULL;
6173                         clear_bit(Replacement, &rdev->flags);
6174                         conf->disks[i].rdev = rdev;
6175                 }
6176                 if (!rdev)
6177                         continue;
6178                 if (conf->disks[i].replacement &&
6179                     conf->reshape_progress != MaxSector) {
6180                         /* replacements and reshape simply do not mix. */
6181                         printk(KERN_ERR "md: cannot handle concurrent "
6182                                "replacement and reshape.\n");
6183                         goto abort;
6184                 }
6185                 if (test_bit(In_sync, &rdev->flags)) {
6186                         working_disks++;
6187                         continue;
6188                 }
6189                 /* This disc is not fully in-sync.  However if it
6190                  * just stored parity (beyond the recovery_offset),
6191                  * when we don't need to be concerned about the
6192                  * array being dirty.
6193                  * When reshape goes 'backwards', we never have
6194                  * partially completed devices, so we only need
6195                  * to worry about reshape going forwards.
6196                  */
6197                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6198                 if (mddev->major_version == 0 &&
6199                     mddev->minor_version > 90)
6200                         rdev->recovery_offset = reshape_offset;
6201
6202                 if (rdev->recovery_offset < reshape_offset) {
6203                         /* We need to check old and new layout */
6204                         if (!only_parity(rdev->raid_disk,
6205                                          conf->algorithm,
6206                                          conf->raid_disks,
6207                                          conf->max_degraded))
6208                                 continue;
6209                 }
6210                 if (!only_parity(rdev->raid_disk,
6211                                  conf->prev_algo,
6212                                  conf->previous_raid_disks,
6213                                  conf->max_degraded))
6214                         continue;
6215                 dirty_parity_disks++;
6216         }
6217
6218         /*
6219          * 0 for a fully functional array, 1 or 2 for a degraded array.
6220          */
6221         mddev->degraded = calc_degraded(conf);
6222
6223         if (has_failed(conf)) {
6224                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6225                         " (%d/%d failed)\n",
6226                         mdname(mddev), mddev->degraded, conf->raid_disks);
6227                 goto abort;
6228         }
6229
6230         /* device size must be a multiple of chunk size */
6231         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6232         mddev->resync_max_sectors = mddev->dev_sectors;
6233
6234         if (mddev->degraded > dirty_parity_disks &&
6235             mddev->recovery_cp != MaxSector) {
6236                 if (mddev->ok_start_degraded)
6237                         printk(KERN_WARNING
6238                                "md/raid:%s: starting dirty degraded array"
6239                                " - data corruption possible.\n",
6240                                mdname(mddev));
6241                 else {
6242                         printk(KERN_ERR
6243                                "md/raid:%s: cannot start dirty degraded array.\n",
6244                                mdname(mddev));
6245                         goto abort;
6246                 }
6247         }
6248
6249         if (mddev->degraded == 0)
6250                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6251                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6252                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6253                        mddev->new_layout);
6254         else
6255                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6256                        " out of %d devices, algorithm %d\n",
6257                        mdname(mddev), conf->level,
6258                        mddev->raid_disks - mddev->degraded,
6259                        mddev->raid_disks, mddev->new_layout);
6260
6261         print_raid5_conf(conf);
6262
6263         if (conf->reshape_progress != MaxSector) {
6264                 conf->reshape_safe = conf->reshape_progress;
6265                 atomic_set(&conf->reshape_stripes, 0);
6266                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6267                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6268                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6269                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6270                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6271                                                         "reshape");
6272         }
6273
6274         /* Ok, everything is just fine now */
6275         if (mddev->to_remove == &raid5_attrs_group)
6276                 mddev->to_remove = NULL;
6277         else if (mddev->kobj.sd &&
6278             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6279                 printk(KERN_WARNING
6280                        "raid5: failed to create sysfs attributes for %s\n",
6281                        mdname(mddev));
6282         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6283
6284         if (mddev->queue) {
6285                 int chunk_size;
6286                 bool discard_supported = true;
6287                 /* read-ahead size must cover two whole stripes, which
6288                  * is 2 * (datadisks) * chunksize where 'n' is the
6289                  * number of raid devices
6290                  */
6291                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6292                 int stripe = data_disks *
6293                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6294                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6295                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6296
6297                 chunk_size = mddev->chunk_sectors << 9;
6298                 blk_queue_io_min(mddev->queue, chunk_size);
6299                 blk_queue_io_opt(mddev->queue, chunk_size *
6300                                  (conf->raid_disks - conf->max_degraded));
6301                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6302                 /*
6303                  * We can only discard a whole stripe. It doesn't make sense to
6304                  * discard data disk but write parity disk
6305                  */
6306                 stripe = stripe * PAGE_SIZE;
6307                 /* Round up to power of 2, as discard handling
6308                  * currently assumes that */
6309                 while ((stripe-1) & stripe)
6310                         stripe = (stripe | (stripe-1)) + 1;
6311                 mddev->queue->limits.discard_alignment = stripe;
6312                 mddev->queue->limits.discard_granularity = stripe;
6313                 /*
6314                  * unaligned part of discard request will be ignored, so can't
6315                  * guarantee discard_zeroes_data
6316                  */
6317                 mddev->queue->limits.discard_zeroes_data = 0;
6318
6319                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6320
6321                 rdev_for_each(rdev, mddev) {
6322                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6323                                           rdev->data_offset << 9);
6324                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6325                                           rdev->new_data_offset << 9);
6326                         /*
6327                          * discard_zeroes_data is required, otherwise data
6328                          * could be lost. Consider a scenario: discard a stripe
6329                          * (the stripe could be inconsistent if
6330                          * discard_zeroes_data is 0); write one disk of the
6331                          * stripe (the stripe could be inconsistent again
6332                          * depending on which disks are used to calculate
6333                          * parity); the disk is broken; The stripe data of this
6334                          * disk is lost.
