Merge branch 'for-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/libata
[cascardo/linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66
67 static bool devices_handle_discard_safely = false;
68 module_param(devices_handle_discard_safely, bool, 0644);
69 MODULE_PARM_DESC(devices_handle_discard_safely,
70                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
71 static struct workqueue_struct *raid5_wq;
72 /*
73  * Stripe cache
74  */
75
76 #define NR_STRIPES              256
77 #define STRIPE_SIZE             PAGE_SIZE
78 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
79 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
80 #define IO_THRESHOLD            1
81 #define BYPASS_THRESHOLD        1
82 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
83 #define HASH_MASK               (NR_HASH - 1)
84 #define MAX_STRIPE_BATCH        8
85
86 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
87 {
88         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
89         return &conf->stripe_hashtbl[hash];
90 }
91
92 static inline int stripe_hash_locks_hash(sector_t sect)
93 {
94         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
95 }
96
97 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
98 {
99         spin_lock_irq(conf->hash_locks + hash);
100         spin_lock(&conf->device_lock);
101 }
102
103 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
104 {
105         spin_unlock(&conf->device_lock);
106         spin_unlock_irq(conf->hash_locks + hash);
107 }
108
109 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
110 {
111         int i;
112         local_irq_disable();
113         spin_lock(conf->hash_locks);
114         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
115                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
116         spin_lock(&conf->device_lock);
117 }
118
119 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
120 {
121         int i;
122         spin_unlock(&conf->device_lock);
123         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
124                 spin_unlock(conf->hash_locks + i - 1);
125         local_irq_enable();
126 }
127
128 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
129  * order without overlap.  There may be several bio's per stripe+device, and
130  * a bio could span several devices.
131  * When walking this list for a particular stripe+device, we must never proceed
132  * beyond a bio that extends past this device, as the next bio might no longer
133  * be valid.
134  * This function is used to determine the 'next' bio in the list, given the sector
135  * of the current stripe+device
136  */
137 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
138 {
139         int sectors = bio_sectors(bio);
140         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
141                 return bio->bi_next;
142         else
143                 return NULL;
144 }
145
146 /*
147  * We maintain a biased count of active stripes in the bottom 16 bits of
148  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
149  */
150 static inline int raid5_bi_processed_stripes(struct bio *bio)
151 {
152         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
153         return (atomic_read(segments) >> 16) & 0xffff;
154 }
155
156 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
157 {
158         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
159         return atomic_sub_return(1, segments) & 0xffff;
160 }
161
162 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
163 {
164         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
165         atomic_inc(segments);
166 }
167
168 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
169         unsigned int cnt)
170 {
171         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
172         int old, new;
173
174         do {
175                 old = atomic_read(segments);
176                 new = (old & 0xffff) | (cnt << 16);
177         } while (atomic_cmpxchg(segments, old, new) != old);
178 }
179
180 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
181 {
182         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
183         atomic_set(segments, cnt);
184 }
185
186 /* Find first data disk in a raid6 stripe */
187 static inline int raid6_d0(struct stripe_head *sh)
188 {
189         if (sh->ddf_layout)
190                 /* ddf always start from first device */
191                 return 0;
192         /* md starts just after Q block */
193         if (sh->qd_idx == sh->disks - 1)
194                 return 0;
195         else
196                 return sh->qd_idx + 1;
197 }
198 static inline int raid6_next_disk(int disk, int raid_disks)
199 {
200         disk++;
201         return (disk < raid_disks) ? disk : 0;
202 }
203
204 /* When walking through the disks in a raid5, starting at raid6_d0,
205  * We need to map each disk to a 'slot', where the data disks are slot
206  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
207  * is raid_disks-1.  This help does that mapping.
208  */
209 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
210                              int *count, int syndrome_disks)
211 {
212         int slot = *count;
213
214         if (sh->ddf_layout)
215                 (*count)++;
216         if (idx == sh->pd_idx)
217                 return syndrome_disks;
218         if (idx == sh->qd_idx)
219                 return syndrome_disks + 1;
220         if (!sh->ddf_layout)
221                 (*count)++;
222         return slot;
223 }
224
225 static void return_io(struct bio *return_bi)
226 {
227         struct bio *bi = return_bi;
228         while (bi) {
229
230                 return_bi = bi->bi_next;
231                 bi->bi_next = NULL;
232                 bi->bi_iter.bi_size = 0;
233                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
234                                          bi, 0);
235                 bio_endio(bi, 0);
236                 bi = return_bi;
237         }
238 }
239
240 static void print_raid5_conf (struct r5conf *conf);
241
242 static int stripe_operations_active(struct stripe_head *sh)
243 {
244         return sh->check_state || sh->reconstruct_state ||
245                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
246                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
247 }
248
249 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
250 {
251         struct r5conf *conf = sh->raid_conf;
252         struct r5worker_group *group;
253         int thread_cnt;
254         int i, cpu = sh->cpu;
255
256         if (!cpu_online(cpu)) {
257                 cpu = cpumask_any(cpu_online_mask);
258                 sh->cpu = cpu;
259         }
260
261         if (list_empty(&sh->lru)) {
262                 struct r5worker_group *group;
263                 group = conf->worker_groups + cpu_to_group(cpu);
264                 list_add_tail(&sh->lru, &group->handle_list);
265                 group->stripes_cnt++;
266                 sh->group = group;
267         }
268
269         if (conf->worker_cnt_per_group == 0) {
270                 md_wakeup_thread(conf->mddev->thread);
271                 return;
272         }
273
274         group = conf->worker_groups + cpu_to_group(sh->cpu);
275
276         group->workers[0].working = true;
277         /* at least one worker should run to avoid race */
278         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
279
280         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
281         /* wakeup more workers */
282         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
283                 if (group->workers[i].working == false) {
284                         group->workers[i].working = true;
285                         queue_work_on(sh->cpu, raid5_wq,
286                                       &group->workers[i].work);
287                         thread_cnt--;
288                 }
289         }
290 }
291
292 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
293                               struct list_head *temp_inactive_list)
294 {
295         BUG_ON(!list_empty(&sh->lru));
296         BUG_ON(atomic_read(&conf->active_stripes)==0);
297         if (test_bit(STRIPE_HANDLE, &sh->state)) {
298                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
299                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
300                         list_add_tail(&sh->lru, &conf->delayed_list);
301                         if (atomic_read(&conf->preread_active_stripes)
302                             < IO_THRESHOLD)
303                                 md_wakeup_thread(conf->mddev->thread);
304                 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
305                            sh->bm_seq - conf->seq_write > 0)
306                         list_add_tail(&sh->lru, &conf->bitmap_list);
307                 else {
308                         clear_bit(STRIPE_DELAYED, &sh->state);
309                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
310                         if (conf->worker_cnt_per_group == 0) {
311                                 list_add_tail(&sh->lru, &conf->handle_list);
312                         } else {
313                                 raid5_wakeup_stripe_thread(sh);
314                                 return;
315                         }
316                 }
317                 md_wakeup_thread(conf->mddev->thread);
318         } else {
319                 BUG_ON(stripe_operations_active(sh));
320                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
321                         if (atomic_dec_return(&conf->preread_active_stripes)
322                             < IO_THRESHOLD)
323                                 md_wakeup_thread(conf->mddev->thread);
324                 atomic_dec(&conf->active_stripes);
325                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
326                         list_add_tail(&sh->lru, temp_inactive_list);
327         }
328 }
329
330 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
331                              struct list_head *temp_inactive_list)
332 {
333         if (atomic_dec_and_test(&sh->count))
334                 do_release_stripe(conf, sh, temp_inactive_list);
335 }
336
337 /*
338  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
339  *
340  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
341  * given time. Adding stripes only takes device lock, while deleting stripes
342  * only takes hash lock.
343  */
344 static void release_inactive_stripe_list(struct r5conf *conf,
345                                          struct list_head *temp_inactive_list,
346                                          int hash)
347 {
348         int size;
349         bool do_wakeup = false;
350         unsigned long flags;
351
352         if (hash == NR_STRIPE_HASH_LOCKS) {
353                 size = NR_STRIPE_HASH_LOCKS;
354                 hash = NR_STRIPE_HASH_LOCKS - 1;
355         } else
356                 size = 1;
357         while (size) {
358                 struct list_head *list = &temp_inactive_list[size - 1];
359
360                 /*
361                  * We don't hold any lock here yet, get_active_stripe() might
362                  * remove stripes from the list
363                  */
364                 if (!list_empty_careful(list)) {
365                         spin_lock_irqsave(conf->hash_locks + hash, flags);
366                         if (list_empty(conf->inactive_list + hash) &&
367                             !list_empty(list))
368                                 atomic_dec(&conf->empty_inactive_list_nr);
369                         list_splice_tail_init(list, conf->inactive_list + hash);
370                         do_wakeup = true;
371                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
372                 }
373                 size--;
374                 hash--;
375         }
376
377         if (do_wakeup) {
378                 wake_up(&conf->wait_for_stripe);
379                 if (conf->retry_read_aligned)
380                         md_wakeup_thread(conf->mddev->thread);
381         }
382 }
383
384 /* should hold conf->device_lock already */
385 static int release_stripe_list(struct r5conf *conf,
386                                struct list_head *temp_inactive_list)
387 {
388         struct stripe_head *sh;
389         int count = 0;
390         struct llist_node *head;
391
392         head = llist_del_all(&conf->released_stripes);
393         head = llist_reverse_order(head);
394         while (head) {
395                 int hash;
396
397                 sh = llist_entry(head, struct stripe_head, release_list);
398                 head = llist_next(head);
399                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
400                 smp_mb();
401                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
402                 /*
403                  * Don't worry the bit is set here, because if the bit is set
404                  * again, the count is always > 1. This is true for
405                  * STRIPE_ON_UNPLUG_LIST bit too.
406                  */
407                 hash = sh->hash_lock_index;
408                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
409                 count++;
410         }
411
412         return count;
413 }
414
415 static void release_stripe(struct stripe_head *sh)
416 {
417         struct r5conf *conf = sh->raid_conf;
418         unsigned long flags;
419         struct list_head list;
420         int hash;
421         bool wakeup;
422
423         /* Avoid release_list until the last reference.
424          */
425         if (atomic_add_unless(&sh->count, -1, 1))
426                 return;
427
428         if (unlikely(!conf->mddev->thread) ||
429                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
430                 goto slow_path;
431         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
432         if (wakeup)
433                 md_wakeup_thread(conf->mddev->thread);
434         return;
435 slow_path:
436         local_irq_save(flags);
437         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
438         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
439                 INIT_LIST_HEAD(&list);
440                 hash = sh->hash_lock_index;
441                 do_release_stripe(conf, sh, &list);
442                 spin_unlock(&conf->device_lock);
443                 release_inactive_stripe_list(conf, &list, hash);
444         }
445         local_irq_restore(flags);
446 }
447
448 static inline void remove_hash(struct stripe_head *sh)
449 {
450         pr_debug("remove_hash(), stripe %llu\n",
451                 (unsigned long long)sh->sector);
452
453         hlist_del_init(&sh->hash);
454 }
455
456 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
457 {
458         struct hlist_head *hp = stripe_hash(conf, sh->sector);
459
460         pr_debug("insert_hash(), stripe %llu\n",
461                 (unsigned long long)sh->sector);
462
463         hlist_add_head(&sh->hash, hp);
464 }
465
466 /* find an idle stripe, make sure it is unhashed, and return it. */
467 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
468 {
469         struct stripe_head *sh = NULL;
470         struct list_head *first;
471
472         if (list_empty(conf->inactive_list + hash))
473                 goto out;
474         first = (conf->inactive_list + hash)->next;
475         sh = list_entry(first, struct stripe_head, lru);
476         list_del_init(first);
477         remove_hash(sh);
478         atomic_inc(&conf->active_stripes);
479         BUG_ON(hash != sh->hash_lock_index);
480         if (list_empty(conf->inactive_list + hash))
481                 atomic_inc(&conf->empty_inactive_list_nr);
482 out:
483         return sh;
484 }
485
486 static void shrink_buffers(struct stripe_head *sh)
487 {
488         struct page *p;
489         int i;
490         int num = sh->raid_conf->pool_size;
491
492         for (i = 0; i < num ; i++) {
493                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
494                 p = sh->dev[i].page;
495                 if (!p)
496                         continue;
497                 sh->dev[i].page = NULL;
498                 put_page(p);
499         }
500 }
501
502 static int grow_buffers(struct stripe_head *sh)
503 {
504         int i;
505         int num = sh->raid_conf->pool_size;
506
507         for (i = 0; i < num; i++) {
508                 struct page *page;
509
510                 if (!(page = alloc_page(GFP_KERNEL))) {
511                         return 1;
512                 }
513                 sh->dev[i].page = page;
514                 sh->dev[i].orig_page = page;
515         }
516         return 0;
517 }
518
519 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
520 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
521                             struct stripe_head *sh);
522
523 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
524 {
525         struct r5conf *conf = sh->raid_conf;
526         int i, seq;
527
528         BUG_ON(atomic_read(&sh->count) != 0);
529         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
530         BUG_ON(stripe_operations_active(sh));
531
532         pr_debug("init_stripe called, stripe %llu\n",
533                 (unsigned long long)sector);
534 retry:
535         seq = read_seqcount_begin(&conf->gen_lock);
536         sh->generation = conf->generation - previous;
537         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
538         sh->sector = sector;
539         stripe_set_idx(sector, conf, previous, sh);
540         sh->state = 0;
541
542         for (i = sh->disks; i--; ) {
543                 struct r5dev *dev = &sh->dev[i];
544
545                 if (dev->toread || dev->read || dev->towrite || dev->written ||
546                     test_bit(R5_LOCKED, &dev->flags)) {
547                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
548                                (unsigned long long)sh->sector, i, dev->toread,
549                                dev->read, dev->towrite, dev->written,
550                                test_bit(R5_LOCKED, &dev->flags));
551                         WARN_ON(1);
552                 }
553                 dev->flags = 0;
554                 raid5_build_block(sh, i, previous);
555         }
556         if (read_seqcount_retry(&conf->gen_lock, seq))
557                 goto retry;
558         insert_hash(conf, sh);
559         sh->cpu = smp_processor_id();
560 }
561
562 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
563                                          short generation)
564 {
565         struct stripe_head *sh;
566
567         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
568         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
569                 if (sh->sector == sector && sh->generation == generation)
570                         return sh;
571         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
572         return NULL;
573 }
574
575 /*
576  * Need to check if array has failed when deciding whether to:
577  *  - start an array
578  *  - remove non-faulty devices
579  *  - add a spare
580  *  - allow a reshape
581  * This determination is simple when no reshape is happening.
582  * However if there is a reshape, we need to carefully check
583  * both the before and after sections.
584  * This is because some failed devices may only affect one
585  * of the two sections, and some non-in_sync devices may
586  * be insync in the section most affected by failed devices.
587  */
588 static int calc_degraded(struct r5conf *conf)
589 {
590         int degraded, degraded2;
591         int i;
592
593         rcu_read_lock();
594         degraded = 0;
595         for (i = 0; i < conf->previous_raid_disks; i++) {
596                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
597                 if (rdev && test_bit(Faulty, &rdev->flags))
598                         rdev = rcu_dereference(conf->disks[i].replacement);
599                 if (!rdev || test_bit(Faulty, &rdev->flags))
600                         degraded++;
601                 else if (test_bit(In_sync, &rdev->flags))
602                         ;
603                 else
604                         /* not in-sync or faulty.
605                          * If the reshape increases the number of devices,
606                          * this is being recovered by the reshape, so
607                          * this 'previous' section is not in_sync.
608                          * If the number of devices is being reduced however,
609                          * the device can only be part of the array if
610                          * we are reverting a reshape, so this section will
611                          * be in-sync.
612                          */
613                         if (conf->raid_disks >= conf->previous_raid_disks)
614                                 degraded++;
615         }
616         rcu_read_unlock();
617         if (conf->raid_disks == conf->previous_raid_disks)
618                 return degraded;
619         rcu_read_lock();
620         degraded2 = 0;
621         for (i = 0; i < conf->raid_disks; i++) {
622                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
623                 if (rdev && test_bit(Faulty, &rdev->flags))
624                         rdev = rcu_dereference(conf->disks[i].replacement);
625                 if (!rdev || test_bit(Faulty, &rdev->flags))
626                         degraded2++;
627                 else if (test_bit(In_sync, &rdev->flags))
628                         ;
629                 else
630                         /* not in-sync or faulty.
631                          * If reshape increases the number of devices, this
632                          * section has already been recovered, else it
633                          * almost certainly hasn't.
634                          */
635                         if (conf->raid_disks <= conf->previous_raid_disks)
636                                 degraded2++;
637         }
638         rcu_read_unlock();
639         if (degraded2 > degraded)
640                 return degraded2;
641         return degraded;
642 }
643
644 static int has_failed(struct r5conf *conf)
645 {
646         int degraded;
647
648         if (conf->mddev->reshape_position == MaxSector)
649                 return conf->mddev->degraded > conf->max_degraded;
650
651         degraded = calc_degraded(conf);
652         if (degraded > conf->max_degraded)
653                 return 1;
654         return 0;
655 }
656
657 static struct stripe_head *
658 get_active_stripe(struct r5conf *conf, sector_t sector,
659                   int previous, int noblock, int noquiesce)
660 {
661         struct stripe_head *sh;
662         int hash = stripe_hash_locks_hash(sector);
663
664         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
665
666         spin_lock_irq(conf->hash_locks + hash);
667
668         do {
669                 wait_event_lock_irq(conf->wait_for_stripe,
670                                     conf->quiesce == 0 || noquiesce,
671                                     *(conf->hash_locks + hash));
672                 sh = __find_stripe(conf, sector, conf->generation - previous);
673                 if (!sh) {
674                         if (!conf->inactive_blocked)
675                                 sh = get_free_stripe(conf, hash);
676                         if (noblock && sh == NULL)
677                                 break;
678                         if (!sh) {
679                                 conf->inactive_blocked = 1;
680                                 wait_event_lock_irq(
681                                         conf->wait_for_stripe,
682                                         !list_empty(conf->inactive_list + hash) &&
683                                         (atomic_read(&conf->active_stripes)
684                                          < (conf->max_nr_stripes * 3 / 4)
685                                          || !conf->inactive_blocked),
686                                         *(conf->hash_locks + hash));
687                                 conf->inactive_blocked = 0;
688                         } else {
689                                 init_stripe(sh, sector, previous);
690                                 atomic_inc(&sh->count);
691                         }
692                 } else if (!atomic_inc_not_zero(&sh->count)) {
693                         spin_lock(&conf->device_lock);
694                         if (!atomic_read(&sh->count)) {
695                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
696                                         atomic_inc(&conf->active_stripes);
697                                 BUG_ON(list_empty(&sh->lru) &&
698                                        !test_bit(STRIPE_EXPANDING, &sh->state));
699                                 list_del_init(&sh->lru);
700                                 if (sh->group) {
701                                         sh->group->stripes_cnt--;
702                                         sh->group = NULL;
703                                 }
704                         }
705                         atomic_inc(&sh->count);
706                         spin_unlock(&conf->device_lock);
707                 }
708         } while (sh == NULL);
709
710         spin_unlock_irq(conf->hash_locks + hash);
711         return sh;
712 }
713
714 /* Determine if 'data_offset' or 'new_data_offset' should be used
715  * in this stripe_head.
716  */
717 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
718 {
719         sector_t progress = conf->reshape_progress;
720         /* Need a memory barrier to make sure we see the value
721          * of conf->generation, or ->data_offset that was set before
722          * reshape_progress was updated.
723          */
724         smp_rmb();
725         if (progress == MaxSector)
726                 return 0;
727         if (sh->generation == conf->generation - 1)
728                 return 0;
729         /* We are in a reshape, and this is a new-generation stripe,
730          * so use new_data_offset.
731          */
732         return 1;
733 }
734
735 static void
736 raid5_end_read_request(struct bio *bi, int error);
737 static void
738 raid5_end_write_request(struct bio *bi, int error);
739
740 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
741 {
742         struct r5conf *conf = sh->raid_conf;
743         int i, disks = sh->disks;
744
745         might_sleep();
746
747         for (i = disks; i--; ) {
748                 int rw;
749                 int replace_only = 0;
750                 struct bio *bi, *rbi;
751                 struct md_rdev *rdev, *rrdev = NULL;
752                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
753                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
754                                 rw = WRITE_FUA;
755                         else
756                                 rw = WRITE;
757                         if (test_bit(R5_Discard, &sh->dev[i].flags))
758                                 rw |= REQ_DISCARD;
759                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
760                         rw = READ;
761                 else if (test_and_clear_bit(R5_WantReplace,
762                                             &sh->dev[i].flags)) {
763                         rw = WRITE;
764                         replace_only = 1;
765                 } else
766                         continue;
767                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
768                         rw |= REQ_SYNC;
769
770                 bi = &sh->dev[i].req;
771                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
772
773                 rcu_read_lock();
774                 rrdev = rcu_dereference(conf->disks[i].replacement);
775                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
776                 rdev = rcu_dereference(conf->disks[i].rdev);
777                 if (!rdev) {
778                         rdev = rrdev;
779                         rrdev = NULL;
780                 }
781                 if (rw & WRITE) {
782                         if (replace_only)
783                                 rdev = NULL;
784                         if (rdev == rrdev)
785                                 /* We raced and saw duplicates */
786                                 rrdev = NULL;
787                 } else {
788                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
789                                 rdev = rrdev;
790                         rrdev = NULL;
791                 }
792
793                 if (rdev && test_bit(Faulty, &rdev->flags))
794                         rdev = NULL;
795                 if (rdev)
796                         atomic_inc(&rdev->nr_pending);
797                 if (rrdev && test_bit(Faulty, &rrdev->flags))
798                         rrdev = NULL;
799                 if (rrdev)
800                         atomic_inc(&rrdev->nr_pending);
801                 rcu_read_unlock();
802
803                 /* We have already checked bad blocks for reads.  Now
804                  * need to check for writes.  We never accept write errors
805                  * on the replacement, so we don't to check rrdev.
806                  */
807                 while ((rw & WRITE) && rdev &&
808                        test_bit(WriteErrorSeen, &rdev->flags)) {
809                         sector_t first_bad;
810                         int bad_sectors;
811                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
812                                               &first_bad, &bad_sectors);
813                         if (!bad)
814                                 break;
815
816                         if (bad < 0) {
817                                 set_bit(BlockedBadBlocks, &rdev->flags);
818                                 if (!conf->mddev->external &&
819                                     conf->mddev->flags) {
820                                         /* It is very unlikely, but we might
821                                          * still need to write out the
822                                          * bad block log - better give it
823                                          * a chance*/
824                                         md_check_recovery(conf->mddev);
825                                 }
826                                 /*
827                                  * Because md_wait_for_blocked_rdev
828                                  * will dec nr_pending, we must
829                                  * increment it first.
830                                  */
831                                 atomic_inc(&rdev->nr_pending);
832                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
833                         } else {
834                                 /* Acknowledged bad block - skip the write */
835                                 rdev_dec_pending(rdev, conf->mddev);
836                                 rdev = NULL;
837                         }
838                 }
839
840                 if (rdev) {
841                         if (s->syncing || s->expanding || s->expanded
842                             || s->replacing)
843                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
844
845                         set_bit(STRIPE_IO_STARTED, &sh->state);
846
847                         bio_reset(bi);
848                         bi->bi_bdev = rdev->bdev;
849                         bi->bi_rw = rw;
850                         bi->bi_end_io = (rw & WRITE)
851                                 ? raid5_end_write_request
852                                 : raid5_end_read_request;
853                         bi->bi_private = sh;
854
855                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
856                                 __func__, (unsigned long long)sh->sector,
857                                 bi->bi_rw, i);
858                         atomic_inc(&sh->count);
859                         if (use_new_offset(conf, sh))
860                                 bi->bi_iter.bi_sector = (sh->sector
861                                                  + rdev->new_data_offset);
862                         else
863                                 bi->bi_iter.bi_sector = (sh->sector
864                                                  + rdev->data_offset);
865                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
866                                 bi->bi_rw |= REQ_NOMERGE;
867
868                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
869                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
870                         sh->dev[i].vec.bv_page = sh->dev[i].page;
871                         bi->bi_vcnt = 1;
872                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
873                         bi->bi_io_vec[0].bv_offset = 0;
874                         bi->bi_iter.bi_size = STRIPE_SIZE;
875                         /*
876                          * If this is discard request, set bi_vcnt 0. We don't
877                          * want to confuse SCSI because SCSI will replace payload
878                          */
879                         if (rw & REQ_DISCARD)
880                                 bi->bi_vcnt = 0;
881                         if (rrdev)
882                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
883
884                         if (conf->mddev->gendisk)
885                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
886                                                       bi, disk_devt(conf->mddev->gendisk),
887                                                       sh->dev[i].sector);
888                         generic_make_request(bi);
889                 }
890                 if (rrdev) {
891                         if (s->syncing || s->expanding || s->expanded
892                             || s->replacing)
893                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
894
895                         set_bit(STRIPE_IO_STARTED, &sh->state);
896
897                         bio_reset(rbi);
898                         rbi->bi_bdev = rrdev->bdev;
899                         rbi->bi_rw = rw;
900                         BUG_ON(!(rw & WRITE));
901                         rbi->bi_end_io = raid5_end_write_request;
902                         rbi->bi_private = sh;
903
904                         pr_debug("%s: for %llu schedule op %ld on "
905                                  "replacement disc %d\n",
906                                 __func__, (unsigned long long)sh->sector,
907                                 rbi->bi_rw, i);
908                         atomic_inc(&sh->count);
909                         if (use_new_offset(conf, sh))
910                                 rbi->bi_iter.bi_sector = (sh->sector
911                                                   + rrdev->new_data_offset);
912                         else
913                                 rbi->bi_iter.bi_sector = (sh->sector
914                                                   + rrdev->data_offset);
915                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
916                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
917                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
918                         rbi->bi_vcnt = 1;
919                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
920                         rbi->bi_io_vec[0].bv_offset = 0;
921                         rbi->bi_iter.bi_size = STRIPE_SIZE;
922                         /*
923                          * If this is discard request, set bi_vcnt 0. We don't
924                          * want to confuse SCSI because SCSI will replace payload
925                          */
926                         if (rw & REQ_DISCARD)
927                                 rbi->bi_vcnt = 0;
928                         if (conf->mddev->gendisk)
929                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
930                                                       rbi, disk_devt(conf->mddev->gendisk),
931                                                       sh->dev[i].sector);
932                         generic_make_request(rbi);
933                 }
934                 if (!rdev && !rrdev) {
935                         if (rw & WRITE)
936                                 set_bit(STRIPE_DEGRADED, &sh->state);
937                         pr_debug("skip op %ld on disc %d for sector %llu\n",
938                                 bi->bi_rw, i, (unsigned long long)sh->sector);
939                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
940                         set_bit(STRIPE_HANDLE, &sh->state);
941                 }
942         }
943 }
944
945 static struct dma_async_tx_descriptor *
946 async_copy_data(int frombio, struct bio *bio, struct page **page,
947         sector_t sector, struct dma_async_tx_descriptor *tx,
948         struct stripe_head *sh)
949 {
950         struct bio_vec bvl;
951         struct bvec_iter iter;
952         struct page *bio_page;
953         int page_offset;
954         struct async_submit_ctl submit;
955         enum async_tx_flags flags = 0;
956
957         if (bio->bi_iter.bi_sector >= sector)
958                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
959         else
960                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
961
962         if (frombio)
963                 flags |= ASYNC_TX_FENCE;
964         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
965
966         bio_for_each_segment(bvl, bio, iter) {
967                 int len = bvl.bv_len;
968                 int clen;
969                 int b_offset = 0;
970
971                 if (page_offset < 0) {
972                         b_offset = -page_offset;
973                         page_offset += b_offset;
974                         len -= b_offset;
975                 }
976
977                 if (len > 0 && page_offset + len > STRIPE_SIZE)
978                         clen = STRIPE_SIZE - page_offset;
979                 else
980                         clen = len;
981
982                 if (clen > 0) {
983                         b_offset += bvl.bv_offset;
984                         bio_page = bvl.bv_page;
985                         if (frombio) {
986                                 if (sh->raid_conf->skip_copy &&
987                                     b_offset == 0 && page_offset == 0 &&
988                                     clen == STRIPE_SIZE)
989                                         *page = bio_page;
990                                 else
991                                         tx = async_memcpy(*page, bio_page, page_offset,
992                                                   b_offset, clen, &submit);
993                         } else
994                                 tx = async_memcpy(bio_page, *page, b_offset,
995                                                   page_offset, clen, &submit);
996                 }
997                 /* chain the operations */
998                 submit.depend_tx = tx;
999
1000                 if (clen < len) /* hit end of page */
1001                         break;
1002                 page_offset +=  len;
1003         }
1004
1005         return tx;
1006 }
1007
1008 static void ops_complete_biofill(void *stripe_head_ref)
1009 {
1010         struct stripe_head *sh = stripe_head_ref;
1011         struct bio *return_bi = NULL;
1012         int i;
1013
1014         pr_debug("%s: stripe %llu\n", __func__,
1015                 (unsigned long long)sh->sector);
1016
1017         /* clear completed biofills */
1018         for (i = sh->disks; i--; ) {
1019                 struct r5dev *dev = &sh->dev[i];
1020
1021                 /* acknowledge completion of a biofill operation */
1022                 /* and check if we need to reply to a read request,
1023                  * new R5_Wantfill requests are held off until
1024                  * !STRIPE_BIOFILL_RUN
1025                  */
1026                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1027                         struct bio *rbi, *rbi2;
1028
1029                         BUG_ON(!dev->read);
1030                         rbi = dev->read;
1031                         dev->read = NULL;
1032                         while (rbi && rbi->bi_iter.bi_sector <
1033                                 dev->sector + STRIPE_SECTORS) {
1034                                 rbi2 = r5_next_bio(rbi, dev->sector);
1035                                 if (!raid5_dec_bi_active_stripes(rbi)) {
1036                                         rbi->bi_next = return_bi;
1037                                         return_bi = rbi;
1038                                 }
1039                                 rbi = rbi2;
1040                         }
1041                 }
1042         }
1043         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1044
1045         return_io(return_bi);
1046
1047         set_bit(STRIPE_HANDLE, &sh->state);
1048         release_stripe(sh);
1049 }
1050
1051 static void ops_run_biofill(struct stripe_head *sh)
1052 {
1053         struct dma_async_tx_descriptor *tx = NULL;
1054         struct async_submit_ctl submit;
1055         int i;
1056
1057         pr_debug("%s: stripe %llu\n", __func__,
1058                 (unsigned long long)sh->sector);
1059
1060         for (i = sh->disks; i--; ) {
1061                 struct r5dev *dev = &sh->dev[i];
1062                 if (test_bit(R5_Wantfill, &dev->flags)) {
1063                         struct bio *rbi;
1064                         spin_lock_irq(&sh->stripe_lock);
1065                         dev->read = rbi = dev->toread;
1066                         dev->toread = NULL;
1067                         spin_unlock_irq(&sh->stripe_lock);
1068                         while (rbi && rbi->bi_iter.bi_sector <
1069                                 dev->sector + STRIPE_SECTORS) {
1070                                 tx = async_copy_data(0, rbi, &dev->page,
1071                                         dev->sector, tx, sh);
1072                                 rbi = r5_next_bio(rbi, dev->sector);
1073                         }
1074                 }
1075         }
1076
1077         atomic_inc(&sh->count);
1078         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1079         async_trigger_callback(&submit);
1080 }
1081
1082 static void mark_target_uptodate(struct stripe_head *sh, int target)
1083 {
1084         struct r5dev *tgt;
1085
1086         if (target < 0)
1087                 return;
1088
1089         tgt = &sh->dev[target];
1090         set_bit(R5_UPTODATE, &tgt->flags);
1091         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1092         clear_bit(R5_Wantcompute, &tgt->flags);
1093 }
1094
1095 static void ops_complete_compute(void *stripe_head_ref)
1096 {
1097         struct stripe_head *sh = stripe_head_ref;
1098
1099         pr_debug("%s: stripe %llu\n", __func__,
1100                 (unsigned long long)sh->sector);
1101
1102         /* mark the computed target(s) as uptodate */
1103         mark_target_uptodate(sh, sh->ops.target);
1104         mark_target_uptodate(sh, sh->ops.target2);
1105
1106         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1107         if (sh->check_state == check_state_compute_run)
1108                 sh->check_state = check_state_compute_result;
1109         set_bit(STRIPE_HANDLE, &sh->state);
1110         release_stripe(sh);
1111 }
1112
1113 /* return a pointer to the address conversion region of the scribble buffer */
1114 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1115                                  struct raid5_percpu *percpu)
1116 {
1117         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1118 }
1119
1120 static struct dma_async_tx_descriptor *
1121 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1122 {
1123         int disks = sh->disks;
1124         struct page **xor_srcs = percpu->scribble;
1125         int target = sh->ops.target;
1126         struct r5dev *tgt = &sh->dev[target];
1127         struct page *xor_dest = tgt->page;
1128         int count = 0;
1129         struct dma_async_tx_descriptor *tx;
1130         struct async_submit_ctl submit;
1131         int i;
1132
1133         pr_debug("%s: stripe %llu block: %d\n",
1134                 __func__, (unsigned long long)sh->sector, target);
1135         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1136
1137         for (i = disks; i--; )
1138                 if (i != target)
1139                         xor_srcs[count++] = sh->dev[i].page;
1140
1141         atomic_inc(&sh->count);
1142
1143         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1144                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
1145         if (unlikely(count == 1))
1146                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1147         else
1148                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1149
1150         return tx;
1151 }
1152
1153 /* set_syndrome_sources - populate source buffers for gen_syndrome
1154  * @srcs - (struct page *) array of size sh->disks
1155  * @sh - stripe_head to parse
1156  *
1157  * Populates srcs in proper layout order for the stripe and returns the
1158  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1159  * destination buffer is recorded in srcs[count] and the Q destination
1160  * is recorded in srcs[count+1]].
