md/raid5: avoid reading parity blocks for full-stripe write to degraded array
[cascardo/linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio *return_bi)
227 {
228         struct bio *bi = return_bi;
229         while (bi) {
230
231                 return_bi = bi->bi_next;
232                 bi->bi_next = NULL;
233                 bi->bi_iter.bi_size = 0;
234                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235                                          bi, 0);
236                 bio_endio(bi, 0);
237                 bi = return_bi;
238         }
239 }
240
241 static void print_raid5_conf (struct r5conf *conf);
242
243 static int stripe_operations_active(struct stripe_head *sh)
244 {
245         return sh->check_state || sh->reconstruct_state ||
246                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248 }
249
250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 {
252         struct r5conf *conf = sh->raid_conf;
253         struct r5worker_group *group;
254         int thread_cnt;
255         int i, cpu = sh->cpu;
256
257         if (!cpu_online(cpu)) {
258                 cpu = cpumask_any(cpu_online_mask);
259                 sh->cpu = cpu;
260         }
261
262         if (list_empty(&sh->lru)) {
263                 struct r5worker_group *group;
264                 group = conf->worker_groups + cpu_to_group(cpu);
265                 list_add_tail(&sh->lru, &group->handle_list);
266                 group->stripes_cnt++;
267                 sh->group = group;
268         }
269
270         if (conf->worker_cnt_per_group == 0) {
271                 md_wakeup_thread(conf->mddev->thread);
272                 return;
273         }
274
275         group = conf->worker_groups + cpu_to_group(sh->cpu);
276
277         group->workers[0].working = true;
278         /* at least one worker should run to avoid race */
279         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282         /* wakeup more workers */
283         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284                 if (group->workers[i].working == false) {
285                         group->workers[i].working = true;
286                         queue_work_on(sh->cpu, raid5_wq,
287                                       &group->workers[i].work);
288                         thread_cnt--;
289                 }
290         }
291 }
292
293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294                               struct list_head *temp_inactive_list)
295 {
296         BUG_ON(!list_empty(&sh->lru));
297         BUG_ON(atomic_read(&conf->active_stripes)==0);
298         if (test_bit(STRIPE_HANDLE, &sh->state)) {
299                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
300                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301                         list_add_tail(&sh->lru, &conf->delayed_list);
302                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303                            sh->bm_seq - conf->seq_write > 0)
304                         list_add_tail(&sh->lru, &conf->bitmap_list);
305                 else {
306                         clear_bit(STRIPE_DELAYED, &sh->state);
307                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
308                         if (conf->worker_cnt_per_group == 0) {
309                                 list_add_tail(&sh->lru, &conf->handle_list);
310                         } else {
311                                 raid5_wakeup_stripe_thread(sh);
312                                 return;
313                         }
314                 }
315                 md_wakeup_thread(conf->mddev->thread);
316         } else {
317                 BUG_ON(stripe_operations_active(sh));
318                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319                         if (atomic_dec_return(&conf->preread_active_stripes)
320                             < IO_THRESHOLD)
321                                 md_wakeup_thread(conf->mddev->thread);
322                 atomic_dec(&conf->active_stripes);
323                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324                         list_add_tail(&sh->lru, temp_inactive_list);
325         }
326 }
327
328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329                              struct list_head *temp_inactive_list)
330 {
331         if (atomic_dec_and_test(&sh->count))
332                 do_release_stripe(conf, sh, temp_inactive_list);
333 }
334
335 /*
336  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337  *
338  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339  * given time. Adding stripes only takes device lock, while deleting stripes
340  * only takes hash lock.
341  */
342 static void release_inactive_stripe_list(struct r5conf *conf,
343                                          struct list_head *temp_inactive_list,
344                                          int hash)
345 {
346         int size;
347         bool do_wakeup = false;
348         unsigned long flags;
349
350         if (hash == NR_STRIPE_HASH_LOCKS) {
351                 size = NR_STRIPE_HASH_LOCKS;
352                 hash = NR_STRIPE_HASH_LOCKS - 1;
353         } else
354                 size = 1;
355         while (size) {
356                 struct list_head *list = &temp_inactive_list[size - 1];
357
358                 /*
359                  * We don't hold any lock here yet, get_active_stripe() might
360                  * remove stripes from the list
361                  */
362                 if (!list_empty_careful(list)) {
363                         spin_lock_irqsave(conf->hash_locks + hash, flags);
364                         if (list_empty(conf->inactive_list + hash) &&
365                             !list_empty(list))
366                                 atomic_dec(&conf->empty_inactive_list_nr);
367                         list_splice_tail_init(list, conf->inactive_list + hash);
368                         do_wakeup = true;
369                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
370                 }
371                 size--;
372                 hash--;
373         }
374
375         if (do_wakeup) {
376                 wake_up(&conf->wait_for_stripe);
377                 if (conf->retry_read_aligned)
378                         md_wakeup_thread(conf->mddev->thread);
379         }
380 }
381
382 /* should hold conf->device_lock already */
383 static int release_stripe_list(struct r5conf *conf,
384                                struct list_head *temp_inactive_list)
385 {
386         struct stripe_head *sh;
387         int count = 0;
388         struct llist_node *head;
389
390         head = llist_del_all(&conf->released_stripes);
391         head = llist_reverse_order(head);
392         while (head) {
393                 int hash;
394
395                 sh = llist_entry(head, struct stripe_head, release_list);
396                 head = llist_next(head);
397                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
398                 smp_mb();
399                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
400                 /*
401                  * Don't worry the bit is set here, because if the bit is set
402                  * again, the count is always > 1. This is true for
403                  * STRIPE_ON_UNPLUG_LIST bit too.
404                  */
405                 hash = sh->hash_lock_index;
406                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
407                 count++;
408         }
409
410         return count;
411 }
412
413 static void release_stripe(struct stripe_head *sh)
414 {
415         struct r5conf *conf = sh->raid_conf;
416         unsigned long flags;
417         struct list_head list;
418         int hash;
419         bool wakeup;
420
421         /* Avoid release_list until the last reference.
422          */
423         if (atomic_add_unless(&sh->count, -1, 1))
424                 return;
425
426         if (unlikely(!conf->mddev->thread) ||
427                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
428                 goto slow_path;
429         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
430         if (wakeup)
431                 md_wakeup_thread(conf->mddev->thread);
432         return;
433 slow_path:
434         local_irq_save(flags);
435         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
436         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
437                 INIT_LIST_HEAD(&list);
438                 hash = sh->hash_lock_index;
439                 do_release_stripe(conf, sh, &list);
440                 spin_unlock(&conf->device_lock);
441                 release_inactive_stripe_list(conf, &list, hash);
442         }
443         local_irq_restore(flags);
444 }
445
446 static inline void remove_hash(struct stripe_head *sh)
447 {
448         pr_debug("remove_hash(), stripe %llu\n",
449                 (unsigned long long)sh->sector);
450
451         hlist_del_init(&sh->hash);
452 }
453
454 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
455 {
456         struct hlist_head *hp = stripe_hash(conf, sh->sector);
457
458         pr_debug("insert_hash(), stripe %llu\n",
459                 (unsigned long long)sh->sector);
460
461         hlist_add_head(&sh->hash, hp);
462 }
463
464 /* find an idle stripe, make sure it is unhashed, and return it. */
465 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
466 {
467         struct stripe_head *sh = NULL;
468         struct list_head *first;
469
470         if (list_empty(conf->inactive_list + hash))
471                 goto out;
472         first = (conf->inactive_list + hash)->next;
473         sh = list_entry(first, struct stripe_head, lru);
474         list_del_init(first);
475         remove_hash(sh);
476         atomic_inc(&conf->active_stripes);
477         BUG_ON(hash != sh->hash_lock_index);
478         if (list_empty(conf->inactive_list + hash))
479                 atomic_inc(&conf->empty_inactive_list_nr);
480 out:
481         return sh;
482 }
483
484 static void shrink_buffers(struct stripe_head *sh)
485 {
486         struct page *p;
487         int i;
488         int num = sh->raid_conf->pool_size;
489
490         for (i = 0; i < num ; i++) {
491                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
492                 p = sh->dev[i].page;
493                 if (!p)
494                         continue;
495                 sh->dev[i].page = NULL;
496                 put_page(p);
497         }
498 }
499
500 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
501 {
502         int i;
503         int num = sh->raid_conf->pool_size;
504
505         for (i = 0; i < num; i++) {
506                 struct page *page;
507
508                 if (!(page = alloc_page(gfp))) {
509                         return 1;
510                 }
511                 sh->dev[i].page = page;
512                 sh->dev[i].orig_page = page;
513         }
514         return 0;
515 }
516
517 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
518 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
519                             struct stripe_head *sh);
520
521 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
522 {
523         struct r5conf *conf = sh->raid_conf;
524         int i, seq;
525
526         BUG_ON(atomic_read(&sh->count) != 0);
527         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
528         BUG_ON(stripe_operations_active(sh));
529         BUG_ON(sh->batch_head);
530
531         pr_debug("init_stripe called, stripe %llu\n",
532                 (unsigned long long)sector);
533 retry:
534         seq = read_seqcount_begin(&conf->gen_lock);
535         sh->generation = conf->generation - previous;
536         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
537         sh->sector = sector;
538         stripe_set_idx(sector, conf, previous, sh);
539         sh->state = 0;
540
541         for (i = sh->disks; i--; ) {
542                 struct r5dev *dev = &sh->dev[i];
543
544                 if (dev->toread || dev->read || dev->towrite || dev->written ||
545                     test_bit(R5_LOCKED, &dev->flags)) {
546                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
547                                (unsigned long long)sh->sector, i, dev->toread,
548                                dev->read, dev->towrite, dev->written,
549                                test_bit(R5_LOCKED, &dev->flags));
550                         WARN_ON(1);
551                 }
552                 dev->flags = 0;
553                 raid5_build_block(sh, i, previous);
554         }
555         if (read_seqcount_retry(&conf->gen_lock, seq))
556                 goto retry;
557         sh->overwrite_disks = 0;
558         insert_hash(conf, sh);
559         sh->cpu = smp_processor_id();
560         set_bit(STRIPE_BATCH_READY, &sh->state);
561 }
562
563 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
564                                          short generation)
565 {
566         struct stripe_head *sh;
567
568         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
569         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
570                 if (sh->sector == sector && sh->generation == generation)
571                         return sh;
572         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
573         return NULL;
574 }
575
576 /*
577  * Need to check if array has failed when deciding whether to:
578  *  - start an array
579  *  - remove non-faulty devices
580  *  - add a spare
581  *  - allow a reshape
582  * This determination is simple when no reshape is happening.
583  * However if there is a reshape, we need to carefully check
584  * both the before and after sections.
585  * This is because some failed devices may only affect one
586  * of the two sections, and some non-in_sync devices may
587  * be insync in the section most affected by failed devices.
588  */
589 static int calc_degraded(struct r5conf *conf)
590 {
591         int degraded, degraded2;
592         int i;
593
594         rcu_read_lock();
595         degraded = 0;
596         for (i = 0; i < conf->previous_raid_disks; i++) {
597                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
598                 if (rdev && test_bit(Faulty, &rdev->flags))
599                         rdev = rcu_dereference(conf->disks[i].replacement);
600                 if (!rdev || test_bit(Faulty, &rdev->flags))
601                         degraded++;
602                 else if (test_bit(In_sync, &rdev->flags))
603                         ;
604                 else
605                         /* not in-sync or faulty.
606                          * If the reshape increases the number of devices,
607                          * this is being recovered by the reshape, so
608                          * this 'previous' section is not in_sync.
609                          * If the number of devices is being reduced however,
610                          * the device can only be part of the array if
611                          * we are reverting a reshape, so this section will
612                          * be in-sync.
613                          */
614                         if (conf->raid_disks >= conf->previous_raid_disks)
615                                 degraded++;
616         }
617         rcu_read_unlock();
618         if (conf->raid_disks == conf->previous_raid_disks)
619                 return degraded;
620         rcu_read_lock();
621         degraded2 = 0;
622         for (i = 0; i < conf->raid_disks; i++) {
623                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
624                 if (rdev && test_bit(Faulty, &rdev->flags))
625                         rdev = rcu_dereference(conf->disks[i].replacement);
626                 if (!rdev || test_bit(Faulty, &rdev->flags))
627                         degraded2++;
628                 else if (test_bit(In_sync, &rdev->flags))
629                         ;
630                 else
631                         /* not in-sync or faulty.
632                          * If reshape increases the number of devices, this
633                          * section has already been recovered, else it
634                          * almost certainly hasn't.
635                          */
636                         if (conf->raid_disks <= conf->previous_raid_disks)
637                                 degraded2++;
638         }
639         rcu_read_unlock();
640         if (degraded2 > degraded)
641                 return degraded2;
642         return degraded;
643 }
644
645 static int has_failed(struct r5conf *conf)
646 {
647         int degraded;
648
649         if (conf->mddev->reshape_position == MaxSector)
650                 return conf->mddev->degraded > conf->max_degraded;
651
652         degraded = calc_degraded(conf);
653         if (degraded > conf->max_degraded)
654                 return 1;
655         return 0;
656 }
657
658 static struct stripe_head *
659 get_active_stripe(struct r5conf *conf, sector_t sector,
660                   int previous, int noblock, int noquiesce)
661 {
662         struct stripe_head *sh;
663         int hash = stripe_hash_locks_hash(sector);
664
665         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
666
667         spin_lock_irq(conf->hash_locks + hash);
668
669         do {
670                 wait_event_lock_irq(conf->wait_for_stripe,
671                                     conf->quiesce == 0 || noquiesce,
672                                     *(conf->hash_locks + hash));
673                 sh = __find_stripe(conf, sector, conf->generation - previous);
674                 if (!sh) {
675                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
676                                 sh = get_free_stripe(conf, hash);
677                                 if (!sh && llist_empty(&conf->released_stripes) &&
678                                     !test_bit(R5_DID_ALLOC, &conf->cache_state))
679                                         set_bit(R5_ALLOC_MORE,
680                                                 &conf->cache_state);
681                         }
682                         if (noblock && sh == NULL)
683                                 break;
684                         if (!sh) {
685                                 set_bit(R5_INACTIVE_BLOCKED,
686                                         &conf->cache_state);
687                                 wait_event_lock_irq(
688                                         conf->wait_for_stripe,
689                                         !list_empty(conf->inactive_list + hash) &&
690                                         (atomic_read(&conf->active_stripes)
691                                          < (conf->max_nr_stripes * 3 / 4)
692                                          || !test_bit(R5_INACTIVE_BLOCKED,
693                                                       &conf->cache_state)),
694                                         *(conf->hash_locks + hash));
695                                 clear_bit(R5_INACTIVE_BLOCKED,
696                                           &conf->cache_state);
697                         } else {
698                                 init_stripe(sh, sector, previous);
699                                 atomic_inc(&sh->count);
700                         }
701                 } else if (!atomic_inc_not_zero(&sh->count)) {
702                         spin_lock(&conf->device_lock);
703                         if (!atomic_read(&sh->count)) {
704                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
705                                         atomic_inc(&conf->active_stripes);
706                                 BUG_ON(list_empty(&sh->lru) &&
707                                        !test_bit(STRIPE_EXPANDING, &sh->state));
708                                 list_del_init(&sh->lru);
709                                 if (sh->group) {
710                                         sh->group->stripes_cnt--;
711                                         sh->group = NULL;
712                                 }
713                         }
714                         atomic_inc(&sh->count);
715                         spin_unlock(&conf->device_lock);
716                 }
717         } while (sh == NULL);
718
719         spin_unlock_irq(conf->hash_locks + hash);
720         return sh;
721 }
722
723 static bool is_full_stripe_write(struct stripe_head *sh)
724 {
725         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
726         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
727 }
728
729 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
730 {
731         local_irq_disable();
732         if (sh1 > sh2) {
733                 spin_lock(&sh2->stripe_lock);
734                 spin_lock_nested(&sh1->stripe_lock, 1);
735         } else {
736                 spin_lock(&sh1->stripe_lock);
737                 spin_lock_nested(&sh2->stripe_lock, 1);
738         }
739 }
740
741 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
742 {
743         spin_unlock(&sh1->stripe_lock);
744         spin_unlock(&sh2->stripe_lock);
745         local_irq_enable();
746 }
747
748 /* Only freshly new full stripe normal write stripe can be added to a batch list */
749 static bool stripe_can_batch(struct stripe_head *sh)
750 {
751         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
752                 is_full_stripe_write(sh);
753 }
754
755 /* we only do back search */
756 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
757 {
758         struct stripe_head *head;
759         sector_t head_sector, tmp_sec;
760         int hash;
761         int dd_idx;
762
763         if (!stripe_can_batch(sh))
764                 return;
765         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
766         tmp_sec = sh->sector;
767         if (!sector_div(tmp_sec, conf->chunk_sectors))
768                 return;
769         head_sector = sh->sector - STRIPE_SECTORS;
770
771         hash = stripe_hash_locks_hash(head_sector);
772         spin_lock_irq(conf->hash_locks + hash);
773         head = __find_stripe(conf, head_sector, conf->generation);
774         if (head && !atomic_inc_not_zero(&head->count)) {
775                 spin_lock(&conf->device_lock);
776                 if (!atomic_read(&head->count)) {
777                         if (!test_bit(STRIPE_HANDLE, &head->state))
778                                 atomic_inc(&conf->active_stripes);
779                         BUG_ON(list_empty(&head->lru) &&
780                                !test_bit(STRIPE_EXPANDING, &head->state));
781                         list_del_init(&head->lru);
782                         if (head->group) {
783                                 head->group->stripes_cnt--;
784                                 head->group = NULL;
785                         }
786                 }
787                 atomic_inc(&head->count);
788                 spin_unlock(&conf->device_lock);
789         }
790         spin_unlock_irq(conf->hash_locks + hash);
791
792         if (!head)
793                 return;
794         if (!stripe_can_batch(head))
795                 goto out;
796
797         lock_two_stripes(head, sh);
798         /* clear_batch_ready clear the flag */
799         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
800                 goto unlock_out;
801
802         if (sh->batch_head)
803                 goto unlock_out;
804
805         dd_idx = 0;
806         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
807                 dd_idx++;
808         if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
809                 goto unlock_out;
810
811         if (head->batch_head) {
812                 spin_lock(&head->batch_head->batch_lock);
813                 /* This batch list is already running */
814                 if (!stripe_can_batch(head)) {
815                         spin_unlock(&head->batch_head->batch_lock);
816                         goto unlock_out;
817                 }
818
819                 /*
820                  * at this point, head's BATCH_READY could be cleared, but we
821                  * can still add the stripe to batch list
822                  */
823                 list_add(&sh->batch_list, &head->batch_list);
824                 spin_unlock(&head->batch_head->batch_lock);
825
826                 sh->batch_head = head->batch_head;
827         } else {
828                 head->batch_head = head;
829                 sh->batch_head = head->batch_head;
830                 spin_lock(&head->batch_lock);
831                 list_add_tail(&sh->batch_list, &head->batch_list);
832                 spin_unlock(&head->batch_lock);
833         }
834
835         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
836                 if (atomic_dec_return(&conf->preread_active_stripes)
837                     < IO_THRESHOLD)
838                         md_wakeup_thread(conf->mddev->thread);
839
840         atomic_inc(&sh->count);
841 unlock_out:
842         unlock_two_stripes(head, sh);
843 out:
844         release_stripe(head);
845 }
846
847 /* Determine if 'data_offset' or 'new_data_offset' should be used
848  * in this stripe_head.
849  */
850 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
851 {
852         sector_t progress = conf->reshape_progress;
853         /* Need a memory barrier to make sure we see the value
854          * of conf->generation, or ->data_offset that was set before
855          * reshape_progress was updated.
856          */
857         smp_rmb();
858         if (progress == MaxSector)
859                 return 0;
860         if (sh->generation == conf->generation - 1)
861                 return 0;
862         /* We are in a reshape, and this is a new-generation stripe,
863          * so use new_data_offset.
864          */
865         return 1;
866 }
867
868 static void
869 raid5_end_read_request(struct bio *bi, int error);
870 static void
871 raid5_end_write_request(struct bio *bi, int error);
872
873 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
874 {
875         struct r5conf *conf = sh->raid_conf;
876         int i, disks = sh->disks;
877         struct stripe_head *head_sh = sh;
878
879         might_sleep();
880
881         for (i = disks; i--; ) {
882                 int rw;
883                 int replace_only = 0;
884                 struct bio *bi, *rbi;
885                 struct md_rdev *rdev, *rrdev = NULL;
886
887                 sh = head_sh;
888                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
889                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
890                                 rw = WRITE_FUA;
891                         else
892                                 rw = WRITE;
893                         if (test_bit(R5_Discard, &sh->dev[i].flags))
894                                 rw |= REQ_DISCARD;
895                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
896                         rw = READ;
897                 else if (test_and_clear_bit(R5_WantReplace,
898                                             &sh->dev[i].flags)) {
899                         rw = WRITE;
900                         replace_only = 1;
901                 } else
902                         continue;
903                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
904                         rw |= REQ_SYNC;
905
906 again:
907                 bi = &sh->dev[i].req;
908                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
909
910                 rcu_read_lock();
911                 rrdev = rcu_dereference(conf->disks[i].replacement);
912                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
913                 rdev = rcu_dereference(conf->disks[i].rdev);
914                 if (!rdev) {
915                         rdev = rrdev;
916                         rrdev = NULL;
917                 }
918                 if (rw & WRITE) {
919                         if (replace_only)
920                                 rdev = NULL;
921                         if (rdev == rrdev)
922                                 /* We raced and saw duplicates */
923                                 rrdev = NULL;
924                 } else {
925                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
926                                 rdev = rrdev;
927                         rrdev = NULL;
928                 }
929
930                 if (rdev && test_bit(Faulty, &rdev->flags))
931                         rdev = NULL;
932                 if (rdev)
933                         atomic_inc(&rdev->nr_pending);
934                 if (rrdev && test_bit(Faulty, &rrdev->flags))
935                         rrdev = NULL;
936                 if (rrdev)
937                         atomic_inc(&rrdev->nr_pending);
938                 rcu_read_unlock();
939
940                 /* We have already checked bad blocks for reads.  Now
941                  * need to check for writes.  We never accept write errors
942                  * on the replacement, so we don't to check rrdev.
943                  */
944                 while ((rw & WRITE) && rdev &&
945                        test_bit(WriteErrorSeen, &rdev->flags)) {
946                         sector_t first_bad;
947                         int bad_sectors;
948                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
949                                               &first_bad, &bad_sectors);
950                         if (!bad)
951                                 break;
952
953                         if (bad < 0) {
954                                 set_bit(BlockedBadBlocks, &rdev->flags);
955                                 if (!conf->mddev->external &&
956                                     conf->mddev->flags) {
957                                         /* It is very unlikely, but we might
958                                          * still need to write out the
959                                          * bad block log - better give it
960                                          * a chance*/
961                                         md_check_recovery(conf->mddev);
962                                 }
963                                 /*
964                                  * Because md_wait_for_blocked_rdev
965                                  * will dec nr_pending, we must
966                                  * increment it first.
967                                  */
968                                 atomic_inc(&rdev->nr_pending);
969                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
970                         } else {
971                                 /* Acknowledged bad block - skip the write */
972                                 rdev_dec_pending(rdev, conf->mddev);
973                                 rdev = NULL;
974                         }
975                 }
976
977                 if (rdev) {
978                         if (s->syncing || s->expanding || s->expanded
979                             || s->replacing)
980                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
981
982                         set_bit(STRIPE_IO_STARTED, &sh->state);
983
984                         bio_reset(bi);
985                         bi->bi_bdev = rdev->bdev;
986                         bi->bi_rw = rw;
987                         bi->bi_end_io = (rw & WRITE)
988                                 ? raid5_end_write_request
989                                 : raid5_end_read_request;
990                         bi->bi_private = sh;
991
992                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
993                                 __func__, (unsigned long long)sh->sector,
994                                 bi->bi_rw, i);
995                         atomic_inc(&sh->count);
996                         if (sh != head_sh)
997                                 atomic_inc(&head_sh->count);
998                         if (use_new_offset(conf, sh))
999                                 bi->bi_iter.bi_sector = (sh->sector
1000                                                  + rdev->new_data_offset);
1001                         else
1002                                 bi->bi_iter.bi_sector = (sh->sector
1003                                                  + rdev->data_offset);
1004                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1005                                 bi->bi_rw |= REQ_NOMERGE;
1006
1007                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1008                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1009                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1010                         bi->bi_vcnt = 1;
1011                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1012                         bi->bi_io_vec[0].bv_offset = 0;
1013                         bi->bi_iter.bi_size = STRIPE_SIZE;
1014                         /*
1015                          * If this is discard request, set bi_vcnt 0. We don't
1016                          * want to confuse SCSI because SCSI will replace payload
1017                          */
1018                         if (rw & REQ_DISCARD)
1019                                 bi->bi_vcnt = 0;
1020                         if (rrdev)
1021                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1022
1023                         if (conf->mddev->gendisk)
1024                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1025                                                       bi, disk_devt(conf->mddev->gendisk),
1026                                                       sh->dev[i].sector);
1027                         generic_make_request(bi);
1028                 }
1029                 if (rrdev) {
1030                         if (s->syncing || s->expanding || s->expanded
1031                             || s->replacing)
1032                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1033
1034                         set_bit(STRIPE_IO_STARTED, &sh->state);
1035
1036                         bio_reset(rbi);
1037                         rbi->bi_bdev = rrdev->bdev;
1038                         rbi->bi_rw = rw;
1039                         BUG_ON(!(rw & WRITE));
1040                         rbi->bi_end_io = raid5_end_write_request;
1041                         rbi->bi_private = sh;
1042
1043                         pr_debug("%s: for %llu schedule op %ld on "
1044                                  "replacement disc %d\n",
1045                                 __func__, (unsigned long long)sh->sector,
1046                                 rbi->bi_rw, i);
1047                         atomic_inc(&sh->count);
1048                         if (sh != head_sh)
1049                                 atomic_inc(&head_sh->count);
1050                         if (use_new_offset(conf, sh))
1051                                 rbi->bi_iter.bi_sector = (sh->sector
1052                                                   + rrdev->new_data_offset);
1053                         else
1054                                 rbi->bi_iter.bi_sector = (sh->sector
1055                                                   + rrdev->data_offset);
1056                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1057                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1058                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1059                         rbi->bi_vcnt = 1;
1060                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1061                         rbi->bi_io_vec[0].bv_offset = 0;
1062                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1063                         /*
1064                          * If this is discard request, set bi_vcnt 0. We don't
1065                          * want to confuse SCSI because SCSI will replace payload
1066                          */
1067                         if (rw & REQ_DISCARD)
1068                                 rbi->bi_vcnt = 0;
1069                         if (conf->mddev->gendisk)
1070                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1071                                                       rbi, disk_devt(conf->mddev->gendisk),
1072                                                       sh->dev[i].sector);
1073                         generic_make_request(rbi);
1074                 }
1075                 if (!rdev && !rrdev) {
1076                         if (rw & WRITE)
1077                                 set_bit(STRIPE_DEGRADED, &sh->state);
1078                         pr_debug("skip op %ld on disc %d for sector %llu\n",
1079                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1080                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1081                         if (sh->batch_head)
1082                                 set_bit(STRIPE_BATCH_ERR,
1083                                         &sh->batch_head->state);
1084                         set_bit(STRIPE_HANDLE, &sh->state);
1085                 }
1086
1087                 if (!head_sh->batch_head)
1088                         continue;
1089                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1090                                       batch_list);
1091                 if (sh != head_sh)
1092                         goto again;
1093         }
1094 }
1095
1096 static struct dma_async_tx_descriptor *
1097 async_copy_data(int frombio, struct bio *bio, struct page **page,
1098         sector_t sector, struct dma_async_tx_descriptor *tx,
1099         struct stripe_head *sh)
1100 {
1101         struct bio_vec bvl;
1102         struct bvec_iter iter;
1103         struct page *bio_page;
1104         int page_offset;
1105         struct async_submit_ctl submit;
1106         enum async_tx_flags flags = 0;
1107
1108         if (bio->bi_iter.bi_sector >= sector)
1109                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1110         else
1111                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1112
1113         if (frombio)
1114                 flags |= ASYNC_TX_FENCE;
1115         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1116
1117         bio_for_each_segment(bvl, bio, iter) {
1118                 int len = bvl.bv_len;
1119                 int clen;
1120                 int b_offset = 0;
1121
1122                 if (page_offset < 0) {
1123                         b_offset = -page_offset;
1124                         page_offset += b_offset;
1125                         len -= b_offset;
1126                 }
1127
1128                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1129                         clen = STRIPE_SIZE - page_offset;
1130                 else
1131                         clen = len;
1132
1133                 if (clen > 0) {
1134                         b_offset += bvl.bv_offset;
1135                         bio_page = bvl.bv_page;
1136                         if (frombio) {
1137                                 if (sh->raid_conf->skip_copy &&
1138                                     b_offset == 0 && page_offset == 0 &&
1139                                     clen == STRIPE_SIZE)
1140                                         *page = bio_page;
1141                                 else
1142                                         tx = async_memcpy(*page, bio_page, page_offset,
1143                                                   b_offset, clen, &submit);
1144                         } else
1145                                 tx = async_memcpy(bio_page, *page, b_offset,
1146                                                   page_offset, clen, &submit);
1147                 }
1148                 /* chain the operations */
1149                 submit.depend_tx = tx;
1150
1151                 if (clen < len) /* hit end of page */
1152                         break;
1153                 page_offset +=  len;
1154         }
1155
1156         return tx;
1157 }
1158
1159 static void ops_complete_biofill(void *stripe_head_ref)
1160 {
1161         struct stripe_head *sh = stripe_head_ref;
1162         struct bio *return_bi = NULL;
1163         int i;
1164
1165         pr_debug("%s: stripe %llu\n", __func__,
1166                 (unsigned long long)sh->sector);
1167
1168         /* clear completed biofills */
1169         for (i = sh->disks; i--; ) {
1170                 struct r5dev *dev = &sh->dev[i];
1171
1172                 /* acknowledge completion of a biofill operation */
1173                 /* and check if we need to reply to a read request,
1174                  * new R5_Wantfill requests are held off until
1175                  * !STRIPE_BIOFILL_RUN
1176                  */
1177                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1178                         struct bio *rbi, *rbi2;
1179
1180                         BUG_ON(!dev->read);
1181                         rbi = dev->read;
1182                         dev->read = NULL;
1183                         while (rbi && rbi->bi_iter.bi_sector <
1184                                 dev->sector + STRIPE_SECTORS) {
1185                                 rbi2 = r5_next_bio(rbi, dev->sector);
1186                                 if (!raid5_dec_bi_active_stripes(rbi)) {
1187                                         rbi->bi_next = return_bi;
1188                                         return_bi = rbi;
1189                                 }
1190                                 rbi = rbi2;
1191                         }
1192                 }
1193         }
1194         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1195
1196         return_io(return_bi);
1197
1198         set_bit(STRIPE_HANDLE, &sh->state);
1199         release_stripe(sh);
1200 }
1201
1202 static void ops_run_biofill(struct stripe_head *sh)
1203 {
1204         struct dma_async_tx_descriptor *tx = NULL;
1205         struct async_submit_ctl submit;
1206         int i;
1207
1208         BUG_ON(sh->batch_head);
1209         pr_debug("%s: stripe %llu\n", __func__,
1210                 (unsigned long long)sh->sector);
1211
1212         for (i = sh->disks; i--; ) {
1213                 struct r5dev *dev = &sh->dev[i];
1214                 if (test_bit(R5_Wantfill, &dev->flags)) {
1215                         struct bio *rbi;
1216                         spin_lock_irq(&sh->stripe_lock);
1217                         dev->read = rbi = dev->toread;
1218                         dev->toread = NULL;
1219                         spin_unlock_irq(&sh->stripe_lock);
1220                         while (rbi && rbi->bi_iter.bi_sector <
1221                                 dev->sector + STRIPE_SECTORS) {
1222                                 tx = async_copy_data(0, rbi, &dev->page,
1223                                         dev->sector, tx, sh);
1224                                 rbi = r5_next_bio(rbi, dev->sector);
1225                         }
1226                 }
1227         }
1228
1229         atomic_inc(&sh->count);
1230         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1231         async_trigger_callback(&submit);
1232 }
1233
1234 static void mark_target_uptodate(struct stripe_head *sh, int target)
1235 {
1236         struct r5dev *tgt;
1237
1238         if (target < 0)
1239                 return;
1240
1241         tgt = &sh->dev[target];
1242         set_bit(R5_UPTODATE, &tgt->flags);
1243         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1244         clear_bit(R5_Wantcompute, &tgt->flags);
1245 }
1246
1247 static void ops_complete_compute(void *stripe_head_ref)
1248 {
1249         struct stripe_head *sh = stripe_head_ref;
1250
1251         pr_debug("%s: stripe %llu\n", __func__,
1252                 (unsigned long long)sh->sector);
1253
1254         /* mark the computed target(s) as uptodate */
1255         mark_target_uptodate(sh, sh->ops.target);
1256         mark_target_uptodate(sh, sh->ops.target2);
1257
1258         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1259         if (sh->check_state == check_state_compute_run)
1260                 sh->check_state = check_state_compute_result;
1261         set_bit(STRIPE_HANDLE, &sh->state);
1262         release_stripe(sh);
1263 }
1264
1265 /* return a pointer to the address conversion region of the scribble buffer */
1266 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1267                                  struct raid5_percpu *percpu, int i)
1268 {
1269         void *addr;
1270
1271         addr = flex_array_get(percpu->scribble, i);
1272         return addr + sizeof(struct page *) * (sh->disks + 2);
1273 }
1274
1275 /* return a pointer to the address conversion region of the scribble buffer */
1276 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1277 {
1278         void *addr;
1279
1280         addr = flex_array_get(percpu->scribble, i);
1281         return addr;
1282 }
1283
1284 static struct dma_async_tx_descriptor *
1285 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1286 {
1287         int disks = sh->disks;
1288         struct page **xor_srcs = to_addr_page(percpu, 0);
1289         int target = sh->ops.target;
1290         struct r5dev *tgt = &sh->dev[target];
1291         struct page *xor_dest = tgt->page;
1292         int count = 0;
1293         struct dma_async_tx_descriptor *tx;
1294         struct async_submit_ctl submit;
1295         int i;
1296
1297         BUG_ON(sh->batch_head);
1298
1299         pr_debug("%s: stripe %llu block: %d\n",
1300                 __func__, (unsigned long long)sh->sector, target);
1301         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1302
1303         for (i = disks; i--; )
1304                 if (i != target)
1305                         xor_srcs[count++] = sh->dev[i].page;
1306
1307         atomic_inc(&sh->count);
1308
1309         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1310                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1311         if (unlikely(count == 1))
1312                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1313         else
1314                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1315
1316         return tx;
1317 }
1318
1319 /* set_syndrome_sources - populate source buffers for gen_syndrome
1320  * @srcs - (struct page *) array of size sh->disks
1321  * @sh - stripe_head to parse
1322  *
1323  * Populates srcs in proper layout order for the stripe and returns the
1324  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1325  * destination buffer is recorded in srcs[count] and the Q destination
1326  * is recorded in srcs[count+1]].
