Documentation: fsl-quadspi: Add fsl,ls1043a-qspi compatible string
[cascardo/linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio_list *return_bi)
227 {
228         struct bio *bi;
229         while ((bi = bio_list_pop(return_bi)) != NULL) {
230                 bi->bi_iter.bi_size = 0;
231                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232                                          bi, 0);
233                 bio_endio(bi);
234         }
235 }
236
237 static void print_raid5_conf (struct r5conf *conf);
238
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241         return sh->check_state || sh->reconstruct_state ||
242                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248         struct r5conf *conf = sh->raid_conf;
249         struct r5worker_group *group;
250         int thread_cnt;
251         int i, cpu = sh->cpu;
252
253         if (!cpu_online(cpu)) {
254                 cpu = cpumask_any(cpu_online_mask);
255                 sh->cpu = cpu;
256         }
257
258         if (list_empty(&sh->lru)) {
259                 struct r5worker_group *group;
260                 group = conf->worker_groups + cpu_to_group(cpu);
261                 list_add_tail(&sh->lru, &group->handle_list);
262                 group->stripes_cnt++;
263                 sh->group = group;
264         }
265
266         if (conf->worker_cnt_per_group == 0) {
267                 md_wakeup_thread(conf->mddev->thread);
268                 return;
269         }
270
271         group = conf->worker_groups + cpu_to_group(sh->cpu);
272
273         group->workers[0].working = true;
274         /* at least one worker should run to avoid race */
275         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278         /* wakeup more workers */
279         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280                 if (group->workers[i].working == false) {
281                         group->workers[i].working = true;
282                         queue_work_on(sh->cpu, raid5_wq,
283                                       &group->workers[i].work);
284                         thread_cnt--;
285                 }
286         }
287 }
288
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290                               struct list_head *temp_inactive_list)
291 {
292         BUG_ON(!list_empty(&sh->lru));
293         BUG_ON(atomic_read(&conf->active_stripes)==0);
294         if (test_bit(STRIPE_HANDLE, &sh->state)) {
295                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
296                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297                         list_add_tail(&sh->lru, &conf->delayed_list);
298                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299                            sh->bm_seq - conf->seq_write > 0)
300                         list_add_tail(&sh->lru, &conf->bitmap_list);
301                 else {
302                         clear_bit(STRIPE_DELAYED, &sh->state);
303                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
304                         if (conf->worker_cnt_per_group == 0) {
305                                 list_add_tail(&sh->lru, &conf->handle_list);
306                         } else {
307                                 raid5_wakeup_stripe_thread(sh);
308                                 return;
309                         }
310                 }
311                 md_wakeup_thread(conf->mddev->thread);
312         } else {
313                 BUG_ON(stripe_operations_active(sh));
314                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315                         if (atomic_dec_return(&conf->preread_active_stripes)
316                             < IO_THRESHOLD)
317                                 md_wakeup_thread(conf->mddev->thread);
318                 atomic_dec(&conf->active_stripes);
319                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320                         list_add_tail(&sh->lru, temp_inactive_list);
321         }
322 }
323
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325                              struct list_head *temp_inactive_list)
326 {
327         if (atomic_dec_and_test(&sh->count))
328                 do_release_stripe(conf, sh, temp_inactive_list);
329 }
330
331 /*
332  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333  *
334  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335  * given time. Adding stripes only takes device lock, while deleting stripes
336  * only takes hash lock.
337  */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339                                          struct list_head *temp_inactive_list,
340                                          int hash)
341 {
342         int size;
343         bool do_wakeup = false;
344         unsigned long flags;
345
346         if (hash == NR_STRIPE_HASH_LOCKS) {
347                 size = NR_STRIPE_HASH_LOCKS;
348                 hash = NR_STRIPE_HASH_LOCKS - 1;
349         } else
350                 size = 1;
351         while (size) {
352                 struct list_head *list = &temp_inactive_list[size - 1];
353
354                 /*
355                  * We don't hold any lock here yet, raid5_get_active_stripe() might
356                  * remove stripes from the list
357                  */
358                 if (!list_empty_careful(list)) {
359                         spin_lock_irqsave(conf->hash_locks + hash, flags);
360                         if (list_empty(conf->inactive_list + hash) &&
361                             !list_empty(list))
362                                 atomic_dec(&conf->empty_inactive_list_nr);
363                         list_splice_tail_init(list, conf->inactive_list + hash);
364                         do_wakeup = true;
365                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
366                 }
367                 size--;
368                 hash--;
369         }
370
371         if (do_wakeup) {
372                 wake_up(&conf->wait_for_stripe);
373                 if (atomic_read(&conf->active_stripes) == 0)
374                         wake_up(&conf->wait_for_quiescent);
375                 if (conf->retry_read_aligned)
376                         md_wakeup_thread(conf->mddev->thread);
377         }
378 }
379
380 /* should hold conf->device_lock already */
381 static int release_stripe_list(struct r5conf *conf,
382                                struct list_head *temp_inactive_list)
383 {
384         struct stripe_head *sh;
385         int count = 0;
386         struct llist_node *head;
387
388         head = llist_del_all(&conf->released_stripes);
389         head = llist_reverse_order(head);
390         while (head) {
391                 int hash;
392
393                 sh = llist_entry(head, struct stripe_head, release_list);
394                 head = llist_next(head);
395                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396                 smp_mb();
397                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
398                 /*
399                  * Don't worry the bit is set here, because if the bit is set
400                  * again, the count is always > 1. This is true for
401                  * STRIPE_ON_UNPLUG_LIST bit too.
402                  */
403                 hash = sh->hash_lock_index;
404                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
405                 count++;
406         }
407
408         return count;
409 }
410
411 void raid5_release_stripe(struct stripe_head *sh)
412 {
413         struct r5conf *conf = sh->raid_conf;
414         unsigned long flags;
415         struct list_head list;
416         int hash;
417         bool wakeup;
418
419         /* Avoid release_list until the last reference.
420          */
421         if (atomic_add_unless(&sh->count, -1, 1))
422                 return;
423
424         if (unlikely(!conf->mddev->thread) ||
425                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
426                 goto slow_path;
427         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
428         if (wakeup)
429                 md_wakeup_thread(conf->mddev->thread);
430         return;
431 slow_path:
432         local_irq_save(flags);
433         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
434         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
435                 INIT_LIST_HEAD(&list);
436                 hash = sh->hash_lock_index;
437                 do_release_stripe(conf, sh, &list);
438                 spin_unlock(&conf->device_lock);
439                 release_inactive_stripe_list(conf, &list, hash);
440         }
441         local_irq_restore(flags);
442 }
443
444 static inline void remove_hash(struct stripe_head *sh)
445 {
446         pr_debug("remove_hash(), stripe %llu\n",
447                 (unsigned long long)sh->sector);
448
449         hlist_del_init(&sh->hash);
450 }
451
452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
453 {
454         struct hlist_head *hp = stripe_hash(conf, sh->sector);
455
456         pr_debug("insert_hash(), stripe %llu\n",
457                 (unsigned long long)sh->sector);
458
459         hlist_add_head(&sh->hash, hp);
460 }
461
462 /* find an idle stripe, make sure it is unhashed, and return it. */
463 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
464 {
465         struct stripe_head *sh = NULL;
466         struct list_head *first;
467
468         if (list_empty(conf->inactive_list + hash))
469                 goto out;
470         first = (conf->inactive_list + hash)->next;
471         sh = list_entry(first, struct stripe_head, lru);
472         list_del_init(first);
473         remove_hash(sh);
474         atomic_inc(&conf->active_stripes);
475         BUG_ON(hash != sh->hash_lock_index);
476         if (list_empty(conf->inactive_list + hash))
477                 atomic_inc(&conf->empty_inactive_list_nr);
478 out:
479         return sh;
480 }
481
482 static void shrink_buffers(struct stripe_head *sh)
483 {
484         struct page *p;
485         int i;
486         int num = sh->raid_conf->pool_size;
487
488         for (i = 0; i < num ; i++) {
489                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
490                 p = sh->dev[i].page;
491                 if (!p)
492                         continue;
493                 sh->dev[i].page = NULL;
494                 put_page(p);
495         }
496 }
497
498 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
499 {
500         int i;
501         int num = sh->raid_conf->pool_size;
502
503         for (i = 0; i < num; i++) {
504                 struct page *page;
505
506                 if (!(page = alloc_page(gfp))) {
507                         return 1;
508                 }
509                 sh->dev[i].page = page;
510                 sh->dev[i].orig_page = page;
511         }
512         return 0;
513 }
514
515 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
516 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
517                             struct stripe_head *sh);
518
519 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
520 {
521         struct r5conf *conf = sh->raid_conf;
522         int i, seq;
523
524         BUG_ON(atomic_read(&sh->count) != 0);
525         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
526         BUG_ON(stripe_operations_active(sh));
527         BUG_ON(sh->batch_head);
528
529         pr_debug("init_stripe called, stripe %llu\n",
530                 (unsigned long long)sector);
531 retry:
532         seq = read_seqcount_begin(&conf->gen_lock);
533         sh->generation = conf->generation - previous;
534         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
535         sh->sector = sector;
536         stripe_set_idx(sector, conf, previous, sh);
537         sh->state = 0;
538
539         for (i = sh->disks; i--; ) {
540                 struct r5dev *dev = &sh->dev[i];
541
542                 if (dev->toread || dev->read || dev->towrite || dev->written ||
543                     test_bit(R5_LOCKED, &dev->flags)) {
544                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
545                                (unsigned long long)sh->sector, i, dev->toread,
546                                dev->read, dev->towrite, dev->written,
547                                test_bit(R5_LOCKED, &dev->flags));
548                         WARN_ON(1);
549                 }
550                 dev->flags = 0;
551                 raid5_build_block(sh, i, previous);
552         }
553         if (read_seqcount_retry(&conf->gen_lock, seq))
554                 goto retry;
555         sh->overwrite_disks = 0;
556         insert_hash(conf, sh);
557         sh->cpu = smp_processor_id();
558         set_bit(STRIPE_BATCH_READY, &sh->state);
559 }
560
561 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
562                                          short generation)
563 {
564         struct stripe_head *sh;
565
566         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
567         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
568                 if (sh->sector == sector && sh->generation == generation)
569                         return sh;
570         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
571         return NULL;
572 }
573
574 /*
575  * Need to check if array has failed when deciding whether to:
576  *  - start an array
577  *  - remove non-faulty devices
578  *  - add a spare
579  *  - allow a reshape
580  * This determination is simple when no reshape is happening.
581  * However if there is a reshape, we need to carefully check
582  * both the before and after sections.
583  * This is because some failed devices may only affect one
584  * of the two sections, and some non-in_sync devices may
585  * be insync in the section most affected by failed devices.
586  */
587 static int calc_degraded(struct r5conf *conf)
588 {
589         int degraded, degraded2;
590         int i;
591
592         rcu_read_lock();
593         degraded = 0;
594         for (i = 0; i < conf->previous_raid_disks; i++) {
595                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
596                 if (rdev && test_bit(Faulty, &rdev->flags))
597                         rdev = rcu_dereference(conf->disks[i].replacement);
598                 if (!rdev || test_bit(Faulty, &rdev->flags))
599                         degraded++;
600                 else if (test_bit(In_sync, &rdev->flags))
601                         ;
602                 else
603                         /* not in-sync or faulty.
604                          * If the reshape increases the number of devices,
605                          * this is being recovered by the reshape, so
606                          * this 'previous' section is not in_sync.
607                          * If the number of devices is being reduced however,
608                          * the device can only be part of the array if
609                          * we are reverting a reshape, so this section will
610                          * be in-sync.
611                          */
612                         if (conf->raid_disks >= conf->previous_raid_disks)
613                                 degraded++;
614         }
615         rcu_read_unlock();
616         if (conf->raid_disks == conf->previous_raid_disks)
617                 return degraded;
618         rcu_read_lock();
619         degraded2 = 0;
620         for (i = 0; i < conf->raid_disks; i++) {
621                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
622                 if (rdev && test_bit(Faulty, &rdev->flags))
623                         rdev = rcu_dereference(conf->disks[i].replacement);
624                 if (!rdev || test_bit(Faulty, &rdev->flags))
625                         degraded2++;
626                 else if (test_bit(In_sync, &rdev->flags))
627                         ;
628                 else
629                         /* not in-sync or faulty.
630                          * If reshape increases the number of devices, this
631                          * section has already been recovered, else it
632                          * almost certainly hasn't.
633                          */
634                         if (conf->raid_disks <= conf->previous_raid_disks)
635                                 degraded2++;
636         }
637         rcu_read_unlock();
638         if (degraded2 > degraded)
639                 return degraded2;
640         return degraded;
641 }
642
643 static int has_failed(struct r5conf *conf)
644 {
645         int degraded;
646
647         if (conf->mddev->reshape_position == MaxSector)
648                 return conf->mddev->degraded > conf->max_degraded;
649
650         degraded = calc_degraded(conf);
651         if (degraded > conf->max_degraded)
652                 return 1;
653         return 0;
654 }
655
656 struct stripe_head *
657 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
658                         int previous, int noblock, int noquiesce)
659 {
660         struct stripe_head *sh;
661         int hash = stripe_hash_locks_hash(sector);
662
663         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
664
665         spin_lock_irq(conf->hash_locks + hash);
666
667         do {
668                 wait_event_lock_irq(conf->wait_for_quiescent,
669                                     conf->quiesce == 0 || noquiesce,
670                                     *(conf->hash_locks + hash));
671                 sh = __find_stripe(conf, sector, conf->generation - previous);
672                 if (!sh) {
673                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
674                                 sh = get_free_stripe(conf, hash);
675                                 if (!sh && !test_bit(R5_DID_ALLOC,
676                                                      &conf->cache_state))
677                                         set_bit(R5_ALLOC_MORE,
678                                                 &conf->cache_state);
679                         }
680                         if (noblock && sh == NULL)
681                                 break;
682                         if (!sh) {
683                                 set_bit(R5_INACTIVE_BLOCKED,
684                                         &conf->cache_state);
685                                 wait_event_lock_irq(
686                                         conf->wait_for_stripe,
687                                         !list_empty(conf->inactive_list + hash) &&
688                                         (atomic_read(&conf->active_stripes)
689                                          < (conf->max_nr_stripes * 3 / 4)
690                                          || !test_bit(R5_INACTIVE_BLOCKED,
691                                                       &conf->cache_state)),
692                                         *(conf->hash_locks + hash));
693                                 clear_bit(R5_INACTIVE_BLOCKED,
694                                           &conf->cache_state);
695                         } else {
696                                 init_stripe(sh, sector, previous);
697                                 atomic_inc(&sh->count);
698                         }
699                 } else if (!atomic_inc_not_zero(&sh->count)) {
700                         spin_lock(&conf->device_lock);
701                         if (!atomic_read(&sh->count)) {
702                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
703                                         atomic_inc(&conf->active_stripes);
704                                 BUG_ON(list_empty(&sh->lru) &&
705                                        !test_bit(STRIPE_EXPANDING, &sh->state));
706                                 list_del_init(&sh->lru);
707                                 if (sh->group) {
708                                         sh->group->stripes_cnt--;
709                                         sh->group = NULL;
710                                 }
711                         }
712                         atomic_inc(&sh->count);
713                         spin_unlock(&conf->device_lock);
714                 }
715         } while (sh == NULL);
716
717         spin_unlock_irq(conf->hash_locks + hash);
718         return sh;
719 }
720
721 static bool is_full_stripe_write(struct stripe_head *sh)
722 {
723         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
724         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
725 }
726
727 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
728 {
729         local_irq_disable();
730         if (sh1 > sh2) {
731                 spin_lock(&sh2->stripe_lock);
732                 spin_lock_nested(&sh1->stripe_lock, 1);
733         } else {
734                 spin_lock(&sh1->stripe_lock);
735                 spin_lock_nested(&sh2->stripe_lock, 1);
736         }
737 }
738
739 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
740 {
741         spin_unlock(&sh1->stripe_lock);
742         spin_unlock(&sh2->stripe_lock);
743         local_irq_enable();
744 }
745
746 /* Only freshly new full stripe normal write stripe can be added to a batch list */
747 static bool stripe_can_batch(struct stripe_head *sh)
748 {
749         struct r5conf *conf = sh->raid_conf;
750
751         if (conf->log)
752                 return false;
753         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
754                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
755                 is_full_stripe_write(sh);
756 }
757
758 /* we only do back search */
759 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
760 {
761         struct stripe_head *head;
762         sector_t head_sector, tmp_sec;
763         int hash;
764         int dd_idx;
765
766         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
767         tmp_sec = sh->sector;
768         if (!sector_div(tmp_sec, conf->chunk_sectors))
769                 return;
770         head_sector = sh->sector - STRIPE_SECTORS;
771
772         hash = stripe_hash_locks_hash(head_sector);
773         spin_lock_irq(conf->hash_locks + hash);
774         head = __find_stripe(conf, head_sector, conf->generation);
775         if (head && !atomic_inc_not_zero(&head->count)) {
776                 spin_lock(&conf->device_lock);
777                 if (!atomic_read(&head->count)) {
778                         if (!test_bit(STRIPE_HANDLE, &head->state))
779                                 atomic_inc(&conf->active_stripes);
780                         BUG_ON(list_empty(&head->lru) &&
781                                !test_bit(STRIPE_EXPANDING, &head->state));
782                         list_del_init(&head->lru);
783                         if (head->group) {
784                                 head->group->stripes_cnt--;
785                                 head->group = NULL;
786                         }
787                 }
788                 atomic_inc(&head->count);
789                 spin_unlock(&conf->device_lock);
790         }
791         spin_unlock_irq(conf->hash_locks + hash);
792
793         if (!head)
794                 return;
795         if (!stripe_can_batch(head))
796                 goto out;
797
798         lock_two_stripes(head, sh);
799         /* clear_batch_ready clear the flag */
800         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
801                 goto unlock_out;
802
803         if (sh->batch_head)
804                 goto unlock_out;
805
806         dd_idx = 0;
807         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
808                 dd_idx++;
809         if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
810                 goto unlock_out;
811
812         if (head->batch_head) {
813                 spin_lock(&head->batch_head->batch_lock);
814                 /* This batch list is already running */
815                 if (!stripe_can_batch(head)) {
816                         spin_unlock(&head->batch_head->batch_lock);
817                         goto unlock_out;
818                 }
819
820                 /*
821                  * at this point, head's BATCH_READY could be cleared, but we
822                  * can still add the stripe to batch list
823                  */
824                 list_add(&sh->batch_list, &head->batch_list);
825                 spin_unlock(&head->batch_head->batch_lock);
826
827                 sh->batch_head = head->batch_head;
828         } else {
829                 head->batch_head = head;
830                 sh->batch_head = head->batch_head;
831                 spin_lock(&head->batch_lock);
832                 list_add_tail(&sh->batch_list, &head->batch_list);
833                 spin_unlock(&head->batch_lock);
834         }
835
836         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
837                 if (atomic_dec_return(&conf->preread_active_stripes)
838                     < IO_THRESHOLD)
839                         md_wakeup_thread(conf->mddev->thread);
840
841         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
842                 int seq = sh->bm_seq;
843                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
844                     sh->batch_head->bm_seq > seq)
845                         seq = sh->batch_head->bm_seq;
846                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
847                 sh->batch_head->bm_seq = seq;
848         }
849
850         atomic_inc(&sh->count);
851 unlock_out:
852         unlock_two_stripes(head, sh);
853 out:
854         raid5_release_stripe(head);
855 }
856
857 /* Determine if 'data_offset' or 'new_data_offset' should be used
858  * in this stripe_head.
859  */
860 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
861 {
862         sector_t progress = conf->reshape_progress;
863         /* Need a memory barrier to make sure we see the value
864          * of conf->generation, or ->data_offset that was set before
865          * reshape_progress was updated.
866          */
867         smp_rmb();
868         if (progress == MaxSector)
869                 return 0;
870         if (sh->generation == conf->generation - 1)
871                 return 0;
872         /* We are in a reshape, and this is a new-generation stripe,
873          * so use new_data_offset.
874          */
875         return 1;
876 }
877
878 static void
879 raid5_end_read_request(struct bio *bi);
880 static void
881 raid5_end_write_request(struct bio *bi);
882
883 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
884 {
885         struct r5conf *conf = sh->raid_conf;
886         int i, disks = sh->disks;
887         struct stripe_head *head_sh = sh;
888
889         might_sleep();
890
891         if (r5l_write_stripe(conf->log, sh) == 0)
892                 return;
893         for (i = disks; i--; ) {
894                 int rw;
895                 int replace_only = 0;
896                 struct bio *bi, *rbi;
897                 struct md_rdev *rdev, *rrdev = NULL;
898
899                 sh = head_sh;
900                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
901                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
902                                 rw = WRITE_FUA;
903                         else
904                                 rw = WRITE;
905                         if (test_bit(R5_Discard, &sh->dev[i].flags))
906                                 rw |= REQ_DISCARD;
907                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
908                         rw = READ;
909                 else if (test_and_clear_bit(R5_WantReplace,
910                                             &sh->dev[i].flags)) {
911                         rw = WRITE;
912                         replace_only = 1;
913                 } else
914                         continue;
915                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
916                         rw |= REQ_SYNC;
917
918 again:
919                 bi = &sh->dev[i].req;
920                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
921
922                 rcu_read_lock();
923                 rrdev = rcu_dereference(conf->disks[i].replacement);
924                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
925                 rdev = rcu_dereference(conf->disks[i].rdev);
926                 if (!rdev) {
927                         rdev = rrdev;
928                         rrdev = NULL;
929                 }
930                 if (rw & WRITE) {
931                         if (replace_only)
932                                 rdev = NULL;
933                         if (rdev == rrdev)
934                                 /* We raced and saw duplicates */
935                                 rrdev = NULL;
936                 } else {
937                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
938                                 rdev = rrdev;
939                         rrdev = NULL;
940                 }
941
942                 if (rdev && test_bit(Faulty, &rdev->flags))
943                         rdev = NULL;
944                 if (rdev)
945                         atomic_inc(&rdev->nr_pending);
946                 if (rrdev && test_bit(Faulty, &rrdev->flags))
947                         rrdev = NULL;
948                 if (rrdev)
949                         atomic_inc(&rrdev->nr_pending);
950                 rcu_read_unlock();
951
952                 /* We have already checked bad blocks for reads.  Now
953                  * need to check for writes.  We never accept write errors
954                  * on the replacement, so we don't to check rrdev.
955                  */
956                 while ((rw & WRITE) && rdev &&
957                        test_bit(WriteErrorSeen, &rdev->flags)) {
958                         sector_t first_bad;
959                         int bad_sectors;
960                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
961                                               &first_bad, &bad_sectors);
962                         if (!bad)
963                                 break;
964
965                         if (bad < 0) {
966                                 set_bit(BlockedBadBlocks, &rdev->flags);
967                                 if (!conf->mddev->external &&
968                                     conf->mddev->flags) {
969                                         /* It is very unlikely, but we might
970                                          * still need to write out the
971                                          * bad block log - better give it
972                                          * a chance*/
973                                         md_check_recovery(conf->mddev);
974                                 }
975                                 /*
976                                  * Because md_wait_for_blocked_rdev
977                                  * will dec nr_pending, we must
978                                  * increment it first.
979                                  */
980                                 atomic_inc(&rdev->nr_pending);
981                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
982                         } else {
983                                 /* Acknowledged bad block - skip the write */
984                                 rdev_dec_pending(rdev, conf->mddev);
985                                 rdev = NULL;
986                         }
987                 }
988
989                 if (rdev) {
990                         if (s->syncing || s->expanding || s->expanded
991                             || s->replacing)
992                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
993
994                         set_bit(STRIPE_IO_STARTED, &sh->state);
995
996                         bio_reset(bi);
997                         bi->bi_bdev = rdev->bdev;
998                         bi->bi_rw = rw;
999                         bi->bi_end_io = (rw & WRITE)
1000                                 ? raid5_end_write_request
1001                                 : raid5_end_read_request;
1002                         bi->bi_private = sh;
1003
1004                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1005                                 __func__, (unsigned long long)sh->sector,
1006                                 bi->bi_rw, i);
1007                         atomic_inc(&sh->count);
1008                         if (sh != head_sh)
1009                                 atomic_inc(&head_sh->count);
1010                         if (use_new_offset(conf, sh))
1011                                 bi->bi_iter.bi_sector = (sh->sector
1012                                                  + rdev->new_data_offset);
1013                         else
1014                                 bi->bi_iter.bi_sector = (sh->sector
1015                                                  + rdev->data_offset);
1016                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1017                                 bi->bi_rw |= REQ_NOMERGE;
1018
1019                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1020                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1021                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1022                         bi->bi_vcnt = 1;
1023                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1024                         bi->bi_io_vec[0].bv_offset = 0;
1025                         bi->bi_iter.bi_size = STRIPE_SIZE;
1026                         /*
1027                          * If this is discard request, set bi_vcnt 0. We don't
1028                          * want to confuse SCSI because SCSI will replace payload
1029                          */
1030                         if (rw & REQ_DISCARD)
1031                                 bi->bi_vcnt = 0;
1032                         if (rrdev)
1033                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1034
1035                         if (conf->mddev->gendisk)
1036                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1037                                                       bi, disk_devt(conf->mddev->gendisk),
1038                                                       sh->dev[i].sector);
1039                         generic_make_request(bi);
1040                 }
1041                 if (rrdev) {
1042                         if (s->syncing || s->expanding || s->expanded
1043                             || s->replacing)
1044                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1045
1046                         set_bit(STRIPE_IO_STARTED, &sh->state);
1047
1048                         bio_reset(rbi);
1049                         rbi->bi_bdev = rrdev->bdev;
1050                         rbi->bi_rw = rw;
1051                         BUG_ON(!(rw & WRITE));
1052                         rbi->bi_end_io = raid5_end_write_request;
1053                         rbi->bi_private = sh;
1054
1055                         pr_debug("%s: for %llu schedule op %ld on "
1056                                  "replacement disc %d\n",
1057                                 __func__, (unsigned long long)sh->sector,
1058                                 rbi->bi_rw, i);
1059                         atomic_inc(&sh->count);
1060                         if (sh != head_sh)
1061                                 atomic_inc(&head_sh->count);
1062                         if (use_new_offset(conf, sh))
1063                                 rbi->bi_iter.bi_sector = (sh->sector
1064                                                   + rrdev->new_data_offset);
1065                         else
1066                                 rbi->bi_iter.bi_sector = (sh->sector
1067                                                   + rrdev->data_offset);
1068                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1069                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1070                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1071                         rbi->bi_vcnt = 1;
1072                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1073                         rbi->bi_io_vec[0].bv_offset = 0;
1074                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1075                         /*
1076                          * If this is discard request, set bi_vcnt 0. We don't
1077                          * want to confuse SCSI because SCSI will replace payload
1078                          */
1079                         if (rw & REQ_DISCARD)
1080                                 rbi->bi_vcnt = 0;
1081                         if (conf->mddev->gendisk)
1082                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1083                                                       rbi, disk_devt(conf->mddev->gendisk),
1084                                                       sh->dev[i].sector);
1085                         generic_make_request(rbi);
1086                 }
1087                 if (!rdev && !rrdev) {
1088                         if (rw & WRITE)
1089                                 set_bit(STRIPE_DEGRADED, &sh->state);
1090                         pr_debug("skip op %ld on disc %d for sector %llu\n",
1091                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1092                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1093                         set_bit(STRIPE_HANDLE, &sh->state);
1094                 }
1095
1096                 if (!head_sh->batch_head)
1097                         continue;
1098                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1099                                       batch_list);
1100                 if (sh != head_sh)
1101                         goto again;
1102         }
1103 }
1104
1105 static struct dma_async_tx_descriptor *
1106 async_copy_data(int frombio, struct bio *bio, struct page **page,
1107         sector_t sector, struct dma_async_tx_descriptor *tx,
1108         struct stripe_head *sh)
1109 {
1110         struct bio_vec bvl;
1111         struct bvec_iter iter;
1112         struct page *bio_page;
1113         int page_offset;
1114         struct async_submit_ctl submit;
1115         enum async_tx_flags flags = 0;
1116
1117         if (bio->bi_iter.bi_sector >= sector)
1118                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1119         else
1120                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1121
1122         if (frombio)
1123                 flags |= ASYNC_TX_FENCE;
1124         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1125
1126         bio_for_each_segment(bvl, bio, iter) {
1127                 int len = bvl.bv_len;
1128                 int clen;
1129                 int b_offset = 0;
1130
1131                 if (page_offset < 0) {
1132                         b_offset = -page_offset;
1133                         page_offset += b_offset;
1134                         len -= b_offset;
1135                 }
1136
1137                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1138                         clen = STRIPE_SIZE - page_offset;
1139                 else
1140                         clen = len;
1141
1142                 if (clen > 0) {
1143                         b_offset += bvl.bv_offset;
1144                         bio_page = bvl.bv_page;
1145                         if (frombio) {
1146                                 if (sh->raid_conf->skip_copy &&
1147                                     b_offset == 0 && page_offset == 0 &&
1148                                     clen == STRIPE_SIZE)
1149                                         *page = bio_page;
1150                                 else
1151                                         tx = async_memcpy(*page, bio_page, page_offset,
1152                                                   b_offset, clen, &submit);
1153                         } else
1154                                 tx = async_memcpy(bio_page, *page, b_offset,
1155                                                   page_offset, clen, &submit);
1156                 }
1157                 /* chain the operations */
1158                 submit.depend_tx = tx;
1159
1160                 if (clen < len) /* hit end of page */
1161                         break;
1162                 page_offset +=  len;
1163         }
1164
1165         return tx;
1166 }
1167
1168 static void ops_complete_biofill(void *stripe_head_ref)
1169 {
1170         struct stripe_head *sh = stripe_head_ref;
1171         struct bio_list return_bi = BIO_EMPTY_LIST;
1172         int i;
1173
1174         pr_debug("%s: stripe %llu\n", __func__,
1175                 (unsigned long long)sh->sector);
1176
1177         /* clear completed biofills */
1178         for (i = sh->disks; i--; ) {
1179                 struct r5dev *dev = &sh->dev[i];
1180
1181                 /* acknowledge completion of a biofill operation */
1182                 /* and check if we need to reply to a read request,
1183                  * new R5_Wantfill requests are held off until
1184                  * !STRIPE_BIOFILL_RUN
1185                  */
1186                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1187                         struct bio *rbi, *rbi2;
1188
1189                         BUG_ON(!dev->read);
1190                         rbi = dev->read;
1191                         dev->read = NULL;
1192                         while (rbi && rbi->bi_iter.bi_sector <
1193                                 dev->sector + STRIPE_SECTORS) {
1194                                 rbi2 = r5_next_bio(rbi, dev->sector);
1195                                 if (!raid5_dec_bi_active_stripes(rbi))
1196                                         bio_list_add(&return_bi, rbi);
1197                                 rbi = rbi2;
1198                         }
1199                 }
1200         }
1201         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1202
1203         return_io(&return_bi);
1204
1205         set_bit(STRIPE_HANDLE, &sh->state);
1206         raid5_release_stripe(sh);
1207 }
1208
1209 static void ops_run_biofill(struct stripe_head *sh)
1210 {
1211         struct dma_async_tx_descriptor *tx = NULL;
1212         struct async_submit_ctl submit;
1213         int i;
1214
1215         BUG_ON(sh->batch_head);
1216         pr_debug("%s: stripe %llu\n", __func__,
1217                 (unsigned long long)sh->sector);
1218
1219         for (i = sh->disks; i--; ) {
1220                 struct r5dev *dev = &sh->dev[i];
1221                 if (test_bit(R5_Wantfill, &dev->flags)) {
1222                         struct bio *rbi;
1223                         spin_lock_irq(&sh->stripe_lock);
1224                         dev->read = rbi = dev->toread;
1225                         dev->toread = NULL;
1226                         spin_unlock_irq(&sh->stripe_lock);
1227                         while (rbi && rbi->bi_iter.bi_sector <
1228                                 dev->sector + STRIPE_SECTORS) {
1229                                 tx = async_copy_data(0, rbi, &dev->page,
1230                                         dev->sector, tx, sh);
1231                                 rbi = r5_next_bio(rbi, dev->sector);
1232                         }
1233                 }
1234         }
1235
1236         atomic_inc(&sh->count);
1237         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1238         async_trigger_callback(&submit);
1239 }
1240
1241 static void mark_target_uptodate(struct stripe_head *sh, int target)
1242 {
1243         struct r5dev *tgt;
1244
1245         if (target < 0)
1246                 return;
1247
1248         tgt = &sh->dev[target];
1249         set_bit(R5_UPTODATE, &tgt->flags);
1250         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1251         clear_bit(R5_Wantcompute, &tgt->flags);
1252 }
1253
1254 static void ops_complete_compute(void *stripe_head_ref)
1255 {
1256         struct stripe_head *sh = stripe_head_ref;
1257
1258         pr_debug("%s: stripe %llu\n", __func__,
1259                 (unsigned long long)sh->sector);
1260
1261         /* mark the computed target(s) as uptodate */
1262         mark_target_uptodate(sh, sh->ops.target);
1263         mark_target_uptodate(sh, sh->ops.target2);
1264
1265         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1266         if (sh->check_state == check_state_compute_run)
1267                 sh->check_state = check_state_compute_result;
1268         set_bit(STRIPE_HANDLE, &sh->state);
1269         raid5_release_stripe(sh);
1270 }
1271
1272 /* return a pointer to the address conversion region of the scribble buffer */
1273 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1274                                  struct raid5_percpu *percpu, int i)
1275 {
1276         void *addr;
1277
1278         addr = flex_array_get(percpu->scribble, i);
1279         return addr + sizeof(struct page *) * (sh->disks + 2);
1280 }
1281
1282 /* return a pointer to the address conversion region of the scribble buffer */
1283 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1284 {
1285         void *addr;
1286
1287         addr = flex_array_get(percpu->scribble, i);
1288         return addr;
1289 }
1290
1291 static struct dma_async_tx_descriptor *
1292 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1293 {
1294         int disks = sh->disks;
1295         struct page **xor_srcs = to_addr_page(percpu, 0);
1296         int target = sh->ops.target;
1297         struct r5dev *tgt = &sh->dev[target];
1298         struct page *xor_dest = tgt->page;
1299         int count = 0;
1300         struct dma_async_tx_descriptor *tx;
1301         struct async_submit_ctl submit;
1302         int i;
1303
1304         BUG_ON(sh->batch_head);
1305
1306         pr_debug("%s: stripe %llu block: %d\n",
1307                 __func__, (unsigned long long)sh->sector, target);
1308         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1309
1310         for (i = disks; i--; )
1311                 if (i != target)
1312                         xor_srcs[count++] = sh->dev[i].page;
1313
1314         atomic_inc(&sh->count);
1315
1316         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1317                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1318         if (unlikely(count == 1))
1319                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1320         else
1321                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1322
1323         return tx;
1324 }
1325
1326 /* set_syndrome_sources - populate source buffers for gen_syndrome
1327  * @srcs - (struct page *) array of size sh->disks
1328  * @sh - stripe_head to parse
1329  *
1330  * Populates srcs in proper layout order for the stripe and returns the
1331  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1332  * destination buffer is recorded in srcs[count] and the Q destination
1333  * is recorded in srcs[count+1]].