1161  */
1162 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1163 {
1164         int disks = sh->disks;
1165         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1166         int d0_idx = raid6_d0(sh);
1167         int count;
1168         int i;
1169
1170         for (i = 0; i < disks; i++)
1171                 srcs[i] = NULL;
1172
1173         count = 0;
1174         i = d0_idx;
1175         do {
1176                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1177
1178                 srcs[slot] = sh->dev[i].page;
1179                 i = raid6_next_disk(i, disks);
1180         } while (i != d0_idx);
1181
1182         return syndrome_disks;
1183 }
1184
1185 static struct dma_async_tx_descriptor *
1186 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1187 {
1188         int disks = sh->disks;
1189         struct page **blocks = percpu->scribble;
1190         int target;
1191         int qd_idx = sh->qd_idx;
1192         struct dma_async_tx_descriptor *tx;
1193         struct async_submit_ctl submit;
1194         struct r5dev *tgt;
1195         struct page *dest;
1196         int i;
1197         int count;
1198
1199         if (sh->ops.target < 0)
1200                 target = sh->ops.target2;
1201         else if (sh->ops.target2 < 0)
1202                 target = sh->ops.target;
1203         else
1204                 /* we should only have one valid target */
1205                 BUG();
1206         BUG_ON(target < 0);
1207         pr_debug("%s: stripe %llu block: %d\n",
1208                 __func__, (unsigned long long)sh->sector, target);
1209
1210         tgt = &sh->dev[target];
1211         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1212         dest = tgt->page;
1213
1214         atomic_inc(&sh->count);
1215
1216         if (target == qd_idx) {
1217                 count = set_syndrome_sources(blocks, sh);
1218                 blocks[count] = NULL; /* regenerating p is not necessary */
1219                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1220                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1221                                   ops_complete_compute, sh,
1222                                   to_addr_conv(sh, percpu));
1223                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1224         } else {
1225                 /* Compute any data- or p-drive using XOR */
1226                 count = 0;
1227                 for (i = disks; i-- ; ) {
1228                         if (i == target || i == qd_idx)
1229                                 continue;
1230                         blocks[count++] = sh->dev[i].page;
1231                 }
1232
1233                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1234                                   NULL, ops_complete_compute, sh,
1235                                   to_addr_conv(sh, percpu));
1236                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1237         }
1238
1239         return tx;
1240 }
1241
1242 static struct dma_async_tx_descriptor *
1243 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1244 {
1245         int i, count, disks = sh->disks;
1246         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1247         int d0_idx = raid6_d0(sh);
1248         int faila = -1, failb = -1;
1249         int target = sh->ops.target;
1250         int target2 = sh->ops.target2;
1251         struct r5dev *tgt = &sh->dev[target];
1252         struct r5dev *tgt2 = &sh->dev[target2];
1253         struct dma_async_tx_descriptor *tx;
1254         struct page **blocks = percpu->scribble;
1255         struct async_submit_ctl submit;
1256
1257         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1258                  __func__, (unsigned long long)sh->sector, target, target2);
1259         BUG_ON(target < 0 || target2 < 0);
1260         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1261         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1262
1263         /* we need to open-code set_syndrome_sources to handle the
1264          * slot number conversion for 'faila' and 'failb'
1265          */
1266         for (i = 0; i < disks ; i++)
1267                 blocks[i] = NULL;
1268         count = 0;
1269         i = d0_idx;
1270         do {
1271                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1272
1273                 blocks[slot] = sh->dev[i].page;
1274
1275                 if (i == target)
1276                         faila = slot;
1277                 if (i == target2)
1278                         failb = slot;
1279                 i = raid6_next_disk(i, disks);
1280         } while (i != d0_idx);
1281
1282         BUG_ON(faila == failb);
1283         if (failb < faila)
1284                 swap(faila, failb);
1285         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1286                  __func__, (unsigned long long)sh->sector, faila, failb);
1287
1288         atomic_inc(&sh->count);
1289
1290         if (failb == syndrome_disks+1) {
1291                 /* Q disk is one of the missing disks */
1292                 if (faila == syndrome_disks) {
1293                         /* Missing P+Q, just recompute */
1294                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1295                                           ops_complete_compute, sh,
1296                                           to_addr_conv(sh, percpu));
1297                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1298                                                   STRIPE_SIZE, &submit);
1299                 } else {
1300                         struct page *dest;
1301                         int data_target;
1302                         int qd_idx = sh->qd_idx;
1303
1304                         /* Missing D+Q: recompute D from P, then recompute Q */
1305                         if (target == qd_idx)
1306                                 data_target = target2;
1307                         else
1308                                 data_target = target;
1309
1310                         count = 0;
1311                         for (i = disks; i-- ; ) {
1312                                 if (i == data_target || i == qd_idx)
1313                                         continue;
1314                                 blocks[count++] = sh->dev[i].page;
1315                         }
1316                         dest = sh->dev[data_target].page;
1317                         init_async_submit(&submit,
1318                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1319                                           NULL, NULL, NULL,
1320                                           to_addr_conv(sh, percpu));
1321                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1322                                        &submit);
1323
1324                         count = set_syndrome_sources(blocks, sh);
1325                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1326                                           ops_complete_compute, sh,
1327                                           to_addr_conv(sh, percpu));
1328                         return async_gen_syndrome(blocks, 0, count+2,
1329                                                   STRIPE_SIZE, &submit);
1330                 }
1331         } else {
1332                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1333                                   ops_complete_compute, sh,
1334                                   to_addr_conv(sh, percpu));
1335                 if (failb == syndrome_disks) {
1336                         /* We're missing D+P. */
1337                         return async_raid6_datap_recov(syndrome_disks+2,
1338                                                        STRIPE_SIZE, faila,
1339                                                        blocks, &submit);
1340                 } else {
1341                         /* We're missing D+D. */
1342                         return async_raid6_2data_recov(syndrome_disks+2,
1343                                                        STRIPE_SIZE, faila, failb,
1344                                                        blocks, &submit);
1345                 }
1346         }
1347 }
1348
1349 static void ops_complete_prexor(void *stripe_head_ref)
1350 {
1351         struct stripe_head *sh = stripe_head_ref;
1352
1353         pr_debug("%s: stripe %llu\n", __func__,
1354                 (unsigned long long)sh->sector);
1355 }
1356
1357 static struct dma_async_tx_descriptor *
1358 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1359                struct dma_async_tx_descriptor *tx)
1360 {
1361         int disks = sh->disks;
1362         struct page **xor_srcs = percpu->scribble;
1363         int count = 0, pd_idx = sh->pd_idx, i;
1364         struct async_submit_ctl submit;
1365
1366         /* existing parity data subtracted */
1367         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1368
1369         pr_debug("%s: stripe %llu\n", __func__,
1370                 (unsigned long long)sh->sector);
1371
1372         for (i = disks; i--; ) {
1373                 struct r5dev *dev = &sh->dev[i];
1374                 /* Only process blocks that are known to be uptodate */
1375                 if (test_bit(R5_Wantdrain, &dev->flags))
1376                         xor_srcs[count++] = dev->page;
1377         }
1378
1379         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1380                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1381         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1382
1383         return tx;
1384 }
1385
1386 static struct dma_async_tx_descriptor *
1387 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1388 {
1389         int disks = sh->disks;
1390         int i;
1391
1392         pr_debug("%s: stripe %llu\n", __func__,
1393                 (unsigned long long)sh->sector);
1394
1395         for (i = disks; i--; ) {
1396                 struct r5dev *dev = &sh->dev[i];
1397                 struct bio *chosen;
1398
1399                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1400                         struct bio *wbi;
1401
1402                         spin_lock_irq(&sh->stripe_lock);
1403                         chosen = dev->towrite;
1404                         dev->towrite = NULL;
1405                         BUG_ON(dev->written);
1406                         wbi = dev->written = chosen;
1407                         spin_unlock_irq(&sh->stripe_lock);
1408                         WARN_ON(dev->page != dev->orig_page);
1409
1410                         while (wbi && wbi->bi_iter.bi_sector <
1411                                 dev->sector + STRIPE_SECTORS) {
1412                                 if (wbi->bi_rw & REQ_FUA)
1413                                         set_bit(R5_WantFUA, &dev->flags);
1414                                 if (wbi->bi_rw & REQ_SYNC)
1415                                         set_bit(R5_SyncIO, &dev->flags);
1416                                 if (wbi->bi_rw & REQ_DISCARD)
1417                                         set_bit(R5_Discard, &dev->flags);
1418                                 else {
1419                                         tx = async_copy_data(1, wbi, &dev->page,
1420                                                 dev->sector, tx, sh);
1421                                         if (dev->page != dev->orig_page) {
1422                                                 set_bit(R5_SkipCopy, &dev->flags);
1423                                                 clear_bit(R5_UPTODATE, &dev->flags);
1424                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1425                                         }
1426                                 }
1427                                 wbi = r5_next_bio(wbi, dev->sector);
1428                         }
1429                 }
1430         }
1431
1432         return tx;
1433 }
1434
1435 static void ops_complete_reconstruct(void *stripe_head_ref)
1436 {
1437         struct stripe_head *sh = stripe_head_ref;
1438         int disks = sh->disks;
1439         int pd_idx = sh->pd_idx;
1440         int qd_idx = sh->qd_idx;
1441         int i;
1442         bool fua = false, sync = false, discard = false;
1443
1444         pr_debug("%s: stripe %llu\n", __func__,
1445                 (unsigned long long)sh->sector);
1446
1447         for (i = disks; i--; ) {
1448                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1449                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1450                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1451         }
1452
1453         for (i = disks; i--; ) {
1454                 struct r5dev *dev = &sh->dev[i];
1455
1456                 if (dev->written || i == pd_idx || i == qd_idx) {
1457                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1458                                 set_bit(R5_UPTODATE, &dev->flags);
1459                         if (fua)
1460                                 set_bit(R5_WantFUA, &dev->flags);
1461                         if (sync)
1462                                 set_bit(R5_SyncIO, &dev->flags);
1463                 }
1464         }
1465
1466         if (sh->reconstruct_state == reconstruct_state_drain_run)
1467                 sh->reconstruct_state = reconstruct_state_drain_result;
1468         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1469                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1470         else {
1471                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1472                 sh->reconstruct_state = reconstruct_state_result;
1473         }
1474
1475         set_bit(STRIPE_HANDLE, &sh->state);
1476         release_stripe(sh);
1477 }
1478
1479 static void
1480 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1481                      struct dma_async_tx_descriptor *tx)
1482 {
1483         int disks = sh->disks;
1484         struct page **xor_srcs = percpu->scribble;
1485         struct async_submit_ctl submit;
1486         int count = 0, pd_idx = sh->pd_idx, i;
1487         struct page *xor_dest;
1488         int prexor = 0;
1489         unsigned long flags;
1490
1491         pr_debug("%s: stripe %llu\n", __func__,
1492                 (unsigned long long)sh->sector);
1493
1494         for (i = 0; i < sh->disks; i++) {
1495                 if (pd_idx == i)
1496                         continue;
1497                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1498                         break;
1499         }
1500         if (i >= sh->disks) {
1501                 atomic_inc(&sh->count);
1502                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1503                 ops_complete_reconstruct(sh);
1504                 return;
1505         }
1506         /* check if prexor is active which means only process blocks
1507          * that are part of a read-modify-write (written)
1508          */
1509         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1510                 prexor = 1;
1511                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1512                 for (i = disks; i--; ) {
1513                         struct r5dev *dev = &sh->dev[i];
1514                         if (dev->written)
1515                                 xor_srcs[count++] = dev->page;
1516                 }
1517         } else {
1518                 xor_dest = sh->dev[pd_idx].page;
1519                 for (i = disks; i--; ) {
1520                         struct r5dev *dev = &sh->dev[i];
1521                         if (i != pd_idx)
1522                                 xor_srcs[count++] = dev->page;
1523                 }
1524         }
1525
1526         /* 1/ if we prexor'd then the dest is reused as a source
1527          * 2/ if we did not prexor then we are redoing the parity
1528          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1529          * for the synchronous xor case
1530          */
1531         flags = ASYNC_TX_ACK |
1532                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1533
1534         atomic_inc(&sh->count);
1535
1536         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1537                           to_addr_conv(sh, percpu));
1538         if (unlikely(count == 1))
1539                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1540         else
1541                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1542 }
1543
1544 static void
1545 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1546                      struct dma_async_tx_descriptor *tx)
1547 {
1548         struct async_submit_ctl submit;
1549         struct page **blocks = percpu->scribble;
1550         int count, i;
1551
1552         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1553
1554         for (i = 0; i < sh->disks; i++) {
1555                 if (sh->pd_idx == i || sh->qd_idx == i)
1556                         continue;
1557                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1558                         break;
1559         }
1560         if (i >= sh->disks) {
1561                 atomic_inc(&sh->count);
1562                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1563                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1564                 ops_complete_reconstruct(sh);
1565                 return;
1566         }
1567
1568         count = set_syndrome_sources(blocks, sh);
1569
1570         atomic_inc(&sh->count);
1571
1572         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1573                           sh, to_addr_conv(sh, percpu));
1574         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1575 }
1576
1577 static void ops_complete_check(void *stripe_head_ref)
1578 {
1579         struct stripe_head *sh = stripe_head_ref;
1580
1581         pr_debug("%s: stripe %llu\n", __func__,
1582                 (unsigned long long)sh->sector);
1583
1584         sh->check_state = check_state_check_result;
1585         set_bit(STRIPE_HANDLE, &sh->state);
1586         release_stripe(sh);
1587 }
1588
1589 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1590 {
1591         int disks = sh->disks;
1592         int pd_idx = sh->pd_idx;
1593         int qd_idx = sh->qd_idx;
1594         struct page *xor_dest;
1595         struct page **xor_srcs = percpu->scribble;
1596         struct dma_async_tx_descriptor *tx;
1597         struct async_submit_ctl submit;
1598         int count;
1599         int i;
1600
1601         pr_debug("%s: stripe %llu\n", __func__,
1602                 (unsigned long long)sh->sector);
1603
1604         count = 0;
1605         xor_dest = sh->dev[pd_idx].page;
1606         xor_srcs[count++] = xor_dest;
1607         for (i = disks; i--; ) {
1608                 if (i == pd_idx || i == qd_idx)
1609                         continue;
1610                 xor_srcs[count++] = sh->dev[i].page;
1611         }
1612
1613         init_async_submit(&submit, 0, NULL, NULL, NULL,
1614                           to_addr_conv(sh, percpu));
1615         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1616                            &sh->ops.zero_sum_result, &submit);
1617
1618         atomic_inc(&sh->count);
1619         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1620         tx = async_trigger_callback(&submit);
1621 }
1622
1623 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1624 {
1625         struct page **srcs = percpu->scribble;
1626         struct async_submit_ctl submit;
1627         int count;
1628
1629         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1630                 (unsigned long long)sh->sector, checkp);
1631
1632         count = set_syndrome_sources(srcs, sh);
1633         if (!checkp)
1634                 srcs[count] = NULL;
1635
1636         atomic_inc(&sh->count);
1637         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1638                           sh, to_addr_conv(sh, percpu));
1639         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1640                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1641 }
1642
1643 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1644 {
1645         int overlap_clear = 0, i, disks = sh->disks;
1646         struct dma_async_tx_descriptor *tx = NULL;
1647         struct r5conf *conf = sh->raid_conf;
1648         int level = conf->level;
1649         struct raid5_percpu *percpu;
1650         unsigned long cpu;
1651
1652         cpu = get_cpu();
1653         percpu = per_cpu_ptr(conf->percpu, cpu);
1654         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1655                 ops_run_biofill(sh);
1656                 overlap_clear++;
1657         }
1658
1659         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1660                 if (level < 6)
1661                         tx = ops_run_compute5(sh, percpu);
1662                 else {
1663                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1664                                 tx = ops_run_compute6_1(sh, percpu);
1665                         else
1666                                 tx = ops_run_compute6_2(sh, percpu);
1667                 }
1668                 /* terminate the chain if reconstruct is not set to be run */
1669                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1670                         async_tx_ack(tx);
1671         }
1672
1673         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1674                 tx = ops_run_prexor(sh, percpu, tx);
1675
1676         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1677                 tx = ops_run_biodrain(sh, tx);
1678                 overlap_clear++;
1679         }
1680
1681         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1682                 if (level < 6)
1683                         ops_run_reconstruct5(sh, percpu, tx);
1684                 else
1685                         ops_run_reconstruct6(sh, percpu, tx);
1686         }
1687
1688         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1689                 if (sh->check_state == check_state_run)
1690                         ops_run_check_p(sh, percpu);
1691                 else if (sh->check_state == check_state_run_q)
1692                         ops_run_check_pq(sh, percpu, 0);
1693                 else if (sh->check_state == check_state_run_pq)
1694                         ops_run_check_pq(sh, percpu, 1);
1695                 else
1696                         BUG();
1697         }
1698
1699         if (overlap_clear)
1700                 for (i = disks; i--; ) {
1701                         struct r5dev *dev = &sh->dev[i];
1702                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1703                                 wake_up(&sh->raid_conf->wait_for_overlap);
1704                 }
1705         put_cpu();
1706 }
1707
1708 static int grow_one_stripe(struct r5conf *conf, int hash)
1709 {
1710         struct stripe_head *sh;
1711         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1712         if (!sh)
1713                 return 0;
1714
1715         sh->raid_conf = conf;
1716
1717         spin_lock_init(&sh->stripe_lock);
1718
1719         if (grow_buffers(sh)) {
1720                 shrink_buffers(sh);
1721                 kmem_cache_free(conf->slab_cache, sh);
1722                 return 0;
1723         }
1724         sh->hash_lock_index = hash;
1725         /* we just created an active stripe so... */
1726         atomic_set(&sh->count, 1);
1727         atomic_inc(&conf->active_stripes);
1728         INIT_LIST_HEAD(&sh->lru);
1729         release_stripe(sh);
1730         return 1;
1731 }
1732
1733 static int grow_stripes(struct r5conf *conf, int num)
1734 {
1735         struct kmem_cache *sc;
1736         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1737         int hash;
1738
1739         if (conf->mddev->gendisk)
1740                 sprintf(conf->cache_name[0],
1741                         "raid%d-%s", conf->level, mdname(conf->mddev));
1742         else
1743                 sprintf(conf->cache_name[0],
1744                         "raid%d-%p", conf->level, conf->mddev);
1745         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1746
1747         conf->active_name = 0;
1748         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1749                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1750                                0, 0, NULL);
1751         if (!sc)
1752                 return 1;
1753         conf->slab_cache = sc;
1754         conf->pool_size = devs;
1755         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1756         while (num--) {
1757                 if (!grow_one_stripe(conf, hash))
1758                         return 1;
1759                 conf->max_nr_stripes++;
1760                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1761         }
1762         return 0;
1763 }
1764
1765 /**
1766  * scribble_len - return the required size of the scribble region
1767  * @num - total number of disks in the array
1768  *
1769  * The size must be enough to contain:
1770  * 1/ a struct page pointer for each device in the array +2
1771  * 2/ room to convert each entry in (1) to its corresponding dma
1772  *    (dma_map_page()) or page (page_address()) address.
1773  *
1774  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1775  * calculate over all devices (not just the data blocks), using zeros in place
1776  * of the P and Q blocks.
1777  */
1778 static size_t scribble_len(int num)
1779 {
1780         size_t len;
1781
1782         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1783
1784         return len;
1785 }
1786
1787 static int resize_stripes(struct r5conf *conf, int newsize)
1788 {
1789         /* Make all the stripes able to hold 'newsize' devices.
1790          * New slots in each stripe get 'page' set to a new page.
1791          *
1792          * This happens in stages:
1793          * 1/ create a new kmem_cache and allocate the required number of
1794          *    stripe_heads.
1795          * 2/ gather all the old stripe_heads and transfer the pages across
1796          *    to the new stripe_heads.  This will have the side effect of
1797          *    freezing the array as once all stripe_heads have been collected,
1798          *    no IO will be possible.  Old stripe heads are freed once their
1799          *    pages have been transferred over, and the old kmem_cache is
1800          *    freed when all stripes are done.
1801          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1802          *    we simple return a failre status - no need to clean anything up.
1803          * 4/ allocate new pages for the new slots in the new stripe_heads.
1804          *    If this fails, we don't bother trying the shrink the
1805          *    stripe_heads down again, we just leave them as they are.
1806          *    As each stripe_head is processed the new one is released into
1807          *    active service.
1808          *
1809          * Once step2 is started, we cannot afford to wait for a write,
1810          * so we use GFP_NOIO allocations.
1811          */
1812         struct stripe_head *osh, *nsh;
1813         LIST_HEAD(newstripes);
1814         struct disk_info *ndisks;
1815         unsigned long cpu;
1816         int err;
1817         struct kmem_cache *sc;
1818         int i;
1819         int hash, cnt;
1820
1821         if (newsize <= conf->pool_size)
1822                 return 0; /* never bother to shrink */
1823
1824         err = md_allow_write(conf->mddev);
1825         if (err)
1826                 return err;
1827
1828         /* Step 1 */
1829         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1830                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1831                                0, 0, NULL);
1832         if (!sc)
1833                 return -ENOMEM;
1834
1835         for (i = conf->max_nr_stripes; i; i--) {
1836                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1837                 if (!nsh)
1838                         break;
1839
1840                 nsh->raid_conf = conf;
1841                 spin_lock_init(&nsh->stripe_lock);
1842
1843                 list_add(&nsh->lru, &newstripes);
1844         }
1845         if (i) {
1846                 /* didn't get enough, give up */
1847                 while (!list_empty(&newstripes)) {
1848                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1849                         list_del(&nsh->lru);
1850                         kmem_cache_free(sc, nsh);
1851                 }
1852                 kmem_cache_destroy(sc);
1853                 return -ENOMEM;
1854         }
1855         /* Step 2 - Must use GFP_NOIO now.
1856          * OK, we have enough stripes, start collecting inactive
1857          * stripes and copying them over
1858          */
1859         hash = 0;
1860         cnt = 0;
1861         list_for_each_entry(nsh, &newstripes, lru) {
1862                 lock_device_hash_lock(conf, hash);
1863                 wait_event_cmd(conf->wait_for_stripe,
1864                                     !list_empty(conf->inactive_list + hash),
1865                                     unlock_device_hash_lock(conf, hash),
1866                                     lock_device_hash_lock(conf, hash));
1867                 osh = get_free_stripe(conf, hash);
1868                 unlock_device_hash_lock(conf, hash);
1869                 atomic_set(&nsh->count, 1);
1870                 for(i=0; i<conf->pool_size; i++) {
1871                         nsh->dev[i].page = osh->dev[i].page;
1872                         nsh->dev[i].orig_page = osh->dev[i].page;
1873                 }
1874                 for( ; i<newsize; i++)
1875                         nsh->dev[i].page = NULL;
1876                 nsh->hash_lock_index = hash;
1877                 kmem_cache_free(conf->slab_cache, osh);
1878                 cnt++;
1879                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1880                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1881                         hash++;
1882                         cnt = 0;
1883                 }
1884         }
1885         kmem_cache_destroy(conf->slab_cache);
1886
1887         /* Step 3.