1327  */
1328 static int set_syndrome_sources(struct page **srcs,
1329                                 struct stripe_head *sh,
1330                                 int srctype)
1331 {
1332         int disks = sh->disks;
1333         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1334         int d0_idx = raid6_d0(sh);
1335         int count;
1336         int i;
1337
1338         for (i = 0; i < disks; i++)
1339                 srcs[i] = NULL;
1340
1341         count = 0;
1342         i = d0_idx;
1343         do {
1344                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1345                 struct r5dev *dev = &sh->dev[i];
1346
1347                 if (i == sh->qd_idx || i == sh->pd_idx ||
1348                     (srctype == SYNDROME_SRC_ALL) ||
1349                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1350                      test_bit(R5_Wantdrain, &dev->flags)) ||
1351                     (srctype == SYNDROME_SRC_WRITTEN &&
1352                      dev->written))
1353                         srcs[slot] = sh->dev[i].page;
1354                 i = raid6_next_disk(i, disks);
1355         } while (i != d0_idx);
1356
1357         return syndrome_disks;
1358 }
1359
1360 static struct dma_async_tx_descriptor *
1361 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1362 {
1363         int disks = sh->disks;
1364         struct page **blocks = to_addr_page(percpu, 0);
1365         int target;
1366         int qd_idx = sh->qd_idx;
1367         struct dma_async_tx_descriptor *tx;
1368         struct async_submit_ctl submit;
1369         struct r5dev *tgt;
1370         struct page *dest;
1371         int i;
1372         int count;
1373
1374         BUG_ON(sh->batch_head);
1375         if (sh->ops.target < 0)
1376                 target = sh->ops.target2;
1377         else if (sh->ops.target2 < 0)
1378                 target = sh->ops.target;
1379         else
1380                 /* we should only have one valid target */
1381                 BUG();
1382         BUG_ON(target < 0);
1383         pr_debug("%s: stripe %llu block: %d\n",
1384                 __func__, (unsigned long long)sh->sector, target);
1385
1386         tgt = &sh->dev[target];
1387         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1388         dest = tgt->page;
1389
1390         atomic_inc(&sh->count);
1391
1392         if (target == qd_idx) {
1393                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1394                 blocks[count] = NULL; /* regenerating p is not necessary */
1395                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1396                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1397                                   ops_complete_compute, sh,
1398                                   to_addr_conv(sh, percpu, 0));
1399                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1400         } else {
1401                 /* Compute any data- or p-drive using XOR */
1402                 count = 0;
1403                 for (i = disks; i-- ; ) {
1404                         if (i == target || i == qd_idx)
1405                                 continue;
1406                         blocks[count++] = sh->dev[i].page;
1407                 }
1408
1409                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1410                                   NULL, ops_complete_compute, sh,
1411                                   to_addr_conv(sh, percpu, 0));
1412                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1413         }
1414
1415         return tx;
1416 }
1417
1418 static struct dma_async_tx_descriptor *
1419 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1420 {
1421         int i, count, disks = sh->disks;
1422         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1423         int d0_idx = raid6_d0(sh);
1424         int faila = -1, failb = -1;
1425         int target = sh->ops.target;
1426         int target2 = sh->ops.target2;
1427         struct r5dev *tgt = &sh->dev[target];
1428         struct r5dev *tgt2 = &sh->dev[target2];
1429         struct dma_async_tx_descriptor *tx;
1430         struct page **blocks = to_addr_page(percpu, 0);
1431         struct async_submit_ctl submit;
1432
1433         BUG_ON(sh->batch_head);
1434         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1435                  __func__, (unsigned long long)sh->sector, target, target2);
1436         BUG_ON(target < 0 || target2 < 0);
1437         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1438         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1439
1440         /* we need to open-code set_syndrome_sources to handle the
1441          * slot number conversion for 'faila' and 'failb'
1442          */
1443         for (i = 0; i < disks ; i++)
1444                 blocks[i] = NULL;
1445         count = 0;
1446         i = d0_idx;
1447         do {
1448                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1449
1450                 blocks[slot] = sh->dev[i].page;
1451
1452                 if (i == target)
1453                         faila = slot;
1454                 if (i == target2)
1455                         failb = slot;
1456                 i = raid6_next_disk(i, disks);
1457         } while (i != d0_idx);
1458
1459         BUG_ON(faila == failb);
1460         if (failb < faila)
1461                 swap(faila, failb);
1462         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1463                  __func__, (unsigned long long)sh->sector, faila, failb);
1464
1465         atomic_inc(&sh->count);
1466
1467         if (failb == syndrome_disks+1) {
1468                 /* Q disk is one of the missing disks */
1469                 if (faila == syndrome_disks) {
1470                         /* Missing P+Q, just recompute */
1471                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1472                                           ops_complete_compute, sh,
1473                                           to_addr_conv(sh, percpu, 0));
1474                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1475                                                   STRIPE_SIZE, &submit);
1476                 } else {
1477                         struct page *dest;
1478                         int data_target;
1479                         int qd_idx = sh->qd_idx;
1480
1481                         /* Missing D+Q: recompute D from P, then recompute Q */
1482                         if (target == qd_idx)
1483                                 data_target = target2;
1484                         else
1485                                 data_target = target;
1486
1487                         count = 0;
1488                         for (i = disks; i-- ; ) {
1489                                 if (i == data_target || i == qd_idx)
1490                                         continue;
1491                                 blocks[count++] = sh->dev[i].page;
1492                         }
1493                         dest = sh->dev[data_target].page;
1494                         init_async_submit(&submit,
1495                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1496                                           NULL, NULL, NULL,
1497                                           to_addr_conv(sh, percpu, 0));
1498                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1499                                        &submit);
1500
1501                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1502                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1503                                           ops_complete_compute, sh,
1504                                           to_addr_conv(sh, percpu, 0));
1505                         return async_gen_syndrome(blocks, 0, count+2,
1506                                                   STRIPE_SIZE, &submit);
1507                 }
1508         } else {
1509                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1510                                   ops_complete_compute, sh,
1511                                   to_addr_conv(sh, percpu, 0));
1512                 if (failb == syndrome_disks) {
1513                         /* We're missing D+P. */
1514                         return async_raid6_datap_recov(syndrome_disks+2,
1515                                                        STRIPE_SIZE, faila,
1516                                                        blocks, &submit);
1517                 } else {
1518                         /* We're missing D+D. */
1519                         return async_raid6_2data_recov(syndrome_disks+2,
1520                                                        STRIPE_SIZE, faila, failb,
1521                                                        blocks, &submit);
1522                 }
1523         }
1524 }
1525
1526 static void ops_complete_prexor(void *stripe_head_ref)
1527 {
1528         struct stripe_head *sh = stripe_head_ref;
1529
1530         pr_debug("%s: stripe %llu\n", __func__,
1531                 (unsigned long long)sh->sector);
1532 }
1533
1534 static struct dma_async_tx_descriptor *
1535 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1536                 struct dma_async_tx_descriptor *tx)
1537 {
1538         int disks = sh->disks;
1539         struct page **xor_srcs = to_addr_page(percpu, 0);
1540         int count = 0, pd_idx = sh->pd_idx, i;
1541         struct async_submit_ctl submit;
1542
1543         /* existing parity data subtracted */
1544         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1545
1546         BUG_ON(sh->batch_head);
1547         pr_debug("%s: stripe %llu\n", __func__,
1548                 (unsigned long long)sh->sector);
1549
1550         for (i = disks; i--; ) {
1551                 struct r5dev *dev = &sh->dev[i];
1552                 /* Only process blocks that are known to be uptodate */
1553                 if (test_bit(R5_Wantdrain, &dev->flags))
1554                         xor_srcs[count++] = dev->page;
1555         }
1556
1557         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1558                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1559         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1560
1561         return tx;
1562 }
1563
1564 static struct dma_async_tx_descriptor *
1565 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1566                 struct dma_async_tx_descriptor *tx)
1567 {
1568         struct page **blocks = to_addr_page(percpu, 0);
1569         int count;
1570         struct async_submit_ctl submit;
1571
1572         pr_debug("%s: stripe %llu\n", __func__,
1573                 (unsigned long long)sh->sector);
1574
1575         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1576
1577         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1578                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1579         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1580
1581         return tx;
1582 }
1583
1584 static struct dma_async_tx_descriptor *
1585 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1586 {
1587         int disks = sh->disks;
1588         int i;
1589         struct stripe_head *head_sh = sh;
1590
1591         pr_debug("%s: stripe %llu\n", __func__,
1592                 (unsigned long long)sh->sector);
1593
1594         for (i = disks; i--; ) {
1595                 struct r5dev *dev;
1596                 struct bio *chosen;
1597
1598                 sh = head_sh;
1599                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1600                         struct bio *wbi;
1601
1602 again:
1603                         dev = &sh->dev[i];
1604                         spin_lock_irq(&sh->stripe_lock);
1605                         chosen = dev->towrite;
1606                         dev->towrite = NULL;
1607                         sh->overwrite_disks = 0;
1608                         BUG_ON(dev->written);
1609                         wbi = dev->written = chosen;
1610                         spin_unlock_irq(&sh->stripe_lock);
1611                         WARN_ON(dev->page != dev->orig_page);
1612
1613                         while (wbi && wbi->bi_iter.bi_sector <
1614                                 dev->sector + STRIPE_SECTORS) {
1615                                 if (wbi->bi_rw & REQ_FUA)
1616                                         set_bit(R5_WantFUA, &dev->flags);
1617                                 if (wbi->bi_rw & REQ_SYNC)
1618                                         set_bit(R5_SyncIO, &dev->flags);
1619                                 if (wbi->bi_rw & REQ_DISCARD)
1620                                         set_bit(R5_Discard, &dev->flags);
1621                                 else {
1622                                         tx = async_copy_data(1, wbi, &dev->page,
1623                                                 dev->sector, tx, sh);
1624                                         if (dev->page != dev->orig_page) {
1625                                                 set_bit(R5_SkipCopy, &dev->flags);
1626                                                 clear_bit(R5_UPTODATE, &dev->flags);
1627                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1628                                         }
1629                                 }
1630                                 wbi = r5_next_bio(wbi, dev->sector);
1631                         }
1632
1633                         if (head_sh->batch_head) {
1634                                 sh = list_first_entry(&sh->batch_list,
1635                                                       struct stripe_head,
1636                                                       batch_list);
1637                                 if (sh == head_sh)
1638                                         continue;
1639                                 goto again;
1640                         }
1641                 }
1642         }
1643
1644         return tx;
1645 }
1646
1647 static void ops_complete_reconstruct(void *stripe_head_ref)
1648 {
1649         struct stripe_head *sh = stripe_head_ref;
1650         int disks = sh->disks;
1651         int pd_idx = sh->pd_idx;
1652         int qd_idx = sh->qd_idx;
1653         int i;
1654         bool fua = false, sync = false, discard = false;
1655
1656         pr_debug("%s: stripe %llu\n", __func__,
1657                 (unsigned long long)sh->sector);
1658
1659         for (i = disks; i--; ) {
1660                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1661                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1662                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1663         }
1664
1665         for (i = disks; i--; ) {
1666                 struct r5dev *dev = &sh->dev[i];
1667
1668                 if (dev->written || i == pd_idx || i == qd_idx) {
1669                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1670                                 set_bit(R5_UPTODATE, &dev->flags);
1671                         if (fua)
1672                                 set_bit(R5_WantFUA, &dev->flags);
1673                         if (sync)
1674                                 set_bit(R5_SyncIO, &dev->flags);
1675                 }
1676         }
1677
1678         if (sh->reconstruct_state == reconstruct_state_drain_run)
1679                 sh->reconstruct_state = reconstruct_state_drain_result;
1680         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1681                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1682         else {
1683                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1684                 sh->reconstruct_state = reconstruct_state_result;
1685         }
1686
1687         set_bit(STRIPE_HANDLE, &sh->state);
1688         release_stripe(sh);
1689 }
1690
1691 static void
1692 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1693                      struct dma_async_tx_descriptor *tx)
1694 {
1695         int disks = sh->disks;
1696         struct page **xor_srcs;
1697         struct async_submit_ctl submit;
1698         int count, pd_idx = sh->pd_idx, i;
1699         struct page *xor_dest;
1700         int prexor = 0;
1701         unsigned long flags;
1702         int j = 0;
1703         struct stripe_head *head_sh = sh;
1704         int last_stripe;
1705
1706         pr_debug("%s: stripe %llu\n", __func__,
1707                 (unsigned long long)sh->sector);
1708
1709         for (i = 0; i < sh->disks; i++) {
1710                 if (pd_idx == i)
1711                         continue;
1712                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1713                         break;
1714         }
1715         if (i >= sh->disks) {
1716                 atomic_inc(&sh->count);
1717                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1718                 ops_complete_reconstruct(sh);
1719                 return;
1720         }
1721 again:
1722         count = 0;
1723         xor_srcs = to_addr_page(percpu, j);
1724         /* check if prexor is active which means only process blocks
1725          * that are part of a read-modify-write (written)
1726          */
1727         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1728                 prexor = 1;
1729                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1730                 for (i = disks; i--; ) {
1731                         struct r5dev *dev = &sh->dev[i];
1732                         if (head_sh->dev[i].written)
1733                                 xor_srcs[count++] = dev->page;
1734                 }
1735         } else {
1736                 xor_dest = sh->dev[pd_idx].page;
1737                 for (i = disks; i--; ) {
1738                         struct r5dev *dev = &sh->dev[i];
1739                         if (i != pd_idx)
1740                                 xor_srcs[count++] = dev->page;
1741                 }
1742         }
1743
1744         /* 1/ if we prexor'd then the dest is reused as a source
1745          * 2/ if we did not prexor then we are redoing the parity
1746          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1747          * for the synchronous xor case
1748          */
1749         last_stripe = !head_sh->batch_head ||
1750                 list_first_entry(&sh->batch_list,
1751                                  struct stripe_head, batch_list) == head_sh;
1752         if (last_stripe) {
1753                 flags = ASYNC_TX_ACK |
1754                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1755
1756                 atomic_inc(&head_sh->count);
1757                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1758                                   to_addr_conv(sh, percpu, j));
1759         } else {
1760                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1761                 init_async_submit(&submit, flags, tx, NULL, NULL,
1762                                   to_addr_conv(sh, percpu, j));
1763         }
1764
1765         if (unlikely(count == 1))
1766                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1767         else
1768                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1769         if (!last_stripe) {
1770                 j++;
1771                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1772                                       batch_list);
1773                 goto again;
1774         }
1775 }
1776
1777 static void
1778 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1779                      struct dma_async_tx_descriptor *tx)
1780 {
1781         struct async_submit_ctl submit;
1782         struct page **blocks;
1783         int count, i, j = 0;
1784         struct stripe_head *head_sh = sh;
1785         int last_stripe;
1786         int synflags;
1787         unsigned long txflags;
1788
1789         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1790
1791         for (i = 0; i < sh->disks; i++) {
1792                 if (sh->pd_idx == i || sh->qd_idx == i)
1793                         continue;
1794                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1795                         break;
1796         }
1797         if (i >= sh->disks) {
1798                 atomic_inc(&sh->count);
1799                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1800                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1801                 ops_complete_reconstruct(sh);
1802                 return;
1803         }
1804
1805 again:
1806         blocks = to_addr_page(percpu, j);
1807
1808         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1809                 synflags = SYNDROME_SRC_WRITTEN;
1810                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1811         } else {
1812                 synflags = SYNDROME_SRC_ALL;
1813                 txflags = ASYNC_TX_ACK;
1814         }
1815
1816         count = set_syndrome_sources(blocks, sh, synflags);
1817         last_stripe = !head_sh->batch_head ||
1818                 list_first_entry(&sh->batch_list,
1819                                  struct stripe_head, batch_list) == head_sh;
1820
1821         if (last_stripe) {
1822                 atomic_inc(&head_sh->count);
1823                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1824                                   head_sh, to_addr_conv(sh, percpu, j));
1825         } else
1826                 init_async_submit(&submit, 0, tx, NULL, NULL,
1827                                   to_addr_conv(sh, percpu, j));
1828         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1829         if (!last_stripe) {
1830                 j++;
1831                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1832                                       batch_list);
1833                 goto again;
1834         }
1835 }
1836
1837 static void ops_complete_check(void *stripe_head_ref)
1838 {
1839         struct stripe_head *sh = stripe_head_ref;
1840
1841         pr_debug("%s: stripe %llu\n", __func__,
1842                 (unsigned long long)sh->sector);
1843
1844         sh->check_state = check_state_check_result;
1845         set_bit(STRIPE_HANDLE, &sh->state);
1846         release_stripe(sh);
1847 }
1848
1849 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1850 {
1851         int disks = sh->disks;
1852         int pd_idx = sh->pd_idx;
1853         int qd_idx = sh->qd_idx;
1854         struct page *xor_dest;
1855         struct page **xor_srcs = to_addr_page(percpu, 0);
1856         struct dma_async_tx_descriptor *tx;
1857         struct async_submit_ctl submit;
1858         int count;
1859         int i;
1860
1861         pr_debug("%s: stripe %llu\n", __func__,
1862                 (unsigned long long)sh->sector);
1863
1864         BUG_ON(sh->batch_head);
1865         count = 0;
1866         xor_dest = sh->dev[pd_idx].page;
1867         xor_srcs[count++] = xor_dest;
1868         for (i = disks; i--; ) {
1869                 if (i == pd_idx || i == qd_idx)
1870                         continue;
1871                 xor_srcs[count++] = sh->dev[i].page;
1872         }
1873
1874         init_async_submit(&submit, 0, NULL, NULL, NULL,
1875                           to_addr_conv(sh, percpu, 0));
1876         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1877                            &sh->ops.zero_sum_result, &submit);
1878
1879         atomic_inc(&sh->count);
1880         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1881         tx = async_trigger_callback(&submit);
1882 }
1883
1884 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1885 {
1886         struct page **srcs = to_addr_page(percpu, 0);
1887         struct async_submit_ctl submit;
1888         int count;
1889
1890         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1891                 (unsigned long long)sh->sector, checkp);
1892
1893         BUG_ON(sh->batch_head);
1894         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1895         if (!checkp)
1896                 srcs[count] = NULL;
1897
1898         atomic_inc(&sh->count);
1899         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1900                           sh, to_addr_conv(sh, percpu, 0));
1901         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1902                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1903 }
1904
1905 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1906 {
1907         int overlap_clear = 0, i, disks = sh->disks;
1908         struct dma_async_tx_descriptor *tx = NULL;
1909         struct r5conf *conf = sh->raid_conf;
1910         int level = conf->level;
1911         struct raid5_percpu *percpu;
1912         unsigned long cpu;
1913
1914         cpu = get_cpu();
1915         percpu = per_cpu_ptr(conf->percpu, cpu);
1916         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1917                 ops_run_biofill(sh);
1918                 overlap_clear++;
1919         }
1920
1921         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1922                 if (level < 6)
1923                         tx = ops_run_compute5(sh, percpu);
1924                 else {
1925                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1926                                 tx = ops_run_compute6_1(sh, percpu);
1927                         else
1928                                 tx = ops_run_compute6_2(sh, percpu);
1929                 }
1930                 /* terminate the chain if reconstruct is not set to be run */
1931                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1932                         async_tx_ack(tx);
1933         }
1934
1935         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1936                 if (level < 6)
1937                         tx = ops_run_prexor5(sh, percpu, tx);
1938                 else
1939                         tx = ops_run_prexor6(sh, percpu, tx);
1940         }
1941
1942         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1943                 tx = ops_run_biodrain(sh, tx);
1944                 overlap_clear++;
1945         }
1946
1947         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1948                 if (level < 6)
1949                         ops_run_reconstruct5(sh, percpu, tx);
1950                 else
1951                         ops_run_reconstruct6(sh, percpu, tx);
1952         }
1953
1954         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1955                 if (sh->check_state == check_state_run)
1956                         ops_run_check_p(sh, percpu);
1957                 else if (sh->check_state == check_state_run_q)
1958                         ops_run_check_pq(sh, percpu, 0);
1959                 else if (sh->check_state == check_state_run_pq)
1960                         ops_run_check_pq(sh, percpu, 1);
1961                 else
1962                         BUG();
1963         }
1964
1965         if (overlap_clear && !sh->batch_head)
1966                 for (i = disks; i--; ) {
1967                         struct r5dev *dev = &sh->dev[i];
1968                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1969                                 wake_up(&sh->raid_conf->wait_for_overlap);
1970                 }
1971         put_cpu();
1972 }
1973
1974 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1975 {
1976         struct stripe_head *sh;
1977
1978         sh = kmem_cache_zalloc(sc, gfp);
1979         if (sh) {
1980                 spin_lock_init(&sh->stripe_lock);
1981                 spin_lock_init(&sh->batch_lock);
1982                 INIT_LIST_HEAD(&sh->batch_list);
1983                 INIT_LIST_HEAD(&sh->lru);
1984                 atomic_set(&sh->count, 1);
1985         }
1986         return sh;
1987 }
1988 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1989 {
1990         struct stripe_head *sh;
1991
1992         sh = alloc_stripe(conf->slab_cache, gfp);
1993         if (!sh)
1994                 return 0;
1995
1996         sh->raid_conf = conf;
1997
1998         if (grow_buffers(sh, gfp)) {
1999                 shrink_buffers(sh);
2000                 kmem_cache_free(conf->slab_cache, sh);
2001                 return 0;
2002         }
2003         sh->hash_lock_index =
2004                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2005         /* we just created an active stripe so... */
2006         atomic_inc(&conf->active_stripes);
2007
2008         release_stripe(sh);
2009         conf->max_nr_stripes++;
2010         return 1;
2011 }
2012
2013 static int grow_stripes(struct r5conf *conf, int num)
2014 {
2015         struct kmem_cache *sc;
2016         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2017
2018         if (conf->mddev->gendisk)
2019                 sprintf(conf->cache_name[0],
2020                         "raid%d-%s", conf->level, mdname(conf->mddev));
2021         else
2022                 sprintf(conf->cache_name[0],
2023                         "raid%d-%p", conf->level, conf->mddev);
2024         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2025
2026         conf->active_name = 0;
2027         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2028                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2029                                0, 0, NULL);
2030         if (!sc)
2031                 return 1;
2032         conf->slab_cache = sc;
2033         conf->pool_size = devs;
2034         while (num--)
2035                 if (!grow_one_stripe(conf, GFP_KERNEL))
2036                         return 1;
2037
2038         return 0;
2039 }
2040
2041 /**
2042  * scribble_len - return the required size of the scribble region
2043  * @num - total number of disks in the array
2044  *
2045  * The size must be enough to contain:
2046  * 1/ a struct page pointer for each device in the array +2
2047  * 2/ room to convert each entry in (1) to its corresponding dma
2048  *    (dma_map_page()) or page (page_address()) address.
2049  *
2050  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2051  * calculate over all devices (not just the data blocks), using zeros in place
2052  * of the P and Q blocks.
2053  */
2054 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2055 {
2056         struct flex_array *ret;
2057         size_t len;
2058
2059         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2060         ret = flex_array_alloc(len, cnt, flags);
2061         if (!ret)
2062                 return NULL;
2063         /* always prealloc all elements, so no locking is required */
2064         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2065                 flex_array_free(ret);
2066                 return NULL;
2067         }
2068         return ret;
2069 }
2070
2071 static int resize_stripes(struct r5conf *conf, int newsize)
2072 {
2073         /* Make all the stripes able to hold 'newsize' devices.
2074          * New slots in each stripe get 'page' set to a new page.
2075          *
2076          * This happens in stages:
2077          * 1/ create a new kmem_cache and allocate the required number of
2078          *    stripe_heads.
2079          * 2/ gather all the old stripe_heads and transfer the pages across
2080          *    to the new stripe_heads.  This will have the side effect of
2081          *    freezing the array as once all stripe_heads have been collected,
2082          *    no IO will be possible.  Old stripe heads are freed once their
2083          *    pages have been transferred over, and the old kmem_cache is
2084          *    freed when all stripes are done.
2085          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2086          *    we simple return a failre status - no need to clean anything up.
2087          * 4/ allocate new pages for the new slots in the new stripe_heads.
2088          *    If this fails, we don't bother trying the shrink the
2089          *    stripe_heads down again, we just leave them as they are.
2090          *    As each stripe_head is processed the new one is released into
2091          *    active service.
2092          *
2093          * Once step2 is started, we cannot afford to wait for a write,
2094          * so we use GFP_NOIO allocations.
2095          */
2096         struct stripe_head *osh, *nsh;
2097         LIST_HEAD(newstripes);
2098         struct disk_info *ndisks;
2099         unsigned long cpu;
2100         int err;
2101         struct kmem_cache *sc;
2102         int i;
2103         int hash, cnt;
2104
2105         if (newsize <= conf->pool_size)
2106                 return 0; /* never bother to shrink */
2107
2108         err = md_allow_write(conf->mddev);
2109         if (err)
2110                 return err;
2111
2112         /* Step 1 */
2113         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2114                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2115                                0, 0, NULL);
2116         if (!sc)
2117                 return -ENOMEM;
2118
2119         for (i = conf->max_nr_stripes; i; i--) {
2120                 nsh = alloc_stripe(sc, GFP_KERNEL);
2121                 if (!nsh)
2122                         break;
2123
2124                 nsh->raid_conf = conf;
2125                 list_add(&nsh->lru, &newstripes);
2126         }
2127         if (i) {
2128                 /* didn't get enough, give up */
2129                 while (!list_empty(&newstripes)) {
2130                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2131                         list_del(&nsh->lru);
2132                         kmem_cache_free(sc, nsh);
2133                 }
2134                 kmem_cache_destroy(sc);
2135                 return -ENOMEM;
2136         }
2137         /* Step 2 - Must use GFP_NOIO now.
2138          * OK, we have enough stripes, start collecting inactive
2139          * stripes and copying them over
2140          */
2141         hash = 0;
2142         cnt = 0;
2143         list_for_each_entry(nsh, &newstripes, lru) {
2144                 lock_device_hash_lock(conf, hash);
2145                 wait_event_cmd(conf->wait_for_stripe,
2146                                     !list_empty(conf->inactive_list + hash),
2147                                     unlock_device_hash_lock(conf, hash),
2148                                     lock_device_hash_lock(conf, hash));
2149                 osh = get_free_stripe(conf, hash);
2150                 unlock_device_hash_lock(conf, hash);
2151
2152                 for(i=0; i<conf->pool_size; i++) {
2153                         nsh->dev[i].page = osh->dev[i].page;
2154                         nsh->dev[i].orig_page = osh->dev[i].page;
2155                 }
2156                 nsh->hash_lock_index = hash;
2157                 kmem_cache_free(conf->slab_cache, osh);
2158                 cnt++;
2159                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2160                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2161                         hash++;
2162                         cnt = 0;
2163                 }
2164         }
2165         kmem_cache_destroy(conf->slab_cache);
2166
2167         /* Step 3.
