md/raid5: close race between STRIPE_BIT_DELAY and batching.
[cascardo/linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio *return_bi)
227 {
228         struct bio *bi = return_bi;
229         while (bi) {
230
231                 return_bi = bi->bi_next;
232                 bi->bi_next = NULL;
233                 bi->bi_iter.bi_size = 0;
234                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235                                          bi, 0);
236                 bio_endio(bi, 0);
237                 bi = return_bi;
238         }
239 }
240
241 static void print_raid5_conf (struct r5conf *conf);
242
243 static int stripe_operations_active(struct stripe_head *sh)
244 {
245         return sh->check_state || sh->reconstruct_state ||
246                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248 }
249
250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 {
252         struct r5conf *conf = sh->raid_conf;
253         struct r5worker_group *group;
254         int thread_cnt;
255         int i, cpu = sh->cpu;
256
257         if (!cpu_online(cpu)) {
258                 cpu = cpumask_any(cpu_online_mask);
259                 sh->cpu = cpu;
260         }
261
262         if (list_empty(&sh->lru)) {
263                 struct r5worker_group *group;
264                 group = conf->worker_groups + cpu_to_group(cpu);
265                 list_add_tail(&sh->lru, &group->handle_list);
266                 group->stripes_cnt++;
267                 sh->group = group;
268         }
269
270         if (conf->worker_cnt_per_group == 0) {
271                 md_wakeup_thread(conf->mddev->thread);
272                 return;
273         }
274
275         group = conf->worker_groups + cpu_to_group(sh->cpu);
276
277         group->workers[0].working = true;
278         /* at least one worker should run to avoid race */
279         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282         /* wakeup more workers */
283         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284                 if (group->workers[i].working == false) {
285                         group->workers[i].working = true;
286                         queue_work_on(sh->cpu, raid5_wq,
287                                       &group->workers[i].work);
288                         thread_cnt--;
289                 }
290         }
291 }
292
293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294                               struct list_head *temp_inactive_list)
295 {
296         BUG_ON(!list_empty(&sh->lru));
297         BUG_ON(atomic_read(&conf->active_stripes)==0);
298         if (test_bit(STRIPE_HANDLE, &sh->state)) {
299                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
300                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301                         list_add_tail(&sh->lru, &conf->delayed_list);
302                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303                            sh->bm_seq - conf->seq_write > 0)
304                         list_add_tail(&sh->lru, &conf->bitmap_list);
305                 else {
306                         clear_bit(STRIPE_DELAYED, &sh->state);
307                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
308                         if (conf->worker_cnt_per_group == 0) {
309                                 list_add_tail(&sh->lru, &conf->handle_list);
310                         } else {
311                                 raid5_wakeup_stripe_thread(sh);
312                                 return;
313                         }
314                 }
315                 md_wakeup_thread(conf->mddev->thread);
316         } else {
317                 BUG_ON(stripe_operations_active(sh));
318                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319                         if (atomic_dec_return(&conf->preread_active_stripes)
320                             < IO_THRESHOLD)
321                                 md_wakeup_thread(conf->mddev->thread);
322                 atomic_dec(&conf->active_stripes);
323                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324                         list_add_tail(&sh->lru, temp_inactive_list);
325         }
326 }
327
328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329                              struct list_head *temp_inactive_list)
330 {
331         if (atomic_dec_and_test(&sh->count))
332                 do_release_stripe(conf, sh, temp_inactive_list);
333 }
334
335 /*
336  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337  *
338  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339  * given time. Adding stripes only takes device lock, while deleting stripes
340  * only takes hash lock.
341  */
342 static void release_inactive_stripe_list(struct r5conf *conf,
343                                          struct list_head *temp_inactive_list,
344                                          int hash)
345 {
346         int size;
347         bool do_wakeup = false;
348         unsigned long flags;
349
350         if (hash == NR_STRIPE_HASH_LOCKS) {
351                 size = NR_STRIPE_HASH_LOCKS;
352                 hash = NR_STRIPE_HASH_LOCKS - 1;
353         } else
354                 size = 1;
355         while (size) {
356                 struct list_head *list = &temp_inactive_list[size - 1];
357
358                 /*
359                  * We don't hold any lock here yet, get_active_stripe() might
360                  * remove stripes from the list
361                  */
362                 if (!list_empty_careful(list)) {
363                         spin_lock_irqsave(conf->hash_locks + hash, flags);
364                         if (list_empty(conf->inactive_list + hash) &&
365                             !list_empty(list))
366                                 atomic_dec(&conf->empty_inactive_list_nr);
367                         list_splice_tail_init(list, conf->inactive_list + hash);
368                         do_wakeup = true;
369                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
370                 }
371                 size--;
372                 hash--;
373         }
374
375         if (do_wakeup) {
376                 wake_up(&conf->wait_for_stripe);
377                 if (conf->retry_read_aligned)
378                         md_wakeup_thread(conf->mddev->thread);
379         }
380 }
381
382 /* should hold conf->device_lock already */
383 static int release_stripe_list(struct r5conf *conf,
384                                struct list_head *temp_inactive_list)
385 {
386         struct stripe_head *sh;
387         int count = 0;
388         struct llist_node *head;
389
390         head = llist_del_all(&conf->released_stripes);
391         head = llist_reverse_order(head);
392         while (head) {
393                 int hash;
394
395                 sh = llist_entry(head, struct stripe_head, release_list);
396                 head = llist_next(head);
397                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
398                 smp_mb();
399                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
400                 /*
401                  * Don't worry the bit is set here, because if the bit is set
402                  * again, the count is always > 1. This is true for
403                  * STRIPE_ON_UNPLUG_LIST bit too.
404                  */
405                 hash = sh->hash_lock_index;
406                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
407                 count++;
408         }
409
410         return count;
411 }
412
413 static void release_stripe(struct stripe_head *sh)
414 {
415         struct r5conf *conf = sh->raid_conf;
416         unsigned long flags;
417         struct list_head list;
418         int hash;
419         bool wakeup;
420
421         /* Avoid release_list until the last reference.
422          */
423         if (atomic_add_unless(&sh->count, -1, 1))
424                 return;
425
426         if (unlikely(!conf->mddev->thread) ||
427                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
428                 goto slow_path;
429         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
430         if (wakeup)
431                 md_wakeup_thread(conf->mddev->thread);
432         return;
433 slow_path:
434         local_irq_save(flags);
435         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
436         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
437                 INIT_LIST_HEAD(&list);
438                 hash = sh->hash_lock_index;
439                 do_release_stripe(conf, sh, &list);
440                 spin_unlock(&conf->device_lock);
441                 release_inactive_stripe_list(conf, &list, hash);
442         }
443         local_irq_restore(flags);
444 }
445
446 static inline void remove_hash(struct stripe_head *sh)
447 {
448         pr_debug("remove_hash(), stripe %llu\n",
449                 (unsigned long long)sh->sector);
450
451         hlist_del_init(&sh->hash);
452 }
453
454 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
455 {
456         struct hlist_head *hp = stripe_hash(conf, sh->sector);
457
458         pr_debug("insert_hash(), stripe %llu\n",
459                 (unsigned long long)sh->sector);
460
461         hlist_add_head(&sh->hash, hp);
462 }
463
464 /* find an idle stripe, make sure it is unhashed, and return it. */
465 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
466 {
467         struct stripe_head *sh = NULL;
468         struct list_head *first;
469
470         if (list_empty(conf->inactive_list + hash))
471                 goto out;
472         first = (conf->inactive_list + hash)->next;
473         sh = list_entry(first, struct stripe_head, lru);
474         list_del_init(first);
475         remove_hash(sh);
476         atomic_inc(&conf->active_stripes);
477         BUG_ON(hash != sh->hash_lock_index);
478         if (list_empty(conf->inactive_list + hash))
479                 atomic_inc(&conf->empty_inactive_list_nr);
480 out:
481         return sh;
482 }
483
484 static void shrink_buffers(struct stripe_head *sh)
485 {
486         struct page *p;
487         int i;
488         int num = sh->raid_conf->pool_size;
489
490         for (i = 0; i < num ; i++) {
491                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
492                 p = sh->dev[i].page;
493                 if (!p)
494                         continue;
495                 sh->dev[i].page = NULL;
496                 put_page(p);
497         }
498 }
499
500 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
501 {
502         int i;
503         int num = sh->raid_conf->pool_size;
504
505         for (i = 0; i < num; i++) {
506                 struct page *page;
507
508                 if (!(page = alloc_page(gfp))) {
509                         return 1;
510                 }
511                 sh->dev[i].page = page;
512                 sh->dev[i].orig_page = page;
513         }
514         return 0;
515 }
516
517 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
518 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
519                             struct stripe_head *sh);
520
521 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
522 {
523         struct r5conf *conf = sh->raid_conf;
524         int i, seq;
525
526         BUG_ON(atomic_read(&sh->count) != 0);
527         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
528         BUG_ON(stripe_operations_active(sh));
529         BUG_ON(sh->batch_head);
530
531         pr_debug("init_stripe called, stripe %llu\n",
532                 (unsigned long long)sector);
533 retry:
534         seq = read_seqcount_begin(&conf->gen_lock);
535         sh->generation = conf->generation - previous;
536         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
537         sh->sector = sector;
538         stripe_set_idx(sector, conf, previous, sh);
539         sh->state = 0;
540
541         for (i = sh->disks; i--; ) {
542                 struct r5dev *dev = &sh->dev[i];
543
544                 if (dev->toread || dev->read || dev->towrite || dev->written ||
545                     test_bit(R5_LOCKED, &dev->flags)) {
546                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
547                                (unsigned long long)sh->sector, i, dev->toread,
548                                dev->read, dev->towrite, dev->written,
549                                test_bit(R5_LOCKED, &dev->flags));
550                         WARN_ON(1);
551                 }
552                 dev->flags = 0;
553                 raid5_build_block(sh, i, previous);
554         }
555         if (read_seqcount_retry(&conf->gen_lock, seq))
556                 goto retry;
557         sh->overwrite_disks = 0;
558         insert_hash(conf, sh);
559         sh->cpu = smp_processor_id();
560         set_bit(STRIPE_BATCH_READY, &sh->state);
561 }
562
563 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
564                                          short generation)
565 {
566         struct stripe_head *sh;
567
568         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
569         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
570                 if (sh->sector == sector && sh->generation == generation)
571                         return sh;
572         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
573         return NULL;
574 }
575
576 /*
577  * Need to check if array has failed when deciding whether to:
578  *  - start an array
579  *  - remove non-faulty devices
580  *  - add a spare
581  *  - allow a reshape
582  * This determination is simple when no reshape is happening.
583  * However if there is a reshape, we need to carefully check
584  * both the before and after sections.
585  * This is because some failed devices may only affect one
586  * of the two sections, and some non-in_sync devices may
587  * be insync in the section most affected by failed devices.
588  */
589 static int calc_degraded(struct r5conf *conf)
590 {
591         int degraded, degraded2;
592         int i;
593
594         rcu_read_lock();
595         degraded = 0;
596         for (i = 0; i < conf->previous_raid_disks; i++) {
597                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
598                 if (rdev && test_bit(Faulty, &rdev->flags))
599                         rdev = rcu_dereference(conf->disks[i].replacement);
600                 if (!rdev || test_bit(Faulty, &rdev->flags))
601                         degraded++;
602                 else if (test_bit(In_sync, &rdev->flags))
603                         ;
604                 else
605                         /* not in-sync or faulty.
606                          * If the reshape increases the number of devices,
607                          * this is being recovered by the reshape, so
608                          * this 'previous' section is not in_sync.
609                          * If the number of devices is being reduced however,
610                          * the device can only be part of the array if
611                          * we are reverting a reshape, so this section will
612                          * be in-sync.
613                          */
614                         if (conf->raid_disks >= conf->previous_raid_disks)
615                                 degraded++;
616         }
617         rcu_read_unlock();
618         if (conf->raid_disks == conf->previous_raid_disks)
619                 return degraded;
620         rcu_read_lock();
621         degraded2 = 0;
622         for (i = 0; i < conf->raid_disks; i++) {
623                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
624                 if (rdev && test_bit(Faulty, &rdev->flags))
625                         rdev = rcu_dereference(conf->disks[i].replacement);
626                 if (!rdev || test_bit(Faulty, &rdev->flags))
627                         degraded2++;
628                 else if (test_bit(In_sync, &rdev->flags))
629                         ;
630                 else
631                         /* not in-sync or faulty.
632                          * If reshape increases the number of devices, this
633                          * section has already been recovered, else it
634                          * almost certainly hasn't.
635                          */
636                         if (conf->raid_disks <= conf->previous_raid_disks)
637                                 degraded2++;
638         }
639         rcu_read_unlock();
640         if (degraded2 > degraded)
641                 return degraded2;
642         return degraded;
643 }
644
645 static int has_failed(struct r5conf *conf)
646 {
647         int degraded;
648
649         if (conf->mddev->reshape_position == MaxSector)
650                 return conf->mddev->degraded > conf->max_degraded;
651
652         degraded = calc_degraded(conf);
653         if (degraded > conf->max_degraded)
654                 return 1;
655         return 0;
656 }
657
658 static struct stripe_head *
659 get_active_stripe(struct r5conf *conf, sector_t sector,
660                   int previous, int noblock, int noquiesce)
661 {
662         struct stripe_head *sh;
663         int hash = stripe_hash_locks_hash(sector);
664
665         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
666
667         spin_lock_irq(conf->hash_locks + hash);
668
669         do {
670                 wait_event_lock_irq(conf->wait_for_stripe,
671                                     conf->quiesce == 0 || noquiesce,
672                                     *(conf->hash_locks + hash));
673                 sh = __find_stripe(conf, sector, conf->generation - previous);
674                 if (!sh) {
675                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
676                                 sh = get_free_stripe(conf, hash);
677                                 if (!sh && llist_empty(&conf->released_stripes) &&
678                                     !test_bit(R5_DID_ALLOC, &conf->cache_state))
679                                         set_bit(R5_ALLOC_MORE,
680                                                 &conf->cache_state);
681                         }
682                         if (noblock && sh == NULL)
683                                 break;
684                         if (!sh) {
685                                 set_bit(R5_INACTIVE_BLOCKED,
686                                         &conf->cache_state);
687                                 wait_event_lock_irq(
688                                         conf->wait_for_stripe,
689                                         !list_empty(conf->inactive_list + hash) &&
690                                         (atomic_read(&conf->active_stripes)
691                                          < (conf->max_nr_stripes * 3 / 4)
692                                          || !test_bit(R5_INACTIVE_BLOCKED,
693                                                       &conf->cache_state)),
694                                         *(conf->hash_locks + hash));
695                                 clear_bit(R5_INACTIVE_BLOCKED,
696                                           &conf->cache_state);
697                         } else {
698                                 init_stripe(sh, sector, previous);
699                                 atomic_inc(&sh->count);
700                         }
701                 } else if (!atomic_inc_not_zero(&sh->count)) {
702                         spin_lock(&conf->device_lock);
703                         if (!atomic_read(&sh->count)) {
704                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
705                                         atomic_inc(&conf->active_stripes);
706                                 BUG_ON(list_empty(&sh->lru) &&
707                                        !test_bit(STRIPE_EXPANDING, &sh->state));
708                                 list_del_init(&sh->lru);
709                                 if (sh->group) {
710                                         sh->group->stripes_cnt--;
711                                         sh->group = NULL;
712                                 }
713                         }
714                         atomic_inc(&sh->count);
715                         spin_unlock(&conf->device_lock);
716                 }
717         } while (sh == NULL);
718
719         spin_unlock_irq(conf->hash_locks + hash);
720         return sh;
721 }
722
723 static bool is_full_stripe_write(struct stripe_head *sh)
724 {
725         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
726         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
727 }
728
729 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
730 {
731         local_irq_disable();
732         if (sh1 > sh2) {
733                 spin_lock(&sh2->stripe_lock);
734                 spin_lock_nested(&sh1->stripe_lock, 1);
735         } else {
736                 spin_lock(&sh1->stripe_lock);
737                 spin_lock_nested(&sh2->stripe_lock, 1);
738         }
739 }
740
741 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
742 {
743         spin_unlock(&sh1->stripe_lock);
744         spin_unlock(&sh2->stripe_lock);
745         local_irq_enable();
746 }
747
748 /* Only freshly new full stripe normal write stripe can be added to a batch list */
749 static bool stripe_can_batch(struct stripe_head *sh)
750 {
751         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
752                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
753                 is_full_stripe_write(sh);
754 }
755
756 /* we only do back search */
757 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
758 {
759         struct stripe_head *head;
760         sector_t head_sector, tmp_sec;
761         int hash;
762         int dd_idx;
763
764         if (!stripe_can_batch(sh))
765                 return;
766         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
767         tmp_sec = sh->sector;
768         if (!sector_div(tmp_sec, conf->chunk_sectors))
769                 return;
770         head_sector = sh->sector - STRIPE_SECTORS;
771
772         hash = stripe_hash_locks_hash(head_sector);
773         spin_lock_irq(conf->hash_locks + hash);
774         head = __find_stripe(conf, head_sector, conf->generation);
775         if (head && !atomic_inc_not_zero(&head->count)) {
776                 spin_lock(&conf->device_lock);
777                 if (!atomic_read(&head->count)) {
778                         if (!test_bit(STRIPE_HANDLE, &head->state))
779                                 atomic_inc(&conf->active_stripes);
780                         BUG_ON(list_empty(&head->lru) &&
781                                !test_bit(STRIPE_EXPANDING, &head->state));
782                         list_del_init(&head->lru);
783                         if (head->group) {
784                                 head->group->stripes_cnt--;
785                                 head->group = NULL;
786                         }
787                 }
788                 atomic_inc(&head->count);
789                 spin_unlock(&conf->device_lock);
790         }
791         spin_unlock_irq(conf->hash_locks + hash);
792
793         if (!head)
794                 return;
795         if (!stripe_can_batch(head))
796                 goto out;
797
798         lock_two_stripes(head, sh);
799         /* clear_batch_ready clear the flag */
800         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
801                 goto unlock_out;
802
803         if (sh->batch_head)
804                 goto unlock_out;
805
806         dd_idx = 0;
807         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
808                 dd_idx++;
809         if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
810                 goto unlock_out;
811
812         if (head->batch_head) {
813                 spin_lock(&head->batch_head->batch_lock);
814                 /* This batch list is already running */
815                 if (!stripe_can_batch(head)) {
816                         spin_unlock(&head->batch_head->batch_lock);
817                         goto unlock_out;
818                 }
819
820                 /*
821                  * at this point, head's BATCH_READY could be cleared, but we
822                  * can still add the stripe to batch list
823                  */
824                 list_add(&sh->batch_list, &head->batch_list);
825                 spin_unlock(&head->batch_head->batch_lock);
826
827                 sh->batch_head = head->batch_head;
828         } else {
829                 head->batch_head = head;
830                 sh->batch_head = head->batch_head;
831                 spin_lock(&head->batch_lock);
832                 list_add_tail(&sh->batch_list, &head->batch_list);
833                 spin_unlock(&head->batch_lock);
834         }
835
836         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
837                 if (atomic_dec_return(&conf->preread_active_stripes)
838                     < IO_THRESHOLD)
839                         md_wakeup_thread(conf->mddev->thread);
840
841         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
842                 int seq = sh->bm_seq;
843                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
844                     sh->batch_head->bm_seq > seq)
845                         seq = sh->batch_head->bm_seq;
846                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
847                 sh->batch_head->bm_seq = seq;
848         }
849
850         atomic_inc(&sh->count);
851 unlock_out:
852         unlock_two_stripes(head, sh);
853 out:
854         release_stripe(head);
855 }
856
857 /* Determine if 'data_offset' or 'new_data_offset' should be used
858  * in this stripe_head.
859  */
860 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
861 {
862         sector_t progress = conf->reshape_progress;
863         /* Need a memory barrier to make sure we see the value
864          * of conf->generation, or ->data_offset that was set before
865          * reshape_progress was updated.
866          */
867         smp_rmb();
868         if (progress == MaxSector)
869                 return 0;
870         if (sh->generation == conf->generation - 1)
871                 return 0;
872         /* We are in a reshape, and this is a new-generation stripe,
873          * so use new_data_offset.
874          */
875         return 1;
876 }
877
878 static void
879 raid5_end_read_request(struct bio *bi, int error);
880 static void
881 raid5_end_write_request(struct bio *bi, int error);
882
883 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
884 {
885         struct r5conf *conf = sh->raid_conf;
886         int i, disks = sh->disks;
887         struct stripe_head *head_sh = sh;
888
889         might_sleep();
890
891         for (i = disks; i--; ) {
892                 int rw;
893                 int replace_only = 0;
894                 struct bio *bi, *rbi;
895                 struct md_rdev *rdev, *rrdev = NULL;
896
897                 sh = head_sh;
898                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
899                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
900                                 rw = WRITE_FUA;
901                         else
902                                 rw = WRITE;
903                         if (test_bit(R5_Discard, &sh->dev[i].flags))
904                                 rw |= REQ_DISCARD;
905                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
906                         rw = READ;
907                 else if (test_and_clear_bit(R5_WantReplace,
908                                             &sh->dev[i].flags)) {
909                         rw = WRITE;
910                         replace_only = 1;
911                 } else
912                         continue;
913                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
914                         rw |= REQ_SYNC;
915
916 again:
917                 bi = &sh->dev[i].req;
918                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
919
920                 rcu_read_lock();
921                 rrdev = rcu_dereference(conf->disks[i].replacement);
922                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
923                 rdev = rcu_dereference(conf->disks[i].rdev);
924                 if (!rdev) {
925                         rdev = rrdev;
926                         rrdev = NULL;
927                 }
928                 if (rw & WRITE) {
929                         if (replace_only)
930                                 rdev = NULL;
931                         if (rdev == rrdev)
932                                 /* We raced and saw duplicates */
933                                 rrdev = NULL;
934                 } else {
935                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
936                                 rdev = rrdev;
937                         rrdev = NULL;
938                 }
939
940                 if (rdev && test_bit(Faulty, &rdev->flags))
941                         rdev = NULL;
942                 if (rdev)
943                         atomic_inc(&rdev->nr_pending);
944                 if (rrdev && test_bit(Faulty, &rrdev->flags))
945                         rrdev = NULL;
946                 if (rrdev)
947                         atomic_inc(&rrdev->nr_pending);
948                 rcu_read_unlock();
949
950                 /* We have already checked bad blocks for reads.  Now
951                  * need to check for writes.  We never accept write errors
952                  * on the replacement, so we don't to check rrdev.
953                  */
954                 while ((rw & WRITE) && rdev &&
955                        test_bit(WriteErrorSeen, &rdev->flags)) {
956                         sector_t first_bad;
957                         int bad_sectors;
958                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
959                                               &first_bad, &bad_sectors);
960                         if (!bad)
961                                 break;
962
963                         if (bad < 0) {
964                                 set_bit(BlockedBadBlocks, &rdev->flags);
965                                 if (!conf->mddev->external &&
966                                     conf->mddev->flags) {
967                                         /* It is very unlikely, but we might
968                                          * still need to write out the
969                                          * bad block log - better give it
970                                          * a chance*/
971                                         md_check_recovery(conf->mddev);
972                                 }
973                                 /*
974                                  * Because md_wait_for_blocked_rdev
975                                  * will dec nr_pending, we must
976                                  * increment it first.
977                                  */
978                                 atomic_inc(&rdev->nr_pending);
979                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
980                         } else {
981                                 /* Acknowledged bad block - skip the write */
982                                 rdev_dec_pending(rdev, conf->mddev);
983                                 rdev = NULL;
984                         }
985                 }
986
987                 if (rdev) {
988                         if (s->syncing || s->expanding || s->expanded
989                             || s->replacing)
990                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
991
992                         set_bit(STRIPE_IO_STARTED, &sh->state);
993
994                         bio_reset(bi);
995                         bi->bi_bdev = rdev->bdev;
996                         bi->bi_rw = rw;
997                         bi->bi_end_io = (rw & WRITE)
998                                 ? raid5_end_write_request
999                                 : raid5_end_read_request;
1000                         bi->bi_private = sh;
1001
1002                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1003                                 __func__, (unsigned long long)sh->sector,
1004                                 bi->bi_rw, i);
1005                         atomic_inc(&sh->count);
1006                         if (sh != head_sh)
1007                                 atomic_inc(&head_sh->count);
1008                         if (use_new_offset(conf, sh))
1009                                 bi->bi_iter.bi_sector = (sh->sector
1010                                                  + rdev->new_data_offset);
1011                         else
1012                                 bi->bi_iter.bi_sector = (sh->sector
1013                                                  + rdev->data_offset);
1014                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1015                                 bi->bi_rw |= REQ_NOMERGE;
1016
1017                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1018                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1019                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1020                         bi->bi_vcnt = 1;
1021                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1022                         bi->bi_io_vec[0].bv_offset = 0;
1023                         bi->bi_iter.bi_size = STRIPE_SIZE;
1024                         /*
1025                          * If this is discard request, set bi_vcnt 0. We don't
1026                          * want to confuse SCSI because SCSI will replace payload
1027                          */
1028                         if (rw & REQ_DISCARD)
1029                                 bi->bi_vcnt = 0;
1030                         if (rrdev)
1031                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1032
1033                         if (conf->mddev->gendisk)
1034                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1035                                                       bi, disk_devt(conf->mddev->gendisk),
1036                                                       sh->dev[i].sector);
1037                         generic_make_request(bi);
1038                 }
1039                 if (rrdev) {
1040                         if (s->syncing || s->expanding || s->expanded
1041                             || s->replacing)
1042                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1043
1044                         set_bit(STRIPE_IO_STARTED, &sh->state);
1045
1046                         bio_reset(rbi);
1047                         rbi->bi_bdev = rrdev->bdev;
1048                         rbi->bi_rw = rw;
1049                         BUG_ON(!(rw & WRITE));
1050                         rbi->bi_end_io = raid5_end_write_request;
1051                         rbi->bi_private = sh;
1052
1053                         pr_debug("%s: for %llu schedule op %ld on "
1054                                  "replacement disc %d\n",
1055                                 __func__, (unsigned long long)sh->sector,
1056                                 rbi->bi_rw, i);
1057                         atomic_inc(&sh->count);
1058                         if (sh != head_sh)
1059                                 atomic_inc(&head_sh->count);
1060                         if (use_new_offset(conf, sh))
1061                                 rbi->bi_iter.bi_sector = (sh->sector
1062                                                   + rrdev->new_data_offset);
1063                         else
1064                                 rbi->bi_iter.bi_sector = (sh->sector
1065                                                   + rrdev->data_offset);
1066                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1067                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1068                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1069                         rbi->bi_vcnt = 1;
1070                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1071                         rbi->bi_io_vec[0].bv_offset = 0;
1072                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1073                         /*
1074                          * If this is discard request, set bi_vcnt 0. We don't
1075                          * want to confuse SCSI because SCSI will replace payload
1076                          */
1077                         if (rw & REQ_DISCARD)
1078                                 rbi->bi_vcnt = 0;
1079                         if (conf->mddev->gendisk)
1080                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1081                                                       rbi, disk_devt(conf->mddev->gendisk),
1082                                                       sh->dev[i].sector);
1083                         generic_make_request(rbi);
1084                 }
1085                 if (!rdev && !rrdev) {
1086                         if (rw & WRITE)
1087                                 set_bit(STRIPE_DEGRADED, &sh->state);
1088                         pr_debug("skip op %ld on disc %d for sector %llu\n",
1089                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1090                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1091                         set_bit(STRIPE_HANDLE, &sh->state);
1092                 }
1093
1094                 if (!head_sh->batch_head)
1095                         continue;
1096                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1097                                       batch_list);
1098                 if (sh != head_sh)
1099                         goto again;
1100         }
1101 }
1102
1103 static struct dma_async_tx_descriptor *
1104 async_copy_data(int frombio, struct bio *bio, struct page **page,
1105         sector_t sector, struct dma_async_tx_descriptor *tx,
1106         struct stripe_head *sh)
1107 {
1108         struct bio_vec bvl;
1109         struct bvec_iter iter;
1110         struct page *bio_page;
1111         int page_offset;
1112         struct async_submit_ctl submit;
1113         enum async_tx_flags flags = 0;
1114
1115         if (bio->bi_iter.bi_sector >= sector)
1116                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1117         else
1118                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1119
1120         if (frombio)
1121                 flags |= ASYNC_TX_FENCE;
1122         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1123
1124         bio_for_each_segment(bvl, bio, iter) {
1125                 int len = bvl.bv_len;
1126                 int clen;
1127                 int b_offset = 0;
1128
1129                 if (page_offset < 0) {
1130                         b_offset = -page_offset;
1131                         page_offset += b_offset;
1132                         len -= b_offset;
1133                 }
1134
1135                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1136                         clen = STRIPE_SIZE - page_offset;
1137                 else
1138                         clen = len;
1139
1140                 if (clen > 0) {
1141                         b_offset += bvl.bv_offset;
1142                         bio_page = bvl.bv_page;
1143                         if (frombio) {
1144                                 if (sh->raid_conf->skip_copy &&
1145                                     b_offset == 0 && page_offset == 0 &&
1146                                     clen == STRIPE_SIZE)
1147                                         *page = bio_page;
1148                                 else
1149                                         tx = async_memcpy(*page, bio_page, page_offset,
1150                                                   b_offset, clen, &submit);
1151                         } else
1152                                 tx = async_memcpy(bio_page, *page, b_offset,
1153                                                   page_offset, clen, &submit);
1154                 }
1155                 /* chain the operations */
1156                 submit.depend_tx = tx;
1157
1158                 if (clen < len) /* hit end of page */
1159                         break;
1160                 page_offset +=  len;
1161         }
1162
1163         return tx;
1164 }
1165
1166 static void ops_complete_biofill(void *stripe_head_ref)
1167 {
1168         struct stripe_head *sh = stripe_head_ref;
1169         struct bio *return_bi = NULL;
1170         int i;
1171
1172         pr_debug("%s: stripe %llu\n", __func__,
1173                 (unsigned long long)sh->sector);
1174
1175         /* clear completed biofills */
1176         for (i = sh->disks; i--; ) {
1177                 struct r5dev *dev = &sh->dev[i];
1178
1179                 /* acknowledge completion of a biofill operation */
1180                 /* and check if we need to reply to a read request,
1181                  * new R5_Wantfill requests are held off until
1182                  * !STRIPE_BIOFILL_RUN
1183                  */
1184                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1185                         struct bio *rbi, *rbi2;
1186
1187                         BUG_ON(!dev->read);
1188                         rbi = dev->read;
1189                         dev->read = NULL;
1190                         while (rbi && rbi->bi_iter.bi_sector <
1191                                 dev->sector + STRIPE_SECTORS) {
1192                                 rbi2 = r5_next_bio(rbi, dev->sector);
1193                                 if (!raid5_dec_bi_active_stripes(rbi)) {
1194                                         rbi->bi_next = return_bi;
1195                                         return_bi = rbi;
1196                                 }
1197                                 rbi = rbi2;
1198                         }
1199                 }
1200         }
1201         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1202
1203         return_io(return_bi);
1204
1205         set_bit(STRIPE_HANDLE, &sh->state);
1206         release_stripe(sh);
1207 }
1208
1209 static void ops_run_biofill(struct stripe_head *sh)
1210 {
1211         struct dma_async_tx_descriptor *tx = NULL;
1212         struct async_submit_ctl submit;
1213         int i;
1214
1215         BUG_ON(sh->batch_head);
1216         pr_debug("%s: stripe %llu\n", __func__,
1217                 (unsigned long long)sh->sector);
1218
1219         for (i = sh->disks; i--; ) {
1220                 struct r5dev *dev = &sh->dev[i];
1221                 if (test_bit(R5_Wantfill, &dev->flags)) {
1222                         struct bio *rbi;
1223                         spin_lock_irq(&sh->stripe_lock);
1224                         dev->read = rbi = dev->toread;
1225                         dev->toread = NULL;
1226                         spin_unlock_irq(&sh->stripe_lock);
1227                         while (rbi && rbi->bi_iter.bi_sector <
1228                                 dev->sector + STRIPE_SECTORS) {
1229                                 tx = async_copy_data(0, rbi, &dev->page,
1230                                         dev->sector, tx, sh);
1231                                 rbi = r5_next_bio(rbi, dev->sector);
1232                         }
1233                 }
1234         }
1235
1236         atomic_inc(&sh->count);
1237         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1238         async_trigger_callback(&submit);
1239 }
1240
1241 static void mark_target_uptodate(struct stripe_head *sh, int target)
1242 {
1243         struct r5dev *tgt;
1244
1245         if (target < 0)
1246                 return;
1247
1248         tgt = &sh->dev[target];
1249         set_bit(R5_UPTODATE, &tgt->flags);
1250         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1251         clear_bit(R5_Wantcompute, &tgt->flags);
1252 }
1253
1254 static void ops_complete_compute(void *stripe_head_ref)
1255 {
1256         struct stripe_head *sh = stripe_head_ref;
1257
1258         pr_debug("%s: stripe %llu\n", __func__,
1259                 (unsigned long long)sh->sector);
1260
1261         /* mark the computed target(s) as uptodate */
1262         mark_target_uptodate(sh, sh->ops.target);
1263         mark_target_uptodate(sh, sh->ops.target2);
1264
1265         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1266         if (sh->check_state == check_state_compute_run)
1267                 sh->check_state = check_state_compute_result;
1268         set_bit(STRIPE_HANDLE, &sh->state);
1269         release_stripe(sh);
1270 }
1271
1272 /* return a pointer to the address conversion region of the scribble buffer */
1273 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1274                                  struct raid5_percpu *percpu, int i)
1275 {
1276         void *addr;
1277
1278         addr = flex_array_get(percpu->scribble, i);
1279         return addr + sizeof(struct page *) * (sh->disks + 2);
1280 }
1281
1282 /* return a pointer to the address conversion region of the scribble buffer */
1283 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1284 {
1285         void *addr;
1286
1287         addr = flex_array_get(percpu->scribble, i);
1288         return addr;
1289 }
1290
1291 static struct dma_async_tx_descriptor *
1292 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1293 {
1294         int disks = sh->disks;
1295         struct page **xor_srcs = to_addr_page(percpu, 0);
1296         int target = sh->ops.target;
1297         struct r5dev *tgt = &sh->dev[target];
1298         struct page *xor_dest = tgt->page;
1299         int count = 0;
1300         struct dma_async_tx_descriptor *tx;
1301         struct async_submit_ctl submit;
1302         int i;
1303
1304         BUG_ON(sh->batch_head);
1305
1306         pr_debug("%s: stripe %llu block: %d\n",
1307                 __func__, (unsigned long long)sh->sector, target);
1308         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1309
1310         for (i = disks; i--; )
1311                 if (i != target)
1312                         xor_srcs[count++] = sh->dev[i].page;
1313
1314         atomic_inc(&sh->count);
1315
1316         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1317                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1318         if (unlikely(count == 1))
1319                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1320         else
1321                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1322
1323         return tx;
1324 }
1325
1326 /* set_syndrome_sources - populate source buffers for gen_syndrome
1327  * @srcs - (struct page *) array of size sh->disks
1328  * @sh - stripe_head to parse
1329  *
1330  * Populates srcs in proper layout order for the stripe and returns the
1331  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1332  * destination buffer is recorded in srcs[count] and the Q destination
1333  * is recorded in srcs[count+1]].