1334  */
1335 static int set_syndrome_sources(struct page **srcs,
1336                                 struct stripe_head *sh,
1337                                 int srctype)
1338 {
1339         int disks = sh->disks;
1340         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1341         int d0_idx = raid6_d0(sh);
1342         int count;
1343         int i;
1344
1345         for (i = 0; i < disks; i++)
1346                 srcs[i] = NULL;
1347
1348         count = 0;
1349         i = d0_idx;
1350         do {
1351                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1352                 struct r5dev *dev = &sh->dev[i];
1353
1354                 if (i == sh->qd_idx || i == sh->pd_idx ||
1355                     (srctype == SYNDROME_SRC_ALL) ||
1356                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1357                      test_bit(R5_Wantdrain, &dev->flags)) ||
1358                     (srctype == SYNDROME_SRC_WRITTEN &&
1359                      dev->written))
1360                         srcs[slot] = sh->dev[i].page;
1361                 i = raid6_next_disk(i, disks);
1362         } while (i != d0_idx);
1363
1364         return syndrome_disks;
1365 }
1366
1367 static struct dma_async_tx_descriptor *
1368 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1369 {
1370         int disks = sh->disks;
1371         struct page **blocks = to_addr_page(percpu, 0);
1372         int target;
1373         int qd_idx = sh->qd_idx;
1374         struct dma_async_tx_descriptor *tx;
1375         struct async_submit_ctl submit;
1376         struct r5dev *tgt;
1377         struct page *dest;
1378         int i;
1379         int count;
1380
1381         BUG_ON(sh->batch_head);
1382         if (sh->ops.target < 0)
1383                 target = sh->ops.target2;
1384         else if (sh->ops.target2 < 0)
1385                 target = sh->ops.target;
1386         else
1387                 /* we should only have one valid target */
1388                 BUG();
1389         BUG_ON(target < 0);
1390         pr_debug("%s: stripe %llu block: %d\n",
1391                 __func__, (unsigned long long)sh->sector, target);
1392
1393         tgt = &sh->dev[target];
1394         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1395         dest = tgt->page;
1396
1397         atomic_inc(&sh->count);
1398
1399         if (target == qd_idx) {
1400                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1401                 blocks[count] = NULL; /* regenerating p is not necessary */
1402                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1403                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1404                                   ops_complete_compute, sh,
1405                                   to_addr_conv(sh, percpu, 0));
1406                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1407         } else {
1408                 /* Compute any data- or p-drive using XOR */
1409                 count = 0;
1410                 for (i = disks; i-- ; ) {
1411                         if (i == target || i == qd_idx)
1412                                 continue;
1413                         blocks[count++] = sh->dev[i].page;
1414                 }
1415
1416                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1417                                   NULL, ops_complete_compute, sh,
1418                                   to_addr_conv(sh, percpu, 0));
1419                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1420         }
1421
1422         return tx;
1423 }
1424
1425 static struct dma_async_tx_descriptor *
1426 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1427 {
1428         int i, count, disks = sh->disks;
1429         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1430         int d0_idx = raid6_d0(sh);
1431         int faila = -1, failb = -1;
1432         int target = sh->ops.target;
1433         int target2 = sh->ops.target2;
1434         struct r5dev *tgt = &sh->dev[target];
1435         struct r5dev *tgt2 = &sh->dev[target2];
1436         struct dma_async_tx_descriptor *tx;
1437         struct page **blocks = to_addr_page(percpu, 0);
1438         struct async_submit_ctl submit;
1439
1440         BUG_ON(sh->batch_head);
1441         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1442                  __func__, (unsigned long long)sh->sector, target, target2);
1443         BUG_ON(target < 0 || target2 < 0);
1444         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1445         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1446
1447         /* we need to open-code set_syndrome_sources to handle the
1448          * slot number conversion for 'faila' and 'failb'
1449          */
1450         for (i = 0; i < disks ; i++)
1451                 blocks[i] = NULL;
1452         count = 0;
1453         i = d0_idx;
1454         do {
1455                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1456
1457                 blocks[slot] = sh->dev[i].page;
1458
1459                 if (i == target)
1460                         faila = slot;
1461                 if (i == target2)
1462                         failb = slot;
1463                 i = raid6_next_disk(i, disks);
1464         } while (i != d0_idx);
1465
1466         BUG_ON(faila == failb);
1467         if (failb < faila)
1468                 swap(faila, failb);
1469         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1470                  __func__, (unsigned long long)sh->sector, faila, failb);
1471
1472         atomic_inc(&sh->count);
1473
1474         if (failb == syndrome_disks+1) {
1475                 /* Q disk is one of the missing disks */
1476                 if (faila == syndrome_disks) {
1477                         /* Missing P+Q, just recompute */
1478                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1479                                           ops_complete_compute, sh,
1480                                           to_addr_conv(sh, percpu, 0));
1481                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1482                                                   STRIPE_SIZE, &submit);
1483                 } else {
1484                         struct page *dest;
1485                         int data_target;
1486                         int qd_idx = sh->qd_idx;
1487
1488                         /* Missing D+Q: recompute D from P, then recompute Q */
1489                         if (target == qd_idx)
1490                                 data_target = target2;
1491                         else
1492                                 data_target = target;
1493
1494                         count = 0;
1495                         for (i = disks; i-- ; ) {
1496                                 if (i == data_target || i == qd_idx)
1497                                         continue;
1498                                 blocks[count++] = sh->dev[i].page;
1499                         }
1500                         dest = sh->dev[data_target].page;
1501                         init_async_submit(&submit,
1502                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1503                                           NULL, NULL, NULL,
1504                                           to_addr_conv(sh, percpu, 0));
1505                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1506                                        &submit);
1507
1508                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1509                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1510                                           ops_complete_compute, sh,
1511                                           to_addr_conv(sh, percpu, 0));
1512                         return async_gen_syndrome(blocks, 0, count+2,
1513                                                   STRIPE_SIZE, &submit);
1514                 }
1515         } else {
1516                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1517                                   ops_complete_compute, sh,
1518                                   to_addr_conv(sh, percpu, 0));
1519                 if (failb == syndrome_disks) {
1520                         /* We're missing D+P. */
1521                         return async_raid6_datap_recov(syndrome_disks+2,
1522                                                        STRIPE_SIZE, faila,
1523                                                        blocks, &submit);
1524                 } else {
1525                         /* We're missing D+D. */
1526                         return async_raid6_2data_recov(syndrome_disks+2,
1527                                                        STRIPE_SIZE, faila, failb,
1528                                                        blocks, &submit);
1529                 }
1530         }
1531 }
1532
1533 static void ops_complete_prexor(void *stripe_head_ref)
1534 {
1535         struct stripe_head *sh = stripe_head_ref;
1536
1537         pr_debug("%s: stripe %llu\n", __func__,
1538                 (unsigned long long)sh->sector);
1539 }
1540
1541 static struct dma_async_tx_descriptor *
1542 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1543                 struct dma_async_tx_descriptor *tx)
1544 {
1545         int disks = sh->disks;
1546         struct page **xor_srcs = to_addr_page(percpu, 0);
1547         int count = 0, pd_idx = sh->pd_idx, i;
1548         struct async_submit_ctl submit;
1549
1550         /* existing parity data subtracted */
1551         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1552
1553         BUG_ON(sh->batch_head);
1554         pr_debug("%s: stripe %llu\n", __func__,
1555                 (unsigned long long)sh->sector);
1556
1557         for (i = disks; i--; ) {
1558                 struct r5dev *dev = &sh->dev[i];
1559                 /* Only process blocks that are known to be uptodate */
1560                 if (test_bit(R5_Wantdrain, &dev->flags))
1561                         xor_srcs[count++] = dev->page;
1562         }
1563
1564         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1565                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1566         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1567
1568         return tx;
1569 }
1570
1571 static struct dma_async_tx_descriptor *
1572 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1573                 struct dma_async_tx_descriptor *tx)
1574 {
1575         struct page **blocks = to_addr_page(percpu, 0);
1576         int count;
1577         struct async_submit_ctl submit;
1578
1579         pr_debug("%s: stripe %llu\n", __func__,
1580                 (unsigned long long)sh->sector);
1581
1582         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1583
1584         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1585                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1586         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1587
1588         return tx;
1589 }
1590
1591 static struct dma_async_tx_descriptor *
1592 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1593 {
1594         int disks = sh->disks;
1595         int i;
1596         struct stripe_head *head_sh = sh;
1597
1598         pr_debug("%s: stripe %llu\n", __func__,
1599                 (unsigned long long)sh->sector);
1600
1601         for (i = disks; i--; ) {
1602                 struct r5dev *dev;
1603                 struct bio *chosen;
1604
1605                 sh = head_sh;
1606                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1607                         struct bio *wbi;
1608
1609 again:
1610                         dev = &sh->dev[i];
1611                         spin_lock_irq(&sh->stripe_lock);
1612                         chosen = dev->towrite;
1613                         dev->towrite = NULL;
1614                         sh->overwrite_disks = 0;
1615                         BUG_ON(dev->written);
1616                         wbi = dev->written = chosen;
1617                         spin_unlock_irq(&sh->stripe_lock);
1618                         WARN_ON(dev->page != dev->orig_page);
1619
1620                         while (wbi && wbi->bi_iter.bi_sector <
1621                                 dev->sector + STRIPE_SECTORS) {
1622                                 if (wbi->bi_rw & REQ_FUA)
1623                                         set_bit(R5_WantFUA, &dev->flags);
1624                                 if (wbi->bi_rw & REQ_SYNC)
1625                                         set_bit(R5_SyncIO, &dev->flags);
1626                                 if (wbi->bi_rw & REQ_DISCARD)
1627                                         set_bit(R5_Discard, &dev->flags);
1628                                 else {
1629                                         tx = async_copy_data(1, wbi, &dev->page,
1630                                                 dev->sector, tx, sh);
1631                                         if (dev->page != dev->orig_page) {
1632                                                 set_bit(R5_SkipCopy, &dev->flags);
1633                                                 clear_bit(R5_UPTODATE, &dev->flags);
1634                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1635                                         }
1636                                 }
1637                                 wbi = r5_next_bio(wbi, dev->sector);
1638                         }
1639
1640                         if (head_sh->batch_head) {
1641                                 sh = list_first_entry(&sh->batch_list,
1642                                                       struct stripe_head,
1643                                                       batch_list);
1644                                 if (sh == head_sh)
1645                                         continue;
1646                                 goto again;
1647                         }
1648                 }
1649         }
1650
1651         return tx;
1652 }
1653
1654 static void ops_complete_reconstruct(void *stripe_head_ref)
1655 {
1656         struct stripe_head *sh = stripe_head_ref;
1657         int disks = sh->disks;
1658         int pd_idx = sh->pd_idx;
1659         int qd_idx = sh->qd_idx;
1660         int i;
1661         bool fua = false, sync = false, discard = false;
1662
1663         pr_debug("%s: stripe %llu\n", __func__,
1664                 (unsigned long long)sh->sector);
1665
1666         for (i = disks; i--; ) {
1667                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1668                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1669                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1670         }
1671
1672         for (i = disks; i--; ) {
1673                 struct r5dev *dev = &sh->dev[i];
1674
1675                 if (dev->written || i == pd_idx || i == qd_idx) {
1676                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1677                                 set_bit(R5_UPTODATE, &dev->flags);
1678                         if (fua)
1679                                 set_bit(R5_WantFUA, &dev->flags);
1680                         if (sync)
1681                                 set_bit(R5_SyncIO, &dev->flags);
1682                 }
1683         }
1684
1685         if (sh->reconstruct_state == reconstruct_state_drain_run)
1686                 sh->reconstruct_state = reconstruct_state_drain_result;
1687         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1688                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1689         else {
1690                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1691                 sh->reconstruct_state = reconstruct_state_result;
1692         }
1693
1694         set_bit(STRIPE_HANDLE, &sh->state);
1695         raid5_release_stripe(sh);
1696 }
1697
1698 static void
1699 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1700                      struct dma_async_tx_descriptor *tx)
1701 {
1702         int disks = sh->disks;
1703         struct page **xor_srcs;
1704         struct async_submit_ctl submit;
1705         int count, pd_idx = sh->pd_idx, i;
1706         struct page *xor_dest;
1707         int prexor = 0;
1708         unsigned long flags;
1709         int j = 0;
1710         struct stripe_head *head_sh = sh;
1711         int last_stripe;
1712
1713         pr_debug("%s: stripe %llu\n", __func__,
1714                 (unsigned long long)sh->sector);
1715
1716         for (i = 0; i < sh->disks; i++) {
1717                 if (pd_idx == i)
1718                         continue;
1719                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1720                         break;
1721         }
1722         if (i >= sh->disks) {
1723                 atomic_inc(&sh->count);
1724                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1725                 ops_complete_reconstruct(sh);
1726                 return;
1727         }
1728 again:
1729         count = 0;
1730         xor_srcs = to_addr_page(percpu, j);
1731         /* check if prexor is active which means only process blocks
1732          * that are part of a read-modify-write (written)
1733          */
1734         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1735                 prexor = 1;
1736                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1737                 for (i = disks; i--; ) {
1738                         struct r5dev *dev = &sh->dev[i];
1739                         if (head_sh->dev[i].written)
1740                                 xor_srcs[count++] = dev->page;
1741                 }
1742         } else {
1743                 xor_dest = sh->dev[pd_idx].page;
1744                 for (i = disks; i--; ) {
1745                         struct r5dev *dev = &sh->dev[i];
1746                         if (i != pd_idx)
1747                                 xor_srcs[count++] = dev->page;
1748                 }
1749         }
1750
1751         /* 1/ if we prexor'd then the dest is reused as a source
1752          * 2/ if we did not prexor then we are redoing the parity
1753          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1754          * for the synchronous xor case
1755          */
1756         last_stripe = !head_sh->batch_head ||
1757                 list_first_entry(&sh->batch_list,
1758                                  struct stripe_head, batch_list) == head_sh;
1759         if (last_stripe) {
1760                 flags = ASYNC_TX_ACK |
1761                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1762
1763                 atomic_inc(&head_sh->count);
1764                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1765                                   to_addr_conv(sh, percpu, j));
1766         } else {
1767                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1768                 init_async_submit(&submit, flags, tx, NULL, NULL,
1769                                   to_addr_conv(sh, percpu, j));
1770         }
1771
1772         if (unlikely(count == 1))
1773                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1774         else
1775                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1776         if (!last_stripe) {
1777                 j++;
1778                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1779                                       batch_list);
1780                 goto again;
1781         }
1782 }
1783
1784 static void
1785 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1786                      struct dma_async_tx_descriptor *tx)
1787 {
1788         struct async_submit_ctl submit;
1789         struct page **blocks;
1790         int count, i, j = 0;
1791         struct stripe_head *head_sh = sh;
1792         int last_stripe;
1793         int synflags;
1794         unsigned long txflags;
1795
1796         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1797
1798         for (i = 0; i < sh->disks; i++) {
1799                 if (sh->pd_idx == i || sh->qd_idx == i)
1800                         continue;
1801                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1802                         break;
1803         }
1804         if (i >= sh->disks) {
1805                 atomic_inc(&sh->count);
1806                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1807                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1808                 ops_complete_reconstruct(sh);
1809                 return;
1810         }
1811
1812 again:
1813         blocks = to_addr_page(percpu, j);
1814
1815         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1816                 synflags = SYNDROME_SRC_WRITTEN;
1817                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1818         } else {
1819                 synflags = SYNDROME_SRC_ALL;
1820                 txflags = ASYNC_TX_ACK;
1821         }
1822
1823         count = set_syndrome_sources(blocks, sh, synflags);
1824         last_stripe = !head_sh->batch_head ||
1825                 list_first_entry(&sh->batch_list,
1826                                  struct stripe_head, batch_list) == head_sh;
1827
1828         if (last_stripe) {
1829                 atomic_inc(&head_sh->count);
1830                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1831                                   head_sh, to_addr_conv(sh, percpu, j));
1832         } else
1833                 init_async_submit(&submit, 0, tx, NULL, NULL,
1834                                   to_addr_conv(sh, percpu, j));
1835         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1836         if (!last_stripe) {
1837                 j++;
1838                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1839                                       batch_list);
1840                 goto again;
1841         }
1842 }
1843
1844 static void ops_complete_check(void *stripe_head_ref)
1845 {
1846         struct stripe_head *sh = stripe_head_ref;
1847
1848         pr_debug("%s: stripe %llu\n", __func__,
1849                 (unsigned long long)sh->sector);
1850
1851         sh->check_state = check_state_check_result;
1852         set_bit(STRIPE_HANDLE, &sh->state);
1853         raid5_release_stripe(sh);
1854 }
1855
1856 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1857 {
1858         int disks = sh->disks;
1859         int pd_idx = sh->pd_idx;
1860         int qd_idx = sh->qd_idx;
1861         struct page *xor_dest;
1862         struct page **xor_srcs = to_addr_page(percpu, 0);
1863         struct dma_async_tx_descriptor *tx;
1864         struct async_submit_ctl submit;
1865         int count;
1866         int i;
1867
1868         pr_debug("%s: stripe %llu\n", __func__,
1869                 (unsigned long long)sh->sector);
1870
1871         BUG_ON(sh->batch_head);
1872         count = 0;
1873         xor_dest = sh->dev[pd_idx].page;
1874         xor_srcs[count++] = xor_dest;
1875         for (i = disks; i--; ) {
1876                 if (i == pd_idx || i == qd_idx)
1877                         continue;
1878                 xor_srcs[count++] = sh->dev[i].page;
1879         }
1880
1881         init_async_submit(&submit, 0, NULL, NULL, NULL,
1882                           to_addr_conv(sh, percpu, 0));
1883         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1884                            &sh->ops.zero_sum_result, &submit);
1885
1886         atomic_inc(&sh->count);
1887         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1888         tx = async_trigger_callback(&submit);
1889 }
1890
1891 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1892 {
1893         struct page **srcs = to_addr_page(percpu, 0);
1894         struct async_submit_ctl submit;
1895         int count;
1896
1897         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1898                 (unsigned long long)sh->sector, checkp);
1899
1900         BUG_ON(sh->batch_head);
1901         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1902         if (!checkp)
1903                 srcs[count] = NULL;
1904
1905         atomic_inc(&sh->count);
1906         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1907                           sh, to_addr_conv(sh, percpu, 0));
1908         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1909                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1910 }
1911
1912 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1913 {
1914         int overlap_clear = 0, i, disks = sh->disks;
1915         struct dma_async_tx_descriptor *tx = NULL;
1916         struct r5conf *conf = sh->raid_conf;
1917         int level = conf->level;
1918         struct raid5_percpu *percpu;
1919         unsigned long cpu;
1920
1921         cpu = get_cpu();
1922         percpu = per_cpu_ptr(conf->percpu, cpu);
1923         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1924                 ops_run_biofill(sh);
1925                 overlap_clear++;
1926         }
1927
1928         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1929                 if (level < 6)
1930                         tx = ops_run_compute5(sh, percpu);
1931                 else {
1932                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1933                                 tx = ops_run_compute6_1(sh, percpu);
1934                         else
1935                                 tx = ops_run_compute6_2(sh, percpu);
1936                 }
1937                 /* terminate the chain if reconstruct is not set to be run */
1938                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1939                         async_tx_ack(tx);
1940         }
1941
1942         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1943                 if (level < 6)
1944                         tx = ops_run_prexor5(sh, percpu, tx);
1945                 else
1946                         tx = ops_run_prexor6(sh, percpu, tx);
1947         }
1948
1949         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1950                 tx = ops_run_biodrain(sh, tx);
1951                 overlap_clear++;
1952         }
1953
1954         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1955                 if (level < 6)
1956                         ops_run_reconstruct5(sh, percpu, tx);
1957                 else
1958                         ops_run_reconstruct6(sh, percpu, tx);
1959         }
1960
1961         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1962                 if (sh->check_state == check_state_run)
1963                         ops_run_check_p(sh, percpu);
1964                 else if (sh->check_state == check_state_run_q)
1965                         ops_run_check_pq(sh, percpu, 0);
1966                 else if (sh->check_state == check_state_run_pq)
1967                         ops_run_check_pq(sh, percpu, 1);
1968                 else
1969                         BUG();
1970         }
1971
1972         if (overlap_clear && !sh->batch_head)
1973                 for (i = disks; i--; ) {
1974                         struct r5dev *dev = &sh->dev[i];
1975                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1976                                 wake_up(&sh->raid_conf->wait_for_overlap);
1977                 }
1978         put_cpu();
1979 }
1980
1981 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1982 {
1983         struct stripe_head *sh;
1984
1985         sh = kmem_cache_zalloc(sc, gfp);
1986         if (sh) {
1987                 spin_lock_init(&sh->stripe_lock);
1988                 spin_lock_init(&sh->batch_lock);
1989                 INIT_LIST_HEAD(&sh->batch_list);
1990                 INIT_LIST_HEAD(&sh->lru);
1991                 atomic_set(&sh->count, 1);
1992         }
1993         return sh;
1994 }
1995 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1996 {
1997         struct stripe_head *sh;
1998
1999         sh = alloc_stripe(conf->slab_cache, gfp);
2000         if (!sh)
2001                 return 0;
2002
2003         sh->raid_conf = conf;
2004
2005         if (grow_buffers(sh, gfp)) {
2006                 shrink_buffers(sh);
2007                 kmem_cache_free(conf->slab_cache, sh);
2008                 return 0;
2009         }
2010         sh->hash_lock_index =
2011                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2012         /* we just created an active stripe so... */
2013         atomic_inc(&conf->active_stripes);
2014
2015         raid5_release_stripe(sh);
2016         conf->max_nr_stripes++;
2017         return 1;
2018 }
2019
2020 static int grow_stripes(struct r5conf *conf, int num)
2021 {
2022         struct kmem_cache *sc;
2023         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2024
2025         if (conf->mddev->gendisk)
2026                 sprintf(conf->cache_name[0],
2027                         "raid%d-%s", conf->level, mdname(conf->mddev));
2028         else
2029                 sprintf(conf->cache_name[0],
2030                         "raid%d-%p", conf->level, conf->mddev);
2031         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2032
2033         conf->active_name = 0;
2034         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2035                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2036                                0, 0, NULL);
2037         if (!sc)
2038                 return 1;
2039         conf->slab_cache = sc;
2040         conf->pool_size = devs;
2041         while (num--)
2042                 if (!grow_one_stripe(conf, GFP_KERNEL))
2043                         return 1;
2044
2045         return 0;
2046 }
2047
2048 /**
2049  * scribble_len - return the required size of the scribble region
2050  * @num - total number of disks in the array
2051  *
2052  * The size must be enough to contain:
2053  * 1/ a struct page pointer for each device in the array +2
2054  * 2/ room to convert each entry in (1) to its corresponding dma
2055  *    (dma_map_page()) or page (page_address()) address.
2056  *
2057  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2058  * calculate over all devices (not just the data blocks), using zeros in place
2059  * of the P and Q blocks.
2060  */
2061 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2062 {
2063         struct flex_array *ret;
2064         size_t len;
2065
2066         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2067         ret = flex_array_alloc(len, cnt, flags);
2068         if (!ret)
2069                 return NULL;
2070         /* always prealloc all elements, so no locking is required */
2071         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2072                 flex_array_free(ret);
2073                 return NULL;
2074         }
2075         return ret;
2076 }
2077
2078 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2079 {
2080         unsigned long cpu;
2081         int err = 0;
2082
2083         /*
2084          * Never shrink. And mddev_suspend() could deadlock if this is called
2085          * from raid5d. In that case, scribble_disks and scribble_sectors
2086          * should equal to new_disks and new_sectors
2087          */
2088         if (conf->scribble_disks >= new_disks &&
2089             conf->scribble_sectors >= new_sectors)
2090                 return 0;
2091         mddev_suspend(conf->mddev);
2092         get_online_cpus();
2093         for_each_present_cpu(cpu) {
2094                 struct raid5_percpu *percpu;
2095                 struct flex_array *scribble;
2096
2097                 percpu = per_cpu_ptr(conf->percpu, cpu);
2098                 scribble = scribble_alloc(new_disks,
2099                                           new_sectors / STRIPE_SECTORS,
2100                                           GFP_NOIO);
2101
2102                 if (scribble) {
2103                         flex_array_free(percpu->scribble);
2104                         percpu->scribble = scribble;
2105                 } else {
2106                         err = -ENOMEM;
2107                         break;
2108                 }
2109         }
2110         put_online_cpus();
2111         mddev_resume(conf->mddev);
2112         if (!err) {
2113                 conf->scribble_disks = new_disks;
2114                 conf->scribble_sectors = new_sectors;
2115         }
2116         return err;
2117 }
2118
2119 static int resize_stripes(struct r5conf *conf, int newsize)
2120 {
2121         /* Make all the stripes able to hold 'newsize' devices.
2122          * New slots in each stripe get 'page' set to a new page.
2123          *
2124          * This happens in stages:
2125          * 1/ create a new kmem_cache and allocate the required number of
2126          *    stripe_heads.
2127          * 2/ gather all the old stripe_heads and transfer the pages across
2128          *    to the new stripe_heads.  This will have the side effect of
2129          *    freezing the array as once all stripe_heads have been collected,
2130          *    no IO will be possible.  Old stripe heads are freed once their
2131          *    pages have been transferred over, and the old kmem_cache is
2132          *    freed when all stripes are done.
2133          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2134          *    we simple return a failre status - no need to clean anything up.
2135          * 4/ allocate new pages for the new slots in the new stripe_heads.
2136          *    If this fails, we don't bother trying the shrink the
2137          *    stripe_heads down again, we just leave them as they are.
2138          *    As each stripe_head is processed the new one is released into
2139          *    active service.
2140          *
2141          * Once step2 is started, we cannot afford to wait for a write,
2142          * so we use GFP_NOIO allocations.
2143          */
2144         struct stripe_head *osh, *nsh;
2145         LIST_HEAD(newstripes);
2146         struct disk_info *ndisks;
2147         int err;
2148         struct kmem_cache *sc;
2149         int i;
2150         int hash, cnt;
2151
2152         if (newsize <= conf->pool_size)
2153                 return 0; /* never bother to shrink */
2154
2155         err = md_allow_write(conf->mddev);
2156         if (err)
2157                 return err;
2158
2159         /* Step 1 */
2160         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2161                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2162                                0, 0, NULL);
2163         if (!sc)
2164                 return -ENOMEM;
2165
2166         /* Need to ensure auto-resizing doesn't interfere */
2167         mutex_lock(&conf->cache_size_mutex);
2168
2169         for (i = conf->max_nr_stripes; i; i--) {
2170                 nsh = alloc_stripe(sc, GFP_KERNEL);
2171                 if (!nsh)
2172                         break;
2173
2174                 nsh->raid_conf = conf;
2175                 list_add(&nsh->lru, &newstripes);
2176         }
2177         if (i) {
2178                 /* didn't get enough, give up */
2179                 while (!list_empty(&newstripes)) {
2180                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2181                         list_del(&nsh->lru);
2182                         kmem_cache_free(sc, nsh);
2183                 }
2184                 kmem_cache_destroy(sc);
2185                 mutex_unlock(&conf->cache_size_mutex);
2186                 return -ENOMEM;
2187         }
2188         /* Step 2 - Must use GFP_NOIO now.
2189          * OK, we have enough stripes, start collecting inactive
2190          * stripes and copying them over
2191          */
2192         hash = 0;
2193         cnt = 0;
2194         list_for_each_entry(nsh, &newstripes, lru) {
2195                 lock_device_hash_lock(conf, hash);
2196                 wait_event_cmd(conf->wait_for_stripe,
2197                                     !list_empty(conf->inactive_list + hash),
2198                                     unlock_device_hash_lock(conf, hash),
2199                                     lock_device_hash_lock(conf, hash));
2200                 osh = get_free_stripe(conf, hash);
2201                 unlock_device_hash_lock(conf, hash);
2202
2203                 for(i=0; i<conf->pool_size; i++) {
2204                         nsh->dev[i].page = osh->dev[i].page;
2205                         nsh->dev[i].orig_page = osh->dev[i].page;
2206                 }
2207                 nsh->hash_lock_index = hash;
2208                 kmem_cache_free(conf->slab_cache, osh);
2209                 cnt++;
2210                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2211                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2212                         hash++;
2213                         cnt = 0;
2214                 }
2215         }
2216         kmem_cache_destroy(conf->slab_cache);
2217
2218         /* Step 3.