2168          * At this point, we are holding all the stripes so the array
2169          * is completely stalled, so now is a good time to resize
2170          * conf->disks and the scribble region
2171          */
2172         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2173         if (ndisks) {
2174                 for (i=0; i<conf->raid_disks; i++)
2175                         ndisks[i] = conf->disks[i];
2176                 kfree(conf->disks);
2177                 conf->disks = ndisks;
2178         } else
2179                 err = -ENOMEM;
2180
2181         get_online_cpus();
2182         for_each_present_cpu(cpu) {
2183                 struct raid5_percpu *percpu;
2184                 struct flex_array *scribble;
2185
2186                 percpu = per_cpu_ptr(conf->percpu, cpu);
2187                 scribble = scribble_alloc(newsize, conf->chunk_sectors /
2188                         STRIPE_SECTORS, GFP_NOIO);
2189
2190                 if (scribble) {
2191                         flex_array_free(percpu->scribble);
2192                         percpu->scribble = scribble;
2193                 } else {
2194                         err = -ENOMEM;
2195                         break;
2196                 }
2197         }
2198         put_online_cpus();
2199
2200         /* Step 4, return new stripes to service */
2201         while(!list_empty(&newstripes)) {
2202                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2203                 list_del_init(&nsh->lru);
2204
2205                 for (i=conf->raid_disks; i < newsize; i++)
2206                         if (nsh->dev[i].page == NULL) {
2207                                 struct page *p = alloc_page(GFP_NOIO);
2208                                 nsh->dev[i].page = p;
2209                                 nsh->dev[i].orig_page = p;
2210                                 if (!p)
2211                                         err = -ENOMEM;
2212                         }
2213                 release_stripe(nsh);
2214         }
2215         /* critical section pass, GFP_NOIO no longer needed */
2216
2217         conf->slab_cache = sc;
2218         conf->active_name = 1-conf->active_name;
2219         conf->pool_size = newsize;
2220         return err;
2221 }
2222
2223 static int drop_one_stripe(struct r5conf *conf)
2224 {
2225         struct stripe_head *sh;
2226         int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
2227
2228         spin_lock_irq(conf->hash_locks + hash);
2229         sh = get_free_stripe(conf, hash);
2230         spin_unlock_irq(conf->hash_locks + hash);
2231         if (!sh)
2232                 return 0;
2233         BUG_ON(atomic_read(&sh->count));
2234         shrink_buffers(sh);
2235         kmem_cache_free(conf->slab_cache, sh);
2236         atomic_dec(&conf->active_stripes);
2237         conf->max_nr_stripes--;
2238         return 1;
2239 }
2240
2241 static void shrink_stripes(struct r5conf *conf)
2242 {
2243         while (conf->max_nr_stripes &&
2244                drop_one_stripe(conf))
2245                 ;
2246
2247         if (conf->slab_cache)
2248                 kmem_cache_destroy(conf->slab_cache);
2249         conf->slab_cache = NULL;
2250 }
2251
2252 static void raid5_end_read_request(struct bio * bi, int error)
2253 {
2254         struct stripe_head *sh = bi->bi_private;
2255         struct r5conf *conf = sh->raid_conf;
2256         int disks = sh->disks, i;
2257         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2258         char b[BDEVNAME_SIZE];
2259         struct md_rdev *rdev = NULL;
2260         sector_t s;
2261
2262         for (i=0 ; i<disks; i++)
2263                 if (bi == &sh->dev[i].req)
2264                         break;
2265
2266         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2267                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2268                 uptodate);
2269         if (i == disks) {
2270                 BUG();
2271                 return;
2272         }
2273         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2274                 /* If replacement finished while this request was outstanding,
2275                  * 'replacement' might be NULL already.
2276                  * In that case it moved down to 'rdev'.
2277                  * rdev is not removed until all requests are finished.
2278                  */
2279                 rdev = conf->disks[i].replacement;
2280         if (!rdev)
2281                 rdev = conf->disks[i].rdev;
2282
2283         if (use_new_offset(conf, sh))
2284                 s = sh->sector + rdev->new_data_offset;
2285         else
2286                 s = sh->sector + rdev->data_offset;
2287         if (uptodate) {
2288                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2289                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2290                         /* Note that this cannot happen on a
2291                          * replacement device.  We just fail those on
2292                          * any error
2293                          */
2294                         printk_ratelimited(
2295                                 KERN_INFO
2296                                 "md/raid:%s: read error corrected"
2297                                 " (%lu sectors at %llu on %s)\n",
2298                                 mdname(conf->mddev), STRIPE_SECTORS,
2299                                 (unsigned long long)s,
2300                                 bdevname(rdev->bdev, b));
2301                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2302                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2303                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2304                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2305                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2306
2307                 if (atomic_read(&rdev->read_errors))
2308                         atomic_set(&rdev->read_errors, 0);
2309         } else {
2310                 const char *bdn = bdevname(rdev->bdev, b);
2311                 int retry = 0;
2312                 int set_bad = 0;
2313
2314                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2315                 atomic_inc(&rdev->read_errors);
2316                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2317                         printk_ratelimited(
2318                                 KERN_WARNING
2319                                 "md/raid:%s: read error on replacement device "
2320                                 "(sector %llu on %s).\n",
2321                                 mdname(conf->mddev),
2322                                 (unsigned long long)s,
2323                                 bdn);
2324                 else if (conf->mddev->degraded >= conf->max_degraded) {
2325                         set_bad = 1;
2326                         printk_ratelimited(
2327                                 KERN_WARNING
2328                                 "md/raid:%s: read error not correctable "
2329                                 "(sector %llu on %s).\n",
2330                                 mdname(conf->mddev),
2331                                 (unsigned long long)s,
2332                                 bdn);
2333                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2334                         /* Oh, no!!! */
2335                         set_bad = 1;
2336                         printk_ratelimited(
2337                                 KERN_WARNING
2338                                 "md/raid:%s: read error NOT corrected!! "
2339                                 "(sector %llu on %s).\n",
2340                                 mdname(conf->mddev),
2341                                 (unsigned long long)s,
2342                                 bdn);
2343                 } else if (atomic_read(&rdev->read_errors)
2344                          > conf->max_nr_stripes)
2345                         printk(KERN_WARNING
2346                                "md/raid:%s: Too many read errors, failing device %s.\n",
2347                                mdname(conf->mddev), bdn);
2348                 else
2349                         retry = 1;
2350                 if (set_bad && test_bit(In_sync, &rdev->flags)
2351                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2352                         retry = 1;
2353                 if (retry)
2354                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2355                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2356                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2357                         } else
2358                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2359                 else {
2360                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2361                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2362                         if (!(set_bad
2363                               && test_bit(In_sync, &rdev->flags)
2364                               && rdev_set_badblocks(
2365                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2366                                 md_error(conf->mddev, rdev);
2367                 }
2368         }
2369         rdev_dec_pending(rdev, conf->mddev);
2370         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2371         set_bit(STRIPE_HANDLE, &sh->state);
2372         release_stripe(sh);
2373 }
2374
2375 static void raid5_end_write_request(struct bio *bi, int error)
2376 {
2377         struct stripe_head *sh = bi->bi_private;
2378         struct r5conf *conf = sh->raid_conf;
2379         int disks = sh->disks, i;
2380         struct md_rdev *uninitialized_var(rdev);
2381         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2382         sector_t first_bad;
2383         int bad_sectors;
2384         int replacement = 0;
2385
2386         for (i = 0 ; i < disks; i++) {
2387                 if (bi == &sh->dev[i].req) {
2388                         rdev = conf->disks[i].rdev;
2389                         break;
2390                 }
2391                 if (bi == &sh->dev[i].rreq) {
2392                         rdev = conf->disks[i].replacement;
2393                         if (rdev)
2394                                 replacement = 1;
2395                         else
2396                                 /* rdev was removed and 'replacement'
2397                                  * replaced it.  rdev is not removed
2398                                  * until all requests are finished.
2399                                  */
2400                                 rdev = conf->disks[i].rdev;
2401                         break;
2402                 }
2403         }
2404         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2405                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2406                 uptodate);
2407         if (i == disks) {
2408                 BUG();
2409                 return;
2410         }
2411
2412         if (replacement) {
2413                 if (!uptodate)
2414                         md_error(conf->mddev, rdev);
2415                 else if (is_badblock(rdev, sh->sector,
2416                                      STRIPE_SECTORS,
2417                                      &first_bad, &bad_sectors))
2418                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2419         } else {
2420                 if (!uptodate) {
2421                         set_bit(STRIPE_DEGRADED, &sh->state);
2422                         set_bit(WriteErrorSeen, &rdev->flags);
2423                         set_bit(R5_WriteError, &sh->dev[i].flags);
2424                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2425                                 set_bit(MD_RECOVERY_NEEDED,
2426                                         &rdev->mddev->recovery);
2427                 } else if (is_badblock(rdev, sh->sector,
2428                                        STRIPE_SECTORS,
2429                                        &first_bad, &bad_sectors)) {
2430                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2431                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2432                                 /* That was a successful write so make
2433                                  * sure it looks like we already did
2434                                  * a re-write.
2435                                  */
2436                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2437                 }
2438         }
2439         rdev_dec_pending(rdev, conf->mddev);
2440
2441         if (sh->batch_head && !uptodate)
2442                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2443
2444         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2445                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2446         set_bit(STRIPE_HANDLE, &sh->state);
2447         release_stripe(sh);
2448
2449         if (sh->batch_head && sh != sh->batch_head)
2450                 release_stripe(sh->batch_head);
2451 }
2452
2453 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2454
2455 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2456 {
2457         struct r5dev *dev = &sh->dev[i];
2458
2459         bio_init(&dev->req);
2460         dev->req.bi_io_vec = &dev->vec;
2461         dev->req.bi_max_vecs = 1;
2462         dev->req.bi_private = sh;
2463
2464         bio_init(&dev->rreq);
2465         dev->rreq.bi_io_vec = &dev->rvec;
2466         dev->rreq.bi_max_vecs = 1;
2467         dev->rreq.bi_private = sh;
2468
2469         dev->flags = 0;
2470         dev->sector = compute_blocknr(sh, i, previous);
2471 }
2472
2473 static void error(struct mddev *mddev, struct md_rdev *rdev)
2474 {
2475         char b[BDEVNAME_SIZE];
2476         struct r5conf *conf = mddev->private;
2477         unsigned long flags;
2478         pr_debug("raid456: error called\n");
2479
2480         spin_lock_irqsave(&conf->device_lock, flags);
2481         clear_bit(In_sync, &rdev->flags);
2482         mddev->degraded = calc_degraded(conf);
2483         spin_unlock_irqrestore(&conf->device_lock, flags);
2484         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2485
2486         set_bit(Blocked, &rdev->flags);
2487         set_bit(Faulty, &rdev->flags);
2488         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2489         printk(KERN_ALERT
2490                "md/raid:%s: Disk failure on %s, disabling device.\n"
2491                "md/raid:%s: Operation continuing on %d devices.\n",
2492                mdname(mddev),
2493                bdevname(rdev->bdev, b),
2494                mdname(mddev),
2495                conf->raid_disks - mddev->degraded);
2496 }
2497
2498 /*
2499  * Input: a 'big' sector number,
2500  * Output: index of the data and parity disk, and the sector # in them.
2501  */
2502 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2503                                      int previous, int *dd_idx,
2504                                      struct stripe_head *sh)
2505 {
2506         sector_t stripe, stripe2;
2507         sector_t chunk_number;
2508         unsigned int chunk_offset;
2509         int pd_idx, qd_idx;
2510         int ddf_layout = 0;
2511         sector_t new_sector;
2512         int algorithm = previous ? conf->prev_algo
2513                                  : conf->algorithm;
2514         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2515                                          : conf->chunk_sectors;
2516         int raid_disks = previous ? conf->previous_raid_disks
2517                                   : conf->raid_disks;
2518         int data_disks = raid_disks - conf->max_degraded;
2519
2520         /* First compute the information on this sector */
2521
2522         /*
2523          * Compute the chunk number and the sector offset inside the chunk
2524          */
2525         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2526         chunk_number = r_sector;
2527
2528         /*
2529          * Compute the stripe number
2530          */
2531         stripe = chunk_number;
2532         *dd_idx = sector_div(stripe, data_disks);
2533         stripe2 = stripe;
2534         /*
2535          * Select the parity disk based on the user selected algorithm.
2536          */
2537         pd_idx = qd_idx = -1;
2538         switch(conf->level) {
2539         case 4:
2540                 pd_idx = data_disks;
2541                 break;
2542         case 5:
2543                 switch (algorithm) {
2544                 case ALGORITHM_LEFT_ASYMMETRIC:
2545                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2546                         if (*dd_idx >= pd_idx)
2547                                 (*dd_idx)++;
2548                         break;
2549                 case ALGORITHM_RIGHT_ASYMMETRIC:
2550                         pd_idx = sector_div(stripe2, raid_disks);
2551                         if (*dd_idx >= pd_idx)
2552                                 (*dd_idx)++;
2553                         break;
2554                 case ALGORITHM_LEFT_SYMMETRIC:
2555                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2556                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2557                         break;
2558                 case ALGORITHM_RIGHT_SYMMETRIC:
2559                         pd_idx = sector_div(stripe2, raid_disks);
2560                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2561                         break;
2562                 case ALGORITHM_PARITY_0:
2563                         pd_idx = 0;
2564                         (*dd_idx)++;
2565                         break;
2566                 case ALGORITHM_PARITY_N:
2567                         pd_idx = data_disks;
2568                         break;
2569                 default:
2570                         BUG();
2571                 }
2572                 break;
2573         case 6:
2574
2575                 switch (algorithm) {
2576                 case ALGORITHM_LEFT_ASYMMETRIC:
2577                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2578                         qd_idx = pd_idx + 1;
2579                         if (pd_idx == raid_disks-1) {
2580                                 (*dd_idx)++;    /* Q D D D P */
2581                                 qd_idx = 0;
2582                         } else if (*dd_idx >= pd_idx)
2583                                 (*dd_idx) += 2; /* D D P Q D */
2584                         break;
2585                 case ALGORITHM_RIGHT_ASYMMETRIC:
2586                         pd_idx = sector_div(stripe2, raid_disks);
2587                         qd_idx = pd_idx + 1;
2588                         if (pd_idx == raid_disks-1) {
2589                                 (*dd_idx)++;    /* Q D D D P */
2590                                 qd_idx = 0;
2591                         } else if (*dd_idx >= pd_idx)
2592                                 (*dd_idx) += 2; /* D D P Q D */
2593                         break;
2594                 case ALGORITHM_LEFT_SYMMETRIC:
2595                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2596                         qd_idx = (pd_idx + 1) % raid_disks;
2597                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2598                         break;
2599                 case ALGORITHM_RIGHT_SYMMETRIC:
2600                         pd_idx = sector_div(stripe2, raid_disks);
2601                         qd_idx = (pd_idx + 1) % raid_disks;
2602                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2603                         break;
2604
2605                 case ALGORITHM_PARITY_0:
2606                         pd_idx = 0;
2607                         qd_idx = 1;
2608                         (*dd_idx) += 2;
2609                         break;
2610                 case ALGORITHM_PARITY_N:
2611                         pd_idx = data_disks;
2612                         qd_idx = data_disks + 1;
2613                         break;
2614
2615                 case ALGORITHM_ROTATING_ZERO_RESTART:
2616                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2617                          * of blocks for computing Q is different.
2618                          */
2619                         pd_idx = sector_div(stripe2, raid_disks);
2620                         qd_idx = pd_idx + 1;
2621                         if (pd_idx == raid_disks-1) {
2622                                 (*dd_idx)++;    /* Q D D D P */
2623                                 qd_idx = 0;
2624                         } else if (*dd_idx >= pd_idx)
2625                                 (*dd_idx) += 2; /* D D P Q D */
2626                         ddf_layout = 1;
2627                         break;
2628
2629                 case ALGORITHM_ROTATING_N_RESTART:
2630                         /* Same a left_asymmetric, by first stripe is
2631                          * D D D P Q  rather than
2632                          * Q D D D P
2633                          */
2634                         stripe2 += 1;
2635                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2636                         qd_idx = pd_idx + 1;
2637                         if (pd_idx == raid_disks-1) {
2638                                 (*dd_idx)++;    /* Q D D D P */
2639                                 qd_idx = 0;
2640                         } else if (*dd_idx >= pd_idx)
2641                                 (*dd_idx) += 2; /* D D P Q D */
2642                         ddf_layout = 1;
2643                         break;
2644
2645                 case ALGORITHM_ROTATING_N_CONTINUE:
2646                         /* Same as left_symmetric but Q is before P */
2647                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2648                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2649                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2650                         ddf_layout = 1;
2651                         break;
2652
2653                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2654                         /* RAID5 left_asymmetric, with Q on last device */
2655                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2656                         if (*dd_idx >= pd_idx)
2657                                 (*dd_idx)++;
2658                         qd_idx = raid_disks - 1;
2659                         break;
2660
2661                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2662                         pd_idx = sector_div(stripe2, raid_disks-1);
2663                         if (*dd_idx >= pd_idx)
2664                                 (*dd_idx)++;
2665                         qd_idx = raid_disks - 1;
2666                         break;
2667
2668                 case ALGORITHM_LEFT_SYMMETRIC_6:
2669                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2670                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2671                         qd_idx = raid_disks - 1;
2672                         break;
2673
2674                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2675                         pd_idx = sector_div(stripe2, raid_disks-1);
2676                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2677                         qd_idx = raid_disks - 1;
2678                         break;
2679
2680                 case ALGORITHM_PARITY_0_6:
2681                         pd_idx = 0;
2682                         (*dd_idx)++;
2683                         qd_idx = raid_disks - 1;
2684                         break;
2685
2686                 default:
2687                         BUG();
2688                 }
2689                 break;
2690         }
2691
2692         if (sh) {
2693                 sh->pd_idx = pd_idx;
2694                 sh->qd_idx = qd_idx;
2695                 sh->ddf_layout = ddf_layout;
2696         }
2697         /*
2698          * Finally, compute the new sector number
2699          */
2700         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2701         return new_sector;
2702 }
2703
2704 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2705 {
2706         struct r5conf *conf = sh->raid_conf;
2707         int raid_disks = sh->disks;
2708         int data_disks = raid_disks - conf->max_degraded;
2709         sector_t new_sector = sh->sector, check;
2710         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2711                                          : conf->chunk_sectors;
2712         int algorithm = previous ? conf->prev_algo
2713                                  : conf->algorithm;
2714         sector_t stripe;
2715         int chunk_offset;
2716         sector_t chunk_number;
2717         int dummy1, dd_idx = i;
2718         sector_t r_sector;
2719         struct stripe_head sh2;
2720
2721         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2722         stripe = new_sector;
2723
2724         if (i == sh->pd_idx)
2725                 return 0;
2726         switch(conf->level) {
2727         case 4: break;
2728         case 5:
2729                 switch (algorithm) {
2730                 case ALGORITHM_LEFT_ASYMMETRIC:
2731                 case ALGORITHM_RIGHT_ASYMMETRIC:
2732                         if (i > sh->pd_idx)
2733                                 i--;
2734                         break;
2735                 case ALGORITHM_LEFT_SYMMETRIC:
2736                 case ALGORITHM_RIGHT_SYMMETRIC:
2737                         if (i < sh->pd_idx)
2738                                 i += raid_disks;
2739                         i -= (sh->pd_idx + 1);
2740                         break;
2741                 case ALGORITHM_PARITY_0:
2742                         i -= 1;
2743                         break;
2744                 case ALGORITHM_PARITY_N:
2745                         break;
2746                 default:
2747                         BUG();
2748                 }
2749                 break;
2750         case 6:
2751                 if (i == sh->qd_idx)
2752                         return 0; /* It is the Q disk */
2753                 switch (algorithm) {
2754                 case ALGORITHM_LEFT_ASYMMETRIC:
2755                 case ALGORITHM_RIGHT_ASYMMETRIC:
2756                 case ALGORITHM_ROTATING_ZERO_RESTART:
2757                 case ALGORITHM_ROTATING_N_RESTART:
2758                         if (sh->pd_idx == raid_disks-1)
2759                                 i--;    /* Q D D D P */
2760                         else if (i > sh->pd_idx)
2761                                 i -= 2; /* D D P Q D */
2762                         break;
2763                 case ALGORITHM_LEFT_SYMMETRIC:
2764                 case ALGORITHM_RIGHT_SYMMETRIC:
2765                         if (sh->pd_idx == raid_disks-1)
2766                                 i--; /* Q D D D P */
2767                         else {
2768                                 /* D D P Q D */
2769                                 if (i < sh->pd_idx)
2770                                         i += raid_disks;
2771                                 i -= (sh->pd_idx + 2);
2772                         }
2773                         break;
2774                 case ALGORITHM_PARITY_0:
2775                         i -= 2;
2776                         break;
2777                 case ALGORITHM_PARITY_N:
2778                         break;
2779                 case ALGORITHM_ROTATING_N_CONTINUE:
2780                         /* Like left_symmetric, but P is before Q */
2781                         if (sh->pd_idx == 0)
2782                                 i--;    /* P D D D Q */
2783                         else {
2784                                 /* D D Q P D */
2785                                 if (i < sh->pd_idx)
2786                                         i += raid_disks;
2787                                 i -= (sh->pd_idx + 1);
2788                         }
2789                         break;
2790                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2791                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2792                         if (i > sh->pd_idx)
2793                                 i--;
2794                         break;
2795                 case ALGORITHM_LEFT_SYMMETRIC_6:
2796                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2797                         if (i < sh->pd_idx)
2798                                 i += data_disks + 1;
2799                         i -= (sh->pd_idx + 1);
2800                         break;
2801                 case ALGORITHM_PARITY_0_6:
2802                         i -= 1;
2803                         break;
2804                 default:
2805                         BUG();
2806                 }
2807                 break;
2808         }
2809
2810         chunk_number = stripe * data_disks + i;
2811         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2812
2813         check = raid5_compute_sector(conf, r_sector,
2814                                      previous, &dummy1, &sh2);
2815         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2816                 || sh2.qd_idx != sh->qd_idx) {
2817                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2818                        mdname(conf->mddev));
2819                 return 0;
2820         }
2821         return r_sector;
2822 }
2823
2824 static void
2825 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2826                          int rcw, int expand)
2827 {
2828         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2829         struct r5conf *conf = sh->raid_conf;
2830         int level = conf->level;
2831
2832         if (rcw) {
2833
2834                 for (i = disks; i--; ) {
2835                         struct r5dev *dev = &sh->dev[i];
2836
2837                         if (dev->towrite) {
2838                                 set_bit(R5_LOCKED, &dev->flags);
2839                                 set_bit(R5_Wantdrain, &dev->flags);
2840                                 if (!expand)
2841                                         clear_bit(R5_UPTODATE, &dev->flags);
2842                                 s->locked++;
2843                         }
2844                 }
2845                 /* if we are not expanding this is a proper write request, and
2846                  * there will be bios with new data to be drained into the
2847                  * stripe cache
2848                  */
2849                 if (!expand) {
2850                         if (!s->locked)
2851                                 /* False alarm, nothing to do */
2852                                 return;
2853                         sh->reconstruct_state = reconstruct_state_drain_run;
2854                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2855                 } else
2856                         sh->reconstruct_state = reconstruct_state_run;
2857
2858                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2859
2860                 if (s->locked + conf->max_degraded == disks)
2861                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2862                                 atomic_inc(&conf->pending_full_writes);
2863         } else {
2864                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2865                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2866                 BUG_ON(level == 6 &&
2867                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2868                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2869
2870                 for (i = disks; i--; ) {
2871                         struct r5dev *dev = &sh->dev[i];
2872                         if (i == pd_idx || i == qd_idx)
2873                                 continue;
2874
2875                         if (dev->towrite &&
2876                             (test_bit(R5_UPTODATE, &dev->flags) ||
2877                              test_bit(R5_Wantcompute, &dev->flags))) {
2878                                 set_bit(R5_Wantdrain, &dev->flags);
2879                                 set_bit(R5_LOCKED, &dev->flags);
2880                                 clear_bit(R5_UPTODATE, &dev->flags);
2881                                 s->locked++;
2882                         }
2883                 }
2884                 if (!s->locked)
2885                         /* False alarm - nothing to do */
2886                         return;
2887                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2888                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2889                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2890                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2891         }
2892
2893         /* keep the parity disk(s) locked while asynchronous operations
2894          * are in flight
2895          */
2896         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2897         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2898         s->locked++;
2899
2900         if (level == 6) {
2901                 int qd_idx = sh->qd_idx;
2902                 struct r5dev *dev = &sh->dev[qd_idx];
2903
2904                 set_bit(R5_LOCKED, &dev->flags);
2905                 clear_bit(R5_UPTODATE, &dev->flags);
2906                 s->locked++;
2907         }
2908
2909         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2910                 __func__, (unsigned long long)sh->sector,
2911                 s->locked, s->ops_request);
2912 }
2913
2914 /*
2915  * Each stripe/dev can have one or more bion attached.
2916  * toread/towrite point to the first in a chain.
2917  * The bi_next chain must be in order.
2918  */
2919 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2920                           int forwrite, int previous)
2921 {
2922         struct bio **bip;
2923         struct r5conf *conf = sh->raid_conf;
2924         int firstwrite=0;
2925
2926         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2927                 (unsigned long long)bi->bi_iter.bi_sector,
2928                 (unsigned long long)sh->sector);
2929
2930         /*
2931          * If several bio share a stripe. The bio bi_phys_segments acts as a
2932          * reference count to avoid race. The reference count should already be
2933          * increased before this function is called (for example, in
2934          * make_request()), so other bio sharing this stripe will not free the
2935          * stripe. If a stripe is owned by one stripe, the stripe lock will
2936          * protect it.
2937          */
2938         spin_lock_irq(&sh->stripe_lock);
2939         /* Don't allow new IO added to stripes in batch list */
2940         if (sh->batch_head)
2941                 goto overlap;
2942         if (forwrite) {
2943                 bip = &sh->dev[dd_idx].towrite;
2944                 if (*bip == NULL)
2945                         firstwrite = 1;
2946         } else
2947                 bip = &sh->dev[dd_idx].toread;
2948         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2949                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2950                         goto overlap;
2951                 bip = & (*bip)->bi_next;
2952         }
2953         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2954                 goto overlap;
2955
2956         if (!forwrite || previous)
2957                 clear_bit(STRIPE_BATCH_READY, &sh->state);
2958
2959         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2960         if (*bip)
2961                 bi->bi_next = *bip;
2962         *bip = bi;
2963         raid5_inc_bi_active_stripes(bi);
2964
2965         if (forwrite) {
2966                 /* check if page is covered */
2967                 sector_t sector = sh->dev[dd_idx].sector;
2968                 for (bi=sh->dev[dd_idx].towrite;
2969                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2970                              bi && bi->bi_iter.bi_sector <= sector;
2971                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2972                         if (bio_end_sector(bi) >= sector)
2973                                 sector = bio_end_sector(bi);
2974                 }
2975                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2976                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
2977                                 sh->overwrite_disks++;
2978         }
2979
2980         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2981                 (unsigned long long)(*bip)->bi_iter.bi_sector,
2982                 (unsigned long long)sh->sector, dd_idx);
2983         spin_unlock_irq(&sh->stripe_lock);
2984
2985         if (conf->mddev->bitmap && firstwrite) {
2986                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2987                                   STRIPE_SECTORS, 0);
2988                 sh->bm_seq = conf->seq_flush+1;
2989                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2990         }
2991
2992         if (stripe_can_batch(sh))
2993                 stripe_add_to_batch_list(conf, sh);
2994         return 1;
2995
2996  overlap:
2997         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2998         spin_unlock_irq(&sh->stripe_lock);
2999         return 0;
3000 }
3001
3002 static void end_reshape(struct r5conf *conf);
3003
3004 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3005                             struct stripe_head *sh)
3006 {
3007         int sectors_per_chunk =
3008                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3009         int dd_idx;
3010         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3011         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3012
3013         raid5_compute_sector(conf,
3014                              stripe * (disks - conf->max_degraded)
3015                              *sectors_per_chunk + chunk_offset,
3016                              previous,
3017                              &dd_idx, sh);
3018 }
3019
3020 static void
3021 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3022                                 struct stripe_head_state *s, int disks,
3023                                 struct bio **return_bi)
3024 {
3025         int i;
3026         BUG_ON(sh->batch_head);
3027         for (i = disks; i--; ) {
3028                 struct bio *bi;
3029                 int bitmap_end = 0;
3030
3031                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3032                         struct md_rdev *rdev;
3033                         rcu_read_lock();
3034                         rdev = rcu_dereference(conf->disks[i].rdev);
3035                         if (rdev && test_bit(In_sync, &rdev->flags))
3036                                 atomic_inc(&rdev->nr_pending);
3037                         else
3038                                 rdev = NULL;
3039                         rcu_read_unlock();
3040                         if (rdev) {
3041                                 if (!rdev_set_badblocks(
3042                                             rdev,
3043                                             sh->sector,
3044                                             STRIPE_SECTORS, 0))
3045                                         md_error(conf->mddev, rdev);
3046                                 rdev_dec_pending(rdev, conf->mddev);
3047                         }
3048                 }
3049                 spin_lock_irq(&sh->stripe_lock);
3050                 /* fail all writes first */
3051                 bi = sh->dev[i].towrite;
3052                 sh->dev[i].towrite = NULL;
3053                 sh->overwrite_disks = 0;
3054                 spin_unlock_irq(&sh->stripe_lock);
3055                 if (bi)
3056                         bitmap_end = 1;
3057
3058                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3059                         wake_up(&conf->wait_for_overlap);
3060
3061                 while (bi && bi->bi_iter.bi_sector <
3062                         sh->dev[i].sector + STRIPE_SECTORS) {
3063                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3064                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3065                         if (!raid5_dec_bi_active_stripes(bi)) {
3066                                 md_write_end(conf->mddev);
3067                                 bi->bi_next = *return_bi;
3068                                 *return_bi = bi;
3069                         }
3070                         bi = nextbi;
3071                 }
3072                 if (bitmap_end)
3073                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3074                                 STRIPE_SECTORS, 0, 0);
3075                 bitmap_end = 0;
3076                 /* and fail all 'written' */
3077                 bi = sh->dev[i].written;
3078                 sh->dev[i].written = NULL;
3079                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3080                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3081                         sh->dev[i].page = sh->dev[i].orig_page;
3082                 }
3083
3084                 if (bi) bitmap_end = 1;
3085                 while (bi && bi->bi_iter.bi_sector <
3086                        sh->dev[i].sector + STRIPE_SECTORS) {
3087                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3088                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3089                         if (!raid5_dec_bi_active_stripes(bi)) {
3090                                 md_write_end(conf->mddev);
3091                                 bi->bi_next = *return_bi;
3092                                 *return_bi = bi;
3093                         }
3094                         bi = bi2;
3095                 }
3096
3097                 /* fail any reads if this device is non-operational and
3098                  * the data has not reached the cache yet.
3099                  */
3100                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3101                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3102                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3103                         spin_lock_irq(&sh->stripe_lock);
3104                         bi = sh->dev[i].toread;
3105                         sh->dev[i].toread = NULL;
3106                         spin_unlock_irq(&sh->stripe_lock);
3107                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3108                                 wake_up(&conf->wait_for_overlap);
3109                         while (bi && bi->bi_iter.bi_sector <
3110                                sh->dev[i].sector + STRIPE_SECTORS) {
3111                                 struct bio *nextbi =
3112                                         r5_next_bio(bi, sh->dev[i].sector);
3113                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3114                                 if (!raid5_dec_bi_active_stripes(bi)) {
3115                                         bi->bi_next = *return_bi;
3116                                         *return_bi = bi;
3117                                 }
3118                                 bi = nextbi;
3119                         }
3120                 }
3121                 if (bitmap_end)
3122                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3123                                         STRIPE_SECTORS, 0, 0);
3124                 /* If we were in the middle of a write the parity block might
3125                  * still be locked - so just clear all R5_LOCKED flags
3126                  */
3127                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3128         }
3129
3130         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3131                 if (atomic_dec_and_test(&conf->pending_full_writes))
3132                         md_wakeup_thread(conf->mddev->thread);
3133 }
3134
3135 static void
3136 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3137                    struct stripe_head_state *s)
3138 {
3139         int abort = 0;
3140         int i;
3141
3142         BUG_ON(sh->batch_head);
3143         clear_bit(STRIPE_SYNCING, &sh->state);
3144         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3145                 wake_up(&conf->wait_for_overlap);
3146         s->syncing = 0;
3147         s->replacing = 0;
3148         /* There is nothing more to do for sync/check/repair.