1334  */
1335 static int set_syndrome_sources(struct page **srcs,
1336                                 struct stripe_head *sh,
1337                                 int srctype)
1338 {
1339         int disks = sh->disks;
1340         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1341         int d0_idx = raid6_d0(sh);
1342         int count;
1343         int i;
1344
1345         for (i = 0; i < disks; i++)
1346                 srcs[i] = NULL;
1347
1348         count = 0;
1349         i = d0_idx;
1350         do {
1351                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1352                 struct r5dev *dev = &sh->dev[i];
1353
1354                 if (i == sh->qd_idx || i == sh->pd_idx ||
1355                     (srctype == SYNDROME_SRC_ALL) ||
1356                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1357                      test_bit(R5_Wantdrain, &dev->flags)) ||
1358                     (srctype == SYNDROME_SRC_WRITTEN &&
1359                      dev->written))
1360                         srcs[slot] = sh->dev[i].page;
1361                 i = raid6_next_disk(i, disks);
1362         } while (i != d0_idx);
1363
1364         return syndrome_disks;
1365 }
1366
1367 static struct dma_async_tx_descriptor *
1368 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1369 {
1370         int disks = sh->disks;
1371         struct page **blocks = to_addr_page(percpu, 0);
1372         int target;
1373         int qd_idx = sh->qd_idx;
1374         struct dma_async_tx_descriptor *tx;
1375         struct async_submit_ctl submit;
1376         struct r5dev *tgt;
1377         struct page *dest;
1378         int i;
1379         int count;
1380
1381         BUG_ON(sh->batch_head);
1382         if (sh->ops.target < 0)
1383                 target = sh->ops.target2;
1384         else if (sh->ops.target2 < 0)
1385                 target = sh->ops.target;
1386         else
1387                 /* we should only have one valid target */
1388                 BUG();
1389         BUG_ON(target < 0);
1390         pr_debug("%s: stripe %llu block: %d\n",
1391                 __func__, (unsigned long long)sh->sector, target);
1392
1393         tgt = &sh->dev[target];
1394         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1395         dest = tgt->page;
1396
1397         atomic_inc(&sh->count);
1398
1399         if (target == qd_idx) {
1400                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1401                 blocks[count] = NULL; /* regenerating p is not necessary */
1402                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1403                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1404                                   ops_complete_compute, sh,
1405                                   to_addr_conv(sh, percpu, 0));
1406                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1407         } else {
1408                 /* Compute any data- or p-drive using XOR */
1409                 count = 0;
1410                 for (i = disks; i-- ; ) {
1411                         if (i == target || i == qd_idx)
1412                                 continue;
1413                         blocks[count++] = sh->dev[i].page;
1414                 }
1415
1416                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1417                                   NULL, ops_complete_compute, sh,
1418                                   to_addr_conv(sh, percpu, 0));
1419                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1420         }
1421
1422         return tx;
1423 }
1424
1425 static struct dma_async_tx_descriptor *
1426 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1427 {
1428         int i, count, disks = sh->disks;
1429         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1430         int d0_idx = raid6_d0(sh);
1431         int faila = -1, failb = -1;
1432         int target = sh->ops.target;
1433         int target2 = sh->ops.target2;
1434         struct r5dev *tgt = &sh->dev[target];
1435         struct r5dev *tgt2 = &sh->dev[target2];
1436         struct dma_async_tx_descriptor *tx;
1437         struct page **blocks = to_addr_page(percpu, 0);
1438         struct async_submit_ctl submit;
1439
1440         BUG_ON(sh->batch_head);
1441         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1442                  __func__, (unsigned long long)sh->sector, target, target2);
1443         BUG_ON(target < 0 || target2 < 0);
1444         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1445         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1446
1447         /* we need to open-code set_syndrome_sources to handle the
1448          * slot number conversion for 'faila' and 'failb'
1449          */
1450         for (i = 0; i < disks ; i++)
1451                 blocks[i] = NULL;
1452         count = 0;
1453         i = d0_idx;
1454         do {
1455                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1456
1457                 blocks[slot] = sh->dev[i].page;
1458
1459                 if (i == target)
1460                         faila = slot;
1461                 if (i == target2)
1462                         failb = slot;
1463                 i = raid6_next_disk(i, disks);
1464         } while (i != d0_idx);
1465
1466         BUG_ON(faila == failb);
1467         if (failb < faila)
1468                 swap(faila, failb);
1469         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1470                  __func__, (unsigned long long)sh->sector, faila, failb);
1471
1472         atomic_inc(&sh->count);
1473
1474         if (failb == syndrome_disks+1) {
1475                 /* Q disk is one of the missing disks */
1476                 if (faila == syndrome_disks) {
1477                         /* Missing P+Q, just recompute */
1478                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1479                                           ops_complete_compute, sh,
1480                                           to_addr_conv(sh, percpu, 0));
1481                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1482                                                   STRIPE_SIZE, &submit);
1483                 } else {
1484                         struct page *dest;
1485                         int data_target;
1486                         int qd_idx = sh->qd_idx;
1487
1488                         /* Missing D+Q: recompute D from P, then recompute Q */
1489                         if (target == qd_idx)
1490                                 data_target = target2;
1491                         else
1492                                 data_target = target;
1493
1494                         count = 0;
1495                         for (i = disks; i-- ; ) {
1496                                 if (i == data_target || i == qd_idx)
1497                                         continue;
1498                                 blocks[count++] = sh->dev[i].page;
1499                         }
1500                         dest = sh->dev[data_target].page;
1501                         init_async_submit(&submit,
1502                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1503                                           NULL, NULL, NULL,
1504                                           to_addr_conv(sh, percpu, 0));
1505                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1506                                        &submit);
1507
1508                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1509                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1510                                           ops_complete_compute, sh,
1511                                           to_addr_conv(sh, percpu, 0));
1512                         return async_gen_syndrome(blocks, 0, count+2,
1513                                                   STRIPE_SIZE, &submit);
1514                 }
1515         } else {
1516                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1517                                   ops_complete_compute, sh,
1518                                   to_addr_conv(sh, percpu, 0));
1519                 if (failb == syndrome_disks) {
1520                         /* We're missing D+P. */
1521                         return async_raid6_datap_recov(syndrome_disks+2,
1522                                                        STRIPE_SIZE, faila,
1523                                                        blocks, &submit);
1524                 } else {
1525                         /* We're missing D+D. */
1526                         return async_raid6_2data_recov(syndrome_disks+2,
1527                                                        STRIPE_SIZE, faila, failb,
1528                                                        blocks, &submit);
1529                 }
1530         }
1531 }
1532
1533 static void ops_complete_prexor(void *stripe_head_ref)
1534 {
1535         struct stripe_head *sh = stripe_head_ref;
1536
1537         pr_debug("%s: stripe %llu\n", __func__,
1538                 (unsigned long long)sh->sector);
1539 }
1540
1541 static struct dma_async_tx_descriptor *
1542 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1543                 struct dma_async_tx_descriptor *tx)
1544 {
1545         int disks = sh->disks;
1546         struct page **xor_srcs = to_addr_page(percpu, 0);
1547         int count = 0, pd_idx = sh->pd_idx, i;
1548         struct async_submit_ctl submit;
1549
1550         /* existing parity data subtracted */
1551         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1552
1553         BUG_ON(sh->batch_head);
1554         pr_debug("%s: stripe %llu\n", __func__,
1555                 (unsigned long long)sh->sector);
1556
1557         for (i = disks; i--; ) {
1558                 struct r5dev *dev = &sh->dev[i];
1559                 /* Only process blocks that are known to be uptodate */
1560                 if (test_bit(R5_Wantdrain, &dev->flags))
1561                         xor_srcs[count++] = dev->page;
1562         }
1563
1564         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1565                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1566         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1567
1568         return tx;
1569 }
1570
1571 static struct dma_async_tx_descriptor *
1572 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1573                 struct dma_async_tx_descriptor *tx)
1574 {
1575         struct page **blocks = to_addr_page(percpu, 0);
1576         int count;
1577         struct async_submit_ctl submit;
1578
1579         pr_debug("%s: stripe %llu\n", __func__,
1580                 (unsigned long long)sh->sector);
1581
1582         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1583
1584         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1585                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1586         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1587
1588         return tx;
1589 }
1590
1591 static struct dma_async_tx_descriptor *
1592 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1593 {
1594         int disks = sh->disks;
1595         int i;
1596         struct stripe_head *head_sh = sh;
1597
1598         pr_debug("%s: stripe %llu\n", __func__,
1599                 (unsigned long long)sh->sector);
1600
1601         for (i = disks; i--; ) {
1602                 struct r5dev *dev;
1603                 struct bio *chosen;
1604
1605                 sh = head_sh;
1606                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1607                         struct bio *wbi;
1608
1609 again:
1610                         dev = &sh->dev[i];
1611                         spin_lock_irq(&sh->stripe_lock);
1612                         chosen = dev->towrite;
1613                         dev->towrite = NULL;
1614                         sh->overwrite_disks = 0;
1615                         BUG_ON(dev->written);
1616                         wbi = dev->written = chosen;
1617                         spin_unlock_irq(&sh->stripe_lock);
1618                         WARN_ON(dev->page != dev->orig_page);
1619
1620                         while (wbi && wbi->bi_iter.bi_sector <
1621                                 dev->sector + STRIPE_SECTORS) {
1622                                 if (wbi->bi_rw & REQ_FUA)
1623                                         set_bit(R5_WantFUA, &dev->flags);
1624                                 if (wbi->bi_rw & REQ_SYNC)
1625                                         set_bit(R5_SyncIO, &dev->flags);
1626                                 if (wbi->bi_rw & REQ_DISCARD)
1627                                         set_bit(R5_Discard, &dev->flags);
1628                                 else {
1629                                         tx = async_copy_data(1, wbi, &dev->page,
1630                                                 dev->sector, tx, sh);
1631                                         if (dev->page != dev->orig_page) {
1632                                                 set_bit(R5_SkipCopy, &dev->flags);
1633                                                 clear_bit(R5_UPTODATE, &dev->flags);
1634                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1635                                         }
1636                                 }
1637                                 wbi = r5_next_bio(wbi, dev->sector);
1638                         }
1639
1640                         if (head_sh->batch_head) {
1641                                 sh = list_first_entry(&sh->batch_list,
1642                                                       struct stripe_head,
1643                                                       batch_list);
1644                                 if (sh == head_sh)
1645                                         continue;
1646                                 goto again;
1647                         }
1648                 }
1649         }
1650
1651         return tx;
1652 }
1653
1654 static void ops_complete_reconstruct(void *stripe_head_ref)
1655 {
1656         struct stripe_head *sh = stripe_head_ref;
1657         int disks = sh->disks;
1658         int pd_idx = sh->pd_idx;
1659         int qd_idx = sh->qd_idx;
1660         int i;
1661         bool fua = false, sync = false, discard = false;
1662
1663         pr_debug("%s: stripe %llu\n", __func__,
1664                 (unsigned long long)sh->sector);
1665
1666         for (i = disks; i--; ) {
1667                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1668                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1669                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1670         }
1671
1672         for (i = disks; i--; ) {
1673                 struct r5dev *dev = &sh->dev[i];
1674
1675                 if (dev->written || i == pd_idx || i == qd_idx) {
1676                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1677                                 set_bit(R5_UPTODATE, &dev->flags);
1678                         if (fua)
1679                                 set_bit(R5_WantFUA, &dev->flags);
1680                         if (sync)
1681                                 set_bit(R5_SyncIO, &dev->flags);
1682                 }
1683         }
1684
1685         if (sh->reconstruct_state == reconstruct_state_drain_run)
1686                 sh->reconstruct_state = reconstruct_state_drain_result;
1687         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1688                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1689         else {
1690                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1691                 sh->reconstruct_state = reconstruct_state_result;
1692         }
1693
1694         set_bit(STRIPE_HANDLE, &sh->state);
1695         release_stripe(sh);
1696 }
1697
1698 static void
1699 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1700                      struct dma_async_tx_descriptor *tx)
1701 {
1702         int disks = sh->disks;
1703         struct page **xor_srcs;
1704         struct async_submit_ctl submit;
1705         int count, pd_idx = sh->pd_idx, i;
1706         struct page *xor_dest;
1707         int prexor = 0;
1708         unsigned long flags;
1709         int j = 0;
1710         struct stripe_head *head_sh = sh;
1711         int last_stripe;
1712
1713         pr_debug("%s: stripe %llu\n", __func__,
1714                 (unsigned long long)sh->sector);
1715
1716         for (i = 0; i < sh->disks; i++) {
1717                 if (pd_idx == i)
1718                         continue;
1719                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1720                         break;
1721         }
1722         if (i >= sh->disks) {
1723                 atomic_inc(&sh->count);
1724                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1725                 ops_complete_reconstruct(sh);
1726                 return;
1727         }
1728 again:
1729         count = 0;
1730         xor_srcs = to_addr_page(percpu, j);
1731         /* check if prexor is active which means only process blocks
1732          * that are part of a read-modify-write (written)
1733          */
1734         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1735                 prexor = 1;
1736                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1737                 for (i = disks; i--; ) {
1738                         struct r5dev *dev = &sh->dev[i];
1739                         if (head_sh->dev[i].written)
1740                                 xor_srcs[count++] = dev->page;
1741                 }
1742         } else {
1743                 xor_dest = sh->dev[pd_idx].page;
1744                 for (i = disks; i--; ) {
1745                         struct r5dev *dev = &sh->dev[i];
1746                         if (i != pd_idx)
1747                                 xor_srcs[count++] = dev->page;
1748                 }
1749         }
1750
1751         /* 1/ if we prexor'd then the dest is reused as a source
1752          * 2/ if we did not prexor then we are redoing the parity
1753          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1754          * for the synchronous xor case
1755          */
1756         last_stripe = !head_sh->batch_head ||
1757                 list_first_entry(&sh->batch_list,
1758                                  struct stripe_head, batch_list) == head_sh;
1759         if (last_stripe) {
1760                 flags = ASYNC_TX_ACK |
1761                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1762
1763                 atomic_inc(&head_sh->count);
1764                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1765                                   to_addr_conv(sh, percpu, j));
1766         } else {
1767                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1768                 init_async_submit(&submit, flags, tx, NULL, NULL,
1769                                   to_addr_conv(sh, percpu, j));
1770         }
1771
1772         if (unlikely(count == 1))
1773                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1774         else
1775                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1776         if (!last_stripe) {
1777                 j++;
1778                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1779                                       batch_list);
1780                 goto again;
1781         }
1782 }
1783
1784 static void
1785 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1786                      struct dma_async_tx_descriptor *tx)
1787 {
1788         struct async_submit_ctl submit;
1789         struct page **blocks;
1790         int count, i, j = 0;
1791         struct stripe_head *head_sh = sh;
1792         int last_stripe;
1793         int synflags;
1794         unsigned long txflags;
1795
1796         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1797
1798         for (i = 0; i < sh->disks; i++) {
1799                 if (sh->pd_idx == i || sh->qd_idx == i)
1800                         continue;
1801                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1802                         break;
1803         }
1804         if (i >= sh->disks) {
1805                 atomic_inc(&sh->count);
1806                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1807                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1808                 ops_complete_reconstruct(sh);
1809                 return;
1810         }
1811
1812 again:
1813         blocks = to_addr_page(percpu, j);
1814
1815         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1816                 synflags = SYNDROME_SRC_WRITTEN;
1817                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1818         } else {
1819                 synflags = SYNDROME_SRC_ALL;
1820                 txflags = ASYNC_TX_ACK;
1821         }
1822
1823         count = set_syndrome_sources(blocks, sh, synflags);
1824         last_stripe = !head_sh->batch_head ||
1825                 list_first_entry(&sh->batch_list,
1826                                  struct stripe_head, batch_list) == head_sh;
1827
1828         if (last_stripe) {
1829                 atomic_inc(&head_sh->count);
1830                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1831                                   head_sh, to_addr_conv(sh, percpu, j));
1832         } else
1833                 init_async_submit(&submit, 0, tx, NULL, NULL,
1834                                   to_addr_conv(sh, percpu, j));
1835         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1836         if (!last_stripe) {
1837                 j++;
1838                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1839                                       batch_list);
1840                 goto again;
1841         }
1842 }
1843
1844 static void ops_complete_check(void *stripe_head_ref)
1845 {
1846         struct stripe_head *sh = stripe_head_ref;
1847
1848         pr_debug("%s: stripe %llu\n", __func__,
1849                 (unsigned long long)sh->sector);
1850
1851         sh->check_state = check_state_check_result;
1852         set_bit(STRIPE_HANDLE, &sh->state);
1853         release_stripe(sh);
1854 }
1855
1856 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1857 {
1858         int disks = sh->disks;
1859         int pd_idx = sh->pd_idx;
1860         int qd_idx = sh->qd_idx;
1861         struct page *xor_dest;
1862         struct page **xor_srcs = to_addr_page(percpu, 0);
1863         struct dma_async_tx_descriptor *tx;
1864         struct async_submit_ctl submit;
1865         int count;
1866         int i;
1867
1868         pr_debug("%s: stripe %llu\n", __func__,
1869                 (unsigned long long)sh->sector);
1870
1871         BUG_ON(sh->batch_head);
1872         count = 0;
1873         xor_dest = sh->dev[pd_idx].page;
1874         xor_srcs[count++] = xor_dest;
1875         for (i = disks; i--; ) {
1876                 if (i == pd_idx || i == qd_idx)
1877                         continue;
1878                 xor_srcs[count++] = sh->dev[i].page;
1879         }
1880
1881         init_async_submit(&submit, 0, NULL, NULL, NULL,
1882                           to_addr_conv(sh, percpu, 0));
1883         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1884                            &sh->ops.zero_sum_result, &submit);
1885
1886         atomic_inc(&sh->count);
1887         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1888         tx = async_trigger_callback(&submit);
1889 }
1890
1891 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1892 {
1893         struct page **srcs = to_addr_page(percpu, 0);
1894         struct async_submit_ctl submit;
1895         int count;
1896
1897         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1898                 (unsigned long long)sh->sector, checkp);
1899
1900         BUG_ON(sh->batch_head);
1901         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1902         if (!checkp)
1903                 srcs[count] = NULL;
1904
1905         atomic_inc(&sh->count);
1906         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1907                           sh, to_addr_conv(sh, percpu, 0));
1908         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1909                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1910 }
1911
1912 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1913 {
1914         int overlap_clear = 0, i, disks = sh->disks;
1915         struct dma_async_tx_descriptor *tx = NULL;
1916         struct r5conf *conf = sh->raid_conf;
1917         int level = conf->level;
1918         struct raid5_percpu *percpu;
1919         unsigned long cpu;
1920
1921         cpu = get_cpu();
1922         percpu = per_cpu_ptr(conf->percpu, cpu);
1923         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1924                 ops_run_biofill(sh);
1925                 overlap_clear++;
1926         }
1927
1928         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1929                 if (level < 6)
1930                         tx = ops_run_compute5(sh, percpu);
1931                 else {
1932                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1933                                 tx = ops_run_compute6_1(sh, percpu);
1934                         else
1935                                 tx = ops_run_compute6_2(sh, percpu);
1936                 }
1937                 /* terminate the chain if reconstruct is not set to be run */
1938                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1939                         async_tx_ack(tx);
1940         }
1941
1942         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1943                 if (level < 6)
1944                         tx = ops_run_prexor5(sh, percpu, tx);
1945                 else
1946                         tx = ops_run_prexor6(sh, percpu, tx);
1947         }
1948
1949         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1950                 tx = ops_run_biodrain(sh, tx);
1951                 overlap_clear++;
1952         }
1953
1954         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1955                 if (level < 6)
1956                         ops_run_reconstruct5(sh, percpu, tx);
1957                 else
1958                         ops_run_reconstruct6(sh, percpu, tx);
1959         }
1960
1961         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1962                 if (sh->check_state == check_state_run)
1963                         ops_run_check_p(sh, percpu);
1964                 else if (sh->check_state == check_state_run_q)
1965                         ops_run_check_pq(sh, percpu, 0);
1966                 else if (sh->check_state == check_state_run_pq)
1967                         ops_run_check_pq(sh, percpu, 1);
1968                 else
1969                         BUG();
1970         }
1971
1972         if (overlap_clear && !sh->batch_head)
1973                 for (i = disks; i--; ) {
1974                         struct r5dev *dev = &sh->dev[i];
1975                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1976                                 wake_up(&sh->raid_conf->wait_for_overlap);
1977                 }
1978         put_cpu();
1979 }
1980
1981 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1982 {
1983         struct stripe_head *sh;
1984
1985         sh = kmem_cache_zalloc(sc, gfp);
1986         if (sh) {
1987                 spin_lock_init(&sh->stripe_lock);
1988                 spin_lock_init(&sh->batch_lock);
1989                 INIT_LIST_HEAD(&sh->batch_list);
1990                 INIT_LIST_HEAD(&sh->lru);
1991                 atomic_set(&sh->count, 1);
1992         }
1993         return sh;
1994 }
1995 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1996 {
1997         struct stripe_head *sh;
1998
1999         sh = alloc_stripe(conf->slab_cache, gfp);
2000         if (!sh)
2001                 return 0;
2002
2003         sh->raid_conf = conf;
2004
2005         if (grow_buffers(sh, gfp)) {
2006                 shrink_buffers(sh);
2007                 kmem_cache_free(conf->slab_cache, sh);
2008                 return 0;
2009         }
2010         sh->hash_lock_index =
2011                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2012         /* we just created an active stripe so... */
2013         atomic_inc(&conf->active_stripes);
2014
2015         release_stripe(sh);
2016         conf->max_nr_stripes++;
2017         return 1;
2018 }
2019
2020 static int grow_stripes(struct r5conf *conf, int num)
2021 {
2022         struct kmem_cache *sc;
2023         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2024
2025         if (conf->mddev->gendisk)
2026                 sprintf(conf->cache_name[0],
2027                         "raid%d-%s", conf->level, mdname(conf->mddev));
2028         else
2029                 sprintf(conf->cache_name[0],
2030                         "raid%d-%p", conf->level, conf->mddev);
2031         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2032
2033         conf->active_name = 0;
2034         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2035                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2036                                0, 0, NULL);
2037         if (!sc)
2038                 return 1;
2039         conf->slab_cache = sc;
2040         conf->pool_size = devs;
2041         while (num--)
2042                 if (!grow_one_stripe(conf, GFP_KERNEL))
2043                         return 1;
2044
2045         return 0;
2046 }
2047
2048 /**
2049  * scribble_len - return the required size of the scribble region
2050  * @num - total number of disks in the array
2051  *
2052  * The size must be enough to contain:
2053  * 1/ a struct page pointer for each device in the array +2
2054  * 2/ room to convert each entry in (1) to its corresponding dma
2055  *    (dma_map_page()) or page (page_address()) address.
2056  *
2057  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2058  * calculate over all devices (not just the data blocks), using zeros in place
2059  * of the P and Q blocks.
2060  */
2061 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2062 {
2063         struct flex_array *ret;
2064         size_t len;
2065
2066         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2067         ret = flex_array_alloc(len, cnt, flags);
2068         if (!ret)
2069                 return NULL;
2070         /* always prealloc all elements, so no locking is required */
2071         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2072                 flex_array_free(ret);
2073                 return NULL;
2074         }
2075         return ret;
2076 }
2077
2078 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2079 {
2080         unsigned long cpu;
2081         int err = 0;
2082
2083         mddev_suspend(conf->mddev);
2084         get_online_cpus();
2085         for_each_present_cpu(cpu) {
2086                 struct raid5_percpu *percpu;
2087                 struct flex_array *scribble;
2088
2089                 percpu = per_cpu_ptr(conf->percpu, cpu);
2090                 scribble = scribble_alloc(new_disks,
2091                                           new_sectors / STRIPE_SECTORS,
2092                                           GFP_NOIO);
2093
2094                 if (scribble) {
2095                         flex_array_free(percpu->scribble);
2096                         percpu->scribble = scribble;
2097                 } else {
2098                         err = -ENOMEM;
2099                         break;
2100                 }
2101         }
2102         put_online_cpus();
2103         mddev_resume(conf->mddev);
2104         return err;
2105 }
2106
2107 static int resize_stripes(struct r5conf *conf, int newsize)
2108 {
2109         /* Make all the stripes able to hold 'newsize' devices.
2110          * New slots in each stripe get 'page' set to a new page.
2111          *
2112          * This happens in stages:
2113          * 1/ create a new kmem_cache and allocate the required number of
2114          *    stripe_heads.
2115          * 2/ gather all the old stripe_heads and transfer the pages across
2116          *    to the new stripe_heads.  This will have the side effect of
2117          *    freezing the array as once all stripe_heads have been collected,
2118          *    no IO will be possible.  Old stripe heads are freed once their
2119          *    pages have been transferred over, and the old kmem_cache is
2120          *    freed when all stripes are done.
2121          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2122          *    we simple return a failre status - no need to clean anything up.
2123          * 4/ allocate new pages for the new slots in the new stripe_heads.
2124          *    If this fails, we don't bother trying the shrink the
2125          *    stripe_heads down again, we just leave them as they are.
2126          *    As each stripe_head is processed the new one is released into
2127          *    active service.
2128          *
2129          * Once step2 is started, we cannot afford to wait for a write,
2130          * so we use GFP_NOIO allocations.
2131          */
2132         struct stripe_head *osh, *nsh;
2133         LIST_HEAD(newstripes);
2134         struct disk_info *ndisks;
2135         int err;
2136         struct kmem_cache *sc;
2137         int i;
2138         int hash, cnt;
2139
2140         if (newsize <= conf->pool_size)
2141                 return 0; /* never bother to shrink */
2142
2143         err = md_allow_write(conf->mddev);
2144         if (err)
2145                 return err;
2146
2147         /* Step 1 */
2148         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2149                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2150                                0, 0, NULL);
2151         if (!sc)
2152                 return -ENOMEM;
2153
2154         for (i = conf->max_nr_stripes; i; i--) {
2155                 nsh = alloc_stripe(sc, GFP_KERNEL);
2156                 if (!nsh)
2157                         break;
2158
2159                 nsh->raid_conf = conf;
2160                 list_add(&nsh->lru, &newstripes);
2161         }
2162         if (i) {
2163                 /* didn't get enough, give up */
2164                 while (!list_empty(&newstripes)) {
2165                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2166                         list_del(&nsh->lru);
2167                         kmem_cache_free(sc, nsh);
2168                 }
2169                 kmem_cache_destroy(sc);
2170                 return -ENOMEM;
2171         }
2172         /* Step 2 - Must use GFP_NOIO now.
2173          * OK, we have enough stripes, start collecting inactive
2174          * stripes and copying them over
2175          */
2176         hash = 0;
2177         cnt = 0;
2178         list_for_each_entry(nsh, &newstripes, lru) {
2179                 lock_device_hash_lock(conf, hash);
2180                 wait_event_cmd(conf->wait_for_stripe,
2181                                     !list_empty(conf->inactive_list + hash),
2182                                     unlock_device_hash_lock(conf, hash),
2183                                     lock_device_hash_lock(conf, hash));
2184                 osh = get_free_stripe(conf, hash);
2185                 unlock_device_hash_lock(conf, hash);
2186
2187                 for(i=0; i<conf->pool_size; i++) {
2188                         nsh->dev[i].page = osh->dev[i].page;
2189                         nsh->dev[i].orig_page = osh->dev[i].page;
2190                 }
2191                 nsh->hash_lock_index = hash;
2192                 kmem_cache_free(conf->slab_cache, osh);
2193                 cnt++;
2194                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2195                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2196                         hash++;
2197                         cnt = 0;
2198                 }
2199         }
2200         kmem_cache_destroy(conf->slab_cache);
2201
2202         /* Step 3.