2219          * At this point, we are holding all the stripes so the array
2220          * is completely stalled, so now is a good time to resize
2221          * conf->disks and the scribble region
2222          */
2223         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2224         if (ndisks) {
2225                 for (i=0; i<conf->raid_disks; i++)
2226                         ndisks[i] = conf->disks[i];
2227                 kfree(conf->disks);
2228                 conf->disks = ndisks;
2229         } else
2230                 err = -ENOMEM;
2231
2232         mutex_unlock(&conf->cache_size_mutex);
2233         /* Step 4, return new stripes to service */
2234         while(!list_empty(&newstripes)) {
2235                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2236                 list_del_init(&nsh->lru);
2237
2238                 for (i=conf->raid_disks; i < newsize; i++)
2239                         if (nsh->dev[i].page == NULL) {
2240                                 struct page *p = alloc_page(GFP_NOIO);
2241                                 nsh->dev[i].page = p;
2242                                 nsh->dev[i].orig_page = p;
2243                                 if (!p)
2244                                         err = -ENOMEM;
2245                         }
2246                 raid5_release_stripe(nsh);
2247         }
2248         /* critical section pass, GFP_NOIO no longer needed */
2249
2250         conf->slab_cache = sc;
2251         conf->active_name = 1-conf->active_name;
2252         if (!err)
2253                 conf->pool_size = newsize;
2254         return err;
2255 }
2256
2257 static int drop_one_stripe(struct r5conf *conf)
2258 {
2259         struct stripe_head *sh;
2260         int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2261
2262         spin_lock_irq(conf->hash_locks + hash);
2263         sh = get_free_stripe(conf, hash);
2264         spin_unlock_irq(conf->hash_locks + hash);
2265         if (!sh)
2266                 return 0;
2267         BUG_ON(atomic_read(&sh->count));
2268         shrink_buffers(sh);
2269         kmem_cache_free(conf->slab_cache, sh);
2270         atomic_dec(&conf->active_stripes);
2271         conf->max_nr_stripes--;
2272         return 1;
2273 }
2274
2275 static void shrink_stripes(struct r5conf *conf)
2276 {
2277         while (conf->max_nr_stripes &&
2278                drop_one_stripe(conf))
2279                 ;
2280
2281         kmem_cache_destroy(conf->slab_cache);
2282         conf->slab_cache = NULL;
2283 }
2284
2285 static void raid5_end_read_request(struct bio * bi)
2286 {
2287         struct stripe_head *sh = bi->bi_private;
2288         struct r5conf *conf = sh->raid_conf;
2289         int disks = sh->disks, i;
2290         char b[BDEVNAME_SIZE];
2291         struct md_rdev *rdev = NULL;
2292         sector_t s;
2293
2294         for (i=0 ; i<disks; i++)
2295                 if (bi == &sh->dev[i].req)
2296                         break;
2297
2298         pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2299                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2300                 bi->bi_error);
2301         if (i == disks) {
2302                 BUG();
2303                 return;
2304         }
2305         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2306                 /* If replacement finished while this request was outstanding,
2307                  * 'replacement' might be NULL already.
2308                  * In that case it moved down to 'rdev'.
2309                  * rdev is not removed until all requests are finished.
2310                  */
2311                 rdev = conf->disks[i].replacement;
2312         if (!rdev)
2313                 rdev = conf->disks[i].rdev;
2314
2315         if (use_new_offset(conf, sh))
2316                 s = sh->sector + rdev->new_data_offset;
2317         else
2318                 s = sh->sector + rdev->data_offset;
2319         if (!bi->bi_error) {
2320                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2321                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2322                         /* Note that this cannot happen on a
2323                          * replacement device.  We just fail those on
2324                          * any error
2325                          */
2326                         printk_ratelimited(
2327                                 KERN_INFO
2328                                 "md/raid:%s: read error corrected"
2329                                 " (%lu sectors at %llu on %s)\n",
2330                                 mdname(conf->mddev), STRIPE_SECTORS,
2331                                 (unsigned long long)s,
2332                                 bdevname(rdev->bdev, b));
2333                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2334                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2335                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2336                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2337                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2338
2339                 if (atomic_read(&rdev->read_errors))
2340                         atomic_set(&rdev->read_errors, 0);
2341         } else {
2342                 const char *bdn = bdevname(rdev->bdev, b);
2343                 int retry = 0;
2344                 int set_bad = 0;
2345
2346                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2347                 atomic_inc(&rdev->read_errors);
2348                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2349                         printk_ratelimited(
2350                                 KERN_WARNING
2351                                 "md/raid:%s: read error on replacement device "
2352                                 "(sector %llu on %s).\n",
2353                                 mdname(conf->mddev),
2354                                 (unsigned long long)s,
2355                                 bdn);
2356                 else if (conf->mddev->degraded >= conf->max_degraded) {
2357                         set_bad = 1;
2358                         printk_ratelimited(
2359                                 KERN_WARNING
2360                                 "md/raid:%s: read error not correctable "
2361                                 "(sector %llu on %s).\n",
2362                                 mdname(conf->mddev),
2363                                 (unsigned long long)s,
2364                                 bdn);
2365                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2366                         /* Oh, no!!! */
2367                         set_bad = 1;
2368                         printk_ratelimited(
2369                                 KERN_WARNING
2370                                 "md/raid:%s: read error NOT corrected!! "
2371                                 "(sector %llu on %s).\n",
2372                                 mdname(conf->mddev),
2373                                 (unsigned long long)s,
2374                                 bdn);
2375                 } else if (atomic_read(&rdev->read_errors)
2376                          > conf->max_nr_stripes)
2377                         printk(KERN_WARNING
2378                                "md/raid:%s: Too many read errors, failing device %s.\n",
2379                                mdname(conf->mddev), bdn);
2380                 else
2381                         retry = 1;
2382                 if (set_bad && test_bit(In_sync, &rdev->flags)
2383                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2384                         retry = 1;
2385                 if (retry)
2386                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2387                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2388                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2389                         } else
2390                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2391                 else {
2392                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2393                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2394                         if (!(set_bad
2395                               && test_bit(In_sync, &rdev->flags)
2396                               && rdev_set_badblocks(
2397                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2398                                 md_error(conf->mddev, rdev);
2399                 }
2400         }
2401         rdev_dec_pending(rdev, conf->mddev);
2402         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2403         set_bit(STRIPE_HANDLE, &sh->state);
2404         raid5_release_stripe(sh);
2405 }
2406
2407 static void raid5_end_write_request(struct bio *bi)
2408 {
2409         struct stripe_head *sh = bi->bi_private;
2410         struct r5conf *conf = sh->raid_conf;
2411         int disks = sh->disks, i;
2412         struct md_rdev *uninitialized_var(rdev);
2413         sector_t first_bad;
2414         int bad_sectors;
2415         int replacement = 0;
2416
2417         for (i = 0 ; i < disks; i++) {
2418                 if (bi == &sh->dev[i].req) {
2419                         rdev = conf->disks[i].rdev;
2420                         break;
2421                 }
2422                 if (bi == &sh->dev[i].rreq) {
2423                         rdev = conf->disks[i].replacement;
2424                         if (rdev)
2425                                 replacement = 1;
2426                         else
2427                                 /* rdev was removed and 'replacement'
2428                                  * replaced it.  rdev is not removed
2429                                  * until all requests are finished.
2430                                  */
2431                                 rdev = conf->disks[i].rdev;
2432                         break;
2433                 }
2434         }
2435         pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2436                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2437                 bi->bi_error);
2438         if (i == disks) {
2439                 BUG();
2440                 return;
2441         }
2442
2443         if (replacement) {
2444                 if (bi->bi_error)
2445                         md_error(conf->mddev, rdev);
2446                 else if (is_badblock(rdev, sh->sector,
2447                                      STRIPE_SECTORS,
2448                                      &first_bad, &bad_sectors))
2449                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2450         } else {
2451                 if (bi->bi_error) {
2452                         set_bit(STRIPE_DEGRADED, &sh->state);
2453                         set_bit(WriteErrorSeen, &rdev->flags);
2454                         set_bit(R5_WriteError, &sh->dev[i].flags);
2455                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2456                                 set_bit(MD_RECOVERY_NEEDED,
2457                                         &rdev->mddev->recovery);
2458                 } else if (is_badblock(rdev, sh->sector,
2459                                        STRIPE_SECTORS,
2460                                        &first_bad, &bad_sectors)) {
2461                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2462                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2463                                 /* That was a successful write so make
2464                                  * sure it looks like we already did
2465                                  * a re-write.
2466                                  */
2467                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2468                 }
2469         }
2470         rdev_dec_pending(rdev, conf->mddev);
2471
2472         if (sh->batch_head && bi->bi_error && !replacement)
2473                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2474
2475         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2476                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2477         set_bit(STRIPE_HANDLE, &sh->state);
2478         raid5_release_stripe(sh);
2479
2480         if (sh->batch_head && sh != sh->batch_head)
2481                 raid5_release_stripe(sh->batch_head);
2482 }
2483
2484 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2485 {
2486         struct r5dev *dev = &sh->dev[i];
2487
2488         bio_init(&dev->req);
2489         dev->req.bi_io_vec = &dev->vec;
2490         dev->req.bi_max_vecs = 1;
2491         dev->req.bi_private = sh;
2492
2493         bio_init(&dev->rreq);
2494         dev->rreq.bi_io_vec = &dev->rvec;
2495         dev->rreq.bi_max_vecs = 1;
2496         dev->rreq.bi_private = sh;
2497
2498         dev->flags = 0;
2499         dev->sector = raid5_compute_blocknr(sh, i, previous);
2500 }
2501
2502 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2503 {
2504         char b[BDEVNAME_SIZE];
2505         struct r5conf *conf = mddev->private;
2506         unsigned long flags;
2507         pr_debug("raid456: error called\n");
2508
2509         spin_lock_irqsave(&conf->device_lock, flags);
2510         clear_bit(In_sync, &rdev->flags);
2511         mddev->degraded = calc_degraded(conf);
2512         spin_unlock_irqrestore(&conf->device_lock, flags);
2513         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2514
2515         set_bit(Blocked, &rdev->flags);
2516         set_bit(Faulty, &rdev->flags);
2517         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2518         set_bit(MD_CHANGE_PENDING, &mddev->flags);
2519         printk(KERN_ALERT
2520                "md/raid:%s: Disk failure on %s, disabling device.\n"
2521                "md/raid:%s: Operation continuing on %d devices.\n",
2522                mdname(mddev),
2523                bdevname(rdev->bdev, b),
2524                mdname(mddev),
2525                conf->raid_disks - mddev->degraded);
2526 }
2527
2528 /*
2529  * Input: a 'big' sector number,
2530  * Output: index of the data and parity disk, and the sector # in them.
2531  */
2532 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2533                               int previous, int *dd_idx,
2534                               struct stripe_head *sh)
2535 {
2536         sector_t stripe, stripe2;
2537         sector_t chunk_number;
2538         unsigned int chunk_offset;
2539         int pd_idx, qd_idx;
2540         int ddf_layout = 0;
2541         sector_t new_sector;
2542         int algorithm = previous ? conf->prev_algo
2543                                  : conf->algorithm;
2544         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2545                                          : conf->chunk_sectors;
2546         int raid_disks = previous ? conf->previous_raid_disks
2547                                   : conf->raid_disks;
2548         int data_disks = raid_disks - conf->max_degraded;
2549
2550         /* First compute the information on this sector */
2551
2552         /*
2553          * Compute the chunk number and the sector offset inside the chunk
2554          */
2555         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2556         chunk_number = r_sector;
2557
2558         /*
2559          * Compute the stripe number
2560          */
2561         stripe = chunk_number;
2562         *dd_idx = sector_div(stripe, data_disks);
2563         stripe2 = stripe;
2564         /*
2565          * Select the parity disk based on the user selected algorithm.
2566          */
2567         pd_idx = qd_idx = -1;
2568         switch(conf->level) {
2569         case 4:
2570                 pd_idx = data_disks;
2571                 break;
2572         case 5:
2573                 switch (algorithm) {
2574                 case ALGORITHM_LEFT_ASYMMETRIC:
2575                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2576                         if (*dd_idx >= pd_idx)
2577                                 (*dd_idx)++;
2578                         break;
2579                 case ALGORITHM_RIGHT_ASYMMETRIC:
2580                         pd_idx = sector_div(stripe2, raid_disks);
2581                         if (*dd_idx >= pd_idx)
2582                                 (*dd_idx)++;
2583                         break;
2584                 case ALGORITHM_LEFT_SYMMETRIC:
2585                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2586                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2587                         break;
2588                 case ALGORITHM_RIGHT_SYMMETRIC:
2589                         pd_idx = sector_div(stripe2, raid_disks);
2590                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2591                         break;
2592                 case ALGORITHM_PARITY_0:
2593                         pd_idx = 0;
2594                         (*dd_idx)++;
2595                         break;
2596                 case ALGORITHM_PARITY_N:
2597                         pd_idx = data_disks;
2598                         break;
2599                 default:
2600                         BUG();
2601                 }
2602                 break;
2603         case 6:
2604
2605                 switch (algorithm) {
2606                 case ALGORITHM_LEFT_ASYMMETRIC:
2607                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2608                         qd_idx = pd_idx + 1;
2609                         if (pd_idx == raid_disks-1) {
2610                                 (*dd_idx)++;    /* Q D D D P */
2611                                 qd_idx = 0;
2612                         } else if (*dd_idx >= pd_idx)
2613                                 (*dd_idx) += 2; /* D D P Q D */
2614                         break;
2615                 case ALGORITHM_RIGHT_ASYMMETRIC:
2616                         pd_idx = sector_div(stripe2, raid_disks);
2617                         qd_idx = pd_idx + 1;
2618                         if (pd_idx == raid_disks-1) {
2619                                 (*dd_idx)++;    /* Q D D D P */
2620                                 qd_idx = 0;
2621                         } else if (*dd_idx >= pd_idx)
2622                                 (*dd_idx) += 2; /* D D P Q D */
2623                         break;
2624                 case ALGORITHM_LEFT_SYMMETRIC:
2625                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2626                         qd_idx = (pd_idx + 1) % raid_disks;
2627                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2628                         break;
2629                 case ALGORITHM_RIGHT_SYMMETRIC:
2630                         pd_idx = sector_div(stripe2, raid_disks);
2631                         qd_idx = (pd_idx + 1) % raid_disks;
2632                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2633                         break;
2634
2635                 case ALGORITHM_PARITY_0:
2636                         pd_idx = 0;
2637                         qd_idx = 1;
2638                         (*dd_idx) += 2;
2639                         break;
2640                 case ALGORITHM_PARITY_N:
2641                         pd_idx = data_disks;
2642                         qd_idx = data_disks + 1;
2643                         break;
2644
2645                 case ALGORITHM_ROTATING_ZERO_RESTART:
2646                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2647                          * of blocks for computing Q is different.
2648                          */
2649                         pd_idx = sector_div(stripe2, raid_disks);
2650                         qd_idx = pd_idx + 1;
2651                         if (pd_idx == raid_disks-1) {
2652                                 (*dd_idx)++;    /* Q D D D P */
2653                                 qd_idx = 0;
2654                         } else if (*dd_idx >= pd_idx)
2655                                 (*dd_idx) += 2; /* D D P Q D */
2656                         ddf_layout = 1;
2657                         break;
2658
2659                 case ALGORITHM_ROTATING_N_RESTART:
2660                         /* Same a left_asymmetric, by first stripe is
2661                          * D D D P Q  rather than
2662                          * Q D D D P
2663                          */
2664                         stripe2 += 1;
2665                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2666                         qd_idx = pd_idx + 1;
2667                         if (pd_idx == raid_disks-1) {
2668                                 (*dd_idx)++;    /* Q D D D P */
2669                                 qd_idx = 0;
2670                         } else if (*dd_idx >= pd_idx)
2671                                 (*dd_idx) += 2; /* D D P Q D */
2672                         ddf_layout = 1;
2673                         break;
2674
2675                 case ALGORITHM_ROTATING_N_CONTINUE:
2676                         /* Same as left_symmetric but Q is before P */
2677                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2678                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2679                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2680                         ddf_layout = 1;
2681                         break;
2682
2683                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2684                         /* RAID5 left_asymmetric, with Q on last device */
2685                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2686                         if (*dd_idx >= pd_idx)
2687                                 (*dd_idx)++;
2688                         qd_idx = raid_disks - 1;
2689                         break;
2690
2691                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2692                         pd_idx = sector_div(stripe2, raid_disks-1);
2693                         if (*dd_idx >= pd_idx)
2694                                 (*dd_idx)++;
2695                         qd_idx = raid_disks - 1;
2696                         break;
2697
2698                 case ALGORITHM_LEFT_SYMMETRIC_6:
2699                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2700                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2701                         qd_idx = raid_disks - 1;
2702                         break;
2703
2704                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2705                         pd_idx = sector_div(stripe2, raid_disks-1);
2706                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2707                         qd_idx = raid_disks - 1;
2708                         break;
2709
2710                 case ALGORITHM_PARITY_0_6:
2711                         pd_idx = 0;
2712                         (*dd_idx)++;
2713                         qd_idx = raid_disks - 1;
2714                         break;
2715
2716                 default:
2717                         BUG();
2718                 }
2719                 break;
2720         }
2721
2722         if (sh) {
2723                 sh->pd_idx = pd_idx;
2724                 sh->qd_idx = qd_idx;
2725                 sh->ddf_layout = ddf_layout;
2726         }
2727         /*
2728          * Finally, compute the new sector number
2729          */
2730         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2731         return new_sector;
2732 }
2733
2734 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2735 {
2736         struct r5conf *conf = sh->raid_conf;
2737         int raid_disks = sh->disks;
2738         int data_disks = raid_disks - conf->max_degraded;
2739         sector_t new_sector = sh->sector, check;
2740         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2741                                          : conf->chunk_sectors;
2742         int algorithm = previous ? conf->prev_algo
2743                                  : conf->algorithm;
2744         sector_t stripe;
2745         int chunk_offset;
2746         sector_t chunk_number;
2747         int dummy1, dd_idx = i;
2748         sector_t r_sector;
2749         struct stripe_head sh2;
2750
2751         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2752         stripe = new_sector;
2753
2754         if (i == sh->pd_idx)
2755                 return 0;
2756         switch(conf->level) {
2757         case 4: break;
2758         case 5:
2759                 switch (algorithm) {
2760                 case ALGORITHM_LEFT_ASYMMETRIC:
2761                 case ALGORITHM_RIGHT_ASYMMETRIC:
2762                         if (i > sh->pd_idx)
2763                                 i--;
2764                         break;
2765                 case ALGORITHM_LEFT_SYMMETRIC:
2766                 case ALGORITHM_RIGHT_SYMMETRIC:
2767                         if (i < sh->pd_idx)
2768                                 i += raid_disks;
2769                         i -= (sh->pd_idx + 1);
2770                         break;
2771                 case ALGORITHM_PARITY_0:
2772                         i -= 1;
2773                         break;
2774                 case ALGORITHM_PARITY_N:
2775                         break;
2776                 default:
2777                         BUG();
2778                 }
2779                 break;
2780         case 6:
2781                 if (i == sh->qd_idx)
2782                         return 0; /* It is the Q disk */
2783                 switch (algorithm) {
2784                 case ALGORITHM_LEFT_ASYMMETRIC:
2785                 case ALGORITHM_RIGHT_ASYMMETRIC:
2786                 case ALGORITHM_ROTATING_ZERO_RESTART:
2787                 case ALGORITHM_ROTATING_N_RESTART:
2788                         if (sh->pd_idx == raid_disks-1)
2789                                 i--;    /* Q D D D P */
2790                         else if (i > sh->pd_idx)
2791                                 i -= 2; /* D D P Q D */
2792                         break;
2793                 case ALGORITHM_LEFT_SYMMETRIC:
2794                 case ALGORITHM_RIGHT_SYMMETRIC:
2795                         if (sh->pd_idx == raid_disks-1)
2796                                 i--; /* Q D D D P */
2797                         else {
2798                                 /* D D P Q D */
2799                                 if (i < sh->pd_idx)
2800                                         i += raid_disks;
2801                                 i -= (sh->pd_idx + 2);
2802                         }
2803                         break;
2804                 case ALGORITHM_PARITY_0:
2805                         i -= 2;
2806                         break;
2807                 case ALGORITHM_PARITY_N:
2808                         break;
2809                 case ALGORITHM_ROTATING_N_CONTINUE:
2810                         /* Like left_symmetric, but P is before Q */
2811                         if (sh->pd_idx == 0)
2812                                 i--;    /* P D D D Q */
2813                         else {
2814                                 /* D D Q P D */
2815                                 if (i < sh->pd_idx)
2816                                         i += raid_disks;
2817                                 i -= (sh->pd_idx + 1);
2818                         }
2819                         break;
2820                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2821                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2822                         if (i > sh->pd_idx)
2823                                 i--;
2824                         break;
2825                 case ALGORITHM_LEFT_SYMMETRIC_6:
2826                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2827                         if (i < sh->pd_idx)
2828                                 i += data_disks + 1;
2829                         i -= (sh->pd_idx + 1);
2830                         break;
2831                 case ALGORITHM_PARITY_0_6:
2832                         i -= 1;
2833                         break;
2834                 default:
2835                         BUG();
2836                 }
2837                 break;
2838         }
2839
2840         chunk_number = stripe * data_disks + i;
2841         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2842
2843         check = raid5_compute_sector(conf, r_sector,
2844                                      previous, &dummy1, &sh2);
2845         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2846                 || sh2.qd_idx != sh->qd_idx) {
2847                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2848                        mdname(conf->mddev));
2849                 return 0;
2850         }
2851         return r_sector;
2852 }
2853
2854 static void
2855 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2856                          int rcw, int expand)
2857 {
2858         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2859         struct r5conf *conf = sh->raid_conf;
2860         int level = conf->level;
2861
2862         if (rcw) {
2863
2864                 for (i = disks; i--; ) {
2865                         struct r5dev *dev = &sh->dev[i];
2866
2867                         if (dev->towrite) {
2868                                 set_bit(R5_LOCKED, &dev->flags);
2869                                 set_bit(R5_Wantdrain, &dev->flags);
2870                                 if (!expand)
2871                                         clear_bit(R5_UPTODATE, &dev->flags);
2872                                 s->locked++;
2873                         }
2874                 }
2875                 /* if we are not expanding this is a proper write request, and
2876                  * there will be bios with new data to be drained into the
2877                  * stripe cache
2878                  */
2879                 if (!expand) {
2880                         if (!s->locked)
2881                                 /* False alarm, nothing to do */
2882                                 return;
2883                         sh->reconstruct_state = reconstruct_state_drain_run;
2884                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2885                 } else
2886                         sh->reconstruct_state = reconstruct_state_run;
2887
2888                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2889
2890                 if (s->locked + conf->max_degraded == disks)
2891                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2892                                 atomic_inc(&conf->pending_full_writes);
2893         } else {
2894                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2895                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2896                 BUG_ON(level == 6 &&
2897                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2898                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2899
2900                 for (i = disks; i--; ) {
2901                         struct r5dev *dev = &sh->dev[i];
2902                         if (i == pd_idx || i == qd_idx)
2903                                 continue;
2904
2905                         if (dev->towrite &&
2906                             (test_bit(R5_UPTODATE, &dev->flags) ||
2907                              test_bit(R5_Wantcompute, &dev->flags))) {
2908                                 set_bit(R5_Wantdrain, &dev->flags);
2909                                 set_bit(R5_LOCKED, &dev->flags);
2910                                 clear_bit(R5_UPTODATE, &dev->flags);
2911                                 s->locked++;
2912                         }
2913                 }
2914                 if (!s->locked)
2915                         /* False alarm - nothing to do */
2916                         return;
2917                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2918                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2919                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2920                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2921         }
2922
2923         /* keep the parity disk(s) locked while asynchronous operations
2924          * are in flight
2925          */
2926         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2927         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2928         s->locked++;
2929
2930         if (level == 6) {
2931                 int qd_idx = sh->qd_idx;
2932                 struct r5dev *dev = &sh->dev[qd_idx];
2933
2934                 set_bit(R5_LOCKED, &dev->flags);
2935                 clear_bit(R5_UPTODATE, &dev->flags);
2936                 s->locked++;
2937         }
2938
2939         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2940                 __func__, (unsigned long long)sh->sector,
2941                 s->locked, s->ops_request);
2942 }
2943
2944 /*
2945  * Each stripe/dev can have one or more bion attached.
2946  * toread/towrite point to the first in a chain.
2947  * The bi_next chain must be in order.
2948  */
2949 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2950                           int forwrite, int previous)
2951 {
2952         struct bio **bip;
2953         struct r5conf *conf = sh->raid_conf;
2954         int firstwrite=0;
2955
2956         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2957                 (unsigned long long)bi->bi_iter.bi_sector,
2958                 (unsigned long long)sh->sector);
2959
2960         /*
2961          * If several bio share a stripe. The bio bi_phys_segments acts as a
2962          * reference count to avoid race. The reference count should already be
2963          * increased before this function is called (for example, in
2964          * raid5_make_request()), so other bio sharing this stripe will not free the
2965          * stripe. If a stripe is owned by one stripe, the stripe lock will
2966          * protect it.
2967          */
2968         spin_lock_irq(&sh->stripe_lock);
2969         /* Don't allow new IO added to stripes in batch list */
2970         if (sh->batch_head)
2971                 goto overlap;
2972         if (forwrite) {
2973                 bip = &sh->dev[dd_idx].towrite;
2974                 if (*bip == NULL)
2975                         firstwrite = 1;
2976         } else
2977                 bip = &sh->dev[dd_idx].toread;
2978         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2979                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2980                         goto overlap;
2981                 bip = & (*bip)->bi_next;
2982         }
2983         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2984                 goto overlap;
2985
2986         if (!forwrite || previous)
2987                 clear_bit(STRIPE_BATCH_READY, &sh->state);
2988
2989         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2990         if (*bip)
2991                 bi->bi_next = *bip;
2992         *bip = bi;
2993         raid5_inc_bi_active_stripes(bi);
2994
2995         if (forwrite) {
2996                 /* check if page is covered */
2997                 sector_t sector = sh->dev[dd_idx].sector;
2998                 for (bi=sh->dev[dd_idx].towrite;
2999                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3000                              bi && bi->bi_iter.bi_sector <= sector;
3001                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3002                         if (bio_end_sector(bi) >= sector)
3003                                 sector = bio_end_sector(bi);
3004                 }
3005                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3006                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3007                                 sh->overwrite_disks++;
3008         }
3009
3010         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3011                 (unsigned long long)(*bip)->bi_iter.bi_sector,
3012                 (unsigned long long)sh->sector, dd_idx);
3013
3014         if (conf->mddev->bitmap && firstwrite) {
3015                 /* Cannot hold spinlock over bitmap_startwrite,
3016                  * but must ensure this isn't added to a batch until
3017                  * we have added to the bitmap and set bm_seq.
3018                  * So set STRIPE_BITMAP_PENDING to prevent
3019                  * batching.
3020                  * If multiple add_stripe_bio() calls race here they
3021                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3022                  * to complete "bitmap_startwrite" gets to set
3023                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3024                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3025                  * any more.
3026                  */
3027                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3028                 spin_unlock_irq(&sh->stripe_lock);
3029                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3030                                   STRIPE_SECTORS, 0);
3031                 spin_lock_irq(&sh->stripe_lock);
3032                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3033                 if (!sh->batch_head) {
3034                         sh->bm_seq = conf->seq_flush+1;
3035                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3036                 }
3037         }
3038         spin_unlock_irq(&sh->stripe_lock);
3039
3040         if (stripe_can_batch(sh))
3041                 stripe_add_to_batch_list(conf, sh);
3042         return 1;
3043
3044  overlap:
3045         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3046         spin_unlock_irq(&sh->stripe_lock);
3047         return 0;
3048 }
3049
3050 static void end_reshape(struct r5conf *conf);
3051
3052 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3053                             struct stripe_head *sh)
3054 {
3055         int sectors_per_chunk =
3056                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3057         int dd_idx;
3058         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3059         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3060
3061         raid5_compute_sector(conf,
3062                              stripe * (disks - conf->max_degraded)
3063                              *sectors_per_chunk + chunk_offset,
3064                              previous,
3065                              &dd_idx, sh);
3066 }
3067
3068 static void
3069 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3070                                 struct stripe_head_state *s, int disks,
3071                                 struct bio_list *return_bi)
3072 {
3073         int i;
3074         BUG_ON(sh->batch_head);
3075         for (i = disks; i--; ) {
3076                 struct bio *bi;
3077                 int bitmap_end = 0;
3078
3079                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3080                         struct md_rdev *rdev;
3081                         rcu_read_lock();
3082                         rdev = rcu_dereference(conf->disks[i].rdev);
3083                         if (rdev && test_bit(In_sync, &rdev->flags))
3084                                 atomic_inc(&rdev->nr_pending);
3085                         else
3086                                 rdev = NULL;
3087                         rcu_read_unlock();
3088                         if (rdev) {
3089                                 if (!rdev_set_badblocks(
3090                                             rdev,
3091                                             sh->sector,
3092                                             STRIPE_SECTORS, 0))
3093                                         md_error(conf->mddev, rdev);
3094                                 rdev_dec_pending(rdev, conf->mddev);
3095                         }
3096                 }
3097                 spin_lock_irq(&sh->stripe_lock);
3098                 /* fail all writes first */
3099                 bi = sh->dev[i].towrite;
3100                 sh->dev[i].towrite = NULL;
3101                 sh->overwrite_disks = 0;
3102                 spin_unlock_irq(&sh->stripe_lock);
3103                 if (bi)
3104                         bitmap_end = 1;
3105
3106                 r5l_stripe_write_finished(sh);
3107
3108                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3109                         wake_up(&conf->wait_for_overlap);
3110
3111                 while (bi && bi->bi_iter.bi_sector <
3112                         sh->dev[i].sector + STRIPE_SECTORS) {
3113                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3114
3115                         bi->bi_error = -EIO;
3116                         if (!raid5_dec_bi_active_stripes(bi)) {
3117                                 md_write_end(conf->mddev);
3118                                 bio_list_add(return_bi, bi);
3119                         }
3120                         bi = nextbi;
3121                 }
3122                 if (bitmap_end)
3123                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3124                                 STRIPE_SECTORS, 0, 0);
3125                 bitmap_end = 0;
3126                 /* and fail all 'written' */
3127                 bi = sh->dev[i].written;
3128                 sh->dev[i].written = NULL;
3129                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3130                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3131                         sh->dev[i].page = sh->dev[i].orig_page;
3132                 }
3133
3134                 if (bi) bitmap_end = 1;
3135                 while (bi && bi->bi_iter.bi_sector <
3136                        sh->dev[i].sector + STRIPE_SECTORS) {
3137                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3138
3139                         bi->bi_error = -EIO;
3140                         if (!raid5_dec_bi_active_stripes(bi)) {
3141                                 md_write_end(conf->mddev);
3142                                 bio_list_add(return_bi, bi);
3143                         }
3144                         bi = bi2;
3145                 }
3146
3147                 /* fail any reads if this device is non-operational and
3148                  * the data has not reached the cache yet.
3149                  */
3150                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3151                     s->failed > conf->max_degraded &&
3152                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3153                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3154                         spin_lock_irq(&sh->stripe_lock);
3155                         bi = sh->dev[i].toread;
3156                         sh->dev[i].toread = NULL;
3157                         spin_unlock_irq(&sh->stripe_lock);
3158                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3159                                 wake_up(&conf->wait_for_overlap);
3160                         if (bi)
3161                                 s->to_read--;
3162                         while (bi && bi->bi_iter.bi_sector <
3163                                sh->dev[i].sector + STRIPE_SECTORS) {
3164                                 struct bio *nextbi =
3165                                         r5_next_bio(bi, sh->dev[i].sector);
3166
3167                                 bi->bi_error = -EIO;
3168                                 if (!raid5_dec_bi_active_stripes(bi))
3169                                         bio_list_add(return_bi, bi);
3170                                 bi = nextbi;
3171                         }
3172                 }
3173                 if (bitmap_end)
3174                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3175                                         STRIPE_SECTORS, 0, 0);
3176                 /* If we were in the middle of a write the parity block might
3177                  * still be locked - so just clear all R5_LOCKED flags
3178                  */
3179                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3180         }
3181         s->to_write = 0;
3182         s->written = 0;
3183
3184         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3185                 if (atomic_dec_and_test(&conf->pending_full_writes))
3186                         md_wakeup_thread(conf->mddev->thread);
3187 }
3188
3189 static void
3190 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3191                    struct stripe_head_state *s)
3192 {
3193         int abort = 0;
3194         int i;
3195
3196         BUG_ON(sh->batch_head);
3197         clear_bit(STRIPE_SYNCING, &sh->state);
3198         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3199                 wake_up(&conf->wait_for_overlap);
3200         s->syncing = 0;
3201         s->replacing = 0;
3202         /* There is nothing more to do for sync/check/repair.
3203          * Don't even need to abort as that is handled elsewhere
3204          * if needed, and not always wanted e.g. if there is a known
3205          * bad block here.
