ath6kl: fix size_t printf warnings
[cascardo/linux.git] / drivers / mfd / db8500-prcmu.c
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/irqchip/arm-gic.h>
30 #include <linux/mfd/core.h>
31 #include <linux/mfd/dbx500-prcmu.h>
32 #include <linux/mfd/abx500/ab8500.h>
33 #include <linux/regulator/db8500-prcmu.h>
34 #include <linux/regulator/machine.h>
35 #include <linux/cpufreq.h>
36 #include <linux/platform_data/ux500_wdt.h>
37 #include <mach/hardware.h>
38 #include <mach/irqs.h>
39 #include <mach/db8500-regs.h>
40 #include "dbx500-prcmu-regs.h"
41
42 /* Index of different voltages to be used when accessing AVSData */
43 #define PRCM_AVS_BASE           0x2FC
44 #define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
45 #define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
46 #define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
47 #define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
48 #define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
49 #define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
50 #define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
51 #define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
52 #define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
53 #define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
54 #define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
55 #define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
56 #define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
57
58 #define PRCM_AVS_VOLTAGE                0
59 #define PRCM_AVS_VOLTAGE_MASK           0x3f
60 #define PRCM_AVS_ISSLOWSTARTUP          6
61 #define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
62 #define PRCM_AVS_ISMODEENABLE           7
63 #define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
64
65 #define PRCM_BOOT_STATUS        0xFFF
66 #define PRCM_ROMCODE_A2P        0xFFE
67 #define PRCM_ROMCODE_P2A        0xFFD
68 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
69
70 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
71
72 #define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
73 #define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
74 #define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
75 #define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
76 #define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
77 #define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
78 #define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
79 #define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
80
81 /* Req Mailboxes */
82 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
83 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
84 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
85 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
86 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
87 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
88
89 /* Ack Mailboxes */
90 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
91 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
92 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
93 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
94 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
95 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
96
97 /* Mailbox 0 headers */
98 #define MB0H_POWER_STATE_TRANS          0
99 #define MB0H_CONFIG_WAKEUPS_EXE         1
100 #define MB0H_READ_WAKEUP_ACK            3
101 #define MB0H_CONFIG_WAKEUPS_SLEEP       4
102
103 #define MB0H_WAKEUP_EXE 2
104 #define MB0H_WAKEUP_SLEEP 5
105
106 /* Mailbox 0 REQs */
107 #define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
108 #define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
109 #define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
110 #define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
111 #define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
112 #define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
113
114 /* Mailbox 0 ACKs */
115 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
116 #define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
117 #define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
118 #define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
119 #define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
120 #define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
121 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
122
123 /* Mailbox 1 headers */
124 #define MB1H_ARM_APE_OPP 0x0
125 #define MB1H_RESET_MODEM 0x2
126 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
127 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
128 #define MB1H_RELEASE_USB_WAKEUP 0x5
129 #define MB1H_PLL_ON_OFF 0x6
130
131 /* Mailbox 1 Requests */
132 #define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
133 #define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
134 #define PRCM_REQ_MB1_PLL_ON_OFF                 (PRCM_REQ_MB1 + 0x4)
135 #define PLL_SOC0_OFF    0x1
136 #define PLL_SOC0_ON     0x2
137 #define PLL_SOC1_OFF    0x4
138 #define PLL_SOC1_ON     0x8
139
140 /* Mailbox 1 ACKs */
141 #define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
142 #define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
143 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
144 #define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
145
146 /* Mailbox 2 headers */
147 #define MB2H_DPS        0x0
148 #define MB2H_AUTO_PWR   0x1
149
150 /* Mailbox 2 REQs */
151 #define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
152 #define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
153 #define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
154 #define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
155 #define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
156 #define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
157 #define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
158 #define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
159 #define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
160 #define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
161
162 /* Mailbox 2 ACKs */
163 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
164 #define HWACC_PWR_ST_OK 0xFE
165
166 /* Mailbox 3 headers */
167 #define MB3H_ANC        0x0
168 #define MB3H_SIDETONE   0x1
169 #define MB3H_SYSCLK     0xE
170
171 /* Mailbox 3 Requests */
172 #define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
173 #define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
174 #define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
175 #define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
177 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
178 #define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
179
180 /* Mailbox 4 headers */
181 #define MB4H_DDR_INIT   0x0
182 #define MB4H_MEM_ST     0x1
183 #define MB4H_HOTDOG     0x12
184 #define MB4H_HOTMON     0x13
185 #define MB4H_HOT_PERIOD 0x14
186 #define MB4H_A9WDOG_CONF 0x16
187 #define MB4H_A9WDOG_EN   0x17
188 #define MB4H_A9WDOG_DIS  0x18
189 #define MB4H_A9WDOG_LOAD 0x19
190 #define MB4H_A9WDOG_KICK 0x20
191
192 /* Mailbox 4 Requests */
193 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
194 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
195 #define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
196 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
198 #define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
199 #define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
200 #define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
201 #define HOTMON_CONFIG_LOW                       BIT(0)
202 #define HOTMON_CONFIG_HIGH                      BIT(1)
203 #define PRCM_REQ_MB4_A9WDOG_0                   (PRCM_REQ_MB4 + 0x0)
204 #define PRCM_REQ_MB4_A9WDOG_1                   (PRCM_REQ_MB4 + 0x1)
205 #define PRCM_REQ_MB4_A9WDOG_2                   (PRCM_REQ_MB4 + 0x2)
206 #define PRCM_REQ_MB4_A9WDOG_3                   (PRCM_REQ_MB4 + 0x3)
207 #define A9WDOG_AUTO_OFF_EN                      BIT(7)
208 #define A9WDOG_AUTO_OFF_DIS                     0
209 #define A9WDOG_ID_MASK                          0xf
210
211 /* Mailbox 5 Requests */
212 #define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
213 #define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
214 #define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
215 #define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
216 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
217 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
218 #define PRCMU_I2C_STOP_EN               BIT(3)
219
220 /* Mailbox 5 ACKs */
221 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
222 #define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
223 #define I2C_WR_OK 0x1
224 #define I2C_RD_OK 0x2
225
226 #define NUM_MB 8
227 #define MBOX_BIT BIT
228 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
229
230 /*
231  * Wakeups/IRQs
232  */
233
234 #define WAKEUP_BIT_RTC BIT(0)
235 #define WAKEUP_BIT_RTT0 BIT(1)
236 #define WAKEUP_BIT_RTT1 BIT(2)
237 #define WAKEUP_BIT_HSI0 BIT(3)
238 #define WAKEUP_BIT_HSI1 BIT(4)
239 #define WAKEUP_BIT_CA_WAKE BIT(5)
240 #define WAKEUP_BIT_USB BIT(6)
241 #define WAKEUP_BIT_ABB BIT(7)
242 #define WAKEUP_BIT_ABB_FIFO BIT(8)
243 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
244 #define WAKEUP_BIT_CA_SLEEP BIT(10)
245 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
246 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
247 #define WAKEUP_BIT_ANC_OK BIT(13)
248 #define WAKEUP_BIT_SW_ERROR BIT(14)
249 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
250 #define WAKEUP_BIT_ARM BIT(17)
251 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
252 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
253 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
254 #define WAKEUP_BIT_GPIO0 BIT(23)
255 #define WAKEUP_BIT_GPIO1 BIT(24)
256 #define WAKEUP_BIT_GPIO2 BIT(25)
257 #define WAKEUP_BIT_GPIO3 BIT(26)
258 #define WAKEUP_BIT_GPIO4 BIT(27)
259 #define WAKEUP_BIT_GPIO5 BIT(28)
260 #define WAKEUP_BIT_GPIO6 BIT(29)
261 #define WAKEUP_BIT_GPIO7 BIT(30)
262 #define WAKEUP_BIT_GPIO8 BIT(31)
263
264 static struct {
265         bool valid;
266         struct prcmu_fw_version version;
267 } fw_info;
268
269 static struct irq_domain *db8500_irq_domain;
270
271 /*
272  * This vector maps irq numbers to the bits in the bit field used in
273  * communication with the PRCMU firmware.
274  *
275  * The reason for having this is to keep the irq numbers contiguous even though
276  * the bits in the bit field are not. (The bits also have a tendency to move
277  * around, to further complicate matters.)
278  */
279 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
280 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
281 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
282         IRQ_ENTRY(RTC),
283         IRQ_ENTRY(RTT0),
284         IRQ_ENTRY(RTT1),
285         IRQ_ENTRY(HSI0),
286         IRQ_ENTRY(HSI1),
287         IRQ_ENTRY(CA_WAKE),
288         IRQ_ENTRY(USB),
289         IRQ_ENTRY(ABB),
290         IRQ_ENTRY(ABB_FIFO),
291         IRQ_ENTRY(CA_SLEEP),
292         IRQ_ENTRY(ARM),
293         IRQ_ENTRY(HOTMON_LOW),
294         IRQ_ENTRY(HOTMON_HIGH),
295         IRQ_ENTRY(MODEM_SW_RESET_REQ),
296         IRQ_ENTRY(GPIO0),
297         IRQ_ENTRY(GPIO1),
298         IRQ_ENTRY(GPIO2),
299         IRQ_ENTRY(GPIO3),
300         IRQ_ENTRY(GPIO4),
301         IRQ_ENTRY(GPIO5),
302         IRQ_ENTRY(GPIO6),
303         IRQ_ENTRY(GPIO7),
304         IRQ_ENTRY(GPIO8)
305 };
306
307 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
308 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
309 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
310         WAKEUP_ENTRY(RTC),
311         WAKEUP_ENTRY(RTT0),
312         WAKEUP_ENTRY(RTT1),
313         WAKEUP_ENTRY(HSI0),
314         WAKEUP_ENTRY(HSI1),
315         WAKEUP_ENTRY(USB),
316         WAKEUP_ENTRY(ABB),
317         WAKEUP_ENTRY(ABB_FIFO),
318         WAKEUP_ENTRY(ARM)
319 };
320
321 /*
322  * mb0_transfer - state needed for mailbox 0 communication.
323  * @lock:               The transaction lock.
324  * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
325  *                      the request data.
326  * @mask_work:          Work structure used for (un)masking wakeup interrupts.
327  * @req:                Request data that need to persist between requests.
328  */
329 static struct {
330         spinlock_t lock;
331         spinlock_t dbb_irqs_lock;
332         struct work_struct mask_work;
333         struct mutex ac_wake_lock;
334         struct completion ac_wake_work;
335         struct {
336                 u32 dbb_irqs;
337                 u32 dbb_wakeups;
338                 u32 abb_events;
339         } req;
340 } mb0_transfer;
341
342 /*
343  * mb1_transfer - state needed for mailbox 1 communication.
344  * @lock:       The transaction lock.
345  * @work:       The transaction completion structure.
346  * @ape_opp:    The current APE OPP.
347  * @ack:        Reply ("acknowledge") data.