2203          * At this point, we are holding all the stripes so the array
2204          * is completely stalled, so now is a good time to resize
2205          * conf->disks and the scribble region
2206          */
2207         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2208         if (ndisks) {
2209                 for (i=0; i<conf->raid_disks; i++)
2210                         ndisks[i] = conf->disks[i];
2211                 kfree(conf->disks);
2212                 conf->disks = ndisks;
2213         } else
2214                 err = -ENOMEM;
2215
2216         /* Step 4, return new stripes to service */
2217         while(!list_empty(&newstripes)) {
2218                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2219                 list_del_init(&nsh->lru);
2220
2221                 for (i=conf->raid_disks; i < newsize; i++)
2222                         if (nsh->dev[i].page == NULL) {
2223                                 struct page *p = alloc_page(GFP_NOIO);
2224                                 nsh->dev[i].page = p;
2225                                 nsh->dev[i].orig_page = p;
2226                                 if (!p)
2227                                         err = -ENOMEM;
2228                         }
2229                 release_stripe(nsh);
2230         }
2231         /* critical section pass, GFP_NOIO no longer needed */
2232
2233         conf->slab_cache = sc;
2234         conf->active_name = 1-conf->active_name;
2235         if (!err)
2236                 conf->pool_size = newsize;
2237         return err;
2238 }
2239
2240 static int drop_one_stripe(struct r5conf *conf)
2241 {
2242         struct stripe_head *sh;
2243         int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
2244
2245         spin_lock_irq(conf->hash_locks + hash);
2246         sh = get_free_stripe(conf, hash);
2247         spin_unlock_irq(conf->hash_locks + hash);
2248         if (!sh)
2249                 return 0;
2250         BUG_ON(atomic_read(&sh->count));
2251         shrink_buffers(sh);
2252         kmem_cache_free(conf->slab_cache, sh);
2253         atomic_dec(&conf->active_stripes);
2254         conf->max_nr_stripes--;
2255         return 1;
2256 }
2257
2258 static void shrink_stripes(struct r5conf *conf)
2259 {
2260         while (conf->max_nr_stripes &&
2261                drop_one_stripe(conf))
2262                 ;
2263
2264         if (conf->slab_cache)
2265                 kmem_cache_destroy(conf->slab_cache);
2266         conf->slab_cache = NULL;
2267 }
2268
2269 static void raid5_end_read_request(struct bio * bi, int error)
2270 {
2271         struct stripe_head *sh = bi->bi_private;
2272         struct r5conf *conf = sh->raid_conf;
2273         int disks = sh->disks, i;
2274         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2275         char b[BDEVNAME_SIZE];
2276         struct md_rdev *rdev = NULL;
2277         sector_t s;
2278
2279         for (i=0 ; i<disks; i++)
2280                 if (bi == &sh->dev[i].req)
2281                         break;
2282
2283         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2284                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2285                 uptodate);
2286         if (i == disks) {
2287                 BUG();
2288                 return;
2289         }
2290         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2291                 /* If replacement finished while this request was outstanding,
2292                  * 'replacement' might be NULL already.
2293                  * In that case it moved down to 'rdev'.
2294                  * rdev is not removed until all requests are finished.
2295                  */
2296                 rdev = conf->disks[i].replacement;
2297         if (!rdev)
2298                 rdev = conf->disks[i].rdev;
2299
2300         if (use_new_offset(conf, sh))
2301                 s = sh->sector + rdev->new_data_offset;
2302         else
2303                 s = sh->sector + rdev->data_offset;
2304         if (uptodate) {
2305                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2306                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2307                         /* Note that this cannot happen on a
2308                          * replacement device.  We just fail those on
2309                          * any error
2310                          */
2311                         printk_ratelimited(
2312                                 KERN_INFO
2313                                 "md/raid:%s: read error corrected"
2314                                 " (%lu sectors at %llu on %s)\n",
2315                                 mdname(conf->mddev), STRIPE_SECTORS,
2316                                 (unsigned long long)s,
2317                                 bdevname(rdev->bdev, b));
2318                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2319                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2320                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2321                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2322                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2323
2324                 if (atomic_read(&rdev->read_errors))
2325                         atomic_set(&rdev->read_errors, 0);
2326         } else {
2327                 const char *bdn = bdevname(rdev->bdev, b);
2328                 int retry = 0;
2329                 int set_bad = 0;
2330
2331                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2332                 atomic_inc(&rdev->read_errors);
2333                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2334                         printk_ratelimited(
2335                                 KERN_WARNING
2336                                 "md/raid:%s: read error on replacement device "
2337                                 "(sector %llu on %s).\n",
2338                                 mdname(conf->mddev),
2339                                 (unsigned long long)s,
2340                                 bdn);
2341                 else if (conf->mddev->degraded >= conf->max_degraded) {
2342                         set_bad = 1;
2343                         printk_ratelimited(
2344                                 KERN_WARNING
2345                                 "md/raid:%s: read error not correctable "
2346                                 "(sector %llu on %s).\n",
2347                                 mdname(conf->mddev),
2348                                 (unsigned long long)s,
2349                                 bdn);
2350                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2351                         /* Oh, no!!! */
2352                         set_bad = 1;
2353                         printk_ratelimited(
2354                                 KERN_WARNING
2355                                 "md/raid:%s: read error NOT corrected!! "
2356                                 "(sector %llu on %s).\n",
2357                                 mdname(conf->mddev),
2358                                 (unsigned long long)s,
2359                                 bdn);
2360                 } else if (atomic_read(&rdev->read_errors)
2361                          > conf->max_nr_stripes)
2362                         printk(KERN_WARNING
2363                                "md/raid:%s: Too many read errors, failing device %s.\n",
2364                                mdname(conf->mddev), bdn);
2365                 else
2366                         retry = 1;
2367                 if (set_bad && test_bit(In_sync, &rdev->flags)
2368                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2369                         retry = 1;
2370                 if (retry)
2371                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2372                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2373                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2374                         } else
2375                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2376                 else {
2377                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2378                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2379                         if (!(set_bad
2380                               && test_bit(In_sync, &rdev->flags)
2381                               && rdev_set_badblocks(
2382                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2383                                 md_error(conf->mddev, rdev);
2384                 }
2385         }
2386         rdev_dec_pending(rdev, conf->mddev);
2387         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2388         set_bit(STRIPE_HANDLE, &sh->state);
2389         release_stripe(sh);
2390 }
2391
2392 static void raid5_end_write_request(struct bio *bi, int error)
2393 {
2394         struct stripe_head *sh = bi->bi_private;
2395         struct r5conf *conf = sh->raid_conf;
2396         int disks = sh->disks, i;
2397         struct md_rdev *uninitialized_var(rdev);
2398         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2399         sector_t first_bad;
2400         int bad_sectors;
2401         int replacement = 0;
2402
2403         for (i = 0 ; i < disks; i++) {
2404                 if (bi == &sh->dev[i].req) {
2405                         rdev = conf->disks[i].rdev;
2406                         break;
2407                 }
2408                 if (bi == &sh->dev[i].rreq) {
2409                         rdev = conf->disks[i].replacement;
2410                         if (rdev)
2411                                 replacement = 1;
2412                         else
2413                                 /* rdev was removed and 'replacement'
2414                                  * replaced it.  rdev is not removed
2415                                  * until all requests are finished.
2416                                  */
2417                                 rdev = conf->disks[i].rdev;
2418                         break;
2419                 }
2420         }
2421         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2422                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2423                 uptodate);
2424         if (i == disks) {
2425                 BUG();
2426                 return;
2427         }
2428
2429         if (replacement) {
2430                 if (!uptodate)
2431                         md_error(conf->mddev, rdev);
2432                 else if (is_badblock(rdev, sh->sector,
2433                                      STRIPE_SECTORS,
2434                                      &first_bad, &bad_sectors))
2435                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2436         } else {
2437                 if (!uptodate) {
2438                         set_bit(STRIPE_DEGRADED, &sh->state);
2439                         set_bit(WriteErrorSeen, &rdev->flags);
2440                         set_bit(R5_WriteError, &sh->dev[i].flags);
2441                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2442                                 set_bit(MD_RECOVERY_NEEDED,
2443                                         &rdev->mddev->recovery);
2444                 } else if (is_badblock(rdev, sh->sector,
2445                                        STRIPE_SECTORS,
2446                                        &first_bad, &bad_sectors)) {
2447                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2448                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2449                                 /* That was a successful write so make
2450                                  * sure it looks like we already did
2451                                  * a re-write.
2452                                  */
2453                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2454                 }
2455         }
2456         rdev_dec_pending(rdev, conf->mddev);
2457
2458         if (sh->batch_head && !uptodate && !replacement)
2459                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2460
2461         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2462                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2463         set_bit(STRIPE_HANDLE, &sh->state);
2464         release_stripe(sh);
2465
2466         if (sh->batch_head && sh != sh->batch_head)
2467                 release_stripe(sh->batch_head);
2468 }
2469
2470 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2471
2472 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2473 {
2474         struct r5dev *dev = &sh->dev[i];
2475
2476         bio_init(&dev->req);
2477         dev->req.bi_io_vec = &dev->vec;
2478         dev->req.bi_max_vecs = 1;
2479         dev->req.bi_private = sh;
2480
2481         bio_init(&dev->rreq);
2482         dev->rreq.bi_io_vec = &dev->rvec;
2483         dev->rreq.bi_max_vecs = 1;
2484         dev->rreq.bi_private = sh;
2485
2486         dev->flags = 0;
2487         dev->sector = compute_blocknr(sh, i, previous);
2488 }
2489
2490 static void error(struct mddev *mddev, struct md_rdev *rdev)
2491 {
2492         char b[BDEVNAME_SIZE];
2493         struct r5conf *conf = mddev->private;
2494         unsigned long flags;
2495         pr_debug("raid456: error called\n");
2496
2497         spin_lock_irqsave(&conf->device_lock, flags);
2498         clear_bit(In_sync, &rdev->flags);
2499         mddev->degraded = calc_degraded(conf);
2500         spin_unlock_irqrestore(&conf->device_lock, flags);
2501         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2502
2503         set_bit(Blocked, &rdev->flags);
2504         set_bit(Faulty, &rdev->flags);
2505         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2506         printk(KERN_ALERT
2507                "md/raid:%s: Disk failure on %s, disabling device.\n"
2508                "md/raid:%s: Operation continuing on %d devices.\n",
2509                mdname(mddev),
2510                bdevname(rdev->bdev, b),
2511                mdname(mddev),
2512                conf->raid_disks - mddev->degraded);
2513 }
2514
2515 /*
2516  * Input: a 'big' sector number,
2517  * Output: index of the data and parity disk, and the sector # in them.
2518  */
2519 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2520                                      int previous, int *dd_idx,
2521                                      struct stripe_head *sh)
2522 {
2523         sector_t stripe, stripe2;
2524         sector_t chunk_number;
2525         unsigned int chunk_offset;
2526         int pd_idx, qd_idx;
2527         int ddf_layout = 0;
2528         sector_t new_sector;
2529         int algorithm = previous ? conf->prev_algo
2530                                  : conf->algorithm;
2531         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2532                                          : conf->chunk_sectors;
2533         int raid_disks = previous ? conf->previous_raid_disks
2534                                   : conf->raid_disks;
2535         int data_disks = raid_disks - conf->max_degraded;
2536
2537         /* First compute the information on this sector */
2538
2539         /*
2540          * Compute the chunk number and the sector offset inside the chunk
2541          */
2542         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2543         chunk_number = r_sector;
2544
2545         /*
2546          * Compute the stripe number
2547          */
2548         stripe = chunk_number;
2549         *dd_idx = sector_div(stripe, data_disks);
2550         stripe2 = stripe;
2551         /*
2552          * Select the parity disk based on the user selected algorithm.
2553          */
2554         pd_idx = qd_idx = -1;
2555         switch(conf->level) {
2556         case 4:
2557                 pd_idx = data_disks;
2558                 break;
2559         case 5:
2560                 switch (algorithm) {
2561                 case ALGORITHM_LEFT_ASYMMETRIC:
2562                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2563                         if (*dd_idx >= pd_idx)
2564                                 (*dd_idx)++;
2565                         break;
2566                 case ALGORITHM_RIGHT_ASYMMETRIC:
2567                         pd_idx = sector_div(stripe2, raid_disks);
2568                         if (*dd_idx >= pd_idx)
2569                                 (*dd_idx)++;
2570                         break;
2571                 case ALGORITHM_LEFT_SYMMETRIC:
2572                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2573                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2574                         break;
2575                 case ALGORITHM_RIGHT_SYMMETRIC:
2576                         pd_idx = sector_div(stripe2, raid_disks);
2577                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2578                         break;
2579                 case ALGORITHM_PARITY_0:
2580                         pd_idx = 0;
2581                         (*dd_idx)++;
2582                         break;
2583                 case ALGORITHM_PARITY_N:
2584                         pd_idx = data_disks;
2585                         break;
2586                 default:
2587                         BUG();
2588                 }
2589                 break;
2590         case 6:
2591
2592                 switch (algorithm) {
2593                 case ALGORITHM_LEFT_ASYMMETRIC:
2594                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2595                         qd_idx = pd_idx + 1;
2596                         if (pd_idx == raid_disks-1) {
2597                                 (*dd_idx)++;    /* Q D D D P */
2598                                 qd_idx = 0;
2599                         } else if (*dd_idx >= pd_idx)
2600                                 (*dd_idx) += 2; /* D D P Q D */
2601                         break;
2602                 case ALGORITHM_RIGHT_ASYMMETRIC:
2603                         pd_idx = sector_div(stripe2, raid_disks);
2604                         qd_idx = pd_idx + 1;
2605                         if (pd_idx == raid_disks-1) {
2606                                 (*dd_idx)++;    /* Q D D D P */
2607                                 qd_idx = 0;
2608                         } else if (*dd_idx >= pd_idx)
2609                                 (*dd_idx) += 2; /* D D P Q D */
2610                         break;
2611                 case ALGORITHM_LEFT_SYMMETRIC:
2612                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2613                         qd_idx = (pd_idx + 1) % raid_disks;
2614                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2615                         break;
2616                 case ALGORITHM_RIGHT_SYMMETRIC:
2617                         pd_idx = sector_div(stripe2, raid_disks);
2618                         qd_idx = (pd_idx + 1) % raid_disks;
2619                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2620                         break;
2621
2622                 case ALGORITHM_PARITY_0:
2623                         pd_idx = 0;
2624                         qd_idx = 1;
2625                         (*dd_idx) += 2;
2626                         break;
2627                 case ALGORITHM_PARITY_N:
2628                         pd_idx = data_disks;
2629                         qd_idx = data_disks + 1;
2630                         break;
2631
2632                 case ALGORITHM_ROTATING_ZERO_RESTART:
2633                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2634                          * of blocks for computing Q is different.
2635                          */
2636                         pd_idx = sector_div(stripe2, raid_disks);
2637                         qd_idx = pd_idx + 1;
2638                         if (pd_idx == raid_disks-1) {
2639                                 (*dd_idx)++;    /* Q D D D P */
2640                                 qd_idx = 0;
2641                         } else if (*dd_idx >= pd_idx)
2642                                 (*dd_idx) += 2; /* D D P Q D */
2643                         ddf_layout = 1;
2644                         break;
2645
2646                 case ALGORITHM_ROTATING_N_RESTART:
2647                         /* Same a left_asymmetric, by first stripe is
2648                          * D D D P Q  rather than
2649                          * Q D D D P
2650                          */
2651                         stripe2 += 1;
2652                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2653                         qd_idx = pd_idx + 1;
2654                         if (pd_idx == raid_disks-1) {
2655                                 (*dd_idx)++;    /* Q D D D P */
2656                                 qd_idx = 0;
2657                         } else if (*dd_idx >= pd_idx)
2658                                 (*dd_idx) += 2; /* D D P Q D */
2659                         ddf_layout = 1;
2660                         break;
2661
2662                 case ALGORITHM_ROTATING_N_CONTINUE:
2663                         /* Same as left_symmetric but Q is before P */
2664                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2665                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2666                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2667                         ddf_layout = 1;
2668                         break;
2669
2670                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2671                         /* RAID5 left_asymmetric, with Q on last device */
2672                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2673                         if (*dd_idx >= pd_idx)
2674                                 (*dd_idx)++;
2675                         qd_idx = raid_disks - 1;
2676                         break;
2677
2678                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2679                         pd_idx = sector_div(stripe2, raid_disks-1);
2680                         if (*dd_idx >= pd_idx)
2681                                 (*dd_idx)++;
2682                         qd_idx = raid_disks - 1;
2683                         break;
2684
2685                 case ALGORITHM_LEFT_SYMMETRIC_6:
2686                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2687                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2688                         qd_idx = raid_disks - 1;
2689                         break;
2690
2691                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2692                         pd_idx = sector_div(stripe2, raid_disks-1);
2693                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2694                         qd_idx = raid_disks - 1;
2695                         break;
2696
2697                 case ALGORITHM_PARITY_0_6:
2698                         pd_idx = 0;
2699                         (*dd_idx)++;
2700                         qd_idx = raid_disks - 1;
2701                         break;
2702
2703                 default:
2704                         BUG();
2705                 }
2706                 break;
2707         }
2708
2709         if (sh) {
2710                 sh->pd_idx = pd_idx;
2711                 sh->qd_idx = qd_idx;
2712                 sh->ddf_layout = ddf_layout;
2713         }
2714         /*
2715          * Finally, compute the new sector number
2716          */
2717         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2718         return new_sector;
2719 }
2720
2721 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2722 {
2723         struct r5conf *conf = sh->raid_conf;
2724         int raid_disks = sh->disks;
2725         int data_disks = raid_disks - conf->max_degraded;
2726         sector_t new_sector = sh->sector, check;
2727         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2728                                          : conf->chunk_sectors;
2729         int algorithm = previous ? conf->prev_algo
2730                                  : conf->algorithm;
2731         sector_t stripe;
2732         int chunk_offset;
2733         sector_t chunk_number;
2734         int dummy1, dd_idx = i;
2735         sector_t r_sector;
2736         struct stripe_head sh2;
2737
2738         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2739         stripe = new_sector;
2740
2741         if (i == sh->pd_idx)
2742                 return 0;
2743         switch(conf->level) {
2744         case 4: break;
2745         case 5:
2746                 switch (algorithm) {
2747                 case ALGORITHM_LEFT_ASYMMETRIC:
2748                 case ALGORITHM_RIGHT_ASYMMETRIC:
2749                         if (i > sh->pd_idx)
2750                                 i--;
2751                         break;
2752                 case ALGORITHM_LEFT_SYMMETRIC:
2753                 case ALGORITHM_RIGHT_SYMMETRIC:
2754                         if (i < sh->pd_idx)
2755                                 i += raid_disks;
2756                         i -= (sh->pd_idx + 1);
2757                         break;
2758                 case ALGORITHM_PARITY_0:
2759                         i -= 1;
2760                         break;
2761                 case ALGORITHM_PARITY_N:
2762                         break;
2763                 default:
2764                         BUG();
2765                 }
2766                 break;
2767         case 6:
2768                 if (i == sh->qd_idx)
2769                         return 0; /* It is the Q disk */
2770                 switch (algorithm) {
2771                 case ALGORITHM_LEFT_ASYMMETRIC:
2772                 case ALGORITHM_RIGHT_ASYMMETRIC:
2773                 case ALGORITHM_ROTATING_ZERO_RESTART:
2774                 case ALGORITHM_ROTATING_N_RESTART:
2775                         if (sh->pd_idx == raid_disks-1)
2776                                 i--;    /* Q D D D P */
2777                         else if (i > sh->pd_idx)
2778                                 i -= 2; /* D D P Q D */
2779                         break;
2780                 case ALGORITHM_LEFT_SYMMETRIC:
2781                 case ALGORITHM_RIGHT_SYMMETRIC:
2782                         if (sh->pd_idx == raid_disks-1)
2783                                 i--; /* Q D D D P */
2784                         else {
2785                                 /* D D P Q D */
2786                                 if (i < sh->pd_idx)
2787                                         i += raid_disks;
2788                                 i -= (sh->pd_idx + 2);
2789                         }
2790                         break;
2791                 case ALGORITHM_PARITY_0:
2792                         i -= 2;
2793                         break;
2794                 case ALGORITHM_PARITY_N:
2795                         break;
2796                 case ALGORITHM_ROTATING_N_CONTINUE:
2797                         /* Like left_symmetric, but P is before Q */
2798                         if (sh->pd_idx == 0)
2799                                 i--;    /* P D D D Q */
2800                         else {
2801                                 /* D D Q P D */
2802                                 if (i < sh->pd_idx)
2803                                         i += raid_disks;
2804                                 i -= (sh->pd_idx + 1);
2805                         }
2806                         break;
2807                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2808                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2809                         if (i > sh->pd_idx)
2810                                 i--;
2811                         break;
2812                 case ALGORITHM_LEFT_SYMMETRIC_6:
2813                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2814                         if (i < sh->pd_idx)
2815                                 i += data_disks + 1;
2816                         i -= (sh->pd_idx + 1);
2817                         break;
2818                 case ALGORITHM_PARITY_0_6:
2819                         i -= 1;
2820                         break;
2821                 default:
2822                         BUG();
2823                 }
2824                 break;
2825         }
2826
2827         chunk_number = stripe * data_disks + i;
2828         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2829
2830         check = raid5_compute_sector(conf, r_sector,
2831                                      previous, &dummy1, &sh2);
2832         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2833                 || sh2.qd_idx != sh->qd_idx) {
2834                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2835                        mdname(conf->mddev));
2836                 return 0;
2837         }
2838         return r_sector;
2839 }
2840
2841 static void
2842 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2843                          int rcw, int expand)
2844 {
2845         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2846         struct r5conf *conf = sh->raid_conf;
2847         int level = conf->level;
2848
2849         if (rcw) {
2850
2851                 for (i = disks; i--; ) {
2852                         struct r5dev *dev = &sh->dev[i];
2853
2854                         if (dev->towrite) {
2855                                 set_bit(R5_LOCKED, &dev->flags);
2856                                 set_bit(R5_Wantdrain, &dev->flags);
2857                                 if (!expand)
2858                                         clear_bit(R5_UPTODATE, &dev->flags);
2859                                 s->locked++;
2860                         }
2861                 }
2862                 /* if we are not expanding this is a proper write request, and
2863                  * there will be bios with new data to be drained into the
2864                  * stripe cache
2865                  */
2866                 if (!expand) {
2867                         if (!s->locked)
2868                                 /* False alarm, nothing to do */
2869                                 return;
2870                         sh->reconstruct_state = reconstruct_state_drain_run;
2871                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2872                 } else
2873                         sh->reconstruct_state = reconstruct_state_run;
2874
2875                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2876
2877                 if (s->locked + conf->max_degraded == disks)
2878                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2879                                 atomic_inc(&conf->pending_full_writes);
2880         } else {
2881                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2882                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2883                 BUG_ON(level == 6 &&
2884                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2885                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2886
2887                 for (i = disks; i--; ) {
2888                         struct r5dev *dev = &sh->dev[i];
2889                         if (i == pd_idx || i == qd_idx)
2890                                 continue;
2891
2892                         if (dev->towrite &&
2893                             (test_bit(R5_UPTODATE, &dev->flags) ||
2894                              test_bit(R5_Wantcompute, &dev->flags))) {
2895                                 set_bit(R5_Wantdrain, &dev->flags);
2896                                 set_bit(R5_LOCKED, &dev->flags);
2897                                 clear_bit(R5_UPTODATE, &dev->flags);
2898                                 s->locked++;
2899                         }
2900                 }
2901                 if (!s->locked)
2902                         /* False alarm - nothing to do */
2903                         return;
2904                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2905                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2906                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2907                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2908         }
2909
2910         /* keep the parity disk(s) locked while asynchronous operations
2911          * are in flight
2912          */
2913         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2914         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2915         s->locked++;
2916
2917         if (level == 6) {
2918                 int qd_idx = sh->qd_idx;
2919                 struct r5dev *dev = &sh->dev[qd_idx];
2920
2921                 set_bit(R5_LOCKED, &dev->flags);
2922                 clear_bit(R5_UPTODATE, &dev->flags);
2923                 s->locked++;
2924         }
2925
2926         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2927                 __func__, (unsigned long long)sh->sector,
2928                 s->locked, s->ops_request);
2929 }
2930
2931 /*
2932  * Each stripe/dev can have one or more bion attached.
2933  * toread/towrite point to the first in a chain.
2934  * The bi_next chain must be in order.
2935  */
2936 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2937                           int forwrite, int previous)
2938 {
2939         struct bio **bip;
2940         struct r5conf *conf = sh->raid_conf;
2941         int firstwrite=0;
2942
2943         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2944                 (unsigned long long)bi->bi_iter.bi_sector,
2945                 (unsigned long long)sh->sector);
2946
2947         /*
2948          * If several bio share a stripe. The bio bi_phys_segments acts as a
2949          * reference count to avoid race. The reference count should already be
2950          * increased before this function is called (for example, in
2951          * make_request()), so other bio sharing this stripe will not free the
2952          * stripe. If a stripe is owned by one stripe, the stripe lock will
2953          * protect it.
2954          */
2955         spin_lock_irq(&sh->stripe_lock);
2956         /* Don't allow new IO added to stripes in batch list */
2957         if (sh->batch_head)
2958                 goto overlap;
2959         if (forwrite) {
2960                 bip = &sh->dev[dd_idx].towrite;
2961                 if (*bip == NULL)
2962                         firstwrite = 1;
2963         } else
2964                 bip = &sh->dev[dd_idx].toread;
2965         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2966                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2967                         goto overlap;
2968                 bip = & (*bip)->bi_next;
2969         }
2970         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2971                 goto overlap;
2972
2973         if (!forwrite || previous)
2974                 clear_bit(STRIPE_BATCH_READY, &sh->state);
2975
2976         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2977         if (*bip)
2978                 bi->bi_next = *bip;
2979         *bip = bi;
2980         raid5_inc_bi_active_stripes(bi);
2981
2982         if (forwrite) {
2983                 /* check if page is covered */
2984                 sector_t sector = sh->dev[dd_idx].sector;
2985                 for (bi=sh->dev[dd_idx].towrite;
2986                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2987                              bi && bi->bi_iter.bi_sector <= sector;
2988                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2989                         if (bio_end_sector(bi) >= sector)
2990                                 sector = bio_end_sector(bi);
2991                 }
2992                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2993                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
2994                                 sh->overwrite_disks++;
2995         }
2996
2997         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2998                 (unsigned long long)(*bip)->bi_iter.bi_sector,
2999                 (unsigned long long)sh->sector, dd_idx);
3000
3001         if (conf->mddev->bitmap && firstwrite) {
3002                 /* Cannot hold spinlock over bitmap_startwrite,
3003                  * but must ensure this isn't added to a batch until
3004                  * we have added to the bitmap and set bm_seq.
3005                  * So set STRIPE_BITMAP_PENDING to prevent
3006                  * batching.
3007                  * If multiple add_stripe_bio() calls race here they
3008                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3009                  * to complete "bitmap_startwrite" gets to set
3010                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3011                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3012                  * any more.
3013                  */
3014                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3015                 spin_unlock_irq(&sh->stripe_lock);
3016                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3017                                   STRIPE_SECTORS, 0);
3018                 spin_lock_irq(&sh->stripe_lock);
3019                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3020                 if (!sh->batch_head) {
3021                         sh->bm_seq = conf->seq_flush+1;
3022                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3023                 }
3024         }
3025         spin_unlock_irq(&sh->stripe_lock);
3026
3027         if (stripe_can_batch(sh))
3028                 stripe_add_to_batch_list(conf, sh);
3029         return 1;
3030
3031  overlap:
3032         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3033         spin_unlock_irq(&sh->stripe_lock);
3034         return 0;
3035 }
3036
3037 static void end_reshape(struct r5conf *conf);
3038
3039 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3040                             struct stripe_head *sh)
3041 {
3042         int sectors_per_chunk =
3043                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3044         int dd_idx;
3045         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3046         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3047
3048         raid5_compute_sector(conf,
3049                              stripe * (disks - conf->max_degraded)
3050                              *sectors_per_chunk + chunk_offset,
3051                              previous,
3052                              &dd_idx, sh);
3053 }
3054
3055 static void
3056 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3057                                 struct stripe_head_state *s, int disks,
3058                                 struct bio **return_bi)
3059 {
3060         int i;
3061         BUG_ON(sh->batch_head);
3062         for (i = disks; i--; ) {
3063                 struct bio *bi;
3064                 int bitmap_end = 0;
3065
3066                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3067                         struct md_rdev *rdev;
3068                         rcu_read_lock();
3069                         rdev = rcu_dereference(conf->disks[i].rdev);
3070                         if (rdev && test_bit(In_sync, &rdev->flags))
3071                                 atomic_inc(&rdev->nr_pending);
3072                         else
3073                                 rdev = NULL;
3074                         rcu_read_unlock();
3075                         if (rdev) {
3076                                 if (!rdev_set_badblocks(
3077                                             rdev,
3078                                             sh->sector,
3079                                             STRIPE_SECTORS, 0))
3080                                         md_error(conf->mddev, rdev);
3081                                 rdev_dec_pending(rdev, conf->mddev);
3082                         }
3083                 }
3084                 spin_lock_irq(&sh->stripe_lock);
3085                 /* fail all writes first */
3086                 bi = sh->dev[i].towrite;
3087                 sh->dev[i].towrite = NULL;
3088                 sh->overwrite_disks = 0;
3089                 spin_unlock_irq(&sh->stripe_lock);
3090                 if (bi)
3091                         bitmap_end = 1;
3092
3093                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3094                         wake_up(&conf->wait_for_overlap);
3095
3096                 while (bi && bi->bi_iter.bi_sector <
3097                         sh->dev[i].sector + STRIPE_SECTORS) {
3098                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3099                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3100                         if (!raid5_dec_bi_active_stripes(bi)) {
3101                                 md_write_end(conf->mddev);
3102                                 bi->bi_next = *return_bi;
3103                                 *return_bi = bi;
3104                         }
3105                         bi = nextbi;
3106                 }
3107                 if (bitmap_end)
3108                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3109                                 STRIPE_SECTORS, 0, 0);
3110                 bitmap_end = 0;
3111                 /* and fail all 'written' */
3112                 bi = sh->dev[i].written;
3113                 sh->dev[i].written = NULL;
3114                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3115                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3116                         sh->dev[i].page = sh->dev[i].orig_page;
3117                 }
3118
3119                 if (bi) bitmap_end = 1;
3120                 while (bi && bi->bi_iter.bi_sector <
3121                        sh->dev[i].sector + STRIPE_SECTORS) {
3122                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3123                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3124                         if (!raid5_dec_bi_active_stripes(bi)) {
3125                                 md_write_end(conf->mddev);
3126                                 bi->bi_next = *return_bi;
3127                                 *return_bi = bi;
3128                         }
3129                         bi = bi2;
3130                 }
3131
3132                 /* fail any reads if this device is non-operational and
3133                  * the data has not reached the cache yet.
3134                  */
3135                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3136                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3137                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3138                         spin_lock_irq(&sh->stripe_lock);
3139                         bi = sh->dev[i].toread;
3140                         sh->dev[i].toread = NULL;
3141                         spin_unlock_irq(&sh->stripe_lock);
3142                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3143                                 wake_up(&conf->wait_for_overlap);
3144                         while (bi && bi->bi_iter.bi_sector <
3145                                sh->dev[i].sector + STRIPE_SECTORS) {
3146                                 struct bio *nextbi =
3147                                         r5_next_bio(bi, sh->dev[i].sector);
3148                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3149                                 if (!raid5_dec_bi_active_stripes(bi)) {
3150                                         bi->bi_next = *return_bi;
3151                                         *return_bi = bi;
3152                                 }
3153                                 bi = nextbi;
3154                         }
3155                 }
3156                 if (bitmap_end)
3157                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3158                                         STRIPE_SECTORS, 0, 0);
3159                 /* If we were in the middle of a write the parity block might
3160                  * still be locked - so just clear all R5_LOCKED flags
3161                  */
3162                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3163         }
3164
3165         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3166                 if (atomic_dec_and_test(&conf->pending_full_writes))
3167                         md_wakeup_thread(conf->mddev->thread);
3168 }
3169
3170 static void
3171 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3172                    struct stripe_head_state *s)
3173 {
3174         int abort = 0;
3175         int i;
3176
3177         BUG_ON(sh->batch_head);
3178         clear_bit(STRIPE_SYNCING, &sh->state);
3179         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3180                 wake_up(&conf->wait_for_overlap);
3181         s->syncing = 0;
3182         s->replacing = 0;
3183         /* There is nothing more to do for sync/check/repair.