1888          * At this point, we are holding all the stripes so the array
1889          * is completely stalled, so now is a good time to resize
1890          * conf->disks and the scribble region
1891          */
1892         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1893         if (ndisks) {
1894                 for (i=0; i<conf->raid_disks; i++)
1895                         ndisks[i] = conf->disks[i];
1896                 kfree(conf->disks);
1897                 conf->disks = ndisks;
1898         } else
1899                 err = -ENOMEM;
1900
1901         get_online_cpus();
1902         conf->scribble_len = scribble_len(newsize);
1903         for_each_present_cpu(cpu) {
1904                 struct raid5_percpu *percpu;
1905                 void *scribble;
1906
1907                 percpu = per_cpu_ptr(conf->percpu, cpu);
1908                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1909
1910                 if (scribble) {
1911                         kfree(percpu->scribble);
1912                         percpu->scribble = scribble;
1913                 } else {
1914                         err = -ENOMEM;
1915                         break;
1916                 }
1917         }
1918         put_online_cpus();
1919
1920         /* Step 4, return new stripes to service */
1921         while(!list_empty(&newstripes)) {
1922                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1923                 list_del_init(&nsh->lru);
1924
1925                 for (i=conf->raid_disks; i < newsize; i++)
1926                         if (nsh->dev[i].page == NULL) {
1927                                 struct page *p = alloc_page(GFP_NOIO);
1928                                 nsh->dev[i].page = p;
1929                                 nsh->dev[i].orig_page = p;
1930                                 if (!p)
1931                                         err = -ENOMEM;
1932                         }
1933                 release_stripe(nsh);
1934         }
1935         /* critical section pass, GFP_NOIO no longer needed */
1936
1937         conf->slab_cache = sc;
1938         conf->active_name = 1-conf->active_name;
1939         conf->pool_size = newsize;
1940         return err;
1941 }
1942
1943 static int drop_one_stripe(struct r5conf *conf, int hash)
1944 {
1945         struct stripe_head *sh;
1946
1947         spin_lock_irq(conf->hash_locks + hash);
1948         sh = get_free_stripe(conf, hash);
1949         spin_unlock_irq(conf->hash_locks + hash);
1950         if (!sh)
1951                 return 0;
1952         BUG_ON(atomic_read(&sh->count));
1953         shrink_buffers(sh);
1954         kmem_cache_free(conf->slab_cache, sh);
1955         atomic_dec(&conf->active_stripes);
1956         return 1;
1957 }
1958
1959 static void shrink_stripes(struct r5conf *conf)
1960 {
1961         int hash;
1962         for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1963                 while (drop_one_stripe(conf, hash))
1964                         ;
1965
1966         if (conf->slab_cache)
1967                 kmem_cache_destroy(conf->slab_cache);
1968         conf->slab_cache = NULL;
1969 }
1970
1971 static void raid5_end_read_request(struct bio * bi, int error)
1972 {
1973         struct stripe_head *sh = bi->bi_private;
1974         struct r5conf *conf = sh->raid_conf;
1975         int disks = sh->disks, i;
1976         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1977         char b[BDEVNAME_SIZE];
1978         struct md_rdev *rdev = NULL;
1979         sector_t s;
1980
1981         for (i=0 ; i<disks; i++)
1982                 if (bi == &sh->dev[i].req)
1983                         break;
1984
1985         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1986                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1987                 uptodate);
1988         if (i == disks) {
1989                 BUG();
1990                 return;
1991         }
1992         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1993                 /* If replacement finished while this request was outstanding,
1994                  * 'replacement' might be NULL already.
1995                  * In that case it moved down to 'rdev'.
1996                  * rdev is not removed until all requests are finished.
1997                  */
1998                 rdev = conf->disks[i].replacement;
1999         if (!rdev)
2000                 rdev = conf->disks[i].rdev;
2001
2002         if (use_new_offset(conf, sh))
2003                 s = sh->sector + rdev->new_data_offset;
2004         else
2005                 s = sh->sector + rdev->data_offset;
2006         if (uptodate) {
2007                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2008                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2009                         /* Note that this cannot happen on a
2010                          * replacement device.  We just fail those on
2011                          * any error
2012                          */
2013                         printk_ratelimited(
2014                                 KERN_INFO
2015                                 "md/raid:%s: read error corrected"
2016                                 " (%lu sectors at %llu on %s)\n",
2017                                 mdname(conf->mddev), STRIPE_SECTORS,
2018                                 (unsigned long long)s,
2019                                 bdevname(rdev->bdev, b));
2020                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2021                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2022                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2023                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2024                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2025
2026                 if (atomic_read(&rdev->read_errors))
2027                         atomic_set(&rdev->read_errors, 0);
2028         } else {
2029                 const char *bdn = bdevname(rdev->bdev, b);
2030                 int retry = 0;
2031                 int set_bad = 0;
2032
2033                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2034                 atomic_inc(&rdev->read_errors);
2035                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2036                         printk_ratelimited(
2037                                 KERN_WARNING
2038                                 "md/raid:%s: read error on replacement device "
2039                                 "(sector %llu on %s).\n",
2040                                 mdname(conf->mddev),
2041                                 (unsigned long long)s,
2042                                 bdn);
2043                 else if (conf->mddev->degraded >= conf->max_degraded) {
2044                         set_bad = 1;
2045                         printk_ratelimited(
2046                                 KERN_WARNING
2047                                 "md/raid:%s: read error not correctable "
2048                                 "(sector %llu on %s).\n",
2049                                 mdname(conf->mddev),
2050                                 (unsigned long long)s,
2051                                 bdn);
2052                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2053                         /* Oh, no!!! */
2054                         set_bad = 1;
2055                         printk_ratelimited(
2056                                 KERN_WARNING
2057                                 "md/raid:%s: read error NOT corrected!! "
2058                                 "(sector %llu on %s).\n",
2059                                 mdname(conf->mddev),
2060                                 (unsigned long long)s,
2061                                 bdn);
2062                 } else if (atomic_read(&rdev->read_errors)
2063                          > conf->max_nr_stripes)
2064                         printk(KERN_WARNING
2065                                "md/raid:%s: Too many read errors, failing device %s.\n",
2066                                mdname(conf->mddev), bdn);
2067                 else
2068                         retry = 1;
2069                 if (set_bad && test_bit(In_sync, &rdev->flags)
2070                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2071                         retry = 1;
2072                 if (retry)
2073                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2074                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2075                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2076                         } else
2077                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2078                 else {
2079                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2080                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2081                         if (!(set_bad
2082                               && test_bit(In_sync, &rdev->flags)
2083                               && rdev_set_badblocks(
2084                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2085                                 md_error(conf->mddev, rdev);
2086                 }
2087         }
2088         rdev_dec_pending(rdev, conf->mddev);
2089         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2090         set_bit(STRIPE_HANDLE, &sh->state);
2091         release_stripe(sh);
2092 }
2093
2094 static void raid5_end_write_request(struct bio *bi, int error)
2095 {
2096         struct stripe_head *sh = bi->bi_private;
2097         struct r5conf *conf = sh->raid_conf;
2098         int disks = sh->disks, i;
2099         struct md_rdev *uninitialized_var(rdev);
2100         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2101         sector_t first_bad;
2102         int bad_sectors;
2103         int replacement = 0;
2104
2105         for (i = 0 ; i < disks; i++) {
2106                 if (bi == &sh->dev[i].req) {
2107                         rdev = conf->disks[i].rdev;
2108                         break;
2109                 }
2110                 if (bi == &sh->dev[i].rreq) {
2111                         rdev = conf->disks[i].replacement;
2112                         if (rdev)
2113                                 replacement = 1;
2114                         else
2115                                 /* rdev was removed and 'replacement'
2116                                  * replaced it.  rdev is not removed
2117                                  * until all requests are finished.
2118                                  */
2119                                 rdev = conf->disks[i].rdev;
2120                         break;
2121                 }
2122         }
2123         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2124                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2125                 uptodate);
2126         if (i == disks) {
2127                 BUG();
2128                 return;
2129         }
2130
2131         if (replacement) {
2132                 if (!uptodate)
2133                         md_error(conf->mddev, rdev);
2134                 else if (is_badblock(rdev, sh->sector,
2135                                      STRIPE_SECTORS,
2136                                      &first_bad, &bad_sectors))
2137                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2138         } else {
2139                 if (!uptodate) {
2140                         set_bit(STRIPE_DEGRADED, &sh->state);
2141                         set_bit(WriteErrorSeen, &rdev->flags);
2142                         set_bit(R5_WriteError, &sh->dev[i].flags);
2143                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2144                                 set_bit(MD_RECOVERY_NEEDED,
2145                                         &rdev->mddev->recovery);
2146                 } else if (is_badblock(rdev, sh->sector,
2147                                        STRIPE_SECTORS,
2148                                        &first_bad, &bad_sectors)) {
2149                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2150                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2151                                 /* That was a successful write so make
2152                                  * sure it looks like we already did
2153                                  * a re-write.
2154                                  */
2155                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2156                 }
2157         }
2158         rdev_dec_pending(rdev, conf->mddev);
2159
2160         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2161                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2162         set_bit(STRIPE_HANDLE, &sh->state);
2163         release_stripe(sh);
2164 }
2165
2166 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2167
2168 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2169 {
2170         struct r5dev *dev = &sh->dev[i];
2171
2172         bio_init(&dev->req);
2173         dev->req.bi_io_vec = &dev->vec;
2174         dev->req.bi_max_vecs = 1;
2175         dev->req.bi_private = sh;
2176
2177         bio_init(&dev->rreq);
2178         dev->rreq.bi_io_vec = &dev->rvec;
2179         dev->rreq.bi_max_vecs = 1;
2180         dev->rreq.bi_private = sh;
2181
2182         dev->flags = 0;
2183         dev->sector = compute_blocknr(sh, i, previous);
2184 }
2185
2186 static void error(struct mddev *mddev, struct md_rdev *rdev)
2187 {
2188         char b[BDEVNAME_SIZE];
2189         struct r5conf *conf = mddev->private;
2190         unsigned long flags;
2191         pr_debug("raid456: error called\n");
2192
2193         spin_lock_irqsave(&conf->device_lock, flags);
2194         clear_bit(In_sync, &rdev->flags);
2195         mddev->degraded = calc_degraded(conf);
2196         spin_unlock_irqrestore(&conf->device_lock, flags);
2197         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2198
2199         set_bit(Blocked, &rdev->flags);
2200         set_bit(Faulty, &rdev->flags);
2201         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2202         printk(KERN_ALERT
2203                "md/raid:%s: Disk failure on %s, disabling device.\n"
2204                "md/raid:%s: Operation continuing on %d devices.\n",
2205                mdname(mddev),
2206                bdevname(rdev->bdev, b),
2207                mdname(mddev),
2208                conf->raid_disks - mddev->degraded);
2209 }
2210
2211 /*
2212  * Input: a 'big' sector number,
2213  * Output: index of the data and parity disk, and the sector # in them.
2214  */
2215 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2216                                      int previous, int *dd_idx,
2217                                      struct stripe_head *sh)
2218 {
2219         sector_t stripe, stripe2;
2220         sector_t chunk_number;
2221         unsigned int chunk_offset;
2222         int pd_idx, qd_idx;
2223         int ddf_layout = 0;
2224         sector_t new_sector;
2225         int algorithm = previous ? conf->prev_algo
2226                                  : conf->algorithm;
2227         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2228                                          : conf->chunk_sectors;
2229         int raid_disks = previous ? conf->previous_raid_disks
2230                                   : conf->raid_disks;
2231         int data_disks = raid_disks - conf->max_degraded;
2232
2233         /* First compute the information on this sector */
2234
2235         /*
2236          * Compute the chunk number and the sector offset inside the chunk
2237          */
2238         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2239         chunk_number = r_sector;
2240
2241         /*
2242          * Compute the stripe number
2243          */
2244         stripe = chunk_number;
2245         *dd_idx = sector_div(stripe, data_disks);
2246         stripe2 = stripe;
2247         /*
2248          * Select the parity disk based on the user selected algorithm.
2249          */
2250         pd_idx = qd_idx = -1;
2251         switch(conf->level) {
2252         case 4:
2253                 pd_idx = data_disks;
2254                 break;
2255         case 5:
2256                 switch (algorithm) {
2257                 case ALGORITHM_LEFT_ASYMMETRIC:
2258                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2259                         if (*dd_idx >= pd_idx)
2260                                 (*dd_idx)++;
2261                         break;
2262                 case ALGORITHM_RIGHT_ASYMMETRIC:
2263                         pd_idx = sector_div(stripe2, raid_disks);
2264                         if (*dd_idx >= pd_idx)
2265                                 (*dd_idx)++;
2266                         break;
2267                 case ALGORITHM_LEFT_SYMMETRIC:
2268                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2269                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2270                         break;
2271                 case ALGORITHM_RIGHT_SYMMETRIC:
2272                         pd_idx = sector_div(stripe2, raid_disks);
2273                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2274                         break;
2275                 case ALGORITHM_PARITY_0:
2276                         pd_idx = 0;
2277                         (*dd_idx)++;
2278                         break;
2279                 case ALGORITHM_PARITY_N:
2280                         pd_idx = data_disks;
2281                         break;
2282                 default:
2283                         BUG();
2284                 }
2285                 break;
2286         case 6:
2287
2288                 switch (algorithm) {
2289                 case ALGORITHM_LEFT_ASYMMETRIC:
2290                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2291                         qd_idx = pd_idx + 1;
2292                         if (pd_idx == raid_disks-1) {
2293                                 (*dd_idx)++;    /* Q D D D P */
2294                                 qd_idx = 0;
2295                         } else if (*dd_idx >= pd_idx)
2296                                 (*dd_idx) += 2; /* D D P Q D */
2297                         break;
2298                 case ALGORITHM_RIGHT_ASYMMETRIC:
2299                         pd_idx = sector_div(stripe2, raid_disks);
2300                         qd_idx = pd_idx + 1;
2301                         if (pd_idx == raid_disks-1) {
2302                                 (*dd_idx)++;    /* Q D D D P */
2303                                 qd_idx = 0;
2304                         } else if (*dd_idx >= pd_idx)
2305                                 (*dd_idx) += 2; /* D D P Q D */
2306                         break;
2307                 case ALGORITHM_LEFT_SYMMETRIC:
2308                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2309                         qd_idx = (pd_idx + 1) % raid_disks;
2310                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2311                         break;
2312                 case ALGORITHM_RIGHT_SYMMETRIC:
2313                         pd_idx = sector_div(stripe2, raid_disks);
2314                         qd_idx = (pd_idx + 1) % raid_disks;
2315                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2316                         break;
2317
2318                 case ALGORITHM_PARITY_0:
2319                         pd_idx = 0;
2320                         qd_idx = 1;
2321                         (*dd_idx) += 2;
2322                         break;
2323                 case ALGORITHM_PARITY_N:
2324                         pd_idx = data_disks;
2325                         qd_idx = data_disks + 1;
2326                         break;
2327
2328                 case ALGORITHM_ROTATING_ZERO_RESTART:
2329                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2330                          * of blocks for computing Q is different.
2331                          */
2332                         pd_idx = sector_div(stripe2, raid_disks);
2333                         qd_idx = pd_idx + 1;
2334                         if (pd_idx == raid_disks-1) {
2335                                 (*dd_idx)++;    /* Q D D D P */
2336                                 qd_idx = 0;
2337                         } else if (*dd_idx >= pd_idx)
2338                                 (*dd_idx) += 2; /* D D P Q D */
2339                         ddf_layout = 1;
2340                         break;
2341
2342                 case ALGORITHM_ROTATING_N_RESTART:
2343                         /* Same a left_asymmetric, by first stripe is
2344                          * D D D P Q  rather than
2345                          * Q D D D P
2346                          */
2347                         stripe2 += 1;
2348                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2349                         qd_idx = pd_idx + 1;
2350                         if (pd_idx == raid_disks-1) {
2351                                 (*dd_idx)++;    /* Q D D D P */
2352                                 qd_idx = 0;
2353                         } else if (*dd_idx >= pd_idx)
2354                                 (*dd_idx) += 2; /* D D P Q D */
2355                         ddf_layout = 1;
2356                         break;
2357
2358                 case ALGORITHM_ROTATING_N_CONTINUE:
2359                         /* Same as left_symmetric but Q is before P */
2360                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2361                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2362                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2363                         ddf_layout = 1;
2364                         break;
2365
2366                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2367                         /* RAID5 left_asymmetric, with Q on last device */
2368                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2369                         if (*dd_idx >= pd_idx)
2370                                 (*dd_idx)++;
2371                         qd_idx = raid_disks - 1;
2372                         break;
2373
2374                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2375                         pd_idx = sector_div(stripe2, raid_disks-1);
2376                         if (*dd_idx >= pd_idx)
2377                                 (*dd_idx)++;
2378                         qd_idx = raid_disks - 1;
2379                         break;
2380
2381                 case ALGORITHM_LEFT_SYMMETRIC_6:
2382                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2383                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2384                         qd_idx = raid_disks - 1;
2385                         break;
2386
2387                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2388                         pd_idx = sector_div(stripe2, raid_disks-1);
2389                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2390                         qd_idx = raid_disks - 1;
2391                         break;
2392
2393                 case ALGORITHM_PARITY_0_6:
2394                         pd_idx = 0;
2395                         (*dd_idx)++;
2396                         qd_idx = raid_disks - 1;
2397                         break;
2398
2399                 default:
2400                         BUG();
2401                 }
2402                 break;
2403         }
2404
2405         if (sh) {
2406                 sh->pd_idx = pd_idx;
2407                 sh->qd_idx = qd_idx;
2408                 sh->ddf_layout = ddf_layout;
2409         }
2410         /*
2411          * Finally, compute the new sector number
2412          */
2413         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2414         return new_sector;
2415 }
2416
2417 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2418 {
2419         struct r5conf *conf = sh->raid_conf;
2420         int raid_disks = sh->disks;
2421         int data_disks = raid_disks - conf->max_degraded;
2422         sector_t new_sector = sh->sector, check;
2423         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2424                                          : conf->chunk_sectors;
2425         int algorithm = previous ? conf->prev_algo
2426                                  : conf->algorithm;
2427         sector_t stripe;
2428         int chunk_offset;
2429         sector_t chunk_number;
2430         int dummy1, dd_idx = i;
2431         sector_t r_sector;
2432         struct stripe_head sh2;
2433
2434         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2435         stripe = new_sector;
2436
2437         if (i == sh->pd_idx)
2438                 return 0;
2439         switch(conf->level) {
2440         case 4: break;
2441         case 5:
2442                 switch (algorithm) {
2443                 case ALGORITHM_LEFT_ASYMMETRIC:
2444                 case ALGORITHM_RIGHT_ASYMMETRIC:
2445                         if (i > sh->pd_idx)
2446                                 i--;
2447                         break;
2448                 case ALGORITHM_LEFT_SYMMETRIC:
2449                 case ALGORITHM_RIGHT_SYMMETRIC:
2450                         if (i < sh->pd_idx)
2451                                 i += raid_disks;
2452                         i -= (sh->pd_idx + 1);
2453                         break;
2454                 case ALGORITHM_PARITY_0:
2455                         i -= 1;
2456                         break;
2457                 case ALGORITHM_PARITY_N:
2458                         break;
2459                 default:
2460                         BUG();
2461                 }
2462                 break;
2463         case 6:
2464                 if (i == sh->qd_idx)
2465                         return 0; /* It is the Q disk */
2466                 switch (algorithm) {
2467                 case ALGORITHM_LEFT_ASYMMETRIC:
2468                 case ALGORITHM_RIGHT_ASYMMETRIC:
2469                 case ALGORITHM_ROTATING_ZERO_RESTART:
2470                 case ALGORITHM_ROTATING_N_RESTART:
2471                         if (sh->pd_idx == raid_disks-1)
2472                                 i--;    /* Q D D D P */
2473                         else if (i > sh->pd_idx)
2474                                 i -= 2; /* D D P Q D */
2475                         break;
2476                 case ALGORITHM_LEFT_SYMMETRIC:
2477                 case ALGORITHM_RIGHT_SYMMETRIC:
2478                         if (sh->pd_idx == raid_disks-1)
2479                                 i--; /* Q D D D P */
2480                         else {
2481                                 /* D D P Q D */
2482                                 if (i < sh->pd_idx)
2483                                         i += raid_disks;
2484                                 i -= (sh->pd_idx + 2);
2485                         }
2486                         break;
2487                 case ALGORITHM_PARITY_0:
2488                         i -= 2;
2489                         break;
2490                 case ALGORITHM_PARITY_N:
2491                         break;
2492                 case ALGORITHM_ROTATING_N_CONTINUE:
2493                         /* Like left_symmetric, but P is before Q */
2494                         if (sh->pd_idx == 0)
2495                                 i--;    /* P D D D Q */
2496                         else {
2497                                 /* D D Q P D */
2498                                 if (i < sh->pd_idx)
2499                                         i += raid_disks;
2500                                 i -= (sh->pd_idx + 1);
2501                         }
2502                         break;
2503                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2504                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2505                         if (i > sh->pd_idx)
2506                                 i--;
2507                         break;
2508                 case ALGORITHM_LEFT_SYMMETRIC_6:
2509                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2510                         if (i < sh->pd_idx)
2511                                 i += data_disks + 1;
2512                         i -= (sh->pd_idx + 1);
2513                         break;
2514                 case ALGORITHM_PARITY_0_6:
2515                         i -= 1;
2516                         break;
2517                 default:
2518                         BUG();
2519                 }
2520                 break;
2521         }
2522
2523         chunk_number = stripe * data_disks + i;
2524         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2525
2526         check = raid5_compute_sector(conf, r_sector,
2527                                      previous, &dummy1, &sh2);
2528         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2529                 || sh2.qd_idx != sh->qd_idx) {
2530                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2531                        mdname(conf->mddev));
2532                 return 0;
2533         }
2534         return r_sector;
2535 }
2536
2537 static void
2538 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2539                          int rcw, int expand)
2540 {
2541         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2542         struct r5conf *conf = sh->raid_conf;
2543         int level = conf->level;
2544
2545         if (rcw) {
2546
2547                 for (i = disks; i--; ) {
2548                         struct r5dev *dev = &sh->dev[i];
2549
2550                         if (dev->towrite) {
2551                                 set_bit(R5_LOCKED, &dev->flags);
2552                                 set_bit(R5_Wantdrain, &dev->flags);
2553                                 if (!expand)
2554                                         clear_bit(R5_UPTODATE, &dev->flags);
2555                                 s->locked++;
2556                         }
2557                 }
2558                 /* if we are not expanding this is a proper write request, and
2559                  * there will be bios with new data to be drained into the
2560                  * stripe cache
2561                  */
2562                 if (!expand) {
2563                         if (!s->locked)
2564                                 /* False alarm, nothing to do */
2565                                 return;
2566                         sh->reconstruct_state = reconstruct_state_drain_run;
2567                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2568                 } else
2569                         sh->reconstruct_state = reconstruct_state_run;
2570
2571                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2572
2573                 if (s->locked + conf->max_degraded == disks)
2574                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2575                                 atomic_inc(&conf->pending_full_writes);
2576         } else {
2577                 BUG_ON(level == 6);
2578                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2579                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2580
2581                 for (i = disks; i--; ) {
2582                         struct r5dev *dev = &sh->dev[i];
2583                         if (i == pd_idx)
2584                                 continue;
2585
2586                         if (dev->towrite &&
2587                             (test_bit(R5_UPTODATE, &dev->flags) ||
2588                              test_bit(R5_Wantcompute, &dev->flags))) {
2589                                 set_bit(R5_Wantdrain, &dev->flags);
2590                                 set_bit(R5_LOCKED, &dev->flags);
2591                                 clear_bit(R5_UPTODATE, &dev->flags);
2592                                 s->locked++;
2593                         }
2594                 }
2595                 if (!s->locked)
2596                         /* False alarm - nothing to do */
2597                         return;
2598                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2599                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2600                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2601                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2602         }
2603
2604         /* keep the parity disk(s) locked while asynchronous operations
2605          * are in flight
2606          */
2607         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2608         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2609         s->locked++;
2610
2611         if (level == 6) {
2612                 int qd_idx = sh->qd_idx;
2613                 struct r5dev *dev = &sh->dev[qd_idx];
2614
2615                 set_bit(R5_LOCKED, &dev->flags);
2616                 clear_bit(R5_UPTODATE, &dev->flags);
2617                 s->locked++;
2618         }
2619
2620         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2621                 __func__, (unsigned long long)sh->sector,
2622                 s->locked, s->ops_request);
2623 }
2624
2625 /*
2626  * Each stripe/dev can have one or more bion attached.
2627  * toread/towrite point to the first in a chain.
2628  * The bi_next chain must be in order.
2629  */
2630 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2631 {
2632         struct bio **bip;
2633         struct r5conf *conf = sh->raid_conf;
2634         int firstwrite=0;
2635
2636         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2637                 (unsigned long long)bi->bi_iter.bi_sector,
2638                 (unsigned long long)sh->sector);
2639
2640         /*
2641          * If several bio share a stripe. The bio bi_phys_segments acts as a
2642          * reference count to avoid race. The reference count should already be
2643          * increased before this function is called (for example, in
2644          * make_request()), so other bio sharing this stripe will not free the
2645          * stripe. If a stripe is owned by one stripe, the stripe lock will
2646          * protect it.
2647          */
2648         spin_lock_irq(&sh->stripe_lock);
2649         if (forwrite) {
2650                 bip = &sh->dev[dd_idx].towrite;
2651                 if (*bip == NULL)
2652                         firstwrite = 1;
2653         } else
2654                 bip = &sh->dev[dd_idx].toread;
2655         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2656                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2657                         goto overlap;
2658                 bip = & (*bip)->bi_next;
2659         }
2660         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2661                 goto overlap;
2662
2663         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2664         if (*bip)
2665                 bi->bi_next = *bip;
2666         *bip = bi;
2667         raid5_inc_bi_active_stripes(bi);
2668
2669         if (forwrite) {
2670                 /* check if page is covered */
2671                 sector_t sector = sh->dev[dd_idx].sector;
2672                 for (bi=sh->dev[dd_idx].towrite;
2673                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2674                              bi && bi->bi_iter.bi_sector <= sector;
2675                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2676                         if (bio_end_sector(bi) >= sector)
2677                                 sector = bio_end_sector(bi);
2678                 }
2679                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2680                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2681         }
2682
2683         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2684                 (unsigned long long)(*bip)->bi_iter.bi_sector,
2685                 (unsigned long long)sh->sector, dd_idx);
2686         spin_unlock_irq(&sh->stripe_lock);
2687
2688         if (conf->mddev->bitmap && firstwrite) {
2689                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2690                                   STRIPE_SECTORS, 0);
2691                 sh->bm_seq = conf->seq_flush+1;
2692                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2693         }
2694         return 1;
2695
2696  overlap:
2697         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2698         spin_unlock_irq(&sh->stripe_lock);
2699         return 0;
2700 }
2701
2702 static void end_reshape(struct r5conf *conf);
2703
2704 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2705                             struct stripe_head *sh)
2706 {
2707         int sectors_per_chunk =
2708                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2709         int dd_idx;
2710         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2711         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2712
2713         raid5_compute_sector(conf,
2714                              stripe * (disks - conf->max_degraded)
2715                              *sectors_per_chunk + chunk_offset,
2716                              previous,
2717                              &dd_idx, sh);
2718 }
2719
2720 static void
2721 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2722                                 struct stripe_head_state *s, int disks,
2723                                 struct bio **return_bi)
2724 {
2725         int i;
2726         for (i = disks; i--; ) {
2727                 struct bio *bi;
2728                 int bitmap_end = 0;
2729
2730                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2731                         struct md_rdev *rdev;
2732                         rcu_read_lock();
2733                         rdev = rcu_dereference(conf->disks[i].rdev);
2734                         if (rdev && test_bit(In_sync, &rdev->flags))
2735                                 atomic_inc(&rdev->nr_pending);
2736                         else
2737                                 rdev = NULL;
2738                         rcu_read_unlock();
2739                         if (rdev) {
2740                                 if (!rdev_set_badblocks(
2741                                             rdev,
2742                                             sh->sector,
2743                                             STRIPE_SECTORS, 0))
2744                                         md_error(conf->mddev, rdev);
2745                                 rdev_dec_pending(rdev, conf->mddev);
2746                         }
2747                 }
2748                 spin_lock_irq(&sh->stripe_lock);
2749                 /* fail all writes first */
2750                 bi = sh->dev[i].towrite;
2751                 sh->dev[i].towrite = NULL;
2752                 spin_unlock_irq(&sh->stripe_lock);
2753                 if (bi)
2754                         bitmap_end = 1;
2755
2756                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2757                         wake_up(&conf->wait_for_overlap);
2758
2759                 while (bi && bi->bi_iter.bi_sector <
2760                         sh->dev[i].sector + STRIPE_SECTORS) {
2761                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2762                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2763                         if (!raid5_dec_bi_active_stripes(bi)) {
2764                                 md_write_end(conf->mddev);
2765                                 bi->bi_next = *return_bi;
2766                                 *return_bi = bi;
2767                         }
2768                         bi = nextbi;
2769                 }
2770                 if (bitmap_end)
2771                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2772                                 STRIPE_SECTORS, 0, 0);
2773                 bitmap_end = 0;
2774                 /* and fail all 'written' */
2775                 bi = sh->dev[i].written;
2776                 sh->dev[i].written = NULL;
2777                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
2778                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
2779                         sh->dev[i].page = sh->dev[i].orig_page;
2780                 }
2781
2782                 if (bi) bitmap_end = 1;
2783                 while (bi && bi->bi_iter.bi_sector <
2784                        sh->dev[i].sector + STRIPE_SECTORS) {
2785                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2786                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2787                         if (!raid5_dec_bi_active_stripes(bi)) {
2788                                 md_write_end(conf->mddev);
2789                                 bi->bi_next = *return_bi;
2790                                 *return_bi = bi;
2791                         }
2792                         bi = bi2;
2793                 }
2794
2795                 /* fail any reads if this device is non-operational and
2796                  * the data has not reached the cache yet.
2797                  */
2798                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2799                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2800                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2801                         spin_lock_irq(&sh->stripe_lock);
2802                         bi = sh->dev[i].toread;
2803                         sh->dev[i].toread = NULL;
2804                         spin_unlock_irq(&sh->stripe_lock);
2805                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2806                                 wake_up(&conf->wait_for_overlap);
2807                         while (bi && bi->bi_iter.bi_sector <
2808                                sh->dev[i].sector + STRIPE_SECTORS) {
2809                                 struct bio *nextbi =
2810                                         r5_next_bio(bi, sh->dev[i].sector);
2811                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2812                                 if (!raid5_dec_bi_active_stripes(bi)) {
2813                                         bi->bi_next = *return_bi;
2814                                         *return_bi = bi;
2815                                 }
2816                                 bi = nextbi;
2817                         }
2818                 }
2819                 if (bitmap_end)
2820                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2821                                         STRIPE_SECTORS, 0, 0);
2822                 /* If we were in the middle of a write the parity block might
2823                  * still be locked - so just clear all R5_LOCKED flags
2824                  */
2825                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2826         }
2827
2828         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2829                 if (atomic_dec_and_test(&conf->pending_full_writes))
2830                         md_wakeup_thread(conf->mddev->thread);
2831 }
2832
2833 static void
2834 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2835                    struct stripe_head_state *s)
2836 {
2837         int abort = 0;
2838         int i;
2839
2840         clear_bit(STRIPE_SYNCING, &sh->state);
2841         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2842                 wake_up(&conf->wait_for_overlap);
2843         s->syncing = 0;
2844         s->replacing = 0;
2845         /* There is nothing more to do for sync/check/repair.