6335                          */
6336                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6337                             !bdev_get_queue(rdev->bdev)->
6338                                                 limits.discard_zeroes_data)
6339                                 discard_supported = false;
6340                         /* Unfortunately, discard_zeroes_data is not currently
6341                          * a guarantee - just a hint.  So we only allow DISCARD
6342                          * if the sysadmin has confirmed that only safe devices
6343                          * are in use by setting a module parameter.
6344                          */
6345                         if (!devices_handle_discard_safely) {
6346                                 if (discard_supported) {
6347                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6348                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6349                                 }
6350                                 discard_supported = false;
6351                         }
6352                 }
6353
6354                 if (discard_supported &&
6355                    mddev->queue->limits.max_discard_sectors >= stripe &&
6356                    mddev->queue->limits.discard_granularity >= stripe)
6357                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6358                                                 mddev->queue);
6359                 else
6360                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6361                                                 mddev->queue);
6362         }
6363
6364         return 0;
6365 abort:
6366         md_unregister_thread(&mddev->thread);
6367         print_raid5_conf(conf);
6368         free_conf(conf);
6369         mddev->private = NULL;
6370         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6371         return -EIO;
6372 }
6373
6374 static void raid5_free(struct mddev *mddev, void *priv)
6375 {
6376         struct r5conf *conf = priv;
6377
6378         free_conf(conf);
6379         mddev->to_remove = &raid5_attrs_group;
6380 }
6381
6382 static void status(struct seq_file *seq, struct mddev *mddev)
6383 {
6384         struct r5conf *conf = mddev->private;
6385         int i;
6386
6387         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6388                 mddev->chunk_sectors / 2, mddev->layout);
6389         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6390         for (i = 0; i < conf->raid_disks; i++)
6391                 seq_printf (seq, "%s",
6392                                conf->disks[i].rdev &&
6393                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6394         seq_printf (seq, "]");
6395 }
6396
6397 static void print_raid5_conf (struct r5conf *conf)
6398 {
6399         int i;
6400         struct disk_info *tmp;
6401
6402         printk(KERN_DEBUG "RAID conf printout:\n");
6403         if (!conf) {
6404                 printk("(conf==NULL)\n");
6405                 return;
6406         }
6407         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6408                conf->raid_disks,
6409                conf->raid_disks - conf->mddev->degraded);
6410
6411         for (i = 0; i < conf->raid_disks; i++) {
6412                 char b[BDEVNAME_SIZE];
6413                 tmp = conf->disks + i;
6414                 if (tmp->rdev)
6415                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6416                                i, !test_bit(Faulty, &tmp->rdev->flags),
6417                                bdevname(tmp->rdev->bdev, b));
6418         }
6419 }
6420
6421 static int raid5_spare_active(struct mddev *mddev)
6422 {
6423         int i;
6424         struct r5conf *conf = mddev->private;
6425         struct disk_info *tmp;
6426         int count = 0;
6427         unsigned long flags;
6428
6429         for (i = 0; i < conf->raid_disks; i++) {
6430                 tmp = conf->disks + i;
6431                 if (tmp->replacement
6432                     && tmp->replacement->recovery_offset == MaxSector
6433                     && !test_bit(Faulty, &tmp->replacement->flags)
6434                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6435                         /* Replacement has just become active. */
6436                         if (!tmp->rdev
6437                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6438                                 count++;
6439                         if (tmp->rdev) {
6440                                 /* Replaced device not technically faulty,
6441                                  * but we need to be sure it gets removed
6442                                  * and never re-added.