3184          * Don't even need to abort as that is handled elsewhere
3185          * if needed, and not always wanted e.g. if there is a known
3186          * bad block here.
3187          * For recover/replace we need to record a bad block on all
3188          * non-sync devices, or abort the recovery
3189          */
3190         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3191                 /* During recovery devices cannot be removed, so
3192                  * locking and refcounting of rdevs is not needed
3193                  */
3194                 for (i = 0; i < conf->raid_disks; i++) {
3195                         struct md_rdev *rdev = conf->disks[i].rdev;
3196                         if (rdev
3197                             && !test_bit(Faulty, &rdev->flags)
3198                             && !test_bit(In_sync, &rdev->flags)
3199                             && !rdev_set_badblocks(rdev, sh->sector,
3200                                                    STRIPE_SECTORS, 0))
3201                                 abort = 1;
3202                         rdev = conf->disks[i].replacement;
3203                         if (rdev
3204                             && !test_bit(Faulty, &rdev->flags)
3205                             && !test_bit(In_sync, &rdev->flags)
3206                             && !rdev_set_badblocks(rdev, sh->sector,
3207                                                    STRIPE_SECTORS, 0))
3208                                 abort = 1;
3209                 }
3210                 if (abort)
3211                         conf->recovery_disabled =
3212                                 conf->mddev->recovery_disabled;
3213         }
3214         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3215 }
3216
3217 static int want_replace(struct stripe_head *sh, int disk_idx)
3218 {
3219         struct md_rdev *rdev;
3220         int rv = 0;
3221         /* Doing recovery so rcu locking not required */
3222         rdev = sh->raid_conf->disks[disk_idx].replacement;
3223         if (rdev
3224             && !test_bit(Faulty, &rdev->flags)
3225             && !test_bit(In_sync, &rdev->flags)
3226             && (rdev->recovery_offset <= sh->sector
3227                 || rdev->mddev->recovery_cp <= sh->sector))
3228                 rv = 1;
3229
3230         return rv;
3231 }
3232
3233 /* fetch_block - checks the given member device to see if its data needs
3234  * to be read or computed to satisfy a request.
3235  *
3236  * Returns 1 when no more member devices need to be checked, otherwise returns
3237  * 0 to tell the loop in handle_stripe_fill to continue
3238  */
3239
3240 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3241                            int disk_idx, int disks)
3242 {
3243         struct r5dev *dev = &sh->dev[disk_idx];
3244         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3245                                   &sh->dev[s->failed_num[1]] };
3246         int i;
3247
3248
3249         if (test_bit(R5_LOCKED, &dev->flags) ||
3250             test_bit(R5_UPTODATE, &dev->flags))
3251                 /* No point reading this as we already have it or have
3252                  * decided to get it.
3253                  */
3254                 return 0;
3255
3256         if (dev->toread ||
3257             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3258                 /* We need this block to directly satisfy a request */
3259                 return 1;
3260
3261         if (s->syncing || s->expanding ||
3262             (s->replacing && want_replace(sh, disk_idx)))
3263                 /* When syncing, or expanding we read everything.
3264                  * When replacing, we need the replaced block.
3265                  */
3266                 return 1;
3267
3268         if ((s->failed >= 1 && fdev[0]->toread) ||
3269             (s->failed >= 2 && fdev[1]->toread))
3270                 /* If we want to read from a failed device, then
3271                  * we need to actually read every other device.
3272                  */
3273                 return 1;
3274
3275         /* Sometimes neither read-modify-write nor reconstruct-write
3276          * cycles can work.  In those cases we read every block we
3277          * can.  Then the parity-update is certain to have enough to
3278          * work with.
3279          * This can only be a problem when we need to write something,
3280          * and some device has failed.  If either of those tests
3281          * fail we need look no further.
3282          */
3283         if (!s->failed || !s->to_write)
3284                 return 0;
3285
3286         if (test_bit(R5_Insync, &dev->flags) &&
3287             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3288                 /* Pre-reads at not permitted until after short delay
3289                  * to gather multiple requests.  However if this
3290                  * device is no Insync, the block could only be be computed
3291                  * and there is no need to delay that.
3292                  */
3293                 return 0;
3294
3295         for (i = 0; i < s->failed; i++) {
3296                 if (fdev[i]->towrite &&
3297                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3298                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3299                         /* If we have a partial write to a failed
3300                          * device, then we will need to reconstruct
3301                          * the content of that device, so all other
3302                          * devices must be read.
3303                          */
3304                         return 1;
3305         }
3306
3307         /* If we are forced to do a reconstruct-write, either because
3308          * the current RAID6 implementation only supports that, or
3309          * or because parity cannot be trusted and we are currently
3310          * recovering it, there is extra need to be careful.
3311          * If one of the devices that we would need to read, because
3312          * it is not being overwritten (and maybe not written at all)
3313          * is missing/faulty, then we need to read everything we can.
3314          */
3315         if (sh->raid_conf->level != 6 &&
3316             sh->sector < sh->raid_conf->mddev->recovery_cp)
3317                 /* reconstruct-write isn't being forced */
3318                 return 0;
3319         for (i = 0; i < s->failed; i++) {
3320                 if (s->failed_num[i] != sh->pd_idx &&
3321                     s->failed_num[i] != sh->qd_idx &&
3322                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3323                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3324                         return 1;
3325         }
3326
3327         return 0;
3328 }
3329
3330 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3331                        int disk_idx, int disks)
3332 {
3333         struct r5dev *dev = &sh->dev[disk_idx];
3334
3335         /* is the data in this block needed, and can we get it? */
3336         if (need_this_block(sh, s, disk_idx, disks)) {
3337                 /* we would like to get this block, possibly by computing it,
3338                  * otherwise read it if the backing disk is insync
3339                  */
3340                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3341                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3342                 BUG_ON(sh->batch_head);
3343                 if ((s->uptodate == disks - 1) &&
3344                     (s->failed && (disk_idx == s->failed_num[0] ||
3345                                    disk_idx == s->failed_num[1]))) {
3346                         /* have disk failed, and we're requested to fetch it;
3347                          * do compute it
3348                          */
3349                         pr_debug("Computing stripe %llu block %d\n",
3350                                (unsigned long long)sh->sector, disk_idx);
3351                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3352                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3353                         set_bit(R5_Wantcompute, &dev->flags);
3354                         sh->ops.target = disk_idx;
3355                         sh->ops.target2 = -1; /* no 2nd target */
3356                         s->req_compute = 1;
3357                         /* Careful: from this point on 'uptodate' is in the eye
3358                          * of raid_run_ops which services 'compute' operations
3359                          * before writes. R5_Wantcompute flags a block that will
3360                          * be R5_UPTODATE by the time it is needed for a
3361                          * subsequent operation.
3362                          */
3363                         s->uptodate++;
3364                         return 1;
3365                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3366                         /* Computing 2-failure is *very* expensive; only
3367                          * do it if failed >= 2
3368                          */
3369                         int other;
3370                         for (other = disks; other--; ) {
3371                                 if (other == disk_idx)
3372                                         continue;
3373                                 if (!test_bit(R5_UPTODATE,
3374                                       &sh->dev[other].flags))
3375                                         break;
3376                         }
3377                         BUG_ON(other < 0);
3378                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3379                                (unsigned long long)sh->sector,
3380                                disk_idx, other);
3381                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3382                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3383                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3384                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3385                         sh->ops.target = disk_idx;
3386                         sh->ops.target2 = other;
3387                         s->uptodate += 2;
3388                         s->req_compute = 1;
3389                         return 1;
3390                 } else if (test_bit(R5_Insync, &dev->flags)) {
3391                         set_bit(R5_LOCKED, &dev->flags);
3392                         set_bit(R5_Wantread, &dev->flags);
3393                         s->locked++;
3394                         pr_debug("Reading block %d (sync=%d)\n",
3395                                 disk_idx, s->syncing);
3396                 }
3397         }
3398
3399         return 0;
3400 }
3401
3402 /**
3403  * handle_stripe_fill - read or compute data to satisfy pending requests.
3404  */
3405 static void handle_stripe_fill(struct stripe_head *sh,
3406                                struct stripe_head_state *s,
3407                                int disks)
3408 {
3409         int i;
3410
3411         /* look for blocks to read/compute, skip this if a compute
3412          * is already in flight, or if the stripe contents are in the
3413          * midst of changing due to a write
3414          */
3415         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3416             !sh->reconstruct_state)
3417                 for (i = disks; i--; )
3418                         if (fetch_block(sh, s, i, disks))
3419                                 break;
3420         set_bit(STRIPE_HANDLE, &sh->state);
3421 }
3422
3423 /* handle_stripe_clean_event
3424  * any written block on an uptodate or failed drive can be returned.
3425  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3426  * never LOCKED, so we don't need to test 'failed' directly.
3427  */
3428 static void handle_stripe_clean_event(struct r5conf *conf,
3429         struct stripe_head *sh, int disks, struct bio **return_bi)
3430 {
3431         int i;
3432         struct r5dev *dev;
3433         int discard_pending = 0;
3434         struct stripe_head *head_sh = sh;
3435         bool do_endio = false;
3436         int wakeup_nr = 0;
3437
3438         for (i = disks; i--; )
3439                 if (sh->dev[i].written) {
3440                         dev = &sh->dev[i];
3441                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3442                             (test_bit(R5_UPTODATE, &dev->flags) ||
3443                              test_bit(R5_Discard, &dev->flags) ||
3444                              test_bit(R5_SkipCopy, &dev->flags))) {
3445                                 /* We can return any write requests */
3446                                 struct bio *wbi, *wbi2;
3447                                 pr_debug("Return write for disc %d\n", i);
3448                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3449                                         clear_bit(R5_UPTODATE, &dev->flags);
3450                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3451                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3452                                 }
3453                                 do_endio = true;
3454
3455 returnbi:
3456                                 dev->page = dev->orig_page;
3457                                 wbi = dev->written;
3458                                 dev->written = NULL;
3459                                 while (wbi && wbi->bi_iter.bi_sector <
3460                                         dev->sector + STRIPE_SECTORS) {
3461                                         wbi2 = r5_next_bio(wbi, dev->sector);
3462                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3463                                                 md_write_end(conf->mddev);
3464                                                 wbi->bi_next = *return_bi;
3465                                                 *return_bi = wbi;
3466                                         }
3467                                         wbi = wbi2;
3468                                 }
3469                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3470                                                 STRIPE_SECTORS,
3471                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3472                                                 0);
3473                                 if (head_sh->batch_head) {
3474                                         sh = list_first_entry(&sh->batch_list,
3475                                                               struct stripe_head,
3476                                                               batch_list);
3477                                         if (sh != head_sh) {
3478                                                 dev = &sh->dev[i];
3479                                                 goto returnbi;
3480                                         }
3481                                 }
3482                                 sh = head_sh;
3483                                 dev = &sh->dev[i];
3484                         } else if (test_bit(R5_Discard, &dev->flags))
3485                                 discard_pending = 1;
3486                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3487                         WARN_ON(dev->page != dev->orig_page);
3488                 }
3489         if (!discard_pending &&
3490             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3491                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3492                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3493                 if (sh->qd_idx >= 0) {
3494                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3495                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3496                 }
3497                 /* now that discard is done we can proceed with any sync */
3498                 clear_bit(STRIPE_DISCARD, &sh->state);
3499                 /*
3500                  * SCSI discard will change some bio fields and the stripe has
3501                  * no updated data, so remove it from hash list and the stripe
3502                  * will be reinitialized
3503                  */
3504                 spin_lock_irq(&conf->device_lock);
3505 unhash:
3506                 remove_hash(sh);
3507                 if (head_sh->batch_head) {
3508                         sh = list_first_entry(&sh->batch_list,
3509                                               struct stripe_head, batch_list);
3510                         if (sh != head_sh)
3511                                         goto unhash;
3512                 }
3513                 spin_unlock_irq(&conf->device_lock);
3514                 sh = head_sh;
3515
3516                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3517                         set_bit(STRIPE_HANDLE, &sh->state);
3518
3519         }
3520
3521         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3522                 if (atomic_dec_and_test(&conf->pending_full_writes))
3523                         md_wakeup_thread(conf->mddev->thread);
3524
3525         if (!head_sh->batch_head || !do_endio)
3526                 return;
3527         for (i = 0; i < head_sh->disks; i++) {
3528                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
3529                         wakeup_nr++;
3530         }
3531         while (!list_empty(&head_sh->batch_list)) {
3532                 int i;
3533                 sh = list_first_entry(&head_sh->batch_list,
3534                                       struct stripe_head, batch_list);
3535                 list_del_init(&sh->batch_list);
3536
3537                 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
3538                               head_sh->state & ~((1 << STRIPE_ACTIVE) |
3539                                                  (1 << STRIPE_PREREAD_ACTIVE) |
3540                                                  STRIPE_EXPAND_SYNC_FLAG));
3541                 sh->check_state = head_sh->check_state;
3542                 sh->reconstruct_state = head_sh->reconstruct_state;
3543                 for (i = 0; i < sh->disks; i++) {
3544                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3545                                 wakeup_nr++;
3546                         sh->dev[i].flags = head_sh->dev[i].flags;
3547                 }
3548
3549                 spin_lock_irq(&sh->stripe_lock);
3550                 sh->batch_head = NULL;
3551                 spin_unlock_irq(&sh->stripe_lock);
3552                 if (sh->state & STRIPE_EXPAND_SYNC_FLAG)
3553                         set_bit(STRIPE_HANDLE, &sh->state);
3554                 release_stripe(sh);
3555         }
3556
3557         spin_lock_irq(&head_sh->stripe_lock);
3558         head_sh->batch_head = NULL;
3559         spin_unlock_irq(&head_sh->stripe_lock);
3560         wake_up_nr(&conf->wait_for_overlap, wakeup_nr);
3561         if (head_sh->state & STRIPE_EXPAND_SYNC_FLAG)
3562                 set_bit(STRIPE_HANDLE, &head_sh->state);
3563 }
3564
3565 static void handle_stripe_dirtying(struct r5conf *conf,
3566                                    struct stripe_head *sh,
3567                                    struct stripe_head_state *s,
3568                                    int disks)
3569 {
3570         int rmw = 0, rcw = 0, i;
3571         sector_t recovery_cp = conf->mddev->recovery_cp;
3572
3573         /* Check whether resync is now happening or should start.
3574          * If yes, then the array is dirty (after unclean shutdown or
3575          * initial creation), so parity in some stripes might be inconsistent.
3576          * In this case, we need to always do reconstruct-write, to ensure
3577          * that in case of drive failure or read-error correction, we
3578          * generate correct data from the parity.
3579          */
3580         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3581             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3582              s->failed == 0)) {
3583                 /* Calculate the real rcw later - for now make it
3584                  * look like rcw is cheaper
3585                  */
3586                 rcw = 1; rmw = 2;
3587                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3588                          conf->rmw_level, (unsigned long long)recovery_cp,
3589                          (unsigned long long)sh->sector);
3590         } else for (i = disks; i--; ) {
3591                 /* would I have to read this buffer for read_modify_write */
3592                 struct r5dev *dev = &sh->dev[i];
3593                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3594                     !test_bit(R5_LOCKED, &dev->flags) &&
3595                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3596                       test_bit(R5_Wantcompute, &dev->flags))) {
3597                         if (test_bit(R5_Insync, &dev->flags))
3598                                 rmw++;
3599                         else
3600                                 rmw += 2*disks;  /* cannot read it */
3601                 }
3602                 /* Would I have to read this buffer for reconstruct_write */
3603                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3604                     i != sh->pd_idx && i != sh->qd_idx &&
3605                     !test_bit(R5_LOCKED, &dev->flags) &&
3606                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3607                     test_bit(R5_Wantcompute, &dev->flags))) {
3608                         if (test_bit(R5_Insync, &dev->flags))
3609                                 rcw++;
3610                         else
3611                                 rcw += 2*disks;
3612                 }
3613         }
3614         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3615                 (unsigned long long)sh->sector, rmw, rcw);
3616         set_bit(STRIPE_HANDLE, &sh->state);
3617         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3618                 /* prefer read-modify-write, but need to get some data */
3619                 if (conf->mddev->queue)
3620                         blk_add_trace_msg(conf->mddev->queue,
3621                                           "raid5 rmw %llu %d",
3622                                           (unsigned long long)sh->sector, rmw);
3623                 for (i = disks; i--; ) {
3624                         struct r5dev *dev = &sh->dev[i];
3625                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3626                             !test_bit(R5_LOCKED, &dev->flags) &&
3627                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3628                             test_bit(R5_Wantcompute, &dev->flags)) &&
3629                             test_bit(R5_Insync, &dev->flags)) {
3630                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3631                                              &sh->state)) {
3632                                         pr_debug("Read_old block %d for r-m-w\n",
3633                                                  i);
3634                                         set_bit(R5_LOCKED, &dev->flags);
3635                                         set_bit(R5_Wantread, &dev->flags);
3636                                         s->locked++;
3637                                 } else {
3638                                         set_bit(STRIPE_DELAYED, &sh->state);
3639                                         set_bit(STRIPE_HANDLE, &sh->state);
3640                                 }
3641                         }
3642                 }
3643         }
3644         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3645                 /* want reconstruct write, but need to get some data */
3646                 int qread =0;
3647                 rcw = 0;
3648                 for (i = disks; i--; ) {
3649                         struct r5dev *dev = &sh->dev[i];
3650                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3651                             i != sh->pd_idx && i != sh->qd_idx &&
3652                             !test_bit(R5_LOCKED, &dev->flags) &&
3653                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3654                               test_bit(R5_Wantcompute, &dev->flags))) {
3655                                 rcw++;
3656                                 if (test_bit(R5_Insync, &dev->flags) &&
3657                                     test_bit(STRIPE_PREREAD_ACTIVE,
3658                                              &sh->state)) {
3659                                         pr_debug("Read_old block "
3660                                                 "%d for Reconstruct\n", i);
3661                                         set_bit(R5_LOCKED, &dev->flags);
3662                                         set_bit(R5_Wantread, &dev->flags);
3663                                         s->locked++;
3664                                         qread++;
3665                                 } else {
3666                                         set_bit(STRIPE_DELAYED, &sh->state);
3667                                         set_bit(STRIPE_HANDLE, &sh->state);
3668                                 }
3669                         }
3670                 }
3671                 if (rcw && conf->mddev->queue)
3672                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3673                                           (unsigned long long)sh->sector,
3674                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3675         }
3676
3677         if (rcw > disks && rmw > disks &&
3678             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3679                 set_bit(STRIPE_DELAYED, &sh->state);
3680
3681         /* now if nothing is locked, and if we have enough data,
3682          * we can start a write request
3683          */
3684         /* since handle_stripe can be called at any time we need to handle the
3685          * case where a compute block operation has been submitted and then a
3686          * subsequent call wants to start a write request.  raid_run_ops only
3687          * handles the case where compute block and reconstruct are requested
3688          * simultaneously.  If this is not the case then new writes need to be
3689          * held off until the compute completes.
3690          */
3691         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3692             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3693             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3694                 schedule_reconstruction(sh, s, rcw == 0, 0);
3695 }
3696
3697 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3698                                 struct stripe_head_state *s, int disks)
3699 {
3700         struct r5dev *dev = NULL;
3701
3702         BUG_ON(sh->batch_head);
3703         set_bit(STRIPE_HANDLE, &sh->state);
3704
3705         switch (sh->check_state) {
3706         case check_state_idle:
3707                 /* start a new check operation if there are no failures */
3708                 if (s->failed == 0) {
3709                         BUG_ON(s->uptodate != disks);
3710                         sh->check_state = check_state_run;
3711                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3712                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3713                         s->uptodate--;
3714                         break;
3715                 }
3716                 dev = &sh->dev[s->failed_num[0]];
3717                 /* fall through */
3718         case check_state_compute_result:
3719                 sh->check_state = check_state_idle;
3720                 if (!dev)
3721                         dev = &sh->dev[sh->pd_idx];
3722
3723                 /* check that a write has not made the stripe insync */
3724                 if (test_bit(STRIPE_INSYNC, &sh->state))
3725                         break;
3726
3727                 /* either failed parity check, or recovery is happening */
3728                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3729                 BUG_ON(s->uptodate != disks);
3730
3731                 set_bit(R5_LOCKED, &dev->flags);
3732                 s->locked++;
3733                 set_bit(R5_Wantwrite, &dev->flags);
3734
3735                 clear_bit(STRIPE_DEGRADED, &sh->state);
3736                 set_bit(STRIPE_INSYNC, &sh->state);
3737                 break;
3738         case check_state_run:
3739                 break; /* we will be called again upon completion */
3740         case check_state_check_result:
3741                 sh->check_state = check_state_idle;
3742
3743                 /* if a failure occurred during the check operation, leave
3744                  * STRIPE_INSYNC not set and let the stripe be handled again
3745                  */
3746                 if (s->failed)
3747                         break;
3748
3749                 /* handle a successful check operation, if parity is correct
3750                  * we are done.  Otherwise update the mismatch count and repair
3751                  * parity if !MD_RECOVERY_CHECK
3752                  */
3753                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3754                         /* parity is correct (on disc,
3755                          * not in buffer any more)
3756                          */
3757                         set_bit(STRIPE_INSYNC, &sh->state);
3758                 else {
3759                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3760                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3761                                 /* don't try to repair!! */
3762                                 set_bit(STRIPE_INSYNC, &sh->state);
3763                         else {
3764                                 sh->check_state = check_state_compute_run;
3765                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3766                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3767                                 set_bit(R5_Wantcompute,
3768                                         &sh->dev[sh->pd_idx].flags);
3769                                 sh->ops.target = sh->pd_idx;
3770                                 sh->ops.target2 = -1;
3771                                 s->uptodate++;
3772                         }
3773                 }
3774                 break;
3775         case check_state_compute_run:
3776                 break;
3777         default:
3778                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3779                        __func__, sh->check_state,
3780                        (unsigned long long) sh->sector);
3781                 BUG();
3782         }
3783 }
3784
3785 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3786                                   struct stripe_head_state *s,
3787                                   int disks)
3788 {
3789         int pd_idx = sh->pd_idx;
3790         int qd_idx = sh->qd_idx;
3791         struct r5dev *dev;
3792
3793         BUG_ON(sh->batch_head);
3794         set_bit(STRIPE_HANDLE, &sh->state);
3795
3796         BUG_ON(s->failed > 2);
3797
3798         /* Want to check and possibly repair P and Q.
3799          * However there could be one 'failed' device, in which
3800          * case we can only check one of them, possibly using the
3801          * other to generate missing data
3802          */
3803
3804         switch (sh->check_state) {
3805         case check_state_idle:
3806                 /* start a new check operation if there are < 2 failures */
3807                 if (s->failed == s->q_failed) {
3808                         /* The only possible failed device holds Q, so it
3809                          * makes sense to check P (If anything else were failed,
3810                          * we would have used P to recreate it).
3811                          */
3812                         sh->check_state = check_state_run;
3813                 }
3814                 if (!s->q_failed && s->failed < 2) {
3815                         /* Q is not failed, and we didn't use it to generate
3816                          * anything, so it makes sense to check it
3817                          */
3818                         if (sh->check_state == check_state_run)
3819                                 sh->check_state = check_state_run_pq;
3820                         else
3821                                 sh->check_state = check_state_run_q;
3822                 }
3823
3824                 /* discard potentially stale zero_sum_result */
3825                 sh->ops.zero_sum_result = 0;
3826
3827                 if (sh->check_state == check_state_run) {
3828                         /* async_xor_zero_sum destroys the contents of P */
3829                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3830                         s->uptodate--;
3831                 }
3832                 if (sh->check_state >= check_state_run &&
3833                     sh->check_state <= check_state_run_pq) {
3834                         /* async_syndrome_zero_sum preserves P and Q, so
3835                          * no need to mark them !uptodate here
3836                          */
3837                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3838                         break;
3839                 }
3840
3841                 /* we have 2-disk failure */
3842                 BUG_ON(s->failed != 2);
3843                 /* fall through */
3844         case check_state_compute_result:
3845                 sh->check_state = check_state_idle;
3846
3847                 /* check that a write has not made the stripe insync */
3848                 if (test_bit(STRIPE_INSYNC, &sh->state))
3849                         break;
3850
3851                 /* now write out any block on a failed drive,
3852                  * or P or Q if they were recomputed
3853                  */
3854                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3855                 if (s->failed == 2) {
3856                         dev = &sh->dev[s->failed_num[1]];
3857                         s->locked++;
3858                         set_bit(R5_LOCKED, &dev->flags);
3859                         set_bit(R5_Wantwrite, &dev->flags);
3860                 }
3861                 if (s->failed >= 1) {
3862                         dev = &sh->dev[s->failed_num[0]];
3863                         s->locked++;
3864                         set_bit(R5_LOCKED, &dev->flags);
3865                         set_bit(R5_Wantwrite, &dev->flags);
3866                 }
3867                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3868                         dev = &sh->dev[pd_idx];
3869                         s->locked++;
3870                         set_bit(R5_LOCKED, &dev->flags);
3871                         set_bit(R5_Wantwrite, &dev->flags);
3872                 }
3873                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3874                         dev = &sh->dev[qd_idx];
3875                         s->locked++;
3876                         set_bit(R5_LOCKED, &dev->flags);
3877                         set_bit(R5_Wantwrite, &dev->flags);
3878                 }
3879                 clear_bit(STRIPE_DEGRADED, &sh->state);
3880
3881                 set_bit(STRIPE_INSYNC, &sh->state);
3882                 break;
3883         case check_state_run:
3884         case check_state_run_q:
3885         case check_state_run_pq:
3886                 break; /* we will be called again upon completion */
3887         case check_state_check_result:
3888                 sh->check_state = check_state_idle;
3889
3890                 /* handle a successful check operation, if parity is correct
3891                  * we are done.  Otherwise update the mismatch count and repair
3892                  * parity if !MD_RECOVERY_CHECK
3893                  */
3894                 if (sh->ops.zero_sum_result == 0) {
3895                         /* both parities are correct */
3896                         if (!s->failed)
3897                                 set_bit(STRIPE_INSYNC, &sh->state);
3898                         else {
3899                                 /* in contrast to the raid5 case we can validate
3900                                  * parity, but still have a failure to write
3901                                  * back
3902                                  */
3903                                 sh->check_state = check_state_compute_result;
3904                                 /* Returning at this point means that we may go
3905                                  * off and bring p and/or q uptodate again so
3906                                  * we make sure to check zero_sum_result again
3907                                  * to verify if p or q need writeback
3908                                  */
3909                         }
3910                 } else {
3911                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3912                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3913                                 /* don't try to repair!! */
3914                                 set_bit(STRIPE_INSYNC, &sh->state);
3915                         else {
3916                                 int *target = &sh->ops.target;
3917
3918                                 sh->ops.target = -1;
3919                                 sh->ops.target2 = -1;
3920                                 sh->check_state = check_state_compute_run;
3921                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3922                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3923                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3924                                         set_bit(R5_Wantcompute,
3925                                                 &sh->dev[pd_idx].flags);
3926                                         *target = pd_idx;
3927                                         target = &sh->ops.target2;
3928                                         s->uptodate++;
3929                                 }
3930                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3931                                         set_bit(R5_Wantcompute,
3932                                                 &sh->dev[qd_idx].flags);
3933                                         *target = qd_idx;
3934                                         s->uptodate++;
3935                                 }
3936                         }
3937                 }
3938                 break;
3939         case check_state_compute_run:
3940                 break;
3941         default:
3942                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3943                        __func__, sh->check_state,
3944                        (unsigned long long) sh->sector);
3945                 BUG();
3946         }
3947 }
3948
3949 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3950 {
3951         int i;
3952
3953         /* We have read all the blocks in this stripe and now we need to
3954          * copy some of them into a target stripe for expand.
3955          */
3956         struct dma_async_tx_descriptor *tx = NULL;
3957         BUG_ON(sh->batch_head);
3958         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3959         for (i = 0; i < sh->disks; i++)
3960                 if (i != sh->pd_idx && i != sh->qd_idx) {
3961                         int dd_idx, j;
3962                         struct stripe_head *sh2;
3963                         struct async_submit_ctl submit;
3964
3965                         sector_t bn = compute_blocknr(sh, i, 1);
3966                         sector_t s = raid5_compute_sector(conf, bn, 0,
3967                                                           &dd_idx, NULL);
3968                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3969                         if (sh2 == NULL)
3970                                 /* so far only the early blocks of this stripe
3971                                  * have been requested.  When later blocks
3972                                  * get requested, we will try again
3973                                  */
3974                                 continue;
3975                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3976                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3977                                 /* must have already done this block */
3978                                 release_stripe(sh2);
3979                                 continue;
3980                         }
3981
3982                         /* place all the copies on one channel */
3983                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3984                         tx = async_memcpy(sh2->dev[dd_idx].page,
3985                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3986                                           &submit);
3987
3988                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3989                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3990                         for (j = 0; j < conf->raid_disks; j++)
3991                                 if (j != sh2->pd_idx &&
3992                                     j != sh2->qd_idx &&
3993                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3994                                         break;
3995                         if (j == conf->raid_disks) {
3996                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3997                                 set_bit(STRIPE_HANDLE, &sh2->state);
3998                         }
3999                         release_stripe(sh2);
4000
4001                 }
4002         /* done submitting copies, wait for them to complete */
4003         async_tx_quiesce(&tx);
4004 }
4005
4006 /*
4007  * handle_stripe - do things to a stripe.
4008  *
4009  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4010  * state of various bits to see what needs to be done.
4011  * Possible results:
4012  *    return some read requests which now have data
4013  *    return some write requests which are safely on storage
4014  *    schedule a read on some buffers
4015  *    schedule a write of some buffers
4016  *    return confirmation of parity correctness
4017  *
4018  */
4019
4020 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4021 {
4022         struct r5conf *conf = sh->raid_conf;
4023         int disks = sh->disks;
4024         struct r5dev *dev;
4025         int i;
4026         int do_recovery = 0;
4027
4028         memset(s, 0, sizeof(*s));
4029
4030         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4031         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4032         s->failed_num[0] = -1;
4033         s->failed_num[1] = -1;
4034
4035         /* Now to look around and see what can be done */
4036         rcu_read_lock();
4037         for (i=disks; i--; ) {
4038                 struct md_rdev *rdev;
4039                 sector_t first_bad;
4040                 int bad_sectors;
4041                 int is_bad = 0;
4042
4043                 dev = &sh->dev[i];
4044
4045                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4046                          i, dev->flags,
4047                          dev->toread, dev->towrite, dev->written);
4048                 /* maybe we can reply to a read
4049                  *
4050                  * new wantfill requests are only permitted while
4051                  * ops_complete_biofill is guaranteed to be inactive
4052                  */
4053                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4054                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4055                         set_bit(R5_Wantfill, &dev->flags);
4056
4057                 /* now count some things */
4058                 if (test_bit(R5_LOCKED, &dev->flags))
4059                         s->locked++;
4060                 if (test_bit(R5_UPTODATE, &dev->flags))
4061                         s->uptodate++;
4062                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4063                         s->compute++;
4064                         BUG_ON(s->compute > 2);
4065                 }
4066
4067                 if (test_bit(R5_Wantfill, &dev->flags))
4068                         s->to_fill++;
4069                 else if (dev->toread)
4070                         s->to_read++;
4071                 if (dev->towrite) {
4072                         s->to_write++;
4073                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4074                                 s->non_overwrite++;
4075                 }
4076                 if (dev->written)
4077                         s->written++;
4078                 /* Prefer to use the replacement for reads, but only
4079                  * if it is recovered enough and has no bad blocks.