348  */
349 static struct {
350         struct mutex lock;
351         struct completion work;
352         u8 ape_opp;
353         struct {
354                 u8 header;
355                 u8 arm_opp;
356                 u8 ape_opp;
357                 u8 ape_voltage_status;
358         } ack;
359 } mb1_transfer;
360
361 /*
362  * mb2_transfer - state needed for mailbox 2 communication.
363  * @lock:            The transaction lock.
364  * @work:            The transaction completion structure.
365  * @auto_pm_lock:    The autonomous power management configuration lock.
366  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
367  * @req:             Request data that need to persist between requests.
368  * @ack:             Reply ("acknowledge") data.
369  */
370 static struct {
371         struct mutex lock;
372         struct completion work;
373         spinlock_t auto_pm_lock;
374         bool auto_pm_enabled;
375         struct {
376                 u8 status;
377         } ack;
378 } mb2_transfer;
379
380 /*
381  * mb3_transfer - state needed for mailbox 3 communication.
382  * @lock:               The request lock.
383  * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
384  * @sysclk_work:        Work structure used for sysclk requests.
385  */
386 static struct {
387         spinlock_t lock;
388         struct mutex sysclk_lock;
389         struct completion sysclk_work;
390 } mb3_transfer;
391
392 /*
393  * mb4_transfer - state needed for mailbox 4 communication.
394  * @lock:       The transaction lock.
395  * @work:       The transaction completion structure.
396  */
397 static struct {
398         struct mutex lock;
399         struct completion work;
400 } mb4_transfer;
401
402 /*
403  * mb5_transfer - state needed for mailbox 5 communication.
404  * @lock:       The transaction lock.
405  * @work:       The transaction completion structure.
406  * @ack:        Reply ("acknowledge") data.
407  */
408 static struct {
409         struct mutex lock;
410         struct completion work;
411         struct {
412                 u8 status;
413                 u8 value;
414         } ack;
415 } mb5_transfer;
416
417 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
418
419 /* Spinlocks */
420 static DEFINE_SPINLOCK(prcmu_lock);
421 static DEFINE_SPINLOCK(clkout_lock);
422
423 /* Global var to runtime determine TCDM base for v2 or v1 */
424 static __iomem void *tcdm_base;
425
426 struct clk_mgt {
427         void __iomem *reg;
428         u32 pllsw;
429         int branch;
430         bool clk38div;
431 };
432
433 enum {
434         PLL_RAW,
435         PLL_FIX,
436         PLL_DIV
437 };
438
439 static DEFINE_SPINLOCK(clk_mgt_lock);
440
441 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
442         { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
443 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
444         CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
445         CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
446         CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
447         CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
448         CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
449         CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
450         CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
451         CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
452         CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
453         CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
454         CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
455         CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
456         CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
457         CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
458         CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
459         CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
460         CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
461         CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
462         CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
463         CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
464         CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
465         CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
466         CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
467         CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
468         CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
469         CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
470         CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
471         CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
472         CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
473 };
474
475 struct dsiclk {
476         u32 divsel_mask;
477         u32 divsel_shift;
478         u32 divsel;
479 };
480
481 static struct dsiclk dsiclk[2] = {
482         {
483                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
484                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
485                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
486         },
487         {
488                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
489                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
490                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
491         }
492 };
493
494 struct dsiescclk {
495         u32 en;
496         u32 div_mask;
497         u32 div_shift;
498 };
499
500 static struct dsiescclk dsiescclk[3] = {
501         {
502                 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
503                 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
504                 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
505         },
506         {
507                 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
508                 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
509                 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
510         },
511         {
512                 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
513                 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
514                 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
515         }
516 };
517
518
519 /*
520 * Used by MCDE to setup all necessary PRCMU registers
521 */
522 #define PRCMU_RESET_DSIPLL              0x00004000
523 #define PRCMU_UNCLAMP_DSIPLL            0x00400800
524
525 #define PRCMU_CLK_PLL_DIV_SHIFT         0
526 #define PRCMU_CLK_PLL_SW_SHIFT          5
527 #define PRCMU_CLK_38                    (1 << 9)
528 #define PRCMU_CLK_38_SRC                (1 << 10)
529 #define PRCMU_CLK_38_DIV                (1 << 11)
530
531 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
532 #define PRCMU_DSI_CLOCK_SETTING         0x0000008C
533
534 /* DPI 50000000 Hz */
535 #define PRCMU_DPI_CLOCK_SETTING         ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
536                                           (16 << PRCMU_CLK_PLL_DIV_SHIFT))
537 #define PRCMU_DSI_LP_CLOCK_SETTING      0x00000E00
538
539 /* D=101, N=1, R=4, SELDIV2=0 */
540 #define PRCMU_PLLDSI_FREQ_SETTING       0x00040165
541
542 #define PRCMU_ENABLE_PLLDSI             0x00000001
543 #define PRCMU_DISABLE_PLLDSI            0x00000000
544 #define PRCMU_RELEASE_RESET_DSS         0x0000400C
545 #define PRCMU_DSI_PLLOUT_SEL_SETTING    0x00000202
546 /* ESC clk, div0=1, div1=1, div2=3 */
547 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV   0x07030101
548 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV  0x00030101
549 #define PRCMU_DSI_RESET_SW              0x00000007
550
551 #define PRCMU_PLLDSI_LOCKP_LOCKED       0x3
552
553 int db8500_prcmu_enable_dsipll(void)
554 {
555         int i;
556
557         /* Clear DSIPLL_RESETN */
558         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
559         /* Unclamp DSIPLL in/out */
560         writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
561
562         /* Set DSI PLL FREQ */
563         writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
564         writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
565         /* Enable Escape clocks */
566         writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
567
568         /* Start DSI PLL */
569         writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
570         /* Reset DSI PLL */
571         writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
572         for (i = 0; i < 10; i++) {
573                 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
574                                         == PRCMU_PLLDSI_LOCKP_LOCKED)
575                         break;
576                 udelay(100);
577         }
578         /* Set DSIPLL_RESETN */
579         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
580         return 0;
581 }
582
583 int db8500_prcmu_disable_dsipll(void)
584 {
585         /* Disable dsi pll */
586         writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
587         /* Disable  escapeclock */
588         writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
589         return 0;
590 }
591
592 int db8500_prcmu_set_display_clocks(void)
593 {
594         unsigned long flags;
595
596         spin_lock_irqsave(&clk_mgt_lock, flags);
597
598         /* Grab the HW semaphore. */
599         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
600                 cpu_relax();
601
602         writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
603         writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
604         writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
605
606         /* Release the HW semaphore. */
607         writel(0, PRCM_SEM);
608
609         spin_unlock_irqrestore(&clk_mgt_lock, flags);
610
611         return 0;
612 }
613
614 u32 db8500_prcmu_read(unsigned int reg)
615 {
616         return readl(_PRCMU_BASE + reg);
617 }
618
619 void db8500_prcmu_write(unsigned int reg, u32 value)
620 {
621         unsigned long flags;
622
623         spin_lock_irqsave(&prcmu_lock, flags);
624         writel(value, (_PRCMU_BASE + reg));
625         spin_unlock_irqrestore(&prcmu_lock, flags);
626 }
627
628 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
629 {
630         u32 val;
631         unsigned long flags;
632
633         spin_lock_irqsave(&prcmu_lock, flags);
634         val = readl(_PRCMU_BASE + reg);
635         val = ((val & ~mask) | (value & mask));
636         writel(val, (_PRCMU_BASE + reg));
637         spin_unlock_irqrestore(&prcmu_lock, flags);
638 }
639
640 struct prcmu_fw_version *prcmu_get_fw_version(void)
641 {
642         return fw_info.valid ? &fw_info.version : NULL;
643 }
644
645 bool prcmu_has_arm_maxopp(void)
646 {
647         return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
648                 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
649 }
650
651 /**
652  * prcmu_get_boot_status - PRCMU boot status checking
653  * Returns: the current PRCMU boot status
654  */
655 int prcmu_get_boot_status(void)
656 {
657         return readb(tcdm_base + PRCM_BOOT_STATUS);
658 }
659
660 /**
661  * prcmu_set_rc_a2p - This function is used to run few power state sequences
662  * @val: Value to be set, i.e. transition requested
663  * Returns: 0 on success, -EINVAL on invalid argument
664  *
665  * This function is used to run the following power state sequences -
666  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
667  */
668 int prcmu_set_rc_a2p(enum romcode_write val)
669 {
670         if (val < RDY_2_DS || val > RDY_2_XP70_RST)
671                 return -EINVAL;
672         writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
673         return 0;
674 }
675
676 /**
677  * prcmu_get_rc_p2a - This function is used to get power state sequences
678  * Returns: the power transition that has last happened
679  *
680  * This function can return the following transitions-
681  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
682  */
683 enum romcode_read prcmu_get_rc_p2a(void)
684 {
685         return readb(tcdm_base + PRCM_ROMCODE_P2A);
686 }
687
688 /**
689  * prcmu_get_current_mode - Return the current XP70 power mode
690  * Returns: Returns the current AP(ARM) power mode: init,
691  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
692  */
693 enum ap_pwrst prcmu_get_xp70_current_state(void)
694 {
695         return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
696 }
697
698 /**
699  * prcmu_config_clkout - Configure one of the programmable clock outputs.
700  * @clkout:     The CLKOUT number (0 or 1).
701  * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
702  * @div:        The divider to be applied.
703  *
704  * Configures one of the programmable clock outputs (CLKOUTs).
705  * @div should be in the range [1,63] to request a configuration, or 0 to
706  * inform that the configuration is no longer requested.
707  */
708 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
709 {
710         static int requests[2];
711         int r = 0;
712         unsigned long flags;
713         u32 val;
714         u32 bits;
715         u32 mask;
716         u32 div_mask;
717
718         BUG_ON(clkout > 1);
719         BUG_ON(div > 63);
720         BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
721
722         if (!div && !requests[clkout])
723                 return -EINVAL;
724
725         switch (clkout) {
726         case 0:
727                 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
728                 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
729                 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
730                         (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
731                 break;
732         case 1:
733                 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
734                 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
735                         PRCM_CLKOCR_CLK1TYPE);
736                 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
737                         (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
738                 break;
739         }
740         bits &= mask;
741
742         spin_lock_irqsave(&clkout_lock, flags);
743
744         val = readl(PRCM_CLKOCR);
745         if (val & div_mask) {
746                 if (div) {
747                         if ((val & mask) != bits) {
748                                 r = -EBUSY;
749                                 goto unlock_and_return;
750                         }
751                 } else {
752                         if ((val & mask & ~div_mask) != bits) {
753                                 r = -EINVAL;
754                                 goto unlock_and_return;
755                         }
756                 }
757         }
758         writel((bits | (val & ~mask)), PRCM_CLKOCR);
759         requests[clkout] += (div ? 1 : -1);
760
761 unlock_and_return:
762         spin_unlock_irqrestore(&clkout_lock, flags);
763
764         return r;
765 }
766
767 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
768 {
769         unsigned long flags;
770
771         BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
772
773         spin_lock_irqsave(&mb0_transfer.lock, flags);
774
775         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
776                 cpu_relax();
777
778         writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
779         writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
780         writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
781         writeb((keep_ulp_clk ? 1 : 0),
782                 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
783         writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
784         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
785
786         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
787
788         return 0;
789 }
790
791 u8 db8500_prcmu_get_power_state_result(void)
792 {
793         return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
794 }
795
796 /* This function decouple the gic from the prcmu */
797 int db8500_prcmu_gic_decouple(void)
798 {
799         u32 val = readl(PRCM_A9_MASK_REQ);
800
801         /* Set bit 0 register value to 1 */
802         writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
803                PRCM_A9_MASK_REQ);
804
805         /* Make sure the register is updated */
806         readl(PRCM_A9_MASK_REQ);
807
808         /* Wait a few cycles for the gic mask completion */
809         udelay(1);
810
811         return 0;
812 }
813
814 /* This function recouple the gic with the prcmu */
815 int db8500_prcmu_gic_recouple(void)
816 {
817         u32 val = readl(PRCM_A9_MASK_REQ);
818
819         /* Set bit 0 register value to 0 */
820         writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
821
822         return 0;
823 }
824
825 #define PRCMU_GIC_NUMBER_REGS 5
826
827 /*
828  * This function checks if there are pending irq on the gic. It only
829  * makes sense if the gic has been decoupled before with the
830  * db8500_prcmu_gic_decouple function. Disabling an interrupt only
831  * disables the forwarding of the interrupt to any CPU interface. It
832  * does not prevent the interrupt from changing state, for example
833  * becoming pending, or active and pending if it is already
834  * active. Hence, we have to check the interrupt is pending *and* is
835  * active.