6443                                  */
6444                                 set_bit(Faulty, &tmp->rdev->flags);
6445                                 sysfs_notify_dirent_safe(
6446                                         tmp->rdev->sysfs_state);
6447                         }
6448                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6449                 } else if (tmp->rdev
6450                     && tmp->rdev->recovery_offset == MaxSector
6451                     && !test_bit(Faulty, &tmp->rdev->flags)
6452                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6453                         count++;
6454                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6455                 }
6456         }
6457         spin_lock_irqsave(&conf->device_lock, flags);
6458         mddev->degraded = calc_degraded(conf);
6459         spin_unlock_irqrestore(&conf->device_lock, flags);
6460         print_raid5_conf(conf);
6461         return count;
6462 }
6463
6464 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6465 {
6466         struct r5conf *conf = mddev->private;
6467         int err = 0;
6468         int number = rdev->raid_disk;
6469         struct md_rdev **rdevp;
6470         struct disk_info *p = conf->disks + number;
6471
6472         print_raid5_conf(conf);
6473         if (rdev == p->rdev)
6474                 rdevp = &p->rdev;
6475         else if (rdev == p->replacement)
6476                 rdevp = &p->replacement;
6477         else
6478                 return 0;
6479
6480         if (number >= conf->raid_disks &&
6481             conf->reshape_progress == MaxSector)
6482                 clear_bit(In_sync, &rdev->flags);
6483
6484         if (test_bit(In_sync, &rdev->flags) ||
6485             atomic_read(&rdev->nr_pending)) {
6486                 err = -EBUSY;
6487                 goto abort;
6488         }
6489         /* Only remove non-faulty devices if recovery
6490          * isn't possible.
6491          */
6492         if (!test_bit(Faulty, &rdev->flags) &&
6493             mddev->recovery_disabled != conf->recovery_disabled &&
6494             !has_failed(conf) &&
6495             (!p->replacement || p->replacement == rdev) &&
6496             number < conf->raid_disks) {
6497                 err = -EBUSY;
6498                 goto abort;
6499         }
6500         *rdevp = NULL;
6501         synchronize_rcu();
6502         if (atomic_read(&rdev->nr_pending)) {
6503                 /* lost the race, try later */
6504                 err = -EBUSY;
6505                 *rdevp = rdev;
6506         } else if (p->replacement) {
6507                 /* We must have just cleared 'rdev' */
6508                 p->rdev = p->replacement;
6509                 clear_bit(Replacement, &p->replacement->flags);
6510                 smp_mb(); /* Make sure other CPUs may see both as identical
6511                            * but will never see neither - if they are careful
6512                            */
6513                 p->replacement = NULL;
6514                 clear_bit(WantReplacement, &rdev->flags);
6515         } else
6516                 /* We might have just removed the Replacement as faulty-
6517                  * clear the bit just in case
6518                  */
6519                 clear_bit(WantReplacement, &rdev->flags);
6520 abort:
6521
6522         print_raid5_conf(conf);
6523         return err;
6524 }
6525
6526 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6527 {
6528         struct r5conf *conf = mddev->private;
6529         int err = -EEXIST;
6530         int disk;
6531         struct disk_info *p;
6532         int first = 0;
6533         int last = conf->raid_disks - 1;
6534
6535         if (mddev->recovery_disabled == conf->recovery_disabled)
6536                 return -EBUSY;
6537
6538         if (rdev->saved_raid_disk < 0 && has_failed(conf))
6539                 /* no point adding a device */
6540                 return -EINVAL;
6541
6542         if (rdev->raid_disk >= 0)
6543                 first = last = rdev->raid_disk;
6544
6545         /*
6546          * find the disk ... but prefer rdev->saved_raid_disk
6547          * if possible.
6548          */
6549         if (rdev->saved_raid_disk >= 0 &&
6550             rdev->saved_raid_disk >= first &&
6551             conf->disks[rdev->saved_raid_disk].rdev == NULL)
6552                 first = rdev->saved_raid_disk;
6553
6554         for (disk = first; disk <= last; disk++) {
6555                 p = conf->disks + disk;
6556                 if (p->rdev == NULL) {
6557                         clear_bit(In_sync, &rdev->flags);
6558                         rdev->raid_disk = disk;
6559                         err = 0;
6560                         if (rdev->saved_raid_disk != disk)
6561                                 conf->fullsync = 1;
6562                         rcu_assign_pointer(p->rdev, rdev);
6563                         goto out;
6564                 }
6565         }
6566         for (disk = first; disk <= last; disk++) {
6567                 p = conf->disks + disk;
6568                 if (test_bit(WantReplacement, &p->rdev->flags) &&
6569                     p->replacement == NULL) {
6570                         clear_bit(In_sync, &rdev->flags);
6571                         set_bit(Replacement, &rdev->flags);
6572                         rdev->raid_disk = disk;
6573                         err = 0;
6574                         conf->fullsync = 1;
6575                         rcu_assign_pointer(p->replacement, rdev);
6576                         break;
6577                 }
6578         }
6579 out:
6580         print_raid5_conf(conf);
6581         return err;
6582 }
6583
6584 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6585 {
6586         /* no resync is happening, and there is enough space
6587          * on all devices, so we can resize.
6588          * We need to make sure resync covers any new space.
6589          * If the array is shrinking we should possibly wait until
6590          * any io in the removed space completes, but it hardly seems
6591          * worth it.