4080                  */
4081                 rdev = rcu_dereference(conf->disks[i].replacement);
4082                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4083                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4084                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4085                                  &first_bad, &bad_sectors))
4086                         set_bit(R5_ReadRepl, &dev->flags);
4087                 else {
4088                         if (rdev)
4089                                 set_bit(R5_NeedReplace, &dev->flags);
4090                         rdev = rcu_dereference(conf->disks[i].rdev);
4091                         clear_bit(R5_ReadRepl, &dev->flags);
4092                 }
4093                 if (rdev && test_bit(Faulty, &rdev->flags))
4094                         rdev = NULL;
4095                 if (rdev) {
4096                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4097                                              &first_bad, &bad_sectors);
4098                         if (s->blocked_rdev == NULL
4099                             && (test_bit(Blocked, &rdev->flags)
4100                                 || is_bad < 0)) {
4101                                 if (is_bad < 0)
4102                                         set_bit(BlockedBadBlocks,
4103                                                 &rdev->flags);
4104                                 s->blocked_rdev = rdev;
4105                                 atomic_inc(&rdev->nr_pending);
4106                         }
4107                 }
4108                 clear_bit(R5_Insync, &dev->flags);
4109                 if (!rdev)
4110                         /* Not in-sync */;
4111                 else if (is_bad) {
4112                         /* also not in-sync */
4113                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4114                             test_bit(R5_UPTODATE, &dev->flags)) {
4115                                 /* treat as in-sync, but with a read error
4116                                  * which we can now try to correct
4117                                  */
4118                                 set_bit(R5_Insync, &dev->flags);
4119                                 set_bit(R5_ReadError, &dev->flags);
4120                         }
4121                 } else if (test_bit(In_sync, &rdev->flags))
4122                         set_bit(R5_Insync, &dev->flags);
4123                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4124                         /* in sync if before recovery_offset */
4125                         set_bit(R5_Insync, &dev->flags);
4126                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4127                          test_bit(R5_Expanded, &dev->flags))
4128                         /* If we've reshaped into here, we assume it is Insync.
4129                          * We will shortly update recovery_offset to make
4130                          * it official.
4131                          */
4132                         set_bit(R5_Insync, &dev->flags);
4133
4134                 if (test_bit(R5_WriteError, &dev->flags)) {
4135                         /* This flag does not apply to '.replacement'
4136                          * only to .rdev, so make sure to check that*/
4137                         struct md_rdev *rdev2 = rcu_dereference(
4138                                 conf->disks[i].rdev);
4139                         if (rdev2 == rdev)
4140                                 clear_bit(R5_Insync, &dev->flags);
4141                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4142                                 s->handle_bad_blocks = 1;
4143                                 atomic_inc(&rdev2->nr_pending);
4144                         } else
4145                                 clear_bit(R5_WriteError, &dev->flags);
4146                 }
4147                 if (test_bit(R5_MadeGood, &dev->flags)) {
4148                         /* This flag does not apply to '.replacement'
4149                          * only to .rdev, so make sure to check that*/
4150                         struct md_rdev *rdev2 = rcu_dereference(
4151                                 conf->disks[i].rdev);
4152                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4153                                 s->handle_bad_blocks = 1;
4154                                 atomic_inc(&rdev2->nr_pending);
4155                         } else
4156                                 clear_bit(R5_MadeGood, &dev->flags);
4157                 }
4158                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4159                         struct md_rdev *rdev2 = rcu_dereference(
4160                                 conf->disks[i].replacement);
4161                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4162                                 s->handle_bad_blocks = 1;
4163                                 atomic_inc(&rdev2->nr_pending);
4164                         } else
4165                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4166                 }
4167                 if (!test_bit(R5_Insync, &dev->flags)) {
4168                         /* The ReadError flag will just be confusing now */
4169                         clear_bit(R5_ReadError, &dev->flags);
4170                         clear_bit(R5_ReWrite, &dev->flags);
4171                 }
4172                 if (test_bit(R5_ReadError, &dev->flags))
4173                         clear_bit(R5_Insync, &dev->flags);
4174                 if (!test_bit(R5_Insync, &dev->flags)) {
4175                         if (s->failed < 2)
4176                                 s->failed_num[s->failed] = i;
4177                         s->failed++;
4178                         if (rdev && !test_bit(Faulty, &rdev->flags))
4179                                 do_recovery = 1;
4180                 }
4181         }
4182         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4183                 /* If there is a failed device being replaced,
4184                  *     we must be recovering.
4185                  * else if we are after recovery_cp, we must be syncing
4186                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4187                  * else we can only be replacing
4188                  * sync and recovery both need to read all devices, and so
4189                  * use the same flag.
4190                  */
4191                 if (do_recovery ||
4192                     sh->sector >= conf->mddev->recovery_cp ||
4193                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4194                         s->syncing = 1;
4195                 else
4196                         s->replacing = 1;
4197         }
4198         rcu_read_unlock();
4199 }
4200
4201 static int clear_batch_ready(struct stripe_head *sh)
4202 {
4203         struct stripe_head *tmp;
4204         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4205                 return 0;
4206         spin_lock(&sh->stripe_lock);
4207         if (!sh->batch_head) {
4208                 spin_unlock(&sh->stripe_lock);
4209                 return 0;
4210         }
4211
4212         /*
4213          * this stripe could be added to a batch list before we check
4214          * BATCH_READY, skips it
4215          */
4216         if (sh->batch_head != sh) {
4217                 spin_unlock(&sh->stripe_lock);
4218                 return 1;
4219         }
4220         spin_lock(&sh->batch_lock);
4221         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4222                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4223         spin_unlock(&sh->batch_lock);
4224         spin_unlock(&sh->stripe_lock);
4225
4226         /*
4227          * BATCH_READY is cleared, no new stripes can be added.
4228          * batch_list can be accessed without lock
4229          */
4230         return 0;
4231 }
4232
4233 static void check_break_stripe_batch_list(struct stripe_head *sh)
4234 {
4235         struct stripe_head *head_sh, *next;
4236         int i;
4237
4238         if (!test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4239                 return;
4240
4241         head_sh = sh;
4242
4243         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4244
4245                 list_del_init(&sh->batch_list);
4246
4247                 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
4248                               head_sh->state & ~((1 << STRIPE_ACTIVE) |
4249                                                  (1 << STRIPE_PREREAD_ACTIVE) |
4250                                                  (1 << STRIPE_DEGRADED) |
4251                                                  STRIPE_EXPAND_SYNC_FLAG));
4252                 sh->check_state = head_sh->check_state;
4253                 sh->reconstruct_state = head_sh->reconstruct_state;
4254                 for (i = 0; i < sh->disks; i++)
4255                         sh->dev[i].flags = head_sh->dev[i].flags &
4256                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4257
4258                 spin_lock_irq(&sh->stripe_lock);
4259                 sh->batch_head = NULL;
4260                 spin_unlock_irq(&sh->stripe_lock);
4261
4262                 set_bit(STRIPE_HANDLE, &sh->state);
4263                 release_stripe(sh);
4264         }
4265 }
4266
4267 static void handle_stripe(struct stripe_head *sh)
4268 {
4269         struct stripe_head_state s;
4270         struct r5conf *conf = sh->raid_conf;
4271         int i;
4272         int prexor;
4273         int disks = sh->disks;
4274         struct r5dev *pdev, *qdev;
4275
4276         clear_bit(STRIPE_HANDLE, &sh->state);
4277         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4278                 /* already being handled, ensure it gets handled
4279                  * again when current action finishes */
4280                 set_bit(STRIPE_HANDLE, &sh->state);
4281                 return;
4282         }
4283
4284         if (clear_batch_ready(sh) ) {
4285                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4286                 return;
4287         }
4288
4289         check_break_stripe_batch_list(sh);
4290
4291         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4292                 spin_lock(&sh->stripe_lock);
4293                 /* Cannot process 'sync' concurrently with 'discard' */
4294                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4295                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4296                         set_bit(STRIPE_SYNCING, &sh->state);
4297                         clear_bit(STRIPE_INSYNC, &sh->state);
4298                         clear_bit(STRIPE_REPLACED, &sh->state);
4299                 }
4300                 spin_unlock(&sh->stripe_lock);
4301         }
4302         clear_bit(STRIPE_DELAYED, &sh->state);
4303
4304         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4305                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4306                (unsigned long long)sh->sector, sh->state,
4307                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4308                sh->check_state, sh->reconstruct_state);
4309
4310         analyse_stripe(sh, &s);
4311
4312         if (s.handle_bad_blocks) {
4313                 set_bit(STRIPE_HANDLE, &sh->state);
4314                 goto finish;
4315         }
4316
4317         if (unlikely(s.blocked_rdev)) {
4318                 if (s.syncing || s.expanding || s.expanded ||
4319                     s.replacing || s.to_write || s.written) {
4320                         set_bit(STRIPE_HANDLE, &sh->state);
4321                         goto finish;
4322                 }
4323                 /* There is nothing for the blocked_rdev to block */
4324                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4325                 s.blocked_rdev = NULL;
4326         }
4327
4328         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4329                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4330                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4331         }
4332
4333         pr_debug("locked=%d uptodate=%d to_read=%d"
4334                " to_write=%d failed=%d failed_num=%d,%d\n",
4335                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4336                s.failed_num[0], s.failed_num[1]);
4337         /* check if the array has lost more than max_degraded devices and,
4338          * if so, some requests might need to be failed.
4339          */
4340         if (s.failed > conf->max_degraded) {
4341                 sh->check_state = 0;
4342                 sh->reconstruct_state = 0;
4343                 if (s.to_read+s.to_write+s.written)
4344                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4345                 if (s.syncing + s.replacing)
4346                         handle_failed_sync(conf, sh, &s);
4347         }
4348
4349         /* Now we check to see if any write operations have recently
4350          * completed
4351          */
4352         prexor = 0;
4353         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4354                 prexor = 1;
4355         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4356             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4357                 sh->reconstruct_state = reconstruct_state_idle;
4358
4359                 /* All the 'written' buffers and the parity block are ready to
4360                  * be written back to disk
4361                  */
4362                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4363                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4364                 BUG_ON(sh->qd_idx >= 0 &&
4365                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4366                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4367                 for (i = disks; i--; ) {
4368                         struct r5dev *dev = &sh->dev[i];
4369                         if (test_bit(R5_LOCKED, &dev->flags) &&
4370                                 (i == sh->pd_idx || i == sh->qd_idx ||
4371                                  dev->written)) {
4372                                 pr_debug("Writing block %d\n", i);
4373                                 set_bit(R5_Wantwrite, &dev->flags);
4374                                 if (prexor)
4375                                         continue;
4376                                 if (s.failed > 1)
4377                                         continue;
4378                                 if (!test_bit(R5_Insync, &dev->flags) ||
4379                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4380                                      s.failed == 0))
4381                                         set_bit(STRIPE_INSYNC, &sh->state);
4382                         }
4383                 }
4384                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4385                         s.dec_preread_active = 1;
4386         }
4387
4388         /*
4389          * might be able to return some write requests if the parity blocks
4390          * are safe, or on a failed drive
4391          */
4392         pdev = &sh->dev[sh->pd_idx];
4393         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4394                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4395         qdev = &sh->dev[sh->qd_idx];
4396         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4397                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4398                 || conf->level < 6;
4399
4400         if (s.written &&
4401             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4402                              && !test_bit(R5_LOCKED, &pdev->flags)
4403                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4404                                  test_bit(R5_Discard, &pdev->flags))))) &&
4405             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4406                              && !test_bit(R5_LOCKED, &qdev->flags)
4407                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4408                                  test_bit(R5_Discard, &qdev->flags))))))
4409                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4410
4411         /* Now we might consider reading some blocks, either to check/generate
4412          * parity, or to satisfy requests
4413          * or to load a block that is being partially written.
4414          */
4415         if (s.to_read || s.non_overwrite
4416             || (conf->level == 6 && s.to_write && s.failed)
4417             || (s.syncing && (s.uptodate + s.compute < disks))
4418             || s.replacing
4419             || s.expanding)
4420                 handle_stripe_fill(sh, &s, disks);
4421
4422         /* Now to consider new write requests and what else, if anything
4423          * should be read.  We do not handle new writes when:
4424          * 1/ A 'write' operation (copy+xor) is already in flight.
4425          * 2/ A 'check' operation is in flight, as it may clobber the parity
4426          *    block.
4427          */
4428         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4429                 handle_stripe_dirtying(conf, sh, &s, disks);
4430
4431         /* maybe we need to check and possibly fix the parity for this stripe
4432          * Any reads will already have been scheduled, so we just see if enough
4433          * data is available.  The parity check is held off while parity
4434          * dependent operations are in flight.
4435          */
4436         if (sh->check_state ||
4437             (s.syncing && s.locked == 0 &&
4438              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4439              !test_bit(STRIPE_INSYNC, &sh->state))) {
4440                 if (conf->level == 6)
4441                         handle_parity_checks6(conf, sh, &s, disks);
4442                 else
4443                         handle_parity_checks5(conf, sh, &s, disks);
4444         }
4445
4446         if ((s.replacing || s.syncing) && s.locked == 0
4447             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4448             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4449                 /* Write out to replacement devices where possible */
4450                 for (i = 0; i < conf->raid_disks; i++)
4451                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4452                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4453                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4454                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4455                                 s.locked++;
4456                         }
4457                 if (s.replacing)
4458                         set_bit(STRIPE_INSYNC, &sh->state);
4459                 set_bit(STRIPE_REPLACED, &sh->state);
4460         }
4461         if ((s.syncing || s.replacing) && s.locked == 0 &&
4462             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4463             test_bit(STRIPE_INSYNC, &sh->state)) {
4464                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4465                 clear_bit(STRIPE_SYNCING, &sh->state);
4466                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4467                         wake_up(&conf->wait_for_overlap);
4468         }
4469
4470         /* If the failed drives are just a ReadError, then we might need
4471          * to progress the repair/check process
4472          */
4473         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4474                 for (i = 0; i < s.failed; i++) {
4475                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4476                         if (test_bit(R5_ReadError, &dev->flags)
4477                             && !test_bit(R5_LOCKED, &dev->flags)
4478                             && test_bit(R5_UPTODATE, &dev->flags)
4479                                 ) {
4480                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4481                                         set_bit(R5_Wantwrite, &dev->flags);
4482                                         set_bit(R5_ReWrite, &dev->flags);
4483                                         set_bit(R5_LOCKED, &dev->flags);
4484                                         s.locked++;
4485                                 } else {
4486                                         /* let's read it back */
4487                                         set_bit(R5_Wantread, &dev->flags);
4488                                         set_bit(R5_LOCKED, &dev->flags);
4489                                         s.locked++;
4490                                 }
4491                         }
4492                 }
4493
4494         /* Finish reconstruct operations initiated by the expansion process */
4495         if (sh->reconstruct_state == reconstruct_state_result) {
4496                 struct stripe_head *sh_src
4497                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
4498                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4499                         /* sh cannot be written until sh_src has been read.
4500                          * so arrange for sh to be delayed a little
4501                          */
4502                         set_bit(STRIPE_DELAYED, &sh->state);
4503                         set_bit(STRIPE_HANDLE, &sh->state);
4504                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4505                                               &sh_src->state))
4506                                 atomic_inc(&conf->preread_active_stripes);
4507                         release_stripe(sh_src);
4508                         goto finish;
4509                 }
4510                 if (sh_src)
4511                         release_stripe(sh_src);
4512
4513                 sh->reconstruct_state = reconstruct_state_idle;
4514                 clear_bit(STRIPE_EXPANDING, &sh->state);
4515                 for (i = conf->raid_disks; i--; ) {
4516                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4517                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4518                         s.locked++;
4519                 }
4520         }
4521
4522         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4523             !sh->reconstruct_state) {
4524                 /* Need to write out all blocks after computing parity */
4525                 sh->disks = conf->raid_disks;
4526                 stripe_set_idx(sh->sector, conf, 0, sh);
4527                 schedule_reconstruction(sh, &s, 1, 1);
4528         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4529                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4530                 atomic_dec(&conf->reshape_stripes);
4531                 wake_up(&conf->wait_for_overlap);
4532                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4533         }
4534
4535         if (s.expanding && s.locked == 0 &&
4536             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4537                 handle_stripe_expansion(conf, sh);
4538
4539 finish:
4540         /* wait for this device to become unblocked */
4541         if (unlikely(s.blocked_rdev)) {
4542                 if (conf->mddev->external)
4543                         md_wait_for_blocked_rdev(s.blocked_rdev,
4544                                                  conf->mddev);
4545                 else
4546                         /* Internal metadata will immediately
4547                          * be written by raid5d, so we don't
4548                          * need to wait here.
4549                          */
4550                         rdev_dec_pending(s.blocked_rdev,
4551                                          conf->mddev);
4552         }
4553
4554         if (s.handle_bad_blocks)
4555                 for (i = disks; i--; ) {
4556                         struct md_rdev *rdev;
4557                         struct r5dev *dev = &sh->dev[i];
4558                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4559                                 /* We own a safe reference to the rdev */
4560                                 rdev = conf->disks[i].rdev;
4561                                 if (!rdev_set_badblocks(rdev, sh->sector,
4562                                                         STRIPE_SECTORS, 0))
4563                                         md_error(conf->mddev, rdev);
4564                                 rdev_dec_pending(rdev, conf->mddev);
4565                         }
4566                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4567                                 rdev = conf->disks[i].rdev;
4568                                 rdev_clear_badblocks(rdev, sh->sector,
4569                                                      STRIPE_SECTORS, 0);
4570                                 rdev_dec_pending(rdev, conf->mddev);
4571                         }
4572                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4573                                 rdev = conf->disks[i].replacement;
4574                                 if (!rdev)
4575                                         /* rdev have been moved down */
4576                                         rdev = conf->disks[i].rdev;
4577                                 rdev_clear_badblocks(rdev, sh->sector,
4578                                                      STRIPE_SECTORS, 0);
4579                                 rdev_dec_pending(rdev, conf->mddev);
4580                         }
4581                 }
4582
4583         if (s.ops_request)
4584                 raid_run_ops(sh, s.ops_request);
4585
4586         ops_run_io(sh, &s);
4587
4588         if (s.dec_preread_active) {
4589                 /* We delay this until after ops_run_io so that if make_request
4590                  * is waiting on a flush, it won't continue until the writes
4591                  * have actually been submitted.
4592                  */
4593                 atomic_dec(&conf->preread_active_stripes);
4594                 if (atomic_read(&conf->preread_active_stripes) <
4595                     IO_THRESHOLD)
4596                         md_wakeup_thread(conf->mddev->thread);
4597         }
4598
4599         return_io(s.return_bi);
4600
4601         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4602 }
4603
4604 static void raid5_activate_delayed(struct r5conf *conf)
4605 {
4606         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4607                 while (!list_empty(&conf->delayed_list)) {
4608                         struct list_head *l = conf->delayed_list.next;
4609                         struct stripe_head *sh;
4610                         sh = list_entry(l, struct stripe_head, lru);
4611                         list_del_init(l);
4612                         clear_bit(STRIPE_DELAYED, &sh->state);
4613                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4614                                 atomic_inc(&conf->preread_active_stripes);
4615                         list_add_tail(&sh->lru, &conf->hold_list);
4616                         raid5_wakeup_stripe_thread(sh);
4617                 }
4618         }
4619 }
4620
4621 static void activate_bit_delay(struct r5conf *conf,
4622         struct list_head *temp_inactive_list)
4623 {
4624         /* device_lock is held */
4625         struct list_head head;
4626         list_add(&head, &conf->bitmap_list);
4627         list_del_init(&conf->bitmap_list);
4628         while (!list_empty(&head)) {
4629                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4630                 int hash;
4631                 list_del_init(&sh->lru);
4632                 atomic_inc(&sh->count);
4633                 hash = sh->hash_lock_index;
4634                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4635         }
4636 }
4637
4638 static int raid5_congested(struct mddev *mddev, int bits)
4639 {
4640         struct r5conf *conf = mddev->private;
4641
4642         /* No difference between reads and writes.  Just check
4643          * how busy the stripe_cache is
4644          */
4645
4646         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4647                 return 1;
4648         if (conf->quiesce)
4649                 return 1;
4650         if (atomic_read(&conf->empty_inactive_list_nr))
4651                 return 1;
4652
4653         return 0;
4654 }
4655
4656 /* We want read requests to align with chunks where possible,
4657  * but write requests don't need to.
4658  */
4659 static int raid5_mergeable_bvec(struct mddev *mddev,
4660                                 struct bvec_merge_data *bvm,
4661                                 struct bio_vec *biovec)
4662 {
4663         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4664         int max;
4665         unsigned int chunk_sectors = mddev->chunk_sectors;
4666         unsigned int bio_sectors = bvm->bi_size >> 9;
4667
4668         /*
4669          * always allow writes to be mergeable, read as well if array
4670          * is degraded as we'll go through stripe cache anyway.
4671          */
4672         if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4673                 return biovec->bv_len;
4674
4675         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4676                 chunk_sectors = mddev->new_chunk_sectors;
4677         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4678         if (max < 0) max = 0;
4679         if (max <= biovec->bv_len && bio_sectors == 0)
4680                 return biovec->bv_len;
4681         else
4682                 return max;
4683 }
4684
4685 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4686 {
4687         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4688         unsigned int chunk_sectors = mddev->chunk_sectors;
4689         unsigned int bio_sectors = bio_sectors(bio);
4690
4691         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4692                 chunk_sectors = mddev->new_chunk_sectors;
4693         return  chunk_sectors >=
4694                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4695 }
4696
4697 /*
4698  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4699  *  later sampled by raid5d.
4700  */
4701 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4702 {
4703         unsigned long flags;
4704
4705         spin_lock_irqsave(&conf->device_lock, flags);
4706
4707         bi->bi_next = conf->retry_read_aligned_list;
4708         conf->retry_read_aligned_list = bi;
4709
4710         spin_unlock_irqrestore(&conf->device_lock, flags);
4711         md_wakeup_thread(conf->mddev->thread);
4712 }
4713
4714 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4715 {
4716         struct bio *bi;
4717
4718         bi = conf->retry_read_aligned;
4719         if (bi) {
4720                 conf->retry_read_aligned = NULL;
4721                 return bi;
4722         }
4723         bi = conf->retry_read_aligned_list;
4724         if(bi) {
4725                 conf->retry_read_aligned_list = bi->bi_next;
4726                 bi->bi_next = NULL;
4727                 /*
4728                  * this sets the active strip count to 1 and the processed
4729                  * strip count to zero (upper 8 bits)
4730                  */
4731                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4732         }
4733
4734         return bi;
4735 }
4736
4737 /*
4738  *  The "raid5_align_endio" should check if the read succeeded and if it
4739  *  did, call bio_endio on the original bio (having bio_put the new bio
4740  *  first).
4741  *  If the read failed..
4742  */
4743 static void raid5_align_endio(struct bio *bi, int error)
4744 {
4745         struct bio* raid_bi  = bi->bi_private;
4746         struct mddev *mddev;
4747         struct r5conf *conf;
4748         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4749         struct md_rdev *rdev;
4750
4751         bio_put(bi);
4752
4753         rdev = (void*)raid_bi->bi_next;
4754         raid_bi->bi_next = NULL;
4755         mddev = rdev->mddev;
4756         conf = mddev->private;
4757
4758         rdev_dec_pending(rdev, conf->mddev);
4759
4760         if (!error && uptodate) {
4761                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4762                                          raid_bi, 0);
4763                 bio_endio(raid_bi, 0);
4764                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4765                         wake_up(&conf->wait_for_stripe);
4766                 return;
4767         }
4768
4769         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4770
4771         add_bio_to_retry(raid_bi, conf);
4772 }
4773
4774 static int bio_fits_rdev(struct bio *bi)
4775 {
4776         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4777
4778         if (bio_sectors(bi) > queue_max_sectors(q))
4779                 return 0;
4780         blk_recount_segments(q, bi);
4781         if (bi->bi_phys_segments > queue_max_segments(q))
4782                 return 0;
4783
4784         if (q->merge_bvec_fn)
4785                 /* it's too hard to apply the merge_bvec_fn at this stage,
4786                  * just just give up
4787                  */
4788                 return 0;
4789
4790         return 1;
4791 }
4792
4793 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4794 {
4795         struct r5conf *conf = mddev->private;
4796         int dd_idx;
4797         struct bio* align_bi;
4798         struct md_rdev *rdev;
4799         sector_t end_sector;
4800
4801         if (!in_chunk_boundary(mddev, raid_bio)) {
4802                 pr_debug("chunk_aligned_read : non aligned\n");
4803                 return 0;
4804         }
4805         /*
4806          * use bio_clone_mddev to make a copy of the bio
4807          */
4808         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4809         if (!align_bi)
4810                 return 0;
4811         /*
4812          *   set bi_end_io to a new function, and set bi_private to the
4813          *     original bio.
4814          */
4815         align_bi->bi_end_io  = raid5_align_endio;
4816         align_bi->bi_private = raid_bio;
4817         /*
4818          *      compute position
4819          */
4820         align_bi->bi_iter.bi_sector =
4821                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4822                                      0, &dd_idx, NULL);
4823
4824         end_sector = bio_end_sector(align_bi);
4825         rcu_read_lock();
4826         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4827         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4828             rdev->recovery_offset < end_sector) {
4829                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4830                 if (rdev &&
4831                     (test_bit(Faulty, &rdev->flags) ||
4832                     !(test_bit(In_sync, &rdev->flags) ||
4833                       rdev->recovery_offset >= end_sector)))
4834                         rdev = NULL;
4835         }
4836         if (rdev) {
4837                 sector_t first_bad;
4838                 int bad_sectors;
4839
4840                 atomic_inc(&rdev->nr_pending);
4841                 rcu_read_unlock();
4842                 raid_bio->bi_next = (void*)rdev;
4843                 align_bi->bi_bdev =  rdev->bdev;
4844                 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4845
4846                 if (!bio_fits_rdev(align_bi) ||
4847                     is_badblock(rdev, align_bi->bi_iter.bi_sector,
4848                                 bio_sectors(align_bi),
4849                                 &first_bad, &bad_sectors)) {
4850                         /* too big in some way, or has a known bad block */
4851                         bio_put(align_bi);
4852                         rdev_dec_pending(rdev, mddev);
4853                         return 0;
4854                 }
4855
4856                 /* No reshape active, so we can trust rdev->data_offset */
4857                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4858
4859                 spin_lock_irq(&conf->device_lock);
4860                 wait_event_lock_irq(conf->wait_for_stripe,
4861                                     conf->quiesce == 0,
4862                                     conf->device_lock);
4863                 atomic_inc(&conf->active_aligned_reads);
4864                 spin_unlock_irq(&conf->device_lock);
4865
4866                 if (mddev->gendisk)
4867                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4868                                               align_bi, disk_devt(mddev->gendisk),
4869                                               raid_bio->bi_iter.bi_sector);
4870                 generic_make_request(align_bi);
4871                 return 1;
4872         } else {
4873                 rcu_read_unlock();
4874                 bio_put(align_bi);
4875                 return 0;
4876         }
4877 }
4878
4879 /* __get_priority_stripe - get the next stripe to process
4880  *
4881  * Full stripe writes are allowed to pass preread active stripes up until
4882  * the bypass_threshold is exceeded.  In general the bypass_count
4883  * increments when the handle_list is handled before the hold_list; however, it
4884  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4885  * stripe with in flight i/o.  The bypass_count will be reset when the
4886  * head of the hold_list has changed, i.e. the head was promoted to the
4887  * handle_list.