3206          * For recover/replace we need to record a bad block on all
3207          * non-sync devices, or abort the recovery
3208          */
3209         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3210                 /* During recovery devices cannot be removed, so
3211                  * locking and refcounting of rdevs is not needed
3212                  */
3213                 for (i = 0; i < conf->raid_disks; i++) {
3214                         struct md_rdev *rdev = conf->disks[i].rdev;
3215                         if (rdev
3216                             && !test_bit(Faulty, &rdev->flags)
3217                             && !test_bit(In_sync, &rdev->flags)
3218                             && !rdev_set_badblocks(rdev, sh->sector,
3219                                                    STRIPE_SECTORS, 0))
3220                                 abort = 1;
3221                         rdev = conf->disks[i].replacement;
3222                         if (rdev
3223                             && !test_bit(Faulty, &rdev->flags)
3224                             && !test_bit(In_sync, &rdev->flags)
3225                             && !rdev_set_badblocks(rdev, sh->sector,
3226                                                    STRIPE_SECTORS, 0))
3227                                 abort = 1;
3228                 }
3229                 if (abort)
3230                         conf->recovery_disabled =
3231                                 conf->mddev->recovery_disabled;
3232         }
3233         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3234 }
3235
3236 static int want_replace(struct stripe_head *sh, int disk_idx)
3237 {
3238         struct md_rdev *rdev;
3239         int rv = 0;
3240         /* Doing recovery so rcu locking not required */
3241         rdev = sh->raid_conf->disks[disk_idx].replacement;
3242         if (rdev
3243             && !test_bit(Faulty, &rdev->flags)
3244             && !test_bit(In_sync, &rdev->flags)
3245             && (rdev->recovery_offset <= sh->sector
3246                 || rdev->mddev->recovery_cp <= sh->sector))
3247                 rv = 1;
3248
3249         return rv;
3250 }
3251
3252 /* fetch_block - checks the given member device to see if its data needs
3253  * to be read or computed to satisfy a request.
3254  *
3255  * Returns 1 when no more member devices need to be checked, otherwise returns
3256  * 0 to tell the loop in handle_stripe_fill to continue
3257  */
3258
3259 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3260                            int disk_idx, int disks)
3261 {
3262         struct r5dev *dev = &sh->dev[disk_idx];
3263         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3264                                   &sh->dev[s->failed_num[1]] };
3265         int i;
3266
3267
3268         if (test_bit(R5_LOCKED, &dev->flags) ||
3269             test_bit(R5_UPTODATE, &dev->flags))
3270                 /* No point reading this as we already have it or have
3271                  * decided to get it.
3272                  */
3273                 return 0;
3274
3275         if (dev->toread ||
3276             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3277                 /* We need this block to directly satisfy a request */
3278                 return 1;
3279
3280         if (s->syncing || s->expanding ||
3281             (s->replacing && want_replace(sh, disk_idx)))
3282                 /* When syncing, or expanding we read everything.
3283                  * When replacing, we need the replaced block.
3284                  */
3285                 return 1;
3286
3287         if ((s->failed >= 1 && fdev[0]->toread) ||
3288             (s->failed >= 2 && fdev[1]->toread))
3289                 /* If we want to read from a failed device, then
3290                  * we need to actually read every other device.
3291                  */
3292                 return 1;
3293
3294         /* Sometimes neither read-modify-write nor reconstruct-write
3295          * cycles can work.  In those cases we read every block we
3296          * can.  Then the parity-update is certain to have enough to
3297          * work with.
3298          * This can only be a problem when we need to write something,
3299          * and some device has failed.  If either of those tests
3300          * fail we need look no further.
3301          */
3302         if (!s->failed || !s->to_write)
3303                 return 0;
3304
3305         if (test_bit(R5_Insync, &dev->flags) &&
3306             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3307                 /* Pre-reads at not permitted until after short delay
3308                  * to gather multiple requests.  However if this
3309                  * device is no Insync, the block could only be be computed
3310                  * and there is no need to delay that.
3311                  */
3312                 return 0;
3313
3314         for (i = 0; i < s->failed && i < 2; i++) {
3315                 if (fdev[i]->towrite &&
3316                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3317                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3318                         /* If we have a partial write to a failed
3319                          * device, then we will need to reconstruct
3320                          * the content of that device, so all other
3321                          * devices must be read.
3322                          */
3323                         return 1;
3324         }
3325
3326         /* If we are forced to do a reconstruct-write, either because
3327          * the current RAID6 implementation only supports that, or
3328          * or because parity cannot be trusted and we are currently
3329          * recovering it, there is extra need to be careful.
3330          * If one of the devices that we would need to read, because
3331          * it is not being overwritten (and maybe not written at all)
3332          * is missing/faulty, then we need to read everything we can.
3333          */
3334         if (sh->raid_conf->level != 6 &&
3335             sh->sector < sh->raid_conf->mddev->recovery_cp)
3336                 /* reconstruct-write isn't being forced */
3337                 return 0;
3338         for (i = 0; i < s->failed && i < 2; i++) {
3339                 if (s->failed_num[i] != sh->pd_idx &&
3340                     s->failed_num[i] != sh->qd_idx &&
3341                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3342                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3343                         return 1;
3344         }
3345
3346         return 0;
3347 }
3348
3349 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3350                        int disk_idx, int disks)
3351 {
3352         struct r5dev *dev = &sh->dev[disk_idx];
3353
3354         /* is the data in this block needed, and can we get it? */
3355         if (need_this_block(sh, s, disk_idx, disks)) {
3356                 /* we would like to get this block, possibly by computing it,
3357                  * otherwise read it if the backing disk is insync
3358                  */
3359                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3360                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3361                 BUG_ON(sh->batch_head);
3362                 if ((s->uptodate == disks - 1) &&
3363                     (s->failed && (disk_idx == s->failed_num[0] ||
3364                                    disk_idx == s->failed_num[1]))) {
3365                         /* have disk failed, and we're requested to fetch it;
3366                          * do compute it
3367                          */
3368                         pr_debug("Computing stripe %llu block %d\n",
3369                                (unsigned long long)sh->sector, disk_idx);
3370                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3371                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3372                         set_bit(R5_Wantcompute, &dev->flags);
3373                         sh->ops.target = disk_idx;
3374                         sh->ops.target2 = -1; /* no 2nd target */
3375                         s->req_compute = 1;
3376                         /* Careful: from this point on 'uptodate' is in the eye
3377                          * of raid_run_ops which services 'compute' operations
3378                          * before writes. R5_Wantcompute flags a block that will
3379                          * be R5_UPTODATE by the time it is needed for a
3380                          * subsequent operation.
3381                          */
3382                         s->uptodate++;
3383                         return 1;
3384                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3385                         /* Computing 2-failure is *very* expensive; only
3386                          * do it if failed >= 2
3387                          */
3388                         int other;
3389                         for (other = disks; other--; ) {
3390                                 if (other == disk_idx)
3391                                         continue;
3392                                 if (!test_bit(R5_UPTODATE,
3393                                       &sh->dev[other].flags))
3394                                         break;
3395                         }
3396                         BUG_ON(other < 0);
3397                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3398                                (unsigned long long)sh->sector,
3399                                disk_idx, other);
3400                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3401                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3402                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3403                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3404                         sh->ops.target = disk_idx;
3405                         sh->ops.target2 = other;
3406                         s->uptodate += 2;
3407                         s->req_compute = 1;
3408                         return 1;
3409                 } else if (test_bit(R5_Insync, &dev->flags)) {
3410                         set_bit(R5_LOCKED, &dev->flags);
3411                         set_bit(R5_Wantread, &dev->flags);
3412                         s->locked++;
3413                         pr_debug("Reading block %d (sync=%d)\n",
3414                                 disk_idx, s->syncing);
3415                 }
3416         }
3417
3418         return 0;
3419 }
3420
3421 /**
3422  * handle_stripe_fill - read or compute data to satisfy pending requests.
3423  */
3424 static void handle_stripe_fill(struct stripe_head *sh,
3425                                struct stripe_head_state *s,
3426                                int disks)
3427 {
3428         int i;
3429
3430         /* look for blocks to read/compute, skip this if a compute
3431          * is already in flight, or if the stripe contents are in the
3432          * midst of changing due to a write
3433          */
3434         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3435             !sh->reconstruct_state)
3436                 for (i = disks; i--; )
3437                         if (fetch_block(sh, s, i, disks))
3438                                 break;
3439         set_bit(STRIPE_HANDLE, &sh->state);
3440 }
3441
3442 static void break_stripe_batch_list(struct stripe_head *head_sh,
3443                                     unsigned long handle_flags);
3444 /* handle_stripe_clean_event
3445  * any written block on an uptodate or failed drive can be returned.
3446  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3447  * never LOCKED, so we don't need to test 'failed' directly.
3448  */
3449 static void handle_stripe_clean_event(struct r5conf *conf,
3450         struct stripe_head *sh, int disks, struct bio_list *return_bi)
3451 {
3452         int i;
3453         struct r5dev *dev;
3454         int discard_pending = 0;
3455         struct stripe_head *head_sh = sh;
3456         bool do_endio = false;
3457
3458         for (i = disks; i--; )
3459                 if (sh->dev[i].written) {
3460                         dev = &sh->dev[i];
3461                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3462                             (test_bit(R5_UPTODATE, &dev->flags) ||
3463                              test_bit(R5_Discard, &dev->flags) ||
3464                              test_bit(R5_SkipCopy, &dev->flags))) {
3465                                 /* We can return any write requests */
3466                                 struct bio *wbi, *wbi2;
3467                                 pr_debug("Return write for disc %d\n", i);
3468                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3469                                         clear_bit(R5_UPTODATE, &dev->flags);
3470                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3471                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3472                                 }
3473                                 do_endio = true;
3474
3475 returnbi:
3476                                 dev->page = dev->orig_page;
3477                                 wbi = dev->written;
3478                                 dev->written = NULL;
3479                                 while (wbi && wbi->bi_iter.bi_sector <
3480                                         dev->sector + STRIPE_SECTORS) {
3481                                         wbi2 = r5_next_bio(wbi, dev->sector);
3482                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3483                                                 md_write_end(conf->mddev);
3484                                                 bio_list_add(return_bi, wbi);
3485                                         }
3486                                         wbi = wbi2;
3487                                 }
3488                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3489                                                 STRIPE_SECTORS,
3490                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3491                                                 0);
3492                                 if (head_sh->batch_head) {
3493                                         sh = list_first_entry(&sh->batch_list,
3494                                                               struct stripe_head,
3495                                                               batch_list);
3496                                         if (sh != head_sh) {
3497                                                 dev = &sh->dev[i];
3498                                                 goto returnbi;
3499                                         }
3500                                 }
3501                                 sh = head_sh;
3502                                 dev = &sh->dev[i];
3503                         } else if (test_bit(R5_Discard, &dev->flags))
3504                                 discard_pending = 1;
3505                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3506                         WARN_ON(dev->page != dev->orig_page);
3507                 }
3508
3509         r5l_stripe_write_finished(sh);
3510
3511         if (!discard_pending &&
3512             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3513                 int hash;
3514                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3515                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3516                 if (sh->qd_idx >= 0) {
3517                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3518                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3519                 }
3520                 /* now that discard is done we can proceed with any sync */
3521                 clear_bit(STRIPE_DISCARD, &sh->state);
3522                 /*
3523                  * SCSI discard will change some bio fields and the stripe has
3524                  * no updated data, so remove it from hash list and the stripe
3525                  * will be reinitialized
3526                  */
3527 unhash:
3528                 hash = sh->hash_lock_index;
3529                 spin_lock_irq(conf->hash_locks + hash);
3530                 remove_hash(sh);
3531                 spin_unlock_irq(conf->hash_locks + hash);
3532                 if (head_sh->batch_head) {
3533                         sh = list_first_entry(&sh->batch_list,
3534                                               struct stripe_head, batch_list);
3535                         if (sh != head_sh)
3536                                         goto unhash;
3537                 }
3538                 sh = head_sh;
3539
3540                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3541                         set_bit(STRIPE_HANDLE, &sh->state);
3542
3543         }
3544
3545         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3546                 if (atomic_dec_and_test(&conf->pending_full_writes))
3547                         md_wakeup_thread(conf->mddev->thread);
3548
3549         if (head_sh->batch_head && do_endio)
3550                 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3551 }
3552
3553 static void handle_stripe_dirtying(struct r5conf *conf,
3554                                    struct stripe_head *sh,
3555                                    struct stripe_head_state *s,
3556                                    int disks)
3557 {
3558         int rmw = 0, rcw = 0, i;
3559         sector_t recovery_cp = conf->mddev->recovery_cp;
3560
3561         /* Check whether resync is now happening or should start.
3562          * If yes, then the array is dirty (after unclean shutdown or
3563          * initial creation), so parity in some stripes might be inconsistent.
3564          * In this case, we need to always do reconstruct-write, to ensure
3565          * that in case of drive failure or read-error correction, we
3566          * generate correct data from the parity.
3567          */
3568         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3569             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3570              s->failed == 0)) {
3571                 /* Calculate the real rcw later - for now make it
3572                  * look like rcw is cheaper
3573                  */
3574                 rcw = 1; rmw = 2;
3575                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3576                          conf->rmw_level, (unsigned long long)recovery_cp,
3577                          (unsigned long long)sh->sector);
3578         } else for (i = disks; i--; ) {
3579                 /* would I have to read this buffer for read_modify_write */
3580                 struct r5dev *dev = &sh->dev[i];
3581                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3582                     !test_bit(R5_LOCKED, &dev->flags) &&
3583                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3584                       test_bit(R5_Wantcompute, &dev->flags))) {
3585                         if (test_bit(R5_Insync, &dev->flags))
3586                                 rmw++;
3587                         else
3588                                 rmw += 2*disks;  /* cannot read it */
3589                 }
3590                 /* Would I have to read this buffer for reconstruct_write */
3591                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3592                     i != sh->pd_idx && i != sh->qd_idx &&
3593                     !test_bit(R5_LOCKED, &dev->flags) &&
3594                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3595                     test_bit(R5_Wantcompute, &dev->flags))) {
3596                         if (test_bit(R5_Insync, &dev->flags))
3597                                 rcw++;
3598                         else
3599                                 rcw += 2*disks;
3600                 }
3601         }
3602         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3603                 (unsigned long long)sh->sector, rmw, rcw);
3604         set_bit(STRIPE_HANDLE, &sh->state);
3605         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3606                 /* prefer read-modify-write, but need to get some data */
3607                 if (conf->mddev->queue)
3608                         blk_add_trace_msg(conf->mddev->queue,
3609                                           "raid5 rmw %llu %d",
3610                                           (unsigned long long)sh->sector, rmw);
3611                 for (i = disks; i--; ) {
3612                         struct r5dev *dev = &sh->dev[i];
3613                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3614                             !test_bit(R5_LOCKED, &dev->flags) &&
3615                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3616                             test_bit(R5_Wantcompute, &dev->flags)) &&
3617                             test_bit(R5_Insync, &dev->flags)) {
3618                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3619                                              &sh->state)) {
3620                                         pr_debug("Read_old block %d for r-m-w\n",
3621                                                  i);
3622                                         set_bit(R5_LOCKED, &dev->flags);
3623                                         set_bit(R5_Wantread, &dev->flags);
3624                                         s->locked++;
3625                                 } else {
3626                                         set_bit(STRIPE_DELAYED, &sh->state);
3627                                         set_bit(STRIPE_HANDLE, &sh->state);
3628                                 }
3629                         }
3630                 }
3631         }
3632         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3633                 /* want reconstruct write, but need to get some data */
3634                 int qread =0;
3635                 rcw = 0;
3636                 for (i = disks; i--; ) {
3637                         struct r5dev *dev = &sh->dev[i];
3638                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3639                             i != sh->pd_idx && i != sh->qd_idx &&
3640                             !test_bit(R5_LOCKED, &dev->flags) &&
3641                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3642                               test_bit(R5_Wantcompute, &dev->flags))) {
3643                                 rcw++;
3644                                 if (test_bit(R5_Insync, &dev->flags) &&
3645                                     test_bit(STRIPE_PREREAD_ACTIVE,
3646                                              &sh->state)) {
3647                                         pr_debug("Read_old block "
3648                                                 "%d for Reconstruct\n", i);
3649                                         set_bit(R5_LOCKED, &dev->flags);
3650                                         set_bit(R5_Wantread, &dev->flags);
3651                                         s->locked++;
3652                                         qread++;
3653                                 } else {
3654                                         set_bit(STRIPE_DELAYED, &sh->state);
3655                                         set_bit(STRIPE_HANDLE, &sh->state);
3656                                 }
3657                         }
3658                 }
3659                 if (rcw && conf->mddev->queue)
3660                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3661                                           (unsigned long long)sh->sector,
3662                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3663         }
3664
3665         if (rcw > disks && rmw > disks &&
3666             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3667                 set_bit(STRIPE_DELAYED, &sh->state);
3668
3669         /* now if nothing is locked, and if we have enough data,
3670          * we can start a write request
3671          */
3672         /* since handle_stripe can be called at any time we need to handle the
3673          * case where a compute block operation has been submitted and then a
3674          * subsequent call wants to start a write request.  raid_run_ops only
3675          * handles the case where compute block and reconstruct are requested
3676          * simultaneously.  If this is not the case then new writes need to be
3677          * held off until the compute completes.
3678          */
3679         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3680             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3681             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3682                 schedule_reconstruction(sh, s, rcw == 0, 0);
3683 }
3684
3685 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3686                                 struct stripe_head_state *s, int disks)
3687 {
3688         struct r5dev *dev = NULL;
3689
3690         BUG_ON(sh->batch_head);
3691         set_bit(STRIPE_HANDLE, &sh->state);
3692
3693         switch (sh->check_state) {
3694         case check_state_idle:
3695                 /* start a new check operation if there are no failures */
3696                 if (s->failed == 0) {
3697                         BUG_ON(s->uptodate != disks);
3698                         sh->check_state = check_state_run;
3699                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3700                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3701                         s->uptodate--;
3702                         break;
3703                 }
3704                 dev = &sh->dev[s->failed_num[0]];
3705                 /* fall through */
3706         case check_state_compute_result:
3707                 sh->check_state = check_state_idle;
3708                 if (!dev)
3709                         dev = &sh->dev[sh->pd_idx];
3710
3711                 /* check that a write has not made the stripe insync */
3712                 if (test_bit(STRIPE_INSYNC, &sh->state))
3713                         break;
3714
3715                 /* either failed parity check, or recovery is happening */
3716                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3717                 BUG_ON(s->uptodate != disks);
3718
3719                 set_bit(R5_LOCKED, &dev->flags);
3720                 s->locked++;
3721                 set_bit(R5_Wantwrite, &dev->flags);
3722
3723                 clear_bit(STRIPE_DEGRADED, &sh->state);
3724                 set_bit(STRIPE_INSYNC, &sh->state);
3725                 break;
3726         case check_state_run:
3727                 break; /* we will be called again upon completion */
3728         case check_state_check_result:
3729                 sh->check_state = check_state_idle;
3730
3731                 /* if a failure occurred during the check operation, leave
3732                  * STRIPE_INSYNC not set and let the stripe be handled again
3733                  */
3734                 if (s->failed)
3735                         break;
3736
3737                 /* handle a successful check operation, if parity is correct
3738                  * we are done.  Otherwise update the mismatch count and repair
3739                  * parity if !MD_RECOVERY_CHECK
3740                  */
3741                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3742                         /* parity is correct (on disc,
3743                          * not in buffer any more)
3744                          */
3745                         set_bit(STRIPE_INSYNC, &sh->state);
3746                 else {
3747                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3748                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3749                                 /* don't try to repair!! */
3750                                 set_bit(STRIPE_INSYNC, &sh->state);
3751                         else {
3752                                 sh->check_state = check_state_compute_run;
3753                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3754                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3755                                 set_bit(R5_Wantcompute,
3756                                         &sh->dev[sh->pd_idx].flags);
3757                                 sh->ops.target = sh->pd_idx;
3758                                 sh->ops.target2 = -1;
3759                                 s->uptodate++;
3760                         }
3761                 }
3762                 break;
3763         case check_state_compute_run:
3764                 break;
3765         default:
3766                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3767                        __func__, sh->check_state,
3768                        (unsigned long long) sh->sector);
3769                 BUG();
3770         }
3771 }
3772
3773 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3774                                   struct stripe_head_state *s,
3775                                   int disks)
3776 {
3777         int pd_idx = sh->pd_idx;
3778         int qd_idx = sh->qd_idx;
3779         struct r5dev *dev;
3780
3781         BUG_ON(sh->batch_head);
3782         set_bit(STRIPE_HANDLE, &sh->state);
3783
3784         BUG_ON(s->failed > 2);
3785
3786         /* Want to check and possibly repair P and Q.
3787          * However there could be one 'failed' device, in which
3788          * case we can only check one of them, possibly using the
3789          * other to generate missing data
3790          */
3791
3792         switch (sh->check_state) {
3793         case check_state_idle:
3794                 /* start a new check operation if there are < 2 failures */
3795                 if (s->failed == s->q_failed) {
3796                         /* The only possible failed device holds Q, so it
3797                          * makes sense to check P (If anything else were failed,
3798                          * we would have used P to recreate it).
3799                          */
3800                         sh->check_state = check_state_run;
3801                 }
3802                 if (!s->q_failed && s->failed < 2) {
3803                         /* Q is not failed, and we didn't use it to generate
3804                          * anything, so it makes sense to check it
3805                          */
3806                         if (sh->check_state == check_state_run)
3807                                 sh->check_state = check_state_run_pq;
3808                         else
3809                                 sh->check_state = check_state_run_q;
3810                 }
3811
3812                 /* discard potentially stale zero_sum_result */
3813                 sh->ops.zero_sum_result = 0;
3814
3815                 if (sh->check_state == check_state_run) {
3816                         /* async_xor_zero_sum destroys the contents of P */
3817                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3818                         s->uptodate--;
3819                 }
3820                 if (sh->check_state >= check_state_run &&
3821                     sh->check_state <= check_state_run_pq) {
3822                         /* async_syndrome_zero_sum preserves P and Q, so
3823                          * no need to mark them !uptodate here
3824                          */
3825                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3826                         break;
3827                 }
3828
3829                 /* we have 2-disk failure */
3830                 BUG_ON(s->failed != 2);
3831                 /* fall through */
3832         case check_state_compute_result:
3833                 sh->check_state = check_state_idle;
3834
3835                 /* check that a write has not made the stripe insync */
3836                 if (test_bit(STRIPE_INSYNC, &sh->state))
3837                         break;
3838
3839                 /* now write out any block on a failed drive,
3840                  * or P or Q if they were recomputed
3841                  */
3842                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3843                 if (s->failed == 2) {
3844                         dev = &sh->dev[s->failed_num[1]];
3845                         s->locked++;
3846                         set_bit(R5_LOCKED, &dev->flags);
3847                         set_bit(R5_Wantwrite, &dev->flags);
3848                 }
3849                 if (s->failed >= 1) {
3850                         dev = &sh->dev[s->failed_num[0]];
3851                         s->locked++;
3852                         set_bit(R5_LOCKED, &dev->flags);
3853                         set_bit(R5_Wantwrite, &dev->flags);
3854                 }
3855                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3856                         dev = &sh->dev[pd_idx];
3857                         s->locked++;
3858                         set_bit(R5_LOCKED, &dev->flags);
3859                         set_bit(R5_Wantwrite, &dev->flags);
3860                 }
3861                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3862                         dev = &sh->dev[qd_idx];
3863                         s->locked++;
3864                         set_bit(R5_LOCKED, &dev->flags);
3865                         set_bit(R5_Wantwrite, &dev->flags);
3866                 }
3867                 clear_bit(STRIPE_DEGRADED, &sh->state);
3868
3869                 set_bit(STRIPE_INSYNC, &sh->state);
3870                 break;
3871         case check_state_run:
3872         case check_state_run_q:
3873         case check_state_run_pq:
3874                 break; /* we will be called again upon completion */
3875         case check_state_check_result:
3876                 sh->check_state = check_state_idle;
3877
3878                 /* handle a successful check operation, if parity is correct
3879                  * we are done.  Otherwise update the mismatch count and repair
3880                  * parity if !MD_RECOVERY_CHECK
3881                  */
3882                 if (sh->ops.zero_sum_result == 0) {
3883                         /* both parities are correct */
3884                         if (!s->failed)
3885                                 set_bit(STRIPE_INSYNC, &sh->state);
3886                         else {
3887                                 /* in contrast to the raid5 case we can validate
3888                                  * parity, but still have a failure to write
3889                                  * back
3890                                  */
3891                                 sh->check_state = check_state_compute_result;
3892                                 /* Returning at this point means that we may go
3893                                  * off and bring p and/or q uptodate again so
3894                                  * we make sure to check zero_sum_result again
3895                                  * to verify if p or q need writeback
3896                                  */
3897                         }
3898                 } else {
3899                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3900                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3901                                 /* don't try to repair!! */
3902                                 set_bit(STRIPE_INSYNC, &sh->state);
3903                         else {
3904                                 int *target = &sh->ops.target;
3905
3906                                 sh->ops.target = -1;
3907                                 sh->ops.target2 = -1;
3908                                 sh->check_state = check_state_compute_run;
3909                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3910                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3911                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3912                                         set_bit(R5_Wantcompute,
3913                                                 &sh->dev[pd_idx].flags);
3914                                         *target = pd_idx;
3915                                         target = &sh->ops.target2;
3916                                         s->uptodate++;
3917                                 }
3918                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3919                                         set_bit(R5_Wantcompute,
3920                                                 &sh->dev[qd_idx].flags);
3921                                         *target = qd_idx;
3922                                         s->uptodate++;
3923                                 }
3924                         }
3925                 }
3926                 break;
3927         case check_state_compute_run:
3928                 break;
3929         default:
3930                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3931                        __func__, sh->check_state,
3932                        (unsigned long long) sh->sector);
3933                 BUG();
3934         }
3935 }
3936
3937 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3938 {
3939         int i;
3940
3941         /* We have read all the blocks in this stripe and now we need to
3942          * copy some of them into a target stripe for expand.
3943          */
3944         struct dma_async_tx_descriptor *tx = NULL;
3945         BUG_ON(sh->batch_head);
3946         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3947         for (i = 0; i < sh->disks; i++)
3948                 if (i != sh->pd_idx && i != sh->qd_idx) {
3949                         int dd_idx, j;
3950                         struct stripe_head *sh2;
3951                         struct async_submit_ctl submit;
3952
3953                         sector_t bn = raid5_compute_blocknr(sh, i, 1);
3954                         sector_t s = raid5_compute_sector(conf, bn, 0,
3955                                                           &dd_idx, NULL);
3956                         sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3957                         if (sh2 == NULL)
3958                                 /* so far only the early blocks of this stripe
3959                                  * have been requested.  When later blocks
3960                                  * get requested, we will try again
3961                                  */
3962                                 continue;
3963                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3964                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3965                                 /* must have already done this block */
3966                                 raid5_release_stripe(sh2);
3967                                 continue;
3968                         }
3969
3970                         /* place all the copies on one channel */
3971                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3972                         tx = async_memcpy(sh2->dev[dd_idx].page,
3973                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3974                                           &submit);
3975
3976                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3977                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3978                         for (j = 0; j < conf->raid_disks; j++)
3979                                 if (j != sh2->pd_idx &&
3980                                     j != sh2->qd_idx &&
3981                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3982                                         break;
3983                         if (j == conf->raid_disks) {
3984                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3985                                 set_bit(STRIPE_HANDLE, &sh2->state);
3986                         }
3987                         raid5_release_stripe(sh2);
3988
3989                 }
3990         /* done submitting copies, wait for them to complete */
3991         async_tx_quiesce(&tx);
3992 }
3993
3994 /*
3995  * handle_stripe - do things to a stripe.
3996  *
3997  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3998  * state of various bits to see what needs to be done.
3999  * Possible results:
4000  *    return some read requests which now have data
4001  *    return some write requests which are safely on storage
4002  *    schedule a read on some buffers
4003  *    schedule a write of some buffers
4004  *    return confirmation of parity correctness
4005  *
4006  */
4007
4008 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4009 {
4010         struct r5conf *conf = sh->raid_conf;
4011         int disks = sh->disks;
4012         struct r5dev *dev;
4013         int i;
4014         int do_recovery = 0;
4015
4016         memset(s, 0, sizeof(*s));
4017
4018         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4019         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4020         s->failed_num[0] = -1;
4021         s->failed_num[1] = -1;
4022         s->log_failed = r5l_log_disk_error(conf);
4023
4024         /* Now to look around and see what can be done */
4025         rcu_read_lock();
4026         for (i=disks; i--; ) {
4027                 struct md_rdev *rdev;
4028                 sector_t first_bad;
4029                 int bad_sectors;
4030                 int is_bad = 0;
4031
4032                 dev = &sh->dev[i];
4033
4034                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4035                          i, dev->flags,
4036                          dev->toread, dev->towrite, dev->written);
4037                 /* maybe we can reply to a read
4038                  *
4039                  * new wantfill requests are only permitted while
4040                  * ops_complete_biofill is guaranteed to be inactive
4041                  */
4042                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4043                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4044                         set_bit(R5_Wantfill, &dev->flags);
4045
4046                 /* now count some things */
4047                 if (test_bit(R5_LOCKED, &dev->flags))
4048                         s->locked++;
4049                 if (test_bit(R5_UPTODATE, &dev->flags))
4050                         s->uptodate++;
4051                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4052                         s->compute++;
4053                         BUG_ON(s->compute > 2);
4054                 }
4055
4056                 if (test_bit(R5_Wantfill, &dev->flags))
4057                         s->to_fill++;
4058                 else if (dev->toread)
4059                         s->to_read++;
4060                 if (dev->towrite) {
4061                         s->to_write++;
4062                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4063                                 s->non_overwrite++;
4064                 }
4065                 if (dev->written)
4066                         s->written++;
4067                 /* Prefer to use the replacement for reads, but only
4068                  * if it is recovered enough and has no bad blocks.
4069                  */
4070                 rdev = rcu_dereference(conf->disks[i].replacement);
4071                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4072                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4073                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4074                                  &first_bad, &bad_sectors))
4075                         set_bit(R5_ReadRepl, &dev->flags);
4076                 else {
4077                         if (rdev && !test_bit(Faulty, &rdev->flags))
4078                                 set_bit(R5_NeedReplace, &dev->flags);
4079                         else
4080                                 clear_bit(R5_NeedReplace, &dev->flags);
4081                         rdev = rcu_dereference(conf->disks[i].rdev);
4082                         clear_bit(R5_ReadRepl, &dev->flags);
4083                 }
4084                 if (rdev && test_bit(Faulty, &rdev->flags))
4085                         rdev = NULL;
4086                 if (rdev) {
4087                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4088                                              &first_bad, &bad_sectors);
4089                         if (s->blocked_rdev == NULL
4090                             && (test_bit(Blocked, &rdev->flags)
4091                                 || is_bad < 0)) {
4092                                 if (is_bad < 0)
4093                                         set_bit(BlockedBadBlocks,
4094                                                 &rdev->flags);
4095                                 s->blocked_rdev = rdev;
4096                                 atomic_inc(&rdev->nr_pending);
4097                         }
4098                 }
4099                 clear_bit(R5_Insync, &dev->flags);
4100                 if (!rdev)
4101                         /* Not in-sync */;
4102                 else if (is_bad) {
4103                         /* also not in-sync */
4104                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4105                             test_bit(R5_UPTODATE, &dev->flags)) {
4106                                 /* treat as in-sync, but with a read error
4107                                  * which we can now try to correct
4108                                  */
4109                                 set_bit(R5_Insync, &dev->flags);
4110                                 set_bit(R5_ReadError, &dev->flags);
4111                         }
4112                 } else if (test_bit(In_sync, &rdev->flags))
4113                         set_bit(R5_Insync, &dev->flags);
4114                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4115                         /* in sync if before recovery_offset */
4116                         set_bit(R5_Insync, &dev->flags);
4117                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4118                          test_bit(R5_Expanded, &dev->flags))
4119                         /* If we've reshaped into here, we assume it is Insync.
4120                          * We will shortly update recovery_offset to make
4121                          * it official.