6592          */
6593         sector_t newsize;
6594         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6595         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6596         if (mddev->external_size &&
6597             mddev->array_sectors > newsize)
6598                 return -EINVAL;
6599         if (mddev->bitmap) {
6600                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6601                 if (ret)
6602                         return ret;
6603         }
6604         md_set_array_sectors(mddev, newsize);
6605         set_capacity(mddev->gendisk, mddev->array_sectors);
6606         revalidate_disk(mddev->gendisk);
6607         if (sectors > mddev->dev_sectors &&
6608             mddev->recovery_cp > mddev->dev_sectors) {
6609                 mddev->recovery_cp = mddev->dev_sectors;
6610                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6611         }
6612         mddev->dev_sectors = sectors;
6613         mddev->resync_max_sectors = sectors;
6614         return 0;
6615 }
6616
6617 static int check_stripe_cache(struct mddev *mddev)
6618 {
6619         /* Can only proceed if there are plenty of stripe_heads.
6620          * We need a minimum of one full stripe,, and for sensible progress
6621          * it is best to have about 4 times that.
6622          * If we require 4 times, then the default 256 4K stripe_heads will
6623          * allow for chunk sizes up to 256K, which is probably OK.
6624          * If the chunk size is greater, user-space should request more
6625          * stripe_heads first.
6626          */
6627         struct r5conf *conf = mddev->private;
6628         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6629             > conf->max_nr_stripes ||
6630             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6631             > conf->max_nr_stripes) {
6632                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6633                        mdname(mddev),
6634                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6635                         / STRIPE_SIZE)*4);
6636                 return 0;
6637         }
6638         return 1;
6639 }
6640
6641 static int check_reshape(struct mddev *mddev)
6642 {
6643         struct r5conf *conf = mddev->private;
6644
6645         if (mddev->delta_disks == 0 &&
6646             mddev->new_layout == mddev->layout &&
6647             mddev->new_chunk_sectors == mddev->chunk_sectors)
6648                 return 0; /* nothing to do */
6649         if (has_failed(conf))
6650                 return -EINVAL;
6651         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6652                 /* We might be able to shrink, but the devices must
6653                  * be made bigger first.
6654                  * For raid6, 4 is the minimum size.
6655                  * Otherwise 2 is the minimum
6656                  */
6657                 int min = 2;
6658                 if (mddev->level == 6)
6659                         min = 4;
6660                 if (mddev->raid_disks + mddev->delta_disks < min)
6661                         return -EINVAL;
6662         }
6663
6664         if (!check_stripe_cache(mddev))
6665                 return -ENOSPC;
6666
6667         return resize_stripes(conf, (conf->previous_raid_disks
6668                                      + mddev->delta_disks));
6669 }
6670
6671 static int raid5_start_reshape(struct mddev *mddev)
6672 {
6673         struct r5conf *conf = mddev->private;
6674         struct md_rdev *rdev;
6675         int spares = 0;
6676         unsigned long flags;
6677
6678         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6679                 return -EBUSY;
6680
6681         if (!check_stripe_cache(mddev))
6682                 return -ENOSPC;
6683
6684         if (has_failed(conf))
6685                 return -EINVAL;
6686
6687         rdev_for_each(rdev, mddev) {
6688                 if (!test_bit(In_sync, &rdev->flags)
6689                     && !test_bit(Faulty, &rdev->flags))
6690                         spares++;
6691         }
6692
6693         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6694                 /* Not enough devices even to make a degraded array
6695                  * of that size
6696                  */
6697                 return -EINVAL;
6698
6699         /* Refuse to reduce size of the array.  Any reductions in
6700          * array size must be through explicit setting of array_size
6701          * attribute.
6702          */
6703         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6704             < mddev->array_sectors) {
6705                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6706                        "before number of disks\n", mdname(mddev));
6707                 return -EINVAL;
6708         }
6709
6710         atomic_set(&conf->reshape_stripes, 0);
6711         spin_lock_irq(&conf->device_lock);
6712         write_seqcount_begin(&conf->gen_lock);
6713         conf->previous_raid_disks = conf->raid_disks;
6714         conf->raid_disks += mddev->delta_disks;
6715         conf->prev_chunk_sectors = conf->chunk_sectors;
6716         conf->chunk_sectors = mddev->new_chunk_sectors;
6717         conf->prev_algo = conf->algorithm;
6718         conf->algorithm = mddev->new_layout;
6719         conf->generation++;
6720         /* Code that selects data_offset needs to see the generation update
6721          * if reshape_progress has been set - so a memory barrier needed.
6722          */
6723         smp_mb();
6724         if (mddev->reshape_backwards)
6725                 conf->reshape_progress = raid5_size(mddev, 0, 0);
6726         else
6727                 conf->reshape_progress = 0;
6728         conf->reshape_safe = conf->reshape_progress;
6729         write_seqcount_end(&conf->gen_lock);
6730         spin_unlock_irq(&conf->device_lock);
6731
6732         /* Now make sure any requests that proceeded on the assumption
6733          * the reshape wasn't running - like Discard or Read - have
6734          * completed.