2846          * Don't even need to abort as that is handled elsewhere
2847          * if needed, and not always wanted e.g. if there is a known
2848          * bad block here.
2849          * For recover/replace we need to record a bad block on all
2850          * non-sync devices, or abort the recovery
2851          */
2852         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2853                 /* During recovery devices cannot be removed, so
2854                  * locking and refcounting of rdevs is not needed
2855                  */
2856                 for (i = 0; i < conf->raid_disks; i++) {
2857                         struct md_rdev *rdev = conf->disks[i].rdev;
2858                         if (rdev
2859                             && !test_bit(Faulty, &rdev->flags)
2860                             && !test_bit(In_sync, &rdev->flags)
2861                             && !rdev_set_badblocks(rdev, sh->sector,
2862                                                    STRIPE_SECTORS, 0))
2863                                 abort = 1;
2864                         rdev = conf->disks[i].replacement;
2865                         if (rdev
2866                             && !test_bit(Faulty, &rdev->flags)
2867                             && !test_bit(In_sync, &rdev->flags)
2868                             && !rdev_set_badblocks(rdev, sh->sector,
2869                                                    STRIPE_SECTORS, 0))
2870                                 abort = 1;
2871                 }
2872                 if (abort)
2873                         conf->recovery_disabled =
2874                                 conf->mddev->recovery_disabled;
2875         }
2876         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2877 }
2878
2879 static int want_replace(struct stripe_head *sh, int disk_idx)
2880 {
2881         struct md_rdev *rdev;
2882         int rv = 0;
2883         /* Doing recovery so rcu locking not required */
2884         rdev = sh->raid_conf->disks[disk_idx].replacement;
2885         if (rdev
2886             && !test_bit(Faulty, &rdev->flags)
2887             && !test_bit(In_sync, &rdev->flags)
2888             && (rdev->recovery_offset <= sh->sector
2889                 || rdev->mddev->recovery_cp <= sh->sector))
2890                 rv = 1;
2891
2892         return rv;
2893 }
2894
2895 /* fetch_block - checks the given member device to see if its data needs
2896  * to be read or computed to satisfy a request.
2897  *
2898  * Returns 1 when no more member devices need to be checked, otherwise returns
2899  * 0 to tell the loop in handle_stripe_fill to continue
2900  */
2901 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2902                        int disk_idx, int disks)
2903 {
2904         struct r5dev *dev = &sh->dev[disk_idx];
2905         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2906                                   &sh->dev[s->failed_num[1]] };
2907
2908         /* is the data in this block needed, and can we get it? */
2909         if (!test_bit(R5_LOCKED, &dev->flags) &&
2910             !test_bit(R5_UPTODATE, &dev->flags) &&
2911             (dev->toread ||
2912              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2913              s->syncing || s->expanding ||
2914              (s->replacing && want_replace(sh, disk_idx)) ||
2915              (s->failed >= 1 && fdev[0]->toread) ||
2916              (s->failed >= 2 && fdev[1]->toread) ||
2917              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2918               (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) &&
2919               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2920              (sh->raid_conf->level == 6 && s->failed && s->to_write &&
2921               s->to_write - s->non_overwrite < sh->raid_conf->raid_disks - 2 &&
2922               (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))))) {
2923                 /* we would like to get this block, possibly by computing it,
2924                  * otherwise read it if the backing disk is insync
2925                  */
2926                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2927                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2928                 if ((s->uptodate == disks - 1) &&
2929                     (s->failed && (disk_idx == s->failed_num[0] ||
2930                                    disk_idx == s->failed_num[1]))) {
2931                         /* have disk failed, and we're requested to fetch it;
2932                          * do compute it
2933                          */
2934                         pr_debug("Computing stripe %llu block %d\n",
2935                                (unsigned long long)sh->sector, disk_idx);
2936                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2937                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2938                         set_bit(R5_Wantcompute, &dev->flags);
2939                         sh->ops.target = disk_idx;
2940                         sh->ops.target2 = -1; /* no 2nd target */
2941                         s->req_compute = 1;
2942                         /* Careful: from this point on 'uptodate' is in the eye
2943                          * of raid_run_ops which services 'compute' operations
2944                          * before writes. R5_Wantcompute flags a block that will
2945                          * be R5_UPTODATE by the time it is needed for a
2946                          * subsequent operation.
2947                          */
2948                         s->uptodate++;
2949                         return 1;
2950                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2951                         /* Computing 2-failure is *very* expensive; only
2952                          * do it if failed >= 2
2953                          */
2954                         int other;
2955                         for (other = disks; other--; ) {
2956                                 if (other == disk_idx)
2957                                         continue;
2958                                 if (!test_bit(R5_UPTODATE,
2959                                       &sh->dev[other].flags))
2960                                         break;
2961                         }
2962                         BUG_ON(other < 0);
2963                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2964                                (unsigned long long)sh->sector,
2965                                disk_idx, other);
2966                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2967                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2968                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2969                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2970                         sh->ops.target = disk_idx;
2971                         sh->ops.target2 = other;
2972                         s->uptodate += 2;
2973                         s->req_compute = 1;
2974                         return 1;
2975                 } else if (test_bit(R5_Insync, &dev->flags)) {
2976                         set_bit(R5_LOCKED, &dev->flags);
2977                         set_bit(R5_Wantread, &dev->flags);
2978                         s->locked++;
2979                         pr_debug("Reading block %d (sync=%d)\n",
2980                                 disk_idx, s->syncing);
2981                 }
2982         }
2983
2984         return 0;
2985 }
2986
2987 /**
2988  * handle_stripe_fill - read or compute data to satisfy pending requests.
2989  */
2990 static void handle_stripe_fill(struct stripe_head *sh,
2991                                struct stripe_head_state *s,
2992                                int disks)
2993 {
2994         int i;
2995
2996         /* look for blocks to read/compute, skip this if a compute
2997          * is already in flight, or if the stripe contents are in the
2998          * midst of changing due to a write
2999          */
3000         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3001             !sh->reconstruct_state)
3002                 for (i = disks; i--; )
3003                         if (fetch_block(sh, s, i, disks))
3004                                 break;
3005         set_bit(STRIPE_HANDLE, &sh->state);
3006 }
3007
3008 /* handle_stripe_clean_event
3009  * any written block on an uptodate or failed drive can be returned.
3010  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3011  * never LOCKED, so we don't need to test 'failed' directly.
3012  */
3013 static void handle_stripe_clean_event(struct r5conf *conf,
3014         struct stripe_head *sh, int disks, struct bio **return_bi)
3015 {
3016         int i;
3017         struct r5dev *dev;
3018         int discard_pending = 0;
3019
3020         for (i = disks; i--; )
3021                 if (sh->dev[i].written) {
3022                         dev = &sh->dev[i];
3023                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3024                             (test_bit(R5_UPTODATE, &dev->flags) ||
3025                              test_bit(R5_Discard, &dev->flags) ||
3026                              test_bit(R5_SkipCopy, &dev->flags))) {
3027                                 /* We can return any write requests */
3028                                 struct bio *wbi, *wbi2;
3029                                 pr_debug("Return write for disc %d\n", i);
3030                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3031                                         clear_bit(R5_UPTODATE, &dev->flags);
3032                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3033                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3034                                         dev->page = dev->orig_page;
3035                                 }
3036                                 wbi = dev->written;
3037                                 dev->written = NULL;
3038                                 while (wbi && wbi->bi_iter.bi_sector <
3039                                         dev->sector + STRIPE_SECTORS) {
3040                                         wbi2 = r5_next_bio(wbi, dev->sector);
3041                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3042                                                 md_write_end(conf->mddev);
3043                                                 wbi->bi_next = *return_bi;
3044                                                 *return_bi = wbi;
3045                                         }
3046                                         wbi = wbi2;
3047                                 }
3048                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3049                                                 STRIPE_SECTORS,
3050                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3051                                                 0);
3052                         } else if (test_bit(R5_Discard, &dev->flags))
3053                                 discard_pending = 1;
3054                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3055                         WARN_ON(dev->page != dev->orig_page);
3056                 }
3057         if (!discard_pending &&
3058             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3059                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3060                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3061                 if (sh->qd_idx >= 0) {
3062                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3063                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3064                 }
3065                 /* now that discard is done we can proceed with any sync */
3066                 clear_bit(STRIPE_DISCARD, &sh->state);
3067                 /*
3068                  * SCSI discard will change some bio fields and the stripe has
3069                  * no updated data, so remove it from hash list and the stripe
3070                  * will be reinitialized
3071                  */
3072                 spin_lock_irq(&conf->device_lock);
3073                 remove_hash(sh);
3074                 spin_unlock_irq(&conf->device_lock);
3075                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3076                         set_bit(STRIPE_HANDLE, &sh->state);
3077
3078         }
3079
3080         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3081                 if (atomic_dec_and_test(&conf->pending_full_writes))
3082                         md_wakeup_thread(conf->mddev->thread);
3083 }
3084
3085 static void handle_stripe_dirtying(struct r5conf *conf,
3086                                    struct stripe_head *sh,
3087                                    struct stripe_head_state *s,
3088                                    int disks)
3089 {
3090         int rmw = 0, rcw = 0, i;
3091         sector_t recovery_cp = conf->mddev->recovery_cp;
3092
3093         /* RAID6 requires 'rcw' in current implementation.
3094          * Otherwise, check whether resync is now happening or should start.
3095          * If yes, then the array is dirty (after unclean shutdown or
3096          * initial creation), so parity in some stripes might be inconsistent.
3097          * In this case, we need to always do reconstruct-write, to ensure
3098          * that in case of drive failure or read-error correction, we
3099          * generate correct data from the parity.
3100          */
3101         if (conf->max_degraded == 2 ||
3102             (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3103                 /* Calculate the real rcw later - for now make it
3104                  * look like rcw is cheaper
3105                  */
3106                 rcw = 1; rmw = 2;
3107                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3108                          conf->max_degraded, (unsigned long long)recovery_cp,
3109                          (unsigned long long)sh->sector);
3110         } else for (i = disks; i--; ) {
3111                 /* would I have to read this buffer for read_modify_write */
3112                 struct r5dev *dev = &sh->dev[i];
3113                 if ((dev->towrite || i == sh->pd_idx) &&
3114                     !test_bit(R5_LOCKED, &dev->flags) &&
3115                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3116                       test_bit(R5_Wantcompute, &dev->flags))) {
3117                         if (test_bit(R5_Insync, &dev->flags))
3118                                 rmw++;
3119                         else
3120                                 rmw += 2*disks;  /* cannot read it */
3121                 }
3122                 /* Would I have to read this buffer for reconstruct_write */
3123                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3124                     !test_bit(R5_LOCKED, &dev->flags) &&
3125                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3126                     test_bit(R5_Wantcompute, &dev->flags))) {
3127                         if (test_bit(R5_Insync, &dev->flags))
3128                                 rcw++;
3129                         else
3130                                 rcw += 2*disks;
3131                 }
3132         }
3133         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3134                 (unsigned long long)sh->sector, rmw, rcw);
3135         set_bit(STRIPE_HANDLE, &sh->state);
3136         if (rmw < rcw && rmw > 0) {
3137                 /* prefer read-modify-write, but need to get some data */
3138                 if (conf->mddev->queue)
3139                         blk_add_trace_msg(conf->mddev->queue,
3140                                           "raid5 rmw %llu %d",
3141                                           (unsigned long long)sh->sector, rmw);
3142                 for (i = disks; i--; ) {
3143                         struct r5dev *dev = &sh->dev[i];
3144                         if ((dev->towrite || i == sh->pd_idx) &&
3145                             !test_bit(R5_LOCKED, &dev->flags) &&
3146                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3147                             test_bit(R5_Wantcompute, &dev->flags)) &&
3148                             test_bit(R5_Insync, &dev->flags)) {
3149                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3150                                              &sh->state)) {
3151                                         pr_debug("Read_old block %d for r-m-w\n",
3152                                                  i);
3153                                         set_bit(R5_LOCKED, &dev->flags);
3154                                         set_bit(R5_Wantread, &dev->flags);
3155                                         s->locked++;
3156                                 } else {
3157                                         set_bit(STRIPE_DELAYED, &sh->state);
3158                                         set_bit(STRIPE_HANDLE, &sh->state);
3159                                 }
3160                         }
3161                 }
3162         }
3163         if (rcw <= rmw && rcw > 0) {
3164                 /* want reconstruct write, but need to get some data */
3165                 int qread =0;
3166                 rcw = 0;
3167                 for (i = disks; i--; ) {
3168                         struct r5dev *dev = &sh->dev[i];
3169                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3170                             i != sh->pd_idx && i != sh->qd_idx &&
3171                             !test_bit(R5_LOCKED, &dev->flags) &&
3172                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3173                               test_bit(R5_Wantcompute, &dev->flags))) {
3174                                 rcw++;
3175                                 if (test_bit(R5_Insync, &dev->flags) &&
3176                                     test_bit(STRIPE_PREREAD_ACTIVE,
3177                                              &sh->state)) {
3178                                         pr_debug("Read_old block "
3179                                                 "%d for Reconstruct\n", i);
3180                                         set_bit(R5_LOCKED, &dev->flags);
3181                                         set_bit(R5_Wantread, &dev->flags);
3182                                         s->locked++;
3183                                         qread++;
3184                                 } else {
3185                                         set_bit(STRIPE_DELAYED, &sh->state);
3186                                         set_bit(STRIPE_HANDLE, &sh->state);
3187                                 }
3188                         }
3189                 }
3190                 if (rcw && conf->mddev->queue)
3191                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3192                                           (unsigned long long)sh->sector,
3193                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3194         }
3195         /* now if nothing is locked, and if we have enough data,
3196          * we can start a write request
3197          */
3198         /* since handle_stripe can be called at any time we need to handle the
3199          * case where a compute block operation has been submitted and then a
3200          * subsequent call wants to start a write request.  raid_run_ops only
3201          * handles the case where compute block and reconstruct are requested
3202          * simultaneously.  If this is not the case then new writes need to be
3203          * held off until the compute completes.
3204          */
3205         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3206             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3207             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3208                 schedule_reconstruction(sh, s, rcw == 0, 0);
3209 }
3210
3211 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3212                                 struct stripe_head_state *s, int disks)
3213 {
3214         struct r5dev *dev = NULL;
3215
3216         set_bit(STRIPE_HANDLE, &sh->state);
3217
3218         switch (sh->check_state) {
3219         case check_state_idle:
3220                 /* start a new check operation if there are no failures */
3221                 if (s->failed == 0) {
3222                         BUG_ON(s->uptodate != disks);
3223                         sh->check_state = check_state_run;
3224                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3225                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3226                         s->uptodate--;
3227                         break;
3228                 }
3229                 dev = &sh->dev[s->failed_num[0]];
3230                 /* fall through */
3231         case check_state_compute_result:
3232                 sh->check_state = check_state_idle;
3233                 if (!dev)
3234                         dev = &sh->dev[sh->pd_idx];
3235
3236                 /* check that a write has not made the stripe insync */
3237                 if (test_bit(STRIPE_INSYNC, &sh->state))
3238                         break;
3239
3240                 /* either failed parity check, or recovery is happening */
3241                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3242                 BUG_ON(s->uptodate != disks);
3243
3244                 set_bit(R5_LOCKED, &dev->flags);
3245                 s->locked++;
3246                 set_bit(R5_Wantwrite, &dev->flags);
3247
3248                 clear_bit(STRIPE_DEGRADED, &sh->state);
3249                 set_bit(STRIPE_INSYNC, &sh->state);
3250                 break;
3251         case check_state_run:
3252                 break; /* we will be called again upon completion */
3253         case check_state_check_result:
3254                 sh->check_state = check_state_idle;
3255
3256                 /* if a failure occurred during the check operation, leave
3257                  * STRIPE_INSYNC not set and let the stripe be handled again
3258                  */
3259                 if (s->failed)
3260                         break;
3261
3262                 /* handle a successful check operation, if parity is correct
3263                  * we are done.  Otherwise update the mismatch count and repair
3264                  * parity if !MD_RECOVERY_CHECK
3265                  */
3266                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3267                         /* parity is correct (on disc,
3268                          * not in buffer any more)
3269                          */
3270                         set_bit(STRIPE_INSYNC, &sh->state);
3271                 else {
3272                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3273                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3274                                 /* don't try to repair!! */
3275                                 set_bit(STRIPE_INSYNC, &sh->state);
3276                         else {
3277                                 sh->check_state = check_state_compute_run;
3278                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3279                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3280                                 set_bit(R5_Wantcompute,
3281                                         &sh->dev[sh->pd_idx].flags);
3282                                 sh->ops.target = sh->pd_idx;
3283                                 sh->ops.target2 = -1;
3284                                 s->uptodate++;
3285                         }
3286                 }
3287                 break;
3288         case check_state_compute_run:
3289                 break;
3290         default:
3291                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3292                        __func__, sh->check_state,
3293                        (unsigned long long) sh->sector);
3294                 BUG();
3295         }
3296 }
3297
3298 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3299                                   struct stripe_head_state *s,
3300                                   int disks)
3301 {
3302         int pd_idx = sh->pd_idx;
3303         int qd_idx = sh->qd_idx;
3304         struct r5dev *dev;
3305
3306         set_bit(STRIPE_HANDLE, &sh->state);
3307
3308         BUG_ON(s->failed > 2);
3309
3310         /* Want to check and possibly repair P and Q.
3311          * However there could be one 'failed' device, in which
3312          * case we can only check one of them, possibly using the
3313          * other to generate missing data
3314          */
3315
3316         switch (sh->check_state) {
3317         case check_state_idle:
3318                 /* start a new check operation if there are < 2 failures */
3319                 if (s->failed == s->q_failed) {
3320                         /* The only possible failed device holds Q, so it
3321                          * makes sense to check P (If anything else were failed,
3322                          * we would have used P to recreate it).
3323                          */
3324                         sh->check_state = check_state_run;
3325                 }
3326                 if (!s->q_failed && s->failed < 2) {
3327                         /* Q is not failed, and we didn't use it to generate
3328                          * anything, so it makes sense to check it
3329                          */
3330                         if (sh->check_state == check_state_run)
3331                                 sh->check_state = check_state_run_pq;
3332                         else
3333                                 sh->check_state = check_state_run_q;
3334                 }
3335
3336                 /* discard potentially stale zero_sum_result */
3337                 sh->ops.zero_sum_result = 0;
3338
3339                 if (sh->check_state == check_state_run) {
3340                         /* async_xor_zero_sum destroys the contents of P */
3341                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3342                         s->uptodate--;
3343                 }
3344                 if (sh->check_state >= check_state_run &&
3345                     sh->check_state <= check_state_run_pq) {
3346                         /* async_syndrome_zero_sum preserves P and Q, so
3347                          * no need to mark them !uptodate here
3348                          */
3349                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3350                         break;
3351                 }
3352
3353                 /* we have 2-disk failure */
3354                 BUG_ON(s->failed != 2);
3355                 /* fall through */
3356         case check_state_compute_result:
3357                 sh->check_state = check_state_idle;
3358
3359                 /* check that a write has not made the stripe insync */
3360                 if (test_bit(STRIPE_INSYNC, &sh->state))
3361                         break;
3362
3363                 /* now write out any block on a failed drive,
3364                  * or P or Q if they were recomputed
3365                  */
3366                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3367                 if (s->failed == 2) {
3368                         dev = &sh->dev[s->failed_num[1]];
3369                         s->locked++;
3370                         set_bit(R5_LOCKED, &dev->flags);
3371                         set_bit(R5_Wantwrite, &dev->flags);
3372                 }
3373                 if (s->failed >= 1) {
3374                         dev = &sh->dev[s->failed_num[0]];
3375                         s->locked++;
3376                         set_bit(R5_LOCKED, &dev->flags);
3377                         set_bit(R5_Wantwrite, &dev->flags);
3378                 }
3379                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3380                         dev = &sh->dev[pd_idx];
3381                         s->locked++;
3382                         set_bit(R5_LOCKED, &dev->flags);
3383                         set_bit(R5_Wantwrite, &dev->flags);
3384                 }
3385                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3386                         dev = &sh->dev[qd_idx];
3387                         s->locked++;
3388                         set_bit(R5_LOCKED, &dev->flags);
3389                         set_bit(R5_Wantwrite, &dev->flags);
3390                 }
3391                 clear_bit(STRIPE_DEGRADED, &sh->state);
3392
3393                 set_bit(STRIPE_INSYNC, &sh->state);
3394                 break;
3395         case check_state_run:
3396         case check_state_run_q:
3397         case check_state_run_pq:
3398                 break; /* we will be called again upon completion */
3399         case check_state_check_result:
3400                 sh->check_state = check_state_idle;
3401
3402                 /* handle a successful check operation, if parity is correct
3403                  * we are done.  Otherwise update the mismatch count and repair
3404                  * parity if !MD_RECOVERY_CHECK
3405                  */
3406                 if (sh->ops.zero_sum_result == 0) {
3407                         /* both parities are correct */
3408                         if (!s->failed)
3409                                 set_bit(STRIPE_INSYNC, &sh->state);
3410                         else {
3411                                 /* in contrast to the raid5 case we can validate
3412                                  * parity, but still have a failure to write
3413                                  * back
3414                                  */
3415                                 sh->check_state = check_state_compute_result;
3416                                 /* Returning at this point means that we may go
3417                                  * off and bring p and/or q uptodate again so
3418                                  * we make sure to check zero_sum_result again
3419                                  * to verify if p or q need writeback
3420                                  */
3421                         }
3422                 } else {
3423                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3424                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3425                                 /* don't try to repair!! */
3426                                 set_bit(STRIPE_INSYNC, &sh->state);
3427                         else {
3428                                 int *target = &sh->ops.target;
3429
3430                                 sh->ops.target = -1;
3431                                 sh->ops.target2 = -1;
3432                                 sh->check_state = check_state_compute_run;
3433                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3434                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3435                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3436                                         set_bit(R5_Wantcompute,
3437                                                 &sh->dev[pd_idx].flags);
3438                                         *target = pd_idx;
3439                                         target = &sh->ops.target2;
3440                                         s->uptodate++;
3441                                 }
3442                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3443                                         set_bit(R5_Wantcompute,
3444                                                 &sh->dev[qd_idx].flags);
3445                                         *target = qd_idx;
3446                                         s->uptodate++;
3447                                 }
3448                         }
3449                 }
3450                 break;
3451         case check_state_compute_run:
3452                 break;
3453         default:
3454                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3455                        __func__, sh->check_state,
3456                        (unsigned long long) sh->sector);
3457                 BUG();
3458         }
3459 }
3460
3461 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3462 {
3463         int i;
3464
3465         /* We have read all the blocks in this stripe and now we need to
3466          * copy some of them into a target stripe for expand.
3467          */
3468         struct dma_async_tx_descriptor *tx = NULL;
3469         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3470         for (i = 0; i < sh->disks; i++)
3471                 if (i != sh->pd_idx && i != sh->qd_idx) {
3472                         int dd_idx, j;
3473                         struct stripe_head *sh2;
3474                         struct async_submit_ctl submit;
3475
3476                         sector_t bn = compute_blocknr(sh, i, 1);
3477                         sector_t s = raid5_compute_sector(conf, bn, 0,
3478                                                           &dd_idx, NULL);
3479                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3480                         if (sh2 == NULL)
3481                                 /* so far only the early blocks of this stripe
3482                                  * have been requested.  When later blocks
3483                                  * get requested, we will try again
3484                                  */
3485                                 continue;
3486                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3487                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3488                                 /* must have already done this block */
3489                                 release_stripe(sh2);
3490                                 continue;
3491                         }
3492
3493                         /* place all the copies on one channel */
3494                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3495                         tx = async_memcpy(sh2->dev[dd_idx].page,
3496                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3497                                           &submit);
3498
3499                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3500                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3501                         for (j = 0; j < conf->raid_disks; j++)
3502                                 if (j != sh2->pd_idx &&
3503                                     j != sh2->qd_idx &&
3504                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3505                                         break;
3506                         if (j == conf->raid_disks) {
3507                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3508                                 set_bit(STRIPE_HANDLE, &sh2->state);
3509                         }
3510                         release_stripe(sh2);
3511
3512                 }
3513         /* done submitting copies, wait for them to complete */
3514         async_tx_quiesce(&tx);
3515 }
3516
3517 /*
3518  * handle_stripe - do things to a stripe.
3519  *
3520  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3521  * state of various bits to see what needs to be done.
3522  * Possible results:
3523  *    return some read requests which now have data
3524  *    return some write requests which are safely on storage
3525  *    schedule a read on some buffers
3526  *    schedule a write of some buffers
3527  *    return confirmation of parity correctness
3528  *
3529  */
3530
3531 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3532 {
3533         struct r5conf *conf = sh->raid_conf;
3534         int disks = sh->disks;
3535         struct r5dev *dev;
3536         int i;
3537         int do_recovery = 0;
3538
3539         memset(s, 0, sizeof(*s));
3540
3541         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3542         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3543         s->failed_num[0] = -1;
3544         s->failed_num[1] = -1;
3545
3546         /* Now to look around and see what can be done */
3547         rcu_read_lock();
3548         for (i=disks; i--; ) {
3549                 struct md_rdev *rdev;
3550                 sector_t first_bad;
3551                 int bad_sectors;
3552                 int is_bad = 0;
3553
3554                 dev = &sh->dev[i];
3555
3556                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3557                          i, dev->flags,
3558                          dev->toread, dev->towrite, dev->written);
3559                 /* maybe we can reply to a read
3560                  *
3561                  * new wantfill requests are only permitted while
3562                  * ops_complete_biofill is guaranteed to be inactive
3563                  */
3564                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3565                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3566                         set_bit(R5_Wantfill, &dev->flags);
3567
3568                 /* now count some things */
3569                 if (test_bit(R5_LOCKED, &dev->flags))
3570                         s->locked++;
3571                 if (test_bit(R5_UPTODATE, &dev->flags))
3572                         s->uptodate++;
3573                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3574                         s->compute++;
3575                         BUG_ON(s->compute > 2);
3576                 }
3577
3578                 if (test_bit(R5_Wantfill, &dev->flags))
3579                         s->to_fill++;
3580                 else if (dev->toread)
3581                         s->to_read++;
3582                 if (dev->towrite) {
3583                         s->to_write++;
3584                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3585                                 s->non_overwrite++;
3586                 }
3587                 if (dev->written)
3588                         s->written++;
3589                 /* Prefer to use the replacement for reads, but only
3590                  * if it is recovered enough and has no bad blocks.
3591                  */
3592                 rdev = rcu_dereference(conf->disks[i].replacement);
3593                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3594                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3595                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3596                                  &first_bad, &bad_sectors))
3597                         set_bit(R5_ReadRepl, &dev->flags);
3598                 else {
3599                         if (rdev)
3600                                 set_bit(R5_NeedReplace, &dev->flags);
3601                         rdev = rcu_dereference(conf->disks[i].rdev);
3602                         clear_bit(R5_ReadRepl, &dev->flags);
3603                 }
3604                 if (rdev && test_bit(Faulty, &rdev->flags))
3605                         rdev = NULL;
3606                 if (rdev) {
3607                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3608                                              &first_bad, &bad_sectors);
3609                         if (s->blocked_rdev == NULL
3610                             && (test_bit(Blocked, &rdev->flags)
3611                                 || is_bad < 0)) {
3612                                 if (is_bad < 0)
3613                                         set_bit(BlockedBadBlocks,
3614                                                 &rdev->flags);
3615                                 s->blocked_rdev = rdev;
3616                                 atomic_inc(&rdev->nr_pending);
3617                         }
3618                 }
3619                 clear_bit(R5_Insync, &dev->flags);
3620                 if (!rdev)
3621                         /* Not in-sync */;
3622                 else if (is_bad) {
3623                         /* also not in-sync */
3624                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3625                             test_bit(R5_UPTODATE, &dev->flags)) {
3626                                 /* treat as in-sync, but with a read error
3627                                  * which we can now try to correct
3628                                  */
3629                                 set_bit(R5_Insync, &dev->flags);
3630                                 set_bit(R5_ReadError, &dev->flags);
3631                         }
3632                 } else if (test_bit(In_sync, &rdev->flags))
3633                         set_bit(R5_Insync, &dev->flags);
3634                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3635                         /* in sync if before recovery_offset */
3636                         set_bit(R5_Insync, &dev->flags);
3637                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3638                          test_bit(R5_Expanded, &dev->flags))
3639                         /* If we've reshaped into here, we assume it is Insync.
3640                          * We will shortly update recovery_offset to make
3641                          * it official.