3149          * Don't even need to abort as that is handled elsewhere
3150          * if needed, and not always wanted e.g. if there is a known
3151          * bad block here.
3152          * For recover/replace we need to record a bad block on all
3153          * non-sync devices, or abort the recovery
3154          */
3155         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3156                 /* During recovery devices cannot be removed, so
3157                  * locking and refcounting of rdevs is not needed
3158                  */
3159                 for (i = 0; i < conf->raid_disks; i++) {
3160                         struct md_rdev *rdev = conf->disks[i].rdev;
3161                         if (rdev
3162                             && !test_bit(Faulty, &rdev->flags)
3163                             && !test_bit(In_sync, &rdev->flags)
3164                             && !rdev_set_badblocks(rdev, sh->sector,
3165                                                    STRIPE_SECTORS, 0))
3166                                 abort = 1;
3167                         rdev = conf->disks[i].replacement;
3168                         if (rdev
3169                             && !test_bit(Faulty, &rdev->flags)
3170                             && !test_bit(In_sync, &rdev->flags)
3171                             && !rdev_set_badblocks(rdev, sh->sector,
3172                                                    STRIPE_SECTORS, 0))
3173                                 abort = 1;
3174                 }
3175                 if (abort)
3176                         conf->recovery_disabled =
3177                                 conf->mddev->recovery_disabled;
3178         }
3179         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3180 }
3181
3182 static int want_replace(struct stripe_head *sh, int disk_idx)
3183 {
3184         struct md_rdev *rdev;
3185         int rv = 0;
3186         /* Doing recovery so rcu locking not required */
3187         rdev = sh->raid_conf->disks[disk_idx].replacement;
3188         if (rdev
3189             && !test_bit(Faulty, &rdev->flags)
3190             && !test_bit(In_sync, &rdev->flags)
3191             && (rdev->recovery_offset <= sh->sector
3192                 || rdev->mddev->recovery_cp <= sh->sector))
3193                 rv = 1;
3194
3195         return rv;
3196 }
3197
3198 /* fetch_block - checks the given member device to see if its data needs
3199  * to be read or computed to satisfy a request.
3200  *
3201  * Returns 1 when no more member devices need to be checked, otherwise returns
3202  * 0 to tell the loop in handle_stripe_fill to continue
3203  */
3204
3205 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3206                            int disk_idx, int disks)
3207 {
3208         struct r5dev *dev = &sh->dev[disk_idx];
3209         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3210                                   &sh->dev[s->failed_num[1]] };
3211         int i;
3212
3213
3214         if (test_bit(R5_LOCKED, &dev->flags) ||
3215             test_bit(R5_UPTODATE, &dev->flags))
3216                 /* No point reading this as we already have it or have
3217                  * decided to get it.
3218                  */
3219                 return 0;
3220
3221         if (dev->toread ||
3222             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3223                 /* We need this block to directly satisfy a request */
3224                 return 1;
3225
3226         if (s->syncing || s->expanding ||
3227             (s->replacing && want_replace(sh, disk_idx)))
3228                 /* When syncing, or expanding we read everything.
3229                  * When replacing, we need the replaced block.
3230                  */
3231                 return 1;
3232
3233         if ((s->failed >= 1 && fdev[0]->toread) ||
3234             (s->failed >= 2 && fdev[1]->toread))
3235                 /* If we want to read from a failed device, then
3236                  * we need to actually read every other device.
3237                  */
3238                 return 1;
3239
3240         /* Sometimes neither read-modify-write nor reconstruct-write
3241          * cycles can work.  In those cases we read every block we
3242          * can.  Then the parity-update is certain to have enough to
3243          * work with.
3244          * This can only be a problem when we need to write something,
3245          * and some device has failed.  If either of those tests
3246          * fail we need look no further.
3247          */
3248         if (!s->failed || !s->to_write)
3249                 return 0;
3250
3251         if (test_bit(R5_Insync, &dev->flags) &&
3252             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3253                 /* Pre-reads at not permitted until after short delay
3254                  * to gather multiple requests.  However if this
3255                  * device is no Insync, the block could only be be computed
3256                  * and there is no need to delay that.
3257                  */
3258                 return 0;
3259
3260         for (i = 0; i < s->failed; i++) {
3261                 if (fdev[i]->towrite &&
3262                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3263                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3264                         /* If we have a partial write to a failed
3265                          * device, then we will need to reconstruct
3266                          * the content of that device, so all other
3267                          * devices must be read.
3268                          */
3269                         return 1;
3270         }
3271
3272         /* If we are forced to do a reconstruct-write, either because
3273          * the current RAID6 implementation only supports that, or
3274          * or because parity cannot be trusted and we are currently
3275          * recovering it, there is extra need to be careful.
3276          * If one of the devices that we would need to read, because
3277          * it is not being overwritten (and maybe not written at all)
3278          * is missing/faulty, then we need to read everything we can.
3279          */
3280         if (sh->raid_conf->level != 6 &&
3281             sh->sector < sh->raid_conf->mddev->recovery_cp)
3282                 /* reconstruct-write isn't being forced */
3283                 return 0;
3284         for (i = 0; i < s->failed; i++) {
3285                 if (s->failed_num[i] != sh->pd_idx &&
3286                     s->failed_num[i] != sh->qd_idx &&
3287                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3288                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3289                         return 1;
3290         }
3291
3292         return 0;
3293 }
3294
3295 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3296                        int disk_idx, int disks)
3297 {
3298         struct r5dev *dev = &sh->dev[disk_idx];
3299
3300         /* is the data in this block needed, and can we get it? */
3301         if (need_this_block(sh, s, disk_idx, disks)) {
3302                 /* we would like to get this block, possibly by computing it,
3303                  * otherwise read it if the backing disk is insync
3304                  */
3305                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3306                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3307                 BUG_ON(sh->batch_head);
3308                 if ((s->uptodate == disks - 1) &&
3309                     (s->failed && (disk_idx == s->failed_num[0] ||
3310                                    disk_idx == s->failed_num[1]))) {
3311                         /* have disk failed, and we're requested to fetch it;
3312                          * do compute it
3313                          */
3314                         pr_debug("Computing stripe %llu block %d\n",
3315                                (unsigned long long)sh->sector, disk_idx);
3316                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3317                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3318                         set_bit(R5_Wantcompute, &dev->flags);
3319                         sh->ops.target = disk_idx;
3320                         sh->ops.target2 = -1; /* no 2nd target */
3321                         s->req_compute = 1;
3322                         /* Careful: from this point on 'uptodate' is in the eye
3323                          * of raid_run_ops which services 'compute' operations
3324                          * before writes. R5_Wantcompute flags a block that will
3325                          * be R5_UPTODATE by the time it is needed for a
3326                          * subsequent operation.
3327                          */
3328                         s->uptodate++;
3329                         return 1;
3330                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3331                         /* Computing 2-failure is *very* expensive; only
3332                          * do it if failed >= 2
3333                          */
3334                         int other;
3335                         for (other = disks; other--; ) {
3336                                 if (other == disk_idx)
3337                                         continue;
3338                                 if (!test_bit(R5_UPTODATE,
3339                                       &sh->dev[other].flags))
3340                                         break;
3341                         }
3342                         BUG_ON(other < 0);
3343                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3344                                (unsigned long long)sh->sector,
3345                                disk_idx, other);
3346                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3347                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3348                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3349                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3350                         sh->ops.target = disk_idx;
3351                         sh->ops.target2 = other;
3352                         s->uptodate += 2;
3353                         s->req_compute = 1;
3354                         return 1;
3355                 } else if (test_bit(R5_Insync, &dev->flags)) {
3356                         set_bit(R5_LOCKED, &dev->flags);
3357                         set_bit(R5_Wantread, &dev->flags);
3358                         s->locked++;
3359                         pr_debug("Reading block %d (sync=%d)\n",
3360                                 disk_idx, s->syncing);
3361                 }
3362         }
3363
3364         return 0;
3365 }
3366
3367 /**
3368  * handle_stripe_fill - read or compute data to satisfy pending requests.
3369  */
3370 static void handle_stripe_fill(struct stripe_head *sh,
3371                                struct stripe_head_state *s,
3372                                int disks)
3373 {
3374         int i;
3375
3376         /* look for blocks to read/compute, skip this if a compute
3377          * is already in flight, or if the stripe contents are in the
3378          * midst of changing due to a write
3379          */
3380         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3381             !sh->reconstruct_state)
3382                 for (i = disks; i--; )
3383                         if (fetch_block(sh, s, i, disks))
3384                                 break;
3385         set_bit(STRIPE_HANDLE, &sh->state);
3386 }
3387
3388 /* handle_stripe_clean_event
3389  * any written block on an uptodate or failed drive can be returned.
3390  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3391  * never LOCKED, so we don't need to test 'failed' directly.
3392  */
3393 static void handle_stripe_clean_event(struct r5conf *conf,
3394         struct stripe_head *sh, int disks, struct bio **return_bi)
3395 {
3396         int i;
3397         struct r5dev *dev;
3398         int discard_pending = 0;
3399         struct stripe_head *head_sh = sh;
3400         bool do_endio = false;
3401         int wakeup_nr = 0;
3402
3403         for (i = disks; i--; )
3404                 if (sh->dev[i].written) {
3405                         dev = &sh->dev[i];
3406                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3407                             (test_bit(R5_UPTODATE, &dev->flags) ||
3408                              test_bit(R5_Discard, &dev->flags) ||
3409                              test_bit(R5_SkipCopy, &dev->flags))) {
3410                                 /* We can return any write requests */
3411                                 struct bio *wbi, *wbi2;
3412                                 pr_debug("Return write for disc %d\n", i);
3413                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3414                                         clear_bit(R5_UPTODATE, &dev->flags);
3415                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3416                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3417                                 }
3418                                 do_endio = true;
3419
3420 returnbi:
3421                                 dev->page = dev->orig_page;
3422                                 wbi = dev->written;
3423                                 dev->written = NULL;
3424                                 while (wbi && wbi->bi_iter.bi_sector <
3425                                         dev->sector + STRIPE_SECTORS) {
3426                                         wbi2 = r5_next_bio(wbi, dev->sector);
3427                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3428                                                 md_write_end(conf->mddev);
3429                                                 wbi->bi_next = *return_bi;
3430                                                 *return_bi = wbi;
3431                                         }
3432                                         wbi = wbi2;
3433                                 }
3434                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3435                                                 STRIPE_SECTORS,
3436                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3437                                                 0);
3438                                 if (head_sh->batch_head) {
3439                                         sh = list_first_entry(&sh->batch_list,
3440                                                               struct stripe_head,
3441                                                               batch_list);
3442                                         if (sh != head_sh) {
3443                                                 dev = &sh->dev[i];
3444                                                 goto returnbi;
3445                                         }
3446                                 }
3447                                 sh = head_sh;
3448                                 dev = &sh->dev[i];
3449                         } else if (test_bit(R5_Discard, &dev->flags))
3450                                 discard_pending = 1;
3451                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3452                         WARN_ON(dev->page != dev->orig_page);
3453                 }
3454         if (!discard_pending &&
3455             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3456                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3457                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3458                 if (sh->qd_idx >= 0) {
3459                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3460                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3461                 }
3462                 /* now that discard is done we can proceed with any sync */
3463                 clear_bit(STRIPE_DISCARD, &sh->state);
3464                 /*
3465                  * SCSI discard will change some bio fields and the stripe has
3466                  * no updated data, so remove it from hash list and the stripe
3467                  * will be reinitialized
3468                  */
3469                 spin_lock_irq(&conf->device_lock);
3470 unhash:
3471                 remove_hash(sh);
3472                 if (head_sh->batch_head) {
3473                         sh = list_first_entry(&sh->batch_list,
3474                                               struct stripe_head, batch_list);
3475                         if (sh != head_sh)
3476                                         goto unhash;
3477                 }
3478                 spin_unlock_irq(&conf->device_lock);
3479                 sh = head_sh;
3480
3481                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3482                         set_bit(STRIPE_HANDLE, &sh->state);
3483
3484         }
3485
3486         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3487                 if (atomic_dec_and_test(&conf->pending_full_writes))
3488                         md_wakeup_thread(conf->mddev->thread);
3489
3490         if (!head_sh->batch_head || !do_endio)
3491                 return;
3492         for (i = 0; i < head_sh->disks; i++) {
3493                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
3494                         wakeup_nr++;
3495         }
3496         while (!list_empty(&head_sh->batch_list)) {
3497                 int i;
3498                 sh = list_first_entry(&head_sh->batch_list,
3499                                       struct stripe_head, batch_list);
3500                 list_del_init(&sh->batch_list);
3501
3502                 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
3503                               head_sh->state & ~((1 << STRIPE_ACTIVE) |
3504                                                  (1 << STRIPE_PREREAD_ACTIVE) |
3505                                                  STRIPE_EXPAND_SYNC_FLAG));
3506                 sh->check_state = head_sh->check_state;
3507                 sh->reconstruct_state = head_sh->reconstruct_state;
3508                 for (i = 0; i < sh->disks; i++) {
3509                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3510                                 wakeup_nr++;
3511                         sh->dev[i].flags = head_sh->dev[i].flags;
3512                 }
3513
3514                 spin_lock_irq(&sh->stripe_lock);
3515                 sh->batch_head = NULL;
3516                 spin_unlock_irq(&sh->stripe_lock);
3517                 if (sh->state & STRIPE_EXPAND_SYNC_FLAG)
3518                         set_bit(STRIPE_HANDLE, &sh->state);
3519                 release_stripe(sh);
3520         }
3521
3522         spin_lock_irq(&head_sh->stripe_lock);
3523         head_sh->batch_head = NULL;
3524         spin_unlock_irq(&head_sh->stripe_lock);
3525         wake_up_nr(&conf->wait_for_overlap, wakeup_nr);
3526         if (head_sh->state & STRIPE_EXPAND_SYNC_FLAG)
3527                 set_bit(STRIPE_HANDLE, &head_sh->state);
3528 }
3529
3530 static void handle_stripe_dirtying(struct r5conf *conf,
3531                                    struct stripe_head *sh,
3532                                    struct stripe_head_state *s,
3533                                    int disks)
3534 {
3535         int rmw = 0, rcw = 0, i;
3536         sector_t recovery_cp = conf->mddev->recovery_cp;
3537
3538         /* Check whether resync is now happening or should start.
3539          * If yes, then the array is dirty (after unclean shutdown or
3540          * initial creation), so parity in some stripes might be inconsistent.
3541          * In this case, we need to always do reconstruct-write, to ensure
3542          * that in case of drive failure or read-error correction, we
3543          * generate correct data from the parity.
3544          */
3545         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3546             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3547              s->failed == 0)) {
3548                 /* Calculate the real rcw later - for now make it
3549                  * look like rcw is cheaper
3550                  */
3551                 rcw = 1; rmw = 2;
3552                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3553                          conf->rmw_level, (unsigned long long)recovery_cp,
3554                          (unsigned long long)sh->sector);
3555         } else for (i = disks; i--; ) {
3556                 /* would I have to read this buffer for read_modify_write */
3557                 struct r5dev *dev = &sh->dev[i];
3558                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3559                     !test_bit(R5_LOCKED, &dev->flags) &&
3560                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3561                       test_bit(R5_Wantcompute, &dev->flags))) {
3562                         if (test_bit(R5_Insync, &dev->flags))
3563                                 rmw++;
3564                         else
3565                                 rmw += 2*disks;  /* cannot read it */
3566                 }
3567                 /* Would I have to read this buffer for reconstruct_write */
3568                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3569                     i != sh->pd_idx && i != sh->qd_idx &&
3570                     !test_bit(R5_LOCKED, &dev->flags) &&
3571                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3572                     test_bit(R5_Wantcompute, &dev->flags))) {
3573                         if (test_bit(R5_Insync, &dev->flags))
3574                                 rcw++;
3575                         else
3576                                 rcw += 2*disks;
3577                 }
3578         }
3579         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3580                 (unsigned long long)sh->sector, rmw, rcw);
3581         set_bit(STRIPE_HANDLE, &sh->state);
3582         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3583                 /* prefer read-modify-write, but need to get some data */
3584                 if (conf->mddev->queue)
3585                         blk_add_trace_msg(conf->mddev->queue,
3586                                           "raid5 rmw %llu %d",
3587                                           (unsigned long long)sh->sector, rmw);
3588                 for (i = disks; i--; ) {
3589                         struct r5dev *dev = &sh->dev[i];
3590                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3591                             !test_bit(R5_LOCKED, &dev->flags) &&
3592                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3593                             test_bit(R5_Wantcompute, &dev->flags)) &&
3594                             test_bit(R5_Insync, &dev->flags)) {
3595                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3596                                              &sh->state)) {
3597                                         pr_debug("Read_old block %d for r-m-w\n",
3598                                                  i);
3599                                         set_bit(R5_LOCKED, &dev->flags);
3600                                         set_bit(R5_Wantread, &dev->flags);
3601                                         s->locked++;
3602                                 } else {
3603                                         set_bit(STRIPE_DELAYED, &sh->state);
3604                                         set_bit(STRIPE_HANDLE, &sh->state);
3605                                 }
3606                         }
3607                 }
3608         }
3609         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3610                 /* want reconstruct write, but need to get some data */
3611                 int qread =0;
3612                 rcw = 0;
3613                 for (i = disks; i--; ) {
3614                         struct r5dev *dev = &sh->dev[i];
3615                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3616                             i != sh->pd_idx && i != sh->qd_idx &&
3617                             !test_bit(R5_LOCKED, &dev->flags) &&
3618                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3619                               test_bit(R5_Wantcompute, &dev->flags))) {
3620                                 rcw++;
3621                                 if (test_bit(R5_Insync, &dev->flags) &&
3622                                     test_bit(STRIPE_PREREAD_ACTIVE,
3623                                              &sh->state)) {
3624                                         pr_debug("Read_old block "
3625                                                 "%d for Reconstruct\n", i);
3626                                         set_bit(R5_LOCKED, &dev->flags);
3627                                         set_bit(R5_Wantread, &dev->flags);
3628                                         s->locked++;
3629                                         qread++;
3630                                 } else {
3631                                         set_bit(STRIPE_DELAYED, &sh->state);
3632                                         set_bit(STRIPE_HANDLE, &sh->state);
3633                                 }
3634                         }
3635                 }
3636                 if (rcw && conf->mddev->queue)
3637                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3638                                           (unsigned long long)sh->sector,
3639                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3640         }
3641
3642         if (rcw > disks && rmw > disks &&
3643             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3644                 set_bit(STRIPE_DELAYED, &sh->state);
3645
3646         /* now if nothing is locked, and if we have enough data,
3647          * we can start a write request
3648          */
3649         /* since handle_stripe can be called at any time we need to handle the
3650          * case where a compute block operation has been submitted and then a
3651          * subsequent call wants to start a write request.  raid_run_ops only
3652          * handles the case where compute block and reconstruct are requested
3653          * simultaneously.  If this is not the case then new writes need to be
3654          * held off until the compute completes.
3655          */
3656         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3657             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3658             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3659                 schedule_reconstruction(sh, s, rcw == 0, 0);
3660 }
3661
3662 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3663                                 struct stripe_head_state *s, int disks)
3664 {
3665         struct r5dev *dev = NULL;
3666
3667         BUG_ON(sh->batch_head);
3668         set_bit(STRIPE_HANDLE, &sh->state);
3669
3670         switch (sh->check_state) {
3671         case check_state_idle:
3672                 /* start a new check operation if there are no failures */
3673                 if (s->failed == 0) {
3674                         BUG_ON(s->uptodate != disks);
3675                         sh->check_state = check_state_run;
3676                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3677                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3678                         s->uptodate--;
3679                         break;
3680                 }
3681                 dev = &sh->dev[s->failed_num[0]];
3682                 /* fall through */
3683         case check_state_compute_result:
3684                 sh->check_state = check_state_idle;
3685                 if (!dev)
3686                         dev = &sh->dev[sh->pd_idx];
3687
3688                 /* check that a write has not made the stripe insync */
3689                 if (test_bit(STRIPE_INSYNC, &sh->state))
3690                         break;
3691
3692                 /* either failed parity check, or recovery is happening */
3693                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3694                 BUG_ON(s->uptodate != disks);
3695
3696                 set_bit(R5_LOCKED, &dev->flags);
3697                 s->locked++;
3698                 set_bit(R5_Wantwrite, &dev->flags);
3699
3700                 clear_bit(STRIPE_DEGRADED, &sh->state);
3701                 set_bit(STRIPE_INSYNC, &sh->state);
3702                 break;
3703         case check_state_run:
3704                 break; /* we will be called again upon completion */
3705         case check_state_check_result:
3706                 sh->check_state = check_state_idle;
3707
3708                 /* if a failure occurred during the check operation, leave
3709                  * STRIPE_INSYNC not set and let the stripe be handled again
3710                  */
3711                 if (s->failed)
3712                         break;
3713
3714                 /* handle a successful check operation, if parity is correct
3715                  * we are done.  Otherwise update the mismatch count and repair
3716                  * parity if !MD_RECOVERY_CHECK
3717                  */
3718                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3719                         /* parity is correct (on disc,
3720                          * not in buffer any more)
3721                          */
3722                         set_bit(STRIPE_INSYNC, &sh->state);
3723                 else {
3724                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3725                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3726                                 /* don't try to repair!! */
3727                                 set_bit(STRIPE_INSYNC, &sh->state);
3728                         else {
3729                                 sh->check_state = check_state_compute_run;
3730                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3731                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3732                                 set_bit(R5_Wantcompute,
3733                                         &sh->dev[sh->pd_idx].flags);
3734                                 sh->ops.target = sh->pd_idx;
3735                                 sh->ops.target2 = -1;
3736                                 s->uptodate++;
3737                         }
3738                 }
3739                 break;
3740         case check_state_compute_run:
3741                 break;
3742         default:
3743                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3744                        __func__, sh->check_state,
3745                        (unsigned long long) sh->sector);
3746                 BUG();
3747         }
3748 }
3749
3750 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3751                                   struct stripe_head_state *s,
3752                                   int disks)
3753 {
3754         int pd_idx = sh->pd_idx;
3755         int qd_idx = sh->qd_idx;
3756         struct r5dev *dev;
3757
3758         BUG_ON(sh->batch_head);
3759         set_bit(STRIPE_HANDLE, &sh->state);
3760
3761         BUG_ON(s->failed > 2);
3762
3763         /* Want to check and possibly repair P and Q.
3764          * However there could be one 'failed' device, in which
3765          * case we can only check one of them, possibly using the
3766          * other to generate missing data
3767          */
3768
3769         switch (sh->check_state) {
3770         case check_state_idle:
3771                 /* start a new check operation if there are < 2 failures */
3772                 if (s->failed == s->q_failed) {
3773                         /* The only possible failed device holds Q, so it
3774                          * makes sense to check P (If anything else were failed,
3775                          * we would have used P to recreate it).
3776                          */
3777                         sh->check_state = check_state_run;
3778                 }
3779                 if (!s->q_failed && s->failed < 2) {
3780                         /* Q is not failed, and we didn't use it to generate
3781                          * anything, so it makes sense to check it
3782                          */
3783                         if (sh->check_state == check_state_run)
3784                                 sh->check_state = check_state_run_pq;
3785                         else
3786                                 sh->check_state = check_state_run_q;
3787                 }
3788
3789                 /* discard potentially stale zero_sum_result */
3790                 sh->ops.zero_sum_result = 0;
3791
3792                 if (sh->check_state == check_state_run) {
3793                         /* async_xor_zero_sum destroys the contents of P */
3794                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3795                         s->uptodate--;
3796                 }
3797                 if (sh->check_state >= check_state_run &&
3798                     sh->check_state <= check_state_run_pq) {
3799                         /* async_syndrome_zero_sum preserves P and Q, so
3800                          * no need to mark them !uptodate here
3801                          */
3802                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3803                         break;
3804                 }
3805
3806                 /* we have 2-disk failure */
3807                 BUG_ON(s->failed != 2);
3808                 /* fall through */
3809         case check_state_compute_result:
3810                 sh->check_state = check_state_idle;
3811
3812                 /* check that a write has not made the stripe insync */
3813                 if (test_bit(STRIPE_INSYNC, &sh->state))
3814                         break;
3815
3816                 /* now write out any block on a failed drive,
3817                  * or P or Q if they were recomputed
3818                  */
3819                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3820                 if (s->failed == 2) {
3821                         dev = &sh->dev[s->failed_num[1]];
3822                         s->locked++;
3823                         set_bit(R5_LOCKED, &dev->flags);
3824                         set_bit(R5_Wantwrite, &dev->flags);
3825                 }
3826                 if (s->failed >= 1) {
3827                         dev = &sh->dev[s->failed_num[0]];
3828                         s->locked++;
3829                         set_bit(R5_LOCKED, &dev->flags);
3830                         set_bit(R5_Wantwrite, &dev->flags);
3831                 }
3832                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3833                         dev = &sh->dev[pd_idx];
3834                         s->locked++;
3835                         set_bit(R5_LOCKED, &dev->flags);
3836                         set_bit(R5_Wantwrite, &dev->flags);
3837                 }
3838                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3839                         dev = &sh->dev[qd_idx];
3840                         s->locked++;
3841                         set_bit(R5_LOCKED, &dev->flags);
3842                         set_bit(R5_Wantwrite, &dev->flags);
3843                 }
3844                 clear_bit(STRIPE_DEGRADED, &sh->state);
3845
3846                 set_bit(STRIPE_INSYNC, &sh->state);
3847                 break;
3848         case check_state_run:
3849         case check_state_run_q:
3850         case check_state_run_pq:
3851                 break; /* we will be called again upon completion */
3852         case check_state_check_result:
3853                 sh->check_state = check_state_idle;
3854
3855                 /* handle a successful check operation, if parity is correct
3856                  * we are done.  Otherwise update the mismatch count and repair
3857                  * parity if !MD_RECOVERY_CHECK
3858                  */
3859                 if (sh->ops.zero_sum_result == 0) {
3860                         /* both parities are correct */
3861                         if (!s->failed)
3862                                 set_bit(STRIPE_INSYNC, &sh->state);
3863                         else {
3864                                 /* in contrast to the raid5 case we can validate
3865                                  * parity, but still have a failure to write
3866                                  * back
3867                                  */
3868                                 sh->check_state = check_state_compute_result;
3869                                 /* Returning at this point means that we may go
3870                                  * off and bring p and/or q uptodate again so
3871                                  * we make sure to check zero_sum_result again
3872                                  * to verify if p or q need writeback
3873                                  */
3874                         }
3875                 } else {
3876                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3877                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3878                                 /* don't try to repair!! */
3879                                 set_bit(STRIPE_INSYNC, &sh->state);
3880                         else {
3881                                 int *target = &sh->ops.target;
3882
3883                                 sh->ops.target = -1;
3884                                 sh->ops.target2 = -1;
3885                                 sh->check_state = check_state_compute_run;
3886                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3887                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3888                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3889                                         set_bit(R5_Wantcompute,
3890                                                 &sh->dev[pd_idx].flags);
3891                                         *target = pd_idx;
3892                                         target = &sh->ops.target2;
3893                                         s->uptodate++;
3894                                 }
3895                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3896                                         set_bit(R5_Wantcompute,
3897                                                 &sh->dev[qd_idx].flags);
3898                                         *target = qd_idx;
3899                                         s->uptodate++;
3900                                 }
3901                         }
3902                 }
3903                 break;
3904         case check_state_compute_run:
3905                 break;
3906         default:
3907                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3908                        __func__, sh->check_state,
3909                        (unsigned long long) sh->sector);
3910                 BUG();
3911         }
3912 }
3913
3914 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3915 {
3916         int i;
3917
3918         /* We have read all the blocks in this stripe and now we need to
3919          * copy some of them into a target stripe for expand.
3920          */
3921         struct dma_async_tx_descriptor *tx = NULL;
3922         BUG_ON(sh->batch_head);
3923         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3924         for (i = 0; i < sh->disks; i++)
3925                 if (i != sh->pd_idx && i != sh->qd_idx) {
3926                         int dd_idx, j;
3927                         struct stripe_head *sh2;
3928                         struct async_submit_ctl submit;
3929
3930                         sector_t bn = compute_blocknr(sh, i, 1);
3931                         sector_t s = raid5_compute_sector(conf, bn, 0,
3932                                                           &dd_idx, NULL);
3933                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3934                         if (sh2 == NULL)
3935                                 /* so far only the early blocks of this stripe
3936                                  * have been requested.  When later blocks
3937                                  * get requested, we will try again
3938                                  */
3939                                 continue;
3940                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3941                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3942                                 /* must have already done this block */
3943                                 release_stripe(sh2);
3944                                 continue;
3945                         }
3946
3947                         /* place all the copies on one channel */
3948                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3949                         tx = async_memcpy(sh2->dev[dd_idx].page,
3950                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3951                                           &submit);
3952
3953                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3954                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3955                         for (j = 0; j < conf->raid_disks; j++)
3956                                 if (j != sh2->pd_idx &&
3957                                     j != sh2->qd_idx &&
3958                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3959                                         break;
3960                         if (j == conf->raid_disks) {
3961                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3962                                 set_bit(STRIPE_HANDLE, &sh2->state);
3963                         }
3964                         release_stripe(sh2);
3965
3966                 }
3967         /* done submitting copies, wait for them to complete */
3968         async_tx_quiesce(&tx);
3969 }
3970
3971 /*
3972  * handle_stripe - do things to a stripe.
3973  *
3974  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3975  * state of various bits to see what needs to be done.
3976  * Possible results:
3977  *    return some read requests which now have data
3978  *    return some write requests which are safely on storage
3979  *    schedule a read on some buffers
3980  *    schedule a write of some buffers
3981  *    return confirmation of parity correctness
3982  *
3983  */
3984
3985 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3986 {
3987         struct r5conf *conf = sh->raid_conf;
3988         int disks = sh->disks;
3989         struct r5dev *dev;
3990         int i;
3991         int do_recovery = 0;
3992
3993         memset(s, 0, sizeof(*s));
3994
3995         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
3996         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
3997         s->failed_num[0] = -1;
3998         s->failed_num[1] = -1;
3999
4000         /* Now to look around and see what can be done */
4001         rcu_read_lock();
4002         for (i=disks; i--; ) {
4003                 struct md_rdev *rdev;
4004                 sector_t first_bad;
4005                 int bad_sectors;
4006                 int is_bad = 0;
4007
4008                 dev = &sh->dev[i];
4009
4010                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4011                          i, dev->flags,
4012                          dev->toread, dev->towrite, dev->written);
4013                 /* maybe we can reply to a read
4014                  *
4015                  * new wantfill requests are only permitted while
4016                  * ops_complete_biofill is guaranteed to be inactive
4017                  */
4018                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4019                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4020                         set_bit(R5_Wantfill, &dev->flags);
4021
4022                 /* now count some things */
4023                 if (test_bit(R5_LOCKED, &dev->flags))
4024                         s->locked++;
4025                 if (test_bit(R5_UPTODATE, &dev->flags))
4026                         s->uptodate++;
4027                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4028                         s->compute++;
4029                         BUG_ON(s->compute > 2);
4030                 }
4031
4032                 if (test_bit(R5_Wantfill, &dev->flags))
4033                         s->to_fill++;
4034                 else if (dev->toread)
4035                         s->to_read++;
4036                 if (dev->towrite) {
4037                         s->to_write++;
4038                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4039                                 s->non_overwrite++;
4040                 }
4041                 if (dev->written)
4042                         s->written++;
4043                 /* Prefer to use the replacement for reads, but only
4044                  * if it is recovered enough and has no bad blocks.