836  */
837 bool db8500_prcmu_gic_pending_irq(void)
838 {
839         u32 pr; /* Pending register */
840         u32 er; /* Enable register */
841         void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
842         int i;
843
844         /* 5 registers. STI & PPI not skipped */
845         for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
846
847                 pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
848                 er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
849
850                 if (pr & er)
851                         return true; /* There is a pending interrupt */
852         }
853
854         return false;
855 }
856
857 /*
858  * This function checks if there are pending interrupt on the
859  * prcmu which has been delegated to monitor the irqs with the
860  * db8500_prcmu_copy_gic_settings function.
861  */
862 bool db8500_prcmu_pending_irq(void)
863 {
864         u32 it, im;
865         int i;
866
867         for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
868                 it = readl(PRCM_ARMITVAL31TO0 + i * 4);
869                 im = readl(PRCM_ARMITMSK31TO0 + i * 4);
870                 if (it & im)
871                         return true; /* There is a pending interrupt */
872         }
873
874         return false;
875 }
876
877 /*
878  * This function checks if the specified cpu is in in WFI. It's usage
879  * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
880  * function. Of course passing smp_processor_id() to this function will
881  * always return false...
882  */
883 bool db8500_prcmu_is_cpu_in_wfi(int cpu)
884 {
885         return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
886                      PRCM_ARM_WFI_STANDBY_WFI0;
887 }
888
889 /*
890  * This function copies the gic SPI settings to the prcmu in order to
891  * monitor them and abort/finish the retention/off sequence or state.
892  */
893 int db8500_prcmu_copy_gic_settings(void)
894 {
895         u32 er; /* Enable register */
896         void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
897         int i;
898
899         /* We skip the STI and PPI */
900         for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
901                 er = readl_relaxed(dist_base +
902                                    GIC_DIST_ENABLE_SET + (i + 1) * 4);
903                 writel(er, PRCM_ARMITMSK31TO0 + i * 4);
904         }
905
906         return 0;
907 }
908
909 /* This function should only be called while mb0_transfer.lock is held. */
910 static void config_wakeups(void)
911 {
912         const u8 header[2] = {
913                 MB0H_CONFIG_WAKEUPS_EXE,
914                 MB0H_CONFIG_WAKEUPS_SLEEP
915         };
916         static u32 last_dbb_events;
917         static u32 last_abb_events;
918         u32 dbb_events;
919         u32 abb_events;
920         unsigned int i;
921
922         dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
923         dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
924
925         abb_events = mb0_transfer.req.abb_events;
926
927         if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
928                 return;
929
930         for (i = 0; i < 2; i++) {
931                 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
932                         cpu_relax();
933                 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
934                 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
935                 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
936                 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
937         }
938         last_dbb_events = dbb_events;
939         last_abb_events = abb_events;
940 }
941
942 void db8500_prcmu_enable_wakeups(u32 wakeups)
943 {
944         unsigned long flags;
945         u32 bits;
946         int i;
947
948         BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
949
950         for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
951                 if (wakeups & BIT(i))
952                         bits |= prcmu_wakeup_bit[i];
953         }
954
955         spin_lock_irqsave(&mb0_transfer.lock, flags);
956
957         mb0_transfer.req.dbb_wakeups = bits;
958         config_wakeups();
959
960         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
961 }
962
963 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
964 {
965         unsigned long flags;
966
967         spin_lock_irqsave(&mb0_transfer.lock, flags);
968
969         mb0_transfer.req.abb_events = abb_events;
970         config_wakeups();
971
972         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
973 }
974
975 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
976 {
977         if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
978                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
979         else
980                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
981 }
982
983 /**
984  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
985  * @opp: The new ARM operating point to which transition is to be made
986  * Returns: 0 on success, non-zero on failure
987  *
988  * This function sets the the operating point of the ARM.
989  */
990 int db8500_prcmu_set_arm_opp(u8 opp)
991 {
992         int r;
993
994         if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
995                 return -EINVAL;
996
997         r = 0;
998
999         mutex_lock(&mb1_transfer.lock);
1000
1001         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1002                 cpu_relax();
1003
1004         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1005         writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1006         writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1007
1008         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1009         wait_for_completion(&mb1_transfer.work);
1010
1011         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1012                 (mb1_transfer.ack.arm_opp != opp))
1013                 r = -EIO;
1014
1015         mutex_unlock(&mb1_transfer.lock);
1016
1017         return r;
1018 }
1019
1020 /**
1021  * db8500_prcmu_get_arm_opp - get the current ARM OPP
1022  *
1023  * Returns: the current ARM OPP
1024  */
1025 int db8500_prcmu_get_arm_opp(void)
1026 {
1027         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1028 }
1029
1030 /**
1031  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
1032  *
1033  * Returns: the current DDR OPP
1034  */
1035 int db8500_prcmu_get_ddr_opp(void)
1036 {
1037         return readb(PRCM_DDR_SUBSYS_APE_MINBW);
1038 }
1039
1040 /**
1041  * db8500_set_ddr_opp - set the appropriate DDR OPP
1042  * @opp: The new DDR operating point to which transition is to be made
1043  * Returns: 0 on success, non-zero on failure
1044  *
1045  * This function sets the operating point of the DDR.
1046  */
1047 static bool enable_set_ddr_opp;
1048 int db8500_prcmu_set_ddr_opp(u8 opp)
1049 {
1050         if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1051                 return -EINVAL;
1052         /* Changing the DDR OPP can hang the hardware pre-v21 */
1053         if (enable_set_ddr_opp)
1054                 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
1055
1056         return 0;
1057 }
1058
1059 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1060 static void request_even_slower_clocks(bool enable)
1061 {
1062         void __iomem *clock_reg[] = {
1063                 PRCM_ACLK_MGT,
1064                 PRCM_DMACLK_MGT
1065         };
1066         unsigned long flags;
1067         unsigned int i;
1068
1069         spin_lock_irqsave(&clk_mgt_lock, flags);
1070
1071         /* Grab the HW semaphore. */
1072         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1073                 cpu_relax();
1074
1075         for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1076                 u32 val;
1077                 u32 div;
1078
1079                 val = readl(clock_reg[i]);
1080                 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1081                 if (enable) {
1082                         if ((div <= 1) || (div > 15)) {
1083                                 pr_err("prcmu: Bad clock divider %d in %s\n",
1084                                         div, __func__);
1085                                 goto unlock_and_return;
1086                         }
1087                         div <<= 1;
1088                 } else {
1089                         if (div <= 2)
1090                                 goto unlock_and_return;
1091                         div >>= 1;
1092                 }
1093                 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1094                         (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1095                 writel(val, clock_reg[i]);
1096         }
1097
1098 unlock_and_return:
1099         /* Release the HW semaphore. */
1100         writel(0, PRCM_SEM);
1101
1102         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1103 }
1104
1105 /**
1106  * db8500_set_ape_opp - set the appropriate APE OPP
1107  * @opp: The new APE operating point to which transition is to be made
1108  * Returns: 0 on success, non-zero on failure
1109  *
1110  * This function sets the operating point of the APE.
1111  */
1112 int db8500_prcmu_set_ape_opp(u8 opp)
1113 {
1114         int r = 0;
1115
1116         if (opp == mb1_transfer.ape_opp)
1117                 return 0;
1118
1119         mutex_lock(&mb1_transfer.lock);
1120
1121         if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1122                 request_even_slower_clocks(false);
1123
1124         if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1125                 goto skip_message;
1126
1127         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1128                 cpu_relax();
1129
1130         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1131         writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1132         writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1133                 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1134
1135         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1136         wait_for_completion(&mb1_transfer.work);
1137
1138         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1139                 (mb1_transfer.ack.ape_opp != opp))
1140                 r = -EIO;
1141
1142 skip_message:
1143         if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1144                 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1145                 request_even_slower_clocks(true);
1146         if (!r)
1147                 mb1_transfer.ape_opp = opp;
1148
1149         mutex_unlock(&mb1_transfer.lock);
1150
1151         return r;
1152 }
1153
1154 /**
1155  * db8500_prcmu_get_ape_opp - get the current APE OPP
1156  *
1157  * Returns: the current APE OPP
1158  */
1159 int db8500_prcmu_get_ape_opp(void)
1160 {
1161         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1162 }
1163
1164 /**
1165  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1166  * @enable: true to request the higher voltage, false to drop a request.
1167  *
1168  * Calls to this function to enable and disable requests must be balanced.
1169  */
1170 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1171 {
1172         int r = 0;
1173         u8 header;
1174         static unsigned int requests;
1175
1176         mutex_lock(&mb1_transfer.lock);
1177
1178         if (enable) {
1179                 if (0 != requests++)
1180                         goto unlock_and_return;
1181                 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1182         } else {
1183                 if (requests == 0) {
1184                         r = -EIO;
1185                         goto unlock_and_return;
1186                 } else if (1 != requests--) {
1187                         goto unlock_and_return;
1188                 }
1189                 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1190         }
1191
1192         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1193                 cpu_relax();
1194
1195         writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1196
1197         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1198         wait_for_completion(&mb1_transfer.work);
1199
1200         if ((mb1_transfer.ack.header != header) ||
1201                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1202                 r = -EIO;
1203
1204 unlock_and_return:
1205         mutex_unlock(&mb1_transfer.lock);
1206
1207         return r;
1208 }
1209
1210 /**
1211  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1212  *
1213  * This function releases the power state requirements of a USB wakeup.