4122                          */
4123                         set_bit(R5_Insync, &dev->flags);
4124
4125                 if (test_bit(R5_WriteError, &dev->flags)) {
4126                         /* This flag does not apply to '.replacement'
4127                          * only to .rdev, so make sure to check that*/
4128                         struct md_rdev *rdev2 = rcu_dereference(
4129                                 conf->disks[i].rdev);
4130                         if (rdev2 == rdev)
4131                                 clear_bit(R5_Insync, &dev->flags);
4132                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4133                                 s->handle_bad_blocks = 1;
4134                                 atomic_inc(&rdev2->nr_pending);
4135                         } else
4136                                 clear_bit(R5_WriteError, &dev->flags);
4137                 }
4138                 if (test_bit(R5_MadeGood, &dev->flags)) {
4139                         /* This flag does not apply to '.replacement'
4140                          * only to .rdev, so make sure to check that*/
4141                         struct md_rdev *rdev2 = rcu_dereference(
4142                                 conf->disks[i].rdev);
4143                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4144                                 s->handle_bad_blocks = 1;
4145                                 atomic_inc(&rdev2->nr_pending);
4146                         } else
4147                                 clear_bit(R5_MadeGood, &dev->flags);
4148                 }
4149                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4150                         struct md_rdev *rdev2 = rcu_dereference(
4151                                 conf->disks[i].replacement);
4152                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4153                                 s->handle_bad_blocks = 1;
4154                                 atomic_inc(&rdev2->nr_pending);
4155                         } else
4156                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4157                 }
4158                 if (!test_bit(R5_Insync, &dev->flags)) {
4159                         /* The ReadError flag will just be confusing now */
4160                         clear_bit(R5_ReadError, &dev->flags);
4161                         clear_bit(R5_ReWrite, &dev->flags);
4162                 }
4163                 if (test_bit(R5_ReadError, &dev->flags))
4164                         clear_bit(R5_Insync, &dev->flags);
4165                 if (!test_bit(R5_Insync, &dev->flags)) {
4166                         if (s->failed < 2)
4167                                 s->failed_num[s->failed] = i;
4168                         s->failed++;
4169                         if (rdev && !test_bit(Faulty, &rdev->flags))
4170                                 do_recovery = 1;
4171                 }
4172         }
4173         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4174                 /* If there is a failed device being replaced,
4175                  *     we must be recovering.
4176                  * else if we are after recovery_cp, we must be syncing
4177                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4178                  * else we can only be replacing
4179                  * sync and recovery both need to read all devices, and so
4180                  * use the same flag.
4181                  */
4182                 if (do_recovery ||
4183                     sh->sector >= conf->mddev->recovery_cp ||
4184                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4185                         s->syncing = 1;
4186                 else
4187                         s->replacing = 1;
4188         }
4189         rcu_read_unlock();
4190 }
4191
4192 static int clear_batch_ready(struct stripe_head *sh)
4193 {
4194         /* Return '1' if this is a member of batch, or
4195          * '0' if it is a lone stripe or a head which can now be
4196          * handled.
4197          */
4198         struct stripe_head *tmp;
4199         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4200                 return (sh->batch_head && sh->batch_head != sh);
4201         spin_lock(&sh->stripe_lock);
4202         if (!sh->batch_head) {
4203                 spin_unlock(&sh->stripe_lock);
4204                 return 0;
4205         }
4206
4207         /*
4208          * this stripe could be added to a batch list before we check
4209          * BATCH_READY, skips it
4210          */
4211         if (sh->batch_head != sh) {
4212                 spin_unlock(&sh->stripe_lock);
4213                 return 1;
4214         }
4215         spin_lock(&sh->batch_lock);
4216         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4217                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4218         spin_unlock(&sh->batch_lock);
4219         spin_unlock(&sh->stripe_lock);
4220
4221         /*
4222          * BATCH_READY is cleared, no new stripes can be added.
4223          * batch_list can be accessed without lock
4224          */
4225         return 0;
4226 }
4227
4228 static void break_stripe_batch_list(struct stripe_head *head_sh,
4229                                     unsigned long handle_flags)
4230 {
4231         struct stripe_head *sh, *next;
4232         int i;
4233         int do_wakeup = 0;
4234
4235         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4236
4237                 list_del_init(&sh->batch_list);
4238
4239                 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4240                                           (1 << STRIPE_SYNCING) |
4241                                           (1 << STRIPE_REPLACED) |
4242                                           (1 << STRIPE_DELAYED) |
4243                                           (1 << STRIPE_BIT_DELAY) |
4244                                           (1 << STRIPE_FULL_WRITE) |
4245                                           (1 << STRIPE_BIOFILL_RUN) |
4246                                           (1 << STRIPE_COMPUTE_RUN)  |
4247                                           (1 << STRIPE_OPS_REQ_PENDING) |
4248                                           (1 << STRIPE_DISCARD) |
4249                                           (1 << STRIPE_BATCH_READY) |
4250                                           (1 << STRIPE_BATCH_ERR) |
4251                                           (1 << STRIPE_BITMAP_PENDING)),
4252                         "stripe state: %lx\n", sh->state);
4253                 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4254                                               (1 << STRIPE_REPLACED)),
4255                         "head stripe state: %lx\n", head_sh->state);
4256
4257                 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4258                                             (1 << STRIPE_PREREAD_ACTIVE) |
4259                                             (1 << STRIPE_DEGRADED)),
4260                               head_sh->state & (1 << STRIPE_INSYNC));
4261
4262                 sh->check_state = head_sh->check_state;
4263                 sh->reconstruct_state = head_sh->reconstruct_state;
4264                 for (i = 0; i < sh->disks; i++) {
4265                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4266                                 do_wakeup = 1;
4267                         sh->dev[i].flags = head_sh->dev[i].flags &
4268                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4269                 }
4270                 spin_lock_irq(&sh->stripe_lock);
4271                 sh->batch_head = NULL;
4272                 spin_unlock_irq(&sh->stripe_lock);
4273                 if (handle_flags == 0 ||
4274                     sh->state & handle_flags)
4275                         set_bit(STRIPE_HANDLE, &sh->state);
4276                 raid5_release_stripe(sh);
4277         }
4278         spin_lock_irq(&head_sh->stripe_lock);
4279         head_sh->batch_head = NULL;
4280         spin_unlock_irq(&head_sh->stripe_lock);
4281         for (i = 0; i < head_sh->disks; i++)
4282                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4283                         do_wakeup = 1;
4284         if (head_sh->state & handle_flags)
4285                 set_bit(STRIPE_HANDLE, &head_sh->state);
4286
4287         if (do_wakeup)
4288                 wake_up(&head_sh->raid_conf->wait_for_overlap);
4289 }
4290
4291 static void handle_stripe(struct stripe_head *sh)
4292 {
4293         struct stripe_head_state s;
4294         struct r5conf *conf = sh->raid_conf;
4295         int i;
4296         int prexor;
4297         int disks = sh->disks;
4298         struct r5dev *pdev, *qdev;
4299
4300         clear_bit(STRIPE_HANDLE, &sh->state);
4301         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4302                 /* already being handled, ensure it gets handled
4303                  * again when current action finishes */
4304                 set_bit(STRIPE_HANDLE, &sh->state);
4305                 return;
4306         }
4307
4308         if (clear_batch_ready(sh) ) {
4309                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4310                 return;
4311         }
4312
4313         if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4314                 break_stripe_batch_list(sh, 0);
4315
4316         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4317                 spin_lock(&sh->stripe_lock);
4318                 /* Cannot process 'sync' concurrently with 'discard' */
4319                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4320                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4321                         set_bit(STRIPE_SYNCING, &sh->state);
4322                         clear_bit(STRIPE_INSYNC, &sh->state);
4323                         clear_bit(STRIPE_REPLACED, &sh->state);
4324                 }
4325                 spin_unlock(&sh->stripe_lock);
4326         }
4327         clear_bit(STRIPE_DELAYED, &sh->state);
4328
4329         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4330                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4331                (unsigned long long)sh->sector, sh->state,
4332                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4333                sh->check_state, sh->reconstruct_state);
4334
4335         analyse_stripe(sh, &s);
4336
4337         if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4338                 goto finish;
4339
4340         if (s.handle_bad_blocks) {
4341                 set_bit(STRIPE_HANDLE, &sh->state);
4342                 goto finish;
4343         }
4344
4345         if (unlikely(s.blocked_rdev)) {
4346                 if (s.syncing || s.expanding || s.expanded ||
4347                     s.replacing || s.to_write || s.written) {
4348                         set_bit(STRIPE_HANDLE, &sh->state);
4349                         goto finish;
4350                 }
4351                 /* There is nothing for the blocked_rdev to block */
4352                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4353                 s.blocked_rdev = NULL;
4354         }
4355
4356         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4357                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4358                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4359         }
4360
4361         pr_debug("locked=%d uptodate=%d to_read=%d"
4362                " to_write=%d failed=%d failed_num=%d,%d\n",
4363                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4364                s.failed_num[0], s.failed_num[1]);
4365         /* check if the array has lost more than max_degraded devices and,
4366          * if so, some requests might need to be failed.
4367          */
4368         if (s.failed > conf->max_degraded || s.log_failed) {
4369                 sh->check_state = 0;
4370                 sh->reconstruct_state = 0;
4371                 break_stripe_batch_list(sh, 0);
4372                 if (s.to_read+s.to_write+s.written)
4373                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4374                 if (s.syncing + s.replacing)
4375                         handle_failed_sync(conf, sh, &s);
4376         }
4377
4378         /* Now we check to see if any write operations have recently
4379          * completed
4380          */
4381         prexor = 0;
4382         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4383                 prexor = 1;
4384         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4385             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4386                 sh->reconstruct_state = reconstruct_state_idle;
4387
4388                 /* All the 'written' buffers and the parity block are ready to
4389                  * be written back to disk
4390                  */
4391                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4392                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4393                 BUG_ON(sh->qd_idx >= 0 &&
4394                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4395                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4396                 for (i = disks; i--; ) {
4397                         struct r5dev *dev = &sh->dev[i];
4398                         if (test_bit(R5_LOCKED, &dev->flags) &&
4399                                 (i == sh->pd_idx || i == sh->qd_idx ||
4400                                  dev->written)) {
4401                                 pr_debug("Writing block %d\n", i);
4402                                 set_bit(R5_Wantwrite, &dev->flags);
4403                                 if (prexor)
4404                                         continue;
4405                                 if (s.failed > 1)
4406                                         continue;
4407                                 if (!test_bit(R5_Insync, &dev->flags) ||
4408                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4409                                      s.failed == 0))
4410                                         set_bit(STRIPE_INSYNC, &sh->state);
4411                         }
4412                 }
4413                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4414                         s.dec_preread_active = 1;
4415         }
4416
4417         /*
4418          * might be able to return some write requests if the parity blocks
4419          * are safe, or on a failed drive
4420          */
4421         pdev = &sh->dev[sh->pd_idx];
4422         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4423                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4424         qdev = &sh->dev[sh->qd_idx];
4425         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4426                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4427                 || conf->level < 6;
4428
4429         if (s.written &&
4430             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4431                              && !test_bit(R5_LOCKED, &pdev->flags)
4432                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4433                                  test_bit(R5_Discard, &pdev->flags))))) &&
4434             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4435                              && !test_bit(R5_LOCKED, &qdev->flags)
4436                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4437                                  test_bit(R5_Discard, &qdev->flags))))))
4438                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4439
4440         /* Now we might consider reading some blocks, either to check/generate
4441          * parity, or to satisfy requests
4442          * or to load a block that is being partially written.
4443          */
4444         if (s.to_read || s.non_overwrite
4445             || (conf->level == 6 && s.to_write && s.failed)
4446             || (s.syncing && (s.uptodate + s.compute < disks))
4447             || s.replacing
4448             || s.expanding)
4449                 handle_stripe_fill(sh, &s, disks);
4450
4451         /* Now to consider new write requests and what else, if anything
4452          * should be read.  We do not handle new writes when:
4453          * 1/ A 'write' operation (copy+xor) is already in flight.
4454          * 2/ A 'check' operation is in flight, as it may clobber the parity
4455          *    block.
4456          */
4457         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4458                 handle_stripe_dirtying(conf, sh, &s, disks);
4459
4460         /* maybe we need to check and possibly fix the parity for this stripe
4461          * Any reads will already have been scheduled, so we just see if enough
4462          * data is available.  The parity check is held off while parity
4463          * dependent operations are in flight.
4464          */
4465         if (sh->check_state ||
4466             (s.syncing && s.locked == 0 &&
4467              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4468              !test_bit(STRIPE_INSYNC, &sh->state))) {
4469                 if (conf->level == 6)
4470                         handle_parity_checks6(conf, sh, &s, disks);
4471                 else
4472                         handle_parity_checks5(conf, sh, &s, disks);
4473         }
4474
4475         if ((s.replacing || s.syncing) && s.locked == 0
4476             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4477             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4478                 /* Write out to replacement devices where possible */
4479                 for (i = 0; i < conf->raid_disks; i++)
4480                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4481                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4482                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4483                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4484                                 s.locked++;
4485                         }
4486                 if (s.replacing)
4487                         set_bit(STRIPE_INSYNC, &sh->state);
4488                 set_bit(STRIPE_REPLACED, &sh->state);
4489         }
4490         if ((s.syncing || s.replacing) && s.locked == 0 &&
4491             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4492             test_bit(STRIPE_INSYNC, &sh->state)) {
4493                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4494                 clear_bit(STRIPE_SYNCING, &sh->state);
4495                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4496                         wake_up(&conf->wait_for_overlap);
4497         }
4498
4499         /* If the failed drives are just a ReadError, then we might need
4500          * to progress the repair/check process
4501          */
4502         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4503                 for (i = 0; i < s.failed; i++) {
4504                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4505                         if (test_bit(R5_ReadError, &dev->flags)
4506                             && !test_bit(R5_LOCKED, &dev->flags)
4507                             && test_bit(R5_UPTODATE, &dev->flags)
4508                                 ) {
4509                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4510                                         set_bit(R5_Wantwrite, &dev->flags);
4511                                         set_bit(R5_ReWrite, &dev->flags);
4512                                         set_bit(R5_LOCKED, &dev->flags);
4513                                         s.locked++;
4514                                 } else {
4515                                         /* let's read it back */
4516                                         set_bit(R5_Wantread, &dev->flags);
4517                                         set_bit(R5_LOCKED, &dev->flags);
4518                                         s.locked++;
4519                                 }
4520                         }
4521                 }
4522
4523         /* Finish reconstruct operations initiated by the expansion process */
4524         if (sh->reconstruct_state == reconstruct_state_result) {
4525                 struct stripe_head *sh_src
4526                         = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4527                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4528                         /* sh cannot be written until sh_src has been read.
4529                          * so arrange for sh to be delayed a little
4530                          */
4531                         set_bit(STRIPE_DELAYED, &sh->state);
4532                         set_bit(STRIPE_HANDLE, &sh->state);
4533                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4534                                               &sh_src->state))
4535                                 atomic_inc(&conf->preread_active_stripes);
4536                         raid5_release_stripe(sh_src);
4537                         goto finish;
4538                 }
4539                 if (sh_src)
4540                         raid5_release_stripe(sh_src);
4541
4542                 sh->reconstruct_state = reconstruct_state_idle;
4543                 clear_bit(STRIPE_EXPANDING, &sh->state);
4544                 for (i = conf->raid_disks; i--; ) {
4545                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4546                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4547                         s.locked++;
4548                 }
4549         }
4550
4551         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4552             !sh->reconstruct_state) {
4553                 /* Need to write out all blocks after computing parity */
4554                 sh->disks = conf->raid_disks;
4555                 stripe_set_idx(sh->sector, conf, 0, sh);
4556                 schedule_reconstruction(sh, &s, 1, 1);
4557         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4558                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4559                 atomic_dec(&conf->reshape_stripes);
4560                 wake_up(&conf->wait_for_overlap);
4561                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4562         }
4563
4564         if (s.expanding && s.locked == 0 &&
4565             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4566                 handle_stripe_expansion(conf, sh);
4567
4568 finish:
4569         /* wait for this device to become unblocked */
4570         if (unlikely(s.blocked_rdev)) {
4571                 if (conf->mddev->external)
4572                         md_wait_for_blocked_rdev(s.blocked_rdev,
4573                                                  conf->mddev);
4574                 else
4575                         /* Internal metadata will immediately
4576                          * be written by raid5d, so we don't
4577                          * need to wait here.
4578                          */
4579                         rdev_dec_pending(s.blocked_rdev,
4580                                          conf->mddev);
4581         }
4582
4583         if (s.handle_bad_blocks)
4584                 for (i = disks; i--; ) {
4585                         struct md_rdev *rdev;
4586                         struct r5dev *dev = &sh->dev[i];
4587                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4588                                 /* We own a safe reference to the rdev */
4589                                 rdev = conf->disks[i].rdev;
4590                                 if (!rdev_set_badblocks(rdev, sh->sector,
4591                                                         STRIPE_SECTORS, 0))
4592                                         md_error(conf->mddev, rdev);
4593                                 rdev_dec_pending(rdev, conf->mddev);
4594                         }
4595                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4596                                 rdev = conf->disks[i].rdev;
4597                                 rdev_clear_badblocks(rdev, sh->sector,
4598                                                      STRIPE_SECTORS, 0);
4599                                 rdev_dec_pending(rdev, conf->mddev);
4600                         }
4601                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4602                                 rdev = conf->disks[i].replacement;
4603                                 if (!rdev)
4604                                         /* rdev have been moved down */
4605                                         rdev = conf->disks[i].rdev;
4606                                 rdev_clear_badblocks(rdev, sh->sector,
4607                                                      STRIPE_SECTORS, 0);
4608                                 rdev_dec_pending(rdev, conf->mddev);
4609                         }
4610                 }
4611
4612         if (s.ops_request)
4613                 raid_run_ops(sh, s.ops_request);
4614
4615         ops_run_io(sh, &s);
4616
4617         if (s.dec_preread_active) {
4618                 /* We delay this until after ops_run_io so that if make_request
4619                  * is waiting on a flush, it won't continue until the writes
4620                  * have actually been submitted.
4621                  */
4622                 atomic_dec(&conf->preread_active_stripes);
4623                 if (atomic_read(&conf->preread_active_stripes) <
4624                     IO_THRESHOLD)
4625                         md_wakeup_thread(conf->mddev->thread);
4626         }
4627
4628         if (!bio_list_empty(&s.return_bi)) {
4629                 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4630                         spin_lock_irq(&conf->device_lock);
4631                         bio_list_merge(&conf->return_bi, &s.return_bi);
4632                         spin_unlock_irq(&conf->device_lock);
4633                         md_wakeup_thread(conf->mddev->thread);
4634                 } else
4635                         return_io(&s.return_bi);
4636         }
4637
4638         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4639 }
4640
4641 static void raid5_activate_delayed(struct r5conf *conf)
4642 {
4643         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4644                 while (!list_empty(&conf->delayed_list)) {
4645                         struct list_head *l = conf->delayed_list.next;
4646                         struct stripe_head *sh;
4647                         sh = list_entry(l, struct stripe_head, lru);
4648                         list_del_init(l);
4649                         clear_bit(STRIPE_DELAYED, &sh->state);
4650                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4651                                 atomic_inc(&conf->preread_active_stripes);
4652                         list_add_tail(&sh->lru, &conf->hold_list);
4653                         raid5_wakeup_stripe_thread(sh);
4654                 }
4655         }
4656 }
4657
4658 static void activate_bit_delay(struct r5conf *conf,
4659         struct list_head *temp_inactive_list)
4660 {
4661         /* device_lock is held */
4662         struct list_head head;
4663         list_add(&head, &conf->bitmap_list);
4664         list_del_init(&conf->bitmap_list);
4665         while (!list_empty(&head)) {
4666                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4667                 int hash;
4668                 list_del_init(&sh->lru);
4669                 atomic_inc(&sh->count);
4670                 hash = sh->hash_lock_index;
4671                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4672         }
4673 }
4674
4675 static int raid5_congested(struct mddev *mddev, int bits)
4676 {
4677         struct r5conf *conf = mddev->private;
4678
4679         /* No difference between reads and writes.  Just check
4680          * how busy the stripe_cache is
4681          */
4682
4683         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4684                 return 1;
4685         if (conf->quiesce)
4686                 return 1;
4687         if (atomic_read(&conf->empty_inactive_list_nr))
4688                 return 1;
4689
4690         return 0;
4691 }
4692
4693 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4694 {
4695         struct r5conf *conf = mddev->private;
4696         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4697         unsigned int chunk_sectors;
4698         unsigned int bio_sectors = bio_sectors(bio);
4699
4700         chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4701         return  chunk_sectors >=
4702                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4703 }
4704
4705 /*
4706  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4707  *  later sampled by raid5d.
4708  */
4709 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4710 {
4711         unsigned long flags;
4712
4713         spin_lock_irqsave(&conf->device_lock, flags);
4714
4715         bi->bi_next = conf->retry_read_aligned_list;
4716         conf->retry_read_aligned_list = bi;
4717
4718         spin_unlock_irqrestore(&conf->device_lock, flags);
4719         md_wakeup_thread(conf->mddev->thread);
4720 }
4721
4722 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4723 {
4724         struct bio *bi;
4725
4726         bi = conf->retry_read_aligned;
4727         if (bi) {
4728                 conf->retry_read_aligned = NULL;
4729                 return bi;
4730         }
4731         bi = conf->retry_read_aligned_list;
4732         if(bi) {
4733                 conf->retry_read_aligned_list = bi->bi_next;
4734                 bi->bi_next = NULL;
4735                 /*
4736                  * this sets the active strip count to 1 and the processed
4737                  * strip count to zero (upper 8 bits)
4738                  */
4739                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4740         }
4741
4742         return bi;
4743 }
4744
4745 /*
4746  *  The "raid5_align_endio" should check if the read succeeded and if it
4747  *  did, call bio_endio on the original bio (having bio_put the new bio
4748  *  first).
4749  *  If the read failed..
4750  */
4751 static void raid5_align_endio(struct bio *bi)
4752 {
4753         struct bio* raid_bi  = bi->bi_private;
4754         struct mddev *mddev;
4755         struct r5conf *conf;
4756         struct md_rdev *rdev;
4757         int error = bi->bi_error;
4758
4759         bio_put(bi);
4760
4761         rdev = (void*)raid_bi->bi_next;
4762         raid_bi->bi_next = NULL;
4763         mddev = rdev->mddev;
4764         conf = mddev->private;
4765
4766         rdev_dec_pending(rdev, conf->mddev);
4767
4768         if (!error) {
4769                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4770                                          raid_bi, 0);
4771                 bio_endio(raid_bi);
4772                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4773                         wake_up(&conf->wait_for_quiescent);
4774                 return;
4775         }
4776
4777         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4778
4779         add_bio_to_retry(raid_bi, conf);
4780 }
4781
4782 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4783 {
4784         struct r5conf *conf = mddev->private;
4785         int dd_idx;
4786         struct bio* align_bi;
4787         struct md_rdev *rdev;
4788         sector_t end_sector;
4789
4790         if (!in_chunk_boundary(mddev, raid_bio)) {
4791                 pr_debug("%s: non aligned\n", __func__);
4792                 return 0;
4793         }
4794         /*
4795          * use bio_clone_mddev to make a copy of the bio
4796          */
4797         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4798         if (!align_bi)
4799                 return 0;
4800         /*
4801          *   set bi_end_io to a new function, and set bi_private to the
4802          *     original bio.
4803          */
4804         align_bi->bi_end_io  = raid5_align_endio;
4805         align_bi->bi_private = raid_bio;
4806         /*
4807          *      compute position
4808          */
4809         align_bi->bi_iter.bi_sector =
4810                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4811                                      0, &dd_idx, NULL);
4812
4813         end_sector = bio_end_sector(align_bi);
4814         rcu_read_lock();
4815         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4816         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4817             rdev->recovery_offset < end_sector) {
4818                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4819                 if (rdev &&
4820                     (test_bit(Faulty, &rdev->flags) ||
4821                     !(test_bit(In_sync, &rdev->flags) ||
4822                       rdev->recovery_offset >= end_sector)))
4823                         rdev = NULL;
4824         }
4825         if (rdev) {
4826                 sector_t first_bad;
4827                 int bad_sectors;
4828
4829                 atomic_inc(&rdev->nr_pending);
4830                 rcu_read_unlock();
4831                 raid_bio->bi_next = (void*)rdev;
4832                 align_bi->bi_bdev =  rdev->bdev;
4833                 bio_clear_flag(align_bi, BIO_SEG_VALID);
4834
4835                 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4836                                 bio_sectors(align_bi),
4837                                 &first_bad, &bad_sectors)) {
4838                         bio_put(align_bi);
4839                         rdev_dec_pending(rdev, mddev);
4840                         return 0;
4841                 }
4842
4843                 /* No reshape active, so we can trust rdev->data_offset */
4844                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4845
4846                 spin_lock_irq(&conf->device_lock);
4847                 wait_event_lock_irq(conf->wait_for_quiescent,
4848                                     conf->quiesce == 0,
4849                                     conf->device_lock);
4850                 atomic_inc(&conf->active_aligned_reads);
4851                 spin_unlock_irq(&conf->device_lock);
4852
4853                 if (mddev->gendisk)
4854                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4855                                               align_bi, disk_devt(mddev->gendisk),
4856                                               raid_bio->bi_iter.bi_sector);
4857                 generic_make_request(align_bi);
4858                 return 1;
4859         } else {
4860                 rcu_read_unlock();
4861                 bio_put(align_bi);
4862                 return 0;
4863         }
4864 }
4865
4866 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4867 {
4868         struct bio *split;
4869
4870         do {
4871                 sector_t sector = raid_bio->bi_iter.bi_sector;
4872                 unsigned chunk_sects = mddev->chunk_sectors;
4873                 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4874
4875                 if (sectors < bio_sectors(raid_bio)) {
4876                         split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4877                         bio_chain(split, raid_bio);
4878                 } else
4879                         split = raid_bio;
4880
4881                 if (!raid5_read_one_chunk(mddev, split)) {
4882                         if (split != raid_bio)
4883                                 generic_make_request(raid_bio);
4884                         return split;
4885                 }
4886         } while (split != raid_bio);
4887
4888         return NULL;
4889 }
4890
4891 /* __get_priority_stripe - get the next stripe to process
4892  *
4893  * Full stripe writes are allowed to pass preread active stripes up until
4894  * the bypass_threshold is exceeded.  In general the bypass_count
4895  * increments when the handle_list is handled before the hold_list; however, it
4896  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4897  * stripe with in flight i/o.  The bypass_count will be reset when the
4898  * head of the hold_list has changed, i.e. the head was promoted to the
4899  * handle_list.
4900  */
4901 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4902 {
4903         struct stripe_head *sh = NULL, *tmp;
4904         struct list_head *handle_list = NULL;
4905         struct r5worker_group *wg = NULL;
4906
4907         if (conf->worker_cnt_per_group == 0) {
4908                 handle_list = &conf->handle_list;
4909         } else if (group != ANY_GROUP) {
4910                 handle_list = &conf->worker_groups[group].handle_list;
4911                 wg = &conf->worker_groups[group];
4912         } else {
4913                 int i;
4914                 for (i = 0; i < conf->group_cnt; i++) {
4915                         handle_list = &conf->worker_groups[i].handle_list;
4916                         wg = &conf->worker_groups[i];
4917                         if (!list_empty(handle_list))
4918                                 break;
4919                 }
4920         }
4921
4922         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4923                   __func__,
4924                   list_empty(handle_list) ? "empty" : "busy",
4925                   list_empty(&conf->hold_list) ? "empty" : "busy",
4926                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4927
4928         if (!list_empty(handle_list)) {
4929                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4930
4931                 if (list_empty(&conf->hold_list))
4932                         conf->bypass_count = 0;
4933                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4934                         if (conf->hold_list.next == conf->last_hold)
4935                                 conf->bypass_count++;
4936                         else {
4937                                 conf->last_hold = conf->hold_list.next;
4938                                 conf->bypass_count -= conf->bypass_threshold;
4939                                 if (conf->bypass_count < 0)
4940                                         conf->bypass_count = 0;
4941                         }
4942                 }
4943         } else if (!list_empty(&conf->hold_list) &&
4944                    ((conf->bypass_threshold &&
4945                      conf->bypass_count > conf->bypass_threshold) ||
4946                     atomic_read(&conf->pending_full_writes) == 0)) {
4947
4948                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4949                         if (conf->worker_cnt_per_group == 0 ||
4950                             group == ANY_GROUP ||
4951                             !cpu_online(tmp->cpu) ||
4952                             cpu_to_group(tmp->cpu) == group) {
4953                                 sh = tmp;
4954                                 break;
4955                         }
4956                 }
4957
4958                 if (sh) {
4959                         conf->bypass_count -= conf->bypass_threshold;
4960                         if (conf->bypass_count < 0)
4961                                 conf->bypass_count = 0;
4962                 }
4963                 wg = NULL;
4964         }
4965
4966         if (!sh)
4967                 return NULL;
4968
4969         if (wg) {
4970                 wg->stripes_cnt--;
4971                 sh->group = NULL;
4972         }
4973         list_del_init(&sh->lru);
4974         BUG_ON(atomic_inc_return(&sh->count) != 1);
4975         return sh;
4976 }
4977
4978 struct raid5_plug_cb {
4979         struct blk_plug_cb      cb;
4980         struct list_head        list;
4981         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4982 };
4983
4984 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4985 {
4986         struct raid5_plug_cb *cb = container_of(
4987                 blk_cb, struct raid5_plug_cb, cb);
4988         struct stripe_head *sh;
4989         struct mddev *mddev = cb->cb.data;
4990         struct r5conf *conf = mddev->private;
4991         int cnt = 0;
4992         int hash;
4993
4994         if (cb->list.next && !list_empty(&cb->list)) {
4995                 spin_lock_irq(&conf->device_lock);
4996                 while (!list_empty(&cb->list)) {
4997                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4998                         list_del_init(&sh->lru);
4999                         /*
5000                          * avoid race release_stripe_plug() sees
5001                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
5002                          * is still in our list
5003                          */
5004                         smp_mb__before_atomic();
5005                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5006                         /*
5007                          * STRIPE_ON_RELEASE_LIST could be set here. In that
5008                          * case, the count is always > 1 here
5009                          */
5010                         hash = sh->hash_lock_index;
5011                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5012                         cnt++;
5013                 }
5014                 spin_unlock_irq(&conf->device_lock);
5015         }
5016         release_inactive_stripe_list(conf, cb->temp_inactive_list,
5017                                      NR_STRIPE_HASH_LOCKS);
5018         if (mddev->queue)
5019                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5020         kfree(cb);
5021 }
5022
5023 static void release_stripe_plug(struct mddev *mddev,
5024                                 struct stripe_head *sh)
5025 {
5026         struct blk_plug_cb *blk_cb = blk_check_plugged(
5027                 raid5_unplug, mddev,
5028                 sizeof(struct raid5_plug_cb));
5029         struct raid5_plug_cb *cb;
5030
5031         if (!blk_cb) {
5032                 raid5_release_stripe(sh);
5033                 return;
5034         }
5035
5036         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5037
5038         if (cb->list.next == NULL) {
5039                 int i;
5040                 INIT_LIST_HEAD(&cb->list);
5041                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5042                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5043         }
5044
5045         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5046                 list_add_tail(&sh->lru, &cb->list);
5047         else
5048                 raid5_release_stripe(sh);
5049 }
5050
5051 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5052 {
5053         struct r5conf *conf = mddev->private;
5054         sector_t logical_sector, last_sector;
5055         struct stripe_head *sh;
5056         int remaining;
5057         int stripe_sectors;
5058
5059         if (mddev->reshape_position != MaxSector)
5060                 /* Skip discard while reshape is happening */
5061                 return;
5062
5063         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5064         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5065
5066         bi->bi_next = NULL;
5067         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5068
5069         stripe_sectors = conf->chunk_sectors *
5070                 (conf->raid_disks - conf->max_degraded);
5071         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5072                                                stripe_sectors);
5073         sector_div(last_sector, stripe_sectors);
5074
5075         logical_sector *= conf->chunk_sectors;
5076         last_sector *= conf->chunk_sectors;
5077
5078         for (; logical_sector < last_sector;
5079              logical_sector += STRIPE_SECTORS) {
5080                 DEFINE_WAIT(w);
5081                 int d;
5082         again:
5083                 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5084                 prepare_to_wait(&conf->wait_for_overlap, &w,
5085                                 TASK_UNINTERRUPTIBLE);
5086                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5087                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5088                         raid5_release_stripe(sh);
5089                         schedule();
5090                         goto again;
5091                 }
5092                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5093                 spin_lock_irq(&sh->stripe_lock);
5094                 for (d = 0; d < conf->raid_disks; d++) {
5095                         if (d == sh->pd_idx || d == sh->qd_idx)
5096                                 continue;
5097                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5098                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5099                                 spin_unlock_irq(&sh->stripe_lock);
5100                                 raid5_release_stripe(sh);
5101                                 schedule();
5102                                 goto again;
5103                         }
5104                 }
5105                 set_bit(STRIPE_DISCARD, &sh->state);
5106                 finish_wait(&conf->wait_for_overlap, &w);
5107                 sh->overwrite_disks = 0;
5108                 for (d = 0; d < conf->raid_disks; d++) {
5109                         if (d == sh->pd_idx || d == sh->qd_idx)
5110                                 continue;
5111                         sh->dev[d].towrite = bi;
5112                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5113                         raid5_inc_bi_active_stripes(bi);
5114                         sh->overwrite_disks++;
5115                 }
5116                 spin_unlock_irq(&sh->stripe_lock);
5117                 if (conf->mddev->bitmap) {
5118                         for (d = 0;
5119                              d < conf->raid_disks - conf->max_degraded;
5120                              d++)
5121                                 bitmap_startwrite(mddev->bitmap,
5122                                                   sh->sector,
5123                                                   STRIPE_SECTORS,
5124                                                   0);
5125                         sh->bm_seq = conf->seq_flush + 1;
5126                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5127                 }
5128
5129                 set_bit(STRIPE_HANDLE, &sh->state);
5130                 clear_bit(STRIPE_DELAYED, &sh->state);
5131                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5132                         atomic_inc(&conf->preread_active_stripes);
5133                 release_stripe_plug(mddev, sh);
5134         }
5135
5136         remaining = raid5_dec_bi_active_stripes(bi);
5137         if (remaining == 0) {
5138                 md_write_end(mddev);
5139                 bio_endio(bi);
5140         }
5141 }
5142
5143 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5144 {
5145         struct r5conf *conf = mddev->private;
5146         int dd_idx;
5147         sector_t new_sector;
5148         sector_t logical_sector, last_sector;
5149         struct stripe_head *sh;
5150         const int rw = bio_data_dir(bi);
5151         int remaining;
5152         DEFINE_WAIT(w);
5153         bool do_prepare;
5154
5155         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5156                 int ret = r5l_handle_flush_request(conf->log, bi);
5157
5158                 if (ret == 0)
5159                         return;
5160                 if (ret == -ENODEV) {
5161                         md_flush_request(mddev, bi);
5162                         return;
5163                 }
5164                 /* ret == -EAGAIN, fallback */
5165         }
5166
5167         md_write_start(mddev, bi);
5168
5169         /*
5170          * If array is degraded, better not do chunk aligned read because
5171          * later we might have to read it again in order to reconstruct
5172          * data on failed drives.