4888  */
4889 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4890 {
4891         struct stripe_head *sh = NULL, *tmp;
4892         struct list_head *handle_list = NULL;
4893         struct r5worker_group *wg = NULL;
4894
4895         if (conf->worker_cnt_per_group == 0) {
4896                 handle_list = &conf->handle_list;
4897         } else if (group != ANY_GROUP) {
4898                 handle_list = &conf->worker_groups[group].handle_list;
4899                 wg = &conf->worker_groups[group];
4900         } else {
4901                 int i;
4902                 for (i = 0; i < conf->group_cnt; i++) {
4903                         handle_list = &conf->worker_groups[i].handle_list;
4904                         wg = &conf->worker_groups[i];
4905                         if (!list_empty(handle_list))
4906                                 break;
4907                 }
4908         }
4909
4910         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4911                   __func__,
4912                   list_empty(handle_list) ? "empty" : "busy",
4913                   list_empty(&conf->hold_list) ? "empty" : "busy",
4914                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4915
4916         if (!list_empty(handle_list)) {
4917                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4918
4919                 if (list_empty(&conf->hold_list))
4920                         conf->bypass_count = 0;
4921                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4922                         if (conf->hold_list.next == conf->last_hold)
4923                                 conf->bypass_count++;
4924                         else {
4925                                 conf->last_hold = conf->hold_list.next;
4926                                 conf->bypass_count -= conf->bypass_threshold;
4927                                 if (conf->bypass_count < 0)
4928                                         conf->bypass_count = 0;
4929                         }
4930                 }
4931         } else if (!list_empty(&conf->hold_list) &&
4932                    ((conf->bypass_threshold &&
4933                      conf->bypass_count > conf->bypass_threshold) ||
4934                     atomic_read(&conf->pending_full_writes) == 0)) {
4935
4936                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4937                         if (conf->worker_cnt_per_group == 0 ||
4938                             group == ANY_GROUP ||
4939                             !cpu_online(tmp->cpu) ||
4940                             cpu_to_group(tmp->cpu) == group) {
4941                                 sh = tmp;
4942                                 break;
4943                         }
4944                 }
4945
4946                 if (sh) {
4947                         conf->bypass_count -= conf->bypass_threshold;
4948                         if (conf->bypass_count < 0)
4949                                 conf->bypass_count = 0;
4950                 }
4951                 wg = NULL;
4952         }
4953
4954         if (!sh)
4955                 return NULL;
4956
4957         if (wg) {
4958                 wg->stripes_cnt--;
4959                 sh->group = NULL;
4960         }
4961         list_del_init(&sh->lru);
4962         BUG_ON(atomic_inc_return(&sh->count) != 1);
4963         return sh;
4964 }
4965
4966 struct raid5_plug_cb {
4967         struct blk_plug_cb      cb;
4968         struct list_head        list;
4969         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4970 };
4971
4972 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4973 {
4974         struct raid5_plug_cb *cb = container_of(
4975                 blk_cb, struct raid5_plug_cb, cb);
4976         struct stripe_head *sh;
4977         struct mddev *mddev = cb->cb.data;
4978         struct r5conf *conf = mddev->private;
4979         int cnt = 0;
4980         int hash;
4981
4982         if (cb->list.next && !list_empty(&cb->list)) {
4983                 spin_lock_irq(&conf->device_lock);
4984                 while (!list_empty(&cb->list)) {
4985                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4986                         list_del_init(&sh->lru);
4987                         /*
4988                          * avoid race release_stripe_plug() sees
4989                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4990                          * is still in our list
4991                          */
4992                         smp_mb__before_atomic();
4993                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4994                         /*
4995                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4996                          * case, the count is always > 1 here
4997                          */
4998                         hash = sh->hash_lock_index;
4999                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5000                         cnt++;
5001                 }
5002                 spin_unlock_irq(&conf->device_lock);
5003         }
5004         release_inactive_stripe_list(conf, cb->temp_inactive_list,
5005                                      NR_STRIPE_HASH_LOCKS);
5006         if (mddev->queue)
5007                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5008         kfree(cb);
5009 }
5010
5011 static void release_stripe_plug(struct mddev *mddev,
5012                                 struct stripe_head *sh)
5013 {
5014         struct blk_plug_cb *blk_cb = blk_check_plugged(
5015                 raid5_unplug, mddev,
5016                 sizeof(struct raid5_plug_cb));
5017         struct raid5_plug_cb *cb;
5018
5019         if (!blk_cb) {
5020                 release_stripe(sh);
5021                 return;
5022         }
5023
5024         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5025
5026         if (cb->list.next == NULL) {
5027                 int i;
5028                 INIT_LIST_HEAD(&cb->list);
5029                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5030                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5031         }
5032
5033         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5034                 list_add_tail(&sh->lru, &cb->list);
5035         else
5036                 release_stripe(sh);
5037 }
5038
5039 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5040 {
5041         struct r5conf *conf = mddev->private;
5042         sector_t logical_sector, last_sector;
5043         struct stripe_head *sh;
5044         int remaining;
5045         int stripe_sectors;
5046
5047         if (mddev->reshape_position != MaxSector)
5048                 /* Skip discard while reshape is happening */
5049                 return;
5050
5051         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5052         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5053
5054         bi->bi_next = NULL;
5055         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5056
5057         stripe_sectors = conf->chunk_sectors *
5058                 (conf->raid_disks - conf->max_degraded);
5059         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5060                                                stripe_sectors);
5061         sector_div(last_sector, stripe_sectors);
5062
5063         logical_sector *= conf->chunk_sectors;
5064         last_sector *= conf->chunk_sectors;
5065
5066         for (; logical_sector < last_sector;
5067              logical_sector += STRIPE_SECTORS) {
5068                 DEFINE_WAIT(w);
5069                 int d;
5070         again:
5071                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5072                 prepare_to_wait(&conf->wait_for_overlap, &w,
5073                                 TASK_UNINTERRUPTIBLE);
5074                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5075                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5076                         release_stripe(sh);
5077                         schedule();
5078                         goto again;
5079                 }
5080                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5081                 spin_lock_irq(&sh->stripe_lock);
5082                 for (d = 0; d < conf->raid_disks; d++) {
5083                         if (d == sh->pd_idx || d == sh->qd_idx)
5084                                 continue;
5085                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5086                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5087                                 spin_unlock_irq(&sh->stripe_lock);
5088                                 release_stripe(sh);
5089                                 schedule();
5090                                 goto again;
5091                         }
5092                 }
5093                 set_bit(STRIPE_DISCARD, &sh->state);
5094                 finish_wait(&conf->wait_for_overlap, &w);
5095                 sh->overwrite_disks = 0;
5096                 for (d = 0; d < conf->raid_disks; d++) {
5097                         if (d == sh->pd_idx || d == sh->qd_idx)
5098                                 continue;
5099                         sh->dev[d].towrite = bi;
5100                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5101                         raid5_inc_bi_active_stripes(bi);
5102                         sh->overwrite_disks++;
5103                 }
5104                 spin_unlock_irq(&sh->stripe_lock);
5105                 if (conf->mddev->bitmap) {
5106                         for (d = 0;
5107                              d < conf->raid_disks - conf->max_degraded;
5108                              d++)
5109                                 bitmap_startwrite(mddev->bitmap,
5110                                                   sh->sector,
5111                                                   STRIPE_SECTORS,
5112                                                   0);
5113                         sh->bm_seq = conf->seq_flush + 1;
5114                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5115                 }
5116
5117                 set_bit(STRIPE_HANDLE, &sh->state);
5118                 clear_bit(STRIPE_DELAYED, &sh->state);
5119                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5120                         atomic_inc(&conf->preread_active_stripes);
5121                 release_stripe_plug(mddev, sh);
5122         }
5123
5124         remaining = raid5_dec_bi_active_stripes(bi);
5125         if (remaining == 0) {
5126                 md_write_end(mddev);
5127                 bio_endio(bi, 0);
5128         }
5129 }
5130
5131 static void make_request(struct mddev *mddev, struct bio * bi)
5132 {
5133         struct r5conf *conf = mddev->private;
5134         int dd_idx;
5135         sector_t new_sector;
5136         sector_t logical_sector, last_sector;
5137         struct stripe_head *sh;
5138         const int rw = bio_data_dir(bi);
5139         int remaining;
5140         DEFINE_WAIT(w);
5141         bool do_prepare;
5142
5143         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5144                 md_flush_request(mddev, bi);
5145                 return;
5146         }
5147
5148         md_write_start(mddev, bi);
5149
5150         /*
5151          * If array is degraded, better not do chunk aligned read because
5152          * later we might have to read it again in order to reconstruct
5153          * data on failed drives.
5154          */
5155         if (rw == READ && mddev->degraded == 0 &&
5156              mddev->reshape_position == MaxSector &&
5157              chunk_aligned_read(mddev,bi))
5158                 return;
5159
5160         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5161                 make_discard_request(mddev, bi);
5162                 return;
5163         }
5164
5165         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5166         last_sector = bio_end_sector(bi);
5167         bi->bi_next = NULL;
5168         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5169
5170         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5171         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5172                 int previous;
5173                 int seq;
5174
5175                 do_prepare = false;
5176         retry:
5177                 seq = read_seqcount_begin(&conf->gen_lock);
5178                 previous = 0;
5179                 if (do_prepare)
5180                         prepare_to_wait(&conf->wait_for_overlap, &w,
5181                                 TASK_UNINTERRUPTIBLE);
5182                 if (unlikely(conf->reshape_progress != MaxSector)) {
5183                         /* spinlock is needed as reshape_progress may be
5184                          * 64bit on a 32bit platform, and so it might be
5185                          * possible to see a half-updated value
5186                          * Of course reshape_progress could change after
5187                          * the lock is dropped, so once we get a reference
5188                          * to the stripe that we think it is, we will have
5189                          * to check again.
5190                          */
5191                         spin_lock_irq(&conf->device_lock);
5192                         if (mddev->reshape_backwards
5193                             ? logical_sector < conf->reshape_progress
5194                             : logical_sector >= conf->reshape_progress) {
5195                                 previous = 1;
5196                         } else {
5197                                 if (mddev->reshape_backwards
5198                                     ? logical_sector < conf->reshape_safe
5199                                     : logical_sector >= conf->reshape_safe) {
5200                                         spin_unlock_irq(&conf->device_lock);
5201                                         schedule();
5202                                         do_prepare = true;
5203                                         goto retry;
5204                                 }
5205                         }
5206                         spin_unlock_irq(&conf->device_lock);
5207                 }
5208
5209                 new_sector = raid5_compute_sector(conf, logical_sector,
5210                                                   previous,
5211                                                   &dd_idx, NULL);
5212                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5213                         (unsigned long long)new_sector,
5214                         (unsigned long long)logical_sector);
5215
5216                 sh = get_active_stripe(conf, new_sector, previous,
5217                                        (bi->bi_rw&RWA_MASK), 0);
5218                 if (sh) {
5219                         if (unlikely(previous)) {
5220                                 /* expansion might have moved on while waiting for a
5221                                  * stripe, so we must do the range check again.
5222                                  * Expansion could still move past after this
5223                                  * test, but as we are holding a reference to
5224                                  * 'sh', we know that if that happens,
5225                                  *  STRIPE_EXPANDING will get set and the expansion
5226                                  * won't proceed until we finish with the stripe.
5227                                  */
5228                                 int must_retry = 0;
5229                                 spin_lock_irq(&conf->device_lock);
5230                                 if (mddev->reshape_backwards
5231                                     ? logical_sector >= conf->reshape_progress
5232                                     : logical_sector < conf->reshape_progress)
5233                                         /* mismatch, need to try again */
5234                                         must_retry = 1;
5235                                 spin_unlock_irq(&conf->device_lock);
5236                                 if (must_retry) {
5237                                         release_stripe(sh);
5238                                         schedule();
5239                                         do_prepare = true;
5240                                         goto retry;
5241                                 }
5242                         }
5243                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5244                                 /* Might have got the wrong stripe_head
5245                                  * by accident
5246                                  */
5247                                 release_stripe(sh);
5248                                 goto retry;
5249                         }
5250
5251                         if (rw == WRITE &&
5252                             logical_sector >= mddev->suspend_lo &&
5253                             logical_sector < mddev->suspend_hi) {
5254                                 release_stripe(sh);
5255                                 /* As the suspend_* range is controlled by
5256                                  * userspace, we want an interruptible
5257                                  * wait.
5258                                  */
5259                                 flush_signals(current);
5260                                 prepare_to_wait(&conf->wait_for_overlap,
5261                                                 &w, TASK_INTERRUPTIBLE);
5262                                 if (logical_sector >= mddev->suspend_lo &&
5263                                     logical_sector < mddev->suspend_hi) {
5264                                         schedule();
5265                                         do_prepare = true;
5266                                 }
5267                                 goto retry;
5268                         }
5269
5270                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5271                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5272                                 /* Stripe is busy expanding or
5273                                  * add failed due to overlap.  Flush everything
5274                                  * and wait a while
5275                                  */
5276                                 md_wakeup_thread(mddev->thread);
5277                                 release_stripe(sh);
5278                                 schedule();
5279                                 do_prepare = true;
5280                                 goto retry;
5281                         }
5282                         set_bit(STRIPE_HANDLE, &sh->state);
5283                         clear_bit(STRIPE_DELAYED, &sh->state);
5284                         if ((!sh->batch_head || sh == sh->batch_head) &&
5285                             (bi->bi_rw & REQ_SYNC) &&
5286                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5287                                 atomic_inc(&conf->preread_active_stripes);
5288                         release_stripe_plug(mddev, sh);
5289                 } else {
5290                         /* cannot get stripe for read-ahead, just give-up */
5291                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
5292                         break;
5293                 }
5294         }
5295         finish_wait(&conf->wait_for_overlap, &w);
5296
5297         remaining = raid5_dec_bi_active_stripes(bi);
5298         if (remaining == 0) {
5299
5300                 if ( rw == WRITE )
5301                         md_write_end(mddev);
5302
5303                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5304                                          bi, 0);
5305                 bio_endio(bi, 0);
5306         }
5307 }
5308
5309 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5310
5311 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5312 {
5313         /* reshaping is quite different to recovery/resync so it is
5314          * handled quite separately ... here.
5315          *
5316          * On each call to sync_request, we gather one chunk worth of
5317          * destination stripes and flag them as expanding.
5318          * Then we find all the source stripes and request reads.
5319          * As the reads complete, handle_stripe will copy the data
5320          * into the destination stripe and release that stripe.
5321          */
5322         struct r5conf *conf = mddev->private;
5323         struct stripe_head *sh;
5324         sector_t first_sector, last_sector;
5325         int raid_disks = conf->previous_raid_disks;
5326         int data_disks = raid_disks - conf->max_degraded;
5327         int new_data_disks = conf->raid_disks - conf->max_degraded;
5328         int i;
5329         int dd_idx;
5330         sector_t writepos, readpos, safepos;
5331         sector_t stripe_addr;
5332         int reshape_sectors;
5333         struct list_head stripes;
5334
5335         if (sector_nr == 0) {
5336                 /* If restarting in the middle, skip the initial sectors */
5337                 if (mddev->reshape_backwards &&
5338                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5339                         sector_nr = raid5_size(mddev, 0, 0)
5340                                 - conf->reshape_progress;
5341                 } else if (!mddev->reshape_backwards &&
5342                            conf->reshape_progress > 0)
5343                         sector_nr = conf->reshape_progress;
5344                 sector_div(sector_nr, new_data_disks);
5345                 if (sector_nr) {
5346                         mddev->curr_resync_completed = sector_nr;
5347                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5348                         *skipped = 1;
5349                         return sector_nr;
5350                 }
5351         }
5352
5353         /* We need to process a full chunk at a time.
5354          * If old and new chunk sizes differ, we need to process the
5355          * largest of these
5356          */
5357         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5358                 reshape_sectors = mddev->new_chunk_sectors;
5359         else
5360                 reshape_sectors = mddev->chunk_sectors;
5361
5362         /* We update the metadata at least every 10 seconds, or when
5363          * the data about to be copied would over-write the source of
5364          * the data at the front of the range.  i.e. one new_stripe
5365          * along from reshape_progress new_maps to after where
5366          * reshape_safe old_maps to
5367          */
5368         writepos = conf->reshape_progress;
5369         sector_div(writepos, new_data_disks);
5370         readpos = conf->reshape_progress;
5371         sector_div(readpos, data_disks);
5372         safepos = conf->reshape_safe;
5373         sector_div(safepos, data_disks);
5374         if (mddev->reshape_backwards) {
5375                 writepos -= min_t(sector_t, reshape_sectors, writepos);
5376                 readpos += reshape_sectors;
5377                 safepos += reshape_sectors;
5378         } else {
5379                 writepos += reshape_sectors;
5380                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5381                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5382         }
5383
5384         /* Having calculated the 'writepos' possibly use it
5385          * to set 'stripe_addr' which is where we will write to.
5386          */
5387         if (mddev->reshape_backwards) {
5388                 BUG_ON(conf->reshape_progress == 0);
5389                 stripe_addr = writepos;
5390                 BUG_ON((mddev->dev_sectors &
5391                         ~((sector_t)reshape_sectors - 1))
5392                        - reshape_sectors - stripe_addr
5393                        != sector_nr);
5394         } else {
5395                 BUG_ON(writepos != sector_nr + reshape_sectors);
5396                 stripe_addr = sector_nr;
5397         }
5398
5399         /* 'writepos' is the most advanced device address we might write.
5400          * 'readpos' is the least advanced device address we might read.
5401          * 'safepos' is the least address recorded in the metadata as having
5402          *     been reshaped.
5403          * If there is a min_offset_diff, these are adjusted either by
5404          * increasing the safepos/readpos if diff is negative, or
5405          * increasing writepos if diff is positive.
5406          * If 'readpos' is then behind 'writepos', there is no way that we can
5407          * ensure safety in the face of a crash - that must be done by userspace
5408          * making a backup of the data.  So in that case there is no particular
5409          * rush to update metadata.
5410          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5411          * update the metadata to advance 'safepos' to match 'readpos' so that
5412          * we can be safe in the event of a crash.
5413          * So we insist on updating metadata if safepos is behind writepos and
5414          * readpos is beyond writepos.
5415          * In any case, update the metadata every 10 seconds.
5416          * Maybe that number should be configurable, but I'm not sure it is
5417          * worth it.... maybe it could be a multiple of safemode_delay???
5418          */
5419         if (conf->min_offset_diff < 0) {
5420                 safepos += -conf->min_offset_diff;
5421                 readpos += -conf->min_offset_diff;
5422         } else
5423                 writepos += conf->min_offset_diff;
5424
5425         if ((mddev->reshape_backwards
5426              ? (safepos > writepos && readpos < writepos)
5427              : (safepos < writepos && readpos > writepos)) ||
5428             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5429                 /* Cannot proceed until we've updated the superblock... */
5430                 wait_event(conf->wait_for_overlap,
5431                            atomic_read(&conf->reshape_stripes)==0
5432                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5433                 if (atomic_read(&conf->reshape_stripes) != 0)
5434                         return 0;
5435                 mddev->reshape_position = conf->reshape_progress;
5436                 mddev->curr_resync_completed = sector_nr;
5437                 conf->reshape_checkpoint = jiffies;
5438                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5439                 md_wakeup_thread(mddev->thread);
5440                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5441                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5442                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5443                         return 0;
5444                 spin_lock_irq(&conf->device_lock);
5445                 conf->reshape_safe = mddev->reshape_position;
5446                 spin_unlock_irq(&conf->device_lock);
5447                 wake_up(&conf->wait_for_overlap);
5448                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5449         }
5450
5451         INIT_LIST_HEAD(&stripes);
5452         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5453                 int j;
5454                 int skipped_disk = 0;
5455                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5456                 set_bit(STRIPE_EXPANDING, &sh->state);
5457                 atomic_inc(&conf->reshape_stripes);
5458                 /* If any of this stripe is beyond the end of the old
5459                  * array, then we need to zero those blocks
5460                  */
5461                 for (j=sh->disks; j--;) {
5462                         sector_t s;
5463                         if (j == sh->pd_idx)
5464                                 continue;
5465                         if (conf->level == 6 &&
5466                             j == sh->qd_idx)
5467                                 continue;
5468                         s = compute_blocknr(sh, j, 0);
5469                         if (s < raid5_size(mddev, 0, 0)) {
5470                                 skipped_disk = 1;
5471                                 continue;
5472                         }
5473                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5474                         set_bit(R5_Expanded, &sh->dev[j].flags);
5475                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5476                 }
5477                 if (!skipped_disk) {
5478                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5479                         set_bit(STRIPE_HANDLE, &sh->state);
5480                 }
5481                 list_add(&sh->lru, &stripes);
5482         }
5483         spin_lock_irq(&conf->device_lock);
5484         if (mddev->reshape_backwards)
5485                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5486         else
5487                 conf->reshape_progress += reshape_sectors * new_data_disks;
5488         spin_unlock_irq(&conf->device_lock);
5489         /* Ok, those stripe are ready. We can start scheduling
5490          * reads on the source stripes.
5491          * The source stripes are determined by mapping the first and last
5492          * block on the destination stripes.
5493          */
5494         first_sector =
5495                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5496                                      1, &dd_idx, NULL);
5497         last_sector =
5498                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5499                                             * new_data_disks - 1),
5500                                      1, &dd_idx, NULL);
5501         if (last_sector >= mddev->dev_sectors)
5502                 last_sector = mddev->dev_sectors - 1;
5503         while (first_sector <= last_sector) {
5504                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5505                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5506                 set_bit(STRIPE_HANDLE, &sh->state);
5507                 release_stripe(sh);
5508                 first_sector += STRIPE_SECTORS;
5509         }
5510         /* Now that the sources are clearly marked, we can release
5511          * the destination stripes
5512          */
5513         while (!list_empty(&stripes)) {
5514                 sh = list_entry(stripes.next, struct stripe_head, lru);
5515                 list_del_init(&sh->lru);
5516                 release_stripe(sh);
5517         }
5518         /* If this takes us to the resync_max point where we have to pause,
5519          * then we need to write out the superblock.
5520          */
5521         sector_nr += reshape_sectors;
5522         if ((sector_nr - mddev->curr_resync_completed) * 2
5523             >= mddev->resync_max - mddev->curr_resync_completed) {
5524                 /* Cannot proceed until we've updated the superblock... */
5525                 wait_event(conf->wait_for_overlap,
5526                            atomic_read(&conf->reshape_stripes) == 0
5527                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5528                 if (atomic_read(&conf->reshape_stripes) != 0)
5529                         goto ret;
5530                 mddev->reshape_position = conf->reshape_progress;
5531                 mddev->curr_resync_completed = sector_nr;
5532                 conf->reshape_checkpoint = jiffies;
5533                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5534                 md_wakeup_thread(mddev->thread);
5535                 wait_event(mddev->sb_wait,
5536                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5537                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5538                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5539                         goto ret;
5540                 spin_lock_irq(&conf->device_lock);
5541                 conf->reshape_safe = mddev->reshape_position;
5542                 spin_unlock_irq(&conf->device_lock);
5543                 wake_up(&conf->wait_for_overlap);
5544                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5545         }
5546 ret:
5547         return reshape_sectors;
5548 }
5549
5550 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5551 {
5552         struct r5conf *conf = mddev->private;
5553         struct stripe_head *sh;
5554         sector_t max_sector = mddev->dev_sectors;
5555         sector_t sync_blocks;
5556         int still_degraded = 0;
5557         int i;
5558
5559         if (sector_nr >= max_sector) {
5560                 /* just being told to finish up .. nothing much to do */
5561
5562                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5563                         end_reshape(conf);
5564                         return 0;
5565                 }
5566
5567                 if (mddev->curr_resync < max_sector) /* aborted */
5568                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5569                                         &sync_blocks, 1);
5570                 else /* completed sync */
5571                         conf->fullsync = 0;
5572                 bitmap_close_sync(mddev->bitmap);
5573
5574                 return 0;
5575         }
5576
5577         /* Allow raid5_quiesce to complete */
5578         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5579
5580         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5581                 return reshape_request(mddev, sector_nr, skipped);
5582
5583         /* No need to check resync_max as we never do more than one
5584          * stripe, and as resync_max will always be on a chunk boundary,
5585          * if the check in md_do_sync didn't fire, there is no chance
5586          * of overstepping resync_max here
5587          */
5588
5589         /* if there is too many failed drives and we are trying
5590          * to resync, then assert that we are finished, because there is
5591          * nothing we can do.
5592          */
5593         if (mddev->degraded >= conf->max_degraded &&
5594             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5595                 sector_t rv = mddev->dev_sectors - sector_nr;
5596                 *skipped = 1;
5597                 return rv;
5598         }
5599         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5600             !conf->fullsync &&
5601             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5602             sync_blocks >= STRIPE_SECTORS) {
5603                 /* we can skip this block, and probably more */
5604                 sync_blocks /= STRIPE_SECTORS;
5605                 *skipped = 1;
5606                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5607         }
5608
5609         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5610
5611         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5612         if (sh == NULL) {
5613                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5614                 /* make sure we don't swamp the stripe cache if someone else
5615                  * is trying to get access
5616                  */
5617                 schedule_timeout_uninterruptible(1);
5618         }
5619         /* Need to check if array will still be degraded after recovery/resync
5620          * Note in case of > 1 drive failures it's possible we're rebuilding
5621          * one drive while leaving another faulty drive in array.
5622          */
5623         rcu_read_lock();
5624         for (i = 0; i < conf->raid_disks; i++) {
5625                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5626
5627                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5628                         still_degraded = 1;
5629         }
5630         rcu_read_unlock();
5631
5632         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5633
5634         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5635         set_bit(STRIPE_HANDLE, &sh->state);
5636
5637         release_stripe(sh);
5638
5639         return STRIPE_SECTORS;
5640 }
5641
5642 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5643 {
5644         /* We may not be able to submit a whole bio at once as there
5645          * may not be enough stripe_heads available.
5646          * We cannot pre-allocate enough stripe_heads as we may need
5647          * more than exist in the cache (if we allow ever large chunks).
5648          * So we do one stripe head at a time and record in
5649          * ->bi_hw_segments how many have been done.
5650          *
5651          * We *know* that this entire raid_bio is in one chunk, so
5652          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5653          */
5654         struct stripe_head *sh;
5655         int dd_idx;
5656         sector_t sector, logical_sector, last_sector;
5657         int scnt = 0;
5658         int remaining;
5659         int handled = 0;
5660
5661         logical_sector = raid_bio->bi_iter.bi_sector &
5662                 ~((sector_t)STRIPE_SECTORS-1);
5663         sector = raid5_compute_sector(conf, logical_sector,
5664                                       0, &dd_idx, NULL);
5665         last_sector = bio_end_sector(raid_bio);
5666
5667         for (; logical_sector < last_sector;
5668              logical_sector += STRIPE_SECTORS,
5669                      sector += STRIPE_SECTORS,
5670                      scnt++) {
5671
5672                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5673                         /* already done this stripe */
5674                         continue;
5675
5676                 sh = get_active_stripe(conf, sector, 0, 1, 1);
5677
5678                 if (!sh) {
5679                         /* failed to get a stripe - must wait */
5680                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5681                         conf->retry_read_aligned = raid_bio;
5682                         return handled;
5683                 }
5684
5685                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5686                         release_stripe(sh);
5687                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5688                         conf->retry_read_aligned = raid_bio;
5689                         return handled;
5690                 }
5691
5692                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5693                 handle_stripe(sh);
5694                 release_stripe(sh);
5695                 handled++;
5696         }
5697         remaining = raid5_dec_bi_active_stripes(raid_bio);
5698         if (remaining == 0) {
5699                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5700                                          raid_bio, 0);
5701                 bio_endio(raid_bio, 0);
5702         }
5703         if (atomic_dec_and_test(&conf->active_aligned_reads))
5704                 wake_up(&conf->wait_for_stripe);
5705         return handled;
5706 }
5707
5708 static int handle_active_stripes(struct r5conf *conf, int group,
5709                                  struct r5worker *worker,
5710                                  struct list_head *temp_inactive_list)
5711 {
5712         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5713         int i, batch_size = 0, hash;
5714         bool release_inactive = false;
5715
5716         while (batch_size < MAX_STRIPE_BATCH &&
5717                         (sh = __get_priority_stripe(conf, group)) != NULL)
5718                 batch[batch_size++] = sh;
5719
5720         if (batch_size == 0) {
5721                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5722                         if (!list_empty(temp_inactive_list + i))
5723                                 break;
5724                 if (i == NR_STRIPE_HASH_LOCKS)
5725                         return batch_size;
5726                 release_inactive = true;
5727         }
5728         spin_unlock_irq(&conf->device_lock);
5729
5730         release_inactive_stripe_list(conf, temp_inactive_list,
5731                                      NR_STRIPE_HASH_LOCKS);
5732
5733         if (release_inactive) {
5734                 spin_lock_irq(&conf->device_lock);
5735                 return 0;
5736         }
5737
5738         for (i = 0; i < batch_size; i++)
5739                 handle_stripe(batch[i]);
5740
5741         cond_resched();
5742
5743         spin_lock_irq(&conf->device_lock);
5744         for (i = 0; i < batch_size; i++) {
5745                 hash = batch[i]->hash_lock_index;
5746                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5747         }
5748         return batch_size;
5749 }
5750
5751 static void raid5_do_work(struct work_struct *work)
5752 {
5753         struct r5worker *worker = container_of(work, struct r5worker, work);
5754         struct r5worker_group *group = worker->group;
5755         struct r5conf *conf = group->conf;
5756         int group_id = group - conf->worker_groups;
5757         int handled;
5758         struct blk_plug plug;
5759
5760         pr_debug("+++ raid5worker active\n");
5761
5762         blk_start_plug(&plug);
5763         handled = 0;
5764         spin_lock_irq(&conf->device_lock);
5765         while (1) {
5766                 int batch_size, released;
5767
5768                 released = release_stripe_list(conf, worker->temp_inactive_list);
5769
5770                 batch_size = handle_active_stripes(conf, group_id, worker,
5771                                                    worker->temp_inactive_list);
5772                 worker->working = false;
5773                 if (!batch_size && !released)
5774                         break;
5775                 handled += batch_size;
5776         }
5777         pr_debug("%d stripes handled\n", handled);
5778
5779         spin_unlock_irq(&conf->device_lock);
5780         blk_finish_plug(&plug);
5781
5782         pr_debug("--- raid5worker inactive\n");
5783 }
5784
5785 /*
5786  * This is our raid5 kernel thread.
5787  *
5788  * We scan the hash table for stripes which can be handled now.
5789  * During the scan, completed stripes are saved for us by the interrupt
5790  * handler, so that they will not have to wait for our next wakeup.