4045                  */
4046                 rdev = rcu_dereference(conf->disks[i].replacement);
4047                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4048                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4049                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4050                                  &first_bad, &bad_sectors))
4051                         set_bit(R5_ReadRepl, &dev->flags);
4052                 else {
4053                         if (rdev)
4054                                 set_bit(R5_NeedReplace, &dev->flags);
4055                         rdev = rcu_dereference(conf->disks[i].rdev);
4056                         clear_bit(R5_ReadRepl, &dev->flags);
4057                 }
4058                 if (rdev && test_bit(Faulty, &rdev->flags))
4059                         rdev = NULL;
4060                 if (rdev) {
4061                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4062                                              &first_bad, &bad_sectors);
4063                         if (s->blocked_rdev == NULL
4064                             && (test_bit(Blocked, &rdev->flags)
4065                                 || is_bad < 0)) {
4066                                 if (is_bad < 0)
4067                                         set_bit(BlockedBadBlocks,
4068                                                 &rdev->flags);
4069                                 s->blocked_rdev = rdev;
4070                                 atomic_inc(&rdev->nr_pending);
4071                         }
4072                 }
4073                 clear_bit(R5_Insync, &dev->flags);
4074                 if (!rdev)
4075                         /* Not in-sync */;
4076                 else if (is_bad) {
4077                         /* also not in-sync */
4078                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4079                             test_bit(R5_UPTODATE, &dev->flags)) {
4080                                 /* treat as in-sync, but with a read error
4081                                  * which we can now try to correct
4082                                  */
4083                                 set_bit(R5_Insync, &dev->flags);
4084                                 set_bit(R5_ReadError, &dev->flags);
4085                         }
4086                 } else if (test_bit(In_sync, &rdev->flags))
4087                         set_bit(R5_Insync, &dev->flags);
4088                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4089                         /* in sync if before recovery_offset */
4090                         set_bit(R5_Insync, &dev->flags);
4091                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4092                          test_bit(R5_Expanded, &dev->flags))
4093                         /* If we've reshaped into here, we assume it is Insync.
4094                          * We will shortly update recovery_offset to make
4095                          * it official.
4096                          */
4097                         set_bit(R5_Insync, &dev->flags);
4098
4099                 if (test_bit(R5_WriteError, &dev->flags)) {
4100                         /* This flag does not apply to '.replacement'
4101                          * only to .rdev, so make sure to check that*/
4102                         struct md_rdev *rdev2 = rcu_dereference(
4103                                 conf->disks[i].rdev);
4104                         if (rdev2 == rdev)
4105                                 clear_bit(R5_Insync, &dev->flags);
4106                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4107                                 s->handle_bad_blocks = 1;
4108                                 atomic_inc(&rdev2->nr_pending);
4109                         } else
4110                                 clear_bit(R5_WriteError, &dev->flags);
4111                 }
4112                 if (test_bit(R5_MadeGood, &dev->flags)) {
4113                         /* This flag does not apply to '.replacement'
4114                          * only to .rdev, so make sure to check that*/
4115                         struct md_rdev *rdev2 = rcu_dereference(
4116                                 conf->disks[i].rdev);
4117                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4118                                 s->handle_bad_blocks = 1;
4119                                 atomic_inc(&rdev2->nr_pending);
4120                         } else
4121                                 clear_bit(R5_MadeGood, &dev->flags);
4122                 }
4123                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4124                         struct md_rdev *rdev2 = rcu_dereference(
4125                                 conf->disks[i].replacement);
4126                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4127                                 s->handle_bad_blocks = 1;
4128                                 atomic_inc(&rdev2->nr_pending);
4129                         } else
4130                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4131                 }
4132                 if (!test_bit(R5_Insync, &dev->flags)) {
4133                         /* The ReadError flag will just be confusing now */
4134                         clear_bit(R5_ReadError, &dev->flags);
4135                         clear_bit(R5_ReWrite, &dev->flags);
4136                 }
4137                 if (test_bit(R5_ReadError, &dev->flags))
4138                         clear_bit(R5_Insync, &dev->flags);
4139                 if (!test_bit(R5_Insync, &dev->flags)) {
4140                         if (s->failed < 2)
4141                                 s->failed_num[s->failed] = i;
4142                         s->failed++;
4143                         if (rdev && !test_bit(Faulty, &rdev->flags))
4144                                 do_recovery = 1;
4145                 }
4146         }
4147         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4148                 /* If there is a failed device being replaced,
4149                  *     we must be recovering.
4150                  * else if we are after recovery_cp, we must be syncing
4151                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4152                  * else we can only be replacing
4153                  * sync and recovery both need to read all devices, and so
4154                  * use the same flag.
4155                  */
4156                 if (do_recovery ||
4157                     sh->sector >= conf->mddev->recovery_cp ||
4158                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4159                         s->syncing = 1;
4160                 else
4161                         s->replacing = 1;
4162         }
4163         rcu_read_unlock();
4164 }
4165
4166 static int clear_batch_ready(struct stripe_head *sh)
4167 {
4168         struct stripe_head *tmp;
4169         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4170                 return 0;
4171         spin_lock(&sh->stripe_lock);
4172         if (!sh->batch_head) {
4173                 spin_unlock(&sh->stripe_lock);
4174                 return 0;
4175         }
4176
4177         /*
4178          * this stripe could be added to a batch list before we check
4179          * BATCH_READY, skips it
4180          */
4181         if (sh->batch_head != sh) {
4182                 spin_unlock(&sh->stripe_lock);
4183                 return 1;
4184         }
4185         spin_lock(&sh->batch_lock);
4186         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4187                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4188         spin_unlock(&sh->batch_lock);
4189         spin_unlock(&sh->stripe_lock);
4190
4191         /*
4192          * BATCH_READY is cleared, no new stripes can be added.
4193          * batch_list can be accessed without lock
4194          */
4195         return 0;
4196 }
4197
4198 static void check_break_stripe_batch_list(struct stripe_head *sh)
4199 {
4200         struct stripe_head *head_sh, *next;
4201         int i;
4202
4203         if (!test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4204                 return;
4205
4206         head_sh = sh;
4207         do {
4208                 sh = list_first_entry(&sh->batch_list,
4209                                       struct stripe_head, batch_list);
4210                 BUG_ON(sh == head_sh);
4211         } while (!test_bit(STRIPE_DEGRADED, &sh->state));
4212
4213         while (sh != head_sh) {
4214                 next = list_first_entry(&sh->batch_list,
4215                                         struct stripe_head, batch_list);
4216                 list_del_init(&sh->batch_list);
4217
4218                 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
4219                               head_sh->state & ~((1 << STRIPE_ACTIVE) |
4220                                                  (1 << STRIPE_PREREAD_ACTIVE) |
4221                                                  (1 << STRIPE_DEGRADED) |
4222                                                  STRIPE_EXPAND_SYNC_FLAG));
4223                 sh->check_state = head_sh->check_state;
4224                 sh->reconstruct_state = head_sh->reconstruct_state;
4225                 for (i = 0; i < sh->disks; i++)
4226                         sh->dev[i].flags = head_sh->dev[i].flags &
4227                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4228
4229                 spin_lock_irq(&sh->stripe_lock);
4230                 sh->batch_head = NULL;
4231                 spin_unlock_irq(&sh->stripe_lock);
4232
4233                 set_bit(STRIPE_HANDLE, &sh->state);
4234                 release_stripe(sh);
4235
4236                 sh = next;
4237         }
4238 }
4239
4240 static void handle_stripe(struct stripe_head *sh)
4241 {
4242         struct stripe_head_state s;
4243         struct r5conf *conf = sh->raid_conf;
4244         int i;
4245         int prexor;
4246         int disks = sh->disks;
4247         struct r5dev *pdev, *qdev;
4248
4249         clear_bit(STRIPE_HANDLE, &sh->state);
4250         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4251                 /* already being handled, ensure it gets handled
4252                  * again when current action finishes */
4253                 set_bit(STRIPE_HANDLE, &sh->state);
4254                 return;
4255         }
4256
4257         if (clear_batch_ready(sh) ) {
4258                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4259                 return;
4260         }
4261
4262         check_break_stripe_batch_list(sh);
4263
4264         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4265                 spin_lock(&sh->stripe_lock);
4266                 /* Cannot process 'sync' concurrently with 'discard' */
4267                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4268                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4269                         set_bit(STRIPE_SYNCING, &sh->state);
4270                         clear_bit(STRIPE_INSYNC, &sh->state);
4271                         clear_bit(STRIPE_REPLACED, &sh->state);
4272                 }
4273                 spin_unlock(&sh->stripe_lock);
4274         }
4275         clear_bit(STRIPE_DELAYED, &sh->state);
4276
4277         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4278                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4279                (unsigned long long)sh->sector, sh->state,
4280                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4281                sh->check_state, sh->reconstruct_state);
4282
4283         analyse_stripe(sh, &s);
4284
4285         if (s.handle_bad_blocks) {
4286                 set_bit(STRIPE_HANDLE, &sh->state);
4287                 goto finish;
4288         }
4289
4290         if (unlikely(s.blocked_rdev)) {
4291                 if (s.syncing || s.expanding || s.expanded ||
4292                     s.replacing || s.to_write || s.written) {
4293                         set_bit(STRIPE_HANDLE, &sh->state);
4294                         goto finish;
4295                 }
4296                 /* There is nothing for the blocked_rdev to block */
4297                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4298                 s.blocked_rdev = NULL;
4299         }
4300
4301         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4302                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4303                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4304         }
4305
4306         pr_debug("locked=%d uptodate=%d to_read=%d"
4307                " to_write=%d failed=%d failed_num=%d,%d\n",
4308                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4309                s.failed_num[0], s.failed_num[1]);
4310         /* check if the array has lost more than max_degraded devices and,
4311          * if so, some requests might need to be failed.
4312          */
4313         if (s.failed > conf->max_degraded) {
4314                 sh->check_state = 0;
4315                 sh->reconstruct_state = 0;
4316                 if (s.to_read+s.to_write+s.written)
4317                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4318                 if (s.syncing + s.replacing)
4319                         handle_failed_sync(conf, sh, &s);
4320         }
4321
4322         /* Now we check to see if any write operations have recently
4323          * completed
4324          */
4325         prexor = 0;
4326         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4327                 prexor = 1;
4328         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4329             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4330                 sh->reconstruct_state = reconstruct_state_idle;
4331
4332                 /* All the 'written' buffers and the parity block are ready to
4333                  * be written back to disk
4334                  */
4335                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4336                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4337                 BUG_ON(sh->qd_idx >= 0 &&
4338                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4339                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4340                 for (i = disks; i--; ) {
4341                         struct r5dev *dev = &sh->dev[i];
4342                         if (test_bit(R5_LOCKED, &dev->flags) &&
4343                                 (i == sh->pd_idx || i == sh->qd_idx ||
4344                                  dev->written)) {
4345                                 pr_debug("Writing block %d\n", i);
4346                                 set_bit(R5_Wantwrite, &dev->flags);
4347                                 if (prexor)
4348                                         continue;
4349                                 if (s.failed > 1)
4350                                         continue;
4351                                 if (!test_bit(R5_Insync, &dev->flags) ||
4352                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4353                                      s.failed == 0))
4354                                         set_bit(STRIPE_INSYNC, &sh->state);
4355                         }
4356                 }
4357                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4358                         s.dec_preread_active = 1;
4359         }
4360
4361         /*
4362          * might be able to return some write requests if the parity blocks
4363          * are safe, or on a failed drive
4364          */
4365         pdev = &sh->dev[sh->pd_idx];
4366         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4367                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4368         qdev = &sh->dev[sh->qd_idx];
4369         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4370                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4371                 || conf->level < 6;
4372
4373         if (s.written &&
4374             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4375                              && !test_bit(R5_LOCKED, &pdev->flags)
4376                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4377                                  test_bit(R5_Discard, &pdev->flags))))) &&
4378             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4379                              && !test_bit(R5_LOCKED, &qdev->flags)
4380                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4381                                  test_bit(R5_Discard, &qdev->flags))))))
4382                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4383
4384         /* Now we might consider reading some blocks, either to check/generate
4385          * parity, or to satisfy requests
4386          * or to load a block that is being partially written.
4387          */
4388         if (s.to_read || s.non_overwrite
4389             || (conf->level == 6 && s.to_write && s.failed)
4390             || (s.syncing && (s.uptodate + s.compute < disks))
4391             || s.replacing
4392             || s.expanding)
4393                 handle_stripe_fill(sh, &s, disks);
4394
4395         /* Now to consider new write requests and what else, if anything
4396          * should be read.  We do not handle new writes when:
4397          * 1/ A 'write' operation (copy+xor) is already in flight.
4398          * 2/ A 'check' operation is in flight, as it may clobber the parity
4399          *    block.
4400          */
4401         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4402                 handle_stripe_dirtying(conf, sh, &s, disks);
4403
4404         /* maybe we need to check and possibly fix the parity for this stripe
4405          * Any reads will already have been scheduled, so we just see if enough
4406          * data is available.  The parity check is held off while parity
4407          * dependent operations are in flight.
4408          */
4409         if (sh->check_state ||
4410             (s.syncing && s.locked == 0 &&
4411              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4412              !test_bit(STRIPE_INSYNC, &sh->state))) {
4413                 if (conf->level == 6)
4414                         handle_parity_checks6(conf, sh, &s, disks);
4415                 else
4416                         handle_parity_checks5(conf, sh, &s, disks);
4417         }
4418
4419         if ((s.replacing || s.syncing) && s.locked == 0
4420             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4421             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4422                 /* Write out to replacement devices where possible */
4423                 for (i = 0; i < conf->raid_disks; i++)
4424                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4425                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4426                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4427                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4428                                 s.locked++;
4429                         }
4430                 if (s.replacing)
4431                         set_bit(STRIPE_INSYNC, &sh->state);
4432                 set_bit(STRIPE_REPLACED, &sh->state);
4433         }
4434         if ((s.syncing || s.replacing) && s.locked == 0 &&
4435             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4436             test_bit(STRIPE_INSYNC, &sh->state)) {
4437                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4438                 clear_bit(STRIPE_SYNCING, &sh->state);
4439                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4440                         wake_up(&conf->wait_for_overlap);
4441         }
4442
4443         /* If the failed drives are just a ReadError, then we might need
4444          * to progress the repair/check process
4445          */
4446         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4447                 for (i = 0; i < s.failed; i++) {
4448                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4449                         if (test_bit(R5_ReadError, &dev->flags)
4450                             && !test_bit(R5_LOCKED, &dev->flags)
4451                             && test_bit(R5_UPTODATE, &dev->flags)
4452                                 ) {
4453                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4454                                         set_bit(R5_Wantwrite, &dev->flags);
4455                                         set_bit(R5_ReWrite, &dev->flags);
4456                                         set_bit(R5_LOCKED, &dev->flags);
4457                                         s.locked++;
4458                                 } else {
4459                                         /* let's read it back */
4460                                         set_bit(R5_Wantread, &dev->flags);
4461                                         set_bit(R5_LOCKED, &dev->flags);
4462                                         s.locked++;
4463                                 }
4464                         }
4465                 }
4466
4467         /* Finish reconstruct operations initiated by the expansion process */
4468         if (sh->reconstruct_state == reconstruct_state_result) {
4469                 struct stripe_head *sh_src
4470                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
4471                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4472                         /* sh cannot be written until sh_src has been read.
4473                          * so arrange for sh to be delayed a little
4474                          */
4475                         set_bit(STRIPE_DELAYED, &sh->state);
4476                         set_bit(STRIPE_HANDLE, &sh->state);
4477                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4478                                               &sh_src->state))
4479                                 atomic_inc(&conf->preread_active_stripes);
4480                         release_stripe(sh_src);
4481                         goto finish;
4482                 }
4483                 if (sh_src)
4484                         release_stripe(sh_src);
4485
4486                 sh->reconstruct_state = reconstruct_state_idle;
4487                 clear_bit(STRIPE_EXPANDING, &sh->state);
4488                 for (i = conf->raid_disks; i--; ) {
4489                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4490                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4491                         s.locked++;
4492                 }
4493         }
4494
4495         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4496             !sh->reconstruct_state) {
4497                 /* Need to write out all blocks after computing parity */
4498                 sh->disks = conf->raid_disks;
4499                 stripe_set_idx(sh->sector, conf, 0, sh);
4500                 schedule_reconstruction(sh, &s, 1, 1);
4501         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4502                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4503                 atomic_dec(&conf->reshape_stripes);
4504                 wake_up(&conf->wait_for_overlap);
4505                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4506         }
4507
4508         if (s.expanding && s.locked == 0 &&
4509             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4510                 handle_stripe_expansion(conf, sh);
4511
4512 finish:
4513         /* wait for this device to become unblocked */
4514         if (unlikely(s.blocked_rdev)) {
4515                 if (conf->mddev->external)
4516                         md_wait_for_blocked_rdev(s.blocked_rdev,
4517                                                  conf->mddev);
4518                 else
4519                         /* Internal metadata will immediately
4520                          * be written by raid5d, so we don't
4521                          * need to wait here.
4522                          */
4523                         rdev_dec_pending(s.blocked_rdev,
4524                                          conf->mddev);
4525         }
4526
4527         if (s.handle_bad_blocks)
4528                 for (i = disks; i--; ) {
4529                         struct md_rdev *rdev;
4530                         struct r5dev *dev = &sh->dev[i];
4531                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4532                                 /* We own a safe reference to the rdev */
4533                                 rdev = conf->disks[i].rdev;
4534                                 if (!rdev_set_badblocks(rdev, sh->sector,
4535                                                         STRIPE_SECTORS, 0))
4536                                         md_error(conf->mddev, rdev);
4537                                 rdev_dec_pending(rdev, conf->mddev);
4538                         }
4539                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4540                                 rdev = conf->disks[i].rdev;
4541                                 rdev_clear_badblocks(rdev, sh->sector,
4542                                                      STRIPE_SECTORS, 0);
4543                                 rdev_dec_pending(rdev, conf->mddev);
4544                         }
4545                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4546                                 rdev = conf->disks[i].replacement;
4547                                 if (!rdev)
4548                                         /* rdev have been moved down */
4549                                         rdev = conf->disks[i].rdev;
4550                                 rdev_clear_badblocks(rdev, sh->sector,
4551                                                      STRIPE_SECTORS, 0);
4552                                 rdev_dec_pending(rdev, conf->mddev);
4553                         }
4554                 }
4555
4556         if (s.ops_request)
4557                 raid_run_ops(sh, s.ops_request);
4558
4559         ops_run_io(sh, &s);
4560
4561         if (s.dec_preread_active) {
4562                 /* We delay this until after ops_run_io so that if make_request
4563                  * is waiting on a flush, it won't continue until the writes
4564                  * have actually been submitted.
4565                  */
4566                 atomic_dec(&conf->preread_active_stripes);
4567                 if (atomic_read(&conf->preread_active_stripes) <
4568                     IO_THRESHOLD)
4569                         md_wakeup_thread(conf->mddev->thread);
4570         }
4571
4572         return_io(s.return_bi);
4573
4574         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4575 }
4576
4577 static void raid5_activate_delayed(struct r5conf *conf)
4578 {
4579         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4580                 while (!list_empty(&conf->delayed_list)) {
4581                         struct list_head *l = conf->delayed_list.next;
4582                         struct stripe_head *sh;
4583                         sh = list_entry(l, struct stripe_head, lru);
4584                         list_del_init(l);
4585                         clear_bit(STRIPE_DELAYED, &sh->state);
4586                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4587                                 atomic_inc(&conf->preread_active_stripes);
4588                         list_add_tail(&sh->lru, &conf->hold_list);
4589                         raid5_wakeup_stripe_thread(sh);
4590                 }
4591         }
4592 }
4593
4594 static void activate_bit_delay(struct r5conf *conf,
4595         struct list_head *temp_inactive_list)
4596 {
4597         /* device_lock is held */
4598         struct list_head head;
4599         list_add(&head, &conf->bitmap_list);
4600         list_del_init(&conf->bitmap_list);
4601         while (!list_empty(&head)) {
4602                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4603                 int hash;
4604                 list_del_init(&sh->lru);
4605                 atomic_inc(&sh->count);
4606                 hash = sh->hash_lock_index;
4607                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4608         }
4609 }
4610
4611 static int raid5_congested(struct mddev *mddev, int bits)
4612 {
4613         struct r5conf *conf = mddev->private;
4614
4615         /* No difference between reads and writes.  Just check
4616          * how busy the stripe_cache is
4617          */
4618
4619         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4620                 return 1;
4621         if (conf->quiesce)
4622                 return 1;
4623         if (atomic_read(&conf->empty_inactive_list_nr))
4624                 return 1;
4625
4626         return 0;
4627 }
4628
4629 /* We want read requests to align with chunks where possible,
4630  * but write requests don't need to.
4631  */
4632 static int raid5_mergeable_bvec(struct mddev *mddev,
4633                                 struct bvec_merge_data *bvm,
4634                                 struct bio_vec *biovec)
4635 {
4636         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4637         int max;
4638         unsigned int chunk_sectors = mddev->chunk_sectors;
4639         unsigned int bio_sectors = bvm->bi_size >> 9;
4640
4641         /*
4642          * always allow writes to be mergeable, read as well if array
4643          * is degraded as we'll go through stripe cache anyway.
4644          */
4645         if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4646                 return biovec->bv_len;
4647
4648         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4649                 chunk_sectors = mddev->new_chunk_sectors;
4650         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4651         if (max < 0) max = 0;
4652         if (max <= biovec->bv_len && bio_sectors == 0)
4653                 return biovec->bv_len;
4654         else
4655                 return max;
4656 }
4657
4658 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4659 {
4660         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4661         unsigned int chunk_sectors = mddev->chunk_sectors;
4662         unsigned int bio_sectors = bio_sectors(bio);
4663
4664         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4665                 chunk_sectors = mddev->new_chunk_sectors;
4666         return  chunk_sectors >=
4667                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4668 }
4669
4670 /*
4671  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4672  *  later sampled by raid5d.
4673  */
4674 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4675 {
4676         unsigned long flags;
4677
4678         spin_lock_irqsave(&conf->device_lock, flags);
4679
4680         bi->bi_next = conf->retry_read_aligned_list;
4681         conf->retry_read_aligned_list = bi;
4682
4683         spin_unlock_irqrestore(&conf->device_lock, flags);
4684         md_wakeup_thread(conf->mddev->thread);
4685 }
4686
4687 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4688 {
4689         struct bio *bi;
4690
4691         bi = conf->retry_read_aligned;
4692         if (bi) {
4693                 conf->retry_read_aligned = NULL;
4694                 return bi;
4695         }
4696         bi = conf->retry_read_aligned_list;
4697         if(bi) {
4698                 conf->retry_read_aligned_list = bi->bi_next;
4699                 bi->bi_next = NULL;
4700                 /*
4701                  * this sets the active strip count to 1 and the processed
4702                  * strip count to zero (upper 8 bits)
4703                  */
4704                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4705         }
4706
4707         return bi;
4708 }
4709
4710 /*
4711  *  The "raid5_align_endio" should check if the read succeeded and if it
4712  *  did, call bio_endio on the original bio (having bio_put the new bio
4713  *  first).
4714  *  If the read failed..
4715  */
4716 static void raid5_align_endio(struct bio *bi, int error)
4717 {
4718         struct bio* raid_bi  = bi->bi_private;
4719         struct mddev *mddev;
4720         struct r5conf *conf;
4721         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4722         struct md_rdev *rdev;
4723
4724         bio_put(bi);
4725
4726         rdev = (void*)raid_bi->bi_next;
4727         raid_bi->bi_next = NULL;
4728         mddev = rdev->mddev;
4729         conf = mddev->private;
4730
4731         rdev_dec_pending(rdev, conf->mddev);
4732
4733         if (!error && uptodate) {
4734                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4735                                          raid_bi, 0);
4736                 bio_endio(raid_bi, 0);
4737                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4738                         wake_up(&conf->wait_for_stripe);
4739                 return;
4740         }
4741
4742         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4743
4744         add_bio_to_retry(raid_bi, conf);
4745 }
4746
4747 static int bio_fits_rdev(struct bio *bi)
4748 {
4749         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4750
4751         if (bio_sectors(bi) > queue_max_sectors(q))
4752                 return 0;
4753         blk_recount_segments(q, bi);
4754         if (bi->bi_phys_segments > queue_max_segments(q))
4755                 return 0;
4756
4757         if (q->merge_bvec_fn)
4758                 /* it's too hard to apply the merge_bvec_fn at this stage,
4759                  * just just give up
4760                  */
4761                 return 0;
4762
4763         return 1;
4764 }
4765
4766 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4767 {
4768         struct r5conf *conf = mddev->private;
4769         int dd_idx;
4770         struct bio* align_bi;
4771         struct md_rdev *rdev;
4772         sector_t end_sector;
4773
4774         if (!in_chunk_boundary(mddev, raid_bio)) {
4775                 pr_debug("chunk_aligned_read : non aligned\n");
4776                 return 0;
4777         }
4778         /*
4779          * use bio_clone_mddev to make a copy of the bio
4780          */
4781         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4782         if (!align_bi)
4783                 return 0;
4784         /*
4785          *   set bi_end_io to a new function, and set bi_private to the
4786          *     original bio.
4787          */
4788         align_bi->bi_end_io  = raid5_align_endio;
4789         align_bi->bi_private = raid_bio;
4790         /*
4791          *      compute position
4792          */
4793         align_bi->bi_iter.bi_sector =
4794                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4795                                      0, &dd_idx, NULL);
4796
4797         end_sector = bio_end_sector(align_bi);
4798         rcu_read_lock();
4799         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4800         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4801             rdev->recovery_offset < end_sector) {
4802                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4803                 if (rdev &&
4804                     (test_bit(Faulty, &rdev->flags) ||
4805                     !(test_bit(In_sync, &rdev->flags) ||
4806                       rdev->recovery_offset >= end_sector)))
4807                         rdev = NULL;
4808         }
4809         if (rdev) {
4810                 sector_t first_bad;
4811                 int bad_sectors;
4812
4813                 atomic_inc(&rdev->nr_pending);
4814                 rcu_read_unlock();
4815                 raid_bio->bi_next = (void*)rdev;
4816                 align_bi->bi_bdev =  rdev->bdev;
4817                 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4818
4819                 if (!bio_fits_rdev(align_bi) ||
4820                     is_badblock(rdev, align_bi->bi_iter.bi_sector,
4821                                 bio_sectors(align_bi),
4822                                 &first_bad, &bad_sectors)) {
4823                         /* too big in some way, or has a known bad block */
4824                         bio_put(align_bi);
4825                         rdev_dec_pending(rdev, mddev);
4826                         return 0;
4827                 }
4828
4829                 /* No reshape active, so we can trust rdev->data_offset */
4830                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4831
4832                 spin_lock_irq(&conf->device_lock);
4833                 wait_event_lock_irq(conf->wait_for_stripe,
4834                                     conf->quiesce == 0,
4835                                     conf->device_lock);
4836                 atomic_inc(&conf->active_aligned_reads);
4837                 spin_unlock_irq(&conf->device_lock);
4838
4839                 if (mddev->gendisk)
4840                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4841                                               align_bi, disk_devt(mddev->gendisk),
4842                                               raid_bio->bi_iter.bi_sector);
4843                 generic_make_request(align_bi);
4844                 return 1;
4845         } else {
4846                 rcu_read_unlock();
4847                 bio_put(align_bi);
4848                 return 0;
4849         }
4850 }
4851
4852 /* __get_priority_stripe - get the next stripe to process
4853  *
4854  * Full stripe writes are allowed to pass preread active stripes up until
4855  * the bypass_threshold is exceeded.  In general the bypass_count
4856  * increments when the handle_list is handled before the hold_list; however, it
4857  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4858  * stripe with in flight i/o.  The bypass_count will be reset when the
4859  * head of the hold_list has changed, i.e. the head was promoted to the
4860  * handle_list.