1214  */
1215 int prcmu_release_usb_wakeup_state(void)
1216 {
1217         int r = 0;
1218
1219         mutex_lock(&mb1_transfer.lock);
1220
1221         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1222                 cpu_relax();
1223
1224         writeb(MB1H_RELEASE_USB_WAKEUP,
1225                 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1226
1227         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1228         wait_for_completion(&mb1_transfer.work);
1229
1230         if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1231                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1232                 r = -EIO;
1233
1234         mutex_unlock(&mb1_transfer.lock);
1235
1236         return r;
1237 }
1238
1239 static int request_pll(u8 clock, bool enable)
1240 {
1241         int r = 0;
1242
1243         if (clock == PRCMU_PLLSOC0)
1244                 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1245         else if (clock == PRCMU_PLLSOC1)
1246                 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1247         else
1248                 return -EINVAL;
1249
1250         mutex_lock(&mb1_transfer.lock);
1251
1252         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1253                 cpu_relax();
1254
1255         writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1256         writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1257
1258         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1259         wait_for_completion(&mb1_transfer.work);
1260
1261         if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1262                 r = -EIO;
1263
1264         mutex_unlock(&mb1_transfer.lock);
1265
1266         return r;
1267 }
1268
1269 /**
1270  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1271  * @epod_id: The EPOD to set
1272  * @epod_state: The new EPOD state
1273  *
1274  * This function sets the state of a EPOD (power domain). It may not be called
1275  * from interrupt context.
1276  */
1277 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1278 {
1279         int r = 0;
1280         bool ram_retention = false;
1281         int i;
1282
1283         /* check argument */
1284         BUG_ON(epod_id >= NUM_EPOD_ID);
1285
1286         /* set flag if retention is possible */
1287         switch (epod_id) {
1288         case EPOD_ID_SVAMMDSP:
1289         case EPOD_ID_SIAMMDSP:
1290         case EPOD_ID_ESRAM12:
1291         case EPOD_ID_ESRAM34:
1292                 ram_retention = true;
1293                 break;
1294         }
1295
1296         /* check argument */
1297         BUG_ON(epod_state > EPOD_STATE_ON);
1298         BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1299
1300         /* get lock */
1301         mutex_lock(&mb2_transfer.lock);
1302
1303         /* wait for mailbox */
1304         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1305                 cpu_relax();
1306
1307         /* fill in mailbox */
1308         for (i = 0; i < NUM_EPOD_ID; i++)
1309                 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1310         writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1311
1312         writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1313
1314         writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1315
1316         /*
1317          * The current firmware version does not handle errors correctly,
1318          * and we cannot recover if there is an error.
1319          * This is expected to change when the firmware is updated.
1320          */
1321         if (!wait_for_completion_timeout(&mb2_transfer.work,
1322                         msecs_to_jiffies(20000))) {
1323                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1324                         __func__);
1325                 r = -EIO;
1326                 goto unlock_and_return;
1327         }
1328
1329         if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1330                 r = -EIO;
1331
1332 unlock_and_return:
1333         mutex_unlock(&mb2_transfer.lock);
1334         return r;
1335 }
1336
1337 /**
1338  * prcmu_configure_auto_pm - Configure autonomous power management.
1339  * @sleep: Configuration for ApSleep.
1340  * @idle:  Configuration for ApIdle.
1341  */
1342 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1343         struct prcmu_auto_pm_config *idle)
1344 {
1345         u32 sleep_cfg;
1346         u32 idle_cfg;
1347         unsigned long flags;
1348
1349         BUG_ON((sleep == NULL) || (idle == NULL));
1350
1351         sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1352         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1353         sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1354         sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1355         sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1356         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1357
1358         idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1359         idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1360         idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1361         idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1362         idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1363         idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1364
1365         spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1366
1367         /*
1368          * The autonomous power management configuration is done through
1369          * fields in mailbox 2, but these fields are only used as shared
1370          * variables - i.e. there is no need to send a message.
1371          */
1372         writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1373         writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1374
1375         mb2_transfer.auto_pm_enabled =
1376                 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1377                  (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1378                  (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1379                  (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1380
1381         spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1382 }
1383 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1384
1385 bool prcmu_is_auto_pm_enabled(void)
1386 {
1387         return mb2_transfer.auto_pm_enabled;
1388 }
1389
1390 static int request_sysclk(bool enable)
1391 {
1392         int r;
1393         unsigned long flags;
1394
1395         r = 0;
1396
1397         mutex_lock(&mb3_transfer.sysclk_lock);
1398
1399         spin_lock_irqsave(&mb3_transfer.lock, flags);
1400
1401         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1402                 cpu_relax();
1403
1404         writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1405
1406         writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1407         writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1408
1409         spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1410
1411         /*
1412          * The firmware only sends an ACK if we want to enable the
1413          * SysClk, and it succeeds.
1414          */
1415         if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1416                         msecs_to_jiffies(20000))) {
1417                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1418                         __func__);
1419                 r = -EIO;
1420         }
1421
1422         mutex_unlock(&mb3_transfer.sysclk_lock);
1423
1424         return r;
1425 }
1426
1427 static int request_timclk(bool enable)
1428 {
1429         u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1430
1431         if (!enable)
1432                 val |= PRCM_TCR_STOP_TIMERS;
1433         writel(val, PRCM_TCR);
1434
1435         return 0;
1436 }
1437
1438 static int request_clock(u8 clock, bool enable)
1439 {
1440         u32 val;
1441         unsigned long flags;
1442
1443         spin_lock_irqsave(&clk_mgt_lock, flags);
1444
1445         /* Grab the HW semaphore. */
1446         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1447                 cpu_relax();
1448
1449         val = readl(clk_mgt[clock].reg);
1450         if (enable) {
1451                 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1452         } else {
1453                 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1454                 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1455         }
1456         writel(val, clk_mgt[clock].reg);
1457
1458         /* Release the HW semaphore. */
1459         writel(0, PRCM_SEM);
1460
1461         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1462
1463         return 0;
1464 }
1465
1466 static int request_sga_clock(u8 clock, bool enable)
1467 {
1468         u32 val;
1469         int ret;
1470
1471         if (enable) {
1472                 val = readl(PRCM_CGATING_BYPASS);
1473                 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1474         }
1475
1476         ret = request_clock(clock, enable);
1477
1478         if (!ret && !enable) {
1479                 val = readl(PRCM_CGATING_BYPASS);
1480                 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1481         }
1482
1483         return ret;
1484 }
1485
1486 static inline bool plldsi_locked(void)
1487 {
1488         return (readl(PRCM_PLLDSI_LOCKP) &
1489                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1490                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1491                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1492                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1493 }
1494
1495 static int request_plldsi(bool enable)
1496 {
1497         int r = 0;
1498         u32 val;
1499
1500         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1501                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1502                 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1503
1504         val = readl(PRCM_PLLDSI_ENABLE);
1505         if (enable)
1506                 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1507         else
1508                 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1509         writel(val, PRCM_PLLDSI_ENABLE);
1510
1511         if (enable) {
1512                 unsigned int i;
1513                 bool locked = plldsi_locked();
1514
1515                 for (i = 10; !locked && (i > 0); --i) {
1516                         udelay(100);
1517                         locked = plldsi_locked();
1518                 }
1519                 if (locked) {
1520                         writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1521                                 PRCM_APE_RESETN_SET);
1522                 } else {
1523                         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1524                                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1525                                 PRCM_MMIP_LS_CLAMP_SET);
1526                         val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1527                         writel(val, PRCM_PLLDSI_ENABLE);
1528                         r = -EAGAIN;
1529                 }
1530         } else {
1531                 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1532         }
1533         return r;
1534 }
1535
1536 static int request_dsiclk(u8 n, bool enable)
1537 {
1538         u32 val;
1539
1540         val = readl(PRCM_DSI_PLLOUT_SEL);
1541         val &= ~dsiclk[n].divsel_mask;
1542         val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1543                 dsiclk[n].divsel_shift);
1544         writel(val, PRCM_DSI_PLLOUT_SEL);
1545         return 0;
1546 }
1547
1548 static int request_dsiescclk(u8 n, bool enable)
1549 {
1550         u32 val;
1551
1552         val = readl(PRCM_DSITVCLK_DIV);
1553         enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1554         writel(val, PRCM_DSITVCLK_DIV);
1555         return 0;
1556 }
1557
1558 /**
1559  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1560  * @clock:      The clock for which the request is made.
1561  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1562  *
1563  * This function should only be used by the clock implementation.
1564  * Do not use it from any other place!