5791  */
5792 static void raid5d(struct md_thread *thread)
5793 {
5794         struct mddev *mddev = thread->mddev;
5795         struct r5conf *conf = mddev->private;
5796         int handled;
5797         struct blk_plug plug;
5798
5799         pr_debug("+++ raid5d active\n");
5800
5801         md_check_recovery(mddev);
5802
5803         blk_start_plug(&plug);
5804         handled = 0;
5805         spin_lock_irq(&conf->device_lock);
5806         while (1) {
5807                 struct bio *bio;
5808                 int batch_size, released;
5809
5810                 released = release_stripe_list(conf, conf->temp_inactive_list);
5811                 if (released)
5812                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
5813
5814                 if (
5815                     !list_empty(&conf->bitmap_list)) {
5816                         /* Now is a good time to flush some bitmap updates */
5817                         conf->seq_flush++;
5818                         spin_unlock_irq(&conf->device_lock);
5819                         bitmap_unplug(mddev->bitmap);
5820                         spin_lock_irq(&conf->device_lock);
5821                         conf->seq_write = conf->seq_flush;
5822                         activate_bit_delay(conf, conf->temp_inactive_list);
5823                 }
5824                 raid5_activate_delayed(conf);
5825
5826                 while ((bio = remove_bio_from_retry(conf))) {
5827                         int ok;
5828                         spin_unlock_irq(&conf->device_lock);
5829                         ok = retry_aligned_read(conf, bio);
5830                         spin_lock_irq(&conf->device_lock);
5831                         if (!ok)
5832                                 break;
5833                         handled++;
5834                 }
5835
5836                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5837                                                    conf->temp_inactive_list);
5838                 if (!batch_size && !released)
5839                         break;
5840                 handled += batch_size;
5841
5842                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5843                         spin_unlock_irq(&conf->device_lock);
5844                         md_check_recovery(mddev);
5845                         spin_lock_irq(&conf->device_lock);
5846                 }
5847         }
5848         pr_debug("%d stripes handled\n", handled);
5849
5850         spin_unlock_irq(&conf->device_lock);
5851         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state)) {
5852                 grow_one_stripe(conf, __GFP_NOWARN);
5853                 /* Set flag even if allocation failed.  This helps
5854                  * slow down allocation requests when mem is short
5855                  */
5856                 set_bit(R5_DID_ALLOC, &conf->cache_state);
5857         }
5858
5859         async_tx_issue_pending_all();
5860         blk_finish_plug(&plug);
5861
5862         pr_debug("--- raid5d inactive\n");
5863 }
5864
5865 static ssize_t
5866 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5867 {
5868         struct r5conf *conf;
5869         int ret = 0;
5870         spin_lock(&mddev->lock);
5871         conf = mddev->private;
5872         if (conf)
5873                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5874         spin_unlock(&mddev->lock);
5875         return ret;
5876 }
5877
5878 int
5879 raid5_set_cache_size(struct mddev *mddev, int size)
5880 {
5881         struct r5conf *conf = mddev->private;
5882         int err;
5883
5884         if (size <= 16 || size > 32768)
5885                 return -EINVAL;
5886
5887         conf->min_nr_stripes = size;
5888         while (size < conf->max_nr_stripes &&
5889                drop_one_stripe(conf))
5890                 ;
5891
5892
5893         err = md_allow_write(mddev);
5894         if (err)
5895                 return err;
5896
5897         while (size > conf->max_nr_stripes)
5898                 if (!grow_one_stripe(conf, GFP_KERNEL))
5899                         break;
5900
5901         return 0;
5902 }
5903 EXPORT_SYMBOL(raid5_set_cache_size);
5904
5905 static ssize_t
5906 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5907 {
5908         struct r5conf *conf;
5909         unsigned long new;
5910         int err;
5911
5912         if (len >= PAGE_SIZE)
5913                 return -EINVAL;
5914         if (kstrtoul(page, 10, &new))
5915                 return -EINVAL;
5916         err = mddev_lock(mddev);
5917         if (err)
5918                 return err;
5919         conf = mddev->private;
5920         if (!conf)
5921                 err = -ENODEV;
5922         else
5923                 err = raid5_set_cache_size(mddev, new);
5924         mddev_unlock(mddev);
5925
5926         return err ?: len;
5927 }
5928
5929 static struct md_sysfs_entry
5930 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5931                                 raid5_show_stripe_cache_size,
5932                                 raid5_store_stripe_cache_size);
5933
5934 static ssize_t
5935 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5936 {
5937         struct r5conf *conf = mddev->private;
5938         if (conf)
5939                 return sprintf(page, "%d\n", conf->rmw_level);
5940         else
5941                 return 0;
5942 }
5943
5944 static ssize_t
5945 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
5946 {
5947         struct r5conf *conf = mddev->private;
5948         unsigned long new;
5949
5950         if (!conf)
5951                 return -ENODEV;
5952
5953         if (len >= PAGE_SIZE)
5954                 return -EINVAL;
5955
5956         if (kstrtoul(page, 10, &new))
5957                 return -EINVAL;
5958
5959         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5960                 return -EINVAL;
5961
5962         if (new != PARITY_DISABLE_RMW &&
5963             new != PARITY_ENABLE_RMW &&
5964             new != PARITY_PREFER_RMW)
5965                 return -EINVAL;
5966
5967         conf->rmw_level = new;
5968         return len;
5969 }
5970
5971 static struct md_sysfs_entry
5972 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5973                          raid5_show_rmw_level,
5974                          raid5_store_rmw_level);
5975
5976
5977 static ssize_t
5978 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5979 {
5980         struct r5conf *conf;
5981         int ret = 0;
5982         spin_lock(&mddev->lock);
5983         conf = mddev->private;
5984         if (conf)
5985                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5986         spin_unlock(&mddev->lock);
5987         return ret;
5988 }
5989
5990 static ssize_t
5991 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5992 {
5993         struct r5conf *conf;
5994         unsigned long new;
5995         int err;
5996
5997         if (len >= PAGE_SIZE)
5998                 return -EINVAL;
5999         if (kstrtoul(page, 10, &new))
6000                 return -EINVAL;
6001
6002         err = mddev_lock(mddev);
6003         if (err)
6004                 return err;
6005         conf = mddev->private;
6006         if (!conf)
6007                 err = -ENODEV;
6008         else if (new > conf->min_nr_stripes)
6009                 err = -EINVAL;
6010         else
6011                 conf->bypass_threshold = new;
6012         mddev_unlock(mddev);
6013         return err ?: len;
6014 }
6015
6016 static struct md_sysfs_entry
6017 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6018                                         S_IRUGO | S_IWUSR,
6019                                         raid5_show_preread_threshold,
6020                                         raid5_store_preread_threshold);
6021
6022 static ssize_t
6023 raid5_show_skip_copy(struct mddev *mddev, char *page)
6024 {
6025         struct r5conf *conf;
6026         int ret = 0;
6027         spin_lock(&mddev->lock);
6028         conf = mddev->private;
6029         if (conf)
6030                 ret = sprintf(page, "%d\n", conf->skip_copy);
6031         spin_unlock(&mddev->lock);
6032         return ret;
6033 }
6034
6035 static ssize_t
6036 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6037 {
6038         struct r5conf *conf;
6039         unsigned long new;
6040         int err;
6041
6042         if (len >= PAGE_SIZE)
6043                 return -EINVAL;
6044         if (kstrtoul(page, 10, &new))
6045                 return -EINVAL;
6046         new = !!new;
6047
6048         err = mddev_lock(mddev);
6049         if (err)
6050                 return err;
6051         conf = mddev->private;
6052         if (!conf)
6053                 err = -ENODEV;
6054         else if (new != conf->skip_copy) {
6055                 mddev_suspend(mddev);
6056                 conf->skip_copy = new;
6057                 if (new)
6058                         mddev->queue->backing_dev_info.capabilities |=
6059                                 BDI_CAP_STABLE_WRITES;
6060                 else
6061                         mddev->queue->backing_dev_info.capabilities &=
6062                                 ~BDI_CAP_STABLE_WRITES;
6063                 mddev_resume(mddev);
6064         }
6065         mddev_unlock(mddev);
6066         return err ?: len;
6067 }
6068
6069 static struct md_sysfs_entry
6070 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6071                                         raid5_show_skip_copy,
6072                                         raid5_store_skip_copy);
6073
6074 static ssize_t
6075 stripe_cache_active_show(struct mddev *mddev, char *page)
6076 {
6077         struct r5conf *conf = mddev->private;
6078         if (conf)
6079                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6080         else
6081                 return 0;
6082 }
6083
6084 static struct md_sysfs_entry
6085 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6086
6087 static ssize_t
6088 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6089 {
6090         struct r5conf *conf;
6091         int ret = 0;
6092         spin_lock(&mddev->lock);
6093         conf = mddev->private;
6094         if (conf)
6095                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6096         spin_unlock(&mddev->lock);
6097         return ret;
6098 }
6099
6100 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6101                                int *group_cnt,
6102                                int *worker_cnt_per_group,
6103                                struct r5worker_group **worker_groups);
6104 static ssize_t
6105 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6106 {
6107         struct r5conf *conf;
6108         unsigned long new;
6109         int err;
6110         struct r5worker_group *new_groups, *old_groups;
6111         int group_cnt, worker_cnt_per_group;
6112
6113         if (len >= PAGE_SIZE)
6114                 return -EINVAL;
6115         if (kstrtoul(page, 10, &new))
6116                 return -EINVAL;
6117
6118         err = mddev_lock(mddev);
6119         if (err)
6120                 return err;
6121         conf = mddev->private;
6122         if (!conf)
6123                 err = -ENODEV;
6124         else if (new != conf->worker_cnt_per_group) {
6125                 mddev_suspend(mddev);
6126
6127                 old_groups = conf->worker_groups;
6128                 if (old_groups)
6129                         flush_workqueue(raid5_wq);
6130
6131                 err = alloc_thread_groups(conf, new,
6132                                           &group_cnt, &worker_cnt_per_group,
6133                                           &new_groups);
6134                 if (!err) {
6135                         spin_lock_irq(&conf->device_lock);
6136                         conf->group_cnt = group_cnt;
6137                         conf->worker_cnt_per_group = worker_cnt_per_group;
6138                         conf->worker_groups = new_groups;
6139                         spin_unlock_irq(&conf->device_lock);
6140
6141                         if (old_groups)
6142                                 kfree(old_groups[0].workers);
6143                         kfree(old_groups);
6144                 }
6145                 mddev_resume(mddev);
6146         }
6147         mddev_unlock(mddev);
6148
6149         return err ?: len;
6150 }
6151
6152 static struct md_sysfs_entry
6153 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6154                                 raid5_show_group_thread_cnt,
6155                                 raid5_store_group_thread_cnt);
6156
6157 static struct attribute *raid5_attrs[] =  {
6158         &raid5_stripecache_size.attr,
6159         &raid5_stripecache_active.attr,
6160         &raid5_preread_bypass_threshold.attr,
6161         &raid5_group_thread_cnt.attr,
6162         &raid5_skip_copy.attr,
6163         &raid5_rmw_level.attr,
6164         NULL,
6165 };
6166 static struct attribute_group raid5_attrs_group = {
6167         .name = NULL,
6168         .attrs = raid5_attrs,
6169 };
6170
6171 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6172                                int *group_cnt,
6173                                int *worker_cnt_per_group,
6174                                struct r5worker_group **worker_groups)
6175 {
6176         int i, j, k;
6177         ssize_t size;
6178         struct r5worker *workers;
6179
6180         *worker_cnt_per_group = cnt;
6181         if (cnt == 0) {
6182                 *group_cnt = 0;
6183                 *worker_groups = NULL;
6184                 return 0;
6185         }
6186         *group_cnt = num_possible_nodes();
6187         size = sizeof(struct r5worker) * cnt;
6188         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6189         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6190                                 *group_cnt, GFP_NOIO);
6191         if (!*worker_groups || !workers) {
6192                 kfree(workers);
6193                 kfree(*worker_groups);
6194                 return -ENOMEM;
6195         }
6196
6197         for (i = 0; i < *group_cnt; i++) {
6198                 struct r5worker_group *group;
6199
6200                 group = &(*worker_groups)[i];
6201                 INIT_LIST_HEAD(&group->handle_list);
6202                 group->conf = conf;
6203                 group->workers = workers + i * cnt;
6204
6205                 for (j = 0; j < cnt; j++) {
6206                         struct r5worker *worker = group->workers + j;
6207                         worker->group = group;
6208                         INIT_WORK(&worker->work, raid5_do_work);
6209
6210                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6211                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6212                 }
6213         }
6214
6215         return 0;
6216 }
6217
6218 static void free_thread_groups(struct r5conf *conf)
6219 {
6220         if (conf->worker_groups)
6221                 kfree(conf->worker_groups[0].workers);
6222         kfree(conf->worker_groups);
6223         conf->worker_groups = NULL;
6224 }
6225
6226 static sector_t
6227 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6228 {
6229         struct r5conf *conf = mddev->private;
6230
6231         if (!sectors)
6232                 sectors = mddev->dev_sectors;
6233         if (!raid_disks)
6234                 /* size is defined by the smallest of previous and new size */
6235                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6236
6237         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6238         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6239         return sectors * (raid_disks - conf->max_degraded);
6240 }
6241
6242 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6243 {
6244         safe_put_page(percpu->spare_page);
6245         if (percpu->scribble)
6246                 flex_array_free(percpu->scribble);
6247         percpu->spare_page = NULL;
6248         percpu->scribble = NULL;
6249 }
6250
6251 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6252 {
6253         if (conf->level == 6 && !percpu->spare_page)
6254                 percpu->spare_page = alloc_page(GFP_KERNEL);
6255         if (!percpu->scribble)
6256                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6257                                                       conf->previous_raid_disks),
6258                                                   max(conf->chunk_sectors,
6259                                                       conf->prev_chunk_sectors)
6260                                                    / STRIPE_SECTORS,
6261                                                   GFP_KERNEL);
6262
6263         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6264                 free_scratch_buffer(conf, percpu);
6265                 return -ENOMEM;
6266         }
6267
6268         return 0;
6269 }
6270
6271 static void raid5_free_percpu(struct r5conf *conf)
6272 {
6273         unsigned long cpu;
6274
6275         if (!conf->percpu)
6276                 return;
6277
6278 #ifdef CONFIG_HOTPLUG_CPU
6279         unregister_cpu_notifier(&conf->cpu_notify);
6280 #endif
6281
6282         get_online_cpus();
6283         for_each_possible_cpu(cpu)
6284                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6285         put_online_cpus();
6286
6287         free_percpu(conf->percpu);
6288 }
6289
6290 static void free_conf(struct r5conf *conf)
6291 {
6292         if (conf->shrinker.seeks)
6293                 unregister_shrinker(&conf->shrinker);
6294         free_thread_groups(conf);
6295         shrink_stripes(conf);
6296         raid5_free_percpu(conf);
6297         kfree(conf->disks);
6298         kfree(conf->stripe_hashtbl);
6299         kfree(conf);
6300 }
6301
6302 #ifdef CONFIG_HOTPLUG_CPU
6303 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6304                               void *hcpu)
6305 {
6306         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6307         long cpu = (long)hcpu;
6308         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6309
6310         switch (action) {
6311         case CPU_UP_PREPARE:
6312         case CPU_UP_PREPARE_FROZEN:
6313                 if (alloc_scratch_buffer(conf, percpu)) {
6314                         pr_err("%s: failed memory allocation for cpu%ld\n",
6315                                __func__, cpu);
6316                         return notifier_from_errno(-ENOMEM);
6317                 }
6318                 break;
6319         case CPU_DEAD:
6320         case CPU_DEAD_FROZEN:
6321                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6322                 break;
6323         default:
6324                 break;
6325         }
6326         return NOTIFY_OK;
6327 }
6328 #endif
6329
6330 static int raid5_alloc_percpu(struct r5conf *conf)
6331 {
6332         unsigned long cpu;
6333         int err = 0;
6334
6335         conf->percpu = alloc_percpu(struct raid5_percpu);
6336         if (!conf->percpu)
6337                 return -ENOMEM;
6338
6339 #ifdef CONFIG_HOTPLUG_CPU
6340         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6341         conf->cpu_notify.priority = 0;
6342         err = register_cpu_notifier(&conf->cpu_notify);
6343         if (err)
6344                 return err;
6345 #endif
6346
6347         get_online_cpus();
6348         for_each_present_cpu(cpu) {
6349                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6350                 if (err) {
6351                         pr_err("%s: failed memory allocation for cpu%ld\n",
6352                                __func__, cpu);
6353                         break;
6354                 }
6355         }
6356         put_online_cpus();
6357
6358         return err;
6359 }
6360
6361 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6362                                       struct shrink_control *sc)
6363 {
6364         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6365         int ret = 0;
6366         while (ret < sc->nr_to_scan) {
6367                 if (drop_one_stripe(conf) == 0)
6368                         return SHRINK_STOP;
6369                 ret++;
6370         }
6371         return ret;
6372 }
6373
6374 static unsigned long raid5_cache_count(struct shrinker *shrink,
6375                                        struct shrink_control *sc)
6376 {
6377         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6378
6379         if (conf->max_nr_stripes < conf->min_nr_stripes)
6380                 /* unlikely, but not impossible */
6381                 return 0;
6382         return conf->max_nr_stripes - conf->min_nr_stripes;
6383 }
6384
6385 static struct r5conf *setup_conf(struct mddev *mddev)
6386 {
6387         struct r5conf *conf;
6388         int raid_disk, memory, max_disks;
6389         struct md_rdev *rdev;
6390         struct disk_info *disk;
6391         char pers_name[6];
6392         int i;
6393         int group_cnt, worker_cnt_per_group;
6394         struct r5worker_group *new_group;
6395
6396         if (mddev->new_level != 5
6397             && mddev->new_level != 4
6398             && mddev->new_level != 6) {
6399                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6400                        mdname(mddev), mddev->new_level);
6401                 return ERR_PTR(-EIO);
6402         }
6403         if ((mddev->new_level == 5
6404              && !algorithm_valid_raid5(mddev->new_layout)) ||
6405             (mddev->new_level == 6
6406              && !algorithm_valid_raid6(mddev->new_layout))) {
6407                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6408                        mdname(mddev), mddev->new_layout);
6409                 return ERR_PTR(-EIO);
6410         }
6411         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6412                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6413                        mdname(mddev), mddev->raid_disks);
6414                 return ERR_PTR(-EINVAL);
6415         }
6416
6417         if (!mddev->new_chunk_sectors ||
6418             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6419             !is_power_of_2(mddev->new_chunk_sectors)) {
6420                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6421                        mdname(mddev), mddev->new_chunk_sectors << 9);
6422                 return ERR_PTR(-EINVAL);
6423         }
6424
6425         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6426         if (conf == NULL)
6427                 goto abort;
6428         /* Don't enable multi-threading by default*/
6429         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6430                                  &new_group)) {
6431                 conf->group_cnt = group_cnt;
6432                 conf->worker_cnt_per_group = worker_cnt_per_group;
6433                 conf->worker_groups = new_group;
6434         } else
6435                 goto abort;
6436         spin_lock_init(&conf->device_lock);
6437         seqcount_init(&conf->gen_lock);
6438         init_waitqueue_head(&conf->wait_for_stripe);
6439         init_waitqueue_head(&conf->wait_for_overlap);
6440         INIT_LIST_HEAD(&conf->handle_list);
6441         INIT_LIST_HEAD(&conf->hold_list);
6442         INIT_LIST_HEAD(&conf->delayed_list);
6443         INIT_LIST_HEAD(&conf->bitmap_list);
6444         init_llist_head(&conf->released_stripes);
6445         atomic_set(&conf->active_stripes, 0);
6446         atomic_set(&conf->preread_active_stripes, 0);
6447         atomic_set(&conf->active_aligned_reads, 0);
6448         conf->bypass_threshold = BYPASS_THRESHOLD;
6449         conf->recovery_disabled = mddev->recovery_disabled - 1;
6450
6451         conf->raid_disks = mddev->raid_disks;
6452         if (mddev->reshape_position == MaxSector)
6453                 conf->previous_raid_disks = mddev->raid_disks;
6454         else
6455                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6456         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6457
6458         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6459                               GFP_KERNEL);
6460         if (!conf->disks)
6461                 goto abort;
6462
6463         conf->mddev = mddev;
6464
6465         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6466                 goto abort;
6467
6468         /* We init hash_locks[0] separately to that it can be used
6469          * as the reference lock in the spin_lock_nest_lock() call
6470          * in lock_all_device_hash_locks_irq in order to convince
6471          * lockdep that we know what we are doing.
6472          */
6473         spin_lock_init(conf->hash_locks);
6474         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6475                 spin_lock_init(conf->hash_locks + i);
6476
6477         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6478                 INIT_LIST_HEAD(conf->inactive_list + i);
6479
6480         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6481                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6482
6483         conf->level = mddev->new_level;
6484         conf->chunk_sectors = mddev->new_chunk_sectors;
6485         if (raid5_alloc_percpu(conf) != 0)
6486                 goto abort;
6487
6488         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6489
6490         rdev_for_each(rdev, mddev) {
6491                 raid_disk = rdev->raid_disk;
6492                 if (raid_disk >= max_disks
6493                     || raid_disk < 0)
6494                         continue;
6495                 disk = conf->disks + raid_disk;
6496
6497                 if (test_bit(Replacement, &rdev->flags)) {
6498                         if (disk->replacement)
6499                                 goto abort;
6500                         disk->replacement = rdev;
6501                 } else {
6502                         if (disk->rdev)
6503                                 goto abort;
6504                         disk->rdev = rdev;
6505                 }
6506
6507                 if (test_bit(In_sync, &rdev->flags)) {
6508                         char b[BDEVNAME_SIZE];
6509                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6510                                " disk %d\n",
6511                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6512                 } else if (rdev->saved_raid_disk != raid_disk)
6513                         /* Cannot rely on bitmap to complete recovery */
6514                         conf->fullsync = 1;
6515         }
6516
6517         conf->level = mddev->new_level;
6518         if (conf->level == 6) {
6519                 conf->max_degraded = 2;
6520                 if (raid6_call.xor_syndrome)
6521                         conf->rmw_level = PARITY_ENABLE_RMW;
6522                 else
6523                         conf->rmw_level = PARITY_DISABLE_RMW;
6524         } else {
6525                 conf->max_degraded = 1;
6526                 conf->rmw_level = PARITY_ENABLE_RMW;
6527         }
6528         conf->algorithm = mddev->new_layout;
6529         conf->reshape_progress = mddev->reshape_position;
6530         if (conf->reshape_progress != MaxSector) {
6531                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6532                 conf->prev_algo = mddev->layout;
6533         }
6534
6535         conf->min_nr_stripes = NR_STRIPES;
6536         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6537                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6538         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6539         if (grow_stripes(conf, conf->min_nr_stripes)) {
6540                 printk(KERN_ERR
6541                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6542                        mdname(mddev), memory);
6543                 goto abort;
6544         } else
6545                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6546                        mdname(mddev), memory);
6547         /*
6548          * Losing a stripe head costs more than the time to refill it,
6549          * it reduces the queue depth and so can hurt throughput.
6550          * So set it rather large, scaled by number of devices.
6551          */
6552         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6553         conf->shrinker.scan_objects = raid5_cache_scan;
6554         conf->shrinker.count_objects = raid5_cache_count;
6555         conf->shrinker.batch = 128;
6556         conf->shrinker.flags = 0;
6557         register_shrinker(&conf->shrinker);
6558
6559         sprintf(pers_name, "raid%d", mddev->new_level);
6560         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6561         if (!conf->thread) {
6562                 printk(KERN_ERR
6563                        "md/raid:%s: couldn't allocate thread.\n",
6564                        mdname(mddev));
6565                 goto abort;
6566         }
6567
6568         return conf;
6569
6570  abort:
6571         if (conf) {
6572                 free_conf(conf);
6573                 return ERR_PTR(-EIO);
6574         } else
6575                 return ERR_PTR(-ENOMEM);
6576 }
6577
6578 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6579 {
6580         switch (algo) {
6581         case ALGORITHM_PARITY_0:
6582                 if (raid_disk < max_degraded)
6583                         return 1;
6584                 break;
6585         case ALGORITHM_PARITY_N:
6586                 if (raid_disk >= raid_disks - max_degraded)
6587                         return 1;
6588                 break;
6589         case ALGORITHM_PARITY_0_6:
6590                 if (raid_disk == 0 ||
6591                     raid_disk == raid_disks - 1)
6592                         return 1;
6593                 break;
6594         case ALGORITHM_LEFT_ASYMMETRIC_6:
6595         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6596         case ALGORITHM_LEFT_SYMMETRIC_6:
6597         case ALGORITHM_RIGHT_SYMMETRIC_6:
6598                 if (raid_disk == raid_disks - 1)
6599                         return 1;
6600         }
6601         return 0;
6602 }
6603
6604 static int run(struct mddev *mddev)
6605 {
6606         struct r5conf *conf;
6607         int working_disks = 0;
6608         int dirty_parity_disks = 0;
6609         struct md_rdev *rdev;
6610         sector_t reshape_offset = 0;
6611         int i;
6612         long long min_offset_diff = 0;
6613         int first = 1;
6614
6615         if (mddev->recovery_cp != MaxSector)
6616                 printk(KERN_NOTICE "md/raid:%s: not clean"
6617                        " -- starting background reconstruction\n",
6618                        mdname(mddev));
6619
6620         rdev_for_each(rdev, mddev) {
6621                 long long diff;
6622                 if (rdev->raid_disk < 0)
6623                         continue;
6624                 diff = (rdev->new_data_offset - rdev->data_offset);
6625                 if (first) {
6626                         min_offset_diff = diff;
6627                         first = 0;
6628                 } else if (mddev->reshape_backwards &&
6629                          diff < min_offset_diff)
6630                         min_offset_diff = diff;
6631                 else if (!mddev->reshape_backwards &&
6632                          diff > min_offset_diff)
6633                         min_offset_diff = diff;
6634         }
6635
6636         if (mddev->reshape_position != MaxSector) {
6637                 /* Check that we can continue the reshape.
6638                  * Difficulties arise if the stripe we would write to
6639                  * next is at or after the stripe we would read from next.
6640                  * For a reshape that changes the number of devices, this
6641                  * is only possible for a very short time, and mdadm makes
6642                  * sure that time appears to have past before assembling
6643                  * the array.  So we fail if that time hasn't passed.
6644                  * For a reshape that keeps the number of devices the same
6645                  * mdadm must be monitoring the reshape can keeping the
6646                  * critical areas read-only and backed up.  It will start
6647                  * the array in read-only mode, so we check for that.
6648                  */
6649                 sector_t here_new, here_old;
6650                 int old_disks;
6651                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6652
6653                 if (mddev->new_level != mddev->level) {
6654                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6655                                "required - aborting.\n",
6656                                mdname(mddev));
6657                         return -EINVAL;
6658                 }
6659                 old_disks = mddev->raid_disks - mddev->delta_disks;
6660                 /* reshape_position must be on a new-stripe boundary, and one
6661                  * further up in new geometry must map after here in old
6662                  * geometry.
6663                  */
6664                 here_new = mddev->reshape_position;
6665                 if (sector_div(here_new, mddev->new_chunk_sectors *
6666                                (mddev->raid_disks - max_degraded))) {
6667                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6668                                "on a stripe boundary\n", mdname(mddev));
6669                         return -EINVAL;
6670                 }
6671                 reshape_offset = here_new * mddev->new_chunk_sectors;
6672                 /* here_new is the stripe we will write to */
6673                 here_old = mddev->reshape_position;
6674                 sector_div(here_old, mddev->chunk_sectors *
6675                            (old_disks-max_degraded));
6676                 /* here_old is the first stripe that we might need to read
6677                  * from */
6678                 if (mddev->delta_disks == 0) {
6679                         if ((here_new * mddev->new_chunk_sectors !=
6680                              here_old * mddev->chunk_sectors)) {
6681                                 printk(KERN_ERR "md/raid:%s: reshape position is"
6682                                        " confused - aborting\n", mdname(mddev));
6683                                 return -EINVAL;
6684                         }
6685                         /* We cannot be sure it is safe to start an in-place
6686                          * reshape.  It is only safe if user-space is monitoring
6687                          * and taking constant backups.
6688                          * mdadm always starts a situation like this in
6689                          * readonly mode so it can take control before
6690                          * allowing any writes.  So just check for that.
6691                          */
6692                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6693                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6694                                 /* not really in-place - so OK */;
6695                         else if (mddev->ro == 0) {
6696                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6697                                        "must be started in read-only mode "
6698                                        "- aborting\n",
6699                                        mdname(mddev));
6700                                 return -EINVAL;
6701                         }
6702                 } else if (mddev->reshape_backwards
6703                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6704                        here_old * mddev->chunk_sectors)
6705                     : (here_new * mddev->new_chunk_sectors >=
6706                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6707                         /* Reading from the same stripe as writing to - bad */
6708                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6709                                "auto-recovery - aborting.\n",
6710                                mdname(mddev));
6711                         return -EINVAL;
6712                 }
6713                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6714                        mdname(mddev));
6715                 /* OK, we should be able to continue; */
6716         } else {
6717                 BUG_ON(mddev->level != mddev->new_level);
6718                 BUG_ON(mddev->layout != mddev->new_layout);
6719                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6720                 BUG_ON(mddev->delta_disks != 0);
6721         }
6722
6723         if (mddev->private == NULL)
6724                 conf = setup_conf(mddev);
6725         else
6726                 conf = mddev->private;
6727
6728         if (IS_ERR(conf))
6729                 return PTR_ERR(conf);
6730
6731         conf->min_offset_diff = min_offset_diff;
6732         mddev->thread = conf->thread;
6733         conf->thread = NULL;
6734         mddev->private = conf;
6735
6736         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6737              i++) {
6738                 rdev = conf->disks[i].rdev;
6739                 if (!rdev && conf->disks[i].replacement) {
6740                         /* The replacement is all we have yet */
6741                         rdev = conf->disks[i].replacement;
6742                         conf->disks[i].replacement = NULL;
6743                         clear_bit(Replacement, &rdev->flags);
6744                         conf->disks[i].rdev = rdev;
6745                 }
6746                 if (!rdev)
6747                         continue;
6748                 if (conf->disks[i].replacement &&
6749                     conf->reshape_progress != MaxSector) {
6750                         /* replacements and reshape simply do not mix. */
6751                         printk(KERN_ERR "md: cannot handle concurrent "
6752                                "replacement and reshape.\n");
6753                         goto abort;
6754                 }
6755                 if (test_bit(In_sync, &rdev->flags)) {
6756                         working_disks++;
6757                         continue;
6758                 }
6759                 /* This disc is not fully in-sync.  However if it
6760                  * just stored parity (beyond the recovery_offset),
6761                  * when we don't need to be concerned about the
6762                  * array being dirty.
6763                  * When reshape goes 'backwards', we never have
6764                  * partially completed devices, so we only need
6765                  * to worry about reshape going forwards.
6766                  */
6767                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6768                 if (mddev->major_version == 0 &&
6769                     mddev->minor_version > 90)
6770                         rdev->recovery_offset = reshape_offset;
6771
6772                 if (rdev->recovery_offset < reshape_offset) {
6773                         /* We need to check old and new layout */
6774                         if (!only_parity(rdev->raid_disk,
6775                                          conf->algorithm,
6776                                          conf->raid_disks,
6777                                          conf->max_degraded))
6778                                 continue;
6779                 }
6780                 if (!only_parity(rdev->raid_disk,
6781                                  conf->prev_algo,
6782                                  conf->previous_raid_disks,
6783                                  conf->max_degraded))
6784                         continue;
6785                 dirty_parity_disks++;
6786         }
6787
6788         /*
6789          * 0 for a fully functional array, 1 or 2 for a degraded array.
6790          */
6791         mddev->degraded = calc_degraded(conf);
6792
6793         if (has_failed(conf)) {
6794                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6795                         " (%d/%d failed)\n",
6796                         mdname(mddev), mddev->degraded, conf->raid_disks);
6797                 goto abort;
6798         }
6799
6800         /* device size must be a multiple of chunk size */
6801         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6802         mddev->resync_max_sectors = mddev->dev_sectors;
6803
6804         if (mddev->degraded > dirty_parity_disks &&
6805             mddev->recovery_cp != MaxSector) {
6806                 if (mddev->ok_start_degraded)
6807                         printk(KERN_WARNING
6808                                "md/raid:%s: starting dirty degraded array"
6809                                " - data corruption possible.\n",
6810                                mdname(mddev));
6811                 else {
6812                         printk(KERN_ERR
6813                                "md/raid:%s: cannot start dirty degraded array.\n",
6814                                mdname(mddev));
6815                         goto abort;
6816                 }
6817         }
6818
6819         if (mddev->degraded == 0)
6820                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6821                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6822                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6823                        mddev->new_layout);
6824         else
6825                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6826                        " out of %d devices, algorithm %d\n",
6827                        mdname(mddev), conf->level,
6828                        mddev->raid_disks - mddev->degraded,
6829                        mddev->raid_disks, mddev->new_layout);
6830
6831         print_raid5_conf(conf);
6832
6833         if (conf->reshape_progress != MaxSector) {
6834                 conf->reshape_safe = conf->reshape_progress;
6835                 atomic_set(&conf->reshape_stripes, 0);
6836                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6837                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6838                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6839                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6840                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6841                                                         "reshape");
6842         }
6843
6844         /* Ok, everything is just fine now */
6845         if (mddev->to_remove == &raid5_attrs_group)
6846                 mddev->to_remove = NULL;
6847         else if (mddev->kobj.sd &&
6848             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6849                 printk(KERN_WARNING
6850                        "raid5: failed to create sysfs attributes for %s\n",
6851                        mdname(mddev));
6852         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6853
6854         if (mddev->queue) {
6855                 int chunk_size;
6856                 bool discard_supported = true;
6857                 /* read-ahead size must cover two whole stripes, which
6858                  * is 2 * (datadisks) * chunksize where 'n' is the
6859                  * number of raid devices
6860                  */
6861                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6862                 int stripe = data_disks *
6863                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6864                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6865                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6866
6867                 chunk_size = mddev->chunk_sectors << 9;
6868                 blk_queue_io_min(mddev->queue, chunk_size);
6869                 blk_queue_io_opt(mddev->queue, chunk_size *
6870                                  (conf->raid_disks - conf->max_degraded));
6871                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6872                 /*
6873                  * We can only discard a whole stripe. It doesn't make sense to
6874                  * discard data disk but write parity disk
6875                  */
6876                 stripe = stripe * PAGE_SIZE;
6877                 /* Round up to power of 2, as discard handling
6878                  * currently assumes that */
6879                 while ((stripe-1) & stripe)
6880                         stripe = (stripe | (stripe-1)) + 1;
6881                 mddev->queue->limits.discard_alignment = stripe;
6882                 mddev->queue->limits.discard_granularity = stripe;
6883                 /*
6884                  * unaligned part of discard request will be ignored, so can't
6885                  * guarantee discard_zeroes_data
6886                  */
6887                 mddev->queue->limits.discard_zeroes_data = 0;
6888
6889                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6890
6891                 rdev_for_each(rdev, mddev) {
6892                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6893                                           rdev->data_offset << 9);
6894                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6895                                           rdev->new_data_offset << 9);
6896                         /*
6897                          * discard_zeroes_data is required, otherwise data
6898                          * could be lost. Consider a scenario: discard a stripe
6899                          * (the stripe could be inconsistent if
6900                          * discard_zeroes_data is 0); write one disk of the
6901                          * stripe (the stripe could be inconsistent again
6902                          * depending on which disks are used to calculate
6903                          * parity); the disk is broken; The stripe data of this
6904                          * disk is lost.
6905                          */
6906                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6907                             !bdev_get_queue(rdev->bdev)->
6908                                                 limits.discard_zeroes_data)
6909                                 discard_supported = false;
6910                         /* Unfortunately, discard_zeroes_data is not currently
6911                          * a guarantee - just a hint.  So we only allow DISCARD
6912                          * if the sysadmin has confirmed that only safe devices
6913                          * are in use by setting a module parameter.