4861  */
4862 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4863 {
4864         struct stripe_head *sh = NULL, *tmp;
4865         struct list_head *handle_list = NULL;
4866         struct r5worker_group *wg = NULL;
4867
4868         if (conf->worker_cnt_per_group == 0) {
4869                 handle_list = &conf->handle_list;
4870         } else if (group != ANY_GROUP) {
4871                 handle_list = &conf->worker_groups[group].handle_list;
4872                 wg = &conf->worker_groups[group];
4873         } else {
4874                 int i;
4875                 for (i = 0; i < conf->group_cnt; i++) {
4876                         handle_list = &conf->worker_groups[i].handle_list;
4877                         wg = &conf->worker_groups[i];
4878                         if (!list_empty(handle_list))
4879                                 break;
4880                 }
4881         }
4882
4883         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4884                   __func__,
4885                   list_empty(handle_list) ? "empty" : "busy",
4886                   list_empty(&conf->hold_list) ? "empty" : "busy",
4887                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4888
4889         if (!list_empty(handle_list)) {
4890                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4891
4892                 if (list_empty(&conf->hold_list))
4893                         conf->bypass_count = 0;
4894                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4895                         if (conf->hold_list.next == conf->last_hold)
4896                                 conf->bypass_count++;
4897                         else {
4898                                 conf->last_hold = conf->hold_list.next;
4899                                 conf->bypass_count -= conf->bypass_threshold;
4900                                 if (conf->bypass_count < 0)
4901                                         conf->bypass_count = 0;
4902                         }
4903                 }
4904         } else if (!list_empty(&conf->hold_list) &&
4905                    ((conf->bypass_threshold &&
4906                      conf->bypass_count > conf->bypass_threshold) ||
4907                     atomic_read(&conf->pending_full_writes) == 0)) {
4908
4909                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4910                         if (conf->worker_cnt_per_group == 0 ||
4911                             group == ANY_GROUP ||
4912                             !cpu_online(tmp->cpu) ||
4913                             cpu_to_group(tmp->cpu) == group) {
4914                                 sh = tmp;
4915                                 break;
4916                         }
4917                 }
4918
4919                 if (sh) {
4920                         conf->bypass_count -= conf->bypass_threshold;
4921                         if (conf->bypass_count < 0)
4922                                 conf->bypass_count = 0;
4923                 }
4924                 wg = NULL;
4925         }
4926
4927         if (!sh)
4928                 return NULL;
4929
4930         if (wg) {
4931                 wg->stripes_cnt--;
4932                 sh->group = NULL;
4933         }
4934         list_del_init(&sh->lru);
4935         BUG_ON(atomic_inc_return(&sh->count) != 1);
4936         return sh;
4937 }
4938
4939 struct raid5_plug_cb {
4940         struct blk_plug_cb      cb;
4941         struct list_head        list;
4942         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4943 };
4944
4945 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4946 {
4947         struct raid5_plug_cb *cb = container_of(
4948                 blk_cb, struct raid5_plug_cb, cb);
4949         struct stripe_head *sh;
4950         struct mddev *mddev = cb->cb.data;
4951         struct r5conf *conf = mddev->private;
4952         int cnt = 0;
4953         int hash;
4954
4955         if (cb->list.next && !list_empty(&cb->list)) {
4956                 spin_lock_irq(&conf->device_lock);
4957                 while (!list_empty(&cb->list)) {
4958                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4959                         list_del_init(&sh->lru);
4960                         /*
4961                          * avoid race release_stripe_plug() sees
4962                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4963                          * is still in our list
4964                          */
4965                         smp_mb__before_atomic();
4966                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4967                         /*
4968                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4969                          * case, the count is always > 1 here
4970                          */
4971                         hash = sh->hash_lock_index;
4972                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4973                         cnt++;
4974                 }
4975                 spin_unlock_irq(&conf->device_lock);
4976         }
4977         release_inactive_stripe_list(conf, cb->temp_inactive_list,
4978                                      NR_STRIPE_HASH_LOCKS);
4979         if (mddev->queue)
4980                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4981         kfree(cb);
4982 }
4983
4984 static void release_stripe_plug(struct mddev *mddev,
4985                                 struct stripe_head *sh)
4986 {
4987         struct blk_plug_cb *blk_cb = blk_check_plugged(
4988                 raid5_unplug, mddev,
4989                 sizeof(struct raid5_plug_cb));
4990         struct raid5_plug_cb *cb;
4991
4992         if (!blk_cb) {
4993                 release_stripe(sh);
4994                 return;
4995         }
4996
4997         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4998
4999         if (cb->list.next == NULL) {
5000                 int i;
5001                 INIT_LIST_HEAD(&cb->list);
5002                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5003                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5004         }
5005
5006         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5007                 list_add_tail(&sh->lru, &cb->list);
5008         else
5009                 release_stripe(sh);
5010 }
5011
5012 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5013 {
5014         struct r5conf *conf = mddev->private;
5015         sector_t logical_sector, last_sector;
5016         struct stripe_head *sh;
5017         int remaining;
5018         int stripe_sectors;
5019
5020         if (mddev->reshape_position != MaxSector)
5021                 /* Skip discard while reshape is happening */
5022                 return;
5023
5024         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5025         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5026
5027         bi->bi_next = NULL;
5028         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5029
5030         stripe_sectors = conf->chunk_sectors *
5031                 (conf->raid_disks - conf->max_degraded);
5032         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5033                                                stripe_sectors);
5034         sector_div(last_sector, stripe_sectors);
5035
5036         logical_sector *= conf->chunk_sectors;
5037         last_sector *= conf->chunk_sectors;
5038
5039         for (; logical_sector < last_sector;
5040              logical_sector += STRIPE_SECTORS) {
5041                 DEFINE_WAIT(w);
5042                 int d;
5043         again:
5044                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5045                 prepare_to_wait(&conf->wait_for_overlap, &w,
5046                                 TASK_UNINTERRUPTIBLE);
5047                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5048                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5049                         release_stripe(sh);
5050                         schedule();
5051                         goto again;
5052                 }
5053                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5054                 spin_lock_irq(&sh->stripe_lock);
5055                 for (d = 0; d < conf->raid_disks; d++) {
5056                         if (d == sh->pd_idx || d == sh->qd_idx)
5057                                 continue;
5058                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5059                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5060                                 spin_unlock_irq(&sh->stripe_lock);
5061                                 release_stripe(sh);
5062                                 schedule();
5063                                 goto again;
5064                         }
5065                 }
5066                 set_bit(STRIPE_DISCARD, &sh->state);
5067                 finish_wait(&conf->wait_for_overlap, &w);
5068                 sh->overwrite_disks = 0;
5069                 for (d = 0; d < conf->raid_disks; d++) {
5070                         if (d == sh->pd_idx || d == sh->qd_idx)
5071                                 continue;
5072                         sh->dev[d].towrite = bi;
5073                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5074                         raid5_inc_bi_active_stripes(bi);
5075                         sh->overwrite_disks++;
5076                 }
5077                 spin_unlock_irq(&sh->stripe_lock);
5078                 if (conf->mddev->bitmap) {
5079                         for (d = 0;
5080                              d < conf->raid_disks - conf->max_degraded;
5081                              d++)
5082                                 bitmap_startwrite(mddev->bitmap,
5083                                                   sh->sector,
5084                                                   STRIPE_SECTORS,
5085                                                   0);
5086                         sh->bm_seq = conf->seq_flush + 1;
5087                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5088                 }
5089
5090                 set_bit(STRIPE_HANDLE, &sh->state);
5091                 clear_bit(STRIPE_DELAYED, &sh->state);
5092                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5093                         atomic_inc(&conf->preread_active_stripes);
5094                 release_stripe_plug(mddev, sh);
5095         }
5096
5097         remaining = raid5_dec_bi_active_stripes(bi);
5098         if (remaining == 0) {
5099                 md_write_end(mddev);
5100                 bio_endio(bi, 0);
5101         }
5102 }
5103
5104 static void make_request(struct mddev *mddev, struct bio * bi)
5105 {
5106         struct r5conf *conf = mddev->private;
5107         int dd_idx;
5108         sector_t new_sector;
5109         sector_t logical_sector, last_sector;
5110         struct stripe_head *sh;
5111         const int rw = bio_data_dir(bi);
5112         int remaining;
5113         DEFINE_WAIT(w);
5114         bool do_prepare;
5115
5116         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5117                 md_flush_request(mddev, bi);
5118                 return;
5119         }
5120
5121         md_write_start(mddev, bi);
5122
5123         /*
5124          * If array is degraded, better not do chunk aligned read because
5125          * later we might have to read it again in order to reconstruct
5126          * data on failed drives.
5127          */
5128         if (rw == READ && mddev->degraded == 0 &&
5129              mddev->reshape_position == MaxSector &&
5130              chunk_aligned_read(mddev,bi))
5131                 return;
5132
5133         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5134                 make_discard_request(mddev, bi);
5135                 return;
5136         }
5137
5138         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5139         last_sector = bio_end_sector(bi);
5140         bi->bi_next = NULL;
5141         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5142
5143         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5144         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5145                 int previous;
5146                 int seq;
5147
5148                 do_prepare = false;
5149         retry:
5150                 seq = read_seqcount_begin(&conf->gen_lock);
5151                 previous = 0;
5152                 if (do_prepare)
5153                         prepare_to_wait(&conf->wait_for_overlap, &w,
5154                                 TASK_UNINTERRUPTIBLE);
5155                 if (unlikely(conf->reshape_progress != MaxSector)) {
5156                         /* spinlock is needed as reshape_progress may be
5157                          * 64bit on a 32bit platform, and so it might be
5158                          * possible to see a half-updated value
5159                          * Of course reshape_progress could change after
5160                          * the lock is dropped, so once we get a reference
5161                          * to the stripe that we think it is, we will have
5162                          * to check again.
5163                          */
5164                         spin_lock_irq(&conf->device_lock);
5165                         if (mddev->reshape_backwards
5166                             ? logical_sector < conf->reshape_progress
5167                             : logical_sector >= conf->reshape_progress) {
5168                                 previous = 1;
5169                         } else {
5170                                 if (mddev->reshape_backwards
5171                                     ? logical_sector < conf->reshape_safe
5172                                     : logical_sector >= conf->reshape_safe) {
5173                                         spin_unlock_irq(&conf->device_lock);
5174                                         schedule();
5175                                         do_prepare = true;
5176                                         goto retry;
5177                                 }
5178                         }
5179                         spin_unlock_irq(&conf->device_lock);
5180                 }
5181
5182                 new_sector = raid5_compute_sector(conf, logical_sector,
5183                                                   previous,
5184                                                   &dd_idx, NULL);
5185                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5186                         (unsigned long long)new_sector,
5187                         (unsigned long long)logical_sector);
5188
5189                 sh = get_active_stripe(conf, new_sector, previous,
5190                                        (bi->bi_rw&RWA_MASK), 0);
5191                 if (sh) {
5192                         if (unlikely(previous)) {
5193                                 /* expansion might have moved on while waiting for a
5194                                  * stripe, so we must do the range check again.
5195                                  * Expansion could still move past after this
5196                                  * test, but as we are holding a reference to
5197                                  * 'sh', we know that if that happens,
5198                                  *  STRIPE_EXPANDING will get set and the expansion
5199                                  * won't proceed until we finish with the stripe.
5200                                  */
5201                                 int must_retry = 0;
5202                                 spin_lock_irq(&conf->device_lock);
5203                                 if (mddev->reshape_backwards
5204                                     ? logical_sector >= conf->reshape_progress
5205                                     : logical_sector < conf->reshape_progress)
5206                                         /* mismatch, need to try again */
5207                                         must_retry = 1;
5208                                 spin_unlock_irq(&conf->device_lock);
5209                                 if (must_retry) {
5210                                         release_stripe(sh);
5211                                         schedule();
5212                                         do_prepare = true;
5213                                         goto retry;
5214                                 }
5215                         }
5216                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5217                                 /* Might have got the wrong stripe_head
5218                                  * by accident
5219                                  */
5220                                 release_stripe(sh);
5221                                 goto retry;
5222                         }
5223
5224                         if (rw == WRITE &&
5225                             logical_sector >= mddev->suspend_lo &&
5226                             logical_sector < mddev->suspend_hi) {
5227                                 release_stripe(sh);
5228                                 /* As the suspend_* range is controlled by
5229                                  * userspace, we want an interruptible
5230                                  * wait.
5231                                  */
5232                                 flush_signals(current);
5233                                 prepare_to_wait(&conf->wait_for_overlap,
5234                                                 &w, TASK_INTERRUPTIBLE);
5235                                 if (logical_sector >= mddev->suspend_lo &&
5236                                     logical_sector < mddev->suspend_hi) {
5237                                         schedule();
5238                                         do_prepare = true;
5239                                 }
5240                                 goto retry;
5241                         }
5242
5243                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5244                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5245                                 /* Stripe is busy expanding or
5246                                  * add failed due to overlap.  Flush everything
5247                                  * and wait a while
5248                                  */
5249                                 md_wakeup_thread(mddev->thread);
5250                                 release_stripe(sh);
5251                                 schedule();
5252                                 do_prepare = true;
5253                                 goto retry;
5254                         }
5255                         set_bit(STRIPE_HANDLE, &sh->state);
5256                         clear_bit(STRIPE_DELAYED, &sh->state);
5257                         if ((!sh->batch_head || sh == sh->batch_head) &&
5258                             (bi->bi_rw & REQ_SYNC) &&
5259                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5260                                 atomic_inc(&conf->preread_active_stripes);
5261                         release_stripe_plug(mddev, sh);
5262                 } else {
5263                         /* cannot get stripe for read-ahead, just give-up */
5264                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
5265                         break;
5266                 }
5267         }
5268         finish_wait(&conf->wait_for_overlap, &w);
5269
5270         remaining = raid5_dec_bi_active_stripes(bi);
5271         if (remaining == 0) {
5272
5273                 if ( rw == WRITE )
5274                         md_write_end(mddev);
5275
5276                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5277                                          bi, 0);
5278                 bio_endio(bi, 0);
5279         }
5280 }
5281
5282 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5283
5284 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5285 {
5286         /* reshaping is quite different to recovery/resync so it is
5287          * handled quite separately ... here.
5288          *
5289          * On each call to sync_request, we gather one chunk worth of
5290          * destination stripes and flag them as expanding.
5291          * Then we find all the source stripes and request reads.
5292          * As the reads complete, handle_stripe will copy the data
5293          * into the destination stripe and release that stripe.
5294          */
5295         struct r5conf *conf = mddev->private;
5296         struct stripe_head *sh;
5297         sector_t first_sector, last_sector;
5298         int raid_disks = conf->previous_raid_disks;
5299         int data_disks = raid_disks - conf->max_degraded;
5300         int new_data_disks = conf->raid_disks - conf->max_degraded;
5301         int i;
5302         int dd_idx;
5303         sector_t writepos, readpos, safepos;
5304         sector_t stripe_addr;
5305         int reshape_sectors;
5306         struct list_head stripes;
5307
5308         if (sector_nr == 0) {
5309                 /* If restarting in the middle, skip the initial sectors */
5310                 if (mddev->reshape_backwards &&
5311                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5312                         sector_nr = raid5_size(mddev, 0, 0)
5313                                 - conf->reshape_progress;
5314                 } else if (!mddev->reshape_backwards &&
5315                            conf->reshape_progress > 0)
5316                         sector_nr = conf->reshape_progress;
5317                 sector_div(sector_nr, new_data_disks);
5318                 if (sector_nr) {
5319                         mddev->curr_resync_completed = sector_nr;
5320                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5321                         *skipped = 1;
5322                         return sector_nr;
5323                 }
5324         }
5325
5326         /* We need to process a full chunk at a time.
5327          * If old and new chunk sizes differ, we need to process the
5328          * largest of these
5329          */
5330         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5331                 reshape_sectors = mddev->new_chunk_sectors;
5332         else
5333                 reshape_sectors = mddev->chunk_sectors;
5334
5335         /* We update the metadata at least every 10 seconds, or when
5336          * the data about to be copied would over-write the source of
5337          * the data at the front of the range.  i.e. one new_stripe
5338          * along from reshape_progress new_maps to after where
5339          * reshape_safe old_maps to
5340          */
5341         writepos = conf->reshape_progress;
5342         sector_div(writepos, new_data_disks);
5343         readpos = conf->reshape_progress;
5344         sector_div(readpos, data_disks);
5345         safepos = conf->reshape_safe;
5346         sector_div(safepos, data_disks);
5347         if (mddev->reshape_backwards) {
5348                 writepos -= min_t(sector_t, reshape_sectors, writepos);
5349                 readpos += reshape_sectors;
5350                 safepos += reshape_sectors;
5351         } else {
5352                 writepos += reshape_sectors;
5353                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5354                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5355         }
5356
5357         /* Having calculated the 'writepos' possibly use it
5358          * to set 'stripe_addr' which is where we will write to.
5359          */
5360         if (mddev->reshape_backwards) {
5361                 BUG_ON(conf->reshape_progress == 0);
5362                 stripe_addr = writepos;
5363                 BUG_ON((mddev->dev_sectors &
5364                         ~((sector_t)reshape_sectors - 1))
5365                        - reshape_sectors - stripe_addr
5366                        != sector_nr);
5367         } else {
5368                 BUG_ON(writepos != sector_nr + reshape_sectors);
5369                 stripe_addr = sector_nr;
5370         }
5371
5372         /* 'writepos' is the most advanced device address we might write.
5373          * 'readpos' is the least advanced device address we might read.
5374          * 'safepos' is the least address recorded in the metadata as having
5375          *     been reshaped.
5376          * If there is a min_offset_diff, these are adjusted either by
5377          * increasing the safepos/readpos if diff is negative, or
5378          * increasing writepos if diff is positive.
5379          * If 'readpos' is then behind 'writepos', there is no way that we can
5380          * ensure safety in the face of a crash - that must be done by userspace
5381          * making a backup of the data.  So in that case there is no particular
5382          * rush to update metadata.
5383          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5384          * update the metadata to advance 'safepos' to match 'readpos' so that
5385          * we can be safe in the event of a crash.
5386          * So we insist on updating metadata if safepos is behind writepos and
5387          * readpos is beyond writepos.
5388          * In any case, update the metadata every 10 seconds.
5389          * Maybe that number should be configurable, but I'm not sure it is
5390          * worth it.... maybe it could be a multiple of safemode_delay???
5391          */
5392         if (conf->min_offset_diff < 0) {
5393                 safepos += -conf->min_offset_diff;
5394                 readpos += -conf->min_offset_diff;
5395         } else
5396                 writepos += conf->min_offset_diff;
5397
5398         if ((mddev->reshape_backwards
5399              ? (safepos > writepos && readpos < writepos)
5400              : (safepos < writepos && readpos > writepos)) ||
5401             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5402                 /* Cannot proceed until we've updated the superblock... */
5403                 wait_event(conf->wait_for_overlap,
5404                            atomic_read(&conf->reshape_stripes)==0
5405                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5406                 if (atomic_read(&conf->reshape_stripes) != 0)
5407                         return 0;
5408                 mddev->reshape_position = conf->reshape_progress;
5409                 mddev->curr_resync_completed = sector_nr;
5410                 conf->reshape_checkpoint = jiffies;
5411                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5412                 md_wakeup_thread(mddev->thread);
5413                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5414                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5415                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5416                         return 0;
5417                 spin_lock_irq(&conf->device_lock);
5418                 conf->reshape_safe = mddev->reshape_position;
5419                 spin_unlock_irq(&conf->device_lock);
5420                 wake_up(&conf->wait_for_overlap);
5421                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5422         }
5423
5424         INIT_LIST_HEAD(&stripes);
5425         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5426                 int j;
5427                 int skipped_disk = 0;
5428                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5429                 set_bit(STRIPE_EXPANDING, &sh->state);
5430                 atomic_inc(&conf->reshape_stripes);
5431                 /* If any of this stripe is beyond the end of the old
5432                  * array, then we need to zero those blocks
5433                  */
5434                 for (j=sh->disks; j--;) {
5435                         sector_t s;
5436                         if (j == sh->pd_idx)
5437                                 continue;
5438                         if (conf->level == 6 &&
5439                             j == sh->qd_idx)
5440                                 continue;
5441                         s = compute_blocknr(sh, j, 0);
5442                         if (s < raid5_size(mddev, 0, 0)) {
5443                                 skipped_disk = 1;
5444                                 continue;
5445                         }
5446                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5447                         set_bit(R5_Expanded, &sh->dev[j].flags);
5448                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5449                 }
5450                 if (!skipped_disk) {
5451                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5452                         set_bit(STRIPE_HANDLE, &sh->state);
5453                 }
5454                 list_add(&sh->lru, &stripes);
5455         }
5456         spin_lock_irq(&conf->device_lock);
5457         if (mddev->reshape_backwards)
5458                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5459         else
5460                 conf->reshape_progress += reshape_sectors * new_data_disks;
5461         spin_unlock_irq(&conf->device_lock);
5462         /* Ok, those stripe are ready. We can start scheduling
5463          * reads on the source stripes.
5464          * The source stripes are determined by mapping the first and last
5465          * block on the destination stripes.
5466          */
5467         first_sector =
5468                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5469                                      1, &dd_idx, NULL);
5470         last_sector =
5471                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5472                                             * new_data_disks - 1),
5473                                      1, &dd_idx, NULL);
5474         if (last_sector >= mddev->dev_sectors)
5475                 last_sector = mddev->dev_sectors - 1;
5476         while (first_sector <= last_sector) {
5477                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5478                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5479                 set_bit(STRIPE_HANDLE, &sh->state);
5480                 release_stripe(sh);
5481                 first_sector += STRIPE_SECTORS;
5482         }
5483         /* Now that the sources are clearly marked, we can release
5484          * the destination stripes
5485          */
5486         while (!list_empty(&stripes)) {
5487                 sh = list_entry(stripes.next, struct stripe_head, lru);
5488                 list_del_init(&sh->lru);
5489                 release_stripe(sh);
5490         }
5491         /* If this takes us to the resync_max point where we have to pause,
5492          * then we need to write out the superblock.
5493          */
5494         sector_nr += reshape_sectors;
5495         if ((sector_nr - mddev->curr_resync_completed) * 2
5496             >= mddev->resync_max - mddev->curr_resync_completed) {
5497                 /* Cannot proceed until we've updated the superblock... */
5498                 wait_event(conf->wait_for_overlap,
5499                            atomic_read(&conf->reshape_stripes) == 0
5500                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5501                 if (atomic_read(&conf->reshape_stripes) != 0)
5502                         goto ret;
5503                 mddev->reshape_position = conf->reshape_progress;
5504                 mddev->curr_resync_completed = sector_nr;
5505                 conf->reshape_checkpoint = jiffies;
5506                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5507                 md_wakeup_thread(mddev->thread);
5508                 wait_event(mddev->sb_wait,
5509                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5510                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5511                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5512                         goto ret;
5513                 spin_lock_irq(&conf->device_lock);
5514                 conf->reshape_safe = mddev->reshape_position;
5515                 spin_unlock_irq(&conf->device_lock);
5516                 wake_up(&conf->wait_for_overlap);
5517                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5518         }
5519 ret:
5520         return reshape_sectors;
5521 }
5522
5523 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5524 {
5525         struct r5conf *conf = mddev->private;
5526         struct stripe_head *sh;
5527         sector_t max_sector = mddev->dev_sectors;
5528         sector_t sync_blocks;
5529         int still_degraded = 0;
5530         int i;
5531
5532         if (sector_nr >= max_sector) {
5533                 /* just being told to finish up .. nothing much to do */
5534
5535                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5536                         end_reshape(conf);
5537                         return 0;
5538                 }
5539
5540                 if (mddev->curr_resync < max_sector) /* aborted */
5541                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5542                                         &sync_blocks, 1);
5543                 else /* completed sync */
5544                         conf->fullsync = 0;
5545                 bitmap_close_sync(mddev->bitmap);
5546
5547                 return 0;
5548         }
5549
5550         /* Allow raid5_quiesce to complete */
5551         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5552
5553         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5554                 return reshape_request(mddev, sector_nr, skipped);
5555
5556         /* No need to check resync_max as we never do more than one
5557          * stripe, and as resync_max will always be on a chunk boundary,
5558          * if the check in md_do_sync didn't fire, there is no chance
5559          * of overstepping resync_max here
5560          */
5561
5562         /* if there is too many failed drives and we are trying
5563          * to resync, then assert that we are finished, because there is
5564          * nothing we can do.
5565          */
5566         if (mddev->degraded >= conf->max_degraded &&
5567             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5568                 sector_t rv = mddev->dev_sectors - sector_nr;
5569                 *skipped = 1;
5570                 return rv;
5571         }
5572         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5573             !conf->fullsync &&
5574             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5575             sync_blocks >= STRIPE_SECTORS) {
5576                 /* we can skip this block, and probably more */
5577                 sync_blocks /= STRIPE_SECTORS;
5578                 *skipped = 1;
5579                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5580         }
5581
5582         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5583
5584         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5585         if (sh == NULL) {
5586                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5587                 /* make sure we don't swamp the stripe cache if someone else
5588                  * is trying to get access
5589                  */
5590                 schedule_timeout_uninterruptible(1);
5591         }
5592         /* Need to check if array will still be degraded after recovery/resync
5593          * Note in case of > 1 drive failures it's possible we're rebuilding
5594          * one drive while leaving another faulty drive in array.
5595          */
5596         rcu_read_lock();
5597         for (i = 0; i < conf->raid_disks; i++) {
5598                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5599
5600                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5601                         still_degraded = 1;
5602         }
5603         rcu_read_unlock();
5604
5605         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5606
5607         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5608         set_bit(STRIPE_HANDLE, &sh->state);
5609
5610         release_stripe(sh);
5611
5612         return STRIPE_SECTORS;
5613 }
5614
5615 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5616 {
5617         /* We may not be able to submit a whole bio at once as there
5618          * may not be enough stripe_heads available.
5619          * We cannot pre-allocate enough stripe_heads as we may need
5620          * more than exist in the cache (if we allow ever large chunks).
5621          * So we do one stripe head at a time and record in
5622          * ->bi_hw_segments how many have been done.
5623          *
5624          * We *know* that this entire raid_bio is in one chunk, so
5625          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5626          */
5627         struct stripe_head *sh;
5628         int dd_idx;
5629         sector_t sector, logical_sector, last_sector;
5630         int scnt = 0;
5631         int remaining;
5632         int handled = 0;
5633
5634         logical_sector = raid_bio->bi_iter.bi_sector &
5635                 ~((sector_t)STRIPE_SECTORS-1);
5636         sector = raid5_compute_sector(conf, logical_sector,
5637                                       0, &dd_idx, NULL);
5638         last_sector = bio_end_sector(raid_bio);
5639
5640         for (; logical_sector < last_sector;
5641              logical_sector += STRIPE_SECTORS,
5642                      sector += STRIPE_SECTORS,
5643                      scnt++) {
5644
5645                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5646                         /* already done this stripe */
5647                         continue;
5648
5649                 sh = get_active_stripe(conf, sector, 0, 1, 1);
5650
5651                 if (!sh) {
5652                         /* failed to get a stripe - must wait */
5653                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5654                         conf->retry_read_aligned = raid_bio;
5655                         return handled;
5656                 }
5657
5658                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5659                         release_stripe(sh);
5660                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5661                         conf->retry_read_aligned = raid_bio;
5662                         return handled;
5663                 }
5664
5665                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5666                 handle_stripe(sh);
5667                 release_stripe(sh);
5668                 handled++;
5669         }
5670         remaining = raid5_dec_bi_active_stripes(raid_bio);
5671         if (remaining == 0) {
5672                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5673                                          raid_bio, 0);
5674                 bio_endio(raid_bio, 0);
5675         }
5676         if (atomic_dec_and_test(&conf->active_aligned_reads))
5677                 wake_up(&conf->wait_for_stripe);
5678         return handled;
5679 }
5680
5681 static int handle_active_stripes(struct r5conf *conf, int group,
5682                                  struct r5worker *worker,
5683                                  struct list_head *temp_inactive_list)
5684 {
5685         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5686         int i, batch_size = 0, hash;
5687         bool release_inactive = false;
5688
5689         while (batch_size < MAX_STRIPE_BATCH &&
5690                         (sh = __get_priority_stripe(conf, group)) != NULL)
5691                 batch[batch_size++] = sh;
5692
5693         if (batch_size == 0) {
5694                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5695                         if (!list_empty(temp_inactive_list + i))
5696                                 break;
5697                 if (i == NR_STRIPE_HASH_LOCKS)
5698                         return batch_size;
5699                 release_inactive = true;
5700         }
5701         spin_unlock_irq(&conf->device_lock);
5702
5703         release_inactive_stripe_list(conf, temp_inactive_list,
5704                                      NR_STRIPE_HASH_LOCKS);
5705
5706         if (release_inactive) {
5707                 spin_lock_irq(&conf->device_lock);
5708                 return 0;
5709         }
5710
5711         for (i = 0; i < batch_size; i++)
5712                 handle_stripe(batch[i]);
5713
5714         cond_resched();
5715
5716         spin_lock_irq(&conf->device_lock);
5717         for (i = 0; i < batch_size; i++) {
5718                 hash = batch[i]->hash_lock_index;
5719                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5720         }
5721         return batch_size;
5722 }
5723
5724 static void raid5_do_work(struct work_struct *work)
5725 {
5726         struct r5worker *worker = container_of(work, struct r5worker, work);
5727         struct r5worker_group *group = worker->group;
5728         struct r5conf *conf = group->conf;
5729         int group_id = group - conf->worker_groups;
5730         int handled;
5731         struct blk_plug plug;
5732
5733         pr_debug("+++ raid5worker active\n");
5734
5735         blk_start_plug(&plug);
5736         handled = 0;
5737         spin_lock_irq(&conf->device_lock);
5738         while (1) {
5739                 int batch_size, released;
5740
5741                 released = release_stripe_list(conf, worker->temp_inactive_list);
5742
5743                 batch_size = handle_active_stripes(conf, group_id, worker,
5744                                                    worker->temp_inactive_list);
5745                 worker->working = false;
5746                 if (!batch_size && !released)
5747                         break;
5748                 handled += batch_size;
5749         }
5750         pr_debug("%d stripes handled\n", handled);
5751
5752         spin_unlock_irq(&conf->device_lock);
5753         blk_finish_plug(&plug);
5754
5755         pr_debug("--- raid5worker inactive\n");
5756 }
5757
5758 /*
5759  * This is our raid5 kernel thread.
5760  *
5761  * We scan the hash table for stripes which can be handled now.
5762  * During the scan, completed stripes are saved for us by the interrupt
5763  * handler, so that they will not have to wait for our next wakeup.