1565  */
1566 int db8500_prcmu_request_clock(u8 clock, bool enable)
1567 {
1568         if (clock == PRCMU_SGACLK)
1569                 return request_sga_clock(clock, enable);
1570         else if (clock < PRCMU_NUM_REG_CLOCKS)
1571                 return request_clock(clock, enable);
1572         else if (clock == PRCMU_TIMCLK)
1573                 return request_timclk(enable);
1574         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1575                 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1576         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1577                 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1578         else if (clock == PRCMU_PLLDSI)
1579                 return request_plldsi(enable);
1580         else if (clock == PRCMU_SYSCLK)
1581                 return request_sysclk(enable);
1582         else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1583                 return request_pll(clock, enable);
1584         else
1585                 return -EINVAL;
1586 }
1587
1588 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1589         int branch)
1590 {
1591         u64 rate;
1592         u32 val;
1593         u32 d;
1594         u32 div = 1;
1595
1596         val = readl(reg);
1597
1598         rate = src_rate;
1599         rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1600
1601         d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1602         if (d > 1)
1603                 div *= d;
1604
1605         d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1606         if (d > 1)
1607                 div *= d;
1608
1609         if (val & PRCM_PLL_FREQ_SELDIV2)
1610                 div *= 2;
1611
1612         if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1613                 (val & PRCM_PLL_FREQ_DIV2EN) &&
1614                 ((reg == PRCM_PLLSOC0_FREQ) ||
1615                  (reg == PRCM_PLLARM_FREQ) ||
1616                  (reg == PRCM_PLLDDR_FREQ))))
1617                 div *= 2;
1618
1619         (void)do_div(rate, div);
1620
1621         return (unsigned long)rate;
1622 }
1623
1624 #define ROOT_CLOCK_RATE 38400000
1625
1626 static unsigned long clock_rate(u8 clock)
1627 {
1628         u32 val;
1629         u32 pllsw;
1630         unsigned long rate = ROOT_CLOCK_RATE;
1631
1632         val = readl(clk_mgt[clock].reg);
1633
1634         if (val & PRCM_CLK_MGT_CLK38) {
1635                 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1636                         rate /= 2;
1637                 return rate;
1638         }
1639
1640         val |= clk_mgt[clock].pllsw;
1641         pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1642
1643         if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1644                 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1645         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1646                 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1647         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1648                 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1649         else
1650                 return 0;
1651
1652         if ((clock == PRCMU_SGACLK) &&
1653                 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1654                 u64 r = (rate * 10);
1655
1656                 (void)do_div(r, 25);
1657                 return (unsigned long)r;
1658         }
1659         val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1660         if (val)
1661                 return rate / val;
1662         else
1663                 return 0;
1664 }
1665
1666 static unsigned long armss_rate(void)
1667 {
1668         u32 r;
1669         unsigned long rate;
1670
1671         r = readl(PRCM_ARM_CHGCLKREQ);
1672
1673         if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1674                 /* External ARMCLKFIX clock */
1675
1676                 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1677
1678                 /* Check PRCM_ARM_CHGCLKREQ divider */
1679                 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1680                         rate /= 2;
1681
1682                 /* Check PRCM_ARMCLKFIX_MGT divider */
1683                 r = readl(PRCM_ARMCLKFIX_MGT);
1684                 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1685                 rate /= r;
1686
1687         } else {/* ARM PLL */
1688                 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1689         }
1690
1691         return rate;
1692 }
1693
1694 static unsigned long dsiclk_rate(u8 n)
1695 {
1696         u32 divsel;
1697         u32 div = 1;
1698
1699         divsel = readl(PRCM_DSI_PLLOUT_SEL);
1700         divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1701
1702         if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1703                 divsel = dsiclk[n].divsel;
1704
1705         switch (divsel) {
1706         case PRCM_DSI_PLLOUT_SEL_PHI_4:
1707                 div *= 2;
1708         case PRCM_DSI_PLLOUT_SEL_PHI_2:
1709                 div *= 2;
1710         case PRCM_DSI_PLLOUT_SEL_PHI:
1711                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1712                         PLL_RAW) / div;
1713         default:
1714                 return 0;
1715         }
1716 }
1717
1718 static unsigned long dsiescclk_rate(u8 n)
1719 {
1720         u32 div;
1721
1722         div = readl(PRCM_DSITVCLK_DIV);
1723         div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1724         return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1725 }
1726
1727 unsigned long prcmu_clock_rate(u8 clock)
1728 {
1729         if (clock < PRCMU_NUM_REG_CLOCKS)
1730                 return clock_rate(clock);
1731         else if (clock == PRCMU_TIMCLK)
1732                 return ROOT_CLOCK_RATE / 16;
1733         else if (clock == PRCMU_SYSCLK)
1734                 return ROOT_CLOCK_RATE;
1735         else if (clock == PRCMU_PLLSOC0)
1736                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1737         else if (clock == PRCMU_PLLSOC1)
1738                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1739         else if (clock == PRCMU_ARMSS)
1740                 return armss_rate();
1741         else if (clock == PRCMU_PLLDDR)
1742                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1743         else if (clock == PRCMU_PLLDSI)
1744                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1745                         PLL_RAW);
1746         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1747                 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1748         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1749                 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1750         else
1751                 return 0;
1752 }
1753
1754 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1755 {
1756         if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1757                 return ROOT_CLOCK_RATE;
1758         clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1759         if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1760                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1761         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1762                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1763         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1764                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1765         else
1766                 return 0;
1767 }
1768
1769 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1770 {
1771         u32 div;
1772
1773         div = (src_rate / rate);
1774         if (div == 0)
1775                 return 1;
1776         if (rate < (src_rate / div))
1777                 div++;
1778         return div;
1779 }
1780
1781 static long round_clock_rate(u8 clock, unsigned long rate)
1782 {
1783         u32 val;
1784         u32 div;
1785         unsigned long src_rate;
1786         long rounded_rate;
1787
1788         val = readl(clk_mgt[clock].reg);
1789         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1790                 clk_mgt[clock].branch);
1791         div = clock_divider(src_rate, rate);
1792         if (val & PRCM_CLK_MGT_CLK38) {
1793                 if (clk_mgt[clock].clk38div) {
1794                         if (div > 2)
1795                                 div = 2;
1796                 } else {
1797                         div = 1;
1798                 }
1799         } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1800                 u64 r = (src_rate * 10);
1801
1802                 (void)do_div(r, 25);
1803                 if (r <= rate)
1804                         return (unsigned long)r;
1805         }
1806         rounded_rate = (src_rate / min(div, (u32)31));
1807
1808         return rounded_rate;
1809 }
1810
1811 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1812 static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1813         { .frequency = 200000, .index = ARM_EXTCLK,},
1814         { .frequency = 400000, .index = ARM_50_OPP,},
1815         { .frequency = 800000, .index = ARM_100_OPP,},
1816         { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1817         { .frequency = CPUFREQ_TABLE_END,},
1818 };
1819
1820 static long round_armss_rate(unsigned long rate)
1821 {
1822         long freq = 0;
1823         int i = 0;
1824
1825         /* cpufreq table frequencies is in KHz. */
1826         rate = rate / 1000;
1827
1828         /* Find the corresponding arm opp from the cpufreq table. */
1829         while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1830                 freq = db8500_cpufreq_table[i].frequency;
1831                 if (freq == rate)
1832                         break;
1833                 i++;
1834         }
1835
1836         /* Return the last valid value, even if a match was not found. */
1837         return freq * 1000;
1838 }
1839
1840 #define MIN_PLL_VCO_RATE 600000000ULL
1841 #define MAX_PLL_VCO_RATE 1680640000ULL
1842
1843 static long round_plldsi_rate(unsigned long rate)
1844 {
1845         long rounded_rate = 0;
1846         unsigned long src_rate;
1847         unsigned long rem;
1848         u32 r;
1849
1850         src_rate = clock_rate(PRCMU_HDMICLK);
1851         rem = rate;
1852
1853         for (r = 7; (rem > 0) && (r > 0); r--) {
1854                 u64 d;
1855
1856                 d = (r * rate);
1857                 (void)do_div(d, src_rate);
1858                 if (d < 6)
1859                         d = 6;
1860                 else if (d > 255)
1861                         d = 255;
1862                 d *= src_rate;
1863                 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1864                         ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1865                         continue;
1866                 (void)do_div(d, r);
1867                 if (rate < d) {
1868                         if (rounded_rate == 0)
1869                                 rounded_rate = (long)d;
1870                         break;
1871                 }
1872                 if ((rate - d) < rem) {
1873                         rem = (rate - d);
1874                         rounded_rate = (long)d;
1875                 }
1876         }
1877         return rounded_rate;
1878 }
1879
1880 static long round_dsiclk_rate(unsigned long rate)
1881 {
1882         u32 div;
1883         unsigned long src_rate;
1884         long rounded_rate;
1885
1886         src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1887                 PLL_RAW);
1888         div = clock_divider(src_rate, rate);
1889         rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1890
1891         return rounded_rate;
1892 }
1893
1894 static long round_dsiescclk_rate(unsigned long rate)
1895 {
1896         u32 div;
1897         unsigned long src_rate;
1898         long rounded_rate;
1899
1900         src_rate = clock_rate(PRCMU_TVCLK);
1901         div = clock_divider(src_rate, rate);
1902         rounded_rate = (src_rate / min(div, (u32)255));
1903
1904         return rounded_rate;
1905 }
1906
1907 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1908 {
1909         if (clock < PRCMU_NUM_REG_CLOCKS)
1910                 return round_clock_rate(clock, rate);
1911         else if (clock == PRCMU_ARMSS)
1912                 return round_armss_rate(rate);
1913         else if (clock == PRCMU_PLLDSI)
1914                 return round_plldsi_rate(rate);
1915         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1916                 return round_dsiclk_rate(rate);
1917         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1918                 return round_dsiescclk_rate(rate);
1919         else
1920                 return (long)prcmu_clock_rate(clock);
1921 }
1922
1923 static void set_clock_rate(u8 clock, unsigned long rate)
1924 {
1925         u32 val;
1926         u32 div;
1927         unsigned long src_rate;
1928         unsigned long flags;
1929
1930         spin_lock_irqsave(&clk_mgt_lock, flags);
1931
1932         /* Grab the HW semaphore. */
1933         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1934                 cpu_relax();
1935
1936         val = readl(clk_mgt[clock].reg);
1937         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1938                 clk_mgt[clock].branch);
1939         div = clock_divider(src_rate, rate);
1940         if (val & PRCM_CLK_MGT_CLK38) {
1941                 if (clk_mgt[clock].clk38div) {
1942                         if (div > 1)
1943                                 val |= PRCM_CLK_MGT_CLK38DIV;
1944                         else
1945                                 val &= ~PRCM_CLK_MGT_CLK38DIV;
1946                 }
1947         } else if (clock == PRCMU_SGACLK) {
1948                 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1949                         PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1950                 if (div == 3) {
1951                         u64 r = (src_rate * 10);
1952
1953                         (void)do_div(r, 25);
1954                         if (r <= rate) {
1955                                 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1956                                 div = 0;
1957                         }
1958                 }
1959                 val |= min(div, (u32)31);
1960         } else {
1961                 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1962                 val |= min(div, (u32)31);
1963         }
1964         writel(val, clk_mgt[clock].reg);
1965
1966         /* Release the HW semaphore. */
1967         writel(0, PRCM_SEM);
1968
1969         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1970 }
1971
1972 static int set_armss_rate(unsigned long rate)
1973 {
1974         int i = 0;
1975
1976         /* cpufreq table frequencies is in KHz. */
1977         rate = rate / 1000;
1978
1979         /* Find the corresponding arm opp from the cpufreq table. */
1980         while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1981                 if (db8500_cpufreq_table[i].frequency == rate)
1982                         break;
1983                 i++;
1984         }
1985
1986         if (db8500_cpufreq_table[i].frequency != rate)
1987                 return -EINVAL;
1988
1989         /* Set the new arm opp. */
1990         return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].index);
1991 }
1992
1993 static int set_plldsi_rate(unsigned long rate)
1994 {
1995         unsigned long src_rate;
1996         unsigned long rem;
1997         u32 pll_freq = 0;
1998         u32 r;
1999
2000         src_rate = clock_rate(PRCMU_HDMICLK);
2001         rem = rate;
2002
2003         for (r = 7; (rem > 0) && (r > 0); r--) {
2004                 u64 d;
2005                 u64 hwrate;
2006
2007                 d = (r * rate);