5173          */
5174         if (rw == READ && mddev->degraded == 0 &&
5175             mddev->reshape_position == MaxSector) {
5176                 bi = chunk_aligned_read(mddev, bi);
5177                 if (!bi)
5178                         return;
5179         }
5180
5181         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5182                 make_discard_request(mddev, bi);
5183                 return;
5184         }
5185
5186         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5187         last_sector = bio_end_sector(bi);
5188         bi->bi_next = NULL;
5189         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5190
5191         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5192         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5193                 int previous;
5194                 int seq;
5195
5196                 do_prepare = false;
5197         retry:
5198                 seq = read_seqcount_begin(&conf->gen_lock);
5199                 previous = 0;
5200                 if (do_prepare)
5201                         prepare_to_wait(&conf->wait_for_overlap, &w,
5202                                 TASK_UNINTERRUPTIBLE);
5203                 if (unlikely(conf->reshape_progress != MaxSector)) {
5204                         /* spinlock is needed as reshape_progress may be
5205                          * 64bit on a 32bit platform, and so it might be
5206                          * possible to see a half-updated value
5207                          * Of course reshape_progress could change after
5208                          * the lock is dropped, so once we get a reference
5209                          * to the stripe that we think it is, we will have
5210                          * to check again.
5211                          */
5212                         spin_lock_irq(&conf->device_lock);
5213                         if (mddev->reshape_backwards
5214                             ? logical_sector < conf->reshape_progress
5215                             : logical_sector >= conf->reshape_progress) {
5216                                 previous = 1;
5217                         } else {
5218                                 if (mddev->reshape_backwards
5219                                     ? logical_sector < conf->reshape_safe
5220                                     : logical_sector >= conf->reshape_safe) {
5221                                         spin_unlock_irq(&conf->device_lock);
5222                                         schedule();
5223                                         do_prepare = true;
5224                                         goto retry;
5225                                 }
5226                         }
5227                         spin_unlock_irq(&conf->device_lock);
5228                 }
5229
5230                 new_sector = raid5_compute_sector(conf, logical_sector,
5231                                                   previous,
5232                                                   &dd_idx, NULL);
5233                 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5234                         (unsigned long long)new_sector,
5235                         (unsigned long long)logical_sector);
5236
5237                 sh = raid5_get_active_stripe(conf, new_sector, previous,
5238                                        (bi->bi_rw&RWA_MASK), 0);
5239                 if (sh) {
5240                         if (unlikely(previous)) {
5241                                 /* expansion might have moved on while waiting for a
5242                                  * stripe, so we must do the range check again.
5243                                  * Expansion could still move past after this
5244                                  * test, but as we are holding a reference to
5245                                  * 'sh', we know that if that happens,
5246                                  *  STRIPE_EXPANDING will get set and the expansion
5247                                  * won't proceed until we finish with the stripe.
5248                                  */
5249                                 int must_retry = 0;
5250                                 spin_lock_irq(&conf->device_lock);
5251                                 if (mddev->reshape_backwards
5252                                     ? logical_sector >= conf->reshape_progress
5253                                     : logical_sector < conf->reshape_progress)
5254                                         /* mismatch, need to try again */
5255                                         must_retry = 1;
5256                                 spin_unlock_irq(&conf->device_lock);
5257                                 if (must_retry) {
5258                                         raid5_release_stripe(sh);
5259                                         schedule();
5260                                         do_prepare = true;
5261                                         goto retry;
5262                                 }
5263                         }
5264                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5265                                 /* Might have got the wrong stripe_head
5266                                  * by accident
5267                                  */
5268                                 raid5_release_stripe(sh);
5269                                 goto retry;
5270                         }
5271
5272                         if (rw == WRITE &&
5273                             logical_sector >= mddev->suspend_lo &&
5274                             logical_sector < mddev->suspend_hi) {
5275                                 raid5_release_stripe(sh);
5276                                 /* As the suspend_* range is controlled by
5277                                  * userspace, we want an interruptible
5278                                  * wait.
5279                                  */
5280                                 flush_signals(current);
5281                                 prepare_to_wait(&conf->wait_for_overlap,
5282                                                 &w, TASK_INTERRUPTIBLE);
5283                                 if (logical_sector >= mddev->suspend_lo &&
5284                                     logical_sector < mddev->suspend_hi) {
5285                                         schedule();
5286                                         do_prepare = true;
5287                                 }
5288                                 goto retry;
5289                         }
5290
5291                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5292                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5293                                 /* Stripe is busy expanding or
5294                                  * add failed due to overlap.  Flush everything
5295                                  * and wait a while
5296                                  */
5297                                 md_wakeup_thread(mddev->thread);
5298                                 raid5_release_stripe(sh);
5299                                 schedule();
5300                                 do_prepare = true;
5301                                 goto retry;
5302                         }
5303                         set_bit(STRIPE_HANDLE, &sh->state);
5304                         clear_bit(STRIPE_DELAYED, &sh->state);
5305                         if ((!sh->batch_head || sh == sh->batch_head) &&
5306                             (bi->bi_rw & REQ_SYNC) &&
5307                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5308                                 atomic_inc(&conf->preread_active_stripes);
5309                         release_stripe_plug(mddev, sh);
5310                 } else {
5311                         /* cannot get stripe for read-ahead, just give-up */
5312                         bi->bi_error = -EIO;
5313                         break;
5314                 }
5315         }
5316         finish_wait(&conf->wait_for_overlap, &w);
5317
5318         remaining = raid5_dec_bi_active_stripes(bi);
5319         if (remaining == 0) {
5320
5321                 if ( rw == WRITE )
5322                         md_write_end(mddev);
5323
5324                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5325                                          bi, 0);
5326                 bio_endio(bi);
5327         }
5328 }
5329
5330 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5331
5332 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5333 {
5334         /* reshaping is quite different to recovery/resync so it is
5335          * handled quite separately ... here.
5336          *
5337          * On each call to sync_request, we gather one chunk worth of
5338          * destination stripes and flag them as expanding.
5339          * Then we find all the source stripes and request reads.
5340          * As the reads complete, handle_stripe will copy the data
5341          * into the destination stripe and release that stripe.
5342          */
5343         struct r5conf *conf = mddev->private;
5344         struct stripe_head *sh;
5345         sector_t first_sector, last_sector;
5346         int raid_disks = conf->previous_raid_disks;
5347         int data_disks = raid_disks - conf->max_degraded;
5348         int new_data_disks = conf->raid_disks - conf->max_degraded;
5349         int i;
5350         int dd_idx;
5351         sector_t writepos, readpos, safepos;
5352         sector_t stripe_addr;
5353         int reshape_sectors;
5354         struct list_head stripes;
5355         sector_t retn;
5356
5357         if (sector_nr == 0) {
5358                 /* If restarting in the middle, skip the initial sectors */
5359                 if (mddev->reshape_backwards &&
5360                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5361                         sector_nr = raid5_size(mddev, 0, 0)
5362                                 - conf->reshape_progress;
5363                 } else if (mddev->reshape_backwards &&
5364                            conf->reshape_progress == MaxSector) {
5365                         /* shouldn't happen, but just in case, finish up.*/
5366                         sector_nr = MaxSector;
5367                 } else if (!mddev->reshape_backwards &&
5368                            conf->reshape_progress > 0)
5369                         sector_nr = conf->reshape_progress;
5370                 sector_div(sector_nr, new_data_disks);
5371                 if (sector_nr) {
5372                         mddev->curr_resync_completed = sector_nr;
5373                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5374                         *skipped = 1;
5375                         retn = sector_nr;
5376                         goto finish;
5377                 }
5378         }
5379
5380         /* We need to process a full chunk at a time.
5381          * If old and new chunk sizes differ, we need to process the
5382          * largest of these
5383          */
5384
5385         reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5386
5387         /* We update the metadata at least every 10 seconds, or when
5388          * the data about to be copied would over-write the source of
5389          * the data at the front of the range.  i.e. one new_stripe
5390          * along from reshape_progress new_maps to after where
5391          * reshape_safe old_maps to
5392          */
5393         writepos = conf->reshape_progress;
5394         sector_div(writepos, new_data_disks);
5395         readpos = conf->reshape_progress;
5396         sector_div(readpos, data_disks);
5397         safepos = conf->reshape_safe;
5398         sector_div(safepos, data_disks);
5399         if (mddev->reshape_backwards) {
5400                 BUG_ON(writepos < reshape_sectors);
5401                 writepos -= reshape_sectors;
5402                 readpos += reshape_sectors;
5403                 safepos += reshape_sectors;
5404         } else {
5405                 writepos += reshape_sectors;
5406                 /* readpos and safepos are worst-case calculations.
5407                  * A negative number is overly pessimistic, and causes
5408                  * obvious problems for unsigned storage.  So clip to 0.
5409                  */
5410                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5411                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5412         }
5413
5414         /* Having calculated the 'writepos' possibly use it
5415          * to set 'stripe_addr' which is where we will write to.
5416          */
5417         if (mddev->reshape_backwards) {
5418                 BUG_ON(conf->reshape_progress == 0);
5419                 stripe_addr = writepos;
5420                 BUG_ON((mddev->dev_sectors &
5421                         ~((sector_t)reshape_sectors - 1))
5422                        - reshape_sectors - stripe_addr
5423                        != sector_nr);
5424         } else {
5425                 BUG_ON(writepos != sector_nr + reshape_sectors);
5426                 stripe_addr = sector_nr;
5427         }
5428
5429         /* 'writepos' is the most advanced device address we might write.
5430          * 'readpos' is the least advanced device address we might read.
5431          * 'safepos' is the least address recorded in the metadata as having
5432          *     been reshaped.
5433          * If there is a min_offset_diff, these are adjusted either by
5434          * increasing the safepos/readpos if diff is negative, or
5435          * increasing writepos if diff is positive.
5436          * If 'readpos' is then behind 'writepos', there is no way that we can
5437          * ensure safety in the face of a crash - that must be done by userspace
5438          * making a backup of the data.  So in that case there is no particular
5439          * rush to update metadata.
5440          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5441          * update the metadata to advance 'safepos' to match 'readpos' so that
5442          * we can be safe in the event of a crash.
5443          * So we insist on updating metadata if safepos is behind writepos and
5444          * readpos is beyond writepos.
5445          * In any case, update the metadata every 10 seconds.
5446          * Maybe that number should be configurable, but I'm not sure it is
5447          * worth it.... maybe it could be a multiple of safemode_delay???
5448          */
5449         if (conf->min_offset_diff < 0) {
5450                 safepos += -conf->min_offset_diff;
5451                 readpos += -conf->min_offset_diff;
5452         } else
5453                 writepos += conf->min_offset_diff;
5454
5455         if ((mddev->reshape_backwards
5456              ? (safepos > writepos && readpos < writepos)
5457              : (safepos < writepos && readpos > writepos)) ||
5458             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5459                 /* Cannot proceed until we've updated the superblock... */
5460                 wait_event(conf->wait_for_overlap,
5461                            atomic_read(&conf->reshape_stripes)==0
5462                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5463                 if (atomic_read(&conf->reshape_stripes) != 0)
5464                         return 0;
5465                 mddev->reshape_position = conf->reshape_progress;
5466                 mddev->curr_resync_completed = sector_nr;
5467                 conf->reshape_checkpoint = jiffies;
5468                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5469                 md_wakeup_thread(mddev->thread);
5470                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5471                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5472                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5473                         return 0;
5474                 spin_lock_irq(&conf->device_lock);
5475                 conf->reshape_safe = mddev->reshape_position;
5476                 spin_unlock_irq(&conf->device_lock);
5477                 wake_up(&conf->wait_for_overlap);
5478                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5479         }
5480
5481         INIT_LIST_HEAD(&stripes);
5482         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5483                 int j;
5484                 int skipped_disk = 0;
5485                 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5486                 set_bit(STRIPE_EXPANDING, &sh->state);
5487                 atomic_inc(&conf->reshape_stripes);
5488                 /* If any of this stripe is beyond the end of the old
5489                  * array, then we need to zero those blocks
5490                  */
5491                 for (j=sh->disks; j--;) {
5492                         sector_t s;
5493                         if (j == sh->pd_idx)
5494                                 continue;
5495                         if (conf->level == 6 &&
5496                             j == sh->qd_idx)
5497                                 continue;
5498                         s = raid5_compute_blocknr(sh, j, 0);
5499                         if (s < raid5_size(mddev, 0, 0)) {
5500                                 skipped_disk = 1;
5501                                 continue;
5502                         }
5503                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5504                         set_bit(R5_Expanded, &sh->dev[j].flags);
5505                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5506                 }
5507                 if (!skipped_disk) {
5508                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5509                         set_bit(STRIPE_HANDLE, &sh->state);
5510                 }
5511                 list_add(&sh->lru, &stripes);
5512         }
5513         spin_lock_irq(&conf->device_lock);
5514         if (mddev->reshape_backwards)
5515                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5516         else
5517                 conf->reshape_progress += reshape_sectors * new_data_disks;
5518         spin_unlock_irq(&conf->device_lock);
5519         /* Ok, those stripe are ready. We can start scheduling
5520          * reads on the source stripes.
5521          * The source stripes are determined by mapping the first and last
5522          * block on the destination stripes.
5523          */
5524         first_sector =
5525                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5526                                      1, &dd_idx, NULL);
5527         last_sector =
5528                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5529                                             * new_data_disks - 1),
5530                                      1, &dd_idx, NULL);
5531         if (last_sector >= mddev->dev_sectors)
5532                 last_sector = mddev->dev_sectors - 1;
5533         while (first_sector <= last_sector) {
5534                 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5535                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5536                 set_bit(STRIPE_HANDLE, &sh->state);
5537                 raid5_release_stripe(sh);
5538                 first_sector += STRIPE_SECTORS;
5539         }
5540         /* Now that the sources are clearly marked, we can release
5541          * the destination stripes
5542          */
5543         while (!list_empty(&stripes)) {
5544                 sh = list_entry(stripes.next, struct stripe_head, lru);
5545                 list_del_init(&sh->lru);
5546                 raid5_release_stripe(sh);
5547         }
5548         /* If this takes us to the resync_max point where we have to pause,
5549          * then we need to write out the superblock.
5550          */
5551         sector_nr += reshape_sectors;
5552         retn = reshape_sectors;
5553 finish:
5554         if (mddev->curr_resync_completed > mddev->resync_max ||
5555             (sector_nr - mddev->curr_resync_completed) * 2
5556             >= mddev->resync_max - mddev->curr_resync_completed) {
5557                 /* Cannot proceed until we've updated the superblock... */
5558                 wait_event(conf->wait_for_overlap,
5559                            atomic_read(&conf->reshape_stripes) == 0
5560                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5561                 if (atomic_read(&conf->reshape_stripes) != 0)
5562                         goto ret;
5563                 mddev->reshape_position = conf->reshape_progress;
5564                 mddev->curr_resync_completed = sector_nr;
5565                 conf->reshape_checkpoint = jiffies;
5566                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5567                 md_wakeup_thread(mddev->thread);
5568                 wait_event(mddev->sb_wait,
5569                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5570                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5571                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5572                         goto ret;
5573                 spin_lock_irq(&conf->device_lock);
5574                 conf->reshape_safe = mddev->reshape_position;
5575                 spin_unlock_irq(&conf->device_lock);
5576                 wake_up(&conf->wait_for_overlap);
5577                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5578         }
5579 ret:
5580         return retn;
5581 }
5582
5583 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5584                                           int *skipped)
5585 {
5586         struct r5conf *conf = mddev->private;
5587         struct stripe_head *sh;
5588         sector_t max_sector = mddev->dev_sectors;
5589         sector_t sync_blocks;
5590         int still_degraded = 0;
5591         int i;
5592
5593         if (sector_nr >= max_sector) {
5594                 /* just being told to finish up .. nothing much to do */
5595
5596                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5597                         end_reshape(conf);
5598                         return 0;
5599                 }
5600
5601                 if (mddev->curr_resync < max_sector) /* aborted */
5602                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5603                                         &sync_blocks, 1);
5604                 else /* completed sync */
5605                         conf->fullsync = 0;
5606                 bitmap_close_sync(mddev->bitmap);
5607
5608                 return 0;
5609         }
5610
5611         /* Allow raid5_quiesce to complete */
5612         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5613
5614         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5615                 return reshape_request(mddev, sector_nr, skipped);
5616
5617         /* No need to check resync_max as we never do more than one
5618          * stripe, and as resync_max will always be on a chunk boundary,
5619          * if the check in md_do_sync didn't fire, there is no chance
5620          * of overstepping resync_max here
5621          */
5622
5623         /* if there is too many failed drives and we are trying
5624          * to resync, then assert that we are finished, because there is
5625          * nothing we can do.
5626          */
5627         if (mddev->degraded >= conf->max_degraded &&
5628             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5629                 sector_t rv = mddev->dev_sectors - sector_nr;
5630                 *skipped = 1;
5631                 return rv;
5632         }
5633         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5634             !conf->fullsync &&
5635             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5636             sync_blocks >= STRIPE_SECTORS) {
5637                 /* we can skip this block, and probably more */
5638                 sync_blocks /= STRIPE_SECTORS;
5639                 *skipped = 1;
5640                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5641         }
5642
5643         bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5644
5645         sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5646         if (sh == NULL) {
5647                 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5648                 /* make sure we don't swamp the stripe cache if someone else
5649                  * is trying to get access
5650                  */
5651                 schedule_timeout_uninterruptible(1);
5652         }
5653         /* Need to check if array will still be degraded after recovery/resync
5654          * Note in case of > 1 drive failures it's possible we're rebuilding
5655          * one drive while leaving another faulty drive in array.
5656          */
5657         rcu_read_lock();
5658         for (i = 0; i < conf->raid_disks; i++) {
5659                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5660
5661                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5662                         still_degraded = 1;
5663         }
5664         rcu_read_unlock();
5665
5666         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5667
5668         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5669         set_bit(STRIPE_HANDLE, &sh->state);
5670
5671         raid5_release_stripe(sh);
5672
5673         return STRIPE_SECTORS;
5674 }
5675
5676 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5677 {
5678         /* We may not be able to submit a whole bio at once as there
5679          * may not be enough stripe_heads available.
5680          * We cannot pre-allocate enough stripe_heads as we may need
5681          * more than exist in the cache (if we allow ever large chunks).
5682          * So we do one stripe head at a time and record in
5683          * ->bi_hw_segments how many have been done.
5684          *
5685          * We *know* that this entire raid_bio is in one chunk, so
5686          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5687          */
5688         struct stripe_head *sh;
5689         int dd_idx;
5690         sector_t sector, logical_sector, last_sector;
5691         int scnt = 0;
5692         int remaining;
5693         int handled = 0;
5694
5695         logical_sector = raid_bio->bi_iter.bi_sector &
5696                 ~((sector_t)STRIPE_SECTORS-1);
5697         sector = raid5_compute_sector(conf, logical_sector,
5698                                       0, &dd_idx, NULL);
5699         last_sector = bio_end_sector(raid_bio);
5700
5701         for (; logical_sector < last_sector;
5702              logical_sector += STRIPE_SECTORS,
5703                      sector += STRIPE_SECTORS,
5704                      scnt++) {
5705
5706                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5707                         /* already done this stripe */
5708                         continue;
5709
5710                 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5711
5712                 if (!sh) {
5713                         /* failed to get a stripe - must wait */
5714                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5715                         conf->retry_read_aligned = raid_bio;
5716                         return handled;
5717                 }
5718
5719                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5720                         raid5_release_stripe(sh);
5721                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5722                         conf->retry_read_aligned = raid_bio;
5723                         return handled;
5724                 }
5725
5726                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5727                 handle_stripe(sh);
5728                 raid5_release_stripe(sh);
5729                 handled++;
5730         }
5731         remaining = raid5_dec_bi_active_stripes(raid_bio);
5732         if (remaining == 0) {
5733                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5734                                          raid_bio, 0);
5735                 bio_endio(raid_bio);
5736         }
5737         if (atomic_dec_and_test(&conf->active_aligned_reads))
5738                 wake_up(&conf->wait_for_quiescent);
5739         return handled;
5740 }
5741
5742 static int handle_active_stripes(struct r5conf *conf, int group,
5743                                  struct r5worker *worker,
5744                                  struct list_head *temp_inactive_list)
5745 {
5746         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5747         int i, batch_size = 0, hash;
5748         bool release_inactive = false;
5749
5750         while (batch_size < MAX_STRIPE_BATCH &&
5751                         (sh = __get_priority_stripe(conf, group)) != NULL)
5752                 batch[batch_size++] = sh;
5753
5754         if (batch_size == 0) {
5755                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5756                         if (!list_empty(temp_inactive_list + i))
5757                                 break;
5758                 if (i == NR_STRIPE_HASH_LOCKS) {
5759                         spin_unlock_irq(&conf->device_lock);
5760                         r5l_flush_stripe_to_raid(conf->log);
5761                         spin_lock_irq(&conf->device_lock);
5762                         return batch_size;
5763                 }
5764                 release_inactive = true;
5765         }
5766         spin_unlock_irq(&conf->device_lock);
5767
5768         release_inactive_stripe_list(conf, temp_inactive_list,
5769                                      NR_STRIPE_HASH_LOCKS);
5770
5771         r5l_flush_stripe_to_raid(conf->log);
5772         if (release_inactive) {
5773                 spin_lock_irq(&conf->device_lock);
5774                 return 0;
5775         }
5776
5777         for (i = 0; i < batch_size; i++)
5778                 handle_stripe(batch[i]);
5779         r5l_write_stripe_run(conf->log);
5780
5781         cond_resched();
5782
5783         spin_lock_irq(&conf->device_lock);
5784         for (i = 0; i < batch_size; i++) {
5785                 hash = batch[i]->hash_lock_index;
5786                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5787         }
5788         return batch_size;
5789 }
5790
5791 static void raid5_do_work(struct work_struct *work)
5792 {
5793         struct r5worker *worker = container_of(work, struct r5worker, work);
5794         struct r5worker_group *group = worker->group;
5795         struct r5conf *conf = group->conf;
5796         int group_id = group - conf->worker_groups;
5797         int handled;
5798         struct blk_plug plug;
5799
5800         pr_debug("+++ raid5worker active\n");
5801
5802         blk_start_plug(&plug);
5803         handled = 0;
5804         spin_lock_irq(&conf->device_lock);
5805         while (1) {
5806                 int batch_size, released;
5807
5808                 released = release_stripe_list(conf, worker->temp_inactive_list);
5809
5810                 batch_size = handle_active_stripes(conf, group_id, worker,
5811                                                    worker->temp_inactive_list);
5812                 worker->working = false;
5813                 if (!batch_size && !released)
5814                         break;
5815                 handled += batch_size;
5816         }
5817         pr_debug("%d stripes handled\n", handled);
5818
5819         spin_unlock_irq(&conf->device_lock);
5820         blk_finish_plug(&plug);
5821
5822         pr_debug("--- raid5worker inactive\n");
5823 }
5824
5825 /*
5826  * This is our raid5 kernel thread.
5827  *
5828  * We scan the hash table for stripes which can be handled now.
5829  * During the scan, completed stripes are saved for us by the interrupt
5830  * handler, so that they will not have to wait for our next wakeup.