3642                          */
3643                         set_bit(R5_Insync, &dev->flags);
3644
3645                 if (test_bit(R5_WriteError, &dev->flags)) {
3646                         /* This flag does not apply to '.replacement'
3647                          * only to .rdev, so make sure to check that*/
3648                         struct md_rdev *rdev2 = rcu_dereference(
3649                                 conf->disks[i].rdev);
3650                         if (rdev2 == rdev)
3651                                 clear_bit(R5_Insync, &dev->flags);
3652                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3653                                 s->handle_bad_blocks = 1;
3654                                 atomic_inc(&rdev2->nr_pending);
3655                         } else
3656                                 clear_bit(R5_WriteError, &dev->flags);
3657                 }
3658                 if (test_bit(R5_MadeGood, &dev->flags)) {
3659                         /* This flag does not apply to '.replacement'
3660                          * only to .rdev, so make sure to check that*/
3661                         struct md_rdev *rdev2 = rcu_dereference(
3662                                 conf->disks[i].rdev);
3663                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3664                                 s->handle_bad_blocks = 1;
3665                                 atomic_inc(&rdev2->nr_pending);
3666                         } else
3667                                 clear_bit(R5_MadeGood, &dev->flags);
3668                 }
3669                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3670                         struct md_rdev *rdev2 = rcu_dereference(
3671                                 conf->disks[i].replacement);
3672                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3673                                 s->handle_bad_blocks = 1;
3674                                 atomic_inc(&rdev2->nr_pending);
3675                         } else
3676                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3677                 }
3678                 if (!test_bit(R5_Insync, &dev->flags)) {
3679                         /* The ReadError flag will just be confusing now */
3680                         clear_bit(R5_ReadError, &dev->flags);
3681                         clear_bit(R5_ReWrite, &dev->flags);
3682                 }
3683                 if (test_bit(R5_ReadError, &dev->flags))
3684                         clear_bit(R5_Insync, &dev->flags);
3685                 if (!test_bit(R5_Insync, &dev->flags)) {
3686                         if (s->failed < 2)
3687                                 s->failed_num[s->failed] = i;
3688                         s->failed++;
3689                         if (rdev && !test_bit(Faulty, &rdev->flags))
3690                                 do_recovery = 1;
3691                 }
3692         }
3693         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3694                 /* If there is a failed device being replaced,
3695                  *     we must be recovering.
3696                  * else if we are after recovery_cp, we must be syncing
3697                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3698                  * else we can only be replacing
3699                  * sync and recovery both need to read all devices, and so
3700                  * use the same flag.
3701                  */
3702                 if (do_recovery ||
3703                     sh->sector >= conf->mddev->recovery_cp ||
3704                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3705                         s->syncing = 1;
3706                 else
3707                         s->replacing = 1;
3708         }
3709         rcu_read_unlock();
3710 }
3711
3712 static void handle_stripe(struct stripe_head *sh)
3713 {
3714         struct stripe_head_state s;
3715         struct r5conf *conf = sh->raid_conf;
3716         int i;
3717         int prexor;
3718         int disks = sh->disks;
3719         struct r5dev *pdev, *qdev;
3720
3721         clear_bit(STRIPE_HANDLE, &sh->state);
3722         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3723                 /* already being handled, ensure it gets handled
3724                  * again when current action finishes */
3725                 set_bit(STRIPE_HANDLE, &sh->state);
3726                 return;
3727         }
3728
3729         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3730                 spin_lock(&sh->stripe_lock);
3731                 /* Cannot process 'sync' concurrently with 'discard' */
3732                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3733                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3734                         set_bit(STRIPE_SYNCING, &sh->state);
3735                         clear_bit(STRIPE_INSYNC, &sh->state);
3736                         clear_bit(STRIPE_REPLACED, &sh->state);
3737                 }
3738                 spin_unlock(&sh->stripe_lock);
3739         }
3740         clear_bit(STRIPE_DELAYED, &sh->state);
3741
3742         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3743                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3744                (unsigned long long)sh->sector, sh->state,
3745                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3746                sh->check_state, sh->reconstruct_state);
3747
3748         analyse_stripe(sh, &s);
3749
3750         if (s.handle_bad_blocks) {
3751                 set_bit(STRIPE_HANDLE, &sh->state);
3752                 goto finish;
3753         }
3754
3755         if (unlikely(s.blocked_rdev)) {
3756                 if (s.syncing || s.expanding || s.expanded ||
3757                     s.replacing || s.to_write || s.written) {
3758                         set_bit(STRIPE_HANDLE, &sh->state);
3759                         goto finish;
3760                 }
3761                 /* There is nothing for the blocked_rdev to block */
3762                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3763                 s.blocked_rdev = NULL;
3764         }
3765
3766         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3767                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3768                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3769         }
3770
3771         pr_debug("locked=%d uptodate=%d to_read=%d"
3772                " to_write=%d failed=%d failed_num=%d,%d\n",
3773                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3774                s.failed_num[0], s.failed_num[1]);
3775         /* check if the array has lost more than max_degraded devices and,
3776          * if so, some requests might need to be failed.
3777          */
3778         if (s.failed > conf->max_degraded) {
3779                 sh->check_state = 0;
3780                 sh->reconstruct_state = 0;
3781                 if (s.to_read+s.to_write+s.written)
3782                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3783                 if (s.syncing + s.replacing)
3784                         handle_failed_sync(conf, sh, &s);
3785         }
3786
3787         /* Now we check to see if any write operations have recently
3788          * completed
3789          */
3790         prexor = 0;
3791         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3792                 prexor = 1;
3793         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3794             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3795                 sh->reconstruct_state = reconstruct_state_idle;
3796
3797                 /* All the 'written' buffers and the parity block are ready to
3798                  * be written back to disk
3799                  */
3800                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3801                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3802                 BUG_ON(sh->qd_idx >= 0 &&
3803                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3804                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3805                 for (i = disks; i--; ) {
3806                         struct r5dev *dev = &sh->dev[i];
3807                         if (test_bit(R5_LOCKED, &dev->flags) &&
3808                                 (i == sh->pd_idx || i == sh->qd_idx ||
3809                                  dev->written)) {
3810                                 pr_debug("Writing block %d\n", i);
3811                                 set_bit(R5_Wantwrite, &dev->flags);
3812                                 if (prexor)
3813                                         continue;
3814                                 if (s.failed > 1)
3815                                         continue;
3816                                 if (!test_bit(R5_Insync, &dev->flags) ||
3817                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3818                                      s.failed == 0))
3819                                         set_bit(STRIPE_INSYNC, &sh->state);
3820                         }
3821                 }
3822                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3823                         s.dec_preread_active = 1;
3824         }
3825
3826         /*
3827          * might be able to return some write requests if the parity blocks
3828          * are safe, or on a failed drive
3829          */
3830         pdev = &sh->dev[sh->pd_idx];
3831         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3832                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3833         qdev = &sh->dev[sh->qd_idx];
3834         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3835                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3836                 || conf->level < 6;
3837
3838         if (s.written &&
3839             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3840                              && !test_bit(R5_LOCKED, &pdev->flags)
3841                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3842                                  test_bit(R5_Discard, &pdev->flags))))) &&
3843             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3844                              && !test_bit(R5_LOCKED, &qdev->flags)
3845                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3846                                  test_bit(R5_Discard, &qdev->flags))))))
3847                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3848
3849         /* Now we might consider reading some blocks, either to check/generate
3850          * parity, or to satisfy requests
3851          * or to load a block that is being partially written.
3852          */
3853         if (s.to_read || s.non_overwrite
3854             || (conf->level == 6 && s.to_write && s.failed)
3855             || (s.syncing && (s.uptodate + s.compute < disks))
3856             || s.replacing
3857             || s.expanding)
3858                 handle_stripe_fill(sh, &s, disks);
3859
3860         /* Now to consider new write requests and what else, if anything
3861          * should be read.  We do not handle new writes when:
3862          * 1/ A 'write' operation (copy+xor) is already in flight.
3863          * 2/ A 'check' operation is in flight, as it may clobber the parity
3864          *    block.
3865          */
3866         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3867                 handle_stripe_dirtying(conf, sh, &s, disks);
3868
3869         /* maybe we need to check and possibly fix the parity for this stripe
3870          * Any reads will already have been scheduled, so we just see if enough
3871          * data is available.  The parity check is held off while parity
3872          * dependent operations are in flight.
3873          */
3874         if (sh->check_state ||
3875             (s.syncing && s.locked == 0 &&
3876              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3877              !test_bit(STRIPE_INSYNC, &sh->state))) {
3878                 if (conf->level == 6)
3879                         handle_parity_checks6(conf, sh, &s, disks);
3880                 else
3881                         handle_parity_checks5(conf, sh, &s, disks);
3882         }
3883
3884         if ((s.replacing || s.syncing) && s.locked == 0
3885             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3886             && !test_bit(STRIPE_REPLACED, &sh->state)) {
3887                 /* Write out to replacement devices where possible */
3888                 for (i = 0; i < conf->raid_disks; i++)
3889                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3890                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3891                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3892                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3893                                 s.locked++;
3894                         }
3895                 if (s.replacing)
3896                         set_bit(STRIPE_INSYNC, &sh->state);
3897                 set_bit(STRIPE_REPLACED, &sh->state);
3898         }
3899         if ((s.syncing || s.replacing) && s.locked == 0 &&
3900             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3901             test_bit(STRIPE_INSYNC, &sh->state)) {
3902                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3903                 clear_bit(STRIPE_SYNCING, &sh->state);
3904                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3905                         wake_up(&conf->wait_for_overlap);
3906         }
3907
3908         /* If the failed drives are just a ReadError, then we might need
3909          * to progress the repair/check process
3910          */
3911         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3912                 for (i = 0; i < s.failed; i++) {
3913                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3914                         if (test_bit(R5_ReadError, &dev->flags)
3915                             && !test_bit(R5_LOCKED, &dev->flags)
3916                             && test_bit(R5_UPTODATE, &dev->flags)
3917                                 ) {
3918                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3919                                         set_bit(R5_Wantwrite, &dev->flags);
3920                                         set_bit(R5_ReWrite, &dev->flags);
3921                                         set_bit(R5_LOCKED, &dev->flags);
3922                                         s.locked++;
3923                                 } else {
3924                                         /* let's read it back */
3925                                         set_bit(R5_Wantread, &dev->flags);
3926                                         set_bit(R5_LOCKED, &dev->flags);
3927                                         s.locked++;
3928                                 }
3929                         }
3930                 }
3931
3932         /* Finish reconstruct operations initiated by the expansion process */
3933         if (sh->reconstruct_state == reconstruct_state_result) {
3934                 struct stripe_head *sh_src
3935                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3936                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3937                         /* sh cannot be written until sh_src has been read.
3938                          * so arrange for sh to be delayed a little
3939                          */
3940                         set_bit(STRIPE_DELAYED, &sh->state);
3941                         set_bit(STRIPE_HANDLE, &sh->state);
3942                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3943                                               &sh_src->state))
3944                                 atomic_inc(&conf->preread_active_stripes);
3945                         release_stripe(sh_src);
3946                         goto finish;
3947                 }
3948                 if (sh_src)
3949                         release_stripe(sh_src);
3950
3951                 sh->reconstruct_state = reconstruct_state_idle;
3952                 clear_bit(STRIPE_EXPANDING, &sh->state);
3953                 for (i = conf->raid_disks; i--; ) {
3954                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3955                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3956                         s.locked++;
3957                 }
3958         }
3959
3960         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3961             !sh->reconstruct_state) {
3962                 /* Need to write out all blocks after computing parity */
3963                 sh->disks = conf->raid_disks;
3964                 stripe_set_idx(sh->sector, conf, 0, sh);
3965                 schedule_reconstruction(sh, &s, 1, 1);
3966         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3967                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3968                 atomic_dec(&conf->reshape_stripes);
3969                 wake_up(&conf->wait_for_overlap);
3970                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3971         }
3972
3973         if (s.expanding && s.locked == 0 &&
3974             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3975                 handle_stripe_expansion(conf, sh);
3976
3977 finish:
3978         /* wait for this device to become unblocked */
3979         if (unlikely(s.blocked_rdev)) {
3980                 if (conf->mddev->external)
3981                         md_wait_for_blocked_rdev(s.blocked_rdev,
3982                                                  conf->mddev);
3983                 else
3984                         /* Internal metadata will immediately
3985                          * be written by raid5d, so we don't
3986                          * need to wait here.
3987                          */
3988                         rdev_dec_pending(s.blocked_rdev,
3989                                          conf->mddev);
3990         }
3991
3992         if (s.handle_bad_blocks)
3993                 for (i = disks; i--; ) {
3994                         struct md_rdev *rdev;
3995                         struct r5dev *dev = &sh->dev[i];
3996                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3997                                 /* We own a safe reference to the rdev */
3998                                 rdev = conf->disks[i].rdev;
3999                                 if (!rdev_set_badblocks(rdev, sh->sector,
4000                                                         STRIPE_SECTORS, 0))
4001                                         md_error(conf->mddev, rdev);
4002                                 rdev_dec_pending(rdev, conf->mddev);
4003                         }
4004                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4005                                 rdev = conf->disks[i].rdev;
4006                                 rdev_clear_badblocks(rdev, sh->sector,
4007                                                      STRIPE_SECTORS, 0);
4008                                 rdev_dec_pending(rdev, conf->mddev);
4009                         }
4010                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4011                                 rdev = conf->disks[i].replacement;
4012                                 if (!rdev)
4013                                         /* rdev have been moved down */
4014                                         rdev = conf->disks[i].rdev;
4015                                 rdev_clear_badblocks(rdev, sh->sector,
4016                                                      STRIPE_SECTORS, 0);
4017                                 rdev_dec_pending(rdev, conf->mddev);
4018                         }
4019                 }
4020
4021         if (s.ops_request)
4022                 raid_run_ops(sh, s.ops_request);
4023
4024         ops_run_io(sh, &s);
4025
4026         if (s.dec_preread_active) {
4027                 /* We delay this until after ops_run_io so that if make_request
4028                  * is waiting on a flush, it won't continue until the writes
4029                  * have actually been submitted.
4030                  */
4031                 atomic_dec(&conf->preread_active_stripes);
4032                 if (atomic_read(&conf->preread_active_stripes) <
4033                     IO_THRESHOLD)
4034                         md_wakeup_thread(conf->mddev->thread);
4035         }
4036
4037         return_io(s.return_bi);
4038
4039         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4040 }
4041
4042 static void raid5_activate_delayed(struct r5conf *conf)
4043 {
4044         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4045                 while (!list_empty(&conf->delayed_list)) {
4046                         struct list_head *l = conf->delayed_list.next;
4047                         struct stripe_head *sh;
4048                         sh = list_entry(l, struct stripe_head, lru);
4049                         list_del_init(l);
4050                         clear_bit(STRIPE_DELAYED, &sh->state);
4051                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4052                                 atomic_inc(&conf->preread_active_stripes);
4053                         list_add_tail(&sh->lru, &conf->hold_list);
4054                         raid5_wakeup_stripe_thread(sh);
4055                 }
4056         }
4057 }
4058
4059 static void activate_bit_delay(struct r5conf *conf,
4060         struct list_head *temp_inactive_list)
4061 {
4062         /* device_lock is held */
4063         struct list_head head;
4064         list_add(&head, &conf->bitmap_list);
4065         list_del_init(&conf->bitmap_list);
4066         while (!list_empty(&head)) {
4067                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4068                 int hash;
4069                 list_del_init(&sh->lru);
4070                 atomic_inc(&sh->count);
4071                 hash = sh->hash_lock_index;
4072                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4073         }
4074 }
4075
4076 int md_raid5_congested(struct mddev *mddev, int bits)
4077 {
4078         struct r5conf *conf = mddev->private;
4079
4080         /* No difference between reads and writes.  Just check
4081          * how busy the stripe_cache is
4082          */
4083
4084         if (conf->inactive_blocked)
4085                 return 1;
4086         if (conf->quiesce)
4087                 return 1;
4088         if (atomic_read(&conf->empty_inactive_list_nr))
4089                 return 1;
4090
4091         return 0;
4092 }
4093 EXPORT_SYMBOL_GPL(md_raid5_congested);
4094
4095 static int raid5_congested(void *data, int bits)
4096 {
4097         struct mddev *mddev = data;
4098
4099         return mddev_congested(mddev, bits) ||
4100                 md_raid5_congested(mddev, bits);
4101 }
4102
4103 /* We want read requests to align with chunks where possible,
4104  * but write requests don't need to.
4105  */
4106 static int raid5_mergeable_bvec(struct request_queue *q,
4107                                 struct bvec_merge_data *bvm,
4108                                 struct bio_vec *biovec)
4109 {
4110         struct mddev *mddev = q->queuedata;
4111         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4112         int max;
4113         unsigned int chunk_sectors = mddev->chunk_sectors;
4114         unsigned int bio_sectors = bvm->bi_size >> 9;
4115
4116         if ((bvm->bi_rw & 1) == WRITE)
4117                 return biovec->bv_len; /* always allow writes to be mergeable */
4118
4119         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4120                 chunk_sectors = mddev->new_chunk_sectors;
4121         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4122         if (max < 0) max = 0;
4123         if (max <= biovec->bv_len && bio_sectors == 0)
4124                 return biovec->bv_len;
4125         else
4126                 return max;
4127 }
4128
4129 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4130 {
4131         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4132         unsigned int chunk_sectors = mddev->chunk_sectors;
4133         unsigned int bio_sectors = bio_sectors(bio);
4134
4135         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4136                 chunk_sectors = mddev->new_chunk_sectors;
4137         return  chunk_sectors >=
4138                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4139 }
4140
4141 /*
4142  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4143  *  later sampled by raid5d.
4144  */
4145 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4146 {
4147         unsigned long flags;
4148
4149         spin_lock_irqsave(&conf->device_lock, flags);
4150
4151         bi->bi_next = conf->retry_read_aligned_list;
4152         conf->retry_read_aligned_list = bi;
4153
4154         spin_unlock_irqrestore(&conf->device_lock, flags);
4155         md_wakeup_thread(conf->mddev->thread);
4156 }
4157
4158 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4159 {
4160         struct bio *bi;
4161
4162         bi = conf->retry_read_aligned;
4163         if (bi) {
4164                 conf->retry_read_aligned = NULL;
4165                 return bi;
4166         }
4167         bi = conf->retry_read_aligned_list;
4168         if(bi) {
4169                 conf->retry_read_aligned_list = bi->bi_next;
4170                 bi->bi_next = NULL;
4171                 /*
4172                  * this sets the active strip count to 1 and the processed
4173                  * strip count to zero (upper 8 bits)
4174                  */
4175                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4176         }
4177
4178         return bi;
4179 }
4180
4181 /*
4182  *  The "raid5_align_endio" should check if the read succeeded and if it
4183  *  did, call bio_endio on the original bio (having bio_put the new bio
4184  *  first).
4185  *  If the read failed..
4186  */
4187 static void raid5_align_endio(struct bio *bi, int error)
4188 {
4189         struct bio* raid_bi  = bi->bi_private;
4190         struct mddev *mddev;
4191         struct r5conf *conf;
4192         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4193         struct md_rdev *rdev;
4194
4195         bio_put(bi);
4196
4197         rdev = (void*)raid_bi->bi_next;
4198         raid_bi->bi_next = NULL;
4199         mddev = rdev->mddev;
4200         conf = mddev->private;
4201
4202         rdev_dec_pending(rdev, conf->mddev);
4203
4204         if (!error && uptodate) {
4205                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4206                                          raid_bi, 0);
4207                 bio_endio(raid_bi, 0);
4208                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4209                         wake_up(&conf->wait_for_stripe);
4210                 return;
4211         }
4212
4213         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4214
4215         add_bio_to_retry(raid_bi, conf);
4216 }
4217
4218 static int bio_fits_rdev(struct bio *bi)
4219 {
4220         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4221
4222         if (bio_sectors(bi) > queue_max_sectors(q))
4223                 return 0;
4224         blk_recount_segments(q, bi);
4225         if (bi->bi_phys_segments > queue_max_segments(q))
4226                 return 0;
4227
4228         if (q->merge_bvec_fn)
4229                 /* it's too hard to apply the merge_bvec_fn at this stage,
4230                  * just just give up
4231                  */
4232                 return 0;
4233
4234         return 1;
4235 }
4236
4237 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4238 {
4239         struct r5conf *conf = mddev->private;
4240         int dd_idx;
4241         struct bio* align_bi;
4242         struct md_rdev *rdev;
4243         sector_t end_sector;
4244
4245         if (!in_chunk_boundary(mddev, raid_bio)) {
4246                 pr_debug("chunk_aligned_read : non aligned\n");
4247                 return 0;
4248         }
4249         /*
4250          * use bio_clone_mddev to make a copy of the bio
4251          */
4252         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4253         if (!align_bi)
4254                 return 0;
4255         /*
4256          *   set bi_end_io to a new function, and set bi_private to the
4257          *     original bio.
4258          */
4259         align_bi->bi_end_io  = raid5_align_endio;
4260         align_bi->bi_private = raid_bio;
4261         /*
4262          *      compute position
4263          */
4264         align_bi->bi_iter.bi_sector =
4265                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4266                                      0, &dd_idx, NULL);
4267
4268         end_sector = bio_end_sector(align_bi);
4269         rcu_read_lock();
4270         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4271         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4272             rdev->recovery_offset < end_sector) {
4273                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4274                 if (rdev &&
4275                     (test_bit(Faulty, &rdev->flags) ||
4276                     !(test_bit(In_sync, &rdev->flags) ||
4277                       rdev->recovery_offset >= end_sector)))
4278                         rdev = NULL;
4279         }
4280         if (rdev) {
4281                 sector_t first_bad;
4282                 int bad_sectors;
4283
4284                 atomic_inc(&rdev->nr_pending);
4285                 rcu_read_unlock();
4286                 raid_bio->bi_next = (void*)rdev;
4287                 align_bi->bi_bdev =  rdev->bdev;
4288                 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4289
4290                 if (!bio_fits_rdev(align_bi) ||
4291                     is_badblock(rdev, align_bi->bi_iter.bi_sector,
4292                                 bio_sectors(align_bi),
4293                                 &first_bad, &bad_sectors)) {
4294                         /* too big in some way, or has a known bad block */
4295                         bio_put(align_bi);
4296                         rdev_dec_pending(rdev, mddev);
4297                         return 0;
4298                 }
4299
4300                 /* No reshape active, so we can trust rdev->data_offset */
4301                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4302
4303                 spin_lock_irq(&conf->device_lock);
4304                 wait_event_lock_irq(conf->wait_for_stripe,
4305                                     conf->quiesce == 0,
4306                                     conf->device_lock);
4307                 atomic_inc(&conf->active_aligned_reads);
4308                 spin_unlock_irq(&conf->device_lock);
4309
4310                 if (mddev->gendisk)
4311                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4312                                               align_bi, disk_devt(mddev->gendisk),
4313                                               raid_bio->bi_iter.bi_sector);
4314                 generic_make_request(align_bi);
4315                 return 1;
4316         } else {
4317                 rcu_read_unlock();
4318                 bio_put(align_bi);
4319                 return 0;
4320         }
4321 }
4322
4323 /* __get_priority_stripe - get the next stripe to process
4324  *
4325  * Full stripe writes are allowed to pass preread active stripes up until
4326  * the bypass_threshold is exceeded.  In general the bypass_count
4327  * increments when the handle_list is handled before the hold_list; however, it
4328  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4329  * stripe with in flight i/o.  The bypass_count will be reset when the
4330  * head of the hold_list has changed, i.e. the head was promoted to the
4331  * handle_list.
4332  */
4333 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4334 {
4335         struct stripe_head *sh = NULL, *tmp;
4336         struct list_head *handle_list = NULL;
4337         struct r5worker_group *wg = NULL;
4338
4339         if (conf->worker_cnt_per_group == 0) {
4340                 handle_list = &conf->handle_list;
4341         } else if (group != ANY_GROUP) {
4342                 handle_list = &conf->worker_groups[group].handle_list;
4343                 wg = &conf->worker_groups[group];
4344         } else {
4345                 int i;
4346                 for (i = 0; i < conf->group_cnt; i++) {
4347                         handle_list = &conf->worker_groups[i].handle_list;
4348                         wg = &conf->worker_groups[i];
4349                         if (!list_empty(handle_list))
4350                                 break;
4351                 }
4352         }
4353
4354         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4355                   __func__,
4356                   list_empty(handle_list) ? "empty" : "busy",
4357                   list_empty(&conf->hold_list) ? "empty" : "busy",
4358                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4359
4360         if (!list_empty(handle_list)) {
4361                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4362
4363                 if (list_empty(&conf->hold_list))
4364                         conf->bypass_count = 0;
4365                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4366                         if (conf->hold_list.next == conf->last_hold)
4367                                 conf->bypass_count++;
4368                         else {
4369                                 conf->last_hold = conf->hold_list.next;
4370                                 conf->bypass_count -= conf->bypass_threshold;
4371                                 if (conf->bypass_count < 0)
4372                                         conf->bypass_count = 0;
4373                         }
4374                 }
4375         } else if (!list_empty(&conf->hold_list) &&
4376                    ((conf->bypass_threshold &&
4377                      conf->bypass_count > conf->bypass_threshold) ||
4378                     atomic_read(&conf->pending_full_writes) == 0)) {
4379
4380                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4381                         if (conf->worker_cnt_per_group == 0 ||
4382                             group == ANY_GROUP ||
4383                             !cpu_online(tmp->cpu) ||
4384                             cpu_to_group(tmp->cpu) == group) {
4385                                 sh = tmp;
4386                                 break;
4387                         }
4388                 }
4389
4390                 if (sh) {
4391                         conf->bypass_count -= conf->bypass_threshold;
4392                         if (conf->bypass_count < 0)
4393                                 conf->bypass_count = 0;
4394                 }
4395                 wg = NULL;
4396         }
4397
4398         if (!sh)
4399                 return NULL;
4400
4401         if (wg) {
4402                 wg->stripes_cnt--;
4403                 sh->group = NULL;
4404         }
4405         list_del_init(&sh->lru);
4406         BUG_ON(atomic_inc_return(&sh->count) != 1);
4407         return sh;
4408 }
4409
4410 struct raid5_plug_cb {
4411         struct blk_plug_cb      cb;
4412         struct list_head        list;
4413         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4414 };
4415
4416 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4417 {
4418         struct raid5_plug_cb *cb = container_of(
4419                 blk_cb, struct raid5_plug_cb, cb);
4420         struct stripe_head *sh;
4421         struct mddev *mddev = cb->cb.data;
4422         struct r5conf *conf = mddev->private;
4423         int cnt = 0;
4424         int hash;
4425
4426         if (cb->list.next && !list_empty(&cb->list)) {
4427                 spin_lock_irq(&conf->device_lock);
4428                 while (!list_empty(&cb->list)) {
4429                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4430                         list_del_init(&sh->lru);
4431                         /*
4432                          * avoid race release_stripe_plug() sees
4433                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4434                          * is still in our list
4435                          */
4436                         smp_mb__before_atomic();
4437                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4438                         /*
4439                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4440                          * case, the count is always > 1 here
4441                          */
4442                         hash = sh->hash_lock_index;
4443                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4444                         cnt++;
4445                 }
4446                 spin_unlock_irq(&conf->device_lock);
4447         }
4448         release_inactive_stripe_list(conf, cb->temp_inactive_list,
4449                                      NR_STRIPE_HASH_LOCKS);
4450         if (mddev->queue)
4451                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4452         kfree(cb);
4453 }
4454
4455 static void release_stripe_plug(struct mddev *mddev,
4456                                 struct stripe_head *sh)
4457 {
4458         struct blk_plug_cb *blk_cb = blk_check_plugged(
4459                 raid5_unplug, mddev,
4460                 sizeof(struct raid5_plug_cb));
4461         struct raid5_plug_cb *cb;
4462
4463         if (!blk_cb) {
4464                 release_stripe(sh);
4465                 return;
4466         }
4467
4468         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4469
4470         if (cb->list.next == NULL) {
4471                 int i;
4472                 INIT_LIST_HEAD(&cb->list);
4473                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4474                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
4475         }
4476
4477         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4478                 list_add_tail(&sh->lru, &cb->list);
4479         else
4480                 release_stripe(sh);
4481 }
4482
4483 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4484 {
4485         struct r5conf *conf = mddev->private;
4486         sector_t logical_sector, last_sector;
4487         struct stripe_head *sh;
4488         int remaining;
4489         int stripe_sectors;
4490
4491         if (mddev->reshape_position != MaxSector)
4492                 /* Skip discard while reshape is happening */
4493                 return;
4494
4495         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4496         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4497
4498         bi->bi_next = NULL;
4499         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4500
4501         stripe_sectors = conf->chunk_sectors *
4502                 (conf->raid_disks - conf->max_degraded);
4503         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4504                                                stripe_sectors);
4505         sector_div(last_sector, stripe_sectors);
4506
4507         logical_sector *= conf->chunk_sectors;
4508         last_sector *= conf->chunk_sectors;
4509
4510         for (; logical_sector < last_sector;
4511              logical_sector += STRIPE_SECTORS) {
4512                 DEFINE_WAIT(w);
4513                 int d;
4514         again:
4515                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4516                 prepare_to_wait(&conf->wait_for_overlap, &w,
4517                                 TASK_UNINTERRUPTIBLE);
4518                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4519                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4520                         release_stripe(sh);
4521                         schedule();
4522                         goto again;
4523                 }
4524                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4525                 spin_lock_irq(&sh->stripe_lock);
4526                 for (d = 0; d < conf->raid_disks; d++) {
4527                         if (d == sh->pd_idx || d == sh->qd_idx)
4528                                 continue;
4529                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4530                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4531                                 spin_unlock_irq(&sh->stripe_lock);
4532                                 release_stripe(sh);
4533                                 schedule();
4534                                 goto again;
4535                         }
4536                 }
4537                 set_bit(STRIPE_DISCARD, &sh->state);
4538                 finish_wait(&conf->wait_for_overlap, &w);
4539                 for (d = 0; d < conf->raid_disks; d++) {
4540                         if (d == sh->pd_idx || d == sh->qd_idx)
4541                                 continue;
4542                         sh->dev[d].towrite = bi;
4543                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4544                         raid5_inc_bi_active_stripes(bi);
4545                 }
4546                 spin_unlock_irq(&sh->stripe_lock);
4547                 if (conf->mddev->bitmap) {
4548                         for (d = 0;
4549                              d < conf->raid_disks - conf->max_degraded;
4550                              d++)
4551                                 bitmap_startwrite(mddev->bitmap,
4552                                                   sh->sector,
4553                                                   STRIPE_SECTORS,
4554                                                   0);
4555                         sh->bm_seq = conf->seq_flush + 1;
4556                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4557                 }
4558
4559                 set_bit(STRIPE_HANDLE, &sh->state);
4560                 clear_bit(STRIPE_DELAYED, &sh->state);
4561                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4562                         atomic_inc(&conf->preread_active_stripes);
4563                 release_stripe_plug(mddev, sh);
4564         }
4565
4566         remaining = raid5_dec_bi_active_stripes(bi);
4567         if (remaining == 0) {
4568                 md_write_end(mddev);
4569                 bio_endio(bi, 0);
4570         }
4571 }
4572
4573 static void make_request(struct mddev *mddev, struct bio * bi)
4574 {
4575         struct r5conf *conf = mddev->private;
4576         int dd_idx;
4577         sector_t new_sector;
4578         sector_t logical_sector, last_sector;
4579         struct stripe_head *sh;
4580         const int rw = bio_data_dir(bi);
4581         int remaining;
4582         DEFINE_WAIT(w);
4583         bool do_prepare;
4584
4585         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4586                 md_flush_request(mddev, bi);
4587                 return;
4588         }
4589
4590         md_write_start(mddev, bi);
4591
4592         if (rw == READ &&
4593              mddev->reshape_position == MaxSector &&
4594              chunk_aligned_read(mddev,bi))
4595                 return;
4596
4597         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4598                 make_discard_request(mddev, bi);
4599                 return;
4600         }
4601
4602         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4603         last_sector = bio_end_sector(bi);
4604         bi->bi_next = NULL;
4605         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4606
4607         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4608         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4609                 int previous;
4610                 int seq;
4611
4612                 do_prepare = false;
4613         retry:
4614                 seq = read_seqcount_begin(&conf->gen_lock);
4615                 previous = 0;
4616                 if (do_prepare)
4617                         prepare_to_wait(&conf->wait_for_overlap, &w,
4618                                 TASK_UNINTERRUPTIBLE);
4619                 if (unlikely(conf->reshape_progress != MaxSector)) {
4620                         /* spinlock is needed as reshape_progress may be
4621                          * 64bit on a 32bit platform, and so it might be
4622                          * possible to see a half-updated value
4623                          * Of course reshape_progress could change after
4624                          * the lock is dropped, so once we get a reference
4625                          * to the stripe that we think it is, we will have
4626                          * to check again.