2008                 (void)do_div(d, src_rate);
2009                 if (d < 6)
2010                         d = 6;
2011                 else if (d > 255)
2012                         d = 255;
2013                 hwrate = (d * src_rate);
2014                 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
2015                         ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
2016                         continue;
2017                 (void)do_div(hwrate, r);
2018                 if (rate < hwrate) {
2019                         if (pll_freq == 0)
2020                                 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
2021                                         (r << PRCM_PLL_FREQ_R_SHIFT));
2022                         break;
2023                 }
2024                 if ((rate - hwrate) < rem) {
2025                         rem = (rate - hwrate);
2026                         pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
2027                                 (r << PRCM_PLL_FREQ_R_SHIFT));
2028                 }
2029         }
2030         if (pll_freq == 0)
2031                 return -EINVAL;
2032
2033         pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
2034         writel(pll_freq, PRCM_PLLDSI_FREQ);
2035
2036         return 0;
2037 }
2038
2039 static void set_dsiclk_rate(u8 n, unsigned long rate)
2040 {
2041         u32 val;
2042         u32 div;
2043
2044         div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
2045                         clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
2046
2047         dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
2048                            (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
2049                            /* else */   PRCM_DSI_PLLOUT_SEL_PHI_4;
2050
2051         val = readl(PRCM_DSI_PLLOUT_SEL);
2052         val &= ~dsiclk[n].divsel_mask;
2053         val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
2054         writel(val, PRCM_DSI_PLLOUT_SEL);
2055 }
2056
2057 static void set_dsiescclk_rate(u8 n, unsigned long rate)
2058 {
2059         u32 val;
2060         u32 div;
2061
2062         div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
2063         val = readl(PRCM_DSITVCLK_DIV);
2064         val &= ~dsiescclk[n].div_mask;
2065         val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
2066         writel(val, PRCM_DSITVCLK_DIV);
2067 }
2068
2069 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
2070 {
2071         if (clock < PRCMU_NUM_REG_CLOCKS)
2072                 set_clock_rate(clock, rate);
2073         else if (clock == PRCMU_ARMSS)
2074                 return set_armss_rate(rate);
2075         else if (clock == PRCMU_PLLDSI)
2076                 return set_plldsi_rate(rate);
2077         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
2078                 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
2079         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
2080                 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
2081         return 0;
2082 }
2083
2084 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2085 {
2086         if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2087             (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2088                 return -EINVAL;
2089
2090         mutex_lock(&mb4_transfer.lock);
2091
2092         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2093                 cpu_relax();
2094
2095         writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2096         writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2097                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2098         writeb(DDR_PWR_STATE_ON,
2099                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2100         writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2101
2102         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2103         wait_for_completion(&mb4_transfer.work);
2104
2105         mutex_unlock(&mb4_transfer.lock);
2106
2107         return 0;
2108 }
2109
2110 int db8500_prcmu_config_hotdog(u8 threshold)
2111 {
2112         mutex_lock(&mb4_transfer.lock);
2113
2114         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2115                 cpu_relax();
2116
2117         writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2118         writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2119
2120         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2121         wait_for_completion(&mb4_transfer.work);
2122
2123         mutex_unlock(&mb4_transfer.lock);
2124
2125         return 0;
2126 }
2127
2128 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2129 {
2130         mutex_lock(&mb4_transfer.lock);
2131
2132         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2133                 cpu_relax();
2134
2135         writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2136         writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2137         writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2138                 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2139         writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2140
2141         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2142         wait_for_completion(&mb4_transfer.work);
2143
2144         mutex_unlock(&mb4_transfer.lock);
2145
2146         return 0;
2147 }
2148
2149 static int config_hot_period(u16 val)
2150 {
2151         mutex_lock(&mb4_transfer.lock);
2152
2153         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2154                 cpu_relax();
2155
2156         writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2157         writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2158
2159         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2160         wait_for_completion(&mb4_transfer.work);
2161
2162         mutex_unlock(&mb4_transfer.lock);
2163
2164         return 0;
2165 }
2166
2167 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2168 {
2169         if (cycles32k == 0xFFFF)
2170                 return -EINVAL;
2171
2172         return config_hot_period(cycles32k);
2173 }
2174
2175 int db8500_prcmu_stop_temp_sense(void)
2176 {
2177         return config_hot_period(0xFFFF);
2178 }
2179
2180 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2181 {
2182
2183         mutex_lock(&mb4_transfer.lock);
2184
2185         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2186                 cpu_relax();
2187
2188         writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2189         writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2190         writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2191         writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2192
2193         writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2194
2195         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2196         wait_for_completion(&mb4_transfer.work);
2197
2198         mutex_unlock(&mb4_transfer.lock);
2199
2200         return 0;
2201
2202 }
2203
2204 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2205 {
2206         BUG_ON(num == 0 || num > 0xf);
2207         return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2208                             sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2209                             A9WDOG_AUTO_OFF_DIS);
2210 }
2211 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2212
2213 int db8500_prcmu_enable_a9wdog(u8 id)
2214 {
2215         return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2216 }
2217 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2218
2219 int db8500_prcmu_disable_a9wdog(u8 id)
2220 {
2221         return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2222 }
2223 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2224
2225 int db8500_prcmu_kick_a9wdog(u8 id)
2226 {
2227         return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2228 }
2229 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2230
2231 /*
2232  * timeout is 28 bit, in ms.
2233  */
2234 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2235 {
2236         return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2237                             (id & A9WDOG_ID_MASK) |
2238                             /*
2239                              * Put the lowest 28 bits of timeout at
2240                              * offset 4. Four first bits are used for id.
2241                              */
2242                             (u8)((timeout << 4) & 0xf0),
2243                             (u8)((timeout >> 4) & 0xff),
2244                             (u8)((timeout >> 12) & 0xff),
2245                             (u8)((timeout >> 20) & 0xff));
2246 }
2247 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2248
2249 /**
2250  * prcmu_abb_read() - Read register value(s) from the ABB.
2251  * @slave:      The I2C slave address.
2252  * @reg:        The (start) register address.
2253  * @value:      The read out value(s).
2254  * @size:       The number of registers to read.
2255  *
2256  * Reads register value(s) from the ABB.
2257  * @size has to be 1 for the current firmware version.
2258  */
2259 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2260 {
2261         int r;
2262
2263         if (size != 1)
2264                 return -EINVAL;
2265
2266         mutex_lock(&mb5_transfer.lock);
2267
2268         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2269                 cpu_relax();
2270
2271         writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2272         writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2273         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2274         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2275         writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2276
2277         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2278
2279         if (!wait_for_completion_timeout(&mb5_transfer.work,
2280                                 msecs_to_jiffies(20000))) {
2281                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2282                         __func__);
2283                 r = -EIO;
2284         } else {
2285                 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2286         }
2287
2288         if (!r)
2289                 *value = mb5_transfer.ack.value;
2290
2291         mutex_unlock(&mb5_transfer.lock);
2292
2293         return r;
2294 }
2295
2296 /**
2297  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2298  * @slave:      The I2C slave address.
2299  * @reg:        The (start) register address.
2300  * @value:      The value(s) to write.
2301  * @mask:       The mask(s) to use.
2302  * @size:       The number of registers to write.
2303  *
2304  * Writes masked register value(s) to the ABB.
2305  * For each @value, only the bits set to 1 in the corresponding @mask
2306  * will be written. The other bits are not changed.
2307  * @size has to be 1 for the current firmware version.
2308  */
2309 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2310 {
2311         int r;
2312
2313         if (size != 1)
2314                 return -EINVAL;
2315
2316         mutex_lock(&mb5_transfer.lock);
2317
2318         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2319                 cpu_relax();
2320
2321         writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2322         writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2323         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2324         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2325         writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2326
2327         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2328
2329         if (!wait_for_completion_timeout(&mb5_transfer.work,
2330                                 msecs_to_jiffies(20000))) {
2331                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2332                         __func__);
2333                 r = -EIO;
2334         } else {
2335                 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2336         }
2337
2338         mutex_unlock(&mb5_transfer.lock);
2339
2340         return r;
2341 }
2342
2343 /**
2344  * prcmu_abb_write() - Write register value(s) to the ABB.
2345  * @slave:      The I2C slave address.
2346  * @reg:        The (start) register address.
2347  * @value:      The value(s) to write.
2348  * @size:       The number of registers to write.
2349  *
2350  * Writes register value(s) to the ABB.
2351  * @size has to be 1 for the current firmware version.
2352  */
2353 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2354 {
2355         u8 mask = ~0;
2356
2357         return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2358 }
2359
2360 /**
2361  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2362  */
2363 int prcmu_ac_wake_req(void)
2364 {
2365         u32 val;
2366         int ret = 0;
2367
2368         mutex_lock(&mb0_transfer.ac_wake_lock);
2369
2370         val = readl(PRCM_HOSTACCESS_REQ);
2371         if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2372                 goto unlock_and_return;
2373
2374         atomic_set(&ac_wake_req_state, 1);
2375
2376         /*
2377          * Force Modem Wake-up before hostaccess_req ping-pong.
2378          * It prevents Modem to enter in Sleep while acking the hostaccess
2379          * request. The 31us delay has been calculated by HWI.
2380          */
2381         val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2382         writel(val, PRCM_HOSTACCESS_REQ);
2383
2384         udelay(31);
2385
2386         val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2387         writel(val, PRCM_HOSTACCESS_REQ);
2388
2389         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2390                         msecs_to_jiffies(5000))) {
2391 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2392                 db8500_prcmu_debug_dump(__func__, true, true);
2393 #endif
2394                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2395                         __func__);
2396                 ret = -EFAULT;
2397         }
2398
2399 unlock_and_return:
2400         mutex_unlock(&mb0_transfer.ac_wake_lock);
2401         return ret;
2402 }
2403
2404 /**
2405  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2406  */
2407 void prcmu_ac_sleep_req()
2408 {
2409         u32 val;
2410
2411         mutex_lock(&mb0_transfer.ac_wake_lock);
2412
2413         val = readl(PRCM_HOSTACCESS_REQ);
2414         if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2415                 goto unlock_and_return;
2416
2417         writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2418                 PRCM_HOSTACCESS_REQ);
2419
2420         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2421                         msecs_to_jiffies(5000))) {
2422                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2423                         __func__);
2424         }
2425
2426         atomic_set(&ac_wake_req_state, 0);
2427
2428 unlock_and_return:
2429         mutex_unlock(&mb0_transfer.ac_wake_lock);
2430 }
2431
2432 bool db8500_prcmu_is_ac_wake_requested(void)
2433 {
2434         return (atomic_read(&ac_wake_req_state) != 0);
2435 }
2436
2437 /**
2438  * db8500_prcmu_system_reset - System reset
2439  *
2440  * Saves the reset reason code and then sets the APE_SOFTRST register which
2441  * fires interrupt to fw
2442  */
2443 void db8500_prcmu_system_reset(u16 reset_code)
2444 {
2445         writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2446         writel(1, PRCM_APE_SOFTRST);
2447 }
2448
2449 /**
2450  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2451  *
2452  * Retrieves the reset reason code stored by prcmu_system_reset() before
2453  * last restart.