6735          */
6736         mddev_suspend(mddev);
6737         mddev_resume(mddev);
6738
6739         /* Add some new drives, as many as will fit.
6740          * We know there are enough to make the newly sized array work.
6741          * Don't add devices if we are reducing the number of
6742          * devices in the array.  This is because it is not possible
6743          * to correctly record the "partially reconstructed" state of
6744          * such devices during the reshape and confusion could result.
6745          */
6746         if (mddev->delta_disks >= 0) {
6747                 rdev_for_each(rdev, mddev)
6748                         if (rdev->raid_disk < 0 &&
6749                             !test_bit(Faulty, &rdev->flags)) {
6750                                 if (raid5_add_disk(mddev, rdev) == 0) {
6751                                         if (rdev->raid_disk
6752                                             >= conf->previous_raid_disks)
6753                                                 set_bit(In_sync, &rdev->flags);
6754                                         else
6755                                                 rdev->recovery_offset = 0;
6756
6757                                         if (sysfs_link_rdev(mddev, rdev))
6758                                                 /* Failure here is OK */;
6759                                 }
6760                         } else if (rdev->raid_disk >= conf->previous_raid_disks
6761                                    && !test_bit(Faulty, &rdev->flags)) {
6762                                 /* This is a spare that was manually added */
6763                                 set_bit(In_sync, &rdev->flags);
6764                         }
6765
6766                 /* When a reshape changes the number of devices,
6767                  * ->degraded is measured against the larger of the
6768                  * pre and post number of devices.
6769                  */
6770                 spin_lock_irqsave(&conf->device_lock, flags);
6771                 mddev->degraded = calc_degraded(conf);
6772                 spin_unlock_irqrestore(&conf->device_lock, flags);
6773         }
6774         mddev->raid_disks = conf->raid_disks;
6775         mddev->reshape_position = conf->reshape_progress;
6776         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6777
6778         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6779         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6780         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6781         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6782         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6783                                                 "reshape");
6784         if (!mddev->sync_thread) {
6785                 mddev->recovery = 0;
6786                 spin_lock_irq(&conf->device_lock);
6787                 write_seqcount_begin(&conf->gen_lock);
6788                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6789                 mddev->new_chunk_sectors =
6790                         conf->chunk_sectors = conf->prev_chunk_sectors;
6791                 mddev->new_layout = conf->algorithm = conf->prev_algo;
6792                 rdev_for_each(rdev, mddev)
6793                         rdev->new_data_offset = rdev->data_offset;
6794                 smp_wmb();
6795                 conf->generation --;
6796                 conf->reshape_progress = MaxSector;
6797                 mddev->reshape_position = MaxSector;
6798                 write_seqcount_end(&conf->gen_lock);
6799                 spin_unlock_irq(&conf->device_lock);
6800                 return -EAGAIN;
6801         }
6802         conf->reshape_checkpoint = jiffies;
6803         md_wakeup_thread(mddev->sync_thread);
6804         md_new_event(mddev);
6805         return 0;
6806 }
6807
6808 /* This is called from the reshape thread and should make any
6809  * changes needed in 'conf'
6810  */
6811 static void end_reshape(struct r5conf *conf)
6812 {
6813
6814         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6815                 struct md_rdev *rdev;
6816
6817                 spin_lock_irq(&conf->device_lock);
6818                 conf->previous_raid_disks = conf->raid_disks;
6819                 rdev_for_each(rdev, conf->mddev)
6820                         rdev->data_offset = rdev->new_data_offset;
6821                 smp_wmb();
6822                 conf->reshape_progress = MaxSector;
6823                 spin_unlock_irq(&conf->device_lock);
6824                 wake_up(&conf->wait_for_overlap);
6825
6826                 /* read-ahead size must cover two whole stripes, which is
6827                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6828                  */
6829                 if (conf->mddev->queue) {
6830                         int data_disks = conf->raid_disks - conf->max_degraded;
6831                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6832                                                    / PAGE_SIZE);
6833                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6834                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6835                 }
6836         }
6837 }
6838
6839 /* This is called from the raid5d thread with mddev_lock held.
6840  * It makes config changes to the device.