5764  */
5765 static void raid5d(struct md_thread *thread)
5766 {
5767         struct mddev *mddev = thread->mddev;
5768         struct r5conf *conf = mddev->private;
5769         int handled;
5770         struct blk_plug plug;
5771
5772         pr_debug("+++ raid5d active\n");
5773
5774         md_check_recovery(mddev);
5775
5776         blk_start_plug(&plug);
5777         handled = 0;
5778         spin_lock_irq(&conf->device_lock);
5779         while (1) {
5780                 struct bio *bio;
5781                 int batch_size, released;
5782
5783                 released = release_stripe_list(conf, conf->temp_inactive_list);
5784                 if (released)
5785                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
5786
5787                 if (
5788                     !list_empty(&conf->bitmap_list)) {
5789                         /* Now is a good time to flush some bitmap updates */
5790                         conf->seq_flush++;
5791                         spin_unlock_irq(&conf->device_lock);
5792                         bitmap_unplug(mddev->bitmap);
5793                         spin_lock_irq(&conf->device_lock);
5794                         conf->seq_write = conf->seq_flush;
5795                         activate_bit_delay(conf, conf->temp_inactive_list);
5796                 }
5797                 raid5_activate_delayed(conf);
5798
5799                 while ((bio = remove_bio_from_retry(conf))) {
5800                         int ok;
5801                         spin_unlock_irq(&conf->device_lock);
5802                         ok = retry_aligned_read(conf, bio);
5803                         spin_lock_irq(&conf->device_lock);
5804                         if (!ok)
5805                                 break;
5806                         handled++;
5807                 }
5808
5809                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5810                                                    conf->temp_inactive_list);
5811                 if (!batch_size && !released)
5812                         break;
5813                 handled += batch_size;
5814
5815                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5816                         spin_unlock_irq(&conf->device_lock);
5817                         md_check_recovery(mddev);
5818                         spin_lock_irq(&conf->device_lock);
5819                 }
5820         }
5821         pr_debug("%d stripes handled\n", handled);
5822
5823         spin_unlock_irq(&conf->device_lock);
5824         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state)) {
5825                 grow_one_stripe(conf, __GFP_NOWARN);
5826                 /* Set flag even if allocation failed.  This helps
5827                  * slow down allocation requests when mem is short
5828                  */
5829                 set_bit(R5_DID_ALLOC, &conf->cache_state);
5830         }
5831
5832         async_tx_issue_pending_all();
5833         blk_finish_plug(&plug);
5834
5835         pr_debug("--- raid5d inactive\n");
5836 }
5837
5838 static ssize_t
5839 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5840 {
5841         struct r5conf *conf;
5842         int ret = 0;
5843         spin_lock(&mddev->lock);
5844         conf = mddev->private;
5845         if (conf)
5846                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5847         spin_unlock(&mddev->lock);
5848         return ret;
5849 }
5850
5851 int
5852 raid5_set_cache_size(struct mddev *mddev, int size)
5853 {
5854         struct r5conf *conf = mddev->private;
5855         int err;
5856
5857         if (size <= 16 || size > 32768)
5858                 return -EINVAL;
5859
5860         conf->min_nr_stripes = size;
5861         while (size < conf->max_nr_stripes &&
5862                drop_one_stripe(conf))
5863                 ;
5864
5865
5866         err = md_allow_write(mddev);
5867         if (err)
5868                 return err;
5869
5870         while (size > conf->max_nr_stripes)
5871                 if (!grow_one_stripe(conf, GFP_KERNEL))
5872                         break;
5873
5874         return 0;
5875 }
5876 EXPORT_SYMBOL(raid5_set_cache_size);
5877
5878 static ssize_t
5879 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5880 {
5881         struct r5conf *conf;
5882         unsigned long new;
5883         int err;
5884
5885         if (len >= PAGE_SIZE)
5886                 return -EINVAL;
5887         if (kstrtoul(page, 10, &new))
5888                 return -EINVAL;
5889         err = mddev_lock(mddev);
5890         if (err)
5891                 return err;
5892         conf = mddev->private;
5893         if (!conf)
5894                 err = -ENODEV;
5895         else
5896                 err = raid5_set_cache_size(mddev, new);
5897         mddev_unlock(mddev);
5898
5899         return err ?: len;
5900 }
5901
5902 static struct md_sysfs_entry
5903 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5904                                 raid5_show_stripe_cache_size,
5905                                 raid5_store_stripe_cache_size);
5906
5907 static ssize_t
5908 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5909 {
5910         struct r5conf *conf = mddev->private;
5911         if (conf)
5912                 return sprintf(page, "%d\n", conf->rmw_level);
5913         else
5914                 return 0;
5915 }
5916
5917 static ssize_t
5918 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
5919 {
5920         struct r5conf *conf = mddev->private;
5921         unsigned long new;
5922
5923         if (!conf)
5924                 return -ENODEV;
5925
5926         if (len >= PAGE_SIZE)
5927                 return -EINVAL;
5928
5929         if (kstrtoul(page, 10, &new))
5930                 return -EINVAL;
5931
5932         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5933                 return -EINVAL;
5934
5935         if (new != PARITY_DISABLE_RMW &&
5936             new != PARITY_ENABLE_RMW &&
5937             new != PARITY_PREFER_RMW)
5938                 return -EINVAL;
5939
5940         conf->rmw_level = new;
5941         return len;
5942 }
5943
5944 static struct md_sysfs_entry
5945 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5946                          raid5_show_rmw_level,
5947                          raid5_store_rmw_level);
5948
5949
5950 static ssize_t
5951 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5952 {
5953         struct r5conf *conf;
5954         int ret = 0;
5955         spin_lock(&mddev->lock);
5956         conf = mddev->private;
5957         if (conf)
5958                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5959         spin_unlock(&mddev->lock);
5960         return ret;
5961 }
5962
5963 static ssize_t
5964 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5965 {
5966         struct r5conf *conf;
5967         unsigned long new;
5968         int err;
5969
5970         if (len >= PAGE_SIZE)
5971                 return -EINVAL;
5972         if (kstrtoul(page, 10, &new))
5973                 return -EINVAL;
5974
5975         err = mddev_lock(mddev);
5976         if (err)
5977                 return err;
5978         conf = mddev->private;
5979         if (!conf)
5980                 err = -ENODEV;
5981         else if (new > conf->min_nr_stripes)
5982                 err = -EINVAL;
5983         else
5984                 conf->bypass_threshold = new;
5985         mddev_unlock(mddev);
5986         return err ?: len;
5987 }
5988
5989 static struct md_sysfs_entry
5990 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5991                                         S_IRUGO | S_IWUSR,
5992                                         raid5_show_preread_threshold,
5993                                         raid5_store_preread_threshold);
5994
5995 static ssize_t
5996 raid5_show_skip_copy(struct mddev *mddev, char *page)
5997 {
5998         struct r5conf *conf;
5999         int ret = 0;
6000         spin_lock(&mddev->lock);
6001         conf = mddev->private;
6002         if (conf)
6003                 ret = sprintf(page, "%d\n", conf->skip_copy);
6004         spin_unlock(&mddev->lock);
6005         return ret;
6006 }
6007
6008 static ssize_t
6009 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6010 {
6011         struct r5conf *conf;
6012         unsigned long new;
6013         int err;
6014
6015         if (len >= PAGE_SIZE)
6016                 return -EINVAL;
6017         if (kstrtoul(page, 10, &new))
6018                 return -EINVAL;
6019         new = !!new;
6020
6021         err = mddev_lock(mddev);
6022         if (err)
6023                 return err;
6024         conf = mddev->private;
6025         if (!conf)
6026                 err = -ENODEV;
6027         else if (new != conf->skip_copy) {
6028                 mddev_suspend(mddev);
6029                 conf->skip_copy = new;
6030                 if (new)
6031                         mddev->queue->backing_dev_info.capabilities |=
6032                                 BDI_CAP_STABLE_WRITES;
6033                 else
6034                         mddev->queue->backing_dev_info.capabilities &=
6035                                 ~BDI_CAP_STABLE_WRITES;
6036                 mddev_resume(mddev);
6037         }
6038         mddev_unlock(mddev);
6039         return err ?: len;
6040 }
6041
6042 static struct md_sysfs_entry
6043 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6044                                         raid5_show_skip_copy,
6045                                         raid5_store_skip_copy);
6046
6047 static ssize_t
6048 stripe_cache_active_show(struct mddev *mddev, char *page)
6049 {
6050         struct r5conf *conf = mddev->private;
6051         if (conf)
6052                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6053         else
6054                 return 0;
6055 }
6056
6057 static struct md_sysfs_entry
6058 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6059
6060 static ssize_t
6061 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6062 {
6063         struct r5conf *conf;
6064         int ret = 0;
6065         spin_lock(&mddev->lock);
6066         conf = mddev->private;
6067         if (conf)
6068                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6069         spin_unlock(&mddev->lock);
6070         return ret;
6071 }
6072
6073 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6074                                int *group_cnt,
6075                                int *worker_cnt_per_group,
6076                                struct r5worker_group **worker_groups);
6077 static ssize_t
6078 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6079 {
6080         struct r5conf *conf;
6081         unsigned long new;
6082         int err;
6083         struct r5worker_group *new_groups, *old_groups;
6084         int group_cnt, worker_cnt_per_group;
6085
6086         if (len >= PAGE_SIZE)
6087                 return -EINVAL;
6088         if (kstrtoul(page, 10, &new))
6089                 return -EINVAL;
6090
6091         err = mddev_lock(mddev);
6092         if (err)
6093                 return err;
6094         conf = mddev->private;
6095         if (!conf)
6096                 err = -ENODEV;
6097         else if (new != conf->worker_cnt_per_group) {
6098                 mddev_suspend(mddev);
6099
6100                 old_groups = conf->worker_groups;
6101                 if (old_groups)
6102                         flush_workqueue(raid5_wq);
6103
6104                 err = alloc_thread_groups(conf, new,
6105                                           &group_cnt, &worker_cnt_per_group,
6106                                           &new_groups);
6107                 if (!err) {
6108                         spin_lock_irq(&conf->device_lock);
6109                         conf->group_cnt = group_cnt;
6110                         conf->worker_cnt_per_group = worker_cnt_per_group;
6111                         conf->worker_groups = new_groups;
6112                         spin_unlock_irq(&conf->device_lock);
6113
6114                         if (old_groups)
6115                                 kfree(old_groups[0].workers);
6116                         kfree(old_groups);
6117                 }
6118                 mddev_resume(mddev);
6119         }
6120         mddev_unlock(mddev);
6121
6122         return err ?: len;
6123 }
6124
6125 static struct md_sysfs_entry
6126 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6127                                 raid5_show_group_thread_cnt,
6128                                 raid5_store_group_thread_cnt);
6129
6130 static struct attribute *raid5_attrs[] =  {
6131         &raid5_stripecache_size.attr,
6132         &raid5_stripecache_active.attr,
6133         &raid5_preread_bypass_threshold.attr,
6134         &raid5_group_thread_cnt.attr,
6135         &raid5_skip_copy.attr,
6136         &raid5_rmw_level.attr,
6137         NULL,
6138 };
6139 static struct attribute_group raid5_attrs_group = {
6140         .name = NULL,
6141         .attrs = raid5_attrs,
6142 };
6143
6144 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6145                                int *group_cnt,
6146                                int *worker_cnt_per_group,
6147                                struct r5worker_group **worker_groups)
6148 {
6149         int i, j, k;
6150         ssize_t size;
6151         struct r5worker *workers;
6152
6153         *worker_cnt_per_group = cnt;
6154         if (cnt == 0) {
6155                 *group_cnt = 0;
6156                 *worker_groups = NULL;
6157                 return 0;
6158         }
6159         *group_cnt = num_possible_nodes();
6160         size = sizeof(struct r5worker) * cnt;
6161         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6162         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6163                                 *group_cnt, GFP_NOIO);
6164         if (!*worker_groups || !workers) {
6165                 kfree(workers);
6166                 kfree(*worker_groups);
6167                 return -ENOMEM;
6168         }
6169
6170         for (i = 0; i < *group_cnt; i++) {
6171                 struct r5worker_group *group;
6172
6173                 group = &(*worker_groups)[i];
6174                 INIT_LIST_HEAD(&group->handle_list);
6175                 group->conf = conf;
6176                 group->workers = workers + i * cnt;
6177
6178                 for (j = 0; j < cnt; j++) {
6179                         struct r5worker *worker = group->workers + j;
6180                         worker->group = group;
6181                         INIT_WORK(&worker->work, raid5_do_work);
6182
6183                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6184                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6185                 }
6186         }
6187
6188         return 0;
6189 }
6190
6191 static void free_thread_groups(struct r5conf *conf)
6192 {
6193         if (conf->worker_groups)
6194                 kfree(conf->worker_groups[0].workers);
6195         kfree(conf->worker_groups);
6196         conf->worker_groups = NULL;
6197 }
6198
6199 static sector_t
6200 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6201 {
6202         struct r5conf *conf = mddev->private;
6203
6204         if (!sectors)
6205                 sectors = mddev->dev_sectors;
6206         if (!raid_disks)
6207                 /* size is defined by the smallest of previous and new size */
6208                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6209
6210         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6211         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6212         return sectors * (raid_disks - conf->max_degraded);
6213 }
6214
6215 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6216 {
6217         safe_put_page(percpu->spare_page);
6218         if (percpu->scribble)
6219                 flex_array_free(percpu->scribble);
6220         percpu->spare_page = NULL;
6221         percpu->scribble = NULL;
6222 }
6223
6224 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6225 {
6226         if (conf->level == 6 && !percpu->spare_page)
6227                 percpu->spare_page = alloc_page(GFP_KERNEL);
6228         if (!percpu->scribble)
6229                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6230                         conf->previous_raid_disks), conf->chunk_sectors /
6231                         STRIPE_SECTORS, GFP_KERNEL);
6232
6233         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6234                 free_scratch_buffer(conf, percpu);
6235                 return -ENOMEM;
6236         }
6237
6238         return 0;
6239 }
6240
6241 static void raid5_free_percpu(struct r5conf *conf)
6242 {
6243         unsigned long cpu;
6244
6245         if (!conf->percpu)
6246                 return;
6247
6248 #ifdef CONFIG_HOTPLUG_CPU
6249         unregister_cpu_notifier(&conf->cpu_notify);
6250 #endif
6251
6252         get_online_cpus();
6253         for_each_possible_cpu(cpu)
6254                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6255         put_online_cpus();
6256
6257         free_percpu(conf->percpu);
6258 }
6259
6260 static void free_conf(struct r5conf *conf)
6261 {
6262         if (conf->shrinker.seeks)
6263                 unregister_shrinker(&conf->shrinker);
6264         free_thread_groups(conf);
6265         shrink_stripes(conf);
6266         raid5_free_percpu(conf);
6267         kfree(conf->disks);
6268         kfree(conf->stripe_hashtbl);
6269         kfree(conf);
6270 }
6271
6272 #ifdef CONFIG_HOTPLUG_CPU
6273 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6274                               void *hcpu)
6275 {
6276         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6277         long cpu = (long)hcpu;
6278         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6279
6280         switch (action) {
6281         case CPU_UP_PREPARE:
6282         case CPU_UP_PREPARE_FROZEN:
6283                 if (alloc_scratch_buffer(conf, percpu)) {
6284                         pr_err("%s: failed memory allocation for cpu%ld\n",
6285                                __func__, cpu);
6286                         return notifier_from_errno(-ENOMEM);
6287                 }
6288                 break;
6289         case CPU_DEAD:
6290         case CPU_DEAD_FROZEN:
6291                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6292                 break;
6293         default:
6294                 break;
6295         }
6296         return NOTIFY_OK;
6297 }
6298 #endif
6299
6300 static int raid5_alloc_percpu(struct r5conf *conf)
6301 {
6302         unsigned long cpu;
6303         int err = 0;
6304
6305         conf->percpu = alloc_percpu(struct raid5_percpu);
6306         if (!conf->percpu)
6307                 return -ENOMEM;
6308
6309 #ifdef CONFIG_HOTPLUG_CPU
6310         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6311         conf->cpu_notify.priority = 0;
6312         err = register_cpu_notifier(&conf->cpu_notify);
6313         if (err)
6314                 return err;
6315 #endif
6316
6317         get_online_cpus();
6318         for_each_present_cpu(cpu) {
6319                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6320                 if (err) {
6321                         pr_err("%s: failed memory allocation for cpu%ld\n",
6322                                __func__, cpu);
6323                         break;
6324                 }
6325         }
6326         put_online_cpus();
6327
6328         return err;
6329 }
6330
6331 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6332                                       struct shrink_control *sc)
6333 {
6334         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6335         int ret = 0;
6336         while (ret < sc->nr_to_scan) {
6337                 if (drop_one_stripe(conf) == 0)
6338                         return SHRINK_STOP;
6339                 ret++;
6340         }
6341         return ret;
6342 }
6343
6344 static unsigned long raid5_cache_count(struct shrinker *shrink,
6345                                        struct shrink_control *sc)
6346 {
6347         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6348
6349         if (conf->max_nr_stripes < conf->min_nr_stripes)
6350                 /* unlikely, but not impossible */
6351                 return 0;
6352         return conf->max_nr_stripes - conf->min_nr_stripes;
6353 }
6354
6355 static struct r5conf *setup_conf(struct mddev *mddev)
6356 {
6357         struct r5conf *conf;
6358         int raid_disk, memory, max_disks;
6359         struct md_rdev *rdev;
6360         struct disk_info *disk;
6361         char pers_name[6];
6362         int i;
6363         int group_cnt, worker_cnt_per_group;
6364         struct r5worker_group *new_group;
6365
6366         if (mddev->new_level != 5
6367             && mddev->new_level != 4
6368             && mddev->new_level != 6) {
6369                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6370                        mdname(mddev), mddev->new_level);
6371                 return ERR_PTR(-EIO);
6372         }
6373         if ((mddev->new_level == 5
6374              && !algorithm_valid_raid5(mddev->new_layout)) ||
6375             (mddev->new_level == 6
6376              && !algorithm_valid_raid6(mddev->new_layout))) {
6377                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6378                        mdname(mddev), mddev->new_layout);
6379                 return ERR_PTR(-EIO);
6380         }
6381         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6382                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6383                        mdname(mddev), mddev->raid_disks);
6384                 return ERR_PTR(-EINVAL);
6385         }
6386
6387         if (!mddev->new_chunk_sectors ||
6388             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6389             !is_power_of_2(mddev->new_chunk_sectors)) {
6390                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6391                        mdname(mddev), mddev->new_chunk_sectors << 9);
6392                 return ERR_PTR(-EINVAL);
6393         }
6394
6395         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6396         if (conf == NULL)
6397                 goto abort;
6398         /* Don't enable multi-threading by default*/
6399         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6400                                  &new_group)) {
6401                 conf->group_cnt = group_cnt;
6402                 conf->worker_cnt_per_group = worker_cnt_per_group;
6403                 conf->worker_groups = new_group;
6404         } else
6405                 goto abort;
6406         spin_lock_init(&conf->device_lock);
6407         seqcount_init(&conf->gen_lock);
6408         init_waitqueue_head(&conf->wait_for_stripe);
6409         init_waitqueue_head(&conf->wait_for_overlap);
6410         INIT_LIST_HEAD(&conf->handle_list);
6411         INIT_LIST_HEAD(&conf->hold_list);
6412         INIT_LIST_HEAD(&conf->delayed_list);
6413         INIT_LIST_HEAD(&conf->bitmap_list);
6414         init_llist_head(&conf->released_stripes);
6415         atomic_set(&conf->active_stripes, 0);
6416         atomic_set(&conf->preread_active_stripes, 0);
6417         atomic_set(&conf->active_aligned_reads, 0);
6418         conf->bypass_threshold = BYPASS_THRESHOLD;
6419         conf->recovery_disabled = mddev->recovery_disabled - 1;
6420
6421         conf->raid_disks = mddev->raid_disks;
6422         if (mddev->reshape_position == MaxSector)
6423                 conf->previous_raid_disks = mddev->raid_disks;
6424         else
6425                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6426         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6427
6428         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6429                               GFP_KERNEL);
6430         if (!conf->disks)
6431                 goto abort;
6432
6433         conf->mddev = mddev;
6434
6435         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6436                 goto abort;
6437
6438         /* We init hash_locks[0] separately to that it can be used
6439          * as the reference lock in the spin_lock_nest_lock() call
6440          * in lock_all_device_hash_locks_irq in order to convince
6441          * lockdep that we know what we are doing.
6442          */
6443         spin_lock_init(conf->hash_locks);
6444         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6445                 spin_lock_init(conf->hash_locks + i);
6446
6447         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6448                 INIT_LIST_HEAD(conf->inactive_list + i);
6449
6450         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6451                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6452
6453         conf->level = mddev->new_level;
6454         conf->chunk_sectors = mddev->new_chunk_sectors;
6455         if (raid5_alloc_percpu(conf) != 0)
6456                 goto abort;
6457
6458         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6459
6460         rdev_for_each(rdev, mddev) {
6461                 raid_disk = rdev->raid_disk;
6462                 if (raid_disk >= max_disks
6463                     || raid_disk < 0)
6464                         continue;
6465                 disk = conf->disks + raid_disk;
6466
6467                 if (test_bit(Replacement, &rdev->flags)) {
6468                         if (disk->replacement)
6469                                 goto abort;
6470                         disk->replacement = rdev;
6471                 } else {
6472                         if (disk->rdev)
6473                                 goto abort;
6474                         disk->rdev = rdev;
6475                 }
6476
6477                 if (test_bit(In_sync, &rdev->flags)) {
6478                         char b[BDEVNAME_SIZE];
6479                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6480                                " disk %d\n",
6481                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6482                 } else if (rdev->saved_raid_disk != raid_disk)
6483                         /* Cannot rely on bitmap to complete recovery */
6484                         conf->fullsync = 1;
6485         }
6486
6487         conf->level = mddev->new_level;
6488         if (conf->level == 6) {
6489                 conf->max_degraded = 2;
6490                 if (raid6_call.xor_syndrome)
6491                         conf->rmw_level = PARITY_ENABLE_RMW;
6492                 else
6493                         conf->rmw_level = PARITY_DISABLE_RMW;
6494         } else {
6495                 conf->max_degraded = 1;
6496                 conf->rmw_level = PARITY_ENABLE_RMW;
6497         }
6498         conf->algorithm = mddev->new_layout;
6499         conf->reshape_progress = mddev->reshape_position;
6500         if (conf->reshape_progress != MaxSector) {
6501                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6502                 conf->prev_algo = mddev->layout;
6503         }
6504
6505         conf->min_nr_stripes = NR_STRIPES;
6506         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6507                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6508         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6509         if (grow_stripes(conf, conf->min_nr_stripes)) {
6510                 printk(KERN_ERR
6511                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6512                        mdname(mddev), memory);
6513                 goto abort;
6514         } else
6515                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6516                        mdname(mddev), memory);
6517         /*
6518          * Losing a stripe head costs more than the time to refill it,
6519          * it reduces the queue depth and so can hurt throughput.
6520          * So set it rather large, scaled by number of devices.
6521          */
6522         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6523         conf->shrinker.scan_objects = raid5_cache_scan;
6524         conf->shrinker.count_objects = raid5_cache_count;
6525         conf->shrinker.batch = 128;
6526         conf->shrinker.flags = 0;
6527         register_shrinker(&conf->shrinker);
6528
6529         sprintf(pers_name, "raid%d", mddev->new_level);
6530         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6531         if (!conf->thread) {
6532                 printk(KERN_ERR
6533                        "md/raid:%s: couldn't allocate thread.\n",
6534                        mdname(mddev));
6535                 goto abort;
6536         }
6537
6538         return conf;
6539
6540  abort:
6541         if (conf) {
6542                 free_conf(conf);
6543                 return ERR_PTR(-EIO);
6544         } else
6545                 return ERR_PTR(-ENOMEM);
6546 }
6547
6548 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6549 {
6550         switch (algo) {
6551         case ALGORITHM_PARITY_0:
6552                 if (raid_disk < max_degraded)
6553                         return 1;
6554                 break;
6555         case ALGORITHM_PARITY_N:
6556                 if (raid_disk >= raid_disks - max_degraded)
6557                         return 1;
6558                 break;
6559         case ALGORITHM_PARITY_0_6:
6560                 if (raid_disk == 0 ||
6561                     raid_disk == raid_disks - 1)
6562                         return 1;
6563                 break;
6564         case ALGORITHM_LEFT_ASYMMETRIC_6:
6565         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6566         case ALGORITHM_LEFT_SYMMETRIC_6:
6567         case ALGORITHM_RIGHT_SYMMETRIC_6:
6568                 if (raid_disk == raid_disks - 1)
6569                         return 1;
6570         }
6571         return 0;
6572 }
6573
6574 static int run(struct mddev *mddev)
6575 {
6576         struct r5conf *conf;
6577         int working_disks = 0;
6578         int dirty_parity_disks = 0;
6579         struct md_rdev *rdev;
6580         sector_t reshape_offset = 0;
6581         int i;
6582         long long min_offset_diff = 0;
6583         int first = 1;
6584
6585         if (mddev->recovery_cp != MaxSector)
6586                 printk(KERN_NOTICE "md/raid:%s: not clean"
6587                        " -- starting background reconstruction\n",
6588                        mdname(mddev));
6589
6590         rdev_for_each(rdev, mddev) {
6591                 long long diff;
6592                 if (rdev->raid_disk < 0)
6593                         continue;
6594                 diff = (rdev->new_data_offset - rdev->data_offset);
6595                 if (first) {
6596                         min_offset_diff = diff;
6597                         first = 0;
6598                 } else if (mddev->reshape_backwards &&
6599                          diff < min_offset_diff)
6600                         min_offset_diff = diff;
6601                 else if (!mddev->reshape_backwards &&
6602                          diff > min_offset_diff)
6603                         min_offset_diff = diff;
6604         }
6605
6606         if (mddev->reshape_position != MaxSector) {
6607                 /* Check that we can continue the reshape.
6608                  * Difficulties arise if the stripe we would write to
6609                  * next is at or after the stripe we would read from next.
6610                  * For a reshape that changes the number of devices, this
6611                  * is only possible for a very short time, and mdadm makes
6612                  * sure that time appears to have past before assembling
6613                  * the array.  So we fail if that time hasn't passed.
6614                  * For a reshape that keeps the number of devices the same
6615                  * mdadm must be monitoring the reshape can keeping the
6616                  * critical areas read-only and backed up.  It will start
6617                  * the array in read-only mode, so we check for that.
6618                  */
6619                 sector_t here_new, here_old;
6620                 int old_disks;
6621                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6622
6623                 if (mddev->new_level != mddev->level) {
6624                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6625                                "required - aborting.\n",
6626                                mdname(mddev));
6627                         return -EINVAL;
6628                 }
6629                 old_disks = mddev->raid_disks - mddev->delta_disks;
6630                 /* reshape_position must be on a new-stripe boundary, and one
6631                  * further up in new geometry must map after here in old
6632                  * geometry.
6633                  */
6634                 here_new = mddev->reshape_position;
6635                 if (sector_div(here_new, mddev->new_chunk_sectors *
6636                                (mddev->raid_disks - max_degraded))) {
6637                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6638                                "on a stripe boundary\n", mdname(mddev));
6639                         return -EINVAL;
6640                 }
6641                 reshape_offset = here_new * mddev->new_chunk_sectors;
6642                 /* here_new is the stripe we will write to */
6643                 here_old = mddev->reshape_position;
6644                 sector_div(here_old, mddev->chunk_sectors *
6645                            (old_disks-max_degraded));
6646                 /* here_old is the first stripe that we might need to read
6647                  * from */
6648                 if (mddev->delta_disks == 0) {
6649                         if ((here_new * mddev->new_chunk_sectors !=
6650                              here_old * mddev->chunk_sectors)) {
6651                                 printk(KERN_ERR "md/raid:%s: reshape position is"
6652                                        " confused - aborting\n", mdname(mddev));
6653                                 return -EINVAL;
6654                         }
6655                         /* We cannot be sure it is safe to start an in-place
6656                          * reshape.  It is only safe if user-space is monitoring
6657                          * and taking constant backups.
6658                          * mdadm always starts a situation like this in
6659                          * readonly mode so it can take control before
6660                          * allowing any writes.  So just check for that.
6661                          */
6662                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6663                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6664                                 /* not really in-place - so OK */;
6665                         else if (mddev->ro == 0) {
6666                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6667                                        "must be started in read-only mode "
6668                                        "- aborting\n",
6669                                        mdname(mddev));
6670                                 return -EINVAL;
6671                         }
6672                 } else if (mddev->reshape_backwards
6673                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6674                        here_old * mddev->chunk_sectors)
6675                     : (here_new * mddev->new_chunk_sectors >=
6676                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6677                         /* Reading from the same stripe as writing to - bad */
6678                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6679                                "auto-recovery - aborting.\n",
6680                                mdname(mddev));
6681                         return -EINVAL;
6682                 }
6683                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6684                        mdname(mddev));
6685                 /* OK, we should be able to continue; */
6686         } else {
6687                 BUG_ON(mddev->level != mddev->new_level);
6688                 BUG_ON(mddev->layout != mddev->new_layout);
6689                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6690                 BUG_ON(mddev->delta_disks != 0);
6691         }
6692
6693         if (mddev->private == NULL)
6694                 conf = setup_conf(mddev);
6695         else
6696                 conf = mddev->private;
6697
6698         if (IS_ERR(conf))
6699                 return PTR_ERR(conf);
6700
6701         conf->min_offset_diff = min_offset_diff;
6702         mddev->thread = conf->thread;
6703         conf->thread = NULL;
6704         mddev->private = conf;
6705
6706         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6707              i++) {
6708                 rdev = conf->disks[i].rdev;
6709                 if (!rdev && conf->disks[i].replacement) {
6710                         /* The replacement is all we have yet */
6711                         rdev = conf->disks[i].replacement;
6712                         conf->disks[i].replacement = NULL;
6713                         clear_bit(Replacement, &rdev->flags);
6714                         conf->disks[i].rdev = rdev;
6715                 }
6716                 if (!rdev)
6717                         continue;
6718                 if (conf->disks[i].replacement &&
6719                     conf->reshape_progress != MaxSector) {
6720                         /* replacements and reshape simply do not mix. */
6721                         printk(KERN_ERR "md: cannot handle concurrent "
6722                                "replacement and reshape.\n");
6723                         goto abort;
6724                 }
6725                 if (test_bit(In_sync, &rdev->flags)) {
6726                         working_disks++;
6727                         continue;
6728                 }
6729                 /* This disc is not fully in-sync.  However if it
6730                  * just stored parity (beyond the recovery_offset),
6731                  * when we don't need to be concerned about the
6732                  * array being dirty.
6733                  * When reshape goes 'backwards', we never have
6734                  * partially completed devices, so we only need
6735                  * to worry about reshape going forwards.
6736                  */
6737                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6738                 if (mddev->major_version == 0 &&
6739                     mddev->minor_version > 90)
6740                         rdev->recovery_offset = reshape_offset;
6741
6742                 if (rdev->recovery_offset < reshape_offset) {
6743                         /* We need to check old and new layout */
6744                         if (!only_parity(rdev->raid_disk,
6745                                          conf->algorithm,
6746                                          conf->raid_disks,
6747                                          conf->max_degraded))
6748                                 continue;
6749                 }
6750                 if (!only_parity(rdev->raid_disk,
6751                                  conf->prev_algo,
6752                                  conf->previous_raid_disks,
6753                                  conf->max_degraded))
6754                         continue;
6755                 dirty_parity_disks++;
6756         }
6757
6758         /*
6759          * 0 for a fully functional array, 1 or 2 for a degraded array.
6760          */
6761         mddev->degraded = calc_degraded(conf);
6762
6763         if (has_failed(conf)) {
6764                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6765                         " (%d/%d failed)\n",
6766                         mdname(mddev), mddev->degraded, conf->raid_disks);
6767                 goto abort;
6768         }
6769
6770         /* device size must be a multiple of chunk size */
6771         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6772         mddev->resync_max_sectors = mddev->dev_sectors;
6773
6774         if (mddev->degraded > dirty_parity_disks &&
6775             mddev->recovery_cp != MaxSector) {
6776                 if (mddev->ok_start_degraded)
6777                         printk(KERN_WARNING
6778                                "md/raid:%s: starting dirty degraded array"
6779                                " - data corruption possible.\n",
6780                                mdname(mddev));
6781                 else {
6782                         printk(KERN_ERR
6783                                "md/raid:%s: cannot start dirty degraded array.\n",
6784                                mdname(mddev));
6785                         goto abort;
6786                 }
6787         }
6788
6789         if (mddev->degraded == 0)
6790                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6791                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6792                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6793                        mddev->new_layout);
6794         else
6795                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6796                        " out of %d devices, algorithm %d\n",
6797                        mdname(mddev), conf->level,
6798                        mddev->raid_disks - mddev->degraded,
6799                        mddev->raid_disks, mddev->new_layout);
6800
6801         print_raid5_conf(conf);
6802
6803         if (conf->reshape_progress != MaxSector) {
6804                 conf->reshape_safe = conf->reshape_progress;
6805                 atomic_set(&conf->reshape_stripes, 0);
6806                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6807                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6808                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6809                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6810                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6811                                                         "reshape");
6812         }
6813
6814         /* Ok, everything is just fine now */
6815         if (mddev->to_remove == &raid5_attrs_group)
6816                 mddev->to_remove = NULL;
6817         else if (mddev->kobj.sd &&
6818             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6819                 printk(KERN_WARNING
6820                        "raid5: failed to create sysfs attributes for %s\n",
6821                        mdname(mddev));
6822         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6823
6824         if (mddev->queue) {
6825                 int chunk_size;
6826                 bool discard_supported = true;
6827                 /* read-ahead size must cover two whole stripes, which
6828                  * is 2 * (datadisks) * chunksize where 'n' is the
6829                  * number of raid devices
6830                  */
6831                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6832                 int stripe = data_disks *
6833                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6834                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6835                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6836
6837                 chunk_size = mddev->chunk_sectors << 9;
6838                 blk_queue_io_min(mddev->queue, chunk_size);
6839                 blk_queue_io_opt(mddev->queue, chunk_size *
6840                                  (conf->raid_disks - conf->max_degraded));
6841                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6842                 /*
6843                  * We can only discard a whole stripe. It doesn't make sense to
6844                  * discard data disk but write parity disk
6845                  */
6846                 stripe = stripe * PAGE_SIZE;
6847                 /* Round up to power of 2, as discard handling
6848                  * currently assumes that */
6849                 while ((stripe-1) & stripe)
6850                         stripe = (stripe | (stripe-1)) + 1;
6851                 mddev->queue->limits.discard_alignment = stripe;
6852                 mddev->queue->limits.discard_granularity = stripe;
6853                 /*
6854                  * unaligned part of discard request will be ignored, so can't
6855                  * guarantee discard_zeroes_data
6856                  */
6857                 mddev->queue->limits.discard_zeroes_data = 0;
6858
6859                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6860
6861                 rdev_for_each(rdev, mddev) {
6862                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6863                                           rdev->data_offset << 9);
6864                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6865                                           rdev->new_data_offset << 9);
6866                         /*
6867                          * discard_zeroes_data is required, otherwise data
6868                          * could be lost. Consider a scenario: discard a stripe
6869                          * (the stripe could be inconsistent if
6870                          * discard_zeroes_data is 0); write one disk of the
6871                          * stripe (the stripe could be inconsistent again
6872                          * depending on which disks are used to calculate
6873                          * parity); the disk is broken; The stripe data of this
6874                          * disk is lost.
6875                          */
6876                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6877                             !bdev_get_queue(rdev->bdev)->
6878                                                 limits.discard_zeroes_data)
6879                                 discard_supported = false;
6880                         /* Unfortunately, discard_zeroes_data is not currently
6881                          * a guarantee - just a hint.  So we only allow DISCARD
6882                          * if the sysadmin has confirmed that only safe devices
6883                          * are in use by setting a module parameter.