2454  */
2455 u16 db8500_prcmu_get_reset_code(void)
2456 {
2457         return readw(tcdm_base + PRCM_SW_RST_REASON);
2458 }
2459
2460 /**
2461  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2462  */
2463 void db8500_prcmu_modem_reset(void)
2464 {
2465         mutex_lock(&mb1_transfer.lock);
2466
2467         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2468                 cpu_relax();
2469
2470         writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2471         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2472         wait_for_completion(&mb1_transfer.work);
2473
2474         /*
2475          * No need to check return from PRCMU as modem should go in reset state
2476          * This state is already managed by upper layer
2477          */
2478
2479         mutex_unlock(&mb1_transfer.lock);
2480 }
2481
2482 static void ack_dbb_wakeup(void)
2483 {
2484         unsigned long flags;
2485
2486         spin_lock_irqsave(&mb0_transfer.lock, flags);
2487
2488         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2489                 cpu_relax();
2490
2491         writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2492         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2493
2494         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2495 }
2496
2497 static inline void print_unknown_header_warning(u8 n, u8 header)
2498 {
2499         pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2500                 header, n);
2501 }
2502
2503 static bool read_mailbox_0(void)
2504 {
2505         bool r;
2506         u32 ev;
2507         unsigned int n;
2508         u8 header;
2509
2510         header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2511         switch (header) {
2512         case MB0H_WAKEUP_EXE:
2513         case MB0H_WAKEUP_SLEEP:
2514                 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2515                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2516                 else
2517                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2518
2519                 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2520                         complete(&mb0_transfer.ac_wake_work);
2521                 if (ev & WAKEUP_BIT_SYSCLK_OK)
2522                         complete(&mb3_transfer.sysclk_work);
2523
2524                 ev &= mb0_transfer.req.dbb_irqs;
2525
2526                 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2527                         if (ev & prcmu_irq_bit[n])
2528                                 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2529                 }
2530                 r = true;
2531                 break;
2532         default:
2533                 print_unknown_header_warning(0, header);
2534                 r = false;
2535                 break;
2536         }
2537         writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2538         return r;
2539 }
2540
2541 static bool read_mailbox_1(void)
2542 {
2543         mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2544         mb1_transfer.ack.arm_opp = readb(tcdm_base +
2545                 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2546         mb1_transfer.ack.ape_opp = readb(tcdm_base +
2547                 PRCM_ACK_MB1_CURRENT_APE_OPP);
2548         mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2549                 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2550         writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2551         complete(&mb1_transfer.work);
2552         return false;
2553 }
2554
2555 static bool read_mailbox_2(void)
2556 {
2557         mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2558         writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2559         complete(&mb2_transfer.work);
2560         return false;
2561 }
2562
2563 static bool read_mailbox_3(void)
2564 {
2565         writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2566         return false;
2567 }
2568
2569 static bool read_mailbox_4(void)
2570 {
2571         u8 header;
2572         bool do_complete = true;
2573
2574         header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2575         switch (header) {
2576         case MB4H_MEM_ST:
2577         case MB4H_HOTDOG:
2578         case MB4H_HOTMON:
2579         case MB4H_HOT_PERIOD:
2580         case MB4H_A9WDOG_CONF:
2581         case MB4H_A9WDOG_EN:
2582         case MB4H_A9WDOG_DIS:
2583         case MB4H_A9WDOG_LOAD:
2584         case MB4H_A9WDOG_KICK:
2585                 break;
2586         default:
2587                 print_unknown_header_warning(4, header);
2588                 do_complete = false;
2589                 break;
2590         }
2591
2592         writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2593
2594         if (do_complete)
2595                 complete(&mb4_transfer.work);
2596
2597         return false;
2598 }
2599
2600 static bool read_mailbox_5(void)
2601 {
2602         mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2603         mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2604         writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2605         complete(&mb5_transfer.work);
2606         return false;
2607 }
2608
2609 static bool read_mailbox_6(void)
2610 {
2611         writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2612         return false;
2613 }
2614
2615 static bool read_mailbox_7(void)
2616 {
2617         writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2618         return false;
2619 }
2620
2621 static bool (* const read_mailbox[NUM_MB])(void) = {
2622         read_mailbox_0,
2623         read_mailbox_1,
2624         read_mailbox_2,
2625         read_mailbox_3,
2626         read_mailbox_4,
2627         read_mailbox_5,
2628         read_mailbox_6,
2629         read_mailbox_7
2630 };
2631
2632 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2633 {
2634         u32 bits;
2635         u8 n;
2636         irqreturn_t r;
2637
2638         bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2639         if (unlikely(!bits))
2640                 return IRQ_NONE;
2641
2642         r = IRQ_HANDLED;
2643         for (n = 0; bits; n++) {
2644                 if (bits & MBOX_BIT(n)) {
2645                         bits -= MBOX_BIT(n);
2646                         if (read_mailbox[n]())
2647                                 r = IRQ_WAKE_THREAD;
2648                 }
2649         }
2650         return r;
2651 }
2652
2653 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2654 {
2655         ack_dbb_wakeup();
2656         return IRQ_HANDLED;
2657 }
2658
2659 static void prcmu_mask_work(struct work_struct *work)
2660 {
2661         unsigned long flags;
2662
2663         spin_lock_irqsave(&mb0_transfer.lock, flags);
2664
2665         config_wakeups();
2666
2667         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2668 }
2669
2670 static void prcmu_irq_mask(struct irq_data *d)
2671 {
2672         unsigned long flags;
2673
2674         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2675
2676         mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2677
2678         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2679
2680         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2681                 schedule_work(&mb0_transfer.mask_work);
2682 }
2683
2684 static void prcmu_irq_unmask(struct irq_data *d)
2685 {
2686         unsigned long flags;
2687
2688         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2689
2690         mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2691
2692         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2693
2694         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2695                 schedule_work(&mb0_transfer.mask_work);
2696 }
2697
2698 static void noop(struct irq_data *d)
2699 {
2700 }
2701
2702 static struct irq_chip prcmu_irq_chip = {
2703         .name           = "prcmu",
2704         .irq_disable    = prcmu_irq_mask,
2705         .irq_ack        = noop,
2706         .irq_mask       = prcmu_irq_mask,
2707         .irq_unmask     = prcmu_irq_unmask,
2708 };
2709
2710 static __init char *fw_project_name(u32 project)
2711 {
2712         switch (project) {
2713         case PRCMU_FW_PROJECT_U8500:
2714                 return "U8500";
2715         case PRCMU_FW_PROJECT_U8400:
2716                 return "U8400";
2717         case PRCMU_FW_PROJECT_U9500:
2718                 return "U9500";
2719         case PRCMU_FW_PROJECT_U8500_MBB:
2720                 return "U8500 MBB";
2721         case PRCMU_FW_PROJECT_U8500_C1:
2722                 return "U8500 C1";
2723         case PRCMU_FW_PROJECT_U8500_C2:
2724                 return "U8500 C2";
2725         case PRCMU_FW_PROJECT_U8500_C3:
2726                 return "U8500 C3";
2727         case PRCMU_FW_PROJECT_U8500_C4:
2728                 return "U8500 C4";
2729         case PRCMU_FW_PROJECT_U9500_MBL:
2730                 return "U9500 MBL";
2731         case PRCMU_FW_PROJECT_U8500_MBL:
2732                 return "U8500 MBL";
2733         case PRCMU_FW_PROJECT_U8500_MBL2:
2734                 return "U8500 MBL2";
2735         case PRCMU_FW_PROJECT_U8520:
2736                 return "U8520 MBL";
2737         case PRCMU_FW_PROJECT_U8420:
2738                 return "U8420";
2739         case PRCMU_FW_PROJECT_U9540:
2740                 return "U9540";
2741         case PRCMU_FW_PROJECT_A9420:
2742                 return "A9420";
2743         case PRCMU_FW_PROJECT_L8540:
2744                 return "L8540";
2745         case PRCMU_FW_PROJECT_L8580:
2746                 return "L8580";
2747         default:
2748                 return "Unknown";
2749         }
2750 }
2751
2752 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2753                                 irq_hw_number_t hwirq)
2754 {
2755         irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2756                                 handle_simple_irq);
2757         set_irq_flags(virq, IRQF_VALID);
2758
2759         return 0;
2760 }
2761
2762 static struct irq_domain_ops db8500_irq_ops = {
2763         .map    = db8500_irq_map,
2764         .xlate  = irq_domain_xlate_twocell,
2765 };
2766
2767 static int db8500_irq_init(struct device_node *np)
2768 {
2769         int irq_base = 0;
2770         int i;
2771
2772         /* In the device tree case, just take some IRQs */
2773         if (!np)
2774                 irq_base = IRQ_PRCMU_BASE;
2775
2776         db8500_irq_domain = irq_domain_add_simple(
2777                 np, NUM_PRCMU_WAKEUPS, irq_base,
2778                 &db8500_irq_ops, NULL);
2779
2780         if (!db8500_irq_domain) {
2781                 pr_err("Failed to create irqdomain\n");
2782                 return -ENOSYS;
2783         }
2784
2785         /* All wakeups will be used, so create mappings for all */
2786         for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2787                 irq_create_mapping(db8500_irq_domain, i);
2788
2789         return 0;
2790 }
2791
2792 static void dbx500_fw_version_init(struct platform_device *pdev,
2793                             u32 version_offset)
2794 {
2795         struct resource *res;
2796         void __iomem *tcpm_base;
2797
2798         res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2799                                            "prcmu-tcpm");
2800         if (!res) {
2801                 dev_err(&pdev->dev,
2802                         "Error: no prcmu tcpm memory region provided\n");
2803                 return;
2804         }
2805         tcpm_base = ioremap(res->start, resource_size(res));
2806         if (tcpm_base != NULL) {
2807                 u32 version;
2808
2809                 version = readl(tcpm_base + version_offset);
2810                 fw_info.version.project = (version & 0xFF);
2811                 fw_info.version.api_version = (version >> 8) & 0xFF;
2812                 fw_info.version.func_version = (version >> 16) & 0xFF;
2813                 fw_info.version.errata = (version >> 24) & 0xFF;
2814                 strncpy(fw_info.version.project_name,
2815                         fw_project_name(fw_info.version.project),
2816                         PRCMU_FW_PROJECT_NAME_LEN);
2817                 fw_info.valid = true;
2818                 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2819                         fw_info.version.project_name,
2820                         fw_info.version.project,
2821                         fw_info.version.api_version,
2822                         fw_info.version.func_version,
2823                         fw_info.version.errata);
2824                 iounmap(tcpm_base);
2825         }
2826 }
2827
2828 void __init db8500_prcmu_early_init(void)
2829 {
2830         spin_lock_init(&mb0_transfer.lock);
2831         spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2832         mutex_init(&mb0_transfer.ac_wake_lock);
2833         init_completion(&mb0_transfer.ac_wake_work);
2834         mutex_init(&mb1_transfer.lock);
2835         init_completion(&mb1_transfer.work);
2836         mb1_transfer.ape_opp = APE_NO_CHANGE;
2837         mutex_init(&mb2_transfer.lock);
2838         init_completion(&mb2_transfer.work);
2839         spin_lock_init(&mb2_transfer.auto_pm_lock);
2840         spin_lock_init(&mb3_transfer.lock);
2841         mutex_init(&mb3_transfer.sysclk_lock);
2842         init_completion(&mb3_transfer.sysclk_work);
2843         mutex_init(&mb4_transfer.lock);
2844         init_completion(&mb4_transfer.work);
2845         mutex_init(&mb5_transfer.lock);
2846         init_completion(&mb5_transfer.work);
2847
2848         INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2849 }
2850
2851 static void __init init_prcm_registers(void)
2852 {
2853         u32 val;
2854
2855         val = readl(PRCM_A9PL_FORCE_CLKEN);
2856         val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2857                 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2858         writel(val, (PRCM_A9PL_FORCE_CLKEN));
2859 }
2860
2861 /*
2862  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2863  */
2864 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2865         REGULATOR_SUPPLY("v-ape", NULL),
2866         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2867         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2868         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2869         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2870         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2871         /* "v-mmc" changed to "vcore" in the mainline kernel */
2872         REGULATOR_SUPPLY("vcore", "sdi0"),
2873         REGULATOR_SUPPLY("vcore", "sdi1"),
2874         REGULATOR_SUPPLY("vcore", "sdi2"),
2875         REGULATOR_SUPPLY("vcore", "sdi3"),
2876         REGULATOR_SUPPLY("vcore", "sdi4"),