6841  */
6842 static void raid5_finish_reshape(struct mddev *mddev)
6843 {
6844         struct r5conf *conf = mddev->private;
6845
6846         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6847
6848                 if (mddev->delta_disks > 0) {
6849                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6850                         set_capacity(mddev->gendisk, mddev->array_sectors);
6851                         revalidate_disk(mddev->gendisk);
6852                 } else {
6853                         int d;
6854                         spin_lock_irq(&conf->device_lock);
6855                         mddev->degraded = calc_degraded(conf);
6856                         spin_unlock_irq(&conf->device_lock);
6857                         for (d = conf->raid_disks ;
6858                              d < conf->raid_disks - mddev->delta_disks;
6859                              d++) {
6860                                 struct md_rdev *rdev = conf->disks[d].rdev;
6861                                 if (rdev)
6862                                         clear_bit(In_sync, &rdev->flags);
6863                                 rdev = conf->disks[d].replacement;
6864                                 if (rdev)
6865                                         clear_bit(In_sync, &rdev->flags);
6866                         }
6867                 }
6868                 mddev->layout = conf->algorithm;
6869                 mddev->chunk_sectors = conf->chunk_sectors;
6870                 mddev->reshape_position = MaxSector;
6871                 mddev->delta_disks = 0;
6872                 mddev->reshape_backwards = 0;
6873         }
6874 }
6875
6876 static void raid5_quiesce(struct mddev *mddev, int state)
6877 {
6878         struct r5conf *conf = mddev->private;
6879
6880         switch(state) {
6881         case 2: /* resume for a suspend */
6882                 wake_up(&conf->wait_for_overlap);
6883                 break;
6884
6885         case 1: /* stop all writes */
6886                 lock_all_device_hash_locks_irq(conf);
6887                 /* '2' tells resync/reshape to pause so that all
6888                  * active stripes can drain
6889                  */
6890                 conf->quiesce = 2;
6891                 wait_event_cmd(conf->wait_for_stripe,
6892                                     atomic_read(&conf->active_stripes) == 0 &&
6893                                     atomic_read(&conf->active_aligned_reads) == 0,
6894                                     unlock_all_device_hash_locks_irq(conf),
6895                                     lock_all_device_hash_locks_irq(conf));
6896                 conf->quiesce = 1;
6897                 unlock_all_device_hash_locks_irq(conf);
6898                 /* allow reshape to continue */
6899                 wake_up(&conf->wait_for_overlap);
6900                 break;
6901
6902         case 0: /* re-enable writes */
6903                 lock_all_device_hash_locks_irq(conf);
6904                 conf->quiesce = 0;
6905                 wake_up(&conf->wait_for_stripe);
6906                 wake_up(&conf->wait_for_overlap);
6907                 unlock_all_device_hash_locks_irq(conf);
6908                 break;
6909         }
6910 }
6911
6912 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6913 {
6914         struct r0conf *raid0_conf = mddev->private;
6915         sector_t sectors;
6916
6917         /* for raid0 takeover only one zone is supported */
6918         if (raid0_conf->nr_strip_zones > 1) {
6919                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6920                        mdname(mddev));
6921                 return ERR_PTR(-EINVAL);
6922         }
6923
6924         sectors = raid0_conf->strip_zone[0].zone_end;
6925         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6926         mddev->dev_sectors = sectors;
6927         mddev->new_level = level;
6928         mddev->new_layout = ALGORITHM_PARITY_N;
6929         mddev->new_chunk_sectors = mddev->chunk_sectors;
6930         mddev->raid_disks += 1;
6931         mddev->delta_disks = 1;
6932         /* make sure it will be not marked as dirty */
6933         mddev->recovery_cp = MaxSector;
6934
6935         return setup_conf(mddev);
6936 }
6937
6938 static void *raid5_takeover_raid1(struct mddev *mddev)
6939 {
6940         int chunksect;
6941
6942         if (mddev->raid_disks != 2 ||
6943             mddev->degraded > 1)
6944                 return ERR_PTR(-EINVAL);
6945
6946         /* Should check if there are write-behind devices? */
6947
6948         chunksect = 64*2; /* 64K by default */
6949
6950         /* The array must be an exact multiple of chunksize */
6951         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6952                 chunksect >>= 1;
6953
6954         if ((chunksect<<9) < STRIPE_SIZE)
6955                 /* array size does not allow a suitable chunk size */
6956                 return ERR_PTR(-EINVAL);
6957
6958         mddev->new_level = 5;
6959         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6960         mddev->new_chunk_sectors = chunksect;
6961
6962         return setup_conf(mddev);
6963 }
6964
6965 static void *raid5_takeover_raid6(struct mddev *mddev)
6966 {
6967         int new_layout;
6968
6969         switch (mddev->layout) {
6970         case ALGORITHM_LEFT_ASYMMETRIC_6:
6971                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6972                 break;
6973         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6974                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6975                 break;
6976         case ALGORITHM_LEFT_SYMMETRIC_6:
6977                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6978                 break;
6979         case ALGORITHM_RIGHT_SYMMETRIC_6:
6980                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6981                 break;
6982         case ALGORITHM_PARITY_0_6:
6983                 new_layout = ALGORITHM_PARITY_0;
6984                 break;
6985         case ALGORITHM_PARITY_N:
6986                 new_layout = ALGORITHM_PARITY_N;
6987                 break;
6988         default:
6989                 return ERR_PTR(-EINVAL);
6990         }
6991         mddev->new_level = 5;
6992         mddev->new_layout = new_layout;
6993         mddev->delta_disks = -1;
6994         mddev->raid_disks -= 1;
6995         return setup_conf(mddev);
6996 }
6997
6998 static int raid5_check_reshape(struct mddev *mddev)
6999 {
7000         /* For a 2-drive array, the layout and chunk size can be changed
7001          * immediately as not restriping is needed.