5831  */
5832 static void raid5d(struct md_thread *thread)
5833 {
5834         struct mddev *mddev = thread->mddev;
5835         struct r5conf *conf = mddev->private;
5836         int handled;
5837         struct blk_plug plug;
5838
5839         pr_debug("+++ raid5d active\n");
5840
5841         md_check_recovery(mddev);
5842
5843         if (!bio_list_empty(&conf->return_bi) &&
5844             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5845                 struct bio_list tmp = BIO_EMPTY_LIST;
5846                 spin_lock_irq(&conf->device_lock);
5847                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5848                         bio_list_merge(&tmp, &conf->return_bi);
5849                         bio_list_init(&conf->return_bi);
5850                 }
5851                 spin_unlock_irq(&conf->device_lock);
5852                 return_io(&tmp);
5853         }
5854
5855         blk_start_plug(&plug);
5856         handled = 0;
5857         spin_lock_irq(&conf->device_lock);
5858         while (1) {
5859                 struct bio *bio;
5860                 int batch_size, released;
5861
5862                 released = release_stripe_list(conf, conf->temp_inactive_list);
5863                 if (released)
5864                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
5865
5866                 if (
5867                     !list_empty(&conf->bitmap_list)) {
5868                         /* Now is a good time to flush some bitmap updates */
5869                         conf->seq_flush++;
5870                         spin_unlock_irq(&conf->device_lock);
5871                         bitmap_unplug(mddev->bitmap);
5872                         spin_lock_irq(&conf->device_lock);
5873                         conf->seq_write = conf->seq_flush;
5874                         activate_bit_delay(conf, conf->temp_inactive_list);
5875                 }
5876                 raid5_activate_delayed(conf);
5877
5878                 while ((bio = remove_bio_from_retry(conf))) {
5879                         int ok;
5880                         spin_unlock_irq(&conf->device_lock);
5881                         ok = retry_aligned_read(conf, bio);
5882                         spin_lock_irq(&conf->device_lock);
5883                         if (!ok)
5884                                 break;
5885                         handled++;
5886                 }
5887
5888                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5889                                                    conf->temp_inactive_list);
5890                 if (!batch_size && !released)
5891                         break;
5892                 handled += batch_size;
5893
5894                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5895                         spin_unlock_irq(&conf->device_lock);
5896                         md_check_recovery(mddev);
5897                         spin_lock_irq(&conf->device_lock);
5898                 }
5899         }
5900         pr_debug("%d stripes handled\n", handled);
5901
5902         spin_unlock_irq(&conf->device_lock);
5903         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5904             mutex_trylock(&conf->cache_size_mutex)) {
5905                 grow_one_stripe(conf, __GFP_NOWARN);
5906                 /* Set flag even if allocation failed.  This helps
5907                  * slow down allocation requests when mem is short
5908                  */
5909                 set_bit(R5_DID_ALLOC, &conf->cache_state);
5910                 mutex_unlock(&conf->cache_size_mutex);
5911         }
5912
5913         r5l_flush_stripe_to_raid(conf->log);
5914
5915         async_tx_issue_pending_all();
5916         blk_finish_plug(&plug);
5917
5918         pr_debug("--- raid5d inactive\n");
5919 }
5920
5921 static ssize_t
5922 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5923 {
5924         struct r5conf *conf;
5925         int ret = 0;
5926         spin_lock(&mddev->lock);
5927         conf = mddev->private;
5928         if (conf)
5929                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5930         spin_unlock(&mddev->lock);
5931         return ret;
5932 }
5933
5934 int
5935 raid5_set_cache_size(struct mddev *mddev, int size)
5936 {
5937         struct r5conf *conf = mddev->private;
5938         int err;
5939
5940         if (size <= 16 || size > 32768)
5941                 return -EINVAL;
5942
5943         conf->min_nr_stripes = size;
5944         mutex_lock(&conf->cache_size_mutex);
5945         while (size < conf->max_nr_stripes &&
5946                drop_one_stripe(conf))
5947                 ;
5948         mutex_unlock(&conf->cache_size_mutex);
5949
5950
5951         err = md_allow_write(mddev);
5952         if (err)
5953                 return err;
5954
5955         mutex_lock(&conf->cache_size_mutex);
5956         while (size > conf->max_nr_stripes)
5957                 if (!grow_one_stripe(conf, GFP_KERNEL))
5958                         break;
5959         mutex_unlock(&conf->cache_size_mutex);
5960
5961         return 0;
5962 }
5963 EXPORT_SYMBOL(raid5_set_cache_size);
5964
5965 static ssize_t
5966 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5967 {
5968         struct r5conf *conf;
5969         unsigned long new;
5970         int err;
5971
5972         if (len >= PAGE_SIZE)
5973                 return -EINVAL;
5974         if (kstrtoul(page, 10, &new))
5975                 return -EINVAL;
5976         err = mddev_lock(mddev);
5977         if (err)
5978                 return err;
5979         conf = mddev->private;
5980         if (!conf)
5981                 err = -ENODEV;
5982         else
5983                 err = raid5_set_cache_size(mddev, new);
5984         mddev_unlock(mddev);
5985
5986         return err ?: len;
5987 }
5988
5989 static struct md_sysfs_entry
5990 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5991                                 raid5_show_stripe_cache_size,
5992                                 raid5_store_stripe_cache_size);
5993
5994 static ssize_t
5995 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5996 {
5997         struct r5conf *conf = mddev->private;
5998         if (conf)
5999                 return sprintf(page, "%d\n", conf->rmw_level);
6000         else
6001                 return 0;
6002 }
6003
6004 static ssize_t
6005 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6006 {
6007         struct r5conf *conf = mddev->private;
6008         unsigned long new;
6009
6010         if (!conf)
6011                 return -ENODEV;
6012
6013         if (len >= PAGE_SIZE)
6014                 return -EINVAL;
6015
6016         if (kstrtoul(page, 10, &new))
6017                 return -EINVAL;
6018
6019         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6020                 return -EINVAL;
6021
6022         if (new != PARITY_DISABLE_RMW &&
6023             new != PARITY_ENABLE_RMW &&
6024             new != PARITY_PREFER_RMW)
6025                 return -EINVAL;
6026
6027         conf->rmw_level = new;
6028         return len;
6029 }
6030
6031 static struct md_sysfs_entry
6032 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6033                          raid5_show_rmw_level,
6034                          raid5_store_rmw_level);
6035
6036
6037 static ssize_t
6038 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6039 {
6040         struct r5conf *conf;
6041         int ret = 0;
6042         spin_lock(&mddev->lock);
6043         conf = mddev->private;
6044         if (conf)
6045                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6046         spin_unlock(&mddev->lock);
6047         return ret;
6048 }
6049
6050 static ssize_t
6051 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6052 {
6053         struct r5conf *conf;
6054         unsigned long new;
6055         int err;
6056
6057         if (len >= PAGE_SIZE)
6058                 return -EINVAL;
6059         if (kstrtoul(page, 10, &new))
6060                 return -EINVAL;
6061
6062         err = mddev_lock(mddev);
6063         if (err)
6064                 return err;
6065         conf = mddev->private;
6066         if (!conf)
6067                 err = -ENODEV;
6068         else if (new > conf->min_nr_stripes)
6069                 err = -EINVAL;
6070         else
6071                 conf->bypass_threshold = new;
6072         mddev_unlock(mddev);
6073         return err ?: len;
6074 }
6075
6076 static struct md_sysfs_entry
6077 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6078                                         S_IRUGO | S_IWUSR,
6079                                         raid5_show_preread_threshold,
6080                                         raid5_store_preread_threshold);
6081
6082 static ssize_t
6083 raid5_show_skip_copy(struct mddev *mddev, char *page)
6084 {
6085         struct r5conf *conf;
6086         int ret = 0;
6087         spin_lock(&mddev->lock);
6088         conf = mddev->private;
6089         if (conf)
6090                 ret = sprintf(page, "%d\n", conf->skip_copy);
6091         spin_unlock(&mddev->lock);
6092         return ret;
6093 }
6094
6095 static ssize_t
6096 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6097 {
6098         struct r5conf *conf;
6099         unsigned long new;
6100         int err;
6101
6102         if (len >= PAGE_SIZE)
6103                 return -EINVAL;
6104         if (kstrtoul(page, 10, &new))
6105                 return -EINVAL;
6106         new = !!new;
6107
6108         err = mddev_lock(mddev);
6109         if (err)
6110                 return err;
6111         conf = mddev->private;
6112         if (!conf)
6113                 err = -ENODEV;
6114         else if (new != conf->skip_copy) {
6115                 mddev_suspend(mddev);
6116                 conf->skip_copy = new;
6117                 if (new)
6118                         mddev->queue->backing_dev_info.capabilities |=
6119                                 BDI_CAP_STABLE_WRITES;
6120                 else
6121                         mddev->queue->backing_dev_info.capabilities &=
6122                                 ~BDI_CAP_STABLE_WRITES;
6123                 mddev_resume(mddev);
6124         }
6125         mddev_unlock(mddev);
6126         return err ?: len;
6127 }
6128
6129 static struct md_sysfs_entry
6130 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6131                                         raid5_show_skip_copy,
6132                                         raid5_store_skip_copy);
6133
6134 static ssize_t
6135 stripe_cache_active_show(struct mddev *mddev, char *page)
6136 {
6137         struct r5conf *conf = mddev->private;
6138         if (conf)
6139                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6140         else
6141                 return 0;
6142 }
6143
6144 static struct md_sysfs_entry
6145 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6146
6147 static ssize_t
6148 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6149 {
6150         struct r5conf *conf;
6151         int ret = 0;
6152         spin_lock(&mddev->lock);
6153         conf = mddev->private;
6154         if (conf)
6155                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6156         spin_unlock(&mddev->lock);
6157         return ret;
6158 }
6159
6160 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6161                                int *group_cnt,
6162                                int *worker_cnt_per_group,
6163                                struct r5worker_group **worker_groups);
6164 static ssize_t
6165 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6166 {
6167         struct r5conf *conf;
6168         unsigned long new;
6169         int err;
6170         struct r5worker_group *new_groups, *old_groups;
6171         int group_cnt, worker_cnt_per_group;
6172
6173         if (len >= PAGE_SIZE)
6174                 return -EINVAL;
6175         if (kstrtoul(page, 10, &new))
6176                 return -EINVAL;
6177
6178         err = mddev_lock(mddev);
6179         if (err)
6180                 return err;
6181         conf = mddev->private;
6182         if (!conf)
6183                 err = -ENODEV;
6184         else if (new != conf->worker_cnt_per_group) {
6185                 mddev_suspend(mddev);
6186
6187                 old_groups = conf->worker_groups;
6188                 if (old_groups)
6189                         flush_workqueue(raid5_wq);
6190
6191                 err = alloc_thread_groups(conf, new,
6192                                           &group_cnt, &worker_cnt_per_group,
6193                                           &new_groups);
6194                 if (!err) {
6195                         spin_lock_irq(&conf->device_lock);
6196                         conf->group_cnt = group_cnt;
6197                         conf->worker_cnt_per_group = worker_cnt_per_group;
6198                         conf->worker_groups = new_groups;
6199                         spin_unlock_irq(&conf->device_lock);
6200
6201                         if (old_groups)
6202                                 kfree(old_groups[0].workers);
6203                         kfree(old_groups);
6204                 }
6205                 mddev_resume(mddev);
6206         }
6207         mddev_unlock(mddev);
6208
6209         return err ?: len;
6210 }
6211
6212 static struct md_sysfs_entry
6213 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6214                                 raid5_show_group_thread_cnt,
6215                                 raid5_store_group_thread_cnt);
6216
6217 static struct attribute *raid5_attrs[] =  {
6218         &raid5_stripecache_size.attr,
6219         &raid5_stripecache_active.attr,
6220         &raid5_preread_bypass_threshold.attr,
6221         &raid5_group_thread_cnt.attr,
6222         &raid5_skip_copy.attr,
6223         &raid5_rmw_level.attr,
6224         NULL,
6225 };
6226 static struct attribute_group raid5_attrs_group = {
6227         .name = NULL,
6228         .attrs = raid5_attrs,
6229 };
6230
6231 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6232                                int *group_cnt,
6233                                int *worker_cnt_per_group,
6234                                struct r5worker_group **worker_groups)
6235 {
6236         int i, j, k;
6237         ssize_t size;
6238         struct r5worker *workers;
6239
6240         *worker_cnt_per_group = cnt;
6241         if (cnt == 0) {
6242                 *group_cnt = 0;
6243                 *worker_groups = NULL;
6244                 return 0;
6245         }
6246         *group_cnt = num_possible_nodes();
6247         size = sizeof(struct r5worker) * cnt;
6248         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6249         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6250                                 *group_cnt, GFP_NOIO);
6251         if (!*worker_groups || !workers) {
6252                 kfree(workers);
6253                 kfree(*worker_groups);
6254                 return -ENOMEM;
6255         }
6256
6257         for (i = 0; i < *group_cnt; i++) {
6258                 struct r5worker_group *group;
6259
6260                 group = &(*worker_groups)[i];
6261                 INIT_LIST_HEAD(&group->handle_list);
6262                 group->conf = conf;
6263                 group->workers = workers + i * cnt;
6264
6265                 for (j = 0; j < cnt; j++) {
6266                         struct r5worker *worker = group->workers + j;
6267                         worker->group = group;
6268                         INIT_WORK(&worker->work, raid5_do_work);
6269
6270                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6271                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6272                 }
6273         }
6274
6275         return 0;
6276 }
6277
6278 static void free_thread_groups(struct r5conf *conf)
6279 {
6280         if (conf->worker_groups)
6281                 kfree(conf->worker_groups[0].workers);
6282         kfree(conf->worker_groups);
6283         conf->worker_groups = NULL;
6284 }
6285
6286 static sector_t
6287 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6288 {
6289         struct r5conf *conf = mddev->private;
6290
6291         if (!sectors)
6292                 sectors = mddev->dev_sectors;
6293         if (!raid_disks)
6294                 /* size is defined by the smallest of previous and new size */
6295                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6296
6297         sectors &= ~((sector_t)conf->chunk_sectors - 1);
6298         sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6299         return sectors * (raid_disks - conf->max_degraded);
6300 }
6301
6302 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6303 {
6304         safe_put_page(percpu->spare_page);
6305         if (percpu->scribble)
6306                 flex_array_free(percpu->scribble);
6307         percpu->spare_page = NULL;
6308         percpu->scribble = NULL;
6309 }
6310
6311 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6312 {
6313         if (conf->level == 6 && !percpu->spare_page)
6314                 percpu->spare_page = alloc_page(GFP_KERNEL);
6315         if (!percpu->scribble)
6316                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6317                                                       conf->previous_raid_disks),
6318                                                   max(conf->chunk_sectors,
6319                                                       conf->prev_chunk_sectors)
6320                                                    / STRIPE_SECTORS,
6321                                                   GFP_KERNEL);
6322
6323         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6324                 free_scratch_buffer(conf, percpu);
6325                 return -ENOMEM;
6326         }
6327
6328         return 0;
6329 }
6330
6331 static void raid5_free_percpu(struct r5conf *conf)
6332 {
6333         unsigned long cpu;
6334
6335         if (!conf->percpu)
6336                 return;
6337
6338 #ifdef CONFIG_HOTPLUG_CPU
6339         unregister_cpu_notifier(&conf->cpu_notify);
6340 #endif
6341
6342         get_online_cpus();
6343         for_each_possible_cpu(cpu)
6344                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6345         put_online_cpus();
6346
6347         free_percpu(conf->percpu);
6348 }
6349
6350 static void free_conf(struct r5conf *conf)
6351 {
6352         if (conf->log)
6353                 r5l_exit_log(conf->log);
6354         if (conf->shrinker.seeks)
6355                 unregister_shrinker(&conf->shrinker);
6356
6357         free_thread_groups(conf);
6358         shrink_stripes(conf);
6359         raid5_free_percpu(conf);
6360         kfree(conf->disks);
6361         kfree(conf->stripe_hashtbl);
6362         kfree(conf);
6363 }
6364
6365 #ifdef CONFIG_HOTPLUG_CPU
6366 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6367                               void *hcpu)
6368 {
6369         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6370         long cpu = (long)hcpu;
6371         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6372
6373         switch (action) {
6374         case CPU_UP_PREPARE:
6375         case CPU_UP_PREPARE_FROZEN:
6376                 if (alloc_scratch_buffer(conf, percpu)) {
6377                         pr_err("%s: failed memory allocation for cpu%ld\n",
6378                                __func__, cpu);
6379                         return notifier_from_errno(-ENOMEM);
6380                 }
6381                 break;
6382         case CPU_DEAD:
6383         case CPU_DEAD_FROZEN:
6384         case CPU_UP_CANCELED:
6385         case CPU_UP_CANCELED_FROZEN:
6386                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6387                 break;
6388         default:
6389                 break;
6390         }
6391         return NOTIFY_OK;
6392 }
6393 #endif
6394
6395 static int raid5_alloc_percpu(struct r5conf *conf)
6396 {
6397         unsigned long cpu;
6398         int err = 0;
6399
6400         conf->percpu = alloc_percpu(struct raid5_percpu);
6401         if (!conf->percpu)
6402                 return -ENOMEM;
6403
6404 #ifdef CONFIG_HOTPLUG_CPU
6405         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6406         conf->cpu_notify.priority = 0;
6407         err = register_cpu_notifier(&conf->cpu_notify);
6408         if (err)
6409                 return err;
6410 #endif
6411
6412         get_online_cpus();
6413         for_each_present_cpu(cpu) {
6414                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6415                 if (err) {
6416                         pr_err("%s: failed memory allocation for cpu%ld\n",
6417                                __func__, cpu);
6418                         break;
6419                 }
6420         }
6421         put_online_cpus();
6422
6423         if (!err) {
6424                 conf->scribble_disks = max(conf->raid_disks,
6425                         conf->previous_raid_disks);
6426                 conf->scribble_sectors = max(conf->chunk_sectors,
6427                         conf->prev_chunk_sectors);
6428         }
6429         return err;
6430 }
6431
6432 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6433                                       struct shrink_control *sc)
6434 {
6435         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6436         unsigned long ret = SHRINK_STOP;
6437
6438         if (mutex_trylock(&conf->cache_size_mutex)) {
6439                 ret= 0;
6440                 while (ret < sc->nr_to_scan &&
6441                        conf->max_nr_stripes > conf->min_nr_stripes) {
6442                         if (drop_one_stripe(conf) == 0) {
6443                                 ret = SHRINK_STOP;
6444                                 break;
6445                         }
6446                         ret++;
6447                 }
6448                 mutex_unlock(&conf->cache_size_mutex);
6449         }
6450         return ret;
6451 }
6452
6453 static unsigned long raid5_cache_count(struct shrinker *shrink,
6454                                        struct shrink_control *sc)
6455 {
6456         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6457
6458         if (conf->max_nr_stripes < conf->min_nr_stripes)
6459                 /* unlikely, but not impossible */
6460                 return 0;
6461         return conf->max_nr_stripes - conf->min_nr_stripes;
6462 }
6463
6464 static struct r5conf *setup_conf(struct mddev *mddev)
6465 {
6466         struct r5conf *conf;
6467         int raid_disk, memory, max_disks;
6468         struct md_rdev *rdev;
6469         struct disk_info *disk;
6470         char pers_name[6];
6471         int i;
6472         int group_cnt, worker_cnt_per_group;
6473         struct r5worker_group *new_group;
6474
6475         if (mddev->new_level != 5
6476             && mddev->new_level != 4
6477             && mddev->new_level != 6) {
6478                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6479                        mdname(mddev), mddev->new_level);
6480                 return ERR_PTR(-EIO);
6481         }
6482         if ((mddev->new_level == 5
6483              && !algorithm_valid_raid5(mddev->new_layout)) ||
6484             (mddev->new_level == 6
6485              && !algorithm_valid_raid6(mddev->new_layout))) {
6486                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6487                        mdname(mddev), mddev->new_layout);
6488                 return ERR_PTR(-EIO);
6489         }
6490         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6491                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6492                        mdname(mddev), mddev->raid_disks);
6493                 return ERR_PTR(-EINVAL);
6494         }
6495
6496         if (!mddev->new_chunk_sectors ||
6497             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6498             !is_power_of_2(mddev->new_chunk_sectors)) {
6499                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6500                        mdname(mddev), mddev->new_chunk_sectors << 9);
6501                 return ERR_PTR(-EINVAL);
6502         }
6503
6504         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6505         if (conf == NULL)
6506                 goto abort;
6507         /* Don't enable multi-threading by default*/
6508         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6509                                  &new_group)) {
6510                 conf->group_cnt = group_cnt;
6511                 conf->worker_cnt_per_group = worker_cnt_per_group;
6512                 conf->worker_groups = new_group;
6513         } else
6514                 goto abort;
6515         spin_lock_init(&conf->device_lock);
6516         seqcount_init(&conf->gen_lock);
6517         mutex_init(&conf->cache_size_mutex);
6518         init_waitqueue_head(&conf->wait_for_quiescent);
6519         init_waitqueue_head(&conf->wait_for_stripe);
6520         init_waitqueue_head(&conf->wait_for_overlap);
6521         INIT_LIST_HEAD(&conf->handle_list);
6522         INIT_LIST_HEAD(&conf->hold_list);
6523         INIT_LIST_HEAD(&conf->delayed_list);
6524         INIT_LIST_HEAD(&conf->bitmap_list);
6525         bio_list_init(&conf->return_bi);
6526         init_llist_head(&conf->released_stripes);
6527         atomic_set(&conf->active_stripes, 0);
6528         atomic_set(&conf->preread_active_stripes, 0);
6529         atomic_set(&conf->active_aligned_reads, 0);
6530         conf->bypass_threshold = BYPASS_THRESHOLD;
6531         conf->recovery_disabled = mddev->recovery_disabled - 1;
6532
6533         conf->raid_disks = mddev->raid_disks;
6534         if (mddev->reshape_position == MaxSector)
6535                 conf->previous_raid_disks = mddev->raid_disks;
6536         else
6537                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6538         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6539
6540         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6541                               GFP_KERNEL);
6542         if (!conf->disks)
6543                 goto abort;
6544
6545         conf->mddev = mddev;
6546
6547         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6548                 goto abort;
6549
6550         /* We init hash_locks[0] separately to that it can be used
6551          * as the reference lock in the spin_lock_nest_lock() call
6552          * in lock_all_device_hash_locks_irq in order to convince
6553          * lockdep that we know what we are doing.
6554          */
6555         spin_lock_init(conf->hash_locks);
6556         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6557                 spin_lock_init(conf->hash_locks + i);
6558
6559         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6560                 INIT_LIST_HEAD(conf->inactive_list + i);
6561
6562         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6563                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6564
6565         conf->level = mddev->new_level;
6566         conf->chunk_sectors = mddev->new_chunk_sectors;
6567         if (raid5_alloc_percpu(conf) != 0)
6568                 goto abort;
6569
6570         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6571
6572         rdev_for_each(rdev, mddev) {
6573                 raid_disk = rdev->raid_disk;
6574                 if (raid_disk >= max_disks
6575                     || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6576                         continue;
6577                 disk = conf->disks + raid_disk;
6578
6579                 if (test_bit(Replacement, &rdev->flags)) {
6580                         if (disk->replacement)
6581                                 goto abort;
6582                         disk->replacement = rdev;
6583                 } else {
6584                         if (disk->rdev)
6585                                 goto abort;
6586                         disk->rdev = rdev;
6587                 }
6588
6589                 if (test_bit(In_sync, &rdev->flags)) {
6590                         char b[BDEVNAME_SIZE];
6591                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6592                                " disk %d\n",
6593                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6594                 } else if (rdev->saved_raid_disk != raid_disk)
6595                         /* Cannot rely on bitmap to complete recovery */
6596                         conf->fullsync = 1;
6597         }
6598
6599         conf->level = mddev->new_level;
6600         if (conf->level == 6) {
6601                 conf->max_degraded = 2;
6602                 if (raid6_call.xor_syndrome)
6603                         conf->rmw_level = PARITY_ENABLE_RMW;
6604                 else
6605                         conf->rmw_level = PARITY_DISABLE_RMW;
6606         } else {
6607                 conf->max_degraded = 1;
6608                 conf->rmw_level = PARITY_ENABLE_RMW;
6609         }
6610         conf->algorithm = mddev->new_layout;
6611         conf->reshape_progress = mddev->reshape_position;
6612         if (conf->reshape_progress != MaxSector) {
6613                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6614                 conf->prev_algo = mddev->layout;
6615         } else {
6616                 conf->prev_chunk_sectors = conf->chunk_sectors;
6617                 conf->prev_algo = conf->algorithm;
6618         }
6619
6620         conf->min_nr_stripes = NR_STRIPES;
6621         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6622                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6623         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6624         if (grow_stripes(conf, conf->min_nr_stripes)) {
6625                 printk(KERN_ERR
6626                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6627                        mdname(mddev), memory);
6628                 goto abort;
6629         } else
6630                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6631                        mdname(mddev), memory);
6632         /*
6633          * Losing a stripe head costs more than the time to refill it,
6634          * it reduces the queue depth and so can hurt throughput.
6635          * So set it rather large, scaled by number of devices.
6636          */
6637         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6638         conf->shrinker.scan_objects = raid5_cache_scan;
6639         conf->shrinker.count_objects = raid5_cache_count;
6640         conf->shrinker.batch = 128;
6641         conf->shrinker.flags = 0;
6642         register_shrinker(&conf->shrinker);
6643
6644         sprintf(pers_name, "raid%d", mddev->new_level);
6645         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6646         if (!conf->thread) {
6647                 printk(KERN_ERR
6648                        "md/raid:%s: couldn't allocate thread.\n",
6649                        mdname(mddev));
6650                 goto abort;
6651         }
6652
6653         return conf;
6654
6655  abort:
6656         if (conf) {
6657                 free_conf(conf);
6658                 return ERR_PTR(-EIO);
6659         } else
6660                 return ERR_PTR(-ENOMEM);
6661 }
6662
6663 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6664 {
6665         switch (algo) {
6666         case ALGORITHM_PARITY_0:
6667                 if (raid_disk < max_degraded)
6668                         return 1;
6669                 break;
6670         case ALGORITHM_PARITY_N:
6671                 if (raid_disk >= raid_disks - max_degraded)
6672                         return 1;
6673                 break;
6674         case ALGORITHM_PARITY_0_6:
6675                 if (raid_disk == 0 ||
6676                     raid_disk == raid_disks - 1)
6677                         return 1;
6678                 break;
6679         case ALGORITHM_LEFT_ASYMMETRIC_6:
6680         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6681         case ALGORITHM_LEFT_SYMMETRIC_6:
6682         case ALGORITHM_RIGHT_SYMMETRIC_6:
6683                 if (raid_disk == raid_disks - 1)
6684                         return 1;
6685         }
6686         return 0;
6687 }
6688
6689 static int raid5_run(struct mddev *mddev)
6690 {
6691         struct r5conf *conf;
6692         int working_disks = 0;
6693         int dirty_parity_disks = 0;
6694         struct md_rdev *rdev;
6695         struct md_rdev *journal_dev = NULL;
6696         sector_t reshape_offset = 0;
6697         int i;
6698         long long min_offset_diff = 0;
6699         int first = 1;
6700
6701         if (mddev->recovery_cp != MaxSector)
6702                 printk(KERN_NOTICE "md/raid:%s: not clean"
6703                        " -- starting background reconstruction\n",
6704                        mdname(mddev));
6705
6706         rdev_for_each(rdev, mddev) {
6707                 long long diff;
6708
6709                 if (test_bit(Journal, &rdev->flags)) {
6710                         journal_dev = rdev;
6711                         continue;
6712                 }
6713                 if (rdev->raid_disk < 0)
6714                         continue;
6715                 diff = (rdev->new_data_offset - rdev->data_offset);
6716                 if (first) {
6717                         min_offset_diff = diff;
6718                         first = 0;
6719                 } else if (mddev->reshape_backwards &&
6720                          diff < min_offset_diff)
6721                         min_offset_diff = diff;
6722                 else if (!mddev->reshape_backwards &&
6723                          diff > min_offset_diff)
6724                         min_offset_diff = diff;
6725         }
6726
6727         if (mddev->reshape_position != MaxSector) {
6728                 /* Check that we can continue the reshape.
6729                  * Difficulties arise if the stripe we would write to
6730                  * next is at or after the stripe we would read from next.
6731                  * For a reshape that changes the number of devices, this
6732                  * is only possible for a very short time, and mdadm makes
6733                  * sure that time appears to have past before assembling
6734                  * the array.  So we fail if that time hasn't passed.
6735                  * For a reshape that keeps the number of devices the same
6736                  * mdadm must be monitoring the reshape can keeping the
6737                  * critical areas read-only and backed up.  It will start
6738                  * the array in read-only mode, so we check for that.
6739                  */
6740                 sector_t here_new, here_old;
6741                 int old_disks;
6742                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6743                 int chunk_sectors;
6744                 int new_data_disks;
6745
6746                 if (journal_dev) {
6747                         printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6748                                mdname(mddev));
6749                         return -EINVAL;
6750                 }
6751
6752                 if (mddev->new_level != mddev->level) {
6753                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6754                                "required - aborting.\n",
6755                                mdname(mddev));
6756                         return -EINVAL;
6757                 }
6758                 old_disks = mddev->raid_disks - mddev->delta_disks;
6759                 /* reshape_position must be on a new-stripe boundary, and one
6760                  * further up in new geometry must map after here in old
6761                  * geometry.
6762                  * If the chunk sizes are different, then as we perform reshape
6763                  * in units of the largest of the two, reshape_position needs
6764                  * be a multiple of the largest chunk size times new data disks.
6765                  */
6766                 here_new = mddev->reshape_position;
6767                 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6768                 new_data_disks = mddev->raid_disks - max_degraded;
6769                 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6770                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6771                                "on a stripe boundary\n", mdname(mddev));
6772                         return -EINVAL;
6773                 }
6774                 reshape_offset = here_new * chunk_sectors;
6775                 /* here_new is the stripe we will write to */
6776                 here_old = mddev->reshape_position;
6777                 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6778                 /* here_old is the first stripe that we might need to read
6779                  * from */
6780                 if (mddev->delta_disks == 0) {
6781                         /* We cannot be sure it is safe to start an in-place
6782                          * reshape.  It is only safe if user-space is monitoring
6783                          * and taking constant backups.
6784                          * mdadm always starts a situation like this in
6785                          * readonly mode so it can take control before
6786                          * allowing any writes.  So just check for that.
6787                          */
6788                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6789                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6790                                 /* not really in-place - so OK */;
6791                         else if (mddev->ro == 0) {
6792                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6793                                        "must be started in read-only mode "
6794                                        "- aborting\n",
6795                                        mdname(mddev));
6796                                 return -EINVAL;
6797                         }
6798                 } else if (mddev->reshape_backwards
6799                     ? (here_new * chunk_sectors + min_offset_diff <=
6800                        here_old * chunk_sectors)
6801                     : (here_new * chunk_sectors >=
6802                        here_old * chunk_sectors + (-min_offset_diff))) {
6803                         /* Reading from the same stripe as writing to - bad */
6804                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6805                                "auto-recovery - aborting.\n",
6806                                mdname(mddev));
6807                         return -EINVAL;
6808                 }
6809                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6810                        mdname(mddev));
6811                 /* OK, we should be able to continue; */
6812         } else {
6813                 BUG_ON(mddev->level != mddev->new_level);
6814                 BUG_ON(mddev->layout != mddev->new_layout);
6815                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6816                 BUG_ON(mddev->delta_disks != 0);
6817         }
6818
6819         if (mddev->private == NULL)
6820                 conf = setup_conf(mddev);
6821         else
6822                 conf = mddev->private;
6823
6824         if (IS_ERR(conf))
6825                 return PTR_ERR(conf);
6826
6827         if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) {
6828                 printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n",
6829                        mdname(mddev));
6830                 mddev->ro = 1;
6831                 set_disk_ro(mddev->gendisk, 1);
6832         }
6833
6834         conf->min_offset_diff = min_offset_diff;
6835         mddev->thread = conf->thread;
6836         conf->thread = NULL;
6837         mddev->private = conf;
6838
6839         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6840              i++) {
6841                 rdev = conf->disks[i].rdev;
6842                 if (!rdev && conf->disks[i].replacement) {
6843                         /* The replacement is all we have yet */
6844                         rdev = conf->disks[i].replacement;
6845                         conf->disks[i].replacement = NULL;
6846                         clear_bit(Replacement, &rdev->flags);
6847                         conf->disks[i].rdev = rdev;
6848                 }
6849                 if (!rdev)
6850                         continue;
6851                 if (conf->disks[i].replacement &&
6852                     conf->reshape_progress != MaxSector) {
6853                         /* replacements and reshape simply do not mix. */
6854                         printk(KERN_ERR "md: cannot handle concurrent "
6855                                "replacement and reshape.\n");
6856                         goto abort;
6857                 }
6858                 if (test_bit(In_sync, &rdev->flags)) {
6859                         working_disks++;
6860                         continue;
6861                 }
6862                 /* This disc is not fully in-sync.  However if it
6863                  * just stored parity (beyond the recovery_offset),
6864                  * when we don't need to be concerned about the
6865                  * array being dirty.
6866                  * When reshape goes 'backwards', we never have
6867                  * partially completed devices, so we only need
6868                  * to worry about reshape going forwards.
6869                  */
6870                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6871                 if (mddev->major_version == 0 &&
6872                     mddev->minor_version > 90)
6873                         rdev->recovery_offset = reshape_offset;
6874
6875                 if (rdev->recovery_offset < reshape_offset) {
6876                         /* We need to check old and new layout */
6877                         if (!only_parity(rdev->raid_disk,
6878                                          conf->algorithm,
6879                                          conf->raid_disks,
6880                                          conf->max_degraded))
6881                                 continue;
6882                 }
6883                 if (!only_parity(rdev->raid_disk,
6884                                  conf->prev_algo,
6885                                  conf->previous_raid_disks,
6886                                  conf->max_degraded))
6887                         continue;
6888                 dirty_parity_disks++;
6889         }
6890
6891         /*
6892          * 0 for a fully functional array, 1 or 2 for a degraded array.
6893          */
6894         mddev->degraded = calc_degraded(conf);
6895
6896         if (has_failed(conf)) {
6897                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6898                         " (%d/%d failed)\n",
6899                         mdname(mddev), mddev->degraded, conf->raid_disks);
6900                 goto abort;
6901         }
6902
6903         /* device size must be a multiple of chunk size */
6904         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6905         mddev->resync_max_sectors = mddev->dev_sectors;
6906
6907         if (mddev->degraded > dirty_parity_disks &&
6908             mddev->recovery_cp != MaxSector) {
6909                 if (mddev->ok_start_degraded)
6910                         printk(KERN_WARNING
6911                                "md/raid:%s: starting dirty degraded array"
6912                                " - data corruption possible.\n",
6913                                mdname(mddev));
6914                 else {
6915                         printk(KERN_ERR
6916                                "md/raid:%s: cannot start dirty degraded array.\n",
6917                                mdname(mddev));
6918                         goto abort;
6919                 }
6920         }
6921
6922         if (mddev->degraded == 0)
6923                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6924                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6925                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6926                        mddev->new_layout);
6927         else
6928                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6929                        " out of %d devices, algorithm %d\n",
6930                        mdname(mddev), conf->level,
6931                        mddev->raid_disks - mddev->degraded,
6932                        mddev->raid_disks, mddev->new_layout);
6933
6934         print_raid5_conf(conf);
6935
6936         if (conf->reshape_progress != MaxSector) {
6937                 conf->reshape_safe = conf->reshape_progress;
6938                 atomic_set(&conf->reshape_stripes, 0);
6939                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6940                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6941                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6942                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6943                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6944                                                         "reshape");
6945         }
6946
6947         /* Ok, everything is just fine now */
6948         if (mddev->to_remove == &raid5_attrs_group)
6949                 mddev->to_remove = NULL;
6950         else if (mddev->kobj.sd &&
6951             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6952                 printk(KERN_WARNING
6953                        "raid5: failed to create sysfs attributes for %s\n",
6954                        mdname(mddev));
6955         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6956
6957         if (mddev->queue) {
6958                 int chunk_size;
6959                 bool discard_supported = true;
6960                 /* read-ahead size must cover two whole stripes, which
6961                  * is 2 * (datadisks) * chunksize where 'n' is the
6962                  * number of raid devices
6963                  */
6964                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6965                 int stripe = data_disks *
6966                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6967                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6968                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6969
6970                 chunk_size = mddev->chunk_sectors << 9;
6971                 blk_queue_io_min(mddev->queue, chunk_size);
6972                 blk_queue_io_opt(mddev->queue, chunk_size *
6973                                  (conf->raid_disks - conf->max_degraded));
6974                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6975                 /*
6976                  * We can only discard a whole stripe. It doesn't make sense to
6977                  * discard data disk but write parity disk
6978                  */
6979                 stripe = stripe * PAGE_SIZE;
6980                 /* Round up to power of 2, as discard handling
6981                  * currently assumes that */
6982                 while ((stripe-1) & stripe)
6983                         stripe = (stripe | (stripe-1)) + 1;
6984                 mddev->queue->limits.discard_alignment = stripe;
6985                 mddev->queue->limits.discard_granularity = stripe;
6986                 /*
6987                  * unaligned part of discard request will be ignored, so can't
6988                  * guarantee discard_zeroes_data
6989                  */
6990                 mddev->queue->limits.discard_zeroes_data = 0;
6991
6992                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6993
6994                 rdev_for_each(rdev, mddev) {
6995                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6996                                           rdev->data_offset << 9);
6997                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6998                                           rdev->new_data_offset << 9);
6999                         /*
7000                          * discard_zeroes_data is required, otherwise data
7001                          * could be lost. Consider a scenario: discard a stripe
7002                          * (the stripe could be inconsistent if
7003                          * discard_zeroes_data is 0); write one disk of the
7004                          * stripe (the stripe could be inconsistent again
7005                          * depending on which disks are used to calculate
7006                          * parity); the disk is broken; The stripe data of this
7007                          * disk is lost.
7008                          */
7009                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7010                             !bdev_get_queue(rdev->bdev)->
7011                                                 limits.discard_zeroes_data)
7012                                 discard_supported = false;
7013                         /* Unfortunately, discard_zeroes_data is not currently
7014                          * a guarantee - just a hint.  So we only allow DISCARD
7015                          * if the sysadmin has confirmed that only safe devices
7016                          * are in use by setting a module parameter.