2877         REGULATOR_SUPPLY("v-dma", "dma40.0"),
2878         REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2879         /* "v-uart" changed to "vcore" in the mainline kernel */
2880         REGULATOR_SUPPLY("vcore", "uart0"),
2881         REGULATOR_SUPPLY("vcore", "uart1"),
2882         REGULATOR_SUPPLY("vcore", "uart2"),
2883         REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2884         REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2885         REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2886 };
2887
2888 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2889         REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2890         /* AV8100 regulator */
2891         REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2892 };
2893
2894 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2895         REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2896         REGULATOR_SUPPLY("vsupply", "mcde"),
2897 };
2898
2899 /* SVA MMDSP regulator switch */
2900 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2901         REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2902 };
2903
2904 /* SVA pipe regulator switch */
2905 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2906         REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2907 };
2908
2909 /* SIA MMDSP regulator switch */
2910 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2911         REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2912 };
2913
2914 /* SIA pipe regulator switch */
2915 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2916         REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2917 };
2918
2919 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2920         REGULATOR_SUPPLY("v-mali", NULL),
2921 };
2922
2923 /* ESRAM1 and 2 regulator switch */
2924 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2925         REGULATOR_SUPPLY("esram12", "cm_control"),
2926 };
2927
2928 /* ESRAM3 and 4 regulator switch */
2929 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2930         REGULATOR_SUPPLY("v-esram34", "mcde"),
2931         REGULATOR_SUPPLY("esram34", "cm_control"),
2932         REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2933 };
2934
2935 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2936         [DB8500_REGULATOR_VAPE] = {
2937                 .constraints = {
2938                         .name = "db8500-vape",
2939                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2940                         .always_on = true,
2941                 },
2942                 .consumer_supplies = db8500_vape_consumers,
2943                 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2944         },
2945         [DB8500_REGULATOR_VARM] = {
2946                 .constraints = {
2947                         .name = "db8500-varm",
2948                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2949                 },
2950         },
2951         [DB8500_REGULATOR_VMODEM] = {
2952                 .constraints = {
2953                         .name = "db8500-vmodem",
2954                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2955                 },
2956         },
2957         [DB8500_REGULATOR_VPLL] = {
2958                 .constraints = {
2959                         .name = "db8500-vpll",
2960                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2961                 },
2962         },
2963         [DB8500_REGULATOR_VSMPS1] = {
2964                 .constraints = {
2965                         .name = "db8500-vsmps1",
2966                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2967                 },
2968         },
2969         [DB8500_REGULATOR_VSMPS2] = {
2970                 .constraints = {
2971                         .name = "db8500-vsmps2",
2972                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2973                 },
2974                 .consumer_supplies = db8500_vsmps2_consumers,
2975                 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2976         },
2977         [DB8500_REGULATOR_VSMPS3] = {
2978                 .constraints = {
2979                         .name = "db8500-vsmps3",
2980                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2981                 },
2982         },
2983         [DB8500_REGULATOR_VRF1] = {
2984                 .constraints = {
2985                         .name = "db8500-vrf1",
2986                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2987                 },
2988         },
2989         [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2990                 /* dependency to u8500-vape is handled outside regulator framework */
2991                 .constraints = {
2992                         .name = "db8500-sva-mmdsp",
2993                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2994                 },
2995                 .consumer_supplies = db8500_svammdsp_consumers,
2996                 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2997         },
2998         [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2999                 .constraints = {
3000                         /* "ret" means "retention" */
3001                         .name = "db8500-sva-mmdsp-ret",
3002                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3003                 },
3004         },
3005         [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
3006                 /* dependency to u8500-vape is handled outside regulator framework */
3007                 .constraints = {
3008                         .name = "db8500-sva-pipe",
3009                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3010                 },
3011                 .consumer_supplies = db8500_svapipe_consumers,
3012                 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
3013         },
3014         [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
3015                 /* dependency to u8500-vape is handled outside regulator framework */
3016                 .constraints = {
3017                         .name = "db8500-sia-mmdsp",
3018                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3019                 },
3020                 .consumer_supplies = db8500_siammdsp_consumers,
3021                 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
3022         },
3023         [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
3024                 .constraints = {
3025                         .name = "db8500-sia-mmdsp-ret",
3026                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3027                 },
3028         },
3029         [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
3030                 /* dependency to u8500-vape is handled outside regulator framework */
3031                 .constraints = {
3032                         .name = "db8500-sia-pipe",
3033                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3034                 },
3035                 .consumer_supplies = db8500_siapipe_consumers,
3036                 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
3037         },
3038         [DB8500_REGULATOR_SWITCH_SGA] = {
3039                 .supply_regulator = "db8500-vape",
3040                 .constraints = {
3041                         .name = "db8500-sga",
3042                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3043                 },
3044                 .consumer_supplies = db8500_sga_consumers,
3045                 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
3046
3047         },
3048         [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
3049                 .supply_regulator = "db8500-vape",
3050                 .constraints = {
3051                         .name = "db8500-b2r2-mcde",
3052                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3053                 },
3054                 .consumer_supplies = db8500_b2r2_mcde_consumers,
3055                 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
3056         },
3057         [DB8500_REGULATOR_SWITCH_ESRAM12] = {
3058                 /*
3059                  * esram12 is set in retention and supplied by Vsafe when Vape is off,
3060                  * no need to hold Vape
3061                  */
3062                 .constraints = {
3063                         .name = "db8500-esram12",
3064                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3065                 },
3066                 .consumer_supplies = db8500_esram12_consumers,
3067                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
3068         },
3069         [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
3070                 .constraints = {
3071                         .name = "db8500-esram12-ret",
3072                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3073                 },
3074         },
3075         [DB8500_REGULATOR_SWITCH_ESRAM34] = {
3076                 /*
3077                  * esram34 is set in retention and supplied by Vsafe when Vape is off,
3078                  * no need to hold Vape
3079                  */
3080                 .constraints = {
3081                         .name = "db8500-esram34",
3082                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3083                 },
3084                 .consumer_supplies = db8500_esram34_consumers,
3085                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3086         },
3087         [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3088                 .constraints = {
3089                         .name = "db8500-esram34-ret",
3090                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3091                 },
3092         },
3093 };
3094
3095 static struct resource ab8500_resources[] = {
3096         [0] = {
3097                 .start  = IRQ_DB8500_AB8500,
3098                 .end    = IRQ_DB8500_AB8500,
3099                 .flags  = IORESOURCE_IRQ
3100         }
3101 };
3102
3103 static struct ux500_wdt_data db8500_wdt_pdata = {
3104         .timeout = 600, /* 10 minutes */
3105         .has_28_bits_resolution = true,
3106 };
3107
3108 static struct mfd_cell db8500_prcmu_devs[] = {
3109         {
3110                 .name = "db8500-prcmu-regulators",
3111                 .of_compatible = "stericsson,db8500-prcmu-regulator",
3112                 .platform_data = &db8500_regulators,
3113                 .pdata_size = sizeof(db8500_regulators),
3114         },
3115         {
3116                 .name = "cpufreq-ux500",
3117                 .of_compatible = "stericsson,cpufreq-ux500",
3118                 .platform_data = &db8500_cpufreq_table,
3119                 .pdata_size = sizeof(db8500_cpufreq_table),
3120         },
3121         {
3122                 .name = "ux500_wdt",
3123                 .platform_data = &db8500_wdt_pdata,
3124                 .pdata_size = sizeof(db8500_wdt_pdata),
3125                 .id = -1,
3126         },
3127         {
3128                 .name = "ab8500-core",
3129                 .of_compatible = "stericsson,ab8500",
3130                 .num_resources = ARRAY_SIZE(ab8500_resources),
3131                 .resources = ab8500_resources,
3132                 .id = AB8500_VERSION_AB8500,
3133         },
3134 };
3135
3136 static void db8500_prcmu_update_cpufreq(void)
3137 {
3138         if (prcmu_has_arm_maxopp()) {
3139                 db8500_cpufreq_table[3].frequency = 1000000;
3140                 db8500_cpufreq_table[3].index = ARM_MAX_OPP;
3141         }
3142 }
3143
3144 /**
3145  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3146  *
3147  */
3148 static int db8500_prcmu_probe(struct platform_device *pdev)
3149 {
3150         struct device_node *np = pdev->dev.of_node;
3151         struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
3152         int irq = 0, err = 0, i;
3153         struct resource *res;
3154
3155         init_prcm_registers();
3156
3157         dbx500_fw_version_init(pdev, pdata->version_offset);
3158         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3159         if (!res) {
3160                 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3161                 return -ENOENT;
3162         }
3163         tcdm_base = devm_ioremap(&pdev->dev, res->start,
3164                         resource_size(res));
3165
3166         /* Clean up the mailbox interrupts after pre-kernel code. */
3167         writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3168
3169         irq = platform_get_irq(pdev, 0);
3170         if (irq <= 0) {
3171                 dev_err(&pdev->dev, "no prcmu irq provided\n");
3172                 return -ENOENT;
3173         }
3174
3175         err = request_threaded_irq(irq, prcmu_irq_handler,
3176                 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3177         if (err < 0) {
3178                 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3179                 err = -EBUSY;
3180                 goto no_irq_return;
3181         }
3182
3183         db8500_irq_init(np);
3184
3185         for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
3186                 if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
3187                         db8500_prcmu_devs[i].platform_data = pdata->ab_platdata;
3188                         db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
3189                 }
3190         }
3191
3192         prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3193
3194         db8500_prcmu_update_cpufreq();
3195
3196         err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3197                               ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
3198         if (err) {
3199                 pr_err("prcmu: Failed to add subdevices\n");
3200                 return err;
3201         }
3202
3203         pr_info("DB8500 PRCMU initialized\n");
3204
3205 no_irq_return:
3206         return err;
3207 }
3208 static const struct of_device_id db8500_prcmu_match[] = {
3209         { .compatible = "stericsson,db8500-prcmu"},
3210         { },
3211 };
3212
3213 static struct platform_driver db8500_prcmu_driver = {
3214         .driver = {
3215                 .name = "db8500-prcmu",
3216                 .owner = THIS_MODULE,
3217                 .of_match_table = db8500_prcmu_match,
3218         },
3219         .probe = db8500_prcmu_probe,
3220 };
3221
3222 static int __init db8500_prcmu_init(void)
3223 {
3224         return platform_driver_register(&db8500_prcmu_driver);
3225 }
3226
3227 core_initcall(db8500_prcmu_init);
3228
3229 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3230 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3231 MODULE_LICENSE("GPL v2");