7002          * For larger arrays we record the new value - after validation
7003          * to be used by a reshape pass.
7004          */
7005         struct r5conf *conf = mddev->private;
7006         int new_chunk = mddev->new_chunk_sectors;
7007
7008         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7009                 return -EINVAL;
7010         if (new_chunk > 0) {
7011                 if (!is_power_of_2(new_chunk))
7012                         return -EINVAL;
7013                 if (new_chunk < (PAGE_SIZE>>9))
7014                         return -EINVAL;
7015                 if (mddev->array_sectors & (new_chunk-1))
7016                         /* not factor of array size */
7017                         return -EINVAL;
7018         }
7019
7020         /* They look valid */
7021
7022         if (mddev->raid_disks == 2) {
7023                 /* can make the change immediately */
7024                 if (mddev->new_layout >= 0) {
7025                         conf->algorithm = mddev->new_layout;
7026                         mddev->layout = mddev->new_layout;
7027                 }
7028                 if (new_chunk > 0) {
7029                         conf->chunk_sectors = new_chunk ;
7030                         mddev->chunk_sectors = new_chunk;
7031                 }
7032                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7033                 md_wakeup_thread(mddev->thread);
7034         }
7035         return check_reshape(mddev);
7036 }
7037
7038 static int raid6_check_reshape(struct mddev *mddev)
7039 {
7040         int new_chunk = mddev->new_chunk_sectors;
7041
7042         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7043                 return -EINVAL;
7044         if (new_chunk > 0) {
7045                 if (!is_power_of_2(new_chunk))
7046                         return -EINVAL;
7047                 if (new_chunk < (PAGE_SIZE >> 9))
7048                         return -EINVAL;
7049                 if (mddev->array_sectors & (new_chunk-1))
7050                         /* not factor of array size */
7051                         return -EINVAL;
7052         }
7053
7054         /* They look valid */
7055         return check_reshape(mddev);
7056 }
7057
7058 static void *raid5_takeover(struct mddev *mddev)
7059 {
7060         /* raid5 can take over:
7061          *  raid0 - if there is only one strip zone - make it a raid4 layout
7062          *  raid1 - if there are two drives.  We need to know the chunk size
7063          *  raid4 - trivial - just use a raid4 layout.
7064          *  raid6 - Providing it is a *_6 layout
7065          */
7066         if (mddev->level == 0)
7067                 return raid45_takeover_raid0(mddev, 5);
7068         if (mddev->level == 1)
7069                 return raid5_takeover_raid1(mddev);
7070         if (mddev->level == 4) {
7071                 mddev->new_layout = ALGORITHM_PARITY_N;
7072                 mddev->new_level = 5;
7073                 return setup_conf(mddev);
7074         }
7075         if (mddev->level == 6)
7076                 return raid5_takeover_raid6(mddev);
7077
7078         return ERR_PTR(-EINVAL);
7079 }
7080
7081 static void *raid4_takeover(struct mddev *mddev)
7082 {
7083         /* raid4 can take over:
7084          *  raid0 - if there is only one strip zone
7085          *  raid5 - if layout is right
7086          */
7087         if (mddev->level == 0)
7088                 return raid45_takeover_raid0(mddev, 4);
7089         if (mddev->level == 5 &&
7090             mddev->layout == ALGORITHM_PARITY_N) {
7091                 mddev->new_layout = 0;
7092                 mddev->new_level = 4;
7093                 return setup_conf(mddev);
7094         }
7095         return ERR_PTR(-EINVAL);
7096 }
7097
7098 static struct md_personality raid5_personality;
7099
7100 static void *raid6_takeover(struct mddev *mddev)
7101 {
7102         /* Currently can only take over a raid5.  We map the
7103          * personality to an equivalent raid6 personality
7104          * with the Q block at the end.