6914                          */
6915                         if (!devices_handle_discard_safely) {
6916                                 if (discard_supported) {
6917                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6918                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6919                                 }
6920                                 discard_supported = false;
6921                         }
6922                 }
6923
6924                 if (discard_supported &&
6925                    mddev->queue->limits.max_discard_sectors >= stripe &&
6926                    mddev->queue->limits.discard_granularity >= stripe)
6927                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6928                                                 mddev->queue);
6929                 else
6930                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6931                                                 mddev->queue);
6932         }
6933
6934         return 0;
6935 abort:
6936         md_unregister_thread(&mddev->thread);
6937         print_raid5_conf(conf);
6938         free_conf(conf);
6939         mddev->private = NULL;
6940         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6941         return -EIO;
6942 }
6943
6944 static void raid5_free(struct mddev *mddev, void *priv)
6945 {
6946         struct r5conf *conf = priv;
6947
6948         free_conf(conf);
6949         mddev->to_remove = &raid5_attrs_group;
6950 }
6951
6952 static void status(struct seq_file *seq, struct mddev *mddev)
6953 {
6954         struct r5conf *conf = mddev->private;
6955         int i;
6956
6957         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6958                 mddev->chunk_sectors / 2, mddev->layout);
6959         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6960         for (i = 0; i < conf->raid_disks; i++)
6961                 seq_printf (seq, "%s",
6962                                conf->disks[i].rdev &&
6963                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6964         seq_printf (seq, "]");
6965 }
6966
6967 static void print_raid5_conf (struct r5conf *conf)
6968 {
6969         int i;
6970         struct disk_info *tmp;
6971
6972         printk(KERN_DEBUG "RAID conf printout:\n");
6973         if (!conf) {
6974                 printk("(conf==NULL)\n");
6975                 return;
6976         }
6977         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6978                conf->raid_disks,
6979                conf->raid_disks - conf->mddev->degraded);
6980
6981         for (i = 0; i < conf->raid_disks; i++) {
6982                 char b[BDEVNAME_SIZE];
6983                 tmp = conf->disks + i;
6984                 if (tmp->rdev)
6985                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6986                                i, !test_bit(Faulty, &tmp->rdev->flags),
6987                                bdevname(tmp->rdev->bdev, b));
6988         }
6989 }
6990
6991 static int raid5_spare_active(struct mddev *mddev)
6992 {
6993         int i;
6994         struct r5conf *conf = mddev->private;
6995         struct disk_info *tmp;
6996         int count = 0;
6997         unsigned long flags;
6998
6999         for (i = 0; i < conf->raid_disks; i++) {
7000                 tmp = conf->disks + i;
7001                 if (tmp->replacement
7002                     && tmp->replacement->recovery_offset == MaxSector
7003                     && !test_bit(Faulty, &tmp->replacement->flags)
7004                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7005                         /* Replacement has just become active. */
7006                         if (!tmp->rdev
7007                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7008                                 count++;
7009                         if (tmp->rdev) {
7010                                 /* Replaced device not technically faulty,
7011                                  * but we need to be sure it gets removed
7012                                  * and never re-added.
7013                                  */
7014                                 set_bit(Faulty, &tmp->rdev->flags);
7015                                 sysfs_notify_dirent_safe(
7016                                         tmp->rdev->sysfs_state);
7017                         }
7018                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7019                 } else if (tmp->rdev
7020                     && tmp->rdev->recovery_offset == MaxSector
7021                     && !test_bit(Faulty, &tmp->rdev->flags)
7022                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7023                         count++;
7024                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7025                 }
7026         }
7027         spin_lock_irqsave(&conf->device_lock, flags);
7028         mddev->degraded = calc_degraded(conf);
7029         spin_unlock_irqrestore(&conf->device_lock, flags);
7030         print_raid5_conf(conf);
7031         return count;
7032 }
7033
7034 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7035 {
7036         struct r5conf *conf = mddev->private;
7037         int err = 0;
7038         int number = rdev->raid_disk;
7039         struct md_rdev **rdevp;
7040         struct disk_info *p = conf->disks + number;
7041
7042         print_raid5_conf(conf);
7043         if (rdev == p->rdev)
7044                 rdevp = &p->rdev;
7045         else if (rdev == p->replacement)
7046                 rdevp = &p->replacement;
7047         else
7048                 return 0;
7049
7050         if (number >= conf->raid_disks &&
7051             conf->reshape_progress == MaxSector)
7052                 clear_bit(In_sync, &rdev->flags);
7053
7054         if (test_bit(In_sync, &rdev->flags) ||
7055             atomic_read(&rdev->nr_pending)) {
7056                 err = -EBUSY;
7057                 goto abort;
7058         }
7059         /* Only remove non-faulty devices if recovery
7060          * isn't possible.
7061          */
7062         if (!test_bit(Faulty, &rdev->flags) &&
7063             mddev->recovery_disabled != conf->recovery_disabled &&
7064             !has_failed(conf) &&
7065             (!p->replacement || p->replacement == rdev) &&
7066             number < conf->raid_disks) {
7067                 err = -EBUSY;
7068                 goto abort;
7069         }
7070         *rdevp = NULL;
7071         synchronize_rcu();
7072         if (atomic_read(&rdev->nr_pending)) {
7073                 /* lost the race, try later */
7074                 err = -EBUSY;
7075                 *rdevp = rdev;
7076         } else if (p->replacement) {
7077                 /* We must have just cleared 'rdev' */
7078                 p->rdev = p->replacement;
7079                 clear_bit(Replacement, &p->replacement->flags);
7080                 smp_mb(); /* Make sure other CPUs may see both as identical
7081                            * but will never see neither - if they are careful
7082                            */
7083                 p->replacement = NULL;
7084                 clear_bit(WantReplacement, &rdev->flags);
7085         } else
7086                 /* We might have just removed the Replacement as faulty-
7087                  * clear the bit just in case
7088                  */
7089                 clear_bit(WantReplacement, &rdev->flags);
7090 abort:
7091
7092         print_raid5_conf(conf);
7093         return err;
7094 }
7095
7096 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7097 {
7098         struct r5conf *conf = mddev->private;
7099         int err = -EEXIST;
7100         int disk;
7101         struct disk_info *p;
7102         int first = 0;
7103         int last = conf->raid_disks - 1;
7104
7105         if (mddev->recovery_disabled == conf->recovery_disabled)
7106                 return -EBUSY;
7107
7108         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7109                 /* no point adding a device */
7110                 return -EINVAL;
7111
7112         if (rdev->raid_disk >= 0)
7113                 first = last = rdev->raid_disk;
7114
7115         /*
7116          * find the disk ... but prefer rdev->saved_raid_disk
7117          * if possible.
7118          */
7119         if (rdev->saved_raid_disk >= 0 &&
7120             rdev->saved_raid_disk >= first &&
7121             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7122                 first = rdev->saved_raid_disk;
7123
7124         for (disk = first; disk <= last; disk++) {
7125                 p = conf->disks + disk;
7126                 if (p->rdev == NULL) {
7127                         clear_bit(In_sync, &rdev->flags);
7128                         rdev->raid_disk = disk;
7129                         err = 0;
7130                         if (rdev->saved_raid_disk != disk)
7131                                 conf->fullsync = 1;
7132                         rcu_assign_pointer(p->rdev, rdev);
7133                         goto out;
7134                 }
7135         }
7136         for (disk = first; disk <= last; disk++) {
7137                 p = conf->disks + disk;
7138                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7139                     p->replacement == NULL) {
7140                         clear_bit(In_sync, &rdev->flags);
7141                         set_bit(Replacement, &rdev->flags);
7142                         rdev->raid_disk = disk;
7143                         err = 0;
7144                         conf->fullsync = 1;
7145                         rcu_assign_pointer(p->replacement, rdev);
7146                         break;
7147                 }
7148         }
7149 out:
7150         print_raid5_conf(conf);
7151         return err;
7152 }
7153
7154 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7155 {
7156         /* no resync is happening, and there is enough space
7157          * on all devices, so we can resize.
7158          * We need to make sure resync covers any new space.
7159          * If the array is shrinking we should possibly wait until
7160          * any io in the removed space completes, but it hardly seems
7161          * worth it.
7162          */
7163         sector_t newsize;
7164         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7165         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7166         if (mddev->external_size &&
7167             mddev->array_sectors > newsize)
7168                 return -EINVAL;
7169         if (mddev->bitmap) {
7170                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7171                 if (ret)
7172                         return ret;
7173         }
7174         md_set_array_sectors(mddev, newsize);
7175         set_capacity(mddev->gendisk, mddev->array_sectors);
7176         revalidate_disk(mddev->gendisk);
7177         if (sectors > mddev->dev_sectors &&
7178             mddev->recovery_cp > mddev->dev_sectors) {
7179                 mddev->recovery_cp = mddev->dev_sectors;
7180                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7181         }
7182         mddev->dev_sectors = sectors;
7183         mddev->resync_max_sectors = sectors;
7184         return 0;
7185 }
7186
7187 static int check_stripe_cache(struct mddev *mddev)
7188 {
7189         /* Can only proceed if there are plenty of stripe_heads.
7190          * We need a minimum of one full stripe,, and for sensible progress
7191          * it is best to have about 4 times that.
7192          * If we require 4 times, then the default 256 4K stripe_heads will
7193          * allow for chunk sizes up to 256K, which is probably OK.
7194          * If the chunk size is greater, user-space should request more
7195          * stripe_heads first.
7196          */
7197         struct r5conf *conf = mddev->private;
7198         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7199             > conf->min_nr_stripes ||
7200             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7201             > conf->min_nr_stripes) {
7202                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7203                        mdname(mddev),
7204                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7205                         / STRIPE_SIZE)*4);
7206                 return 0;
7207         }
7208         return 1;
7209 }
7210
7211 static int check_reshape(struct mddev *mddev)
7212 {
7213         struct r5conf *conf = mddev->private;
7214
7215         if (mddev->delta_disks == 0 &&
7216             mddev->new_layout == mddev->layout &&
7217             mddev->new_chunk_sectors == mddev->chunk_sectors)
7218                 return 0; /* nothing to do */
7219         if (has_failed(conf))
7220                 return -EINVAL;
7221         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7222                 /* We might be able to shrink, but the devices must
7223                  * be made bigger first.
7224                  * For raid6, 4 is the minimum size.
7225                  * Otherwise 2 is the minimum
7226                  */
7227                 int min = 2;
7228                 if (mddev->level == 6)
7229                         min = 4;
7230                 if (mddev->raid_disks + mddev->delta_disks < min)
7231                         return -EINVAL;
7232         }
7233
7234         if (!check_stripe_cache(mddev))
7235                 return -ENOSPC;
7236
7237         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7238             mddev->delta_disks > 0)
7239                 if (resize_chunks(conf,
7240                                   conf->previous_raid_disks
7241                                   + max(0, mddev->delta_disks),
7242                                   max(mddev->new_chunk_sectors,
7243                                       mddev->chunk_sectors)
7244                             ) < 0)
7245                         return -ENOMEM;
7246         return resize_stripes(conf, (conf->previous_raid_disks
7247                                      + mddev->delta_disks));
7248 }
7249
7250 static int raid5_start_reshape(struct mddev *mddev)
7251 {
7252         struct r5conf *conf = mddev->private;
7253         struct md_rdev *rdev;
7254         int spares = 0;
7255         unsigned long flags;
7256
7257         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7258                 return -EBUSY;
7259
7260         if (!check_stripe_cache(mddev))
7261                 return -ENOSPC;
7262
7263         if (has_failed(conf))
7264                 return -EINVAL;
7265
7266         rdev_for_each(rdev, mddev) {
7267                 if (!test_bit(In_sync, &rdev->flags)
7268                     && !test_bit(Faulty, &rdev->flags))
7269                         spares++;
7270         }
7271
7272         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7273                 /* Not enough devices even to make a degraded array
7274                  * of that size
7275                  */
7276                 return -EINVAL;
7277
7278         /* Refuse to reduce size of the array.  Any reductions in
7279          * array size must be through explicit setting of array_size
7280          * attribute.
7281          */
7282         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7283             < mddev->array_sectors) {
7284                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7285                        "before number of disks\n", mdname(mddev));
7286                 return -EINVAL;
7287         }
7288
7289         atomic_set(&conf->reshape_stripes, 0);
7290         spin_lock_irq(&conf->device_lock);
7291         write_seqcount_begin(&conf->gen_lock);
7292         conf->previous_raid_disks = conf->raid_disks;
7293         conf->raid_disks += mddev->delta_disks;
7294         conf->prev_chunk_sectors = conf->chunk_sectors;
7295         conf->chunk_sectors = mddev->new_chunk_sectors;
7296         conf->prev_algo = conf->algorithm;
7297         conf->algorithm = mddev->new_layout;
7298         conf->generation++;
7299         /* Code that selects data_offset needs to see the generation update
7300          * if reshape_progress has been set - so a memory barrier needed.
7301          */
7302         smp_mb();
7303         if (mddev->reshape_backwards)
7304                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7305         else
7306                 conf->reshape_progress = 0;
7307         conf->reshape_safe = conf->reshape_progress;
7308         write_seqcount_end(&conf->gen_lock);
7309         spin_unlock_irq(&conf->device_lock);
7310
7311         /* Now make sure any requests that proceeded on the assumption
7312          * the reshape wasn't running - like Discard or Read - have
7313          * completed.
7314          */
7315         mddev_suspend(mddev);
7316         mddev_resume(mddev);
7317
7318         /* Add some new drives, as many as will fit.
7319          * We know there are enough to make the newly sized array work.
7320          * Don't add devices if we are reducing the number of
7321          * devices in the array.  This is because it is not possible
7322          * to correctly record the "partially reconstructed" state of
7323          * such devices during the reshape and confusion could result.
7324          */
7325         if (mddev->delta_disks >= 0) {
7326                 rdev_for_each(rdev, mddev)
7327                         if (rdev->raid_disk < 0 &&
7328                             !test_bit(Faulty, &rdev->flags)) {
7329                                 if (raid5_add_disk(mddev, rdev) == 0) {
7330                                         if (rdev->raid_disk
7331                                             >= conf->previous_raid_disks)
7332                                                 set_bit(In_sync, &rdev->flags);
7333                                         else
7334                                                 rdev->recovery_offset = 0;
7335
7336                                         if (sysfs_link_rdev(mddev, rdev))
7337                                                 /* Failure here is OK */;
7338                                 }
7339                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7340                                    && !test_bit(Faulty, &rdev->flags)) {
7341                                 /* This is a spare that was manually added */
7342                                 set_bit(In_sync, &rdev->flags);
7343                         }
7344
7345                 /* When a reshape changes the number of devices,
7346                  * ->degraded is measured against the larger of the
7347                  * pre and post number of devices.
7348                  */
7349                 spin_lock_irqsave(&conf->device_lock, flags);
7350                 mddev->degraded = calc_degraded(conf);
7351                 spin_unlock_irqrestore(&conf->device_lock, flags);
7352         }
7353         mddev->raid_disks = conf->raid_disks;
7354         mddev->reshape_position = conf->reshape_progress;
7355         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7356
7357         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7358         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7359         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7360         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7361         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7362                                                 "reshape");
7363         if (!mddev->sync_thread) {
7364                 mddev->recovery = 0;
7365                 spin_lock_irq(&conf->device_lock);
7366                 write_seqcount_begin(&conf->gen_lock);
7367                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7368                 mddev->new_chunk_sectors =
7369                         conf->chunk_sectors = conf->prev_chunk_sectors;
7370                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7371                 rdev_for_each(rdev, mddev)
7372                         rdev->new_data_offset = rdev->data_offset;
7373                 smp_wmb();
7374                 conf->generation --;
7375                 conf->reshape_progress = MaxSector;
7376                 mddev->reshape_position = MaxSector;
7377                 write_seqcount_end(&conf->gen_lock);
7378                 spin_unlock_irq(&conf->device_lock);
7379                 return -EAGAIN;
7380         }
7381         conf->reshape_checkpoint = jiffies;
7382         md_wakeup_thread(mddev->sync_thread);
7383         md_new_event(mddev);
7384         return 0;
7385 }
7386
7387 /* This is called from the reshape thread and should make any
7388  * changes needed in 'conf'
7389  */
7390 static void end_reshape(struct r5conf *conf)
7391 {
7392
7393         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7394                 struct md_rdev *rdev;
7395
7396                 spin_lock_irq(&conf->device_lock);
7397                 conf->previous_raid_disks = conf->raid_disks;
7398                 rdev_for_each(rdev, conf->mddev)
7399                         rdev->data_offset = rdev->new_data_offset;
7400                 smp_wmb();
7401                 conf->reshape_progress = MaxSector;
7402                 spin_unlock_irq(&conf->device_lock);
7403                 wake_up(&conf->wait_for_overlap);
7404
7405                 /* read-ahead size must cover two whole stripes, which is
7406                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7407                  */
7408                 if (conf->mddev->queue) {
7409                         int data_disks = conf->raid_disks - conf->max_degraded;
7410                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7411                                                    / PAGE_SIZE);
7412                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7413                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7414                 }
7415         }
7416 }
7417
7418 /* This is called from the raid5d thread with mddev_lock held.
7419  * It makes config changes to the device.
7420  */
7421 static void raid5_finish_reshape(struct mddev *mddev)
7422 {
7423         struct r5conf *conf = mddev->private;
7424
7425         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7426
7427                 if (mddev->delta_disks > 0) {
7428                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7429                         set_capacity(mddev->gendisk, mddev->array_sectors);
7430                         revalidate_disk(mddev->gendisk);
7431                 } else {
7432                         int d;
7433                         spin_lock_irq(&conf->device_lock);
7434                         mddev->degraded = calc_degraded(conf);
7435                         spin_unlock_irq(&conf->device_lock);
7436                         for (d = conf->raid_disks ;
7437                              d < conf->raid_disks - mddev->delta_disks;
7438                              d++) {
7439                                 struct md_rdev *rdev = conf->disks[d].rdev;
7440                                 if (rdev)
7441                                         clear_bit(In_sync, &rdev->flags);
7442                                 rdev = conf->disks[d].replacement;
7443                                 if (rdev)
7444                                         clear_bit(In_sync, &rdev->flags);
7445                         }
7446                 }
7447                 mddev->layout = conf->algorithm;
7448                 mddev->chunk_sectors = conf->chunk_sectors;
7449                 mddev->reshape_position = MaxSector;
7450                 mddev->delta_disks = 0;
7451                 mddev->reshape_backwards = 0;
7452         }
7453 }
7454
7455 static void raid5_quiesce(struct mddev *mddev, int state)
7456 {
7457         struct r5conf *conf = mddev->private;
7458
7459         switch(state) {
7460         case 2: /* resume for a suspend */
7461                 wake_up(&conf->wait_for_overlap);
7462                 break;
7463
7464         case 1: /* stop all writes */
7465                 lock_all_device_hash_locks_irq(conf);
7466                 /* '2' tells resync/reshape to pause so that all
7467                  * active stripes can drain
7468                  */
7469                 conf->quiesce = 2;
7470                 wait_event_cmd(conf->wait_for_stripe,
7471                                     atomic_read(&conf->active_stripes) == 0 &&
7472                                     atomic_read(&conf->active_aligned_reads) == 0,
7473                                     unlock_all_device_hash_locks_irq(conf),
7474                                     lock_all_device_hash_locks_irq(conf));
7475                 conf->quiesce = 1;
7476                 unlock_all_device_hash_locks_irq(conf);
7477                 /* allow reshape to continue */
7478                 wake_up(&conf->wait_for_overlap);
7479                 break;
7480
7481         case 0: /* re-enable writes */
7482                 lock_all_device_hash_locks_irq(conf);
7483                 conf->quiesce = 0;
7484                 wake_up(&conf->wait_for_stripe);
7485                 wake_up(&conf->wait_for_overlap);
7486                 unlock_all_device_hash_locks_irq(conf);
7487                 break;
7488         }
7489 }
7490
7491 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7492 {
7493         struct r0conf *raid0_conf = mddev->private;
7494         sector_t sectors;
7495
7496         /* for raid0 takeover only one zone is supported */
7497         if (raid0_conf->nr_strip_zones > 1) {
7498                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7499                        mdname(mddev));
7500                 return ERR_PTR(-EINVAL);
7501         }
7502
7503         sectors = raid0_conf->strip_zone[0].zone_end;
7504         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7505         mddev->dev_sectors = sectors;
7506         mddev->new_level = level;
7507         mddev->new_layout = ALGORITHM_PARITY_N;
7508         mddev->new_chunk_sectors = mddev->chunk_sectors;
7509         mddev->raid_disks += 1;
7510         mddev->delta_disks = 1;
7511         /* make sure it will be not marked as dirty */
7512         mddev->recovery_cp = MaxSector;
7513
7514         return setup_conf(mddev);
7515 }
7516
7517 static void *raid5_takeover_raid1(struct mddev *mddev)
7518 {
7519         int chunksect;
7520
7521         if (mddev->raid_disks != 2 ||
7522             mddev->degraded > 1)
7523                 return ERR_PTR(-EINVAL);
7524
7525         /* Should check if there are write-behind devices? */
7526
7527         chunksect = 64*2; /* 64K by default */
7528
7529         /* The array must be an exact multiple of chunksize */
7530         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7531                 chunksect >>= 1;
7532
7533         if ((chunksect<<9) < STRIPE_SIZE)
7534                 /* array size does not allow a suitable chunk size */
7535                 return ERR_PTR(-EINVAL);
7536
7537         mddev->new_level = 5;
7538         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7539         mddev->new_chunk_sectors = chunksect;
7540
7541         return setup_conf(mddev);
7542 }
7543
7544 static void *raid5_takeover_raid6(struct mddev *mddev)
7545 {
7546         int new_layout;
7547
7548         switch (mddev->layout) {
7549         case ALGORITHM_LEFT_ASYMMETRIC_6:
7550                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7551                 break;
7552         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7553                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7554                 break;
7555         case ALGORITHM_LEFT_SYMMETRIC_6:
7556                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7557                 break;
7558         case ALGORITHM_RIGHT_SYMMETRIC_6:
7559                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7560                 break;
7561         case ALGORITHM_PARITY_0_6:
7562                 new_layout = ALGORITHM_PARITY_0;
7563                 break;
7564         case ALGORITHM_PARITY_N:
7565                 new_layout = ALGORITHM_PARITY_N;
7566                 break;
7567         default:
7568                 return ERR_PTR(-EINVAL);
7569         }
7570         mddev->new_level = 5;
7571         mddev->new_layout = new_layout;
7572         mddev->delta_disks = -1;
7573         mddev->raid_disks -= 1;
7574         return setup_conf(mddev);
7575 }
7576
7577 static int raid5_check_reshape(struct mddev *mddev)
7578 {
7579         /* For a 2-drive array, the layout and chunk size can be changed
7580          * immediately as not restriping is needed.
7581          * For larger arrays we record the new value - after validation
7582          * to be used by a reshape pass.
7583          */
7584         struct r5conf *conf = mddev->private;
7585         int new_chunk = mddev->new_chunk_sectors;
7586
7587         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7588                 return -EINVAL;
7589         if (new_chunk > 0) {
7590                 if (!is_power_of_2(new_chunk))
7591                         return -EINVAL;
7592                 if (new_chunk < (PAGE_SIZE>>9))
7593                         return -EINVAL;
7594                 if (mddev->array_sectors & (new_chunk-1))
7595                         /* not factor of array size */
7596                         return -EINVAL;
7597         }
7598
7599         /* They look valid */
7600
7601         if (mddev->raid_disks == 2) {
7602                 /* can make the change immediately */
7603                 if (mddev->new_layout >= 0) {
7604                         conf->algorithm = mddev->new_layout;
7605                         mddev->layout = mddev->new_layout;
7606                 }
7607                 if (new_chunk > 0) {
7608                         conf->chunk_sectors = new_chunk ;
7609                         mddev->chunk_sectors = new_chunk;
7610                 }
7611                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7612                 md_wakeup_thread(mddev->thread);
7613         }
7614         return check_reshape(mddev);
7615 }
7616
7617 static int raid6_check_reshape(struct mddev *mddev)
7618 {
7619         int new_chunk = mddev->new_chunk_sectors;
7620
7621         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7622                 return -EINVAL;
7623         if (new_chunk > 0) {
7624                 if (!is_power_of_2(new_chunk))
7625                         return -EINVAL;
7626                 if (new_chunk < (PAGE_SIZE >> 9))
7627                         return -EINVAL;
7628                 if (mddev->array_sectors & (new_chunk-1))
7629                         /* not factor of array size */
7630                         return -EINVAL;
7631         }
7632
7633         /* They look valid */
7634         return check_reshape(mddev);
7635 }
7636
7637 static void *raid5_takeover(struct mddev *mddev)
7638 {
7639         /* raid5 can take over:
7640          *  raid0 - if there is only one strip zone - make it a raid4 layout
7641          *  raid1 - if there are two drives.  We need to know the chunk size
7642          *  raid4 - trivial - just use a raid4 layout.
7643          *  raid6 - Providing it is a *_6 layout
7644          */
7645         if (mddev->level == 0)
7646                 return raid45_takeover_raid0(mddev, 5);
7647         if (mddev->level == 1)
7648                 return raid5_takeover_raid1(mddev);
7649         if (mddev->level == 4) {
7650                 mddev->new_layout = ALGORITHM_PARITY_N;
7651                 mddev->new_level = 5;
7652                 return setup_conf(mddev);
7653         }
7654         if (mddev->level == 6)
7655                 return raid5_takeover_raid6(mddev);
7656
7657         return ERR_PTR(-EINVAL);
7658 }
7659
7660 static void *raid4_takeover(struct mddev *mddev)
7661 {
7662         /* raid4 can take over:
7663          *  raid0 - if there is only one strip zone
7664          *  raid5 - if layout is right
7665          */
7666         if (mddev->level == 0)
7667                 return raid45_takeover_raid0(mddev, 4);
7668         if (mddev->level == 5 &&
7669             mddev->layout == ALGORITHM_PARITY_N) {
7670                 mddev->new_layout = 0;
7671                 mddev->new_level = 4;
7672                 return setup_conf(mddev);
7673         }
7674         return ERR_PTR(-EINVAL);
7675 }
7676
7677 static struct md_personality raid5_personality;
7678
7679 static void *raid6_takeover(struct mddev *mddev)
7680 {
7681         /* Currently can only take over a raid5.  We map the
7682          * personality to an equivalent raid6 personality
7683          * with the Q block at the end.
7684          */
7685         int new_layout;
7686
7687         if (mddev->pers != &raid5_personality)
7688                 return ERR_PTR(-EINVAL);
7689         if (mddev->degraded > 1)
7690                 return ERR_PTR(-EINVAL);
7691         if (mddev->raid_disks > 253)
7692                 return ERR_PTR(-EINVAL);
7693         if (mddev->raid_disks < 3)
7694                 return ERR_PTR(-EINVAL);
7695
7696         switch (mddev->layout) {
7697         case ALGORITHM_LEFT_ASYMMETRIC:
7698                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7699                 break;
7700         case ALGORITHM_RIGHT_ASYMMETRIC:
7701                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7702                 break;
7703         case ALGORITHM_LEFT_SYMMETRIC:
7704                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7705                 break;
7706         case ALGORITHM_RIGHT_SYMMETRIC:
7707                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7708                 break;
7709         case ALGORITHM_PARITY_0:
7710                 new_layout = ALGORITHM_PARITY_0_6;
7711                 break;
7712         case ALGORITHM_PARITY_N:
7713                 new_layout = ALGORITHM_PARITY_N;
7714                 break;
7715         default:
7716                 return ERR_PTR(-EINVAL);
7717         }
7718         mddev->new_level = 6;
7719         mddev->new_layout = new_layout;
7720         mddev->delta_disks = 1;
7721         mddev->raid_disks += 1;
7722         return setup_conf(mddev);
7723 }
7724
7725 static struct md_personality raid6_personality =
7726 {
7727         .name           = "raid6",
7728         .level          = 6,
7729         .owner          = THIS_MODULE,
7730         .make_request   = make_request,
7731         .run            = run,
7732         .free           = raid5_free,
7733         .status         = status,
7734         .error_handler  = error,
7735         .hot_add_disk   = raid5_add_disk,
7736         .hot_remove_disk= raid5_remove_disk,
7737         .spare_active   = raid5_spare_active,
7738         .sync_request   = sync_request,
7739         .resize         = raid5_resize,
7740         .size           = raid5_size,
7741         .check_reshape  = raid6_check_reshape,
7742         .start_reshape  = raid5_start_reshape,
7743         .finish_reshape = raid5_finish_reshape,
7744         .quiesce        = raid5_quiesce,
7745         .takeover       = raid6_takeover,
7746         .congested      = raid5_congested,
7747         .mergeable_bvec = raid5_mergeable_bvec,
7748 };
7749 static struct md_personality raid5_personality =
7750 {
7751         .name           = "raid5",
7752         .level          = 5,
7753         .owner          = THIS_MODULE,
7754         .make_request   = make_request,
7755         .run            = run,
7756         .free           = raid5_free,
7757         .status         = status,
7758         .error_handler  = error,
7759         .hot_add_disk   = raid5_add_disk,
7760         .hot_remove_disk= raid5_remove_disk,
7761         .spare_active   = raid5_spare_active,
7762         .sync_request   = sync_request,
7763         .resize         = raid5_resize,
7764         .size           = raid5_size,
7765         .check_reshape  = raid5_check_reshape,
7766         .start_reshape  = raid5_start_reshape,
7767         .finish_reshape = raid5_finish_reshape,
7768         .quiesce        = raid5_quiesce,
7769         .takeover       = raid5_takeover,
7770         .congested      = raid5_congested,
7771         .mergeable_bvec = raid5_mergeable_bvec,
7772 };
7773
7774 static struct md_personality raid4_personality =
7775 {
7776         .name           = "raid4",
7777         .level          = 4,
7778         .owner          = THIS_MODULE,
7779         .make_request   = make_request,
7780         .run            = run,
7781         .free           = raid5_free,
7782         .status         = status,
7783         .error_handler  = error,
7784         .hot_add_disk   = raid5_add_disk,
7785         .hot_remove_disk= raid5_remove_disk,
7786         .spare_active   = raid5_spare_active,
7787         .sync_request   = sync_request,
7788         .resize         = raid5_resize,
7789         .size           = raid5_size,
7790         .check_reshape  = raid5_check_reshape,
7791         .start_reshape  = raid5_start_reshape,
7792         .finish_reshape = raid5_finish_reshape,
7793         .quiesce        = raid5_quiesce,
7794         .takeover       = raid4_takeover,
7795         .congested      = raid5_congested,
7796         .mergeable_bvec = raid5_mergeable_bvec,
7797 };
7798
7799 static int __init raid5_init(void)
7800 {
7801         raid5_wq = alloc_workqueue("raid5wq",
7802                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7803         if (!raid5_wq)
7804                 return -ENOMEM;
7805         register_md_personality(&raid6_personality);
7806         register_md_personality(&raid5_personality);
7807         register_md_personality(&raid4_personality);
7808         return 0;
7809 }
7810
7811 static void raid5_exit(void)
7812 {
7813         unregister_md_personality(&raid6_personality);
7814         unregister_md_personality(&raid5_personality);
7815         unregister_md_personality(&raid4_personality);
7816         destroy_workqueue(raid5_wq);
7817 }
7818
7819 module_init(raid5_init);
7820 module_exit(raid5_exit);
7821 MODULE_LICENSE("GPL");
7822 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7823 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7824 MODULE_ALIAS("md-raid5");
7825 MODULE_ALIAS("md-raid4");
7826 MODULE_ALIAS("md-level-5");
7827 MODULE_ALIAS("md-level-4");
7828 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7829 MODULE_ALIAS("md-raid6");
7830 MODULE_ALIAS("md-level-6");
7831
7832 /* This used to be two separate modules, they were: */
7833 MODULE_ALIAS("raid5");
7834 MODULE_ALIAS("raid6");