4627                          */
4628                         spin_lock_irq(&conf->device_lock);
4629                         if (mddev->reshape_backwards
4630                             ? logical_sector < conf->reshape_progress
4631                             : logical_sector >= conf->reshape_progress) {
4632                                 previous = 1;
4633                         } else {
4634                                 if (mddev->reshape_backwards
4635                                     ? logical_sector < conf->reshape_safe
4636                                     : logical_sector >= conf->reshape_safe) {
4637                                         spin_unlock_irq(&conf->device_lock);
4638                                         schedule();
4639                                         do_prepare = true;
4640                                         goto retry;
4641                                 }
4642                         }
4643                         spin_unlock_irq(&conf->device_lock);
4644                 }
4645
4646                 new_sector = raid5_compute_sector(conf, logical_sector,
4647                                                   previous,
4648                                                   &dd_idx, NULL);
4649                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4650                         (unsigned long long)new_sector,
4651                         (unsigned long long)logical_sector);
4652
4653                 sh = get_active_stripe(conf, new_sector, previous,
4654                                        (bi->bi_rw&RWA_MASK), 0);
4655                 if (sh) {
4656                         if (unlikely(previous)) {
4657                                 /* expansion might have moved on while waiting for a
4658                                  * stripe, so we must do the range check again.
4659                                  * Expansion could still move past after this
4660                                  * test, but as we are holding a reference to
4661                                  * 'sh', we know that if that happens,
4662                                  *  STRIPE_EXPANDING will get set and the expansion
4663                                  * won't proceed until we finish with the stripe.
4664                                  */
4665                                 int must_retry = 0;
4666                                 spin_lock_irq(&conf->device_lock);
4667                                 if (mddev->reshape_backwards
4668                                     ? logical_sector >= conf->reshape_progress
4669                                     : logical_sector < conf->reshape_progress)
4670                                         /* mismatch, need to try again */
4671                                         must_retry = 1;
4672                                 spin_unlock_irq(&conf->device_lock);
4673                                 if (must_retry) {
4674                                         release_stripe(sh);
4675                                         schedule();
4676                                         do_prepare = true;
4677                                         goto retry;
4678                                 }
4679                         }
4680                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
4681                                 /* Might have got the wrong stripe_head
4682                                  * by accident
4683                                  */
4684                                 release_stripe(sh);
4685                                 goto retry;
4686                         }
4687
4688                         if (rw == WRITE &&
4689                             logical_sector >= mddev->suspend_lo &&
4690                             logical_sector < mddev->suspend_hi) {
4691                                 release_stripe(sh);
4692                                 /* As the suspend_* range is controlled by
4693                                  * userspace, we want an interruptible
4694                                  * wait.
4695                                  */
4696                                 flush_signals(current);
4697                                 prepare_to_wait(&conf->wait_for_overlap,
4698                                                 &w, TASK_INTERRUPTIBLE);
4699                                 if (logical_sector >= mddev->suspend_lo &&
4700                                     logical_sector < mddev->suspend_hi) {
4701                                         schedule();
4702                                         do_prepare = true;
4703                                 }
4704                                 goto retry;
4705                         }
4706
4707                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4708                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4709                                 /* Stripe is busy expanding or
4710                                  * add failed due to overlap.  Flush everything
4711                                  * and wait a while
4712                                  */
4713                                 md_wakeup_thread(mddev->thread);
4714                                 release_stripe(sh);
4715                                 schedule();
4716                                 do_prepare = true;
4717                                 goto retry;
4718                         }
4719                         set_bit(STRIPE_HANDLE, &sh->state);
4720                         clear_bit(STRIPE_DELAYED, &sh->state);
4721                         if ((bi->bi_rw & REQ_SYNC) &&
4722                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4723                                 atomic_inc(&conf->preread_active_stripes);
4724                         release_stripe_plug(mddev, sh);
4725                 } else {
4726                         /* cannot get stripe for read-ahead, just give-up */
4727                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4728                         break;
4729                 }
4730         }
4731         finish_wait(&conf->wait_for_overlap, &w);
4732
4733         remaining = raid5_dec_bi_active_stripes(bi);
4734         if (remaining == 0) {
4735
4736                 if ( rw == WRITE )
4737                         md_write_end(mddev);
4738
4739                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4740                                          bi, 0);
4741                 bio_endio(bi, 0);
4742         }
4743 }
4744
4745 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4746
4747 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4748 {
4749         /* reshaping is quite different to recovery/resync so it is
4750          * handled quite separately ... here.
4751          *
4752          * On each call to sync_request, we gather one chunk worth of
4753          * destination stripes and flag them as expanding.
4754          * Then we find all the source stripes and request reads.
4755          * As the reads complete, handle_stripe will copy the data
4756          * into the destination stripe and release that stripe.
4757          */
4758         struct r5conf *conf = mddev->private;
4759         struct stripe_head *sh;
4760         sector_t first_sector, last_sector;
4761         int raid_disks = conf->previous_raid_disks;
4762         int data_disks = raid_disks - conf->max_degraded;
4763         int new_data_disks = conf->raid_disks - conf->max_degraded;
4764         int i;
4765         int dd_idx;
4766         sector_t writepos, readpos, safepos;
4767         sector_t stripe_addr;
4768         int reshape_sectors;
4769         struct list_head stripes;
4770
4771         if (sector_nr == 0) {
4772                 /* If restarting in the middle, skip the initial sectors */
4773                 if (mddev->reshape_backwards &&
4774                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4775                         sector_nr = raid5_size(mddev, 0, 0)
4776                                 - conf->reshape_progress;
4777                 } else if (!mddev->reshape_backwards &&
4778                            conf->reshape_progress > 0)
4779                         sector_nr = conf->reshape_progress;
4780                 sector_div(sector_nr, new_data_disks);
4781                 if (sector_nr) {
4782                         mddev->curr_resync_completed = sector_nr;
4783                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4784                         *skipped = 1;
4785                         return sector_nr;
4786                 }
4787         }
4788
4789         /* We need to process a full chunk at a time.
4790          * If old and new chunk sizes differ, we need to process the
4791          * largest of these
4792          */
4793         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4794                 reshape_sectors = mddev->new_chunk_sectors;
4795         else
4796                 reshape_sectors = mddev->chunk_sectors;
4797
4798         /* We update the metadata at least every 10 seconds, or when
4799          * the data about to be copied would over-write the source of
4800          * the data at the front of the range.  i.e. one new_stripe
4801          * along from reshape_progress new_maps to after where
4802          * reshape_safe old_maps to
4803          */
4804         writepos = conf->reshape_progress;
4805         sector_div(writepos, new_data_disks);
4806         readpos = conf->reshape_progress;
4807         sector_div(readpos, data_disks);
4808         safepos = conf->reshape_safe;
4809         sector_div(safepos, data_disks);
4810         if (mddev->reshape_backwards) {
4811                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4812                 readpos += reshape_sectors;
4813                 safepos += reshape_sectors;
4814         } else {
4815                 writepos += reshape_sectors;
4816                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4817                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4818         }
4819
4820         /* Having calculated the 'writepos' possibly use it
4821          * to set 'stripe_addr' which is where we will write to.
4822          */
4823         if (mddev->reshape_backwards) {
4824                 BUG_ON(conf->reshape_progress == 0);
4825                 stripe_addr = writepos;
4826                 BUG_ON((mddev->dev_sectors &
4827                         ~((sector_t)reshape_sectors - 1))
4828                        - reshape_sectors - stripe_addr
4829                        != sector_nr);
4830         } else {
4831                 BUG_ON(writepos != sector_nr + reshape_sectors);
4832                 stripe_addr = sector_nr;
4833         }
4834
4835         /* 'writepos' is the most advanced device address we might write.
4836          * 'readpos' is the least advanced device address we might read.
4837          * 'safepos' is the least address recorded in the metadata as having
4838          *     been reshaped.
4839          * If there is a min_offset_diff, these are adjusted either by
4840          * increasing the safepos/readpos if diff is negative, or
4841          * increasing writepos if diff is positive.
4842          * If 'readpos' is then behind 'writepos', there is no way that we can
4843          * ensure safety in the face of a crash - that must be done by userspace
4844          * making a backup of the data.  So in that case there is no particular
4845          * rush to update metadata.
4846          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4847          * update the metadata to advance 'safepos' to match 'readpos' so that
4848          * we can be safe in the event of a crash.
4849          * So we insist on updating metadata if safepos is behind writepos and
4850          * readpos is beyond writepos.
4851          * In any case, update the metadata every 10 seconds.
4852          * Maybe that number should be configurable, but I'm not sure it is
4853          * worth it.... maybe it could be a multiple of safemode_delay???
4854          */
4855         if (conf->min_offset_diff < 0) {
4856                 safepos += -conf->min_offset_diff;
4857                 readpos += -conf->min_offset_diff;
4858         } else
4859                 writepos += conf->min_offset_diff;
4860
4861         if ((mddev->reshape_backwards
4862              ? (safepos > writepos && readpos < writepos)
4863              : (safepos < writepos && readpos > writepos)) ||
4864             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4865                 /* Cannot proceed until we've updated the superblock... */
4866                 wait_event(conf->wait_for_overlap,
4867                            atomic_read(&conf->reshape_stripes)==0
4868                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4869                 if (atomic_read(&conf->reshape_stripes) != 0)
4870                         return 0;
4871                 mddev->reshape_position = conf->reshape_progress;
4872                 mddev->curr_resync_completed = sector_nr;
4873                 conf->reshape_checkpoint = jiffies;
4874                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4875                 md_wakeup_thread(mddev->thread);
4876                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4877                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4878                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4879                         return 0;
4880                 spin_lock_irq(&conf->device_lock);
4881                 conf->reshape_safe = mddev->reshape_position;
4882                 spin_unlock_irq(&conf->device_lock);
4883                 wake_up(&conf->wait_for_overlap);
4884                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4885         }
4886
4887         INIT_LIST_HEAD(&stripes);
4888         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4889                 int j;
4890                 int skipped_disk = 0;
4891                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4892                 set_bit(STRIPE_EXPANDING, &sh->state);
4893                 atomic_inc(&conf->reshape_stripes);
4894                 /* If any of this stripe is beyond the end of the old
4895                  * array, then we need to zero those blocks
4896                  */
4897                 for (j=sh->disks; j--;) {
4898                         sector_t s;
4899                         if (j == sh->pd_idx)
4900                                 continue;
4901                         if (conf->level == 6 &&
4902                             j == sh->qd_idx)
4903                                 continue;
4904                         s = compute_blocknr(sh, j, 0);
4905                         if (s < raid5_size(mddev, 0, 0)) {
4906                                 skipped_disk = 1;
4907                                 continue;
4908                         }
4909                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4910                         set_bit(R5_Expanded, &sh->dev[j].flags);
4911                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4912                 }
4913                 if (!skipped_disk) {
4914                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4915                         set_bit(STRIPE_HANDLE, &sh->state);
4916                 }
4917                 list_add(&sh->lru, &stripes);
4918         }
4919         spin_lock_irq(&conf->device_lock);
4920         if (mddev->reshape_backwards)
4921                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4922         else
4923                 conf->reshape_progress += reshape_sectors * new_data_disks;
4924         spin_unlock_irq(&conf->device_lock);
4925         /* Ok, those stripe are ready. We can start scheduling
4926          * reads on the source stripes.
4927          * The source stripes are determined by mapping the first and last
4928          * block on the destination stripes.
4929          */
4930         first_sector =
4931                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4932                                      1, &dd_idx, NULL);
4933         last_sector =
4934                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4935                                             * new_data_disks - 1),
4936                                      1, &dd_idx, NULL);
4937         if (last_sector >= mddev->dev_sectors)
4938                 last_sector = mddev->dev_sectors - 1;
4939         while (first_sector <= last_sector) {
4940                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4941                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4942                 set_bit(STRIPE_HANDLE, &sh->state);
4943                 release_stripe(sh);
4944                 first_sector += STRIPE_SECTORS;
4945         }
4946         /* Now that the sources are clearly marked, we can release
4947          * the destination stripes
4948          */
4949         while (!list_empty(&stripes)) {
4950                 sh = list_entry(stripes.next, struct stripe_head, lru);
4951                 list_del_init(&sh->lru);
4952                 release_stripe(sh);
4953         }
4954         /* If this takes us to the resync_max point where we have to pause,
4955          * then we need to write out the superblock.
4956          */
4957         sector_nr += reshape_sectors;
4958         if ((sector_nr - mddev->curr_resync_completed) * 2
4959             >= mddev->resync_max - mddev->curr_resync_completed) {
4960                 /* Cannot proceed until we've updated the superblock... */
4961                 wait_event(conf->wait_for_overlap,
4962                            atomic_read(&conf->reshape_stripes) == 0
4963                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4964                 if (atomic_read(&conf->reshape_stripes) != 0)
4965                         goto ret;
4966                 mddev->reshape_position = conf->reshape_progress;
4967                 mddev->curr_resync_completed = sector_nr;
4968                 conf->reshape_checkpoint = jiffies;
4969                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4970                 md_wakeup_thread(mddev->thread);
4971                 wait_event(mddev->sb_wait,
4972                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4973                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4974                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4975                         goto ret;
4976                 spin_lock_irq(&conf->device_lock);
4977                 conf->reshape_safe = mddev->reshape_position;
4978                 spin_unlock_irq(&conf->device_lock);
4979                 wake_up(&conf->wait_for_overlap);
4980                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4981         }
4982 ret:
4983         return reshape_sectors;
4984 }
4985
4986 /* FIXME go_faster isn't used */
4987 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4988 {
4989         struct r5conf *conf = mddev->private;
4990         struct stripe_head *sh;
4991         sector_t max_sector = mddev->dev_sectors;
4992         sector_t sync_blocks;
4993         int still_degraded = 0;
4994         int i;
4995
4996         if (sector_nr >= max_sector) {
4997                 /* just being told to finish up .. nothing much to do */
4998
4999                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5000                         end_reshape(conf);
5001                         return 0;
5002                 }
5003
5004                 if (mddev->curr_resync < max_sector) /* aborted */
5005                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5006                                         &sync_blocks, 1);
5007                 else /* completed sync */
5008                         conf->fullsync = 0;
5009                 bitmap_close_sync(mddev->bitmap);
5010
5011                 return 0;
5012         }
5013
5014         /* Allow raid5_quiesce to complete */
5015         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5016
5017         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5018                 return reshape_request(mddev, sector_nr, skipped);
5019
5020         /* No need to check resync_max as we never do more than one
5021          * stripe, and as resync_max will always be on a chunk boundary,
5022          * if the check in md_do_sync didn't fire, there is no chance
5023          * of overstepping resync_max here
5024          */
5025
5026         /* if there is too many failed drives and we are trying
5027          * to resync, then assert that we are finished, because there is
5028          * nothing we can do.
5029          */
5030         if (mddev->degraded >= conf->max_degraded &&
5031             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5032                 sector_t rv = mddev->dev_sectors - sector_nr;
5033                 *skipped = 1;
5034                 return rv;
5035         }
5036         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5037             !conf->fullsync &&
5038             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5039             sync_blocks >= STRIPE_SECTORS) {
5040                 /* we can skip this block, and probably more */
5041                 sync_blocks /= STRIPE_SECTORS;
5042                 *skipped = 1;
5043                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5044         }
5045
5046         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5047
5048         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5049         if (sh == NULL) {
5050                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5051                 /* make sure we don't swamp the stripe cache if someone else
5052                  * is trying to get access
5053                  */
5054                 schedule_timeout_uninterruptible(1);
5055         }
5056         /* Need to check if array will still be degraded after recovery/resync
5057          * We don't need to check the 'failed' flag as when that gets set,
5058          * recovery aborts.
5059          */
5060         for (i = 0; i < conf->raid_disks; i++)
5061                 if (conf->disks[i].rdev == NULL)
5062                         still_degraded = 1;
5063
5064         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5065
5066         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5067         set_bit(STRIPE_HANDLE, &sh->state);
5068
5069         release_stripe(sh);
5070
5071         return STRIPE_SECTORS;
5072 }
5073
5074 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5075 {
5076         /* We may not be able to submit a whole bio at once as there
5077          * may not be enough stripe_heads available.
5078          * We cannot pre-allocate enough stripe_heads as we may need
5079          * more than exist in the cache (if we allow ever large chunks).
5080          * So we do one stripe head at a time and record in
5081          * ->bi_hw_segments how many have been done.
5082          *
5083          * We *know* that this entire raid_bio is in one chunk, so
5084          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5085          */
5086         struct stripe_head *sh;
5087         int dd_idx;
5088         sector_t sector, logical_sector, last_sector;
5089         int scnt = 0;
5090         int remaining;
5091         int handled = 0;
5092
5093         logical_sector = raid_bio->bi_iter.bi_sector &
5094                 ~((sector_t)STRIPE_SECTORS-1);
5095         sector = raid5_compute_sector(conf, logical_sector,
5096                                       0, &dd_idx, NULL);
5097         last_sector = bio_end_sector(raid_bio);
5098
5099         for (; logical_sector < last_sector;
5100              logical_sector += STRIPE_SECTORS,
5101                      sector += STRIPE_SECTORS,
5102                      scnt++) {
5103
5104                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5105                         /* already done this stripe */
5106                         continue;
5107
5108                 sh = get_active_stripe(conf, sector, 0, 1, 1);
5109
5110                 if (!sh) {
5111                         /* failed to get a stripe - must wait */
5112                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5113                         conf->retry_read_aligned = raid_bio;
5114                         return handled;
5115                 }
5116
5117                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5118                         release_stripe(sh);
5119                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5120                         conf->retry_read_aligned = raid_bio;
5121                         return handled;
5122                 }
5123
5124                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5125                 handle_stripe(sh);
5126                 release_stripe(sh);
5127                 handled++;
5128         }
5129         remaining = raid5_dec_bi_active_stripes(raid_bio);
5130         if (remaining == 0) {
5131                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5132                                          raid_bio, 0);
5133                 bio_endio(raid_bio, 0);
5134         }
5135         if (atomic_dec_and_test(&conf->active_aligned_reads))
5136                 wake_up(&conf->wait_for_stripe);
5137         return handled;
5138 }
5139
5140 static int handle_active_stripes(struct r5conf *conf, int group,
5141                                  struct r5worker *worker,
5142                                  struct list_head *temp_inactive_list)
5143 {
5144         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5145         int i, batch_size = 0, hash;
5146         bool release_inactive = false;
5147
5148         while (batch_size < MAX_STRIPE_BATCH &&
5149                         (sh = __get_priority_stripe(conf, group)) != NULL)
5150                 batch[batch_size++] = sh;
5151
5152         if (batch_size == 0) {
5153                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5154                         if (!list_empty(temp_inactive_list + i))
5155                                 break;
5156                 if (i == NR_STRIPE_HASH_LOCKS)
5157                         return batch_size;
5158                 release_inactive = true;
5159         }
5160         spin_unlock_irq(&conf->device_lock);
5161
5162         release_inactive_stripe_list(conf, temp_inactive_list,
5163                                      NR_STRIPE_HASH_LOCKS);
5164
5165         if (release_inactive) {
5166                 spin_lock_irq(&conf->device_lock);
5167                 return 0;
5168         }
5169
5170         for (i = 0; i < batch_size; i++)
5171                 handle_stripe(batch[i]);
5172
5173         cond_resched();
5174
5175         spin_lock_irq(&conf->device_lock);
5176         for (i = 0; i < batch_size; i++) {
5177                 hash = batch[i]->hash_lock_index;
5178                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5179         }
5180         return batch_size;
5181 }
5182
5183 static void raid5_do_work(struct work_struct *work)
5184 {
5185         struct r5worker *worker = container_of(work, struct r5worker, work);
5186         struct r5worker_group *group = worker->group;
5187         struct r5conf *conf = group->conf;
5188         int group_id = group - conf->worker_groups;
5189         int handled;
5190         struct blk_plug plug;
5191
5192         pr_debug("+++ raid5worker active\n");
5193
5194         blk_start_plug(&plug);
5195         handled = 0;
5196         spin_lock_irq(&conf->device_lock);
5197         while (1) {
5198                 int batch_size, released;
5199
5200                 released = release_stripe_list(conf, worker->temp_inactive_list);
5201
5202                 batch_size = handle_active_stripes(conf, group_id, worker,
5203                                                    worker->temp_inactive_list);
5204                 worker->working = false;
5205                 if (!batch_size && !released)
5206                         break;
5207                 handled += batch_size;
5208         }
5209         pr_debug("%d stripes handled\n", handled);
5210
5211         spin_unlock_irq(&conf->device_lock);
5212         blk_finish_plug(&plug);
5213
5214         pr_debug("--- raid5worker inactive\n");
5215 }
5216
5217 /*
5218  * This is our raid5 kernel thread.
5219  *
5220  * We scan the hash table for stripes which can be handled now.
5221  * During the scan, completed stripes are saved for us by the interrupt
5222  * handler, so that they will not have to wait for our next wakeup.