7105          */
7106         int new_layout;
7107
7108         if (mddev->pers != &raid5_personality)
7109                 return ERR_PTR(-EINVAL);
7110         if (mddev->degraded > 1)
7111                 return ERR_PTR(-EINVAL);
7112         if (mddev->raid_disks > 253)
7113                 return ERR_PTR(-EINVAL);
7114         if (mddev->raid_disks < 3)
7115                 return ERR_PTR(-EINVAL);
7116
7117         switch (mddev->layout) {
7118         case ALGORITHM_LEFT_ASYMMETRIC:
7119                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7120                 break;
7121         case ALGORITHM_RIGHT_ASYMMETRIC:
7122                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7123                 break;
7124         case ALGORITHM_LEFT_SYMMETRIC:
7125                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7126                 break;
7127         case ALGORITHM_RIGHT_SYMMETRIC:
7128                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7129                 break;
7130         case ALGORITHM_PARITY_0:
7131                 new_layout = ALGORITHM_PARITY_0_6;
7132                 break;
7133         case ALGORITHM_PARITY_N:
7134                 new_layout = ALGORITHM_PARITY_N;
7135                 break;
7136         default:
7137                 return ERR_PTR(-EINVAL);
7138         }
7139         mddev->new_level = 6;
7140         mddev->new_layout = new_layout;
7141         mddev->delta_disks = 1;
7142         mddev->raid_disks += 1;
7143         return setup_conf(mddev);
7144 }
7145
7146 static struct md_personality raid6_personality =
7147 {
7148         .name           = "raid6",
7149         .level          = 6,
7150         .owner          = THIS_MODULE,
7151         .make_request   = make_request,
7152         .run            = run,
7153         .free           = raid5_free,
7154         .status         = status,
7155         .error_handler  = error,
7156         .hot_add_disk   = raid5_add_disk,
7157         .hot_remove_disk= raid5_remove_disk,
7158         .spare_active   = raid5_spare_active,
7159         .sync_request   = sync_request,
7160         .resize         = raid5_resize,
7161         .size           = raid5_size,
7162         .check_reshape  = raid6_check_reshape,
7163         .start_reshape  = raid5_start_reshape,
7164         .finish_reshape = raid5_finish_reshape,
7165         .quiesce        = raid5_quiesce,
7166         .takeover       = raid6_takeover,
7167         .congested      = raid5_congested,
7168         .mergeable_bvec = raid5_mergeable_bvec,
7169 };
7170 static struct md_personality raid5_personality =
7171 {
7172         .name           = "raid5",
7173         .level          = 5,
7174         .owner          = THIS_MODULE,
7175         .make_request   = make_request,
7176         .run            = run,
7177         .free           = raid5_free,
7178         .status         = status,
7179         .error_handler  = error,
7180         .hot_add_disk   = raid5_add_disk,
7181         .hot_remove_disk= raid5_remove_disk,
7182         .spare_active   = raid5_spare_active,
7183         .sync_request   = sync_request,
7184         .resize         = raid5_resize,
7185         .size           = raid5_size,
7186         .check_reshape  = raid5_check_reshape,
7187         .start_reshape  = raid5_start_reshape,
7188         .finish_reshape = raid5_finish_reshape,
7189         .quiesce        = raid5_quiesce,
7190         .takeover       = raid5_takeover,
7191         .congested      = raid5_congested,
7192         .mergeable_bvec = raid5_mergeable_bvec,
7193 };
7194
7195 static struct md_personality raid4_personality =
7196 {
7197         .name           = "raid4",
7198         .level          = 4,
7199         .owner          = THIS_MODULE,
7200         .make_request   = make_request,
7201         .run            = run,
7202         .free           = raid5_free,
7203         .status         = status,
7204         .error_handler  = error,
7205         .hot_add_disk   = raid5_add_disk,
7206         .hot_remove_disk= raid5_remove_disk,
7207         .spare_active   = raid5_spare_active,
7208         .sync_request   = sync_request,
7209         .resize         = raid5_resize,
7210         .size           = raid5_size,
7211         .check_reshape  = raid5_check_reshape,
7212         .start_reshape  = raid5_start_reshape,
7213         .finish_reshape = raid5_finish_reshape,
7214         .quiesce        = raid5_quiesce,
7215         .takeover       = raid4_takeover,
7216         .congested      = raid5_congested,
7217         .mergeable_bvec = raid5_mergeable_bvec,
7218 };
7219
7220 static int __init raid5_init(void)
7221 {
7222         raid5_wq = alloc_workqueue("raid5wq",
7223                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7224         if (!raid5_wq)
7225                 return -ENOMEM;
7226         register_md_personality(&raid6_personality);
7227         register_md_personality(&raid5_personality);
7228         register_md_personality(&raid4_personality);
7229         return 0;
7230 }
7231
7232 static void raid5_exit(void)
7233 {
7234         unregister_md_personality(&raid6_personality);
7235         unregister_md_personality(&raid5_personality);
7236         unregister_md_personality(&raid4_personality);
7237         destroy_workqueue(raid5_wq);
7238 }
7239
7240 module_init(raid5_init);
7241 module_exit(raid5_exit);
7242 MODULE_LICENSE("GPL");
7243 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7244 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7245 MODULE_ALIAS("md-raid5");
7246 MODULE_ALIAS("md-raid4");
7247 MODULE_ALIAS("md-level-5");
7248 MODULE_ALIAS("md-level-4");
7249 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7250 MODULE_ALIAS("md-raid6");
7251 MODULE_ALIAS("md-level-6");
7252
7253 /* This used to be two separate modules, they were: */
7254 MODULE_ALIAS("raid5");
7255 MODULE_ALIAS("raid6");