7017                          */
7018                         if (!devices_handle_discard_safely) {
7019                                 if (discard_supported) {
7020                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7021                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7022                                 }
7023                                 discard_supported = false;
7024                         }
7025                 }
7026
7027                 if (discard_supported &&
7028                     mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7029                     mddev->queue->limits.discard_granularity >= stripe)
7030                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7031                                                 mddev->queue);
7032                 else
7033                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7034                                                 mddev->queue);
7035         }
7036
7037         if (journal_dev) {
7038                 char b[BDEVNAME_SIZE];
7039
7040                 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7041                        mdname(mddev), bdevname(journal_dev->bdev, b));
7042                 r5l_init_log(conf, journal_dev);
7043         }
7044
7045         return 0;
7046 abort:
7047         md_unregister_thread(&mddev->thread);
7048         print_raid5_conf(conf);
7049         free_conf(conf);
7050         mddev->private = NULL;
7051         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7052         return -EIO;
7053 }
7054
7055 static void raid5_free(struct mddev *mddev, void *priv)
7056 {
7057         struct r5conf *conf = priv;
7058
7059         free_conf(conf);
7060         mddev->to_remove = &raid5_attrs_group;
7061 }
7062
7063 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7064 {
7065         struct r5conf *conf = mddev->private;
7066         int i;
7067
7068         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7069                 conf->chunk_sectors / 2, mddev->layout);
7070         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7071         for (i = 0; i < conf->raid_disks; i++)
7072                 seq_printf (seq, "%s",
7073                                conf->disks[i].rdev &&
7074                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7075         seq_printf (seq, "]");
7076 }
7077
7078 static void print_raid5_conf (struct r5conf *conf)
7079 {
7080         int i;
7081         struct disk_info *tmp;
7082
7083         printk(KERN_DEBUG "RAID conf printout:\n");
7084         if (!conf) {
7085                 printk("(conf==NULL)\n");
7086                 return;
7087         }
7088         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7089                conf->raid_disks,
7090                conf->raid_disks - conf->mddev->degraded);
7091
7092         for (i = 0; i < conf->raid_disks; i++) {
7093                 char b[BDEVNAME_SIZE];
7094                 tmp = conf->disks + i;
7095                 if (tmp->rdev)
7096                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7097                                i, !test_bit(Faulty, &tmp->rdev->flags),
7098                                bdevname(tmp->rdev->bdev, b));
7099         }
7100 }
7101
7102 static int raid5_spare_active(struct mddev *mddev)
7103 {
7104         int i;
7105         struct r5conf *conf = mddev->private;
7106         struct disk_info *tmp;
7107         int count = 0;
7108         unsigned long flags;
7109
7110         for (i = 0; i < conf->raid_disks; i++) {
7111                 tmp = conf->disks + i;
7112                 if (tmp->replacement
7113                     && tmp->replacement->recovery_offset == MaxSector
7114                     && !test_bit(Faulty, &tmp->replacement->flags)
7115                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7116                         /* Replacement has just become active. */
7117                         if (!tmp->rdev
7118                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7119                                 count++;
7120                         if (tmp->rdev) {
7121                                 /* Replaced device not technically faulty,
7122                                  * but we need to be sure it gets removed
7123                                  * and never re-added.
7124                                  */
7125                                 set_bit(Faulty, &tmp->rdev->flags);
7126                                 sysfs_notify_dirent_safe(
7127                                         tmp->rdev->sysfs_state);
7128                         }
7129                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7130                 } else if (tmp->rdev
7131                     && tmp->rdev->recovery_offset == MaxSector
7132                     && !test_bit(Faulty, &tmp->rdev->flags)
7133                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7134                         count++;
7135                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7136                 }
7137         }
7138         spin_lock_irqsave(&conf->device_lock, flags);
7139         mddev->degraded = calc_degraded(conf);
7140         spin_unlock_irqrestore(&conf->device_lock, flags);
7141         print_raid5_conf(conf);
7142         return count;
7143 }
7144
7145 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7146 {
7147         struct r5conf *conf = mddev->private;
7148         int err = 0;
7149         int number = rdev->raid_disk;
7150         struct md_rdev **rdevp;
7151         struct disk_info *p = conf->disks + number;
7152
7153         print_raid5_conf(conf);
7154         if (test_bit(Journal, &rdev->flags) && conf->log) {
7155                 struct r5l_log *log;
7156                 /*
7157                  * we can't wait pending write here, as this is called in
7158                  * raid5d, wait will deadlock.
7159                  */
7160                 if (atomic_read(&mddev->writes_pending))
7161                         return -EBUSY;
7162                 log = conf->log;
7163                 conf->log = NULL;
7164                 synchronize_rcu();
7165                 r5l_exit_log(log);
7166                 return 0;
7167         }
7168         if (rdev == p->rdev)
7169                 rdevp = &p->rdev;
7170         else if (rdev == p->replacement)
7171                 rdevp = &p->replacement;
7172         else
7173                 return 0;
7174
7175         if (number >= conf->raid_disks &&
7176             conf->reshape_progress == MaxSector)
7177                 clear_bit(In_sync, &rdev->flags);
7178
7179         if (test_bit(In_sync, &rdev->flags) ||
7180             atomic_read(&rdev->nr_pending)) {
7181                 err = -EBUSY;
7182                 goto abort;
7183         }
7184         /* Only remove non-faulty devices if recovery
7185          * isn't possible.
7186          */
7187         if (!test_bit(Faulty, &rdev->flags) &&
7188             mddev->recovery_disabled != conf->recovery_disabled &&
7189             !has_failed(conf) &&
7190             (!p->replacement || p->replacement == rdev) &&
7191             number < conf->raid_disks) {
7192                 err = -EBUSY;
7193                 goto abort;
7194         }
7195         *rdevp = NULL;
7196         synchronize_rcu();
7197         if (atomic_read(&rdev->nr_pending)) {
7198                 /* lost the race, try later */
7199                 err = -EBUSY;
7200                 *rdevp = rdev;
7201         } else if (p->replacement) {
7202                 /* We must have just cleared 'rdev' */
7203                 p->rdev = p->replacement;
7204                 clear_bit(Replacement, &p->replacement->flags);
7205                 smp_mb(); /* Make sure other CPUs may see both as identical
7206                            * but will never see neither - if they are careful
7207                            */
7208                 p->replacement = NULL;
7209                 clear_bit(WantReplacement, &rdev->flags);
7210         } else
7211                 /* We might have just removed the Replacement as faulty-
7212                  * clear the bit just in case
7213                  */
7214                 clear_bit(WantReplacement, &rdev->flags);
7215 abort:
7216
7217         print_raid5_conf(conf);
7218         return err;
7219 }
7220
7221 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7222 {
7223         struct r5conf *conf = mddev->private;
7224         int err = -EEXIST;
7225         int disk;
7226         struct disk_info *p;
7227         int first = 0;
7228         int last = conf->raid_disks - 1;
7229
7230         if (test_bit(Journal, &rdev->flags)) {
7231                 char b[BDEVNAME_SIZE];
7232                 if (conf->log)
7233                         return -EBUSY;
7234
7235                 rdev->raid_disk = 0;
7236                 /*
7237                  * The array is in readonly mode if journal is missing, so no
7238                  * write requests running. We should be safe
7239                  */
7240                 r5l_init_log(conf, rdev);
7241                 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7242                        mdname(mddev), bdevname(rdev->bdev, b));
7243                 return 0;
7244         }
7245         if (mddev->recovery_disabled == conf->recovery_disabled)
7246                 return -EBUSY;
7247
7248         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7249                 /* no point adding a device */
7250                 return -EINVAL;
7251
7252         if (rdev->raid_disk >= 0)
7253                 first = last = rdev->raid_disk;
7254
7255         /*
7256          * find the disk ... but prefer rdev->saved_raid_disk
7257          * if possible.
7258          */
7259         if (rdev->saved_raid_disk >= 0 &&
7260             rdev->saved_raid_disk >= first &&
7261             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7262                 first = rdev->saved_raid_disk;
7263
7264         for (disk = first; disk <= last; disk++) {
7265                 p = conf->disks + disk;
7266                 if (p->rdev == NULL) {
7267                         clear_bit(In_sync, &rdev->flags);
7268                         rdev->raid_disk = disk;
7269                         err = 0;
7270                         if (rdev->saved_raid_disk != disk)
7271                                 conf->fullsync = 1;
7272                         rcu_assign_pointer(p->rdev, rdev);
7273                         goto out;
7274                 }
7275         }
7276         for (disk = first; disk <= last; disk++) {
7277                 p = conf->disks + disk;
7278                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7279                     p->replacement == NULL) {
7280                         clear_bit(In_sync, &rdev->flags);
7281                         set_bit(Replacement, &rdev->flags);
7282                         rdev->raid_disk = disk;
7283                         err = 0;
7284                         conf->fullsync = 1;
7285                         rcu_assign_pointer(p->replacement, rdev);
7286                         break;
7287                 }
7288         }
7289 out:
7290         print_raid5_conf(conf);
7291         return err;
7292 }
7293
7294 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7295 {
7296         /* no resync is happening, and there is enough space
7297          * on all devices, so we can resize.
7298          * We need to make sure resync covers any new space.
7299          * If the array is shrinking we should possibly wait until
7300          * any io in the removed space completes, but it hardly seems
7301          * worth it.
7302          */
7303         sector_t newsize;
7304         struct r5conf *conf = mddev->private;
7305
7306         if (conf->log)
7307                 return -EINVAL;
7308         sectors &= ~((sector_t)conf->chunk_sectors - 1);
7309         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7310         if (mddev->external_size &&
7311             mddev->array_sectors > newsize)
7312                 return -EINVAL;
7313         if (mddev->bitmap) {
7314                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7315                 if (ret)
7316                         return ret;
7317         }
7318         md_set_array_sectors(mddev, newsize);
7319         set_capacity(mddev->gendisk, mddev->array_sectors);
7320         revalidate_disk(mddev->gendisk);
7321         if (sectors > mddev->dev_sectors &&
7322             mddev->recovery_cp > mddev->dev_sectors) {
7323                 mddev->recovery_cp = mddev->dev_sectors;
7324                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7325         }
7326         mddev->dev_sectors = sectors;
7327         mddev->resync_max_sectors = sectors;
7328         return 0;
7329 }
7330
7331 static int check_stripe_cache(struct mddev *mddev)
7332 {
7333         /* Can only proceed if there are plenty of stripe_heads.
7334          * We need a minimum of one full stripe,, and for sensible progress
7335          * it is best to have about 4 times that.
7336          * If we require 4 times, then the default 256 4K stripe_heads will
7337          * allow for chunk sizes up to 256K, which is probably OK.
7338          * If the chunk size is greater, user-space should request more
7339          * stripe_heads first.
7340          */
7341         struct r5conf *conf = mddev->private;
7342         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7343             > conf->min_nr_stripes ||
7344             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7345             > conf->min_nr_stripes) {
7346                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7347                        mdname(mddev),
7348                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7349                         / STRIPE_SIZE)*4);
7350                 return 0;
7351         }
7352         return 1;
7353 }
7354
7355 static int check_reshape(struct mddev *mddev)
7356 {
7357         struct r5conf *conf = mddev->private;
7358
7359         if (conf->log)
7360                 return -EINVAL;
7361         if (mddev->delta_disks == 0 &&
7362             mddev->new_layout == mddev->layout &&
7363             mddev->new_chunk_sectors == mddev->chunk_sectors)
7364                 return 0; /* nothing to do */
7365         if (has_failed(conf))
7366                 return -EINVAL;
7367         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7368                 /* We might be able to shrink, but the devices must
7369                  * be made bigger first.
7370                  * For raid6, 4 is the minimum size.
7371                  * Otherwise 2 is the minimum
7372                  */
7373                 int min = 2;
7374                 if (mddev->level == 6)
7375                         min = 4;
7376                 if (mddev->raid_disks + mddev->delta_disks < min)
7377                         return -EINVAL;
7378         }
7379
7380         if (!check_stripe_cache(mddev))
7381                 return -ENOSPC;
7382
7383         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7384             mddev->delta_disks > 0)
7385                 if (resize_chunks(conf,
7386                                   conf->previous_raid_disks
7387                                   + max(0, mddev->delta_disks),
7388                                   max(mddev->new_chunk_sectors,
7389                                       mddev->chunk_sectors)
7390                             ) < 0)
7391                         return -ENOMEM;
7392         return resize_stripes(conf, (conf->previous_raid_disks
7393                                      + mddev->delta_disks));
7394 }
7395
7396 static int raid5_start_reshape(struct mddev *mddev)
7397 {
7398         struct r5conf *conf = mddev->private;
7399         struct md_rdev *rdev;
7400         int spares = 0;
7401         unsigned long flags;
7402
7403         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7404                 return -EBUSY;
7405
7406         if (!check_stripe_cache(mddev))
7407                 return -ENOSPC;
7408
7409         if (has_failed(conf))
7410                 return -EINVAL;
7411
7412         rdev_for_each(rdev, mddev) {
7413                 if (!test_bit(In_sync, &rdev->flags)
7414                     && !test_bit(Faulty, &rdev->flags))
7415                         spares++;
7416         }
7417
7418         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7419                 /* Not enough devices even to make a degraded array
7420                  * of that size
7421                  */
7422                 return -EINVAL;
7423
7424         /* Refuse to reduce size of the array.  Any reductions in
7425          * array size must be through explicit setting of array_size
7426          * attribute.
7427          */
7428         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7429             < mddev->array_sectors) {
7430                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7431                        "before number of disks\n", mdname(mddev));
7432                 return -EINVAL;
7433         }
7434
7435         atomic_set(&conf->reshape_stripes, 0);
7436         spin_lock_irq(&conf->device_lock);
7437         write_seqcount_begin(&conf->gen_lock);
7438         conf->previous_raid_disks = conf->raid_disks;
7439         conf->raid_disks += mddev->delta_disks;
7440         conf->prev_chunk_sectors = conf->chunk_sectors;
7441         conf->chunk_sectors = mddev->new_chunk_sectors;
7442         conf->prev_algo = conf->algorithm;
7443         conf->algorithm = mddev->new_layout;
7444         conf->generation++;
7445         /* Code that selects data_offset needs to see the generation update
7446          * if reshape_progress has been set - so a memory barrier needed.
7447          */
7448         smp_mb();
7449         if (mddev->reshape_backwards)
7450                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7451         else
7452                 conf->reshape_progress = 0;
7453         conf->reshape_safe = conf->reshape_progress;
7454         write_seqcount_end(&conf->gen_lock);
7455         spin_unlock_irq(&conf->device_lock);
7456
7457         /* Now make sure any requests that proceeded on the assumption
7458          * the reshape wasn't running - like Discard or Read - have
7459          * completed.
7460          */
7461         mddev_suspend(mddev);
7462         mddev_resume(mddev);
7463
7464         /* Add some new drives, as many as will fit.
7465          * We know there are enough to make the newly sized array work.
7466          * Don't add devices if we are reducing the number of
7467          * devices in the array.  This is because it is not possible
7468          * to correctly record the "partially reconstructed" state of
7469          * such devices during the reshape and confusion could result.
7470          */
7471         if (mddev->delta_disks >= 0) {
7472                 rdev_for_each(rdev, mddev)
7473                         if (rdev->raid_disk < 0 &&
7474                             !test_bit(Faulty, &rdev->flags)) {
7475                                 if (raid5_add_disk(mddev, rdev) == 0) {
7476                                         if (rdev->raid_disk
7477                                             >= conf->previous_raid_disks)
7478                                                 set_bit(In_sync, &rdev->flags);
7479                                         else
7480                                                 rdev->recovery_offset = 0;
7481
7482                                         if (sysfs_link_rdev(mddev, rdev))
7483                                                 /* Failure here is OK */;
7484                                 }
7485                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7486                                    && !test_bit(Faulty, &rdev->flags)) {
7487                                 /* This is a spare that was manually added */
7488                                 set_bit(In_sync, &rdev->flags);
7489                         }
7490
7491                 /* When a reshape changes the number of devices,
7492                  * ->degraded is measured against the larger of the
7493                  * pre and post number of devices.
7494                  */
7495                 spin_lock_irqsave(&conf->device_lock, flags);
7496                 mddev->degraded = calc_degraded(conf);
7497                 spin_unlock_irqrestore(&conf->device_lock, flags);
7498         }
7499         mddev->raid_disks = conf->raid_disks;
7500         mddev->reshape_position = conf->reshape_progress;
7501         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7502
7503         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7504         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7505         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7506         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7507         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7508         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7509                                                 "reshape");
7510         if (!mddev->sync_thread) {
7511                 mddev->recovery = 0;
7512                 spin_lock_irq(&conf->device_lock);
7513                 write_seqcount_begin(&conf->gen_lock);
7514                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7515                 mddev->new_chunk_sectors =
7516                         conf->chunk_sectors = conf->prev_chunk_sectors;
7517                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7518                 rdev_for_each(rdev, mddev)
7519                         rdev->new_data_offset = rdev->data_offset;
7520                 smp_wmb();
7521                 conf->generation --;
7522                 conf->reshape_progress = MaxSector;
7523                 mddev->reshape_position = MaxSector;
7524                 write_seqcount_end(&conf->gen_lock);
7525                 spin_unlock_irq(&conf->device_lock);
7526                 return -EAGAIN;
7527         }
7528         conf->reshape_checkpoint = jiffies;
7529         md_wakeup_thread(mddev->sync_thread);
7530         md_new_event(mddev);
7531         return 0;
7532 }
7533
7534 /* This is called from the reshape thread and should make any
7535  * changes needed in 'conf'
7536  */
7537 static void end_reshape(struct r5conf *conf)
7538 {
7539
7540         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7541                 struct md_rdev *rdev;
7542
7543                 spin_lock_irq(&conf->device_lock);
7544                 conf->previous_raid_disks = conf->raid_disks;
7545                 rdev_for_each(rdev, conf->mddev)
7546                         rdev->data_offset = rdev->new_data_offset;
7547                 smp_wmb();
7548                 conf->reshape_progress = MaxSector;
7549                 conf->mddev->reshape_position = MaxSector;
7550                 spin_unlock_irq(&conf->device_lock);
7551                 wake_up(&conf->wait_for_overlap);
7552
7553                 /* read-ahead size must cover two whole stripes, which is
7554                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7555                  */
7556                 if (conf->mddev->queue) {
7557                         int data_disks = conf->raid_disks - conf->max_degraded;
7558                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7559                                                    / PAGE_SIZE);
7560                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7561                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7562                 }
7563         }
7564 }
7565
7566 /* This is called from the raid5d thread with mddev_lock held.
7567  * It makes config changes to the device.
7568  */
7569 static void raid5_finish_reshape(struct mddev *mddev)
7570 {
7571         struct r5conf *conf = mddev->private;
7572
7573         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7574
7575                 if (mddev->delta_disks > 0) {
7576                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7577                         set_capacity(mddev->gendisk, mddev->array_sectors);
7578                         revalidate_disk(mddev->gendisk);
7579                 } else {
7580                         int d;
7581                         spin_lock_irq(&conf->device_lock);
7582                         mddev->degraded = calc_degraded(conf);
7583                         spin_unlock_irq(&conf->device_lock);
7584                         for (d = conf->raid_disks ;
7585                              d < conf->raid_disks - mddev->delta_disks;
7586                              d++) {
7587                                 struct md_rdev *rdev = conf->disks[d].rdev;
7588                                 if (rdev)
7589                                         clear_bit(In_sync, &rdev->flags);
7590                                 rdev = conf->disks[d].replacement;
7591                                 if (rdev)
7592                                         clear_bit(In_sync, &rdev->flags);
7593                         }
7594                 }
7595                 mddev->layout = conf->algorithm;
7596                 mddev->chunk_sectors = conf->chunk_sectors;
7597                 mddev->reshape_position = MaxSector;
7598                 mddev->delta_disks = 0;
7599                 mddev->reshape_backwards = 0;
7600         }
7601 }
7602
7603 static void raid5_quiesce(struct mddev *mddev, int state)
7604 {
7605         struct r5conf *conf = mddev->private;
7606
7607         switch(state) {
7608         case 2: /* resume for a suspend */
7609                 wake_up(&conf->wait_for_overlap);
7610                 break;
7611
7612         case 1: /* stop all writes */
7613                 lock_all_device_hash_locks_irq(conf);
7614                 /* '2' tells resync/reshape to pause so that all
7615                  * active stripes can drain
7616                  */
7617                 conf->quiesce = 2;
7618                 wait_event_cmd(conf->wait_for_quiescent,
7619                                     atomic_read(&conf->active_stripes) == 0 &&
7620                                     atomic_read(&conf->active_aligned_reads) == 0,
7621                                     unlock_all_device_hash_locks_irq(conf),
7622                                     lock_all_device_hash_locks_irq(conf));
7623                 conf->quiesce = 1;
7624                 unlock_all_device_hash_locks_irq(conf);
7625                 /* allow reshape to continue */
7626                 wake_up(&conf->wait_for_overlap);
7627                 break;
7628
7629         case 0: /* re-enable writes */
7630                 lock_all_device_hash_locks_irq(conf);
7631                 conf->quiesce = 0;
7632                 wake_up(&conf->wait_for_quiescent);
7633                 wake_up(&conf->wait_for_overlap);
7634                 unlock_all_device_hash_locks_irq(conf);
7635                 break;
7636         }
7637         r5l_quiesce(conf->log, state);
7638 }
7639
7640 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7641 {
7642         struct r0conf *raid0_conf = mddev->private;
7643         sector_t sectors;
7644
7645         /* for raid0 takeover only one zone is supported */
7646         if (raid0_conf->nr_strip_zones > 1) {
7647                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7648                        mdname(mddev));
7649                 return ERR_PTR(-EINVAL);
7650         }
7651
7652         sectors = raid0_conf->strip_zone[0].zone_end;
7653         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7654         mddev->dev_sectors = sectors;
7655         mddev->new_level = level;
7656         mddev->new_layout = ALGORITHM_PARITY_N;
7657         mddev->new_chunk_sectors = mddev->chunk_sectors;
7658         mddev->raid_disks += 1;
7659         mddev->delta_disks = 1;
7660         /* make sure it will be not marked as dirty */
7661         mddev->recovery_cp = MaxSector;
7662
7663         return setup_conf(mddev);
7664 }
7665
7666 static void *raid5_takeover_raid1(struct mddev *mddev)
7667 {
7668         int chunksect;
7669
7670         if (mddev->raid_disks != 2 ||
7671             mddev->degraded > 1)
7672                 return ERR_PTR(-EINVAL);
7673
7674         /* Should check if there are write-behind devices? */
7675
7676         chunksect = 64*2; /* 64K by default */
7677
7678         /* The array must be an exact multiple of chunksize */
7679         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7680                 chunksect >>= 1;
7681
7682         if ((chunksect<<9) < STRIPE_SIZE)
7683                 /* array size does not allow a suitable chunk size */
7684                 return ERR_PTR(-EINVAL);
7685
7686         mddev->new_level = 5;
7687         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7688         mddev->new_chunk_sectors = chunksect;
7689
7690         return setup_conf(mddev);
7691 }
7692
7693 static void *raid5_takeover_raid6(struct mddev *mddev)
7694 {
7695         int new_layout;
7696
7697         switch (mddev->layout) {
7698         case ALGORITHM_LEFT_ASYMMETRIC_6:
7699                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7700                 break;
7701         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7702                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7703                 break;
7704         case ALGORITHM_LEFT_SYMMETRIC_6:
7705                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7706                 break;
7707         case ALGORITHM_RIGHT_SYMMETRIC_6:
7708                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7709                 break;
7710         case ALGORITHM_PARITY_0_6:
7711                 new_layout = ALGORITHM_PARITY_0;
7712                 break;
7713         case ALGORITHM_PARITY_N:
7714                 new_layout = ALGORITHM_PARITY_N;
7715                 break;
7716         default:
7717                 return ERR_PTR(-EINVAL);
7718         }
7719         mddev->new_level = 5;
7720         mddev->new_layout = new_layout;
7721         mddev->delta_disks = -1;
7722         mddev->raid_disks -= 1;
7723         return setup_conf(mddev);
7724 }
7725
7726 static int raid5_check_reshape(struct mddev *mddev)
7727 {
7728         /* For a 2-drive array, the layout and chunk size can be changed
7729          * immediately as not restriping is needed.
7730          * For larger arrays we record the new value - after validation
7731          * to be used by a reshape pass.
7732          */
7733         struct r5conf *conf = mddev->private;
7734         int new_chunk = mddev->new_chunk_sectors;
7735
7736         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7737                 return -EINVAL;
7738         if (new_chunk > 0) {
7739                 if (!is_power_of_2(new_chunk))
7740                         return -EINVAL;
7741                 if (new_chunk < (PAGE_SIZE>>9))
7742                         return -EINVAL;
7743                 if (mddev->array_sectors & (new_chunk-1))
7744                         /* not factor of array size */
7745                         return -EINVAL;
7746         }
7747
7748         /* They look valid */
7749
7750         if (mddev->raid_disks == 2) {
7751                 /* can make the change immediately */
7752                 if (mddev->new_layout >= 0) {
7753                         conf->algorithm = mddev->new_layout;
7754                         mddev->layout = mddev->new_layout;
7755                 }
7756                 if (new_chunk > 0) {
7757                         conf->chunk_sectors = new_chunk ;
7758                         mddev->chunk_sectors = new_chunk;
7759                 }
7760                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7761                 md_wakeup_thread(mddev->thread);
7762         }
7763         return check_reshape(mddev);
7764 }
7765
7766 static int raid6_check_reshape(struct mddev *mddev)
7767 {
7768         int new_chunk = mddev->new_chunk_sectors;
7769
7770         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7771                 return -EINVAL;
7772         if (new_chunk > 0) {
7773                 if (!is_power_of_2(new_chunk))
7774                         return -EINVAL;
7775                 if (new_chunk < (PAGE_SIZE >> 9))
7776                         return -EINVAL;
7777                 if (mddev->array_sectors & (new_chunk-1))
7778                         /* not factor of array size */
7779                         return -EINVAL;
7780         }
7781
7782         /* They look valid */
7783         return check_reshape(mddev);
7784 }
7785
7786 static void *raid5_takeover(struct mddev *mddev)
7787 {
7788         /* raid5 can take over:
7789          *  raid0 - if there is only one strip zone - make it a raid4 layout
7790          *  raid1 - if there are two drives.  We need to know the chunk size
7791          *  raid4 - trivial - just use a raid4 layout.
7792          *  raid6 - Providing it is a *_6 layout
7793          */
7794         if (mddev->level == 0)
7795                 return raid45_takeover_raid0(mddev, 5);
7796         if (mddev->level == 1)
7797                 return raid5_takeover_raid1(mddev);
7798         if (mddev->level == 4) {
7799                 mddev->new_layout = ALGORITHM_PARITY_N;
7800                 mddev->new_level = 5;
7801                 return setup_conf(mddev);
7802         }
7803         if (mddev->level == 6)
7804                 return raid5_takeover_raid6(mddev);
7805
7806         return ERR_PTR(-EINVAL);
7807 }
7808
7809 static void *raid4_takeover(struct mddev *mddev)
7810 {
7811         /* raid4 can take over:
7812          *  raid0 - if there is only one strip zone
7813          *  raid5 - if layout is right
7814          */
7815         if (mddev->level == 0)
7816                 return raid45_takeover_raid0(mddev, 4);
7817         if (mddev->level == 5 &&
7818             mddev->layout == ALGORITHM_PARITY_N) {
7819                 mddev->new_layout = 0;
7820                 mddev->new_level = 4;
7821                 return setup_conf(mddev);
7822         }
7823         return ERR_PTR(-EINVAL);
7824 }
7825
7826 static struct md_personality raid5_personality;
7827
7828 static void *raid6_takeover(struct mddev *mddev)
7829 {
7830         /* Currently can only take over a raid5.  We map the
7831          * personality to an equivalent raid6 personality
7832          * with the Q block at the end.
7833          */
7834         int new_layout;
7835
7836         if (mddev->pers != &raid5_personality)
7837                 return ERR_PTR(-EINVAL);
7838         if (mddev->degraded > 1)
7839                 return ERR_PTR(-EINVAL);
7840         if (mddev->raid_disks > 253)
7841                 return ERR_PTR(-EINVAL);
7842         if (mddev->raid_disks < 3)
7843                 return ERR_PTR(-EINVAL);
7844
7845         switch (mddev->layout) {
7846         case ALGORITHM_LEFT_ASYMMETRIC:
7847                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7848                 break;
7849         case ALGORITHM_RIGHT_ASYMMETRIC:
7850                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7851                 break;
7852         case ALGORITHM_LEFT_SYMMETRIC:
7853                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7854                 break;
7855         case ALGORITHM_RIGHT_SYMMETRIC:
7856                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7857                 break;
7858         case ALGORITHM_PARITY_0:
7859                 new_layout = ALGORITHM_PARITY_0_6;
7860                 break;
7861         case ALGORITHM_PARITY_N:
7862                 new_layout = ALGORITHM_PARITY_N;
7863                 break;
7864         default:
7865                 return ERR_PTR(-EINVAL);
7866         }
7867         mddev->new_level = 6;
7868         mddev->new_layout = new_layout;
7869         mddev->delta_disks = 1;
7870         mddev->raid_disks += 1;
7871         return setup_conf(mddev);
7872 }
7873
7874 static struct md_personality raid6_personality =
7875 {
7876         .name           = "raid6",
7877         .level          = 6,
7878         .owner          = THIS_MODULE,
7879         .make_request   = raid5_make_request,
7880         .run            = raid5_run,
7881         .free           = raid5_free,
7882         .status         = raid5_status,
7883         .error_handler  = raid5_error,
7884         .hot_add_disk   = raid5_add_disk,
7885         .hot_remove_disk= raid5_remove_disk,
7886         .spare_active   = raid5_spare_active,
7887         .sync_request   = raid5_sync_request,
7888         .resize         = raid5_resize,
7889         .size           = raid5_size,
7890         .check_reshape  = raid6_check_reshape,
7891         .start_reshape  = raid5_start_reshape,
7892         .finish_reshape = raid5_finish_reshape,
7893         .quiesce        = raid5_quiesce,
7894         .takeover       = raid6_takeover,
7895         .congested      = raid5_congested,
7896 };
7897 static struct md_personality raid5_personality =
7898 {
7899         .name           = "raid5",
7900         .level          = 5,
7901         .owner          = THIS_MODULE,
7902         .make_request   = raid5_make_request,
7903         .run            = raid5_run,
7904         .free           = raid5_free,
7905         .status         = raid5_status,
7906         .error_handler  = raid5_error,
7907         .hot_add_disk   = raid5_add_disk,
7908         .hot_remove_disk= raid5_remove_disk,
7909         .spare_active   = raid5_spare_active,
7910         .sync_request   = raid5_sync_request,
7911         .resize         = raid5_resize,
7912         .size           = raid5_size,
7913         .check_reshape  = raid5_check_reshape,
7914         .start_reshape  = raid5_start_reshape,
7915         .finish_reshape = raid5_finish_reshape,
7916         .quiesce        = raid5_quiesce,
7917         .takeover       = raid5_takeover,
7918         .congested      = raid5_congested,
7919 };
7920
7921 static struct md_personality raid4_personality =
7922 {
7923         .name           = "raid4",
7924         .level          = 4,
7925         .owner          = THIS_MODULE,
7926         .make_request   = raid5_make_request,
7927         .run            = raid5_run,
7928         .free           = raid5_free,
7929         .status         = raid5_status,
7930         .error_handler  = raid5_error,
7931         .hot_add_disk   = raid5_add_disk,
7932         .hot_remove_disk= raid5_remove_disk,
7933         .spare_active   = raid5_spare_active,
7934         .sync_request   = raid5_sync_request,
7935         .resize         = raid5_resize,
7936         .size           = raid5_size,
7937         .check_reshape  = raid5_check_reshape,
7938         .start_reshape  = raid5_start_reshape,
7939         .finish_reshape = raid5_finish_reshape,
7940         .quiesce        = raid5_quiesce,
7941         .takeover       = raid4_takeover,
7942         .congested      = raid5_congested,
7943 };
7944
7945 static int __init raid5_init(void)
7946 {
7947         raid5_wq = alloc_workqueue("raid5wq",
7948                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7949         if (!raid5_wq)
7950                 return -ENOMEM;
7951         register_md_personality(&raid6_personality);
7952         register_md_personality(&raid5_personality);
7953         register_md_personality(&raid4_personality);
7954         return 0;
7955 }
7956
7957 static void raid5_exit(void)
7958 {
7959         unregister_md_personality(&raid6_personality);
7960         unregister_md_personality(&raid5_personality);
7961         unregister_md_personality(&raid4_personality);
7962         destroy_workqueue(raid5_wq);
7963 }
7964
7965 module_init(raid5_init);
7966 module_exit(raid5_exit);
7967 MODULE_LICENSE("GPL");
7968 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7969 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7970 MODULE_ALIAS("md-raid5");
7971 MODULE_ALIAS("md-raid4");
7972 MODULE_ALIAS("md-level-5");
7973 MODULE_ALIAS("md-level-4");
7974 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7975 MODULE_ALIAS("md-raid6");
7976 MODULE_ALIAS("md-level-6");
7977
7978 /* This used to be two separate modules, they were: */
7979 MODULE_ALIAS("raid5");
7980 MODULE_ALIAS("raid6");