5223  */
5224 static void raid5d(struct md_thread *thread)
5225 {
5226         struct mddev *mddev = thread->mddev;
5227         struct r5conf *conf = mddev->private;
5228         int handled;
5229         struct blk_plug plug;
5230
5231         pr_debug("+++ raid5d active\n");
5232
5233         md_check_recovery(mddev);
5234
5235         blk_start_plug(&plug);
5236         handled = 0;
5237         spin_lock_irq(&conf->device_lock);
5238         while (1) {
5239                 struct bio *bio;
5240                 int batch_size, released;
5241
5242                 released = release_stripe_list(conf, conf->temp_inactive_list);
5243
5244                 if (
5245                     !list_empty(&conf->bitmap_list)) {
5246                         /* Now is a good time to flush some bitmap updates */
5247                         conf->seq_flush++;
5248                         spin_unlock_irq(&conf->device_lock);
5249                         bitmap_unplug(mddev->bitmap);
5250                         spin_lock_irq(&conf->device_lock);
5251                         conf->seq_write = conf->seq_flush;
5252                         activate_bit_delay(conf, conf->temp_inactive_list);
5253                 }
5254                 raid5_activate_delayed(conf);
5255
5256                 while ((bio = remove_bio_from_retry(conf))) {
5257                         int ok;
5258                         spin_unlock_irq(&conf->device_lock);
5259                         ok = retry_aligned_read(conf, bio);
5260                         spin_lock_irq(&conf->device_lock);
5261                         if (!ok)
5262                                 break;
5263                         handled++;
5264                 }
5265
5266                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5267                                                    conf->temp_inactive_list);
5268                 if (!batch_size && !released)
5269                         break;
5270                 handled += batch_size;
5271
5272                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5273                         spin_unlock_irq(&conf->device_lock);
5274                         md_check_recovery(mddev);
5275                         spin_lock_irq(&conf->device_lock);
5276                 }
5277         }
5278         pr_debug("%d stripes handled\n", handled);
5279
5280         spin_unlock_irq(&conf->device_lock);
5281
5282         async_tx_issue_pending_all();
5283         blk_finish_plug(&plug);
5284
5285         pr_debug("--- raid5d inactive\n");
5286 }
5287
5288 static ssize_t
5289 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5290 {
5291         struct r5conf *conf = mddev->private;
5292         if (conf)
5293                 return sprintf(page, "%d\n", conf->max_nr_stripes);
5294         else
5295                 return 0;
5296 }
5297
5298 int
5299 raid5_set_cache_size(struct mddev *mddev, int size)
5300 {
5301         struct r5conf *conf = mddev->private;
5302         int err;
5303         int hash;
5304
5305         if (size <= 16 || size > 32768)
5306                 return -EINVAL;
5307         hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5308         while (size < conf->max_nr_stripes) {
5309                 if (drop_one_stripe(conf, hash))
5310                         conf->max_nr_stripes--;
5311                 else
5312                         break;
5313                 hash--;
5314                 if (hash < 0)
5315                         hash = NR_STRIPE_HASH_LOCKS - 1;
5316         }
5317         err = md_allow_write(mddev);
5318         if (err)
5319                 return err;
5320         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5321         while (size > conf->max_nr_stripes) {
5322                 if (grow_one_stripe(conf, hash))
5323                         conf->max_nr_stripes++;
5324                 else break;
5325                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5326         }
5327         return 0;
5328 }
5329 EXPORT_SYMBOL(raid5_set_cache_size);
5330
5331 static ssize_t
5332 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5333 {
5334         struct r5conf *conf = mddev->private;
5335         unsigned long new;
5336         int err;
5337
5338         if (len >= PAGE_SIZE)
5339                 return -EINVAL;
5340         if (!conf)
5341                 return -ENODEV;
5342
5343         if (kstrtoul(page, 10, &new))
5344                 return -EINVAL;
5345         err = raid5_set_cache_size(mddev, new);
5346         if (err)
5347                 return err;
5348         return len;
5349 }
5350
5351 static struct md_sysfs_entry
5352 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5353                                 raid5_show_stripe_cache_size,
5354                                 raid5_store_stripe_cache_size);
5355
5356 static ssize_t
5357 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5358 {
5359         struct r5conf *conf = mddev->private;
5360         if (conf)
5361                 return sprintf(page, "%d\n", conf->bypass_threshold);
5362         else
5363                 return 0;
5364 }
5365
5366 static ssize_t
5367 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5368 {
5369         struct r5conf *conf = mddev->private;
5370         unsigned long new;
5371         if (len >= PAGE_SIZE)
5372                 return -EINVAL;
5373         if (!conf)
5374                 return -ENODEV;
5375
5376         if (kstrtoul(page, 10, &new))
5377                 return -EINVAL;
5378         if (new > conf->max_nr_stripes)
5379                 return -EINVAL;
5380         conf->bypass_threshold = new;
5381         return len;
5382 }
5383
5384 static struct md_sysfs_entry
5385 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5386                                         S_IRUGO | S_IWUSR,
5387                                         raid5_show_preread_threshold,
5388                                         raid5_store_preread_threshold);
5389
5390 static ssize_t
5391 raid5_show_skip_copy(struct mddev *mddev, char *page)
5392 {
5393         struct r5conf *conf = mddev->private;
5394         if (conf)
5395                 return sprintf(page, "%d\n", conf->skip_copy);
5396         else
5397                 return 0;
5398 }
5399
5400 static ssize_t
5401 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5402 {
5403         struct r5conf *conf = mddev->private;
5404         unsigned long new;
5405         if (len >= PAGE_SIZE)
5406                 return -EINVAL;
5407         if (!conf)
5408                 return -ENODEV;
5409
5410         if (kstrtoul(page, 10, &new))
5411                 return -EINVAL;
5412         new = !!new;
5413         if (new == conf->skip_copy)
5414                 return len;
5415
5416         mddev_suspend(mddev);
5417         conf->skip_copy = new;
5418         if (new)
5419                 mddev->queue->backing_dev_info.capabilities |=
5420                                                 BDI_CAP_STABLE_WRITES;
5421         else
5422                 mddev->queue->backing_dev_info.capabilities &=
5423                                                 ~BDI_CAP_STABLE_WRITES;
5424         mddev_resume(mddev);
5425         return len;
5426 }
5427
5428 static struct md_sysfs_entry
5429 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
5430                                         raid5_show_skip_copy,
5431                                         raid5_store_skip_copy);
5432
5433 static ssize_t
5434 stripe_cache_active_show(struct mddev *mddev, char *page)
5435 {
5436         struct r5conf *conf = mddev->private;
5437         if (conf)
5438                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5439         else
5440                 return 0;
5441 }
5442
5443 static struct md_sysfs_entry
5444 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5445
5446 static ssize_t
5447 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5448 {
5449         struct r5conf *conf = mddev->private;
5450         if (conf)
5451                 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5452         else
5453                 return 0;
5454 }
5455
5456 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5457                                int *group_cnt,
5458                                int *worker_cnt_per_group,
5459                                struct r5worker_group **worker_groups);
5460 static ssize_t
5461 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5462 {
5463         struct r5conf *conf = mddev->private;
5464         unsigned long new;
5465         int err;
5466         struct r5worker_group *new_groups, *old_groups;
5467         int group_cnt, worker_cnt_per_group;
5468
5469         if (len >= PAGE_SIZE)
5470                 return -EINVAL;
5471         if (!conf)
5472                 return -ENODEV;
5473
5474         if (kstrtoul(page, 10, &new))
5475                 return -EINVAL;
5476
5477         if (new == conf->worker_cnt_per_group)
5478                 return len;
5479
5480         mddev_suspend(mddev);
5481
5482         old_groups = conf->worker_groups;
5483         if (old_groups)
5484                 flush_workqueue(raid5_wq);
5485
5486         err = alloc_thread_groups(conf, new,
5487                                   &group_cnt, &worker_cnt_per_group,
5488                                   &new_groups);
5489         if (!err) {
5490                 spin_lock_irq(&conf->device_lock);
5491                 conf->group_cnt = group_cnt;
5492                 conf->worker_cnt_per_group = worker_cnt_per_group;
5493                 conf->worker_groups = new_groups;
5494                 spin_unlock_irq(&conf->device_lock);
5495
5496                 if (old_groups)
5497                         kfree(old_groups[0].workers);
5498                 kfree(old_groups);
5499         }
5500
5501         mddev_resume(mddev);
5502
5503         if (err)
5504                 return err;
5505         return len;
5506 }
5507
5508 static struct md_sysfs_entry
5509 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5510                                 raid5_show_group_thread_cnt,
5511                                 raid5_store_group_thread_cnt);
5512
5513 static struct attribute *raid5_attrs[] =  {
5514         &raid5_stripecache_size.attr,
5515         &raid5_stripecache_active.attr,
5516         &raid5_preread_bypass_threshold.attr,
5517         &raid5_group_thread_cnt.attr,
5518         &raid5_skip_copy.attr,
5519         NULL,
5520 };
5521 static struct attribute_group raid5_attrs_group = {
5522         .name = NULL,
5523         .attrs = raid5_attrs,
5524 };
5525
5526 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5527                                int *group_cnt,
5528                                int *worker_cnt_per_group,
5529                                struct r5worker_group **worker_groups)
5530 {
5531         int i, j, k;
5532         ssize_t size;
5533         struct r5worker *workers;
5534
5535         *worker_cnt_per_group = cnt;
5536         if (cnt == 0) {
5537                 *group_cnt = 0;
5538                 *worker_groups = NULL;
5539                 return 0;
5540         }
5541         *group_cnt = num_possible_nodes();
5542         size = sizeof(struct r5worker) * cnt;
5543         workers = kzalloc(size * *group_cnt, GFP_NOIO);
5544         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5545                                 *group_cnt, GFP_NOIO);
5546         if (!*worker_groups || !workers) {
5547                 kfree(workers);
5548                 kfree(*worker_groups);
5549                 return -ENOMEM;
5550         }
5551
5552         for (i = 0; i < *group_cnt; i++) {
5553                 struct r5worker_group *group;
5554
5555                 group = &(*worker_groups)[i];
5556                 INIT_LIST_HEAD(&group->handle_list);
5557                 group->conf = conf;
5558                 group->workers = workers + i * cnt;
5559
5560                 for (j = 0; j < cnt; j++) {
5561                         struct r5worker *worker = group->workers + j;
5562                         worker->group = group;
5563                         INIT_WORK(&worker->work, raid5_do_work);
5564
5565                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5566                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
5567                 }
5568         }
5569
5570         return 0;
5571 }
5572
5573 static void free_thread_groups(struct r5conf *conf)
5574 {
5575         if (conf->worker_groups)
5576                 kfree(conf->worker_groups[0].workers);
5577         kfree(conf->worker_groups);
5578         conf->worker_groups = NULL;
5579 }
5580
5581 static sector_t
5582 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5583 {
5584         struct r5conf *conf = mddev->private;
5585
5586         if (!sectors)
5587                 sectors = mddev->dev_sectors;
5588         if (!raid_disks)
5589                 /* size is defined by the smallest of previous and new size */
5590                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5591
5592         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5593         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5594         return sectors * (raid_disks - conf->max_degraded);
5595 }
5596
5597 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5598 {
5599         safe_put_page(percpu->spare_page);
5600         kfree(percpu->scribble);
5601         percpu->spare_page = NULL;
5602         percpu->scribble = NULL;
5603 }
5604
5605 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5606 {
5607         if (conf->level == 6 && !percpu->spare_page)
5608                 percpu->spare_page = alloc_page(GFP_KERNEL);
5609         if (!percpu->scribble)
5610                 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5611
5612         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5613                 free_scratch_buffer(conf, percpu);
5614                 return -ENOMEM;
5615         }
5616
5617         return 0;
5618 }
5619
5620 static void raid5_free_percpu(struct r5conf *conf)
5621 {
5622         unsigned long cpu;
5623
5624         if (!conf->percpu)
5625                 return;
5626
5627 #ifdef CONFIG_HOTPLUG_CPU
5628         unregister_cpu_notifier(&conf->cpu_notify);
5629 #endif
5630
5631         get_online_cpus();
5632         for_each_possible_cpu(cpu)
5633                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5634         put_online_cpus();
5635
5636         free_percpu(conf->percpu);
5637 }
5638
5639 static void free_conf(struct r5conf *conf)
5640 {
5641         free_thread_groups(conf);
5642         shrink_stripes(conf);
5643         raid5_free_percpu(conf);
5644         kfree(conf->disks);
5645         kfree(conf->stripe_hashtbl);
5646         kfree(conf);
5647 }
5648
5649 #ifdef CONFIG_HOTPLUG_CPU
5650 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5651                               void *hcpu)
5652 {
5653         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5654         long cpu = (long)hcpu;
5655         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5656
5657         switch (action) {
5658         case CPU_UP_PREPARE:
5659         case CPU_UP_PREPARE_FROZEN:
5660                 if (alloc_scratch_buffer(conf, percpu)) {
5661                         pr_err("%s: failed memory allocation for cpu%ld\n",
5662                                __func__, cpu);
5663                         return notifier_from_errno(-ENOMEM);
5664                 }
5665                 break;
5666         case CPU_DEAD:
5667         case CPU_DEAD_FROZEN:
5668                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5669                 break;
5670         default:
5671                 break;
5672         }
5673         return NOTIFY_OK;
5674 }
5675 #endif
5676
5677 static int raid5_alloc_percpu(struct r5conf *conf)
5678 {
5679         unsigned long cpu;
5680         int err = 0;
5681
5682         conf->percpu = alloc_percpu(struct raid5_percpu);
5683         if (!conf->percpu)
5684                 return -ENOMEM;
5685
5686 #ifdef CONFIG_HOTPLUG_CPU
5687         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5688         conf->cpu_notify.priority = 0;
5689         err = register_cpu_notifier(&conf->cpu_notify);
5690         if (err)
5691                 return err;
5692 #endif
5693
5694         get_online_cpus();
5695         for_each_present_cpu(cpu) {
5696                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5697                 if (err) {
5698                         pr_err("%s: failed memory allocation for cpu%ld\n",
5699                                __func__, cpu);
5700                         break;
5701                 }
5702         }
5703         put_online_cpus();
5704
5705         return err;
5706 }
5707
5708 static struct r5conf *setup_conf(struct mddev *mddev)
5709 {
5710         struct r5conf *conf;
5711         int raid_disk, memory, max_disks;
5712         struct md_rdev *rdev;
5713         struct disk_info *disk;
5714         char pers_name[6];
5715         int i;
5716         int group_cnt, worker_cnt_per_group;
5717         struct r5worker_group *new_group;
5718
5719         if (mddev->new_level != 5
5720             && mddev->new_level != 4
5721             && mddev->new_level != 6) {
5722                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5723                        mdname(mddev), mddev->new_level);
5724                 return ERR_PTR(-EIO);
5725         }
5726         if ((mddev->new_level == 5
5727              && !algorithm_valid_raid5(mddev->new_layout)) ||
5728             (mddev->new_level == 6
5729              && !algorithm_valid_raid6(mddev->new_layout))) {
5730                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5731                        mdname(mddev), mddev->new_layout);
5732                 return ERR_PTR(-EIO);
5733         }
5734         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5735                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5736                        mdname(mddev), mddev->raid_disks);
5737                 return ERR_PTR(-EINVAL);
5738         }
5739
5740         if (!mddev->new_chunk_sectors ||
5741             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5742             !is_power_of_2(mddev->new_chunk_sectors)) {
5743                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5744                        mdname(mddev), mddev->new_chunk_sectors << 9);
5745                 return ERR_PTR(-EINVAL);
5746         }
5747
5748         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5749         if (conf == NULL)
5750                 goto abort;
5751         /* Don't enable multi-threading by default*/
5752         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5753                                  &new_group)) {
5754                 conf->group_cnt = group_cnt;
5755                 conf->worker_cnt_per_group = worker_cnt_per_group;
5756                 conf->worker_groups = new_group;
5757         } else
5758                 goto abort;
5759         spin_lock_init(&conf->device_lock);
5760         seqcount_init(&conf->gen_lock);
5761         init_waitqueue_head(&conf->wait_for_stripe);
5762         init_waitqueue_head(&conf->wait_for_overlap);
5763         INIT_LIST_HEAD(&conf->handle_list);
5764         INIT_LIST_HEAD(&conf->hold_list);
5765         INIT_LIST_HEAD(&conf->delayed_list);
5766         INIT_LIST_HEAD(&conf->bitmap_list);
5767         init_llist_head(&conf->released_stripes);
5768         atomic_set(&conf->active_stripes, 0);
5769         atomic_set(&conf->preread_active_stripes, 0);
5770         atomic_set(&conf->active_aligned_reads, 0);
5771         conf->bypass_threshold = BYPASS_THRESHOLD;
5772         conf->recovery_disabled = mddev->recovery_disabled - 1;
5773
5774         conf->raid_disks = mddev->raid_disks;
5775         if (mddev->reshape_position == MaxSector)
5776                 conf->previous_raid_disks = mddev->raid_disks;
5777         else
5778                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5779         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5780         conf->scribble_len = scribble_len(max_disks);
5781
5782         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5783                               GFP_KERNEL);
5784         if (!conf->disks)
5785                 goto abort;
5786
5787         conf->mddev = mddev;
5788
5789         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5790                 goto abort;
5791
5792         /* We init hash_locks[0] separately to that it can be used
5793          * as the reference lock in the spin_lock_nest_lock() call
5794          * in lock_all_device_hash_locks_irq in order to convince
5795          * lockdep that we know what we are doing.
5796          */
5797         spin_lock_init(conf->hash_locks);
5798         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5799                 spin_lock_init(conf->hash_locks + i);
5800
5801         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5802                 INIT_LIST_HEAD(conf->inactive_list + i);
5803
5804         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5805                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
5806
5807         conf->level = mddev->new_level;
5808         if (raid5_alloc_percpu(conf) != 0)
5809                 goto abort;
5810
5811         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5812
5813         rdev_for_each(rdev, mddev) {
5814                 raid_disk = rdev->raid_disk;
5815                 if (raid_disk >= max_disks
5816                     || raid_disk < 0)
5817                         continue;
5818                 disk = conf->disks + raid_disk;
5819
5820                 if (test_bit(Replacement, &rdev->flags)) {
5821                         if (disk->replacement)
5822                                 goto abort;
5823                         disk->replacement = rdev;
5824                 } else {
5825                         if (disk->rdev)
5826                                 goto abort;
5827                         disk->rdev = rdev;
5828                 }
5829
5830                 if (test_bit(In_sync, &rdev->flags)) {
5831                         char b[BDEVNAME_SIZE];
5832                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5833                                " disk %d\n",
5834                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5835                 } else if (rdev->saved_raid_disk != raid_disk)
5836                         /* Cannot rely on bitmap to complete recovery */
5837                         conf->fullsync = 1;
5838         }
5839
5840         conf->chunk_sectors = mddev->new_chunk_sectors;
5841         conf->level = mddev->new_level;
5842         if (conf->level == 6)
5843                 conf->max_degraded = 2;
5844         else
5845                 conf->max_degraded = 1;
5846         conf->algorithm = mddev->new_layout;
5847         conf->reshape_progress = mddev->reshape_position;
5848         if (conf->reshape_progress != MaxSector) {
5849                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5850                 conf->prev_algo = mddev->layout;
5851         }
5852
5853         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5854                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5855         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5856         if (grow_stripes(conf, NR_STRIPES)) {
5857                 printk(KERN_ERR
5858                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5859                        mdname(mddev), memory);
5860                 goto abort;
5861         } else
5862                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5863                        mdname(mddev), memory);
5864
5865         sprintf(pers_name, "raid%d", mddev->new_level);
5866         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5867         if (!conf->thread) {
5868                 printk(KERN_ERR
5869                        "md/raid:%s: couldn't allocate thread.\n",
5870                        mdname(mddev));
5871                 goto abort;
5872         }
5873
5874         return conf;
5875
5876  abort:
5877         if (conf) {
5878                 free_conf(conf);
5879                 return ERR_PTR(-EIO);
5880         } else
5881                 return ERR_PTR(-ENOMEM);
5882 }
5883
5884 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5885 {
5886         switch (algo) {
5887         case ALGORITHM_PARITY_0:
5888                 if (raid_disk < max_degraded)
5889                         return 1;
5890                 break;
5891         case ALGORITHM_PARITY_N:
5892                 if (raid_disk >= raid_disks - max_degraded)
5893                         return 1;
5894                 break;
5895         case ALGORITHM_PARITY_0_6:
5896                 if (raid_disk == 0 ||
5897                     raid_disk == raid_disks - 1)
5898                         return 1;
5899                 break;
5900         case ALGORITHM_LEFT_ASYMMETRIC_6:
5901         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5902         case ALGORITHM_LEFT_SYMMETRIC_6:
5903         case ALGORITHM_RIGHT_SYMMETRIC_6:
5904                 if (raid_disk == raid_disks - 1)
5905                         return 1;
5906         }
5907         return 0;
5908 }
5909
5910 static int run(struct mddev *mddev)
5911 {
5912         struct r5conf *conf;
5913         int working_disks = 0;
5914         int dirty_parity_disks = 0;
5915         struct md_rdev *rdev;
5916         sector_t reshape_offset = 0;
5917         int i;
5918         long long min_offset_diff = 0;
5919         int first = 1;
5920
5921         if (mddev->recovery_cp != MaxSector)
5922                 printk(KERN_NOTICE "md/raid:%s: not clean"
5923                        " -- starting background reconstruction\n",
5924                        mdname(mddev));
5925
5926         rdev_for_each(rdev, mddev) {
5927                 long long diff;
5928                 if (rdev->raid_disk < 0)
5929                         continue;
5930                 diff = (rdev->new_data_offset - rdev->data_offset);
5931                 if (first) {
5932                         min_offset_diff = diff;
5933                         first = 0;
5934                 } else if (mddev->reshape_backwards &&
5935                          diff < min_offset_diff)
5936                         min_offset_diff = diff;
5937                 else if (!mddev->reshape_backwards &&
5938                          diff > min_offset_diff)
5939                         min_offset_diff = diff;
5940         }
5941
5942         if (mddev->reshape_position != MaxSector) {
5943                 /* Check that we can continue the reshape.
5944                  * Difficulties arise if the stripe we would write to
5945                  * next is at or after the stripe we would read from next.
5946                  * For a reshape that changes the number of devices, this
5947                  * is only possible for a very short time, and mdadm makes
5948                  * sure that time appears to have past before assembling
5949                  * the array.  So we fail if that time hasn't passed.
5950                  * For a reshape that keeps the number of devices the same
5951                  * mdadm must be monitoring the reshape can keeping the
5952                  * critical areas read-only and backed up.  It will start
5953                  * the array in read-only mode, so we check for that.
5954                  */
5955                 sector_t here_new, here_old;
5956                 int old_disks;
5957                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5958
5959                 if (mddev->new_level != mddev->level) {
5960                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5961                                "required - aborting.\n",
5962                                mdname(mddev));
5963                         return -EINVAL;
5964                 }
5965                 old_disks = mddev->raid_disks - mddev->delta_disks;
5966                 /* reshape_position must be on a new-stripe boundary, and one
5967                  * further up in new geometry must map after here in old
5968                  * geometry.
5969                  */
5970                 here_new = mddev->reshape_position;
5971                 if (sector_div(here_new, mddev->new_chunk_sectors *
5972                                (mddev->raid_disks - max_degraded))) {
5973                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5974                                "on a stripe boundary\n", mdname(mddev));
5975                         return -EINVAL;
5976                 }
5977                 reshape_offset = here_new * mddev->new_chunk_sectors;
5978                 /* here_new is the stripe we will write to */
5979                 here_old = mddev->reshape_position;
5980                 sector_div(here_old, mddev->chunk_sectors *
5981                            (old_disks-max_degraded));
5982                 /* here_old is the first stripe that we might need to read
5983                  * from */
5984                 if (mddev->delta_disks == 0) {
5985                         if ((here_new * mddev->new_chunk_sectors !=
5986                              here_old * mddev->chunk_sectors)) {
5987                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5988                                        " confused - aborting\n", mdname(mddev));
5989                                 return -EINVAL;
5990                         }
5991                         /* We cannot be sure it is safe to start an in-place
5992                          * reshape.  It is only safe if user-space is monitoring
5993                          * and taking constant backups.
5994                          * mdadm always starts a situation like this in
5995                          * readonly mode so it can take control before
5996                          * allowing any writes.  So just check for that.
5997                          */
5998                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5999                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6000                                 /* not really in-place - so OK */;
6001                         else if (mddev->ro == 0) {
6002                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6003                                        "must be started in read-only mode "
6004                                        "- aborting\n",
6005                                        mdname(mddev));
6006                                 return -EINVAL;
6007                         }
6008                 } else if (mddev->reshape_backwards
6009                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6010                        here_old * mddev->chunk_sectors)
6011                     : (here_new * mddev->new_chunk_sectors >=
6012                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6013                         /* Reading from the same stripe as writing to - bad */
6014                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6015                                "auto-recovery - aborting.\n",
6016                                mdname(mddev));
6017                         return -EINVAL;
6018                 }
6019                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6020                        mdname(mddev));
6021                 /* OK, we should be able to continue; */
6022         } else {
6023                 BUG_ON(mddev->level != mddev->new_level);
6024                 BUG_ON(mddev->layout != mddev->new_layout);
6025                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6026                 BUG_ON(mddev->delta_disks != 0);
6027         }
6028
6029         if (mddev->private == NULL)
6030                 conf = setup_conf(mddev);
6031         else
6032                 conf = mddev->private;
6033
6034         if (IS_ERR(conf))
6035                 return PTR_ERR(conf);
6036
6037         conf->min_offset_diff = min_offset_diff;
6038         mddev->thread = conf->thread;
6039         conf->thread = NULL;
6040         mddev->private = conf;
6041
6042         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6043              i++) {
6044                 rdev = conf->disks[i].rdev;
6045                 if (!rdev && conf->disks[i].replacement) {
6046                         /* The replacement is all we have yet */
6047                         rdev = conf->disks[i].replacement;
6048                         conf->disks[i].replacement = NULL;
6049                         clear_bit(Replacement, &rdev->flags);
6050                         conf->disks[i].rdev = rdev;
6051                 }
6052                 if (!rdev)
6053                         continue;
6054                 if (conf->disks[i].replacement &&
6055                     conf->reshape_progress != MaxSector) {
6056                         /* replacements and reshape simply do not mix. */
6057                         printk(KERN_ERR "md: cannot handle concurrent "
6058                                "replacement and reshape.\n");
6059                         goto abort;
6060                 }
6061                 if (test_bit(In_sync, &rdev->flags)) {
6062                         working_disks++;
6063                         continue;
6064                 }
6065                 /* This disc is not fully in-sync.  However if it
6066                  * just stored parity (beyond the recovery_offset),
6067                  * when we don't need to be concerned about the
6068                  * array being dirty.
6069                  * When reshape goes 'backwards', we never have
6070                  * partially completed devices, so we only need
6071                  * to worry about reshape going forwards.
6072                  */
6073                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6074                 if (mddev->major_version == 0 &&
6075                     mddev->minor_version > 90)
6076                         rdev->recovery_offset = reshape_offset;
6077
6078                 if (rdev->recovery_offset < reshape_offset) {
6079                         /* We need to check old and new layout */
6080                         if (!only_parity(rdev->raid_disk,
6081                                          conf->algorithm,
6082                                          conf->raid_disks,
6083                                          conf->max_degraded))
6084                                 continue;
6085                 }
6086                 if (!only_parity(rdev->raid_disk,
6087                                  conf->prev_algo,
6088                                  conf->previous_raid_disks,
6089                                  conf->max_degraded))
6090                         continue;
6091                 dirty_parity_disks++;
6092         }
6093
6094         /*
6095          * 0 for a fully functional array, 1 or 2 for a degraded array.
6096          */
6097         mddev->degraded = calc_degraded(conf);
6098
6099         if (has_failed(conf)) {
6100                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6101                         " (%d/%d failed)\n",
6102                         mdname(mddev), mddev->degraded, conf->raid_disks);
6103                 goto abort;
6104         }
6105
6106         /* device size must be a multiple of chunk size */
6107         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6108         mddev->resync_max_sectors = mddev->dev_sectors;
6109
6110         if (mddev->degraded > dirty_parity_disks &&
6111             mddev->recovery_cp != MaxSector) {
6112                 if (mddev->ok_start_degraded)
6113                         printk(KERN_WARNING
6114                                "md/raid:%s: starting dirty degraded array"
6115                                " - data corruption possible.\n",
6116                                mdname(mddev));
6117                 else {
6118                         printk(KERN_ERR
6119                                "md/raid:%s: cannot start dirty degraded array.\n",
6120                                mdname(mddev));
6121                         goto abort;
6122                 }
6123         }
6124
6125         if (mddev->degraded == 0)
6126                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6127                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6128                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6129                        mddev->new_layout);
6130         else
6131                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6132                        " out of %d devices, algorithm %d\n",
6133                        mdname(mddev), conf->level,
6134                        mddev->raid_disks - mddev->degraded,
6135                        mddev->raid_disks, mddev->new_layout);
6136
6137         print_raid5_conf(conf);
6138
6139         if (conf->reshape_progress != MaxSector) {
6140                 conf->reshape_safe = conf->reshape_progress;
6141                 atomic_set(&conf->reshape_stripes, 0);
6142                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6143                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6144                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6145                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6146                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6147                                                         "reshape");
6148         }
6149
6150         /* Ok, everything is just fine now */
6151         if (mddev->to_remove == &raid5_attrs_group)
6152                 mddev->to_remove = NULL;
6153         else if (mddev->kobj.sd &&
6154             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6155                 printk(KERN_WARNING
6156                        "raid5: failed to create sysfs attributes for %s\n",
6157                        mdname(mddev));
6158         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6159
6160         if (mddev->queue) {
6161                 int chunk_size;
6162                 bool discard_supported = true;
6163                 /* read-ahead size must cover two whole stripes, which
6164                  * is 2 * (datadisks) * chunksize where 'n' is the
6165                  * number of raid devices
6166                  */
6167                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6168                 int stripe = data_disks *
6169                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6170                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6171                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6172
6173                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6174
6175                 mddev->queue->backing_dev_info.congested_data = mddev;
6176                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6177
6178                 chunk_size = mddev->chunk_sectors << 9;
6179                 blk_queue_io_min(mddev->queue, chunk_size);
6180                 blk_queue_io_opt(mddev->queue, chunk_size *
6181                                  (conf->raid_disks - conf->max_degraded));
6182                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6183                 /*
6184                  * We can only discard a whole stripe. It doesn't make sense to
6185                  * discard data disk but write parity disk
6186                  */
6187                 stripe = stripe * PAGE_SIZE;
6188                 /* Round up to power of 2, as discard handling
6189                  * currently assumes that */
6190                 while ((stripe-1) & stripe)
6191                         stripe = (stripe | (stripe-1)) + 1;
6192                 mddev->queue->limits.discard_alignment = stripe;
6193                 mddev->queue->limits.discard_granularity = stripe;
6194                 /*
6195                  * unaligned part of discard request will be ignored, so can't
6196                  * guarantee discard_zeroes_data
6197                  */
6198                 mddev->queue->limits.discard_zeroes_data = 0;
6199
6200                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6201
6202                 rdev_for_each(rdev, mddev) {
6203                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6204                                           rdev->data_offset << 9);
6205                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6206                                           rdev->new_data_offset << 9);
6207                         /*
6208                          * discard_zeroes_data is required, otherwise data
6209                          * could be lost. Consider a scenario: discard a stripe
6210                          * (the stripe could be inconsistent if
6211                          * discard_zeroes_data is 0); write one disk of the
6212                          * stripe (the stripe could be inconsistent again
6213                          * depending on which disks are used to calculate
6214                          * parity); the disk is broken; The stripe data of this
6215                          * disk is lost.
6216                          */
6217                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6218                             !bdev_get_queue(rdev->bdev)->
6219                                                 limits.discard_zeroes_data)
6220                                 discard_supported = false;
6221                         /* Unfortunately, discard_zeroes_data is not currently
6222                          * a guarantee - just a hint.  So we only allow DISCARD
6223                          * if the sysadmin has confirmed that only safe devices
6224                          * are in use by setting a module parameter.
6225                          */
6226                         if (!devices_handle_discard_safely) {
6227                                 if (discard_supported) {
6228                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6229                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6230                                 }
6231                                 discard_supported = false;
6232                         }
6233                 }
6234
6235                 if (discard_supported &&
6236                    mddev->queue->limits.max_discard_sectors >= stripe &&
6237                    mddev->queue->limits.discard_granularity >= stripe)
6238                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6239                                                 mddev->queue);
6240                 else
6241                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6242                                                 mddev->queue);
6243         }
6244
6245         return 0;
6246 abort:
6247         md_unregister_thread(&mddev->thread);
6248         print_raid5_conf(conf);
6249         free_conf(conf);
6250         mddev->private = NULL;
6251         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6252         return -EIO;
6253 }
6254
6255 static int stop(struct mddev *mddev)
6256 {
6257         struct r5conf *conf = mddev->private;
6258
6259         md_unregister_thread(&mddev->thread);
6260         if (mddev->queue)
6261                 mddev->queue->backing_dev_info.congested_fn = NULL;
6262         free_conf(conf);
6263         mddev->private = NULL;
6264         mddev->to_remove = &raid5_attrs_group;
6265         return 0;
6266 }
6267
6268 static void status(struct seq_file *seq, struct mddev *mddev)
6269 {
6270         struct r5conf *conf = mddev->private;
6271         int i;
6272
6273         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6274                 mddev->chunk_sectors / 2, mddev->layout);
6275         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6276         for (i = 0; i < conf->raid_disks; i++)
6277                 seq_printf (seq, "%s",
6278                                conf->disks[i].rdev &&
6279                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6280         seq_printf (seq, "]");
6281 }
6282
6283 static void print_raid5_conf (struct r5conf *conf)
6284 {
6285         int i;
6286         struct disk_info *tmp;
6287
6288         printk(KERN_DEBUG "RAID conf printout:\n");
6289         if (!conf) {
6290                 printk("(conf==NULL)\n");
6291                 return;
6292         }
6293         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6294                conf->raid_disks,
6295                conf->raid_disks - conf->mddev->degraded);
6296
6297         for (i = 0; i < conf->raid_disks; i++) {
6298                 char b[BDEVNAME_SIZE];
6299                 tmp = conf->disks + i;
6300                 if (tmp->rdev)
6301                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6302                                i, !test_bit(Faulty, &tmp->rdev->flags),
6303                                bdevname(tmp->rdev->bdev, b));
6304         }
6305 }
6306
6307 static int raid5_spare_active(struct mddev *mddev)
6308 {
6309         int i;
6310         struct r5conf *conf = mddev->private;
6311         struct disk_info *tmp;
6312         int count = 0;
6313         unsigned long flags;
6314
6315         for (i = 0; i < conf->raid_disks; i++) {
6316                 tmp = conf->disks + i;
6317                 if (tmp->replacement
6318                     && tmp->replacement->recovery_offset == MaxSector
6319                     && !test_bit(Faulty, &tmp->replacement->flags)
6320                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6321                         /* Replacement has just become active. */
6322                         if (!tmp->rdev
6323                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6324                                 count++;
6325                         if (tmp->rdev) {
6326                                 /* Replaced device not technically faulty,
6327                                  * but we need to be sure it gets removed
6328                                  * and never re-added.