6884                          */
6885                         if (!devices_handle_discard_safely) {
6886                                 if (discard_supported) {
6887                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6888                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6889                                 }
6890                                 discard_supported = false;
6891                         }
6892                 }
6893
6894                 if (discard_supported &&
6895                    mddev->queue->limits.max_discard_sectors >= stripe &&
6896                    mddev->queue->limits.discard_granularity >= stripe)
6897                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6898                                                 mddev->queue);
6899                 else
6900                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6901                                                 mddev->queue);
6902         }
6903
6904         return 0;
6905 abort:
6906         md_unregister_thread(&mddev->thread);
6907         print_raid5_conf(conf);
6908         free_conf(conf);
6909         mddev->private = NULL;
6910         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6911         return -EIO;
6912 }
6913
6914 static void raid5_free(struct mddev *mddev, void *priv)
6915 {
6916         struct r5conf *conf = priv;
6917
6918         free_conf(conf);
6919         mddev->to_remove = &raid5_attrs_group;
6920 }
6921
6922 static void status(struct seq_file *seq, struct mddev *mddev)
6923 {
6924         struct r5conf *conf = mddev->private;
6925         int i;
6926
6927         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6928                 mddev->chunk_sectors / 2, mddev->layout);
6929         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6930         for (i = 0; i < conf->raid_disks; i++)
6931                 seq_printf (seq, "%s",
6932                                conf->disks[i].rdev &&
6933                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6934         seq_printf (seq, "]");
6935 }
6936
6937 static void print_raid5_conf (struct r5conf *conf)
6938 {
6939         int i;
6940         struct disk_info *tmp;
6941
6942         printk(KERN_DEBUG "RAID conf printout:\n");
6943         if (!conf) {
6944                 printk("(conf==NULL)\n");
6945                 return;
6946         }
6947         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6948                conf->raid_disks,
6949                conf->raid_disks - conf->mddev->degraded);
6950
6951         for (i = 0; i < conf->raid_disks; i++) {
6952                 char b[BDEVNAME_SIZE];
6953                 tmp = conf->disks + i;
6954                 if (tmp->rdev)
6955                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6956                                i, !test_bit(Faulty, &tmp->rdev->flags),
6957                                bdevname(tmp->rdev->bdev, b));
6958         }
6959 }
6960
6961 static int raid5_spare_active(struct mddev *mddev)
6962 {
6963         int i;
6964         struct r5conf *conf = mddev->private;
6965         struct disk_info *tmp;
6966         int count = 0;
6967         unsigned long flags;
6968
6969         for (i = 0; i < conf->raid_disks; i++) {
6970                 tmp = conf->disks + i;
6971                 if (tmp->replacement
6972                     && tmp->replacement->recovery_offset == MaxSector
6973                     && !test_bit(Faulty, &tmp->replacement->flags)
6974                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6975                         /* Replacement has just become active. */
6976                         if (!tmp->rdev
6977                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6978                                 count++;
6979                         if (tmp->rdev) {
6980                                 /* Replaced device not technically faulty,
6981                                  * but we need to be sure it gets removed
6982                                  * and never re-added.
6983                                  */
6984                                 set_bit(Faulty, &tmp->rdev->flags);
6985                                 sysfs_notify_dirent_safe(
6986                                         tmp->rdev->sysfs_state);
6987                         }
6988                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6989                 } else if (tmp->rdev
6990                     && tmp->rdev->recovery_offset == MaxSector
6991                     && !test_bit(Faulty, &tmp->rdev->flags)
6992                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6993                         count++;
6994                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6995                 }
6996         }
6997         spin_lock_irqsave(&conf->device_lock, flags);
6998         mddev->degraded = calc_degraded(conf);
6999         spin_unlock_irqrestore(&conf->device_lock, flags);
7000         print_raid5_conf(conf);
7001         return count;
7002 }
7003
7004 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7005 {
7006         struct r5conf *conf = mddev->private;
7007         int err = 0;
7008         int number = rdev->raid_disk;
7009         struct md_rdev **rdevp;
7010         struct disk_info *p = conf->disks + number;
7011
7012         print_raid5_conf(conf);
7013         if (rdev == p->rdev)
7014                 rdevp = &p->rdev;
7015         else if (rdev == p->replacement)
7016                 rdevp = &p->replacement;
7017         else
7018                 return 0;
7019
7020         if (number >= conf->raid_disks &&
7021             conf->reshape_progress == MaxSector)
7022                 clear_bit(In_sync, &rdev->flags);
7023
7024         if (test_bit(In_sync, &rdev->flags) ||
7025             atomic_read(&rdev->nr_pending)) {
7026                 err = -EBUSY;
7027                 goto abort;
7028         }
7029         /* Only remove non-faulty devices if recovery
7030          * isn't possible.
7031          */
7032         if (!test_bit(Faulty, &rdev->flags) &&
7033             mddev->recovery_disabled != conf->recovery_disabled &&
7034             !has_failed(conf) &&
7035             (!p->replacement || p->replacement == rdev) &&
7036             number < conf->raid_disks) {
7037                 err = -EBUSY;
7038                 goto abort;
7039         }
7040         *rdevp = NULL;
7041         synchronize_rcu();
7042         if (atomic_read(&rdev->nr_pending)) {
7043                 /* lost the race, try later */
7044                 err = -EBUSY;
7045                 *rdevp = rdev;
7046         } else if (p->replacement) {
7047                 /* We must have just cleared 'rdev' */
7048                 p->rdev = p->replacement;
7049                 clear_bit(Replacement, &p->replacement->flags);
7050                 smp_mb(); /* Make sure other CPUs may see both as identical
7051                            * but will never see neither - if they are careful
7052                            */
7053                 p->replacement = NULL;
7054                 clear_bit(WantReplacement, &rdev->flags);
7055         } else
7056                 /* We might have just removed the Replacement as faulty-
7057                  * clear the bit just in case
7058                  */
7059                 clear_bit(WantReplacement, &rdev->flags);
7060 abort:
7061
7062         print_raid5_conf(conf);
7063         return err;
7064 }
7065
7066 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7067 {
7068         struct r5conf *conf = mddev->private;
7069         int err = -EEXIST;
7070         int disk;
7071         struct disk_info *p;
7072         int first = 0;
7073         int last = conf->raid_disks - 1;
7074
7075         if (mddev->recovery_disabled == conf->recovery_disabled)
7076                 return -EBUSY;
7077
7078         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7079                 /* no point adding a device */
7080                 return -EINVAL;
7081
7082         if (rdev->raid_disk >= 0)
7083                 first = last = rdev->raid_disk;
7084
7085         /*
7086          * find the disk ... but prefer rdev->saved_raid_disk
7087          * if possible.
7088          */
7089         if (rdev->saved_raid_disk >= 0 &&
7090             rdev->saved_raid_disk >= first &&
7091             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7092                 first = rdev->saved_raid_disk;
7093
7094         for (disk = first; disk <= last; disk++) {
7095                 p = conf->disks + disk;
7096                 if (p->rdev == NULL) {
7097                         clear_bit(In_sync, &rdev->flags);
7098                         rdev->raid_disk = disk;
7099                         err = 0;
7100                         if (rdev->saved_raid_disk != disk)
7101                                 conf->fullsync = 1;
7102                         rcu_assign_pointer(p->rdev, rdev);
7103                         goto out;
7104                 }
7105         }
7106         for (disk = first; disk <= last; disk++) {
7107                 p = conf->disks + disk;
7108                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7109                     p->replacement == NULL) {
7110                         clear_bit(In_sync, &rdev->flags);
7111                         set_bit(Replacement, &rdev->flags);
7112                         rdev->raid_disk = disk;
7113                         err = 0;
7114                         conf->fullsync = 1;
7115                         rcu_assign_pointer(p->replacement, rdev);
7116                         break;
7117                 }
7118         }
7119 out:
7120         print_raid5_conf(conf);
7121         return err;
7122 }
7123
7124 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7125 {
7126         /* no resync is happening, and there is enough space
7127          * on all devices, so we can resize.
7128          * We need to make sure resync covers any new space.
7129          * If the array is shrinking we should possibly wait until
7130          * any io in the removed space completes, but it hardly seems
7131          * worth it.
7132          */
7133         sector_t newsize;
7134         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7135         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7136         if (mddev->external_size &&
7137             mddev->array_sectors > newsize)
7138                 return -EINVAL;
7139         if (mddev->bitmap) {
7140                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7141                 if (ret)
7142                         return ret;
7143         }
7144         md_set_array_sectors(mddev, newsize);
7145         set_capacity(mddev->gendisk, mddev->array_sectors);
7146         revalidate_disk(mddev->gendisk);
7147         if (sectors > mddev->dev_sectors &&
7148             mddev->recovery_cp > mddev->dev_sectors) {
7149                 mddev->recovery_cp = mddev->dev_sectors;
7150                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7151         }
7152         mddev->dev_sectors = sectors;
7153         mddev->resync_max_sectors = sectors;
7154         return 0;
7155 }
7156
7157 static int check_stripe_cache(struct mddev *mddev)
7158 {
7159         /* Can only proceed if there are plenty of stripe_heads.
7160          * We need a minimum of one full stripe,, and for sensible progress
7161          * it is best to have about 4 times that.
7162          * If we require 4 times, then the default 256 4K stripe_heads will
7163          * allow for chunk sizes up to 256K, which is probably OK.
7164          * If the chunk size is greater, user-space should request more
7165          * stripe_heads first.
7166          */
7167         struct r5conf *conf = mddev->private;
7168         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7169             > conf->min_nr_stripes ||
7170             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7171             > conf->min_nr_stripes) {
7172                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7173                        mdname(mddev),
7174                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7175                         / STRIPE_SIZE)*4);
7176                 return 0;
7177         }
7178         return 1;
7179 }
7180
7181 static int check_reshape(struct mddev *mddev)
7182 {
7183         struct r5conf *conf = mddev->private;
7184
7185         if (mddev->delta_disks == 0 &&
7186             mddev->new_layout == mddev->layout &&
7187             mddev->new_chunk_sectors == mddev->chunk_sectors)
7188                 return 0; /* nothing to do */
7189         if (has_failed(conf))
7190                 return -EINVAL;
7191         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7192                 /* We might be able to shrink, but the devices must
7193                  * be made bigger first.
7194                  * For raid6, 4 is the minimum size.
7195                  * Otherwise 2 is the minimum
7196                  */
7197                 int min = 2;
7198                 if (mddev->level == 6)
7199                         min = 4;
7200                 if (mddev->raid_disks + mddev->delta_disks < min)
7201                         return -EINVAL;
7202         }
7203
7204         if (!check_stripe_cache(mddev))
7205                 return -ENOSPC;
7206
7207         return resize_stripes(conf, (conf->previous_raid_disks
7208                                      + mddev->delta_disks));
7209 }
7210
7211 static int raid5_start_reshape(struct mddev *mddev)
7212 {
7213         struct r5conf *conf = mddev->private;
7214         struct md_rdev *rdev;
7215         int spares = 0;
7216         unsigned long flags;
7217
7218         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7219                 return -EBUSY;
7220
7221         if (!check_stripe_cache(mddev))
7222                 return -ENOSPC;
7223
7224         if (has_failed(conf))
7225                 return -EINVAL;
7226
7227         rdev_for_each(rdev, mddev) {
7228                 if (!test_bit(In_sync, &rdev->flags)
7229                     && !test_bit(Faulty, &rdev->flags))
7230                         spares++;
7231         }
7232
7233         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7234                 /* Not enough devices even to make a degraded array
7235                  * of that size
7236                  */
7237                 return -EINVAL;
7238
7239         /* Refuse to reduce size of the array.  Any reductions in
7240          * array size must be through explicit setting of array_size
7241          * attribute.
7242          */
7243         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7244             < mddev->array_sectors) {
7245                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7246                        "before number of disks\n", mdname(mddev));
7247                 return -EINVAL;
7248         }
7249
7250         atomic_set(&conf->reshape_stripes, 0);
7251         spin_lock_irq(&conf->device_lock);
7252         write_seqcount_begin(&conf->gen_lock);
7253         conf->previous_raid_disks = conf->raid_disks;
7254         conf->raid_disks += mddev->delta_disks;
7255         conf->prev_chunk_sectors = conf->chunk_sectors;
7256         conf->chunk_sectors = mddev->new_chunk_sectors;
7257         conf->prev_algo = conf->algorithm;
7258         conf->algorithm = mddev->new_layout;
7259         conf->generation++;
7260         /* Code that selects data_offset needs to see the generation update
7261          * if reshape_progress has been set - so a memory barrier needed.
7262          */
7263         smp_mb();
7264         if (mddev->reshape_backwards)
7265                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7266         else
7267                 conf->reshape_progress = 0;
7268         conf->reshape_safe = conf->reshape_progress;
7269         write_seqcount_end(&conf->gen_lock);
7270         spin_unlock_irq(&conf->device_lock);
7271
7272         /* Now make sure any requests that proceeded on the assumption
7273          * the reshape wasn't running - like Discard or Read - have
7274          * completed.
7275          */
7276         mddev_suspend(mddev);
7277         mddev_resume(mddev);
7278
7279         /* Add some new drives, as many as will fit.
7280          * We know there are enough to make the newly sized array work.
7281          * Don't add devices if we are reducing the number of
7282          * devices in the array.  This is because it is not possible
7283          * to correctly record the "partially reconstructed" state of
7284          * such devices during the reshape and confusion could result.
7285          */
7286         if (mddev->delta_disks >= 0) {
7287                 rdev_for_each(rdev, mddev)
7288                         if (rdev->raid_disk < 0 &&
7289                             !test_bit(Faulty, &rdev->flags)) {
7290                                 if (raid5_add_disk(mddev, rdev) == 0) {
7291                                         if (rdev->raid_disk
7292                                             >= conf->previous_raid_disks)
7293                                                 set_bit(In_sync, &rdev->flags);
7294                                         else
7295                                                 rdev->recovery_offset = 0;
7296
7297                                         if (sysfs_link_rdev(mddev, rdev))
7298                                                 /* Failure here is OK */;
7299                                 }
7300                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7301                                    && !test_bit(Faulty, &rdev->flags)) {
7302                                 /* This is a spare that was manually added */
7303                                 set_bit(In_sync, &rdev->flags);
7304                         }
7305
7306                 /* When a reshape changes the number of devices,
7307                  * ->degraded is measured against the larger of the
7308                  * pre and post number of devices.
7309                  */
7310                 spin_lock_irqsave(&conf->device_lock, flags);
7311                 mddev->degraded = calc_degraded(conf);
7312                 spin_unlock_irqrestore(&conf->device_lock, flags);
7313         }
7314         mddev->raid_disks = conf->raid_disks;
7315         mddev->reshape_position = conf->reshape_progress;
7316         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7317
7318         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7319         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7320         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7321         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7322         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7323                                                 "reshape");
7324         if (!mddev->sync_thread) {
7325                 mddev->recovery = 0;
7326                 spin_lock_irq(&conf->device_lock);
7327                 write_seqcount_begin(&conf->gen_lock);
7328                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7329                 mddev->new_chunk_sectors =
7330                         conf->chunk_sectors = conf->prev_chunk_sectors;
7331                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7332                 rdev_for_each(rdev, mddev)
7333                         rdev->new_data_offset = rdev->data_offset;
7334                 smp_wmb();
7335                 conf->generation --;
7336                 conf->reshape_progress = MaxSector;
7337                 mddev->reshape_position = MaxSector;
7338                 write_seqcount_end(&conf->gen_lock);
7339                 spin_unlock_irq(&conf->device_lock);
7340                 return -EAGAIN;
7341         }
7342         conf->reshape_checkpoint = jiffies;
7343         md_wakeup_thread(mddev->sync_thread);
7344         md_new_event(mddev);
7345         return 0;
7346 }
7347
7348 /* This is called from the reshape thread and should make any
7349  * changes needed in 'conf'
7350  */
7351 static void end_reshape(struct r5conf *conf)
7352 {
7353
7354         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7355                 struct md_rdev *rdev;
7356
7357                 spin_lock_irq(&conf->device_lock);
7358                 conf->previous_raid_disks = conf->raid_disks;
7359                 rdev_for_each(rdev, conf->mddev)
7360                         rdev->data_offset = rdev->new_data_offset;
7361                 smp_wmb();
7362                 conf->reshape_progress = MaxSector;
7363                 spin_unlock_irq(&conf->device_lock);
7364                 wake_up(&conf->wait_for_overlap);
7365
7366                 /* read-ahead size must cover two whole stripes, which is
7367                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7368                  */
7369                 if (conf->mddev->queue) {
7370                         int data_disks = conf->raid_disks - conf->max_degraded;
7371                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7372                                                    / PAGE_SIZE);
7373                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7374                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7375                 }
7376         }
7377 }
7378
7379 /* This is called from the raid5d thread with mddev_lock held.
7380  * It makes config changes to the device.
7381  */
7382 static void raid5_finish_reshape(struct mddev *mddev)
7383 {
7384         struct r5conf *conf = mddev->private;
7385
7386         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7387
7388                 if (mddev->delta_disks > 0) {
7389                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7390                         set_capacity(mddev->gendisk, mddev->array_sectors);
7391                         revalidate_disk(mddev->gendisk);
7392                 } else {
7393                         int d;
7394                         spin_lock_irq(&conf->device_lock);
7395                         mddev->degraded = calc_degraded(conf);
7396                         spin_unlock_irq(&conf->device_lock);
7397                         for (d = conf->raid_disks ;
7398                              d < conf->raid_disks - mddev->delta_disks;
7399                              d++) {
7400                                 struct md_rdev *rdev = conf->disks[d].rdev;
7401                                 if (rdev)
7402                                         clear_bit(In_sync, &rdev->flags);
7403                                 rdev = conf->disks[d].replacement;
7404                                 if (rdev)
7405                                         clear_bit(In_sync, &rdev->flags);
7406                         }
7407                 }
7408                 mddev->layout = conf->algorithm;
7409                 mddev->chunk_sectors = conf->chunk_sectors;
7410                 mddev->reshape_position = MaxSector;
7411                 mddev->delta_disks = 0;
7412                 mddev->reshape_backwards = 0;
7413         }
7414 }
7415
7416 static void raid5_quiesce(struct mddev *mddev, int state)
7417 {
7418         struct r5conf *conf = mddev->private;
7419
7420         switch(state) {
7421         case 2: /* resume for a suspend */
7422                 wake_up(&conf->wait_for_overlap);
7423                 break;
7424
7425         case 1: /* stop all writes */
7426                 lock_all_device_hash_locks_irq(conf);
7427                 /* '2' tells resync/reshape to pause so that all
7428                  * active stripes can drain
7429                  */
7430                 conf->quiesce = 2;
7431                 wait_event_cmd(conf->wait_for_stripe,
7432                                     atomic_read(&conf->active_stripes) == 0 &&
7433                                     atomic_read(&conf->active_aligned_reads) == 0,
7434                                     unlock_all_device_hash_locks_irq(conf),
7435                                     lock_all_device_hash_locks_irq(conf));
7436                 conf->quiesce = 1;
7437                 unlock_all_device_hash_locks_irq(conf);
7438                 /* allow reshape to continue */
7439                 wake_up(&conf->wait_for_overlap);
7440                 break;
7441
7442         case 0: /* re-enable writes */
7443                 lock_all_device_hash_locks_irq(conf);
7444                 conf->quiesce = 0;
7445                 wake_up(&conf->wait_for_stripe);
7446                 wake_up(&conf->wait_for_overlap);
7447                 unlock_all_device_hash_locks_irq(conf);
7448                 break;
7449         }
7450 }
7451
7452 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7453 {
7454         struct r0conf *raid0_conf = mddev->private;
7455         sector_t sectors;
7456
7457         /* for raid0 takeover only one zone is supported */
7458         if (raid0_conf->nr_strip_zones > 1) {
7459                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7460                        mdname(mddev));
7461                 return ERR_PTR(-EINVAL);
7462         }
7463
7464         sectors = raid0_conf->strip_zone[0].zone_end;
7465         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7466         mddev->dev_sectors = sectors;
7467         mddev->new_level = level;
7468         mddev->new_layout = ALGORITHM_PARITY_N;
7469         mddev->new_chunk_sectors = mddev->chunk_sectors;
7470         mddev->raid_disks += 1;
7471         mddev->delta_disks = 1;
7472         /* make sure it will be not marked as dirty */
7473         mddev->recovery_cp = MaxSector;
7474
7475         return setup_conf(mddev);
7476 }
7477
7478 static void *raid5_takeover_raid1(struct mddev *mddev)
7479 {
7480         int chunksect;
7481
7482         if (mddev->raid_disks != 2 ||
7483             mddev->degraded > 1)
7484                 return ERR_PTR(-EINVAL);
7485
7486         /* Should check if there are write-behind devices? */
7487
7488         chunksect = 64*2; /* 64K by default */
7489
7490         /* The array must be an exact multiple of chunksize */
7491         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7492                 chunksect >>= 1;
7493
7494         if ((chunksect<<9) < STRIPE_SIZE)
7495                 /* array size does not allow a suitable chunk size */
7496                 return ERR_PTR(-EINVAL);
7497
7498         mddev->new_level = 5;
7499         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7500         mddev->new_chunk_sectors = chunksect;
7501
7502         return setup_conf(mddev);
7503 }
7504
7505 static void *raid5_takeover_raid6(struct mddev *mddev)
7506 {
7507         int new_layout;
7508
7509         switch (mddev->layout) {
7510         case ALGORITHM_LEFT_ASYMMETRIC_6:
7511                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7512                 break;
7513         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7514                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7515                 break;
7516         case ALGORITHM_LEFT_SYMMETRIC_6:
7517                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7518                 break;
7519         case ALGORITHM_RIGHT_SYMMETRIC_6:
7520                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7521                 break;
7522         case ALGORITHM_PARITY_0_6:
7523                 new_layout = ALGORITHM_PARITY_0;
7524                 break;
7525         case ALGORITHM_PARITY_N:
7526                 new_layout = ALGORITHM_PARITY_N;
7527                 break;
7528         default:
7529                 return ERR_PTR(-EINVAL);
7530         }
7531         mddev->new_level = 5;
7532         mddev->new_layout = new_layout;
7533         mddev->delta_disks = -1;
7534         mddev->raid_disks -= 1;
7535         return setup_conf(mddev);
7536 }
7537
7538 static int raid5_check_reshape(struct mddev *mddev)
7539 {
7540         /* For a 2-drive array, the layout and chunk size can be changed
7541          * immediately as not restriping is needed.
7542          * For larger arrays we record the new value - after validation
7543          * to be used by a reshape pass.
7544          */
7545         struct r5conf *conf = mddev->private;
7546         int new_chunk = mddev->new_chunk_sectors;
7547
7548         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7549                 return -EINVAL;
7550         if (new_chunk > 0) {
7551                 if (!is_power_of_2(new_chunk))
7552                         return -EINVAL;
7553                 if (new_chunk < (PAGE_SIZE>>9))
7554                         return -EINVAL;
7555                 if (mddev->array_sectors & (new_chunk-1))
7556                         /* not factor of array size */
7557                         return -EINVAL;
7558         }
7559
7560         /* They look valid */
7561
7562         if (mddev->raid_disks == 2) {
7563                 /* can make the change immediately */
7564                 if (mddev->new_layout >= 0) {
7565                         conf->algorithm = mddev->new_layout;
7566                         mddev->layout = mddev->new_layout;
7567                 }
7568                 if (new_chunk > 0) {
7569                         conf->chunk_sectors = new_chunk ;
7570                         mddev->chunk_sectors = new_chunk;
7571                 }
7572                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7573                 md_wakeup_thread(mddev->thread);
7574         }
7575         return check_reshape(mddev);
7576 }
7577
7578 static int raid6_check_reshape(struct mddev *mddev)
7579 {
7580         int new_chunk = mddev->new_chunk_sectors;
7581
7582         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7583                 return -EINVAL;
7584         if (new_chunk > 0) {
7585                 if (!is_power_of_2(new_chunk))
7586                         return -EINVAL;
7587                 if (new_chunk < (PAGE_SIZE >> 9))
7588                         return -EINVAL;
7589                 if (mddev->array_sectors & (new_chunk-1))
7590                         /* not factor of array size */
7591                         return -EINVAL;
7592         }
7593
7594         /* They look valid */
7595         return check_reshape(mddev);
7596 }
7597
7598 static void *raid5_takeover(struct mddev *mddev)
7599 {
7600         /* raid5 can take over:
7601          *  raid0 - if there is only one strip zone - make it a raid4 layout
7602          *  raid1 - if there are two drives.  We need to know the chunk size
7603          *  raid4 - trivial - just use a raid4 layout.
7604          *  raid6 - Providing it is a *_6 layout
7605          */
7606         if (mddev->level == 0)
7607                 return raid45_takeover_raid0(mddev, 5);
7608         if (mddev->level == 1)
7609                 return raid5_takeover_raid1(mddev);
7610         if (mddev->level == 4) {
7611                 mddev->new_layout = ALGORITHM_PARITY_N;
7612                 mddev->new_level = 5;
7613                 return setup_conf(mddev);
7614         }
7615         if (mddev->level == 6)
7616                 return raid5_takeover_raid6(mddev);
7617
7618         return ERR_PTR(-EINVAL);
7619 }
7620
7621 static void *raid4_takeover(struct mddev *mddev)
7622 {
7623         /* raid4 can take over:
7624          *  raid0 - if there is only one strip zone
7625          *  raid5 - if layout is right
7626          */
7627         if (mddev->level == 0)
7628                 return raid45_takeover_raid0(mddev, 4);
7629         if (mddev->level == 5 &&
7630             mddev->layout == ALGORITHM_PARITY_N) {
7631                 mddev->new_layout = 0;
7632                 mddev->new_level = 4;
7633                 return setup_conf(mddev);
7634         }
7635         return ERR_PTR(-EINVAL);
7636 }
7637
7638 static struct md_personality raid5_personality;
7639
7640 static void *raid6_takeover(struct mddev *mddev)
7641 {
7642         /* Currently can only take over a raid5.  We map the
7643          * personality to an equivalent raid6 personality
7644          * with the Q block at the end.
7645          */
7646         int new_layout;
7647
7648         if (mddev->pers != &raid5_personality)
7649                 return ERR_PTR(-EINVAL);
7650         if (mddev->degraded > 1)
7651                 return ERR_PTR(-EINVAL);
7652         if (mddev->raid_disks > 253)
7653                 return ERR_PTR(-EINVAL);
7654         if (mddev->raid_disks < 3)
7655                 return ERR_PTR(-EINVAL);
7656
7657         switch (mddev->layout) {
7658         case ALGORITHM_LEFT_ASYMMETRIC:
7659                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7660                 break;
7661         case ALGORITHM_RIGHT_ASYMMETRIC:
7662                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7663                 break;
7664         case ALGORITHM_LEFT_SYMMETRIC:
7665                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7666                 break;
7667         case ALGORITHM_RIGHT_SYMMETRIC:
7668                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7669                 break;
7670         case ALGORITHM_PARITY_0:
7671                 new_layout = ALGORITHM_PARITY_0_6;
7672                 break;
7673         case ALGORITHM_PARITY_N:
7674                 new_layout = ALGORITHM_PARITY_N;
7675                 break;
7676         default:
7677                 return ERR_PTR(-EINVAL);
7678         }
7679         mddev->new_level = 6;
7680         mddev->new_layout = new_layout;
7681         mddev->delta_disks = 1;
7682         mddev->raid_disks += 1;
7683         return setup_conf(mddev);
7684 }
7685
7686 static struct md_personality raid6_personality =
7687 {
7688         .name           = "raid6",
7689         .level          = 6,
7690         .owner          = THIS_MODULE,
7691         .make_request   = make_request,
7692         .run            = run,
7693         .free           = raid5_free,
7694         .status         = status,
7695         .error_handler  = error,
7696         .hot_add_disk   = raid5_add_disk,
7697         .hot_remove_disk= raid5_remove_disk,
7698         .spare_active   = raid5_spare_active,
7699         .sync_request   = sync_request,
7700         .resize         = raid5_resize,
7701         .size           = raid5_size,
7702         .check_reshape  = raid6_check_reshape,
7703         .start_reshape  = raid5_start_reshape,
7704         .finish_reshape = raid5_finish_reshape,
7705         .quiesce        = raid5_quiesce,
7706         .takeover       = raid6_takeover,
7707         .congested      = raid5_congested,
7708         .mergeable_bvec = raid5_mergeable_bvec,
7709 };
7710 static struct md_personality raid5_personality =
7711 {
7712         .name           = "raid5",
7713         .level          = 5,
7714         .owner          = THIS_MODULE,
7715         .make_request   = make_request,
7716         .run            = run,
7717         .free           = raid5_free,
7718         .status         = status,
7719         .error_handler  = error,
7720         .hot_add_disk   = raid5_add_disk,
7721         .hot_remove_disk= raid5_remove_disk,
7722         .spare_active   = raid5_spare_active,
7723         .sync_request   = sync_request,
7724         .resize         = raid5_resize,
7725         .size           = raid5_size,
7726         .check_reshape  = raid5_check_reshape,
7727         .start_reshape  = raid5_start_reshape,
7728         .finish_reshape = raid5_finish_reshape,
7729         .quiesce        = raid5_quiesce,
7730         .takeover       = raid5_takeover,
7731         .congested      = raid5_congested,
7732         .mergeable_bvec = raid5_mergeable_bvec,
7733 };
7734
7735 static struct md_personality raid4_personality =
7736 {
7737         .name           = "raid4",
7738         .level          = 4,
7739         .owner          = THIS_MODULE,
7740         .make_request   = make_request,
7741         .run            = run,
7742         .free           = raid5_free,
7743         .status         = status,
7744         .error_handler  = error,
7745         .hot_add_disk   = raid5_add_disk,
7746         .hot_remove_disk= raid5_remove_disk,
7747         .spare_active   = raid5_spare_active,
7748         .sync_request   = sync_request,
7749         .resize         = raid5_resize,
7750         .size           = raid5_size,
7751         .check_reshape  = raid5_check_reshape,
7752         .start_reshape  = raid5_start_reshape,
7753         .finish_reshape = raid5_finish_reshape,
7754         .quiesce        = raid5_quiesce,
7755         .takeover       = raid4_takeover,
7756         .congested      = raid5_congested,
7757         .mergeable_bvec = raid5_mergeable_bvec,
7758 };
7759
7760 static int __init raid5_init(void)
7761 {
7762         raid5_wq = alloc_workqueue("raid5wq",
7763                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7764         if (!raid5_wq)
7765                 return -ENOMEM;
7766         register_md_personality(&raid6_personality);
7767         register_md_personality(&raid5_personality);
7768         register_md_personality(&raid4_personality);
7769         return 0;
7770 }
7771
7772 static void raid5_exit(void)
7773 {
7774         unregister_md_personality(&raid6_personality);
7775         unregister_md_personality(&raid5_personality);
7776         unregister_md_personality(&raid4_personality);
7777         destroy_workqueue(raid5_wq);
7778 }
7779
7780 module_init(raid5_init);
7781 module_exit(raid5_exit);
7782 MODULE_LICENSE("GPL");
7783 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7784 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7785 MODULE_ALIAS("md-raid5");
7786 MODULE_ALIAS("md-raid4");
7787 MODULE_ALIAS("md-level-5");
7788 MODULE_ALIAS("md-level-4");
7789 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7790 MODULE_ALIAS("md-raid6");
7791 MODULE_ALIAS("md-level-6");
7792
7793 /* This used to be two separate modules, they were: */
7794 MODULE_ALIAS("raid5");
7795 MODULE_ALIAS("raid6");