6329                                  */
6330                                 set_bit(Faulty, &tmp->rdev->flags);
6331                                 sysfs_notify_dirent_safe(
6332                                         tmp->rdev->sysfs_state);
6333                         }
6334                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6335                 } else if (tmp->rdev
6336                     && tmp->rdev->recovery_offset == MaxSector
6337                     && !test_bit(Faulty, &tmp->rdev->flags)
6338                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6339                         count++;
6340                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6341                 }
6342         }
6343         spin_lock_irqsave(&conf->device_lock, flags);
6344         mddev->degraded = calc_degraded(conf);
6345         spin_unlock_irqrestore(&conf->device_lock, flags);
6346         print_raid5_conf(conf);
6347         return count;
6348 }
6349
6350 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6351 {
6352         struct r5conf *conf = mddev->private;
6353         int err = 0;
6354         int number = rdev->raid_disk;
6355         struct md_rdev **rdevp;
6356         struct disk_info *p = conf->disks + number;
6357
6358         print_raid5_conf(conf);
6359         if (rdev == p->rdev)
6360                 rdevp = &p->rdev;
6361         else if (rdev == p->replacement)
6362                 rdevp = &p->replacement;
6363         else
6364                 return 0;
6365
6366         if (number >= conf->raid_disks &&
6367             conf->reshape_progress == MaxSector)
6368                 clear_bit(In_sync, &rdev->flags);
6369
6370         if (test_bit(In_sync, &rdev->flags) ||
6371             atomic_read(&rdev->nr_pending)) {
6372                 err = -EBUSY;
6373                 goto abort;
6374         }
6375         /* Only remove non-faulty devices if recovery
6376          * isn't possible.
6377          */
6378         if (!test_bit(Faulty, &rdev->flags) &&
6379             mddev->recovery_disabled != conf->recovery_disabled &&
6380             !has_failed(conf) &&
6381             (!p->replacement || p->replacement == rdev) &&
6382             number < conf->raid_disks) {
6383                 err = -EBUSY;
6384                 goto abort;
6385         }
6386         *rdevp = NULL;
6387         synchronize_rcu();
6388         if (atomic_read(&rdev->nr_pending)) {
6389                 /* lost the race, try later */
6390                 err = -EBUSY;
6391                 *rdevp = rdev;
6392         } else if (p->replacement) {
6393                 /* We must have just cleared 'rdev' */
6394                 p->rdev = p->replacement;
6395                 clear_bit(Replacement, &p->replacement->flags);
6396                 smp_mb(); /* Make sure other CPUs may see both as identical
6397                            * but will never see neither - if they are careful
6398                            */
6399                 p->replacement = NULL;
6400                 clear_bit(WantReplacement, &rdev->flags);
6401         } else
6402                 /* We might have just removed the Replacement as faulty-
6403                  * clear the bit just in case
6404                  */
6405                 clear_bit(WantReplacement, &rdev->flags);
6406 abort:
6407
6408         print_raid5_conf(conf);
6409         return err;
6410 }
6411
6412 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6413 {
6414         struct r5conf *conf = mddev->private;
6415         int err = -EEXIST;
6416         int disk;
6417         struct disk_info *p;
6418         int first = 0;
6419         int last = conf->raid_disks - 1;
6420
6421         if (mddev->recovery_disabled == conf->recovery_disabled)
6422                 return -EBUSY;
6423
6424         if (rdev->saved_raid_disk < 0 && has_failed(conf))
6425                 /* no point adding a device */
6426                 return -EINVAL;
6427
6428         if (rdev->raid_disk >= 0)
6429                 first = last = rdev->raid_disk;
6430
6431         /*
6432          * find the disk ... but prefer rdev->saved_raid_disk
6433          * if possible.
6434          */
6435         if (rdev->saved_raid_disk >= 0 &&
6436             rdev->saved_raid_disk >= first &&
6437             conf->disks[rdev->saved_raid_disk].rdev == NULL)
6438                 first = rdev->saved_raid_disk;
6439
6440         for (disk = first; disk <= last; disk++) {
6441                 p = conf->disks + disk;
6442                 if (p->rdev == NULL) {
6443                         clear_bit(In_sync, &rdev->flags);
6444                         rdev->raid_disk = disk;
6445                         err = 0;
6446                         if (rdev->saved_raid_disk != disk)
6447                                 conf->fullsync = 1;
6448                         rcu_assign_pointer(p->rdev, rdev);
6449                         goto out;
6450                 }
6451         }
6452         for (disk = first; disk <= last; disk++) {
6453                 p = conf->disks + disk;
6454                 if (test_bit(WantReplacement, &p->rdev->flags) &&
6455                     p->replacement == NULL) {
6456                         clear_bit(In_sync, &rdev->flags);
6457                         set_bit(Replacement, &rdev->flags);
6458                         rdev->raid_disk = disk;
6459                         err = 0;
6460                         conf->fullsync = 1;
6461                         rcu_assign_pointer(p->replacement, rdev);
6462                         break;
6463                 }
6464         }
6465 out:
6466         print_raid5_conf(conf);
6467         return err;
6468 }
6469
6470 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6471 {
6472         /* no resync is happening, and there is enough space
6473          * on all devices, so we can resize.
6474          * We need to make sure resync covers any new space.
6475          * If the array is shrinking we should possibly wait until
6476          * any io in the removed space completes, but it hardly seems
6477          * worth it.
6478          */
6479         sector_t newsize;
6480         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6481         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6482         if (mddev->external_size &&
6483             mddev->array_sectors > newsize)
6484                 return -EINVAL;
6485         if (mddev->bitmap) {
6486                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6487                 if (ret)
6488                         return ret;
6489         }
6490         md_set_array_sectors(mddev, newsize);
6491         set_capacity(mddev->gendisk, mddev->array_sectors);
6492         revalidate_disk(mddev->gendisk);
6493         if (sectors > mddev->dev_sectors &&
6494             mddev->recovery_cp > mddev->dev_sectors) {
6495                 mddev->recovery_cp = mddev->dev_sectors;
6496                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6497         }
6498         mddev->dev_sectors = sectors;
6499         mddev->resync_max_sectors = sectors;
6500         return 0;
6501 }
6502
6503 static int check_stripe_cache(struct mddev *mddev)
6504 {
6505         /* Can only proceed if there are plenty of stripe_heads.
6506          * We need a minimum of one full stripe,, and for sensible progress
6507          * it is best to have about 4 times that.
6508          * If we require 4 times, then the default 256 4K stripe_heads will
6509          * allow for chunk sizes up to 256K, which is probably OK.
6510          * If the chunk size is greater, user-space should request more
6511          * stripe_heads first.
6512          */
6513         struct r5conf *conf = mddev->private;
6514         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6515             > conf->max_nr_stripes ||
6516             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6517             > conf->max_nr_stripes) {
6518                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6519                        mdname(mddev),
6520                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6521                         / STRIPE_SIZE)*4);
6522                 return 0;
6523         }
6524         return 1;
6525 }
6526
6527 static int check_reshape(struct mddev *mddev)
6528 {
6529         struct r5conf *conf = mddev->private;
6530
6531         if (mddev->delta_disks == 0 &&
6532             mddev->new_layout == mddev->layout &&
6533             mddev->new_chunk_sectors == mddev->chunk_sectors)
6534                 return 0; /* nothing to do */
6535         if (has_failed(conf))
6536                 return -EINVAL;
6537         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6538                 /* We might be able to shrink, but the devices must
6539                  * be made bigger first.
6540                  * For raid6, 4 is the minimum size.
6541                  * Otherwise 2 is the minimum
6542                  */
6543                 int min = 2;
6544                 if (mddev->level == 6)
6545                         min = 4;
6546                 if (mddev->raid_disks + mddev->delta_disks < min)
6547                         return -EINVAL;
6548         }
6549
6550         if (!check_stripe_cache(mddev))
6551                 return -ENOSPC;
6552
6553         return resize_stripes(conf, (conf->previous_raid_disks
6554                                      + mddev->delta_disks));
6555 }
6556
6557 static int raid5_start_reshape(struct mddev *mddev)
6558 {
6559         struct r5conf *conf = mddev->private;
6560         struct md_rdev *rdev;
6561         int spares = 0;
6562         unsigned long flags;
6563
6564         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6565                 return -EBUSY;
6566
6567         if (!check_stripe_cache(mddev))
6568                 return -ENOSPC;
6569
6570         if (has_failed(conf))
6571                 return -EINVAL;
6572
6573         rdev_for_each(rdev, mddev) {
6574                 if (!test_bit(In_sync, &rdev->flags)
6575                     && !test_bit(Faulty, &rdev->flags))
6576                         spares++;
6577         }
6578
6579         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6580                 /* Not enough devices even to make a degraded array
6581                  * of that size
6582                  */
6583                 return -EINVAL;
6584
6585         /* Refuse to reduce size of the array.  Any reductions in
6586          * array size must be through explicit setting of array_size
6587          * attribute.
6588          */
6589         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6590             < mddev->array_sectors) {
6591                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6592                        "before number of disks\n", mdname(mddev));
6593                 return -EINVAL;
6594         }
6595
6596         atomic_set(&conf->reshape_stripes, 0);
6597         spin_lock_irq(&conf->device_lock);
6598         write_seqcount_begin(&conf->gen_lock);
6599         conf->previous_raid_disks = conf->raid_disks;
6600         conf->raid_disks += mddev->delta_disks;
6601         conf->prev_chunk_sectors = conf->chunk_sectors;
6602         conf->chunk_sectors = mddev->new_chunk_sectors;
6603         conf->prev_algo = conf->algorithm;
6604         conf->algorithm = mddev->new_layout;
6605         conf->generation++;
6606         /* Code that selects data_offset needs to see the generation update
6607          * if reshape_progress has been set - so a memory barrier needed.
6608          */
6609         smp_mb();
6610         if (mddev->reshape_backwards)
6611                 conf->reshape_progress = raid5_size(mddev, 0, 0);
6612         else
6613                 conf->reshape_progress = 0;
6614         conf->reshape_safe = conf->reshape_progress;
6615         write_seqcount_end(&conf->gen_lock);
6616         spin_unlock_irq(&conf->device_lock);
6617
6618         /* Now make sure any requests that proceeded on the assumption
6619          * the reshape wasn't running - like Discard or Read - have
6620          * completed.
6621          */
6622         mddev_suspend(mddev);
6623         mddev_resume(mddev);
6624
6625         /* Add some new drives, as many as will fit.
6626          * We know there are enough to make the newly sized array work.
6627          * Don't add devices if we are reducing the number of
6628          * devices in the array.  This is because it is not possible
6629          * to correctly record the "partially reconstructed" state of
6630          * such devices during the reshape and confusion could result.
6631          */
6632         if (mddev->delta_disks >= 0) {
6633                 rdev_for_each(rdev, mddev)
6634                         if (rdev->raid_disk < 0 &&
6635                             !test_bit(Faulty, &rdev->flags)) {
6636                                 if (raid5_add_disk(mddev, rdev) == 0) {
6637                                         if (rdev->raid_disk
6638                                             >= conf->previous_raid_disks)
6639                                                 set_bit(In_sync, &rdev->flags);
6640                                         else
6641                                                 rdev->recovery_offset = 0;
6642
6643                                         if (sysfs_link_rdev(mddev, rdev))
6644                                                 /* Failure here is OK */;
6645                                 }
6646                         } else if (rdev->raid_disk >= conf->previous_raid_disks
6647                                    && !test_bit(Faulty, &rdev->flags)) {
6648                                 /* This is a spare that was manually added */
6649                                 set_bit(In_sync, &rdev->flags);
6650                         }
6651
6652                 /* When a reshape changes the number of devices,
6653                  * ->degraded is measured against the larger of the
6654                  * pre and post number of devices.
6655                  */
6656                 spin_lock_irqsave(&conf->device_lock, flags);
6657                 mddev->degraded = calc_degraded(conf);
6658                 spin_unlock_irqrestore(&conf->device_lock, flags);
6659         }
6660         mddev->raid_disks = conf->raid_disks;
6661         mddev->reshape_position = conf->reshape_progress;
6662         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6663
6664         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6665         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6666         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6667         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6668         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6669                                                 "reshape");
6670         if (!mddev->sync_thread) {
6671                 mddev->recovery = 0;
6672                 spin_lock_irq(&conf->device_lock);
6673                 write_seqcount_begin(&conf->gen_lock);
6674                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6675                 mddev->new_chunk_sectors =
6676                         conf->chunk_sectors = conf->prev_chunk_sectors;
6677                 mddev->new_layout = conf->algorithm = conf->prev_algo;
6678                 rdev_for_each(rdev, mddev)
6679                         rdev->new_data_offset = rdev->data_offset;
6680                 smp_wmb();
6681                 conf->generation --;
6682                 conf->reshape_progress = MaxSector;
6683                 mddev->reshape_position = MaxSector;
6684                 write_seqcount_end(&conf->gen_lock);
6685                 spin_unlock_irq(&conf->device_lock);
6686                 return -EAGAIN;
6687         }
6688         conf->reshape_checkpoint = jiffies;
6689         md_wakeup_thread(mddev->sync_thread);
6690         md_new_event(mddev);
6691         return 0;
6692 }
6693
6694 /* This is called from the reshape thread and should make any
6695  * changes needed in 'conf'
6696  */
6697 static void end_reshape(struct r5conf *conf)
6698 {
6699
6700         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6701                 struct md_rdev *rdev;
6702
6703                 spin_lock_irq(&conf->device_lock);
6704                 conf->previous_raid_disks = conf->raid_disks;
6705                 rdev_for_each(rdev, conf->mddev)
6706                         rdev->data_offset = rdev->new_data_offset;
6707                 smp_wmb();
6708                 conf->reshape_progress = MaxSector;
6709                 spin_unlock_irq(&conf->device_lock);
6710                 wake_up(&conf->wait_for_overlap);
6711
6712                 /* read-ahead size must cover two whole stripes, which is
6713                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6714                  */
6715                 if (conf->mddev->queue) {
6716                         int data_disks = conf->raid_disks - conf->max_degraded;
6717                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6718                                                    / PAGE_SIZE);
6719                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6720                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6721                 }
6722         }
6723 }
6724
6725 /* This is called from the raid5d thread with mddev_lock held.
6726  * It makes config changes to the device.
6727  */
6728 static void raid5_finish_reshape(struct mddev *mddev)
6729 {
6730         struct r5conf *conf = mddev->private;
6731
6732         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6733
6734                 if (mddev->delta_disks > 0) {
6735                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6736                         set_capacity(mddev->gendisk, mddev->array_sectors);
6737                         revalidate_disk(mddev->gendisk);
6738                 } else {
6739                         int d;
6740                         spin_lock_irq(&conf->device_lock);
6741                         mddev->degraded = calc_degraded(conf);
6742                         spin_unlock_irq(&conf->device_lock);
6743                         for (d = conf->raid_disks ;
6744                              d < conf->raid_disks - mddev->delta_disks;
6745                              d++) {
6746                                 struct md_rdev *rdev = conf->disks[d].rdev;
6747                                 if (rdev)
6748                                         clear_bit(In_sync, &rdev->flags);
6749                                 rdev = conf->disks[d].replacement;
6750                                 if (rdev)
6751                                         clear_bit(In_sync, &rdev->flags);
6752                         }
6753                 }
6754                 mddev->layout = conf->algorithm;
6755                 mddev->chunk_sectors = conf->chunk_sectors;
6756                 mddev->reshape_position = MaxSector;
6757                 mddev->delta_disks = 0;
6758                 mddev->reshape_backwards = 0;
6759         }
6760 }
6761
6762 static void raid5_quiesce(struct mddev *mddev, int state)
6763 {
6764         struct r5conf *conf = mddev->private;
6765
6766         switch(state) {
6767         case 2: /* resume for a suspend */
6768                 wake_up(&conf->wait_for_overlap);
6769                 break;
6770
6771         case 1: /* stop all writes */
6772                 lock_all_device_hash_locks_irq(conf);
6773                 /* '2' tells resync/reshape to pause so that all
6774                  * active stripes can drain
6775                  */
6776                 conf->quiesce = 2;
6777                 wait_event_cmd(conf->wait_for_stripe,
6778                                     atomic_read(&conf->active_stripes) == 0 &&
6779                                     atomic_read(&conf->active_aligned_reads) == 0,
6780                                     unlock_all_device_hash_locks_irq(conf),
6781                                     lock_all_device_hash_locks_irq(conf));
6782                 conf->quiesce = 1;
6783                 unlock_all_device_hash_locks_irq(conf);
6784                 /* allow reshape to continue */
6785                 wake_up(&conf->wait_for_overlap);
6786                 break;
6787
6788         case 0: /* re-enable writes */
6789                 lock_all_device_hash_locks_irq(conf);
6790                 conf->quiesce = 0;
6791                 wake_up(&conf->wait_for_stripe);
6792                 wake_up(&conf->wait_for_overlap);
6793                 unlock_all_device_hash_locks_irq(conf);
6794                 break;
6795         }
6796 }
6797
6798 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6799 {
6800         struct r0conf *raid0_conf = mddev->private;
6801         sector_t sectors;
6802
6803         /* for raid0 takeover only one zone is supported */
6804         if (raid0_conf->nr_strip_zones > 1) {
6805                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6806                        mdname(mddev));
6807                 return ERR_PTR(-EINVAL);
6808         }
6809
6810         sectors = raid0_conf->strip_zone[0].zone_end;
6811         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6812         mddev->dev_sectors = sectors;
6813         mddev->new_level = level;
6814         mddev->new_layout = ALGORITHM_PARITY_N;
6815         mddev->new_chunk_sectors = mddev->chunk_sectors;
6816         mddev->raid_disks += 1;
6817         mddev->delta_disks = 1;
6818         /* make sure it will be not marked as dirty */
6819         mddev->recovery_cp = MaxSector;
6820
6821         return setup_conf(mddev);
6822 }
6823
6824 static void *raid5_takeover_raid1(struct mddev *mddev)
6825 {
6826         int chunksect;
6827
6828         if (mddev->raid_disks != 2 ||
6829             mddev->degraded > 1)
6830                 return ERR_PTR(-EINVAL);
6831
6832         /* Should check if there are write-behind devices? */
6833
6834         chunksect = 64*2; /* 64K by default */
6835
6836         /* The array must be an exact multiple of chunksize */
6837         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6838                 chunksect >>= 1;
6839
6840         if ((chunksect<<9) < STRIPE_SIZE)
6841                 /* array size does not allow a suitable chunk size */
6842                 return ERR_PTR(-EINVAL);
6843
6844         mddev->new_level = 5;
6845         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6846         mddev->new_chunk_sectors = chunksect;
6847
6848         return setup_conf(mddev);
6849 }
6850
6851 static void *raid5_takeover_raid6(struct mddev *mddev)
6852 {
6853         int new_layout;
6854
6855         switch (mddev->layout) {
6856         case ALGORITHM_LEFT_ASYMMETRIC_6:
6857                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6858                 break;
6859         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6860                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6861                 break;
6862         case ALGORITHM_LEFT_SYMMETRIC_6:
6863                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6864                 break;
6865         case ALGORITHM_RIGHT_SYMMETRIC_6:
6866                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6867                 break;
6868         case ALGORITHM_PARITY_0_6:
6869                 new_layout = ALGORITHM_PARITY_0;
6870                 break;
6871         case ALGORITHM_PARITY_N:
6872                 new_layout = ALGORITHM_PARITY_N;
6873                 break;
6874         default:
6875                 return ERR_PTR(-EINVAL);
6876         }
6877         mddev->new_level = 5;
6878         mddev->new_layout = new_layout;
6879         mddev->delta_disks = -1;
6880         mddev->raid_disks -= 1;
6881         return setup_conf(mddev);
6882 }
6883
6884 static int raid5_check_reshape(struct mddev *mddev)
6885 {
6886         /* For a 2-drive array, the layout and chunk size can be changed
6887          * immediately as not restriping is needed.
6888          * For larger arrays we record the new value - after validation
6889          * to be used by a reshape pass.
6890          */
6891         struct r5conf *conf = mddev->private;
6892         int new_chunk = mddev->new_chunk_sectors;
6893
6894         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6895                 return -EINVAL;
6896         if (new_chunk > 0) {
6897                 if (!is_power_of_2(new_chunk))
6898                         return -EINVAL;
6899                 if (new_chunk < (PAGE_SIZE>>9))
6900                         return -EINVAL;
6901                 if (mddev->array_sectors & (new_chunk-1))
6902                         /* not factor of array size */
6903                         return -EINVAL;
6904         }
6905
6906         /* They look valid */
6907
6908         if (mddev->raid_disks == 2) {
6909                 /* can make the change immediately */
6910                 if (mddev->new_layout >= 0) {
6911                         conf->algorithm = mddev->new_layout;
6912                         mddev->layout = mddev->new_layout;
6913                 }
6914                 if (new_chunk > 0) {
6915                         conf->chunk_sectors = new_chunk ;
6916                         mddev->chunk_sectors = new_chunk;
6917                 }
6918                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6919                 md_wakeup_thread(mddev->thread);
6920         }
6921         return check_reshape(mddev);
6922 }
6923
6924 static int raid6_check_reshape(struct mddev *mddev)
6925 {
6926         int new_chunk = mddev->new_chunk_sectors;
6927
6928         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6929                 return -EINVAL;
6930         if (new_chunk > 0) {
6931                 if (!is_power_of_2(new_chunk))
6932                         return -EINVAL;
6933                 if (new_chunk < (PAGE_SIZE >> 9))
6934                         return -EINVAL;
6935                 if (mddev->array_sectors & (new_chunk-1))
6936                         /* not factor of array size */
6937                         return -EINVAL;
6938         }
6939
6940         /* They look valid */
6941         return check_reshape(mddev);
6942 }
6943
6944 static void *raid5_takeover(struct mddev *mddev)
6945 {
6946         /* raid5 can take over:
6947          *  raid0 - if there is only one strip zone - make it a raid4 layout
6948          *  raid1 - if there are two drives.  We need to know the chunk size
6949          *  raid4 - trivial - just use a raid4 layout.
6950          *  raid6 - Providing it is a *_6 layout
6951          */
6952         if (mddev->level == 0)
6953                 return raid45_takeover_raid0(mddev, 5);
6954         if (mddev->level == 1)
6955                 return raid5_takeover_raid1(mddev);
6956         if (mddev->level == 4) {
6957                 mddev->new_layout = ALGORITHM_PARITY_N;
6958                 mddev->new_level = 5;
6959                 return setup_conf(mddev);
6960         }
6961         if (mddev->level == 6)
6962                 return raid5_takeover_raid6(mddev);
6963
6964         return ERR_PTR(-EINVAL);
6965 }
6966
6967 static void *raid4_takeover(struct mddev *mddev)
6968 {
6969         /* raid4 can take over:
6970          *  raid0 - if there is only one strip zone
6971          *  raid5 - if layout is right
6972          */
6973         if (mddev->level == 0)
6974                 return raid45_takeover_raid0(mddev, 4);
6975         if (mddev->level == 5 &&
6976             mddev->layout == ALGORITHM_PARITY_N) {
6977                 mddev->new_layout = 0;
6978                 mddev->new_level = 4;
6979                 return setup_conf(mddev);
6980         }
6981         return ERR_PTR(-EINVAL);
6982 }
6983
6984 static struct md_personality raid5_personality;
6985
6986 static void *raid6_takeover(struct mddev *mddev)
6987 {
6988         /* Currently can only take over a raid5.  We map the
6989          * personality to an equivalent raid6 personality
6990          * with the Q block at the end.
6991          */
6992         int new_layout;
6993
6994         if (mddev->pers != &raid5_personality)
6995                 return ERR_PTR(-EINVAL);
6996         if (mddev->degraded > 1)
6997                 return ERR_PTR(-EINVAL);
6998         if (mddev->raid_disks > 253)
6999                 return ERR_PTR(-EINVAL);
7000         if (mddev->raid_disks < 3)
7001                 return ERR_PTR(-EINVAL);
7002
7003         switch (mddev->layout) {
7004         case ALGORITHM_LEFT_ASYMMETRIC:
7005                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7006                 break;
7007         case ALGORITHM_RIGHT_ASYMMETRIC:
7008                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7009                 break;
7010         case ALGORITHM_LEFT_SYMMETRIC:
7011                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7012                 break;
7013         case ALGORITHM_RIGHT_SYMMETRIC:
7014                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7015                 break;
7016         case ALGORITHM_PARITY_0:
7017                 new_layout = ALGORITHM_PARITY_0_6;
7018                 break;
7019         case ALGORITHM_PARITY_N:
7020                 new_layout = ALGORITHM_PARITY_N;
7021                 break;
7022         default:
7023                 return ERR_PTR(-EINVAL);
7024         }
7025         mddev->new_level = 6;
7026         mddev->new_layout = new_layout;
7027         mddev->delta_disks = 1;
7028         mddev->raid_disks += 1;
7029         return setup_conf(mddev);
7030 }
7031
7032 static struct md_personality raid6_personality =
7033 {
7034         .name           = "raid6",
7035         .level          = 6,
7036         .owner          = THIS_MODULE,
7037         .make_request   = make_request,
7038         .run            = run,
7039         .stop           = stop,
7040         .status         = status,
7041         .error_handler  = error,
7042         .hot_add_disk   = raid5_add_disk,
7043         .hot_remove_disk= raid5_remove_disk,
7044         .spare_active   = raid5_spare_active,
7045         .sync_request   = sync_request,
7046         .resize         = raid5_resize,
7047         .size           = raid5_size,
7048         .check_reshape  = raid6_check_reshape,
7049         .start_reshape  = raid5_start_reshape,
7050         .finish_reshape = raid5_finish_reshape,
7051         .quiesce        = raid5_quiesce,
7052         .takeover       = raid6_takeover,
7053 };
7054 static struct md_personality raid5_personality =
7055 {
7056         .name           = "raid5",
7057         .level          = 5,
7058         .owner          = THIS_MODULE,
7059         .make_request   = make_request,
7060         .run            = run,
7061         .stop           = stop,
7062         .status         = status,
7063         .error_handler  = error,
7064         .hot_add_disk   = raid5_add_disk,
7065         .hot_remove_disk= raid5_remove_disk,
7066         .spare_active   = raid5_spare_active,
7067         .sync_request   = sync_request,
7068         .resize         = raid5_resize,
7069         .size           = raid5_size,
7070         .check_reshape  = raid5_check_reshape,
7071         .start_reshape  = raid5_start_reshape,
7072         .finish_reshape = raid5_finish_reshape,
7073         .quiesce        = raid5_quiesce,
7074         .takeover       = raid5_takeover,
7075 };
7076
7077 static struct md_personality raid4_personality =
7078 {
7079         .name           = "raid4",
7080         .level          = 4,
7081         .owner          = THIS_MODULE,
7082         .make_request   = make_request,
7083         .run            = run,
7084         .stop           = stop,
7085         .status         = status,
7086         .error_handler  = error,
7087         .hot_add_disk   = raid5_add_disk,
7088         .hot_remove_disk= raid5_remove_disk,
7089         .spare_active   = raid5_spare_active,
7090         .sync_request   = sync_request,
7091         .resize         = raid5_resize,
7092         .size           = raid5_size,
7093         .check_reshape  = raid5_check_reshape,
7094         .start_reshape  = raid5_start_reshape,
7095         .finish_reshape = raid5_finish_reshape,
7096         .quiesce        = raid5_quiesce,
7097         .takeover       = raid4_takeover,
7098 };
7099
7100 static int __init raid5_init(void)
7101 {
7102         raid5_wq = alloc_workqueue("raid5wq",
7103                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7104         if (!raid5_wq)
7105                 return -ENOMEM;
7106         register_md_personality(&raid6_personality);
7107         register_md_personality(&raid5_personality);
7108         register_md_personality(&raid4_personality);
7109         return 0;
7110 }
7111
7112 static void raid5_exit(void)
7113 {
7114         unregister_md_personality(&raid6_personality);
7115         unregister_md_personality(&raid5_personality);
7116         unregister_md_personality(&raid4_personality);
7117         destroy_workqueue(raid5_wq);
7118 }
7119
7120 module_init(raid5_init);
7121 module_exit(raid5_exit);
7122 MODULE_LICENSE("GPL");
7123 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7124 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7125 MODULE_ALIAS("md-raid5");
7126 MODULE_ALIAS("md-raid4");
7127 MODULE_ALIAS("md-level-5");
7128 MODULE_ALIAS("md-level-4");
7129 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7130 MODULE_ALIAS("md-raid6");
7131 MODULE_ALIAS("md-level-6");
7132
7133 /* This used to be two separate modules, they were: */
7134 MODULE_ALIAS("raid5");
7135 MODULE_ALIAS("raid6");